kmewhort's picture
Update README.md
c47ace8
metadata
dataset_info:
  features:
    - name: label
      dtype:
        class_label:
          names:
            '0': The Eiffel Tower
            '1': The Great Wall of China
            '2': The Mona Lisa
            '3': aircraft carrier
            '4': airplane
            '5': alarm clock
            '6': ambulance
            '7': angel
            '8': animal migration
            '9': ant
            '10': anvil
            '11': apple
            '12': arm
            '13': asparagus
            '14': axe
            '15': backpack
            '16': banana
            '17': bandage
            '18': barn
            '19': baseball
            '20': baseball bat
            '21': basket
            '22': basketball
            '23': bat
            '24': bathtub
            '25': beach
            '26': bear
            '27': beard
            '28': bed
            '29': bee
            '30': belt
            '31': bench
            '32': bicycle
            '33': binoculars
            '34': bird
            '35': birthday cake
            '36': blackberry
            '37': blueberry
            '38': book
            '39': boomerang
            '40': bottlecap
            '41': bowtie
            '42': bracelet
            '43': brain
            '44': bread
            '45': bridge
            '46': broccoli
            '47': broom
            '48': bucket
            '49': bulldozer
            '50': bus
            '51': bush
            '52': butterfly
            '53': cactus
            '54': cake
            '55': calculator
            '56': calendar
            '57': camel
            '58': camera
            '59': camouflage
            '60': campfire
            '61': candle
            '62': cannon
            '63': canoe
            '64': car
            '65': carrot
            '66': castle
            '67': cat
            '68': ceiling fan
            '69': cell phone
            '70': cello
            '71': chair
            '72': chandelier
            '73': church
            '74': circle
            '75': clarinet
            '76': clock
            '77': cloud
            '78': coffee cup
            '79': compass
            '80': computer
            '81': cookie
            '82': cooler
            '83': couch
            '84': cow
            '85': crab
            '86': crayon
            '87': crocodile
            '88': crown
            '89': cruise ship
            '90': cup
            '91': diamond
            '92': dishwasher
            '93': diving board
            '94': dog
            '95': dolphin
            '96': donut
            '97': door
            '98': dragon
            '99': dresser
            '100': drill
            '101': drums
            '102': duck
            '103': dumbbell
            '104': ear
            '105': elbow
            '106': elephant
            '107': envelope
            '108': eraser
            '109': eye
            '110': eyeglasses
            '111': face
            '112': fan
            '113': feather
            '114': fence
            '115': finger
            '116': fire hydrant
            '117': fireplace
            '118': firetruck
            '119': fish
            '120': flamingo
            '121': flashlight
            '122': flip flops
            '123': floor lamp
            '124': flower
            '125': flying saucer
            '126': foot
            '127': fork
            '128': frog
            '129': frying pan
            '130': garden
            '131': garden hose
            '132': giraffe
            '133': goatee
            '134': golf club
            '135': grapes
            '136': grass
            '137': guitar
            '138': hamburger
            '139': hammer
            '140': hand
            '141': harp
            '142': hat
            '143': headphones
            '144': hedgehog
            '145': helicopter
            '146': helmet
            '147': hexagon
            '148': hockey puck
            '149': hockey stick
            '150': horse
            '151': hospital
            '152': hot air balloon
            '153': hot dog
            '154': hot tub
            '155': hourglass
            '156': house
            '157': house plant
            '158': hurricane
            '159': ice cream
            '160': jacket
            '161': jail
            '162': kangaroo
            '163': key
            '164': keyboard
            '165': knee
            '166': knife
            '167': ladder
            '168': lantern
            '169': laptop
            '170': leaf
            '171': leg
            '172': light bulb
            '173': lighter
            '174': lighthouse
            '175': lightning
            '176': line
            '177': lion
            '178': lipstick
            '179': lobster
            '180': lollipop
            '181': mailbox
            '182': map
            '183': marker
            '184': matches
            '185': megaphone
            '186': mermaid
            '187': microphone
            '188': microwave
            '189': monkey
            '190': moon
            '191': mosquito
            '192': motorbike
            '193': mountain
            '194': mouse
            '195': moustache
            '196': mouth
            '197': mug
            '198': mushroom
            '199': nail
            '200': necklace
            '201': nose
            '202': ocean
            '203': octagon
            '204': octopus
            '205': onion
            '206': oven
            '207': owl
            '208': paint can
            '209': paintbrush
            '210': palm tree
            '211': panda
            '212': pants
            '213': paper clip
            '214': parachute
            '215': parrot
            '216': passport
            '217': peanut
            '218': pear
            '219': peas
            '220': pencil
            '221': penguin
            '222': piano
            '223': pickup truck
            '224': picture frame
            '225': pig
            '226': pillow
            '227': pineapple
            '228': pizza
            '229': pliers
            '230': police car
            '231': pond
            '232': pool
            '233': popsicle
            '234': postcard
            '235': potato
            '236': power outlet
            '237': purse
            '238': rabbit
            '239': raccoon
            '240': radio
            '241': rain
            '242': rainbow
            '243': rake
            '244': remote control
            '245': rhinoceros
            '246': rifle
            '247': river
            '248': roller coaster
            '249': rollerskates
            '250': sailboat
            '251': sandwich
            '252': saw
            '253': saxophone
            '254': school bus
            '255': scissors
            '256': scorpion
            '257': screwdriver
            '258': sea turtle
            '259': see saw
            '260': shark
            '261': sheep
            '262': shoe
            '263': shorts
            '264': shovel
            '265': sink
            '266': skateboard
            '267': skull
            '268': skyscraper
            '269': sleeping bag
            '270': smiley face
            '271': snail
            '272': snake
            '273': snorkel
            '274': snowflake
            '275': snowman
            '276': soccer ball
            '277': sock
            '278': speedboat
            '279': spider
            '280': spoon
            '281': spreadsheet
            '282': square
            '283': squiggle
            '284': squirrel
            '285': stairs
            '286': star
            '287': steak
            '288': stereo
            '289': stethoscope
            '290': stitches
            '291': stop sign
            '292': stove
            '293': strawberry
            '294': streetlight
            '295': string bean
            '296': submarine
            '297': suitcase
            '298': sun
            '299': swan
            '300': sweater
            '301': swing set
            '302': sword
            '303': syringe
            '304': t-shirt
            '305': table
            '306': teapot
            '307': teddy-bear
            '308': telephone
            '309': television
            '310': tennis racquet
            '311': tent
            '312': tiger
            '313': toaster
            '314': toe
            '315': toilet
            '316': tooth
            '317': toothbrush
            '318': toothpaste
            '319': tornado
            '320': tractor
            '321': traffic light
            '322': train
            '323': tree
            '324': triangle
            '325': trombone
            '326': truck
            '327': trumpet
            '328': umbrella
            '329': underwear
            '330': van
            '331': vase
            '332': violin
            '333': washing machine
            '334': watermelon
            '335': waterslide
            '336': whale
            '337': wheel
            '338': windmill
            '339': wine bottle
            '340': wine glass
            '341': wristwatch
            '342': yoga
            '343': zebra
            '344': zigzag
    - name: packed_drawing
      dtype: binary
  splits:
    - name: train
      num_bytes: 51960652.42514169
      num_examples: 403410
    - name: test
      num_bytes: 12990227.508075692
      num_examples: 100853
  download_size: 62877590
  dataset_size: 64950879.933217384

Quick!Draw! 1pct Sample (per-row bin format)

This is a sample 1-percent of the entire 50M-row QuickDraw! dataset. The row for each drawing contains a byte-encoded packed representation of the drawing and data, which you can unpack using the following snippet:

def unpack_drawing(file_handle):
    key_id, = unpack('Q', file_handle.read(8))
    country_code, = unpack('2s', file_handle.read(2))
    recognized, = unpack('b', file_handle.read(1))
    timestamp, = unpack('I', file_handle.read(4))
    n_strokes, = unpack('H', file_handle.read(2))
    image = []
    n_bytes = 17
    for i in range(n_strokes):
        n_points, = unpack('H', file_handle.read(2))
        fmt = str(n_points) + 'B'
        x = unpack(fmt, file_handle.read(n_points))
        y = unpack(fmt, file_handle.read(n_points))
        image.append((x, y))
        n_bytes += 2 + 2*n_points
    result = {
        'key_id': key_id,
        'country_code': country_code,
        'recognized': recognized,
        'timestamp': timestamp,
        'image': image,
    }
    return result

The image in the above is still in line vector format. To convert render this to a raster image (I recommend you do this on-the-fly in a pre-processor):

# packed bin -> RGB PIL
def binToPIL(packed_drawing):
    padding = 8
    radius = 7
    scale = (224.0-(2*padding)) / 256
    
    unpacked = unpack_drawing(io.BytesIO(packed_drawing))
    unpacked_image = unpacked['image']
    image = np.full((224,224), 255, np.uint8)
    for stroke in unpacked['image']:
        prevX = round(stroke[0][0]*scale)
        prevY = round(stroke[1][0]*scale)
        for i in range(1, len(stroke[0])):
            x = round(stroke[0][i]*scale)
            y = round(stroke[1][i]*scale)
            cv2.line(image, (padding+prevX, padding+prevY), (padding+x, padding+y), 0, radius, -1)
            prevX = x
            prevY = y
    pilImage = Image.fromarray(image).convert("RGB")     
    return pilImage