task_id
stringlengths
12
14
prompt_en
stringlengths
113
1.36k
prompt
stringlengths
99
803
entry_point
stringlengths
1
30
canonical_solution
stringlengths
16
864
test
stringlengths
117
1.8k
JHumanEval/0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """リストnumbersの中に、与えられたthresholdより近い2つの数値が存在するか判定する >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """
has_close_elements
for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False
JHumanEval/1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """この関数への入力は、入れ子になった括弧が複数含まれる文字列である。 あなたの目的は、これらの括弧を別々の文字列に分割し、そのリストを返すことである。 分離された括弧はバランスがとれ、つまり、開いた括弧はそれぞれ適切に閉じられていて、 互いに入れ子になっていない。引数の文字列内の空白は無視せよ。 >>> separate_paren_groups('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """
separate_paren_groups
result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('(()()) ((())) () ((())()())') == [ '(()())', '((()))', '()', '((())()())' ] assert candidate('() (()) ((())) (((())))') == [ '()', '(())', '((()))', '(((())))' ] assert candidate('(()(())((())))') == [ '(()(())((())))' ] assert candidate('( ) (( )) (( )( ))') == ['()', '(())', '(()())']
JHumanEval/2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """
def truncate_number(number: float) -> float: """正の浮動小数点数が与えられると、それを整数部(与えられた数より小さい最大の整数) と小数部(常に1より小さい残余部分)に分解することができる。 関数は、数値の小数部を返す。 >>> truncate_number(3.5) 0.5 """
truncate_number
return number % 1.0
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(3.5) == 0.5 assert abs(candidate(1.33) - 0.33) < 1e-6 assert abs(candidate(123.456) - 0.456) < 1e-6
JHumanEval/3
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """
from typing import List def below_zero(operations: List[int]) -> bool: """銀行口座に対する入出金操作のリストが与えられます。あなたのタスクは、残高ゼロから 始まて、口座の残高がゼロ以下になったかどうかを検出し、その時点で関数がTrueを 返すようにすることです。そうでなければFalseを返すようにしてください。 >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """
below_zero
balance = 0 for op in operations: balance += op if balance < 0: return True return False
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == False assert candidate([1, 2, -3, 1, 2, -3]) == False assert candidate([1, 2, -4, 5, 6]) == True assert candidate([1, -1, 2, -2, 5, -5, 4, -4]) == False assert candidate([1, -1, 2, -2, 5, -5, 4, -5]) == True assert candidate([1, -2, 2, -2, 5, -5, 4, -4]) == True
JHumanEval/4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """第一引数の数値リストに対して、このデータセットの平均値を中心とした平均絶対偏差(MAD)を計算する。 平均絶対偏差(MAD)とは、各要素と中心点(この場合は平均値)との差の絶対値の平均である: MAD = 平均|x - x_mean| >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """
mean_absolute_deviation
mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6 assert abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6 assert abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6
JHumanEval/5
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3] """
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """数値リスト numbers 中の全ての連続する二要素の間に、'delimeterの値を挿入する >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3] """
intersperse
if not numbers: return [] result = [] for n in numbers[:-1]: result.append(n) result.append(delimeter) result.append(numbers[-1]) return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([], 7) == [] assert candidate([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2] assert candidate([2, 2, 2], 2) == [2, 2, 2, 2, 2]
JHumanEval/6
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens('(()()) ((())) () ((())()())') [2, 3, 1, 3] """
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """この関数の入力は、空白で区切られた複数の入れ子になった括弧のグループを表す文字列です。 各グループについて、括弧の最も深い入れ子のレベルを出力します。 例えば、'(()())'は最大で2レベルの入れ子になっていますが、'((()))'は3レベルです。 >>> parse_nested_parens('(()()) ((())) () ((())()())') [2, 3, 1, 3] """
parse_nested_parens
def parse_paren_group(s): depth = 0 max_depth = 0 for c in s: if c == '(': depth += 1 max_depth = max(depth, max_depth) else: depth -= 1 return max_depth return [parse_paren_group(x) for x in paren_string.split(' ') if x]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('(()()) ((())) () ((())()())') == [2, 3, 1, 3] assert candidate('() (()) ((())) (((())))') == [1, 2, 3, 4] assert candidate('(()(())((())))') == [4]
JHumanEval/7
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """ Filter an input list of strings only for ones that contain given substring >>> filter_by_substring([], 'a') [] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """文字列リストstringsを、与えれた部分文字列substringを含むものだけにフィルタする >>> filter_by_substring([], 'a') [] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """
filter_by_substring
return [x for x in strings if substring in x]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([], 'john') == [] assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx'] assert candidate(['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx') == ['xxx', 'aaaxxy', 'xxxAAA', 'xxx'] assert candidate(['grunt', 'trumpet', 'prune', 'gruesome'], 'run') == ['grunt', 'prune']
JHumanEval/8
from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """ For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list. Empty sum should be equal to 0 and empty product should be equal to 1. >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """
from typing import List, Tuple def sum_product(numbers: List[int]) -> Tuple[int, int]: """与えられた整数リストに対して、リスト内のすべての整数の和と積からなるタプルを返す。 ただし、空の和は0、空の積は1とする。 >>> sum_product([]) (0, 1) >>> sum_product([1, 2, 3, 4]) (10, 24) """
sum_product
sum_value = 0 prod_value = 1 for n in numbers: sum_value += n prod_value *= n return sum_value, prod_value
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == (0, 1) assert candidate([1, 1, 1]) == (3, 1) assert candidate([100, 0]) == (100, 0) assert candidate([3, 5, 7]) == (3 + 5 + 7, 3 * 5 * 7) assert candidate([10]) == (10, 10)
JHumanEval/9
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """ From a given list of integers, generate a list of rolling maximum element found until given moment in the sequence. >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """
from typing import List, Tuple def rolling_max(numbers: List[int]) -> List[int]: """与えられた整数リストから、各要素のそこまでの最大値(ローリング最大値)のリストを生成する。 >>> rolling_max([1, 2, 3, 2, 3, 4, 2]) [1, 2, 3, 3, 3, 4, 4] """
rolling_max
running_max = None result = [] for n in numbers: if running_max is None: running_max = n else: running_max = max(running_max, n) result.append(running_max) return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == [] assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4] assert candidate([4, 3, 2, 1]) == [4, 4, 4, 4] assert candidate([3, 2, 3, 100, 3]) == [3, 3, 3, 100, 100]
JHumanEval/10
def is_palindrome(string: str) -> bool: """ Test if given string is a palindrome """ return string == string[::-1] def make_palindrome(string: str) -> str: """ Find the shortest palindrome that begins with a supplied string. Algorithm idea is simple: - Find the longest postfix of supplied string that is a palindrome. - Append to the end of the string reverse of a string prefix that comes before the palindromic suffix. >>> make_palindrome('') '' >>> make_palindrome('cat') 'catac' >>> make_palindrome('cata') 'catac' """
def is_palindrome(string: str) -> bool: """ 与えられた文字列が回文かどうかをテストします。""" return string == string[::-1] def make_palindrome(string: str) -> str: """ 与えられた文字列で始まる最短の回文を見つけてください。 アルゴリズムのアイデアは以下の通りです: - 与えられた文字列の中で最も長い回文となる接尾辞を見つけます。 - その回文の接尾辞の前に来る接頭辞を逆順にして、文字列の末尾に追加します。 >>> make_palindrome('') '' >>> make_palindrome('cat') 'catac' >>> make_palindrome('cata') 'catac' """
make_palindrome
if not string: return '' beginning_of_suffix = 0 while not is_palindrome(string[beginning_of_suffix:]): beginning_of_suffix += 1 return string + string[:beginning_of_suffix][::-1]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('') == '' assert candidate('x') == 'x' assert candidate('xyz') == 'xyzyx' assert candidate('xyx') == 'xyx' assert candidate('jerry') == 'jerryrrej'
JHumanEval/11
from typing import List def string_xor(a: str, b: str) -> str: """ Input are two strings a and b consisting only of 1s and 0s. Perform binary XOR on these inputs and return result also as a string. >>> string_xor('010', '110') '100' """
from typing import List def string_xor(a: str, b: str) -> str: """引数は1と0のみからなる文字列aとbである。 これらの引数に対して排他論理和(XOR)を実行し、結果を文字列として返す。 >>> string_xor('010', '110') '100' """
string_xor
def xor(i, j): if i == j: return '0' else: return '1' return ''.join(xor(x, y) for x, y in zip(a, b))
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('111000', '101010') == '010010' assert candidate('1', '1') == '0' assert candidate('0101', '0000') == '0101'
JHumanEval/12
from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """ Out of list of strings, return the longest one. Return the first one in case of multiple strings of the same length. Return None in case the input list is empty. >>> longest([]) >>> longest(['a', 'b', 'c']) 'a' >>> longest(['a', 'bb', 'ccc']) 'ccc' """
from typing import List, Optional def longest(strings: List[str]) -> Optional[str]: """文字列のリストのうち、最も長いものを返す。同じ長さの文字列が 複数ある場合は最初のものを返す。入力リストが空の場合は None を返す。 >>> longest([]) >>> longest(['a', 'b', 'c']) 'a' >>> longest(['a', 'bb', 'ccc']) 'ccc' """
longest
if not strings: return None maxlen = max(len(x) for x in strings) for s in strings: if len(s) == maxlen: return s
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == None assert candidate(['x', 'y', 'z']) == 'x' assert candidate(['x', 'yyy', 'zzzz', 'www', 'kkkk', 'abc']) == 'zzzz'
JHumanEval/13
def greatest_common_divisor(a: int, b: int) -> int: """ Return a greatest common divisor of two integers a and b >>> greatest_common_divisor(3, 5) 1 >>> greatest_common_divisor(25, 15) 5 """
def greatest_common_divisor(a: int, b: int) -> int: """整数 a と b の最大公約数を返す >>> greatest_common_divisor(3, 5) 1 >>> greatest_common_divisor(25, 15) 5 """
greatest_common_divisor
while b: a, b = b, a % b return a
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(3, 7) == 1 assert candidate(10, 15) == 5 assert candidate(49, 14) == 7 assert candidate(144, 60) == 12
JHumanEval/14
from typing import List def all_prefixes(string: str) -> List[str]: """ Return list of all prefixes from shortest to longest of the input string >>> all_prefixes('abc') ['a', 'ab', 'abc'] """
from typing import List def all_prefixes(string: str) -> List[str]: """引数で与えられた文字列に対して、短いものから長いものへ、全ての接頭辞のリストを返す >>> all_prefixes('abc') ['a', 'ab', 'abc'] """
all_prefixes
result = [] for i in range(len(string)): result.append(string[:i+1]) return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('') == [] assert candidate('asdfgh') == ['a', 'as', 'asd', 'asdf', 'asdfg', 'asdfgh'] assert candidate('WWW') == ['W', 'WW', 'WWW']
JHumanEval/15
def string_sequence(n: int) -> str: """ Return a string containing space-delimited numbers starting from 0 upto n inclusive. >>> string_sequence(0) '0' >>> string_sequence(5) '0 1 2 3 4 5' """
def string_sequence(n: int) -> str: """0からnまでの数字を空白区切りで連結した文字列で返す。 >>> string_sequence(0) '0' >>> string_sequence(5) '0 1 2 3 4 5' """
string_sequence
return ' '.join([str(x) for x in range(n + 1)])
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(0) == '0' assert candidate(3) == '0 1 2 3' assert candidate(10) == '0 1 2 3 4 5 6 7 8 9 10'
JHumanEval/16
def count_distinct_characters(string: str) -> int: """ Given a string, find out how many distinct characters (regardless of case) does it consist of >>> count_distinct_characters('xyzXYZ') 3 >>> count_distinct_characters('Jerry') 4 """
def count_distinct_characters(string: str) -> int: """文字列が与えられたとき、その文字列が(大文字小文字に関係なく)いくつの異なる文字が含まれているか数える >>> count_distinct_characters('xyzXYZ') 3 >>> count_distinct_characters('Jerry') 4 """
count_distinct_characters
return len(set(string.lower()))
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('') == 0 assert candidate('abcde') == 5 assert candidate('abcde' + 'cade' + 'CADE') == 5 assert candidate('aaaaAAAAaaaa') == 1 assert candidate('Jerry jERRY JeRRRY') == 5
JHumanEval/17
from typing import List def parse_music(music_string: str) -> List[int]: """ Input to this function is a string representing musical notes in a special ASCII format. Your task is to parse this string and return list of integers corresponding to how many beats does each not last. Here is a legend: 'o' - whole note, lasts four beats 'o|' - half note, lasts two beats '.|' - quater note, lasts one beat >>> parse_music('o o| .| o| o| .| .| .| .| o o') [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] """
from typing import List def parse_music(music_string: str) -> List[int]: """この関数の引数は、特別なASCII形式の音符を表す文字列である。あなたの仕事は、この文字列を解析して、それぞれの音符が何拍続くかに対応する整数のリストを返すことである。 ここに凡例がある: o' - 全音符、4拍続く o|' - 2分音符、2拍続く .|」-4分音符、1拍続く >>> parse_music('o o| .| o| o| .| .| .| .| o o') [4, 2, 1, 2, 2, 1, 1, 1, 1, 4, 4] """
parse_music
note_map = {'o': 4, 'o|': 2, '.|': 1} return [note_map[x] for x in music_string.split(' ') if x]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('') == [] assert candidate('o o o o') == [4, 4, 4, 4] assert candidate('.| .| .| .|') == [1, 1, 1, 1] assert candidate('o| o| .| .| o o o o') == [2, 2, 1, 1, 4, 4, 4, 4] assert candidate('o| .| o| .| o o| o o|') == [2, 1, 2, 1, 4, 2, 4, 2]
JHumanEval/18
def how_many_times(string: str, substring: str) -> int: """ Find how many times a given substring can be found in the original string. Count overlaping cases. >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 3 """
def how_many_times(string: str, substring: str) -> int: """部分文字列substringが文字列stringの中で何回見つかるか数える。 重なるケースもカウントに含まれる。 >>> how_many_times('', 'a') 0 >>> how_many_times('aaa', 'a') 3 >>> how_many_times('aaaa', 'aa') 3 """
how_many_times
times = 0 for i in range(len(string) - len(substring) + 1): if string[i:i+len(substring)] == substring: times += 1 return times
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('', 'x') == 0 assert candidate('xyxyxyx', 'x') == 4 assert candidate('cacacacac', 'cac') == 4 assert candidate('john doe', 'john') == 1
JHumanEval/19
from typing import List def sort_numbers(numbers: str) -> str: """ Input is a space-delimited string of numberals from 'zero' to 'nine'. Valid choices are 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight' and 'nine'. Return the string with numbers sorted from smallest to largest >>> sort_numbers('three one five') 'one three five' """
from typing import List def sort_numbers(numbers: str) -> str: """引数は'zero'から'nine'までの英単語の数を空白で区切った文字列である。 有効な英単語は''、'zero', 'one'、'two'、'three'、'four'、'five'、'six'、'seven'、'eight'、'nine'である。 関数は、英単語の数を小さい方から大きい方へとソートした文字列を返す。 >>> sort_numbers('three one five') 'one three five' """
sort_numbers
value_map = { 'zero': 0, 'one': 1, 'two': 2, 'three': 3, 'four': 4, 'five': 5, 'six': 6, 'seven': 7, 'eight': 8, 'nine': 9 } return ' '.join(sorted([x for x in numbers.split(' ') if x], key=lambda x: value_map[x]))
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('') == '' assert candidate('three') == 'three' assert candidate('three five nine') == 'three five nine' assert candidate('five zero four seven nine eight') == 'zero four five seven eight nine' assert candidate('six five four three two one zero') == 'zero one two three four five six'
JHumanEval/20
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """ From a supplied list of numbers (of length at least two) select and return two that are the closest to each other and return them in order (smaller number, larger number). >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0) """
from typing import List, Tuple def find_closest_elements(numbers: List[float]) -> Tuple[float, float]: """(少なくとも長さ2以上の)リストnumbersから、互いに最も近いものを2つ選び、 順番に(小さい数、大きい数)返す。 >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) (2.0, 2.2) >>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) (2.0, 2.0) """
find_closest_elements
closest_pair = None distance = None for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: if distance is None: distance = abs(elem - elem2) closest_pair = tuple(sorted([elem, elem2])) else: new_distance = abs(elem - elem2) if new_distance < distance: distance = new_distance closest_pair = tuple(sorted([elem, elem2])) return closest_pair
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0) assert candidate([1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9) assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2) assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0) assert candidate([1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)
JHumanEval/21
from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """ Given list of numbers (of at least two elements), apply a linear transform to that list, such that the smallest number will become 0 and the largest will become 1 >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0] """
from typing import List def rescale_to_unit(numbers: List[float]) -> List[float]: """(少なくとも 2 つ以上の要素からなる) リストnumbersに線形変換を適用し、 最小の数値が 0 になり、最大の数値が 1 になるリストを返す >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0]) [0.0, 0.25, 0.5, 0.75, 1.0] """
rescale_to_unit
min_number = min(numbers) max_number = max(numbers) return [(x - min_number) / (max_number - min_number) for x in numbers]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([2.0, 49.9]) == [0.0, 1.0] assert candidate([100.0, 49.9]) == [1.0, 0.0] assert candidate([1.0, 2.0, 3.0, 4.0, 5.0]) == [0.0, 0.25, 0.5, 0.75, 1.0] assert candidate([2.0, 1.0, 5.0, 3.0, 4.0]) == [0.25, 0.0, 1.0, 0.5, 0.75] assert candidate([12.0, 11.0, 15.0, 13.0, 14.0]) == [0.25, 0.0, 1.0, 0.5, 0.75]
JHumanEval/22
from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: """ Filter given list of any python values only for integers >>> filter_integers(['a', 3.14, 5]) [5] >>> filter_integers([1, 2, 3, 'abc', {}, []]) [1, 2, 3] """
from typing import List, Any def filter_integers(values: List[Any]) -> List[int]: """任意の種類の値が含まれるリストから整数値のみ抽出する >>> filter_integers(['a', 3.14, 5]) [5] >>> filter_integers([1, 2, 3, 'abc', {}, []]) [1, 2, 3] """
filter_integers
return [x for x in values if isinstance(x, int)]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == [] assert candidate([4, {}, [], 23.2, 9, 'adasd']) == [4, 9] assert candidate([3, 'c', 3, 3, 'a', 'b']) == [3, 3, 3]
JHumanEval/23
def strlen(string: str) -> int: """ Return length of given string >>> strlen('') 0 >>> strlen('abc') 3 """
def strlen(string: str) -> int: """引数で与えられた文字列の長さを返す >>> strlen('') 0 >>> strlen('abc') 3 """
strlen
return len(string)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('') == 0 assert candidate('x') == 1 assert candidate('asdasnakj') == 9
JHumanEval/24
def largest_divisor(n: int) -> int: """ For a given number n, find the largest number that divides n evenly, smaller than n >>> largest_divisor(15) 5 """
def largest_divisor(n: int) -> int: """与えられた数nについて、nの約数のうち、nより小さい最大の数を求める >>> largest_divisor(15) 5 """
largest_divisor
for i in reversed(range(n)): if n % i == 0: return i
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(3) == 1 assert candidate(7) == 1 assert candidate(10) == 5 assert candidate(100) == 50 assert candidate(49) == 7
JHumanEval/25
from typing import List def factorize(n: int) -> List[int]: """ Return list of prime factors of given integer in the order from smallest to largest. Each of the factors should be listed number of times corresponding to how many times it appeares in factorization. Input number should be equal to the product of all factors >>> factorize(8) [2, 2, 2] >>> factorize(25) [5, 5] >>> factorize(70) [2, 5, 7] """
from typing import List def factorize(n: int) -> List[int]: """与えられた整数の素因数のリストを小さいものから大きいものの順に返す。各因数は、 因数分解で現れる回数分、リストに登場する。引数の整数は全ての因数の積に等しくな ければならない。 >>> factorize(8) [2, 2, 2] >>> factorize(25) [5, 5] >>> factorize(70) [2, 5, 7] """
factorize
import math fact = [] i = 2 while i <= int(math.sqrt(n) + 1): if n % i == 0: fact.append(i) n //= i else: i += 1 if n > 1: fact.append(n) return fact
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(2) == [2] assert candidate(4) == [2, 2] assert candidate(8) == [2, 2, 2] assert candidate(3 * 19) == [3, 19] assert candidate(3 * 19 * 3 * 19) == [3, 3, 19, 19] assert candidate(3 * 19 * 3 * 19 * 3 * 19) == [3, 3, 3, 19, 19, 19] assert candidate(3 * 19 * 19 * 19) == [3, 19, 19, 19] assert candidate(3 * 2 * 3) == [2, 3, 3]
JHumanEval/26
from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """ From a list of integers, remove all elements that occur more than once. Keep order of elements left the same as in the input. >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 3, 4] """
from typing import List def remove_duplicates(numbers: List[int]) -> List[int]: """整数のリストから、複数回出現する要素をすべて取り除く。 要素の順序は入力と同じようにする。 >>> remove_duplicates([1, 2, 3, 2, 4]) [1, 3, 4] """
remove_duplicates
import collections c = collections.Counter(numbers) return [n for n in numbers if c[n] <= 1]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == [] assert candidate([1, 2, 3, 4]) == [1, 2, 3, 4] assert candidate([1, 2, 3, 2, 4, 3, 5]) == [1, 4, 5]
JHumanEval/27
def flip_case(string: str) -> str: """ For a given string, flip lowercase characters to uppercase and uppercase to lowercase. >>> flip_case('Hello') 'hELLO' """
def flip_case(string: str) -> str: """与えられた文字列に対して、英小文字を英大文字に、英大文字を英小文字に変換する。 >>> flip_case('Hello') 'hELLO' """
flip_case
return string.swapcase()
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('') == '' assert candidate('Hello!') == 'hELLO!' assert candidate('These violent delights have violent ends') == 'tHESE VIOLENT DELIGHTS HAVE VIOLENT ENDS'
JHumanEval/28
from typing import List def concatenate(strings: List[str]) -> str: """ Concatenate list of strings into a single string >>> concatenate([]) '' >>> concatenate(['a', 'b', 'c']) 'abc' """
from typing import List def concatenate(strings: List[str]) -> str: """文字列のリストを1つの文字列に連結する >>> concatenate([]) '' >>> concatenate(['a', 'b', 'c']) 'abc' """
concatenate
return ''.join(strings)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == '' assert candidate(['x', 'y', 'z']) == 'xyz' assert candidate(['x', 'y', 'z', 'w', 'k']) == 'xyzwk'
JHumanEval/29
from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: """ Filter an input list of strings only for ones that start with a given prefix. >>> filter_by_prefix([], 'a') [] >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a') ['abc', 'array'] """
from typing import List def filter_by_prefix(strings: List[str], prefix: str) -> List[str]: """文字列のリストから、指定された接頭辞prefixで始まるものだけを取り出す。 >>> filter_by_prefix([], 'a') [] >>> filter_by_prefix(['abc', 'bcd', 'cde', 'array'], 'a') ['abc', 'array'] """
filter_by_prefix
return [x for x in strings if x.startswith(prefix)]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([], 'john') == [] assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx']
JHumanEval/30
def get_positive(l: list): """Return only positive numbers in the list. >>> get_positive([-1, 2, -4, 5, 6]) [2, 5, 6] >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """
def get_positive(l: list): """リスト内の正の数だけを返す。 >>> get_positive([-1, 2, -4, 5, 6]) [2, 5, 6] >>> get_positive([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) [5, 3, 2, 3, 9, 123, 1] """
get_positive
return [e for e in l if e > 0]
METADATA = {} def check(candidate): assert candidate([-1, -2, 4, 5, 6]) == [4, 5, 6] assert candidate([5, 3, -5, 2, 3, 3, 9, 0, 123, 1, -10]) == [5, 3, 2, 3, 3, 9, 123, 1] assert candidate([-1, -2]) == [] assert candidate([]) == []
JHumanEval/31
def is_prime(n): """Return true if a given number is prime, and false otherwise. >>> is_prime(6) False >>> is_prime(101) True >>> is_prime(11) True >>> is_prime(13441) True >>> is_prime(61) True >>> is_prime(4) False >>> is_prime(1) False """
def is_prime(n): """与えられた数が素数であれば真を、そうでなければ偽を返す。 >>> is_prime(6) False >>> is_prime(101) True >>> is_prime(11) True >>> is_prime(13441) True >>> is_prime(61) True >>> is_prime(4) False >>> is_prime(1) False """
is_prime
if n < 2: return False for k in range(2, n - 1): if n % k == 0: return False return True
METADATA = {} def check(candidate): assert candidate(6) == False assert candidate(101) == True assert candidate(11) == True assert candidate(13441) == True assert candidate(61) == True assert candidate(4) == False assert candidate(1) == False assert candidate(5) == True assert candidate(11) == True assert candidate(17) == True assert candidate(5 * 17) == False assert candidate(11 * 7) == False assert candidate(13441 * 19) == False
JHumanEval/32
import math def poly(xs: list, x: float): """ Evaluates polynomial with coefficients xs at point x. return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """ xs are coefficients of a polynomial. find_zero find x such that poly(x) = 0. find_zero returns only only zero point, even if there are many. Moreover, find_zero only takes list xs having even number of coefficients and largest non zero coefficient as it guarantees a solution. >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """
import math def poly(xs: list, x: float): """ 点xにおける係数xsを持つ多項式の値を計算する。 return xs[0] + xs[1] * x + xs[1] * x^2 + .... xs[n] * x^n """ return sum([coeff * math.pow(x, i) for i, coeff in enumerate(xs)]) def find_zero(xs: list): """ xsは多項式の係数である。 find_zero関数は、poly(x) = 0 となる x を見つける。 find_zero関数は、たとえ複数解があったとしても解をひとつのみを返す。 さらに、find_zero関数は、解を持つことを保証するため、偶数個の係数xsと 最大係数は常に0でないと想定する。 >>> round(find_zero([1, 2]), 2) # f(x) = 1 + 2x -0.5 >>> round(find_zero([-6, 11, -6, 1]), 2) # (x - 1) * (x - 2) * (x - 3) = -6 + 11x - 6x^2 + x^3 1.0 """
find_zero
begin, end = -1., 1. while poly(xs, begin) * poly(xs, end) > 0: begin *= 2.0 end *= 2.0 while end - begin > 1e-10: center = (begin + end) / 2.0 if poly(xs, center) * poly(xs, begin) > 0: begin = center else: end = center return begin
METADATA = {} def check(candidate): import math import random rng = random.Random(42) import copy for _ in range(100): ncoeff = 2 * rng.randint(1, 4) coeffs = [] for _ in range(ncoeff): coeff = rng.randint(-10, 10) if coeff == 0: coeff = 1 coeffs.append(coeff) solution = candidate(copy.deepcopy(coeffs)) assert math.fabs(poly(coeffs, solution)) < 1e-4
JHumanEval/33
def sort_third(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the indicies that are not divisible by three, while its values at the indicies that are divisible by three are equal to the values of the corresponding indicies of l, but sorted. >>> sort_third([1, 2, 3]) [1, 2, 3] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5] """
def sort_third(l: list): """この関数はリストlを受け取り、l'を返す。l'は、インデックスが3で割り 切れない場合はlと同じであるが、インデックスが3で割り切れる要素は ソートされている。 >>> sort_third([1, 2, 3]) [1, 2, 3] >>> sort_third([5, 6, 3, 4, 8, 9, 2]) [2, 6, 3, 4, 8, 9, 5] """
sort_third
l = list(l) l[::3] = sorted(l[::3]) return l
METADATA = {} def check(candidate): assert tuple(candidate([1, 2, 3])) == tuple(sort_third([1, 2, 3])) assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple(sort_third([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple(sort_third([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) assert tuple(candidate([5, 6, 3, 4, 8, 9, 2])) == tuple([2, 6, 3, 4, 8, 9, 5]) assert tuple(candidate([5, 8, 3, 4, 6, 9, 2])) == tuple([2, 8, 3, 4, 6, 9, 5]) assert tuple(candidate([5, 6, 9, 4, 8, 3, 2])) == tuple([2, 6, 9, 4, 8, 3, 5]) assert tuple(candidate([5, 6, 3, 4, 8, 9, 2, 1])) == tuple([2, 6, 3, 4, 8, 9, 5, 1])
JHumanEval/34
def unique(l: list): """Return sorted unique elements in a list >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) [0, 2, 3, 5, 9, 123] """
def unique(l: list): """リスト内のユニークな要素をソートして返す >>> unique([5, 3, 5, 2, 3, 3, 9, 0, 123]) [0, 2, 3, 5, 9, 123] """
unique
return sorted(list(set(l)))
METADATA = {} def check(candidate): assert candidate([5, 3, 5, 2, 3, 3, 9, 0, 123]) == [0, 2, 3, 5, 9, 123]
JHumanEval/35
def max_element(l: list): """Return maximum element in the list. >>> max_element([1, 2, 3]) 3 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123 """
def max_element(l: list): """リスト内の最大要素を返す。 >>> max_element([1, 2, 3]) 3 >>> max_element([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) 123 """
max_element
m = l[0] for e in l: if e > m: m = e return m
METADATA = {} def check(candidate): assert candidate([1, 2, 3]) == 3 assert candidate([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) == 124
JHumanEval/36
def fizz_buzz(n: int): """Return the number of times the digit 7 appears in integers less than n which are divisible by 11 or 13. >>> fizz_buzz(50) 0 >>> fizz_buzz(78) 2 >>> fizz_buzz(79) 3 """
def fizz_buzz(n: int): """11または13で割り切れるn未満の整数の中に7という数字が現れる回数を返す。 >>> fizz_buzz(50) 0 >>> fizz_buzz(78) 2 >>> fizz_buzz(79) 3 """
fizz_buzz
ns = [] for i in range(n): if i % 11 == 0 or i % 13 == 0: ns.append(i) s = ''.join(list(map(str, ns))) ans = 0 for c in s: ans += (c == '7') return ans
METADATA = {} def check(candidate): assert candidate(50) == 0 assert candidate(78) == 2 assert candidate(79) == 3 assert candidate(100) == 3 assert candidate(200) == 6 assert candidate(4000) == 192 assert candidate(10000) == 639 assert candidate(100000) == 8026
JHumanEval/37
def sort_even(l: list): """This function takes a list l and returns a list l' such that l' is identical to l in the odd indicies, while its values at the even indicies are equal to the values of the even indicies of l, but sorted. >>> sort_even([1, 2, 3]) [1, 2, 3] >>> sort_even([5, 6, 3, 4]) [3, 6, 5, 4] """
def sort_even(l: list): """この関数はリスト l を受け取り、l' を返す。l'は、インデックスが奇数の ときは l と同じで、インデックスが偶数のときはソートされている。 >>> sort_even([1, 2, 3]) [1, 2, 3] >>> sort_even([5, 6, 3, 4]) [3, 6, 5, 4] """
sort_even
evens = l[::2] odds = l[1::2] evens.sort() ans = [] for e, o in zip(evens, odds): ans.extend([e, o]) if len(evens) > len(odds): ans.append(evens[-1]) return ans
METADATA = {} def check(candidate): assert tuple(candidate([1, 2, 3])) == tuple([1, 2, 3]) assert tuple(candidate([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])) == tuple([-10, 3, -5, 2, -3, 3, 5, 0, 9, 1, 123]) assert tuple(candidate([5, 8, -12, 4, 23, 2, 3, 11, 12, -10])) == tuple([-12, 8, 3, 4, 5, 2, 12, 11, 23, -10])
JHumanEval/38
def encode_cyclic(s: str): """ returns encoded string by cycling groups of three characters. """ # split string to groups. Each of length 3. groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # cycle elements in each group. Unless group has fewer elements than 3. groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def decode_cyclic(s: str): """ takes as input string encoded with encode_cyclic function. Returns decoded string. """
def encode_cyclic(s: str): """ 3文字ごとに循環させてエンコードした文字列を返す。 """ # 文字列長が3になるように文字列をグループ化 groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)] # グループの長さが3未満でない限り、各グループを循環させる groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups] return "".join(groups) def decode_cyclic(s: str): """ encode_cyclic関数でエンコードされた文字列を引数に取り、デコードされた文字列を返す。 """
decode_cyclic
return encode_cyclic(encode_cyclic(s))
METADATA = {} def check(candidate): from random import randint, choice import string letters = string.ascii_lowercase for _ in range(100): str = ''.join(choice(letters) for i in range(randint(10, 20))) encoded_str = encode_cyclic(str) assert candidate(encoded_str) == str
JHumanEval/39
def prime_fib(n: int): """ prime_fib returns n-th number that is a Fibonacci number and it's also prime. >>> prime_fib(1) 2 >>> prime_fib(2) 3 >>> prime_fib(3) 5 >>> prime_fib(4) 13 >>> prime_fib(5) 89 """
def prime_fib(n: int): """ prime_fib はフィボナッチ数で、かつ素数であるn番目の数を返す。 >>> prime_fib(1) 2 >>> prime_fib(2) 3 >>> prime_fib(3) 5 >>> prime_fib(4) 13 >>> prime_fib(5) 89 """
prime_fib
import math def is_prime(p): if p < 2: return False for k in range(2, min(int(math.sqrt(p)) + 1, p - 1)): if p % k == 0: return False return True f = [0, 1] while True: f.append(f[-1] + f[-2]) if is_prime(f[-1]): n -= 1 if n == 0: return f[-1]
METADATA = {} def check(candidate): assert candidate(1) == 2 assert candidate(2) == 3 assert candidate(3) == 5 assert candidate(4) == 13 assert candidate(5) == 89 assert candidate(6) == 233 assert candidate(7) == 1597 assert candidate(8) == 28657 assert candidate(9) == 514229 assert candidate(10) == 433494437
JHumanEval/40
def triples_sum_to_zero(l: list): """ triples_sum_to_zero takes a list of integers as an input. it returns True if there are three distinct elements in the list that sum to zero, and False otherwise. >>> triples_sum_to_zero([1, 3, 5, 0]) False >>> triples_sum_to_zero([1, 3, -2, 1]) True >>> triples_sum_to_zero([1, 2, 3, 7]) False >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) True >>> triples_sum_to_zero([1]) False """
def triples_sum_to_zero(l: list): """ triples_sum_to_zero は整数のリストを引数に取り、 リストの中に和が0になる3つの要素があればTrueを、 そうでなければFalseを返す。 >>> triples_sum_to_zero([1, 3, 5, 0]) False >>> triples_sum_to_zero([1, 3, -2, 1]) True >>> triples_sum_to_zero([1, 2, 3, 7]) False >>> triples_sum_to_zero([2, 4, -5, 3, 9, 7]) True >>> triples_sum_to_zero([1]) False """
triples_sum_to_zero
for i in range(len(l)): for j in range(i + 1, len(l)): for k in range(j + 1, len(l)): if l[i] + l[j] + l[k] == 0: return True return False
METADATA = {} def check(candidate): assert candidate([1, 3, 5, 0]) == False assert candidate([1, 3, 5, -1]) == False assert candidate([1, 3, -2, 1]) == True assert candidate([1, 2, 3, 7]) == False assert candidate([1, 2, 5, 7]) == False assert candidate([2, 4, -5, 3, 9, 7]) == True assert candidate([1]) == False assert candidate([1, 3, 5, -100]) == False assert candidate([100, 3, 5, -100]) == False
JHumanEval/41
def car_race_collision(n: int): """ Imagine a road that's a perfectly straight infinitely long line. n cars are driving left to right; simultaneously, a different set of n cars are driving right to left. The two sets of cars start out being very far from each other. All cars move in the same speed. Two cars are said to collide when a car that's moving left to right hits a car that's moving right to left. However, the cars are infinitely sturdy and strong; as a result, they continue moving in their trajectory as if they did not collide. This function outputs the number of such collisions. """
def car_race_collision(n: int): """ 完全な直線で無限に長い道路を想像してほしい。 n台の車が左から右に向かって走っている。同時に、別のn台の車が 右から左に向かって走っている。この2組の車は、最初は互いに非 常に離れている。すべての車は同じ速度で動く。2台の車は次のよ うに衝突する。左から右に動いている車が、右から左に動いている 車にぶつかること。 しかし、車は限りなく頑丈で強い。あたかも衝突しなかったかのよ うに、その軌道を進み続ける。 この関数は、このような衝突の回数を出力する。 """
car_race_collision
return n**2
METADATA = {} def check(candidate): assert candidate(2) == 4 assert candidate(3) == 9 assert candidate(4) == 16 assert candidate(8) == 64 assert candidate(10) == 100
JHumanEval/42
def incr_list(l: list): """Return list with elements incremented by 1. >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124] """
def incr_list(l: list): """要素を1ずつ増やしたリストを返す。 >>> incr_list([1, 2, 3]) [2, 3, 4] >>> incr_list([5, 3, 5, 2, 3, 3, 9, 0, 123]) [6, 4, 6, 3, 4, 4, 10, 1, 124] """
incr_list
return [(e + 1) for e in l]
METADATA = {} def check(candidate): assert candidate([]) == [] assert candidate([3, 2, 1]) == [4, 3, 2] assert candidate([5, 2, 5, 2, 3, 3, 9, 0, 123]) == [6, 3, 6, 3, 4, 4, 10, 1, 124]
JHumanEval/43
def pairs_sum_to_zero(l): """ pairs_sum_to_zero takes a list of integers as an input. it returns True if there are two distinct elements in the list that sum to zero, and False otherwise. >>> pairs_sum_to_zero([1, 3, 5, 0]) False >>> pairs_sum_to_zero([1, 3, -2, 1]) False >>> pairs_sum_to_zero([1, 2, 3, 7]) False >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) True >>> pairs_sum_to_zero([1]) False """
def pairs_sum_to_zero(l): """ pairs_sum_to_zero は整数のリストを引数にとる。 リストの中に2つの要素の和がゼロになる要素があればTrueを、 そうでなければFalseを返す。 >>> pairs_sum_to_zero([1, 3, 5, 0]) False >>> pairs_sum_to_zero([1, 3, -2, 1]) False >>> pairs_sum_to_zero([1, 2, 3, 7]) False >>> pairs_sum_to_zero([2, 4, -5, 3, 5, 7]) True >>> pairs_sum_to_zero([1]) False """
pairs_sum_to_zero
for i, l1 in enumerate(l): for j in range(i + 1, len(l)): if l1 + l[j] == 0: return True return False
METADATA = {} def check(candidate): assert candidate([1, 3, 5, 0]) == False assert candidate([1, 3, -2, 1]) == False assert candidate([1, 2, 3, 7]) == False assert candidate([2, 4, -5, 3, 5, 7]) == True assert candidate([1]) == False assert candidate([-3, 9, -1, 3, 2, 30]) == True assert candidate([-3, 9, -1, 3, 2, 31]) == True assert candidate([-3, 9, -1, 4, 2, 30]) == False assert candidate([-3, 9, -1, 4, 2, 31]) == False
JHumanEval/44
def change_base(x: int, base: int): """Change numerical base of input number x to base. return string representation after the conversion. base numbers are less than 10. >>> change_base(8, 3) '22' >>> change_base(8, 2) '1000' >>> change_base(7, 2) '111' """
def change_base(x: int, base: int): """引数xの基数をbaseに変換する。 返り値は変換後の文字列表現である。 基数は10未満である。 >>> change_base(8, 3) '22' >>> change_base(8, 2) '1000' >>> change_base(7, 2) '111' """
change_base
ret = "" while x > 0: ret = str(x % base) + ret x //= base return ret
METADATA = {} def check(candidate): assert candidate(8, 3) == "22" assert candidate(9, 3) == "100" assert candidate(234, 2) == "11101010" assert candidate(16, 2) == "10000" assert candidate(8, 2) == "1000" assert candidate(7, 2) == "111" for x in range(2, 8): assert candidate(x, x + 1) == str(x)
JHumanEval/45
def triangle_area(a, h): """Given length of a side and high return area for a triangle. >>> triangle_area(5, 3) 7.5 """
def triangle_area(a, h): """三角形の一辺の長さと高さが与えられたとき、面積を返す。 >>> triangle_area(5, 3) 7.5 """
triangle_area
return a * h / 2.0
METADATA = {} def check(candidate): assert candidate(5, 3) == 7.5 assert candidate(2, 2) == 2.0 assert candidate(10, 8) == 40.0
JHumanEval/46
def fib4(n: int): """The Fib4 number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). Please write a function to efficiently compute the n-th element of the fib4 number sequence. Do not use recursion. >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14 """
def fib4(n: int): """fib4数列はフィボナッチ数列に似た数列で、次のように定義される: fib4(0) -> 0 fib4(1) -> 0 fib4(2) -> 2 fib4(3) -> 0 fib4(n) -> fib4(n-1) + fib4(n-2) + fib4(n-3) + fib4(n-4). fib4数列のn番目の要素を効率的に計算する関数を書け。再帰は使わないこと。 >>> fib4(5) 4 >>> fib4(6) 8 >>> fib4(7) 14 """
fib4
results = [0, 0, 2, 0] if n < 4: return results[n] for _ in range(4, n + 1): results.append(results[-1] + results[-2] + results[-3] + results[-4]) results.pop(0) return results[-1]
METADATA = {} def check(candidate): assert candidate(5) == 4 assert candidate(8) == 28 assert candidate(10) == 104 assert candidate(12) == 386
JHumanEval/47
def median(l: list): """Return median of elements in the list l. >>> median([3, 1, 2, 4, 5]) 3 >>> median([-10, 4, 6, 1000, 10, 20]) 15.0 """
def median(l: list): """リスト l の要素の中央値を返す。 >>> median([3, 1, 2, 4, 5]) 3 >>> median([-10, 4, 6, 1000, 10, 20]) 15.0 """
median
l = sorted(l) if len(l) % 2 == 1: return l[len(l) // 2] else: return (l[len(l) // 2 - 1] + l[len(l) // 2]) / 2.0
METADATA = {} def check(candidate): assert candidate([3, 1, 2, 4, 5]) == 3 assert candidate([-10, 4, 6, 1000, 10, 20]) == 8.0 assert candidate([5]) == 5 assert candidate([6, 5]) == 5.5 assert candidate([8, 1, 3, 9, 9, 2, 7]) == 7
JHumanEval/48
def is_palindrome(text: str): """ Checks if given string is a palindrome >>> is_palindrome('') True >>> is_palindrome('aba') True >>> is_palindrome('aaaaa') True >>> is_palindrome('zbcd') False """
def is_palindrome(text: str): """ 与えられた文字列が回文かどうかを判定する >>> is_palindrome('') True >>> is_palindrome('aba') True >>> is_palindrome('aaaaa') True >>> is_palindrome('zbcd') False """
is_palindrome
for i in range(len(text)): if text[i] != text[len(text) - 1 - i]: return False return True
METADATA = {} def check(candidate): assert candidate('') == True assert candidate('aba') == True assert candidate('aaaaa') == True assert candidate('zbcd') == False assert candidate('xywyx') == True assert candidate('xywyz') == False assert candidate('xywzx') == False
JHumanEval/49
def modp(n: int, p: int): """Return 2^n modulo p (be aware of numerics). >>> modp(3, 5) 3 >>> modp(1101, 101) 2 >>> modp(0, 101) 1 >>> modp(3, 11) 8 >>> modp(100, 101) 1 """
def modp(n: int, p: int): """2^n を p で割ったモジュロを返す。計算精度に注意。 >>> modp(3, 5) 3 >>> modp(1101, 101) 2 >>> modp(0, 101) 1 >>> modp(3, 11) 8 >>> modp(100, 101) 1 """
modp
ret = 1 for i in range(n): ret = (2 * ret) % p return ret
METADATA = {} def check(candidate): assert candidate(3, 5) == 3 assert candidate(1101, 101) == 2 assert candidate(0, 101) == 1 assert candidate(3, 11) == 8 assert candidate(100, 101) == 1 assert candidate(30, 5) == 4 assert candidate(31, 5) == 3
JHumanEval/50
def encode_shift(s: str): """ returns encoded string by shifting every character by 5 in the alphabet. """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def decode_shift(s: str): """ takes as input string encoded with encode_shift function. Returns decoded string. """
def encode_shift(s: str): """ アルファベットの各文字を5ずつずらしてエンコードした文字列を返す。 """ return "".join([chr(((ord(ch) + 5 - ord("a")) % 26) + ord("a")) for ch in s]) def decode_shift(s: str): """ encode_shift関数でエンコードされた文字列を引数に取り、デコードされた文字列を返す。 """
decode_shift
return "".join([chr(((ord(ch) - 5 - ord("a")) % 26) + ord("a")) for ch in s])
METADATA = {} def check(candidate): from random import randint, choice import copy import string letters = string.ascii_lowercase for _ in range(100): str = ''.join(choice(letters) for i in range(randint(10, 20))) encoded_str = encode_shift(str) assert candidate(copy.deepcopy(encoded_str)) == str
JHumanEval/51
def remove_vowels(text): """ remove_vowels is a function that takes string and returns string without vowels. >>> remove_vowels('') '' >>> remove_vowels("abcdef\nghijklm") 'bcdf\nghjklm' >>> remove_vowels('abcdef') 'bcdf' >>> remove_vowels('aaaaa') '' >>> remove_vowels('aaBAA') 'B' >>> remove_vowels('zbcd') 'zbcd' """
def remove_vowels(text): """ remove_vowelsは文字列を引数に取り、母音を除いた文字列を返す関数である。 >>> remove_vowels('') '' >>> remove_vowels("abcdef\nghijklm") 'bcdf\nghjklm' >>> remove_vowels('abcdef') 'bcdf' >>> remove_vowels('aaaaa') '' >>> remove_vowels('aaBAA') 'B' >>> remove_vowels('zbcd') 'zbcd' """
remove_vowels
return "".join([s for s in text if s.lower() not in ["a", "e", "i", "o", "u"]])
METADATA = {} def check(candidate): assert candidate('') == '' assert candidate("abcdef\nghijklm") == 'bcdf\nghjklm' assert candidate('fedcba') == 'fdcb' assert candidate('eeeee') == '' assert candidate('acBAA') == 'cB' assert candidate('EcBOO') == 'cB' assert candidate('ybcd') == 'ybcd'
JHumanEval/52
def below_threshold(l: list, t: int): """Return True if all numbers in the list l are below threshold t. >>> below_threshold([1, 2, 4, 10], 100) True >>> below_threshold([1, 20, 4, 10], 5) False """
def below_threshold(l: list, t: int): """リスト l 内の全ての数値が閾値 t 以下の場合、Trueを返す。 >>> below_threshold([1, 2, 4, 10], 100) True >>> below_threshold([1, 20, 4, 10], 5) False """
below_threshold
for e in l: if e >= t: return False return True
METADATA = {} def check(candidate): assert candidate([1, 2, 4, 10], 100) assert not candidate([1, 20, 4, 10], 5) assert candidate([1, 20, 4, 10], 21) assert candidate([1, 20, 4, 10], 22) assert candidate([1, 8, 4, 10], 11) assert not candidate([1, 8, 4, 10], 10)
JHumanEval/53
def add(x: int, y: int): """Add two numbers x and y >>> add(2, 3) 5 >>> add(5, 7) 12 """
def add(x: int, y: int): """2つの数xとyを足す >>> add(2, 3) 5 >>> add(5, 7) 12 """
add
return x + y
METADATA = {} def check(candidate): import random assert candidate(0, 1) == 1 assert candidate(1, 0) == 1 assert candidate(2, 3) == 5 assert candidate(5, 7) == 12 assert candidate(7, 5) == 12 for i in range(100): x, y = random.randint(0, 1000), random.randint(0, 1000) assert candidate(x, y) == x + y
JHumanEval/54
def same_chars(s0: str, s1: str): """ Check if two words have the same characters. >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> same_chars('abcd', 'dddddddabc') True >>> same_chars('dddddddabc', 'abcd') True >>> same_chars('eabcd', 'dddddddabc') False >>> same_chars('abcd', 'dddddddabce') False >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') False """
def same_chars(s0: str, s1: str): """ 2つの単語が同じ文字セットから構成されるかどうか判定する。 >>> same_chars('eabcdzzzz', 'dddzzzzzzzddeddabc') True >>> same_chars('abcd', 'dddddddabc') True >>> same_chars('dddddddabc', 'abcd') True >>> same_chars('eabcd', 'dddddddabc') False >>> same_chars('abcd', 'dddddddabce') False >>> same_chars('eabcdzzzz', 'dddzzzzzzzddddabc') False """
same_chars
return set(s0) == set(s1)
METADATA = {} def check(candidate): assert candidate('eabcdzzzz', 'dddzzzzzzzddeddabc') == True assert candidate('abcd', 'dddddddabc') == True assert candidate('dddddddabc', 'abcd') == True assert candidate('eabcd', 'dddddddabc') == False assert candidate('abcd', 'dddddddabcf') == False assert candidate('eabcdzzzz', 'dddzzzzzzzddddabc') == False assert candidate('aabb', 'aaccc') == False
JHumanEval/55
def fib(n: int): """Return n-th Fibonacci number. >>> fib(10) 55 >>> fib(1) 1 >>> fib(8) 21 """
def fib(n: int): """n番目のフィボナッチ数を返す。 >>> fib(10) 55 >>> fib(1) 1 >>> fib(8) 21 """
fib
if n == 0: return 0 if n == 1: return 1 return fib(n - 1) + fib(n - 2)
METADATA = {} def check(candidate): assert candidate(10) == 55 assert candidate(1) == 1 assert candidate(8) == 21 assert candidate(11) == 89 assert candidate(12) == 144
JHumanEval/56
def correct_bracketing(brackets: str): """ brackets is a string of "<" and ">". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("<") False >>> correct_bracketing("<>") True >>> correct_bracketing("<<><>>") True >>> correct_bracketing("><<>") False """
def correct_bracketing(brackets: str): """引数bracketsは"<"と">"の文字列である。 すべての開き括弧が対応する閉じ括弧を持つ場合、Trueを返す。 >>> correct_bracketing("<") False >>> correct_bracketing("<>") True >>> correct_bracketing("<<><>>") True >>> correct_bracketing("><<>") False """
correct_bracketing
depth = 0 for b in brackets: if b == "<": depth += 1 else: depth -= 1 if depth < 0: return False return depth == 0
METADATA = {} def check(candidate): assert candidate("<>") assert candidate("<<><>>") assert candidate("<><><<><>><>") assert candidate("<><><<<><><>><>><<><><<>>>") assert not candidate("<<<><>>>>") assert not candidate("><<>") assert not candidate("<") assert not candidate("<<<<") assert not candidate(">") assert not candidate("<<>") assert not candidate("<><><<><>><>><<>") assert not candidate("<><><<><>><>>><>")
JHumanEval/57
def monotonic(l: list): """Return True is list elements are monotonically increasing or decreasing. >>> monotonic([1, 2, 4, 20]) True >>> monotonic([1, 20, 4, 10]) False >>> monotonic([4, 1, 0, -10]) True """
def monotonic(l: list): """リストの要素が単調増加または単調減少する場合にTrueを返す。 >>> monotonic([1, 2, 4, 20]) True >>> monotonic([1, 20, 4, 10]) False >>> monotonic([4, 1, 0, -10]) True """
monotonic
if l == sorted(l) or l == sorted(l, reverse=True): return True return False
METADATA = {} def check(candidate): assert candidate([1, 2, 4, 10]) == True assert candidate([1, 2, 4, 20]) == True assert candidate([1, 20, 4, 10]) == False assert candidate([4, 1, 0, -10]) == True assert candidate([4, 1, 1, 0]) == True assert candidate([1, 2, 3, 2, 5, 60]) == False assert candidate([1, 2, 3, 4, 5, 60]) == True assert candidate([9, 9, 9, 9]) == True
JHumanEval/58
def common(l1: list, l2: list): """Return sorted unique common elements for two lists. >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> common([5, 3, 2, 8], [3, 2]) [2, 3] """
def common(l1: list, l2: list): """2つのリストについて、ユニークな共通要素をソートして返す。 >>> common([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) [1, 5, 653] >>> common([5, 3, 2, 8], [3, 2]) [2, 3] """
common
ret = set() for e1 in l1: for e2 in l2: if e1 == e2: ret.add(e1) return sorted(list(ret))
METADATA = {} def check(candidate): assert candidate([1, 4, 3, 34, 653, 2, 5], [5, 7, 1, 5, 9, 653, 121]) == [1, 5, 653] assert candidate([5, 3, 2, 8], [3, 2]) == [2, 3] assert candidate([4, 3, 2, 8], [3, 2, 4]) == [2, 3, 4] assert candidate([4, 3, 2, 8], []) == []
JHumanEval/59
def largest_prime_factor(n: int): """Return the largest prime factor of n. Assume n > 1 and is not a prime. >>> largest_prime_factor(13195) 29 >>> largest_prime_factor(2048) 2 """
def largest_prime_factor(n: int): """nの最大となる素因数を返す。ただし、 n > 1 を前提とし、素数ではないものとする。 >>> largest_prime_factor(13195) 29 >>> largest_prime_factor(2048) 2 """
largest_prime_factor
def is_prime(k): if k < 2: return False for i in range(2, k - 1): if k % i == 0: return False return True largest = 1 for j in range(2, n + 1): if n % j == 0 and is_prime(j): largest = max(largest, j) return largest
METADATA = {} def check(candidate): assert candidate(15) == 5 assert candidate(27) == 3 assert candidate(63) == 7 assert candidate(330) == 11 assert candidate(13195) == 29
JHumanEval/60
def sum_to_n(n: int): """sum_to_n is a function that sums numbers from 1 to n. >>> sum_to_n(30) 465 >>> sum_to_n(100) 5050 >>> sum_to_n(5) 15 >>> sum_to_n(10) 55 >>> sum_to_n(1) 1 """
def sum_to_n(n: int): """sum_to_nは1からnまでの総和を求める関数である。 >>> sum_to_n(30) 465 >>> sum_to_n(100) 5050 >>> sum_to_n(5) 15 >>> sum_to_n(10) 55 >>> sum_to_n(1) 1 """
sum_to_n
return sum(range(n + 1))
METADATA = {} def check(candidate): assert candidate(1) == 1 assert candidate(6) == 21 assert candidate(11) == 66 assert candidate(30) == 465 assert candidate(100) == 5050
JHumanEval/61
def correct_bracketing(brackets: str): """ brackets is a string of "(" and ")". return True if every opening bracket has a corresponding closing bracket. >>> correct_bracketing("(") False >>> correct_bracketing("()") True >>> correct_bracketing("(()())") True >>> correct_bracketing(")(()") False """
def correct_bracketing(brackets: str): """引数bracketsは"("と") "からなる文字列である。 すべての開き括弧が対応する閉じ括弧を持つ場合、Trueを返す。 >>> correct_bracketing("(") False >>> correct_bracketing("()") True >>> correct_bracketing("(()())") True >>> correct_bracketing(")(()") False """
correct_bracketing
depth = 0 for b in brackets: if b == "(": depth += 1 else: depth -= 1 if depth < 0: return False return depth == 0
METADATA = {} def check(candidate): assert candidate("()") assert candidate("(()())") assert candidate("()()(()())()") assert candidate("()()((()()())())(()()(()))") assert not candidate("((()())))") assert not candidate(")(()") assert not candidate("(") assert not candidate("((((") assert not candidate(")") assert not candidate("(()") assert not candidate("()()(()())())(()") assert not candidate("()()(()())()))()")
JHumanEval/62
def derivative(xs: list): """ xs represent coefficients of a polynomial. xs[0] + xs[1] * x + xs[2] * x^2 + .... Return derivative of this polynomial in the same form. >>> derivative([3, 1, 2, 4, 5]) [1, 4, 12, 20] >>> derivative([1, 2, 3]) [2, 6] """
def derivative(xs: list): """ xsは多項式の係数列を表す。 xs[0] + xs[1] * x + xs[2] * x^2 + .... 関数は、この多項式の導関数を同じ形式で返す。 >>> derivative([3, 1, 2, 4, 5]) [1, 4, 12, 20] >>> derivative([1, 2, 3]) [2, 6] """
derivative
return [(i * x) for i, x in enumerate(xs)][1:]
METADATA = {} def check(candidate): assert candidate([3, 1, 2, 4, 5]) == [1, 4, 12, 20] assert candidate([1, 2, 3]) == [2, 6] assert candidate([3, 2, 1]) == [2, 2] assert candidate([3, 2, 1, 0, 4]) == [2, 2, 0, 16] assert candidate([1]) == []
JHumanEval/63
def fibfib(n: int): """The FibFib number sequence is a sequence similar to the Fibbonacci sequnece that's defined as follows: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). Please write a function to efficiently compute the n-th element of the fibfib number sequence. >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """
def fibfib(n: int): """FibFib数列はフィボナッチ数列に似た数列で、以下のように定義される: fibfib(0) == 0 fibfib(1) == 0 fibfib(2) == 1 fibfib(n) == fibfib(n-1) + fibfib(n-2) + fibfib(n-3). fibfib数列のn番目の要素を効率よく計算する関数を書いてください。 >>> fibfib(1) 0 >>> fibfib(5) 4 >>> fibfib(8) 24 """
fibfib
if n == 0: return 0 if n == 1: return 0 if n == 2: return 1 return fibfib(n - 1) + fibfib(n - 2) + fibfib(n - 3)
METADATA = {} def check(candidate): assert candidate(2) == 1 assert candidate(1) == 0 assert candidate(5) == 4 assert candidate(8) == 24 assert candidate(10) == 81 assert candidate(12) == 274 assert candidate(14) == 927
JHumanEval/64
FIX = """ Add more test cases. """def vowels_count(s): """Write a function vowels_count which takes a string representing a word as input and returns the number of vowels in the string. Vowels in this case are 'a', 'e', 'i', 'o', 'u'. Here, 'y' is also a vowel, but only when it is at the end of the given word. Example: >>> vowels_count("abcde") 2 >>> vowels_count("ACEDY") 3 """
FIX = """ Add more test cases. """def vowels_count(s): """単語を表す文字列を引数とし、その文字列に含まれる母音の数を返す 関数 vowels_count を書きなさい。この場合の母音は'a', 'e', 'i', 'o', 'u'である。 ここで、与えられた単語の末尾にある場合のみ、'y'も母音とする。 例: >>> vowels_count("abcde") 2 >>> vowels_count("ACEDY") 3 """
vowels_count
vowels = "aeiouAEIOU" n_vowels = sum(c in vowels for c in s) if s[-1] == 'y' or s[-1] == 'Y': n_vowels += 1 return n_vowels
def check(candidate): # Check some simple cases assert candidate("abcde") == 2, "Test 1" assert candidate("Alone") == 3, "Test 2" assert candidate("key") == 2, "Test 3" assert candidate("bye") == 1, "Test 4" assert candidate("keY") == 2, "Test 5" assert candidate("bYe") == 1, "Test 6" assert candidate("ACEDY") == 3, "Test 7" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
JHumanEval/65
def circular_shift(x, shift): """Circular shift the digits of the integer x, shift the digits right by shift and return the result as a string. If shift > number of digits, return digits reversed. >>> circular_shift(12, 1) "21" >>> circular_shift(12, 2) "12" """
def circular_shift(x, shift): """整数 x の桁を循環シフトする。shift 分だけ桁を右にシフトし、結果を文字列として返す。 もし、shift > 桁数なら、桁を反転して返す。 >>> circular_shift(12, 1) "21" >>> circular_shift(12, 2) "12" """
circular_shift
s = str(x) if shift > len(s): return s[::-1] else: return s[len(s) - shift:] + s[:len(s) - shift]
def check(candidate): # Check some simple cases assert candidate(100, 2) == "001" assert candidate(12, 2) == "12" assert candidate(97, 8) == "79" assert candidate(12, 1) == "21", "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate(11, 101) == "11", "This prints if this assert fails 2 (also good for debugging!)"
JHumanEval/66
def digitSum(s): """Task Write a function that takes a string as input and returns the sum of the upper characters only' ASCII codes. Examples: digitSum("") => 0 digitSum("abAB") => 131 digitSum("abcCd") => 67 digitSum("helloE") => 69 digitSum("woArBld") => 131 digitSum("aAaaaXa") => 153 """
def digitSum(s): """タスク 文字列を引数にとり、英大文字のみのASCIIコードの和を返す関数を書く。 Examples: digitSum("") => 0 digitSum("abAB") => 131 digitSum("abcCd") => 67 digitSum("helloE") => 69 digitSum("woArBld") => 131 digitSum("aAaaaXa") => 153 """
digitSum
if s == "": return 0 return sum(ord(char) if char.isupper() else 0 for char in s)
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate("") == 0, "Error" assert candidate("abAB") == 131, "Error" assert candidate("abcCd") == 67, "Error" assert candidate("helloE") == 69, "Error" assert candidate("woArBld") == 131, "Error" assert candidate("aAaaaXa") == 153, "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate(" How are yOu?") == 151, "Error" assert candidate("You arE Very Smart") == 327, "Error"
JHumanEval/67
def fruit_distribution(s,n): """ In this task, you will be given a string that represents a number of apples and oranges that are distributed in a basket of fruit this basket contains apples, oranges, and mango fruits. Given the string that represents the total number of the oranges and apples and an integer that represent the total number of the fruits in the basket return the number of the mango fruits in the basket. for examble: fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8 fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2 fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95 fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19 """
def fruit_distribution(s,n): """ この課題では、果物の入ったカゴに配られたリンゴとオレンジの数を表す文字列が 与えられ、このカゴにはリンゴ、オレンジ、マンゴーの果実が入っている。オレンジ とリンゴの総数を表す文字列と、かごの中の果物の総数を表す整数が与えられたら、 かごの中のマンゴーの果物の数を返しなさい。 たとえば: fruit_distribution("5 apples and 6 oranges", 19) ->19 - 5 - 6 = 8 fruit_distribution("0 apples and 1 oranges",3) -> 3 - 0 - 1 = 2 fruit_distribution("2 apples and 3 oranges", 100) -> 100 - 2 - 3 = 95 fruit_distribution("100 apples and 1 oranges",120) -> 120 - 100 - 1 = 19 """
fruit_distribution
lis = list() for i in s.split(' '): if i.isdigit(): lis.append(int(i)) return n - sum(lis)
def check(candidate): # Check some simple cases assert candidate("5 apples and 6 oranges",19) == 8 assert candidate("5 apples and 6 oranges",21) == 10 assert candidate("0 apples and 1 oranges",3) == 2 assert candidate("1 apples and 0 oranges",3) == 2 assert candidate("2 apples and 3 oranges",100) == 95 assert candidate("2 apples and 3 oranges",5) == 0 assert candidate("1 apples and 100 oranges",120) == 19
JHumanEval/68
def pluck(arr): """ "Given an array representing a branch of a tree that has non-negative integer nodes your task is to pluck one of the nodes and return it. The plucked node should be the node with the smallest even value. If multiple nodes with the same smallest even value are found return the node that has smallest index. The plucked node should be returned in a list, [ smalest_value, its index ], If there are no even values or the given array is empty, return []. Example 1: Input: [4,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 2: Input: [1,2,3] Output: [2, 1] Explanation: 2 has the smallest even value, and 2 has the smallest index. Example 3: Input: [] Output: [] Example 4: Input: [5, 0, 3, 0, 4, 2] Output: [0, 1] Explanation: 0 is the smallest value, but there are two zeros, so we will choose the first zero, which has the smallest index. Constraints: * 1 <= nodes.length <= 10000 * 0 <= node.value """
def pluck(arr): """ 非負整数のノードを持つ木の枝を表す配列が与えられたとする。あなたの仕事は、 ノードの1つを抜き取り、それを返すことである。 摘出されるノードは、最小偶数値を持つノードでなければならない。 同じ最小偶数値を持つノードが複数見つかった場合は、最小のインデックスを持つ ノードを返す。 摘出されたノードは [ smalest_value, its index ] というリストで返されなければならない。 偶数値がない場合や与えられた配列が空の場合は [] を返します。 例 1: 入力: [4,2,3] 出力: [2, 1] 解説: 2は最小偶数値を持ち、最小インデックスを持つ。 例 2: 入力: [1,2,3] 出力: [2, 1] 解説: 2が最小偶数値で、2が最小インデックスを持つ。 例 3: 入力: [] 出力: [] 例 4: 入力: [5, 0, 3, 0, 4, 2] 出力: [0, 1] 解説: 0は最小値だが、0は2つあるので、最小インデックスを持つ最初の0を選ぶ。 制約: * 1 <= ノードの長さ <= 10000 * 0 <= ノードの値 """
pluck
if(len(arr) == 0): return [] evens = list(filter(lambda x: x%2 == 0, arr)) if(evens == []): return [] return [min(evens), arr.index(min(evens))]
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([4,2,3]) == [2, 1], "Error" assert candidate([1,2,3]) == [2, 1], "Error" assert candidate([]) == [], "Error" assert candidate([5, 0, 3, 0, 4, 2]) == [0, 1], "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([1, 2, 3, 0, 5, 3]) == [0, 3], "Error" assert candidate([5, 4, 8, 4 ,8]) == [4, 1], "Error" assert candidate([7, 6, 7, 1]) == [6, 1], "Error" assert candidate([7, 9, 7, 1]) == [], "Error"
JHumanEval/69
def search(lst): ''' You are given a non-empty list of positive integers. Return the greatest integer that is greater than zero, and has a frequency greater than or equal to the value of the integer itself. The frequency of an integer is the number of times it appears in the list. If no such a value exist, return -1. Examples: search([4, 1, 2, 2, 3, 1]) == 2 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3 search([5, 5, 4, 4, 4]) == -1 '''
def search(lst): """ 正の整数の空でないリストが与えられる。0より大きく、その整数自身の値以上の頻度を 持つ最大の整数を返せ。整数の頻度とは、それがリストに現れる回数である。 そのような値が存在しない場合は -1 を返す。 例: search([4, 1, 2, 2, 3, 1]) == 2 search([1, 2, 2, 3, 3, 3, 4, 4, 4]) == 3 search([5, 5, 4, 4, 4]) == -1 """
search
frq = [0] * (max(lst) + 1) for i in lst: frq[i] += 1; ans = -1 for i in range(1, len(frq)): if frq[i] >= i: ans = i return ans
def check(candidate): # manually generated tests assert candidate([5, 5, 5, 5, 1]) == 1 assert candidate([4, 1, 4, 1, 4, 4]) == 4 assert candidate([3, 3]) == -1 assert candidate([8, 8, 8, 8, 8, 8, 8, 8]) == 8 assert candidate([2, 3, 3, 2, 2]) == 2 # automatically generated tests assert candidate([2, 7, 8, 8, 4, 8, 7, 3, 9, 6, 5, 10, 4, 3, 6, 7, 1, 7, 4, 10, 8, 1]) == 1 assert candidate([3, 2, 8, 2]) == 2 assert candidate([6, 7, 1, 8, 8, 10, 5, 8, 5, 3, 10]) == 1 assert candidate([8, 8, 3, 6, 5, 6, 4]) == -1 assert candidate([6, 9, 6, 7, 1, 4, 7, 1, 8, 8, 9, 8, 10, 10, 8, 4, 10, 4, 10, 1, 2, 9, 5, 7, 9]) == 1 assert candidate([1, 9, 10, 1, 3]) == 1 assert candidate([6, 9, 7, 5, 8, 7, 5, 3, 7, 5, 10, 10, 3, 6, 10, 2, 8, 6, 5, 4, 9, 5, 3, 10]) == 5 assert candidate([1]) == 1 assert candidate([8, 8, 10, 6, 4, 3, 5, 8, 2, 4, 2, 8, 4, 6, 10, 4, 2, 1, 10, 2, 1, 1, 5]) == 4 assert candidate([2, 10, 4, 8, 2, 10, 5, 1, 2, 9, 5, 5, 6, 3, 8, 6, 4, 10]) == 2 assert candidate([1, 6, 10, 1, 6, 9, 10, 8, 6, 8, 7, 3]) == 1 assert candidate([9, 2, 4, 1, 5, 1, 5, 2, 5, 7, 7, 7, 3, 10, 1, 5, 4, 2, 8, 4, 1, 9, 10, 7, 10, 2, 8, 10, 9, 4]) == 4 assert candidate([2, 6, 4, 2, 8, 7, 5, 6, 4, 10, 4, 6, 3, 7, 8, 8, 3, 1, 4, 2, 2, 10, 7]) == 4 assert candidate([9, 8, 6, 10, 2, 6, 10, 2, 7, 8, 10, 3, 8, 2, 6, 2, 3, 1]) == 2 assert candidate([5, 5, 3, 9, 5, 6, 3, 2, 8, 5, 6, 10, 10, 6, 8, 4, 10, 7, 7, 10, 8]) == -1 assert candidate([10]) == -1 assert candidate([9, 7, 7, 2, 4, 7, 2, 10, 9, 7, 5, 7, 2]) == 2 assert candidate([5, 4, 10, 2, 1, 1, 10, 3, 6, 1, 8]) == 1 assert candidate([7, 9, 9, 9, 3, 4, 1, 5, 9, 1, 2, 1, 1, 10, 7, 5, 6, 7, 6, 7, 7, 6]) == 1 assert candidate([3, 10, 10, 9, 2]) == -1
JHumanEval/70
def strange_sort_list(lst): ''' Given list of integers, return list in strange order. Strange sorting, is when you start with the minimum value, then maximum of the remaining integers, then minimum and so on. Examples: strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3] strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5] strange_sort_list([]) == [] '''
def strange_sort_list(lst): ''' 整数のリストが与えられたとき、リストを奇妙な順序で返す。 奇妙なソートとは、最小値から始まり、残りの整数の最大値、最小値の順で ソートすることである。 例: strange_sort_list([1, 2, 3, 4]) == [1, 4, 2, 3] strange_sort_list([5, 5, 5, 5]) == [5, 5, 5, 5] strange_sort_list([]) == [] '''
strange_sort_list
res, switch = [], True while lst: res.append(min(lst) if switch else max(lst)) lst.remove(res[-1]) switch = not switch return res
def check(candidate): # Check some simple cases assert candidate([1, 2, 3, 4]) == [1, 4, 2, 3] assert candidate([5, 6, 7, 8, 9]) == [5, 9, 6, 8, 7] assert candidate([1, 2, 3, 4, 5]) == [1, 5, 2, 4, 3] assert candidate([5, 6, 7, 8, 9, 1]) == [1, 9, 5, 8, 6, 7] assert candidate([5, 5, 5, 5]) == [5, 5, 5, 5] assert candidate([]) == [] assert candidate([1,2,3,4,5,6,7,8]) == [1, 8, 2, 7, 3, 6, 4, 5] assert candidate([0,2,2,2,5,5,-5,-5]) == [-5, 5, -5, 5, 0, 2, 2, 2] assert candidate([111111]) == [111111] # Check some edge cases that are easy to work out by hand. assert True
JHumanEval/71
def triangle_area(a, b, c): ''' Given the lengths of the three sides of a triangle. Return the area of the triangle rounded to 2 decimal points if the three sides form a valid triangle. Otherwise return -1 Three sides make a valid triangle when the sum of any two sides is greater than the third side. Example: triangle_area(3, 4, 5) == 6.00 triangle_area(1, 2, 10) == -1 '''
def triangle_area(a, b, c): ''' 三角形の3辺の長さが与えられた。3辺が有効な三角形を形成していれば、 三角形の面積を小数点以下2桁で四捨五入して返す。そうでない場合は-1を 返す。 任意の2辺の和が3辺より大きいとき、3辺は有効な三角形となる。 例: triangle_area(3, 4, 5) == 6.00 triangle_area(1, 2, 10) == -1 '''
triangle_area
if a + b <= c or a + c <= b or b + c <= a: return -1 s = (a + b + c)/2 area = (s * (s - a) * (s - b) * (s - c)) ** 0.5 area = round(area, 2) return area
def check(candidate): # Check some simple cases assert candidate(3, 4, 5) == 6.00, "This prints if this assert fails 1 (good for debugging!)" assert candidate(1, 2, 10) == -1 assert candidate(4, 8, 5) == 8.18 assert candidate(2, 2, 2) == 1.73 assert candidate(1, 2, 3) == -1 assert candidate(10, 5, 7) == 16.25 assert candidate(2, 6, 3) == -1 # Check some edge cases that are easy to work out by hand. assert candidate(1, 1, 1) == 0.43, "This prints if this assert fails 2 (also good for debugging!)" assert candidate(2, 2, 10) == -1
JHumanEval/72
def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. Example: will_it_fly([1, 2], 5) ➞ False # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ False # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ True # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) ➞ True # 3 is less than the maximum possible weight, and it's balanced. '''
def will_it_fly(q,w): """ 物体qが飛べばTrueを、そうでなければFalseを返す関数を書け。 物体qはバランスが取れていて(つまり、リストが回文であって)、その要素の和が 最大荷重w以下であれば飛ぶ。 例: will_it_fly([1, 2], 5) ➞ False # 1+2 は最大荷重以下であるが、バランスが取れていない will_it_fly([3, 2, 3], 1) ➞ False # バランスが取れているが、3+2+3 は最大荷重を超える will_it_fly([3, 2, 3], 9) ➞ True # 3+2+3 は最大荷重以下であり、バランスも取れている will_it_fly([3], 5) ➞ True # 3 は最大荷重以下であり、バランスも取れている """
will_it_fly
if sum(q) > w: return False i, j = 0, len(q)-1 while i<j: if q[i] != q[j]: return False i+=1 j-=1 return True
def check(candidate): # Check some simple cases assert candidate([3, 2, 3], 9) is True assert candidate([1, 2], 5) is False assert candidate([3], 5) is True assert candidate([3, 2, 3], 1) is False # Check some edge cases that are easy to work out by hand. assert candidate([1, 2, 3], 6) is False assert candidate([5], 5) is True
JHumanEval/73
def smallest_change(arr): """ Given an array arr of integers, find the minimum number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element. For example: smallest_change([1,2,3,5,4,7,9,6]) == 4 smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1 smallest_change([1, 2, 3, 2, 1]) == 0 """
def smallest_change(arr): """ 整数の配列arrが与えられたとき、その配列を回文配列にするために 必要な要素の最小数を求めよ。回文配列とは、前からも後からも同じ ようになる配列のことである。1回の変更で、1つの要素を他の任意の 要素に変更できる。 例えば: smallest_change([1,2,3,5,4,7,9,6]) == 4 smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1 smallest_change([1, 2, 3, 2, 1]) == 0 """
smallest_change
ans = 0 for i in range(len(arr) // 2): if arr[i] != arr[len(arr) - i - 1]: ans += 1 return ans
def check(candidate): # Check some simple cases assert candidate([1,2,3,5,4,7,9,6]) == 4 assert candidate([1, 2, 3, 4, 3, 2, 2]) == 1 assert candidate([1, 4, 2]) == 1 assert candidate([1, 4, 4, 2]) == 1 # Check some edge cases that are easy to work out by hand. assert candidate([1, 2, 3, 2, 1]) == 0 assert candidate([3, 1, 1, 3]) == 0 assert candidate([1]) == 0 assert candidate([0, 1]) == 1
JHumanEval/74
def total_match(lst1, lst2): ''' Write a function that accepts two lists of strings and returns the list that has total number of chars in the all strings of the list less than the other list. if the two lists have the same number of chars, return the first list. Examples total_match([], []) ➞ [] total_match(['hi', 'admin'], ['hI', 'Hi']) ➞ ['hI', 'Hi'] total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) ➞ ['hi', 'admin'] total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) ➞ ['hI', 'hi', 'hi'] total_match(['4'], ['1', '2', '3', '4', '5']) ➞ ['4'] '''
def total_match(lst1, lst2): """ 2つの文字列リストを受け取り、リストの全文字数の合計がもう一方 のリストより少ないリストを返す関数を書きなさい。 もし2つのリストの文字数が同じなら、最初のリストを返す。 例 total_match([], []) ➞ [] total_match(['hi', 'admin'], ['hI', 'Hi']) ➞ ['hI', 'Hi'] total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) ➞ ['hi', 'admin'] total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) ➞ ['hI', 'hi', 'hi'] total_match(['4'], ['1', '2', '3', '4', '5']) ➞ ['4'] """
total_match
l1 = 0 for st in lst1: l1 += len(st) l2 = 0 for st in lst2: l2 += len(st) if l1 <= l2: return lst1 else: return lst2
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([], []) == [] assert candidate(['hi', 'admin'], ['hi', 'hi']) == ['hi', 'hi'] assert candidate(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) == ['hi', 'admin'] assert candidate(['4'], ['1', '2', '3', '4', '5']) == ['4'] assert candidate(['hi', 'admin'], ['hI', 'Hi']) == ['hI', 'Hi'] assert candidate(['hi', 'admin'], ['hI', 'hi', 'hi']) == ['hI', 'hi', 'hi'] assert candidate(['hi', 'admin'], ['hI', 'hi', 'hii']) == ['hi', 'admin'] # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([], ['this']) == [] assert candidate(['this'], []) == []
JHumanEval/75
def is_multiply_prime(a): """Write a function that returns true if the given number is the multiplication of 3 prime numbers and false otherwise. Knowing that (a) is less then 100. Example: is_multiply_prime(30) == True 30 = 2 * 3 * 5 """
def is_multiply_prime(a): """与えられた数が3つの素数の掛け算であればTrueを、そうでなければFalseを返す 関数を書きなさい。 引数 aは100以下を既知としていよい。 例: is_multiply_prime(30) == True 30 = 2 * 3 * 5 """
is_multiply_prime
def is_prime(n): for j in range(2,n): if n%j == 0: return False return True for i in range(2,101): if not is_prime(i): continue for j in range(2,101): if not is_prime(j): continue for k in range(2,101): if not is_prime(k): continue if i*j*k == a: return True return False
def check(candidate): assert candidate(5) == False assert candidate(30) == True assert candidate(8) == True assert candidate(10) == False assert candidate(125) == True assert candidate(3 * 5 * 7) == True assert candidate(3 * 6 * 7) == False assert candidate(9 * 9 * 9) == False assert candidate(11 * 9 * 9) == False assert candidate(11 * 13 * 7) == True
JHumanEval/76
def is_simple_power(x, n): """Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x For example: is_simple_power(1, 4) => true is_simple_power(2, 2) => true is_simple_power(8, 2) => true is_simple_power(3, 2) => false is_simple_power(3, 1) => false is_simple_power(5, 3) => false """
def is_simple_power(x, n): """あなたのタスクは、ある数xがnの単純なべき乗である場合にtrueを、 それ以外の場合にfalseを返す関数を書くことである。 xは、n**int=xのとき、nの単純なべき乗である。 例えば: is_simple_power(1, 4) => true is_simple_power(2, 2) => true is_simple_power(8, 2) => true is_simple_power(3, 2) => false is_simple_power(3, 1) => false is_simple_power(5, 3) => false """
is_simple_power
if (n == 1): return (x == 1) power = 1 while (power < x): power = power * n return (power == x)
def check(candidate): # Check some simple cases assert candidate(16, 2)== True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(143214, 16)== False, "This prints if this assert fails 1 (good for debugging!)" assert candidate(4, 2)==True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(9, 3)==True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(16, 4)==True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(24, 2)==False, "This prints if this assert fails 1 (good for debugging!)" assert candidate(128, 4)==False, "This prints if this assert fails 1 (good for debugging!)" assert candidate(12, 6)==False, "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate(1, 1)==True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate(1, 12)==True, "This prints if this assert fails 2 (also good for debugging!)"
JHumanEval/77
def iscube(a): ''' Write a function that takes an integer a and returns True if this ingeger is a cube of some integer number. Note: you may assume the input is always valid. Examples: iscube(1) ==> True iscube(2) ==> False iscube(-1) ==> True iscube(64) ==> True iscube(0) ==> True iscube(180) ==> False '''
def iscube(a): """ 整数aを受け取り、この整数がある整数の3乗である場合にTrue を返す関数を書きなさい。 注意:入力は常に処理可能であると仮定してよい。 例: iscube(1) ==> True iscube(2) ==> False iscube(-1) ==> True iscube(64) ==> True iscube(0) ==> True iscube(180) ==> False """
iscube
a = abs(a) return int(round(a ** (1. / 3))) ** 3 == a
def check(candidate): # Check some simple cases assert candidate(1) == True, "First test error: " + str(candidate(1)) assert candidate(2) == False, "Second test error: " + str(candidate(2)) assert candidate(-1) == True, "Third test error: " + str(candidate(-1)) assert candidate(64) == True, "Fourth test error: " + str(candidate(64)) assert candidate(180) == False, "Fifth test error: " + str(candidate(180)) assert candidate(1000) == True, "Sixth test error: " + str(candidate(1000)) # Check some edge cases that are easy to work out by hand. assert candidate(0) == True, "1st edge test error: " + str(candidate(0)) assert candidate(1729) == False, "2nd edge test error: " + str(candidate(1728))
JHumanEval/78
def hex_key(num): """You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = "AB" the output should be 1. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 4. For num = "123456789ABCDEF0" the output should be 6. For num = "2020" the output should be 2. """
def hex_key(num): """ 16進数の数字を文字列として受け取り、その中に含まれる素数である16進数の桁数を カウントする関数を作成するタスクが与えられました。素数とは、1より大きく、 2つのより小さい自然数の積でない自然数です。 16進数の桁には0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, Fがあります。 素数としては2, 3, 5, 7, 11, 13, 17,...があります。 したがって、次の数字のいずれかがいくつあるかを判定する必要があります: 2, 3, 5, 7, B(=10進数で11), D(=10進数で13) 注意:入力は常に正確、または空の文字列であり、記号A, B, C, D, E, Fは常に 大文字であると仮定してよいです。 例: num = "AB" の場合、出力は 1 です。 num = "1077E" の場合、出力は 2 です。 num = "ABED1A33" の場合、出力は 4 です。 num = "123456789ABCDEF0" の場合、出力は 6 です。 num = "2020" の場合、出力は 2 です。be 2. """
hex_key
primes = ('2', '3', '5', '7', 'B', 'D') total = 0 for i in range(0, len(num)): if num[i] in primes: total += 1 return total
def check(candidate): # Check some simple cases assert candidate("AB") == 1, "First test error: " + str(candidate("AB")) assert candidate("1077E") == 2, "Second test error: " + str(candidate("1077E")) assert candidate("ABED1A33") == 4, "Third test error: " + str(candidate("ABED1A33")) assert candidate("2020") == 2, "Fourth test error: " + str(candidate("2020")) assert candidate("123456789ABCDEF0") == 6, "Fifth test error: " + str(candidate("123456789ABCDEF0")) assert candidate("112233445566778899AABBCCDDEEFF00") == 12, "Sixth test error: " + str(candidate("112233445566778899AABBCCDDEEFF00")) # Check some edge cases that are easy to work out by hand. assert candidate([]) == 0
JHumanEval/79
def decimal_to_binary(decimal): """You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the format. Examples: decimal_to_binary(15) # returns "db1111db" decimal_to_binary(32) # returns "db100000db" """
def decimal_to_binary(decimal): """10進数形式の数値が与えられ、あなたのタスクはそれを2進数形式に変換することである。 この関数は、文字列を返し、その各文字は2進数を表す。文字列の各文字は'0'か'1'である。 なお、文字列の最初と最後には'db'という余分な文字をつける。 この文字は書式を助けるためにある。 例: decimal_to_binary(15) # "db1111db"を返す decimal_to_binary(32) # "db100000db"を返す """
decimal_to_binary
return "db" + bin(decimal)[2:] + "db"
def check(candidate): # Check some simple cases assert candidate(0) == "db0db" assert candidate(32) == "db100000db" assert candidate(103) == "db1100111db" assert candidate(15) == "db1111db", "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
JHumanEval/80
def is_happy(s): """You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct For example: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """
def is_happy(s): """あなたは文字列sが与えられる。 あなたのタスクは、その文字列が幸せかどうかをチェックすることである。 文字列は幸せとは、文字列の長さが少なくとも3以上で、連続する3文字がすべて異なる場合である。 例えば: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """
is_happy
if len(s) < 3: return False for i in range(len(s) - 2): if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]: return False return True
def check(candidate): # Check some simple cases assert candidate("a") == False , "a" assert candidate("aa") == False , "aa" assert candidate("abcd") == True , "abcd" assert candidate("aabb") == False , "aabb" assert candidate("adb") == True , "adb" assert candidate("xyy") == False , "xyy" assert candidate("iopaxpoi") == True , "iopaxpoi" assert candidate("iopaxioi") == False , "iopaxioi"
JHumanEval/81
def numerical_letter_grade(grades): """It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: grade_equation([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-'] """
def numerical_letter_grade(grades): """ 学期最終週、教師は生徒に成績をつけなければならない。教師は独自のアルゴリズムで採点している。 問題は、彼女が成績評価に使ったコードを紛失してしまったことです。 彼女は何人かの生徒のGPAのリストをあなたに渡したので、あなたは次の表を使って評点のリストを 出力できる関数を書くことになりました。 GPA | 評点 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E 例: grade_equation([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-'] """
numerical_letter_grade
letter_grade = [] for gpa in grades: if gpa == 4.0: letter_grade.append("A+") elif gpa > 3.7: letter_grade.append("A") elif gpa > 3.3: letter_grade.append("A-") elif gpa > 3.0: letter_grade.append("B+") elif gpa > 2.7: letter_grade.append("B") elif gpa > 2.3: letter_grade.append("B-") elif gpa > 2.0: letter_grade.append("C+") elif gpa > 1.7: letter_grade.append("C") elif gpa > 1.3: letter_grade.append("C-") elif gpa > 1.0: letter_grade.append("D+") elif gpa > 0.7: letter_grade.append("D") elif gpa > 0.0: letter_grade.append("D-") else: letter_grade.append("E") return letter_grade
def check(candidate): # Check some simple cases assert candidate([4.0, 3, 1.7, 2, 3.5]) == ['A+', 'B', 'C-', 'C', 'A-'] assert candidate([1.2]) == ['D+'] assert candidate([0.5]) == ['D-'] assert candidate([0.0]) == ['E'] assert candidate([1, 0.3, 1.5, 2.8, 3.3]) == ['D', 'D-', 'C-', 'B', 'B+'] assert candidate([0, 0.7]) == ['E', 'D-'] # Check some edge cases that are easy to work out by hand. assert True
JHumanEval/82
def prime_length(string): """Write a function that takes a string and returns True if the string length is a prime number or False otherwise Examples prime_length('Hello') == True prime_length('abcdcba') == True prime_length('kittens') == True prime_length('orange') == False """
def prime_length(string): """文字列を受け取り、文字列の長さが素数であればTrueを、そうでなければFalseを返す関数を書く。 例 prime_length('Hello') == True prime_length('abcdcba') == True prime_length('kittens') == True prime_length('orange') == False """
prime_length
l = len(string) if l == 0 or l == 1: return False for i in range(2, l): if l % i == 0: return False return True
def check(candidate): # Check some simple cases assert candidate('Hello') == True assert candidate('abcdcba') == True assert candidate('kittens') == True assert candidate('orange') == False assert candidate('wow') == True assert candidate('world') == True assert candidate('MadaM') == True assert candidate('Wow') == True assert candidate('') == False assert candidate('HI') == True assert candidate('go') == True assert candidate('gogo') == False assert candidate('aaaaaaaaaaaaaaa') == False # Check some edge cases that are easy to work out by hand. assert candidate('Madam') == True assert candidate('M') == False assert candidate('0') == False
JHumanEval/83
def starts_one_ends(n): """ Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. """
def starts_one_ends(n): """ 正の整数 n が与えられたとき、n 桁の正の整数で 1 で始まるか もしくは終わる数のカウントを返す """
starts_one_ends
if n == 1: return 1 return 18 * (10 ** (n - 2))
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(1) == 1 assert candidate(2) == 18 assert candidate(3) == 180 assert candidate(4) == 1800 assert candidate(5) == 18000 # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
JHumanEval/84
def solve(N): """Given a positive integer N, return the total sum of its digits in binary. Example For N = 1000, the sum of digits will be 1 the output should be "1". For N = 150, the sum of digits will be 6 the output should be "110". For N = 147, the sum of digits will be 12 the output should be "1100". Variables: @N integer Constraints: 0 ≤ N ≤ 10000. Output: a string of binary number """
def solve(N): """正の整数 N が与えられた時、その桁の総和を2進数で返す。 例 N = 1000のとき, 各桁の総和は1、だから返り値は "1". N = 150のとき,各桁の総和は6、 だから返り値は "110". N = 147のとき,各桁の総和は12、 だから返り値は "1100". 変数: @N 整数 制約: 0 ≤ N ≤ 10000. 返り値: 2進数表記の文字列 """
solve
return bin(sum(int(i) for i in str(N)))[2:]
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(1000) == "1", "Error" assert candidate(150) == "110", "Error" assert candidate(147) == "1100", "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate(333) == "1001", "Error" assert candidate(963) == "10010", "Error"
JHumanEval/85
def add(lst): """Given a non-empty list of integers lst. add the even elements that are at odd indices.. Examples: add([4, 2, 6, 7]) ==> 2 """
def add(lst): """空でない整数のリストlstが与えられたとき、奇数のインデックスにある偶数の要素を加える。 例: add([4, 2, 6, 7]) ==> 2 """
add
return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])
def check(candidate): # Check some simple cases assert candidate([4, 88]) == 88 assert candidate([4, 5, 6, 7, 2, 122]) == 122 assert candidate([4, 0, 6, 7]) == 0 assert candidate([4, 4, 6, 8]) == 12 # Check some edge cases that are easy to work out by hand.
JHumanEval/86
def anti_shuffle(s): """ Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle('Hi') returns 'Hi' anti_shuffle('hello') returns 'ehllo' anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor' """
def anti_shuffle(s): """ 文字列を引数として受け取り、その「順序付けられたバージョン」を返す関数を作成してください。 順序付けられたバージョンとは、各単語(空白で区切られた)の文字がASCII値に基づいて昇順に 並べ替えられた新しい単語に置き換えられた文字列です。 注意:文章内の単語と空白の順序はそのまま保ってください。 例えば: anti_shuffle('Hi') は 'Hi'を返す anti_shuffle('hello') は 'ehllo'返す anti_shuffle('Hello World!!!') は 'Hello !!!Wdlor'返す """
anti_shuffle
return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])
def check(candidate): # Check some simple cases assert candidate('Hi') == 'Hi' assert candidate('hello') == 'ehllo' assert candidate('number') == 'bemnru' assert candidate('abcd') == 'abcd' assert candidate('Hello World!!!') == 'Hello !!!Wdlor' assert candidate('') == '' assert candidate('Hi. My name is Mister Robot. How are you?') == '.Hi My aemn is Meirst .Rboot How aer ?ouy' # Check some edge cases that are easy to work out by hand. assert True
JHumanEval/87
def get_row(lst, x): """ You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] get_row([], 1) == [] get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] """
def get_row(lst, x): """ 2次元のデータがネストされたリストとして与えられる。これは行列に似ているが、 行列とは異なり、各行は異なる数の列を含むことができる。 lstと整数xが与えられたとき、リスト内の整数xを見つけ、各タプルが0から始まる 座標(行、列)であるようなタプルのリスト[(x1, y1), (x2, y2) ...]を返す。 座標を最初は行の昇順でソートする。 また、行の座標を列の降順でソートする。 例: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] get_row([], 1) == [] get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] """
get_row
coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x] return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])
def check(candidate): # Check some simple cases assert candidate([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] assert candidate([ [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6] ], 2) == [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)] assert candidate([ [1,2,3,4,5,6], [1,2,3,4,5,6], [1,1,3,4,5,6], [1,2,1,4,5,6], [1,2,3,1,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)] assert candidate([], 1) == [] assert candidate([[1]], 2) == [] assert candidate([[], [1], [1, 2, 3]], 3) == [(2, 2)] # Check some edge cases that are easy to work out by hand. assert True
JHumanEval/88
def sort_array(array): """ Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given array. Examples: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0] """
def sort_array(array): """ 非負の整数からなる配列が与えられた場合、配列をソートしたコピーを返してください。 配列の最初の要素と最後の要素の和が奇数であれば、配列を昇順(小さい順)にソートします。 その和が偶数であれば、配列を降順(大きい順)にソートします。 注意点: * 与えられた配列自体を変更しないでください。 例: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0] """
sort_array
return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0)
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([]) == [], "Error" assert candidate([5]) == [5], "Error" assert candidate([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5], "Error" assert candidate([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0], "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([2, 1]) == [1, 2], "Error" assert candidate([15, 42, 87, 32 ,11, 0]) == [0, 11, 15, 32, 42, 87], "Error" assert candidate([21, 14, 23, 11]) == [23, 21, 14, 11], "Error"
JHumanEval/89
def encrypt(s): """Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. For example: encrypt('hi') returns 'lm' encrypt('asdfghjkl') returns 'ewhjklnop' encrypt('gf') returns 'kj' encrypt('et') returns 'ix' """
def encrypt(s): """文字列を引数にとり、アルファベットを回転させて暗号化した 文字列を返す関数encryptを作成せよ。 アルファベットは、文字位置を2倍して2つ下にシフトするように 回転する。 例: encrypt('hi') returns 'lm' encrypt('asdfghjkl') returns 'ewhjklnop' encrypt('gf') returns 'kj' encrypt('et') returns 'ix' """
encrypt
d = 'abcdefghijklmnopqrstuvwxyz' out = '' for c in s: if c in d: out += d[(d.index(c)+2*2) % 26] else: out += c return out
def check(candidate): # Check some simple cases assert candidate('hi') == 'lm', "This prints if this assert fails 1 (good for debugging!)" assert candidate('asdfghjkl') == 'ewhjklnop', "This prints if this assert fails 1 (good for debugging!)" assert candidate('gf') == 'kj', "This prints if this assert fails 1 (good for debugging!)" assert candidate('et') == 'ix', "This prints if this assert fails 1 (good for debugging!)" assert candidate('faewfawefaewg')=='jeiajeaijeiak', "This prints if this assert fails 1 (good for debugging!)" assert candidate('hellomyfriend')=='lippsqcjvmirh', "This prints if this assert fails 2 (good for debugging!)" assert candidate('dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh')=='hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl', "This prints if this assert fails 3 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate('a')=='e', "This prints if this assert fails 2 (also good for debugging!)"
JHumanEval/90
def next_smallest(lst): """ You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 2 next_smallest([5, 1, 4, 3, 2]) == 2 next_smallest([]) == None next_smallest([1, 1]) == None """
def next_smallest(lst): """ 整数のリストが与えられる。 リストの2番目に小さい要素を返す関数 next_smallest() を書きなさい。 そのような要素がない場合は None を返す。 next_smallest([1, 2, 3, 4, 5]) == 2 next_smallest([5, 1, 4, 3, 2]) == 2 next_smallest([]) == None next_smallest([1, 1]) == None """
next_smallest
lst = sorted(set(lst)) return None if len(lst) < 2 else lst[1]
def check(candidate): # Check some simple cases assert candidate([1, 2, 3, 4, 5]) == 2 assert candidate([5, 1, 4, 3, 2]) == 2 assert candidate([]) == None assert candidate([1, 1]) == None assert candidate([1,1,1,1,0]) == 1 assert candidate([1, 0**0]) == None assert candidate([-35, 34, 12, -45]) == -35 # Check some edge cases that are easy to work out by hand. assert True
JHumanEval/91
def is_bored(S): """ You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored("Hello world") 0 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 1 """
def is_bored(S): """ 単語の文字列が与えられ、あなたのタスクは退屈指数を数える ことである。退屈指数とは、"I "で始まる文のことである。 文は'.'、’?’、'!'のいずれかで区切られる。 例えば: >>> is_bored("Hello world") 0 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 1 """
is_bored
import re sentences = re.split(r'[.?!]\s*', S) return sum(sentence[0:2] == 'I ' for sentence in sentences)
def check(candidate): # Check some simple cases assert candidate("Hello world") == 0, "Test 1" assert candidate("Is the sky blue?") == 0, "Test 2" assert candidate("I love It !") == 1, "Test 3" assert candidate("bIt") == 0, "Test 4" assert candidate("I feel good today. I will be productive. will kill It") == 2, "Test 5" assert candidate("You and I are going for a walk") == 0, "Test 6" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
JHumanEval/92
def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ True any_int(3, 2, 2) ➞ False any_int(3, -2, 1) ➞ True any_int(3.6, -2.2, 2) ➞ False '''
def any_int(x, y, z): """ 3つの数値を受け取る関数を作る。 1つの数値が他の2つの数値の和と等しく、すべての数値が整数である場合にTrueを返す。 それ以外の場合はFalseを返す。 例 any_int(5, 2, 7) ➞ True any_int(3, 2, 2) ➞ False any_int(3, -2, 1) ➞ True any_int(3.6, -2.2, 2) ➞ False """
any_int
if isinstance(x,int) and isinstance(y,int) and isinstance(z,int): if (x+y==z) or (x+z==y) or (y+z==x): return True return False return False
def check(candidate): # Check some simple cases assert candidate(2, 3, 1)==True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(2.5, 2, 3)==False, "This prints if this assert fails 2 (good for debugging!)" assert candidate(1.5, 5, 3.5)==False, "This prints if this assert fails 3 (good for debugging!)" assert candidate(2, 6, 2)==False, "This prints if this assert fails 4 (good for debugging!)" assert candidate(4, 2, 2)==True, "This prints if this assert fails 5 (good for debugging!)" assert candidate(2.2, 2.2, 2.2)==False, "This prints if this assert fails 6 (good for debugging!)" assert candidate(-4, 6, 2)==True, "This prints if this assert fails 7 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate(2,1,1)==True, "This prints if this assert fails 8 (also good for debugging!)" assert candidate(3,4,7)==True, "This prints if this assert fails 9 (also good for debugging!)" assert candidate(3.0,4,7)==False, "This prints if this assert fails 10 (also good for debugging!)"
JHumanEval/93
def encode(message): """ Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TGST' >>> encode('This is a message') 'tHKS KS C MGSSCGG' """
def encode(message): """ メッセージを受け取り、すべての文字の大文字と小文字を入れ替え、 メッセージ中のすべての母音を英語の母音の2つ前に現れる文字に置 き換えるようにエンコードする関数を書きなさい。 文字だけを想定する。 例 >>> encode('test') 'TGST' >>> encode('This is a message') 'tHKS KS C MGSSCGG' """
encode
vowels = "aeiouAEIOU" vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels]) message = message.swapcase() return ''.join([vowels_replace[i] if i in vowels else i for i in message])
def check(candidate): # Check some simple cases assert candidate('TEST') == 'tgst', "This prints if this assert fails 1 (good for debugging!)" assert candidate('Mudasir') == 'mWDCSKR', "This prints if this assert fails 2 (good for debugging!)" assert candidate('YES') == 'ygs', "This prints if this assert fails 3 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate('This is a message') == 'tHKS KS C MGSSCGG', "This prints if this assert fails 2 (also good for debugging!)" assert candidate("I DoNt KnOw WhAt tO WrItE") == 'k dQnT kNqW wHcT Tq wRkTg', "This prints if this assert fails 2 (also good for debugging!)"
JHumanEval/94
def skjkasdkd(lst): """You are given a list of integers. You need to find the largest prime value and return the sum of its digits. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 7 """
def skjkasdkd(lst): """整数のリストが与えらる。 最大の素数を求め、その桁数の和を返す必要がある。 例: lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] のとき、返り値は10 lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]のとき、返り値は 25 lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]のとき、返り値は13 lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6]のとき、返り値は11 lst = [0,81,12,3,1,21]のとき、返り値は3 lst = [0,8,1,2,1,7]のとき、返り値は7 """
skjkasdkd
def isPrime(n): for i in range(2,int(n**0.5)+1): if n%i==0: return False return True maxx = 0 i = 0 while i < len(lst): if(lst[i] > maxx and isPrime(lst[i])): maxx = lst[i] i+=1 result = sum(int(digit) for digit in str(maxx)) return result
def check(candidate): # Check some simple cases assert candidate([0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]) == 10, "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]) == 25, "This prints if this assert fails 2 (also good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]) == 13, "This prints if this assert fails 3 (also good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([0,724,32,71,99,32,6,0,5,91,83,0,5,6]) == 11, "This prints if this assert fails 4 (also good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([0,81,12,3,1,21]) == 3, "This prints if this assert fails 5 (also good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([0,8,1,2,1,7]) == 7, "This prints if this assert fails 6 (also good for debugging!)" assert candidate([8191]) == 19, "This prints if this assert fails 7 (also good for debugging!)" assert candidate([8191, 123456, 127, 7]) == 19, "This prints if this assert fails 8 (also good for debugging!)" assert candidate([127, 97, 8192]) == 10, "This prints if this assert fails 9 (also good for debugging!)"
JHumanEval/95
def check_dict_case(dict): """ Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({"a":"apple", "b":"banana"}) should return True. check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return False. check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return False. check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return False. check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return True. """
def check_dict_case(dict): """ 辞書が与えられたとき、すべてのキーが小文字であればTrueを、 すべてのキーが大文字の文字列であればFalseを返す。 与えられた辞書が空の場合、この関数は False を返す。 例: check_dict_case({"a":"apple", "b":"banana"}) は、 Trueを返す。 check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) は、 Falseを返す。 check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) は、 Falseを返す。 check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) は、 Falseを返す。 check_dict_case({"STATE":"NC", "ZIP":"12345" }) は、 Trueを返す。 """
check_dict_case
if len(dict.keys()) == 0: return False else: state = "start" for key in dict.keys(): if isinstance(key, str) == False: state = "mixed" break if state == "start": if key.isupper(): state = "upper" elif key.islower(): state = "lower" else: break elif (state == "upper" and not key.isupper()) or (state == "lower" and not key.islower()): state = "mixed" break else: break return state == "upper" or state == "lower"
def check(candidate): # Check some simple cases assert candidate({"p":"pineapple", "b":"banana"}) == True, "First test error: " + str(candidate({"p":"pineapple", "b":"banana"})) assert candidate({"p":"pineapple", "A":"banana", "B":"banana"}) == False, "Second test error: " + str(candidate({"p":"pineapple", "A":"banana", "B":"banana"})) assert candidate({"p":"pineapple", 5:"banana", "a":"apple"}) == False, "Third test error: " + str(candidate({"p":"pineapple", 5:"banana", "a":"apple"})) assert candidate({"Name":"John", "Age":"36", "City":"Houston"}) == False, "Fourth test error: " + str(candidate({"Name":"John", "Age":"36", "City":"Houston"})) assert candidate({"STATE":"NC", "ZIP":"12345" }) == True, "Fifth test error: " + str(candidate({"STATE":"NC", "ZIP":"12345" })) assert candidate({"fruit":"Orange", "taste":"Sweet" }) == True, "Fourth test error: " + str(candidate({"fruit":"Orange", "taste":"Sweet" })) # Check some edge cases that are easy to work out by hand. assert candidate({}) == False, "1st edge test error: " + str(candidate({}))
JHumanEval/96
def count_up_to(n): """Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n. for example: count_up_to(5) => [2,3] count_up_to(11) => [2,3,5,7] count_up_to(0) => [] count_up_to(20) => [2,3,5,7,11,13,17,19] count_up_to(1) => [] count_up_to(18) => [2,3,5,7,11,13,17] """
def count_up_to(n): """非負整数を受け取り、素数でnより小さい最初のn個の 整数の配列を返す関数を実装せよ。 例えば: count_up_to(5) => [2,3] count_up_to(11) => [2,3,5,7] count_up_to(0) => [] count_up_to(20) => [2,3,5,7,11,13,17,19] count_up_to(1) => [] count_up_to(18) => [2,3,5,7,11,13,17] """
count_up_to
primes = [] for i in range(2, n): is_prime = True for j in range(2, i): if i % j == 0: is_prime = False break if is_prime: primes.append(i) return primes
def check(candidate): assert candidate(5) == [2,3] assert candidate(6) == [2,3,5] assert candidate(7) == [2,3,5] assert candidate(10) == [2,3,5,7] assert candidate(0) == [] assert candidate(22) == [2,3,5,7,11,13,17,19] assert candidate(1) == [] assert candidate(18) == [2,3,5,7,11,13,17] assert candidate(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43] assert candidate(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
JHumanEval/97
def multiply(a, b): """Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid. Examples: multiply(148, 412) should return 16. multiply(19, 28) should return 72. multiply(2020, 1851) should return 0. multiply(14,-15) should return 20. """
def multiply(a, b): """2つの整数を受け取り、その1の位の数の積を返す関数を完成させよ。 入力は常に有効範囲にあるとする。 例: multiply(148, 412) は16を返す。 multiply(19, 28) は72を返す。 multiply(2020, 1851) は0を返す。 multiply(14,-15) は20を返す。 """
multiply
return abs(a % 10) * abs(b % 10)
def check(candidate): # Check some simple cases assert candidate(148, 412) == 16, "First test error: " + str(candidate(148, 412)) assert candidate(19, 28) == 72, "Second test error: " + str(candidate(19, 28)) assert candidate(2020, 1851) == 0, "Third test error: " + str(candidate(2020, 1851)) assert candidate(14,-15) == 20, "Fourth test error: " + str(candidate(14,-15)) assert candidate(76, 67) == 42, "Fifth test error: " + str(candidate(76, 67)) assert candidate(17, 27) == 49, "Sixth test error: " + str(candidate(17, 27)) # Check some edge cases that are easy to work out by hand. assert candidate(0, 1) == 0, "1st edge test error: " + str(candidate(0, 1)) assert candidate(0, 0) == 0, "2nd edge test error: " + str(candidate(0, 0))
JHumanEval/98
def count_upper(s): """ Given a string s, count the number of uppercase vowels in even indices. For example: count_upper('aBCdEf') returns 1 count_upper('abcdefg') returns 0 count_upper('dBBE') returns 0 """
def count_upper(s): """ 文字列 s が与えられたとき、偶数のインデックスに含まれる大文字の母音の数を数える。 例えば: count_upper('aBCdEf') returns 1 count_upper('abcdefg') returns 0 count_upper('dBBE') returns 0 """
count_upper
count = 0 for i in range(0,len(s),2): if s[i] in "AEIOU": count += 1 return count
def check(candidate): # Check some simple cases assert candidate('aBCdEf') == 1 assert candidate('abcdefg') == 0 assert candidate('dBBE') == 0 assert candidate('B') == 0 assert candidate('U') == 1 assert candidate('') == 0 assert candidate('EEEE') == 2 # Check some edge cases that are easy to work out by hand. assert True
JHumanEval/99
def closest_integer(value): ''' Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> closest_integer("10") 10 >>> closest_integer("15.3") 15 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer("14.5") should return 15 and closest_integer("-14.5") should return -15. '''
def closest_integer(value): """ 数値を表す文字列valueを受け取り、それに最も近い整数を返す関数を作る。 その数値が2つの整数から等距離にある場合は、ゼロから四捨五入する。 例 >>> closest_integer("10") 10 >>> closest_integer("15.3") 15 Note: ゼロからの四捨五入とは、与えられた数値が2つの整数から 等距離にある場合、ゼロから遠い方を返すという意味である。 例えば、 close_integer("14.5")は15を返し、closest_integer("-14.5")は-15を返す。 """
closest_integer
from math import floor, ceil if value.count('.') == 1: # remove trailing zeros while (value[-1] == '0'): value = value[:-1] num = float(value) if value[-2:] == '.5': if num > 0: res = ceil(num) else: res = floor(num) elif len(value) > 0: res = int(round(num)) else: res = 0 return res
def check(candidate): # Check some simple cases assert candidate("10") == 10, "Test 1" assert candidate("14.5") == 15, "Test 2" assert candidate("-15.5") == -16, "Test 3" assert candidate("15.3") == 15, "Test 3" # Check some edge cases that are easy to work out by hand. assert candidate("0") == 0, "Test 0"

Dataset Card for JHumanEval: Japanese Hand-Translated HumanEval

Dataset Summary

This is a Japanese translated version of HumanEval, an evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code".

LLM のコード生成能力の標準ベンチマーク HumanEval の日本語翻訳版です。
機械翻訳(DeepL, GPT-4)の翻訳結果を全て人手によって再修正し、 訳文を日本人のプログラマが読んで理解し、コードが書ける内容かチェックしました。
ただし、英語版 HumanEval の間違いは、修正せずに残して、 HumanEval 同様に不完全なドキュメントからの生成能力を見るようになっています。
日本語LLM のベンチマークとしてお使いください。

Languages

The programming problems are written in Python and contain English and Japanese natural text in comments and docstrings.

Python で書かれたプログラミング問題のデータセットには、英語と日本語のコメントやドキュメント文字列がそれぞれ別々に含まれています。

Dataset Structure

from datasets import load_dataset
load_dataset("kogi-jwu/jhumaneval")

DatasetDict({
    test: Dataset({
        features: ['task_id', 'prompt_en', 'prompt', 'entry_point', 'canonical_solution', 'test'],
        num_rows: 164
    })
})

Data Instances

An example of a dataset instance:

{
    "task_id": "test/0",
    "prompt_en": "def return1():\n    \"\"\"\n    A simple function that returns the integer 1.\n    \"\"\"\n",
    "prompt": "def return1():\n    \"\"\"\n    整数1を返すシンプルな関数。\n    \"\"\"\n",
    "canonical_solution": "    return 1",
    "test": "def check(candidate):\n    assert candidate() == 1",
    "entry_point": "return1"
}

Data Fields

  • task_id : Unique identifier for a task.
  • prompt_en : Function header and English docstrings as model input.
  • prompt : Function header and Japanese docstrings, parallel to prompt_en.
  • canonical_solution : The expected function implementation.
  • test : Function to verify the correctness of generated code.
  • entry_point : Function name to initiate the test.

Data Splits

The dataset only consists of a test split with 164 samples.

How to Use

参照コードで pass@1 を算出する例:

import os
from datasets import load_dataset
from evaluate import load

os.environ["HF_ALLOW_CODE_EVAL"] = "1"

ds = load_dataset("kogi-jwu/jhumaneval")['test']
code_eval = load("code_eval")

candidates = []
test_cases = []

for d in ds:
  # FIXME: 参照コードをそのまま入れているが、予測コードに置き換えるべき
  candidates.append([d['prompt']+d['canonical_solution']])
  # テストケースを実行可能な形式にする
  text_cases.append([d['test']+f"\n\ncheck({d['entry_point']})\n"])

pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1])
print(pass_at_k)

Additional Information

Licensing Information

MIT License

Downloads last month
407