JingjingZhai's picture
Create README.md
5f7d1a5 verified
|
raw
history blame
2.99 kB
metadata
license: apache-2.0

Dataset Overview

The dataset consists of five tasks for cross-species modeling plant genomes at single-nucleotide resolution in plants. These tasks are:

  1. Translation Initiation Site (TIS) Prediction
  2. Translation Termination Site (TTS) Prediction
  3. Splice Donor Site Prediction
  4. Splice Acceptor Site Prediction
  5. Evolutionary Conservation Prediction

Tasks 1-4: Site Predictions

  • Training Dataset: Generated from Arabidopsis chromosomes 1-4
  • Validation Dataset: Generated from Arabidopsis chromosome 5
  • Testing Datasets: Compiled from rice, sorghum, and maize

Task 5: Evolutionary Conservation Prediction

  • Training Dataset: Generated from sorghum chromosomes 1-9
  • Validation Dataset: Generated from sorghum chromosome 10
  • Testing Datasets: Compiled in maize

This datasets facilitate robust cross-species nucleotide annotation.

Dataset sizes

TIS, TTS, Donor, Acceptor

TIS TTS Donor Acceptor
# of positives # of negative # of positives # of negative
Training on Arabidopsis chromosome 1-4 24,711 173,880 25,112 220,452
Validation on Arabidopsis chromosome 5 7,311 50,514 7,461 64,365
Rice test 2,974 1,400,115 2,974 3,718,029
Sorghum test 3,214 3,937,719 3,214 10,445,530
Maize test 3,098 11,265,574 3,098 29,535,973

Evolutionary conservation

# of positives # of negative
Train 429,043 429,043
Validation 19,030 19,030
Test 947,769 976,230

How to use

from datasets import load_dataset
import pandas as pd
repo_id = 'kuleshov-group/cross-species-single-nucleotide-annotation'
tis = load_dataset(repo_id, data_files={'train': 'TIS/train.tsv', 'valid': 'TIS/valid.tsv', 'test_rice':'TIS/test_rice.tsv', 'test_sorghum':'TIS/test_sorghum.tsv', 'test_maize':'TIS/test_maize.tsv'})
tis_train = tis['train']
# convert to pandas dataframe
tis_train_df = tis_train.to_pandas()