Datasets:

Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
Russian
ArXiv:
Libraries:
Datasets
pandas
License:
sberquad / README.md
albertvillanova's picture
Reorder split names (#2)
589aebc
|
raw
history blame
5.11 kB
metadata
pretty_name: SberQuAD
annotations_creators:
  - crowdsourced
language_creators:
  - found
  - crowdsourced
language:
  - ru
license:
  - unknown
multilinguality:
  - monolingual
size_categories:
  - 10K<n<100K
source_datasets:
  - original
task_categories:
  - question-answering
task_ids:
  - extractive-qa
paperswithcode_id: sberquad
dataset_info:
  features:
    - name: id
      dtype: int32
    - name: title
      dtype: string
    - name: context
      dtype: string
    - name: question
      dtype: string
    - name: answers
      sequence:
        - name: text
          dtype: string
        - name: answer_start
          dtype: int32
  config_name: sberquad
  splits:
    - name: train
      num_bytes: 71631661
      num_examples: 45328
    - name: validation
      num_bytes: 7972977
      num_examples: 5036
    - name: test
      num_bytes: 36397848
      num_examples: 23936
  download_size: 66047276
  dataset_size: 116002486

Dataset Card for sberquad

Table of Contents

Dataset Description

Dataset Summary

Sber Question Answering Dataset (SberQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. Russian original analogue presented in Sberbank Data Science Journey 2017.

Supported Tasks and Leaderboards

[Needs More Information]

Languages

Russian

Dataset Structure

Data Instances

{
    "context": "Первые упоминания о строении человеческого тела встречаются в Древнем Египте...",
    "id": 14754,
    "qas": [
        {
            "id": 60544,
            "question": "Где встречаются первые упоминания о строении человеческого тела?",
            "answers": [{"answer_start": 60, "text": "в Древнем Египте"}],
        }
    ]
}

Data Fields

  • id: a int32 feature
  • title: a string feature
  • context: a string feature
  • question: a string feature
  • answers: a dictionary feature containing:
    • text: a string feature
    • answer_start: a int32 feature

Data Splits

name train validation test
plain_text 45328 5036 23936

Dataset Creation

Curation Rationale

[Needs More Information]

Source Data

Initial Data Collection and Normalization

[Needs More Information]

Who are the source language producers?

[Needs More Information]

Annotations

Annotation process

[Needs More Information]

Who are the annotators?

[Needs More Information]

Personal and Sensitive Information

[Needs More Information]

Considerations for Using the Data

Social Impact of Dataset

[Needs More Information]

Discussion of Biases

[Needs More Information]

Other Known Limitations

[Needs More Information]

Additional Information

Dataset Curators

[Needs More Information]

Licensing Information

[Needs More Information]

Citation Information

@article{DBLP:journals/corr/abs-1912-09723,
  author    = {Pavel Efimov and
               Leonid Boytsov and
               Pavel Braslavski},
  title     = {SberQuAD - Russian Reading Comprehension Dataset: Description and
               Analysis},
  journal   = {CoRR},
  volume    = {abs/1912.09723},
  year      = {2019},
  url       = {http://arxiv.org/abs/1912.09723},
  eprinttype = {arXiv},
  eprint    = {1912.09723},
  timestamp = {Fri, 03 Jan 2020 16:10:45 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1912-09723.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Contributions

Thanks to @alenusch for adding this dataset.