cszs_fr_en / README.md
zenyn's picture
Update README.md
9d37343 verified
metadata
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: dev
        path: data/dev-*
      - split: test
        path: data/test-*
dataset_info:
  features:
    - name: correct_audio
      dtype:
        audio:
          sampling_rate: 16000
    - name: correct_transcription
      dtype: string
    - name: correct_file
      dtype: string
    - name: wrong_audio
      dtype:
        audio:
          sampling_rate: 16000
    - name: wrong_transcription
      dtype: string
    - name: wrong_file
      dtype: string
  splits:
    - name: train
      num_bytes: 25161014072.682
      num_examples: 105241
    - name: dev
      num_bytes: 3494489553.808
      num_examples: 14244
    - name: test
      num_bytes: 3315850038.204
      num_examples: 14081
  download_size: 31574494786
  dataset_size: 31971353664.693996
license: mit
language:
  - fr
  - en

This dataset contains the French-English track of the benchmark from ICASSP 2024: Zero Resource Code-Switched Speech Benchmark Using Speech Utterance Pairs for Multiple Spoken Languages.
Though the benchmark is originally designed to assess the semantic and syntactic abilities of the speech foundation models, you can also use this dataset for code-switching ASR.

If you find this dataset helpful, please consider to cite the following paper:

@INPROCEEDINGS{10446737,
  author={Huang, Kuan-Po and Yang, Chih-Kai and Fu, Yu-Kuan and Dunbar, Ewan and Lee, Hung-Yi},
  booktitle={ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, 
  title={Zero Resource Code-Switched Speech Benchmark Using Speech Utterance Pairs for Multiple Spoken Languages}, 
  year={2024},
  volume={},
  number={},
  pages={10006-10010},
  keywords={Speech coding;Benchmark testing;Signal processing;Linguistics;Acoustics;Speech processing;Task analysis;Code-switch;Multilingual;Discrete unit;Zero resource;Self-supervised},
  doi={10.1109/ICASSP48485.2024.10446737}}