Host data files

#4
by albertvillanova HF staff - opened
data/raw_jeopardy/000000-029999.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f53a2b34a3fd6ea47e3f457ceed64be20526b999ae0e95492f36006249aecc1
3
+ size 534274946
data/raw_jeopardy/030000-49999.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:761ae95f7b8c8e430c87967e58b7f73ad028038dab74faf4186089b8624df541
3
+ size 201603716
data/raw_jeopardy/050000-059999.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab81d6faf08788bbeedd9d42a516f1b9f3b3b38494da0296e02187bbe1f6e24b
3
+ size 185783076
data/raw_jeopardy/060000-089999.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8d48fe96f1e2b98178d029226f45bdc0f4747cd42cf0d174040557df6a35873
3
+ size 560579675
data/raw_jeopardy/090000-119999.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:873a7c5c9c2be3f884fe37fa75da0564cfbe15ea9d98ec3d24110266e1dbf5e3
3
+ size 554781032
data/raw_jeopardy/120000-149999.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:743e66a962c0696b3cd2cd789bd2d08bbabdf0c3c25d69d3bef458689bf6a947
3
+ size 304790927
data/raw_jeopardy/150000-179999.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e31e02e52e1da262bd4e37564cb5ea5df08b1d7c14510ee4e2a998949f1e5e7d
3
+ size 305338965
data/raw_jeopardy/180000-216929.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb1c5d9b1e1e9c2521c98759b39b6c49b51de8ace5b2d87e20435ff1cd7ff861
3
+ size 662352076
data/train_test_val/test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab7e0222eff6420c3c378d97c15dc9d1d657abac34c5d1660dd38a5d075dab1c
3
+ size 621941314
data/train_test_val/train.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b63af0c0dfe66b26e98ff3c3407b087efce96ecabeb510e8dd86d60cddf4aac4
3
+ size 2233758217
data/train_test_val/val.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d219bad6ba199e9a2d244b2c7ea5b79638d05f4c0ae786e6c53bd3ee282d238c
3
+ size 314027537
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"raw_jeopardy": {"description": "\n# pylint: disable=line-too-long\nWe publicly release a new large-scale dataset, called SearchQA, for machine comprehension, or question-answering. Unlike recently released datasets, such as DeepMind \nCNN/DailyMail and SQuAD, the proposed SearchQA was constructed to reflect a full pipeline of general question-answering. That is, we start not from an existing article \nand generate a question-answer pair, but start from an existing question-answer pair, crawled from J! Archive, and augment it with text snippets retrieved by Google. \nFollowing this approach, we built SearchQA, which consists of more than 140k question-answer pairs with each pair having 49.6 snippets on average. Each question-answer-context\n tuple of the SearchQA comes with additional meta-data such as the snippet's URL, which we believe will be valuable resources for future research. We conduct human evaluation \n as well as test two baseline methods, one simple word selection and the other deep learning based, on the SearchQA. We show that there is a meaningful gap between the human \n and machine performances. This suggests that the proposed dataset could well serve as a benchmark for question-answering.\n\n", "citation": "\n @article{DBLP:journals/corr/DunnSHGCC17,\n author = {Matthew Dunn and\n Levent Sagun and\n Mike Higgins and\n V. Ugur G{\"{u}}ney and\n Volkan Cirik and\n Kyunghyun Cho},\n title = {SearchQA: {A} New Q{\\&}A Dataset Augmented with Context from a\n Search Engine},\n journal = {CoRR},\n volume = {abs/1704.05179},\n year = {2017},\n url = {http://arxiv.org/abs/1704.05179},\n archivePrefix = {arXiv},\n eprint = {1704.05179},\n timestamp = {Mon, 13 Aug 2018 16:47:09 +0200},\n biburl = {https://dblp.org/rec/journals/corr/DunnSHGCC17.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n }\n\n", "homepage": "https://github.com/nyu-dl/dl4ir-searchQA", "license": "", "features": {"category": {"dtype": "string", "id": null, "_type": "Value"}, "air_date": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "value": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "round": {"dtype": "string", "id": null, "_type": "Value"}, "show_number": {"dtype": "int32", "id": null, "_type": "Value"}, "search_results": {"feature": {"urls": {"dtype": "string", "id": null, "_type": "Value"}, "snippets": {"dtype": "string", "id": null, "_type": "Value"}, "titles": {"dtype": "string", "id": null, "_type": "Value"}, "related_links": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "search_qa", "config_name": "raw_jeopardy", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 7770972348, "num_examples": 216757, "dataset_name": "search_qa"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1U7WdBpd9kJ85S7BbBhWUSiy9NnXrKdO6": {"num_bytes": 3314386157, "checksum": "daaf1ddbb0c34c49832f6c8c26c9d59222085d45c7740425ccad9e38a9232cb4"}}, "download_size": 3314386157, "dataset_size": 7770972348, "size_in_bytes": 11085358505}, "train_test_val": {"description": "\n# pylint: disable=line-too-long\nWe publicly release a new large-scale dataset, called SearchQA, for machine comprehension, or question-answering. Unlike recently released datasets, such as DeepMind \nCNN/DailyMail and SQuAD, the proposed SearchQA was constructed to reflect a full pipeline of general question-answering. That is, we start not from an existing article \nand generate a question-answer pair, but start from an existing question-answer pair, crawled from J! Archive, and augment it with text snippets retrieved by Google. \nFollowing this approach, we built SearchQA, which consists of more than 140k question-answer pairs with each pair having 49.6 snippets on average. Each question-answer-context\n tuple of the SearchQA comes with additional meta-data such as the snippet's URL, which we believe will be valuable resources for future research. We conduct human evaluation \n as well as test two baseline methods, one simple word selection and the other deep learning based, on the SearchQA. We show that there is a meaningful gap between the human \n and machine performances. This suggests that the proposed dataset could well serve as a benchmark for question-answering.\n\n", "citation": "\n @article{DBLP:journals/corr/DunnSHGCC17,\n author = {Matthew Dunn and\n Levent Sagun and\n Mike Higgins and\n V. Ugur G{\"{u}}ney and\n Volkan Cirik and\n Kyunghyun Cho},\n title = {SearchQA: {A} New Q{\\&}A Dataset Augmented with Context from a\n Search Engine},\n journal = {CoRR},\n volume = {abs/1704.05179},\n year = {2017},\n url = {http://arxiv.org/abs/1704.05179},\n archivePrefix = {arXiv},\n eprint = {1704.05179},\n timestamp = {Mon, 13 Aug 2018 16:47:09 +0200},\n biburl = {https://dblp.org/rec/journals/corr/DunnSHGCC17.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n }\n\n", "homepage": "https://github.com/nyu-dl/dl4ir-searchQA", "license": "", "features": {"category": {"dtype": "string", "id": null, "_type": "Value"}, "air_date": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "value": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "round": {"dtype": "string", "id": null, "_type": "Value"}, "show_number": {"dtype": "int32", "id": null, "_type": "Value"}, "search_results": {"feature": {"urls": {"dtype": "string", "id": null, "_type": "Value"}, "snippets": {"dtype": "string", "id": null, "_type": "Value"}, "titles": {"dtype": "string", "id": null, "_type": "Value"}, "related_links": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "search_qa", "config_name": "train_test_val", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5303005740, "num_examples": 151295, "dataset_name": "search_qa"}, "test": {"name": "test", "num_bytes": 1466749978, "num_examples": 43228, "dataset_name": "search_qa"}, "validation": {"name": "validation", "num_bytes": 740962715, "num_examples": 21613, "dataset_name": "search_qa"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=1aHPVfC5TrlnUjehtagVZoDfq4VccgaNT": {"num_bytes": 3148550732, "checksum": "1f547df8b00e919ba692ca8c133462d358a89ee6b15a8c65c40efe006ed6c4eb"}}, "download_size": 3148550732, "dataset_size": 7510718433, "size_in_bytes": 10659269165}}
 
 
search_qa.py CHANGED
@@ -14,11 +14,10 @@
14
  # limitations under the License.
15
 
16
  # Lint as: python3
17
- """SEMPRE dataset."""
18
-
19
 
 
20
  import json
21
- import os
22
 
23
  import datasets
24
 
@@ -57,8 +56,21 @@ Following this approach, we built SearchQA, which consists of more than 140k que
57
  """
58
 
59
  _DL_URLS = {
60
- "raw_jeopardy": "https://drive.google.com/uc?export=download&id=1U7WdBpd9kJ85S7BbBhWUSiy9NnXrKdO6",
61
- "train_test_val": "https://drive.google.com/uc?export=download&id=1aHPVfC5TrlnUjehtagVZoDfq4VccgaNT",
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  }
63
  # pylint: enable=line-too-long
64
 
@@ -110,59 +122,22 @@ class SearchQa(datasets.GeneratorBasedBuilder):
110
 
111
  def _split_generators(self, dl_manager):
112
  """Returns SplitGenerators."""
113
- # TODO(jeopardy): Downloads the data and defines the splits
114
- # dl_manager is a datasets.download.DownloadManager that can be used to
115
- # download and extract URLs
116
-
117
  if self.config.name == "raw_jeopardy":
118
- filepath = dl_manager.download_and_extract(_DL_URLS["raw_jeopardy"])
119
- sub_folders = sorted(os.listdir(os.path.join(filepath, "jeopardy")))
120
- all_files = []
121
- for zip_folder in sub_folders:
122
- if "lock" in zip_folder:
123
- continue
124
- zip_folder_path = os.path.join(filepath, "jeopardy", zip_folder)
125
- file_path = dl_manager.extract(zip_folder_path)
126
- zip_folder = zip_folder.split(".")[0]
127
- if os.path.isdir(os.path.join(file_path, zip_folder)):
128
- file_path = os.path.join(file_path, zip_folder)
129
-
130
- else:
131
- # in some cases the subfolder name contains sapces as 050000 - 059999 and 050000-059999
132
- parts = zip_folder.split("-")
133
- zip_folder = parts[0] + " - " + parts[1]
134
- if os.path.isdir(os.path.join(file_path, zip_folder)):
135
- file_path = os.path.join(file_path, zip_folder)
136
-
137
- files = sorted(os.listdir(file_path))
138
-
139
- files_paths = [os.path.join(file_path, file) for file in files if "__MACOSX" not in file]
140
- all_files.extend(files_paths)
141
-
142
  return [
143
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": all_files}),
144
  ]
145
  elif self.config.name == "train_test_val":
146
- filepath = dl_manager.download_and_extract(_DL_URLS["train_test_val"])
147
- train_path = dl_manager.extract(os.path.join(filepath, "data_json", "train.zip"))
148
- test_path = dl_manager.extract(os.path.join(filepath, "data_json", "test.zip"))
149
- val_path = dl_manager.extract(os.path.join(filepath, "data_json", "val.zip"))
150
-
151
- train_files = [os.path.join(train_path, file) for file in sorted(os.listdir(train_path))]
152
- test_files = [os.path.join(test_path, file) for file in sorted(os.listdir(test_path))]
153
- val_files = [os.path.join(val_path, file) for file in sorted(os.listdir(val_path))]
154
  return [
155
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_files}),
156
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepaths": test_files}),
157
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": val_files}),
158
  ]
159
 
160
  def _generate_examples(self, filepaths):
161
  """Yields examples."""
162
- # TODO(searchQa): Yields (key, example) tuples from the dataset
163
  for i, filepath in enumerate(filepaths):
164
  with open(filepath, encoding="utf-8") as f:
165
-
166
  data = json.load(f)
167
  category = data["category"]
168
  air_date = data["air_date"]
 
14
  # limitations under the License.
15
 
16
  # Lint as: python3
17
+ """SearchQA dataset."""
 
18
 
19
+ import itertools
20
  import json
 
21
 
22
  import datasets
23
 
 
56
  """
57
 
58
  _DL_URLS = {
59
+ "raw_jeopardy": [
60
+ "data/raw_jeopardy/000000-029999.zip",
61
+ "data/raw_jeopardy/030000-49999.zip",
62
+ "data/raw_jeopardy/050000-059999.zip",
63
+ "data/raw_jeopardy/060000-089999.zip",
64
+ "data/raw_jeopardy/090000-119999.zip",
65
+ "data/raw_jeopardy/120000-149999.zip",
66
+ "data/raw_jeopardy/150000-179999.zip",
67
+ "data/raw_jeopardy/180000-216929.zip",
68
+ ],
69
+ "train_test_val": {
70
+ "train": "data/train_test_val/train.zip",
71
+ "test": "data/train_test_val/test.zip",
72
+ "validation": "data/train_test_val/val.zip",
73
+ },
74
  }
75
  # pylint: enable=line-too-long
76
 
 
122
 
123
  def _split_generators(self, dl_manager):
124
  """Returns SplitGenerators."""
125
+ data_dirs = dl_manager.download_and_extract(_DL_URLS[self.config.name])
 
 
 
126
  if self.config.name == "raw_jeopardy":
127
+ filepaths = itertools.chain.from_iterable(dl_manager.iter_files(data_dir) for data_dir in data_dirs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  return [
129
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": filepaths}),
130
  ]
131
  elif self.config.name == "train_test_val":
 
 
 
 
 
 
 
 
132
  return [
133
+ datasets.SplitGenerator(name=split, gen_kwargs={"filepaths": dl_manager.iter_files(data_dirs[split])})
134
+ for split in (datasets.Split.TRAIN, datasets.Split.TEST, datasets.Split.VALIDATION)
 
135
  ]
136
 
137
  def _generate_examples(self, filepaths):
138
  """Yields examples."""
 
139
  for i, filepath in enumerate(filepaths):
140
  with open(filepath, encoding="utf-8") as f:
 
141
  data = json.load(f)
142
  category = data["category"]
143
  air_date = data["air_date"]