datasetId
stringlengths
5
121
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
2.59M
likes
int64
0
6.32k
tags
sequencelengths
1
7.92k
task_categories
sequencelengths
0
40
createdAt
unknown
card
stringlengths
19
1.01M
neoneye/simon-arc-solve-rotate-v12
neoneye
"2024-11-21T22:31:10Z"
0
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-21T22:29:55Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve rotate version 12 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the image gets rotated cw/ccw/180 and transposed. The image sizes are between 1 and 4 pixels. Predict the number of rows in the output image. # Version 2 image size: 1-5. # Version 3 image size: 1-5. Added `flipx` and `flipy` transformations. # Version 4 image size: 1-5. number of tests: 1-2. Previously there were always just 1 test. Added `flipa` and `flipb` transformations, that flips over the diagonal. # Version 5 image size: 1-5. number of tests: 1-2. # Version 6 image size: 1-13. # Version 7 Earlier predictions added to some of the rows. # Version 8 Earlier predictions with focus on repair 1 bad pixel. # Version 9 Added fields: `arc_task`, `test_index`, `earlier_output`. # Version 10 Replaced RLE compressed response with raw pixel response. # Version 11 image size: 1-16. # Version 12 I think the image sizes was too big for the model to make sense of the data. Trying with smaller images. image size: 1-5.
liuyanchen1015/Llama-3.2-1B_jailbroken_responses_all
liuyanchen1015
"2024-11-21T22:30:20Z"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T22:30:19Z"
--- dataset_info: features: - name: prompt_name dtype: string - name: jailbreak_prompt_name dtype: string - name: jailbreak_prompt_text dtype: string - name: original_prompt_text dtype: string - name: response dtype: string splits: - name: train num_bytes: 30035209 num_examples: 9888 download_size: 5010265 dataset_size: 30035209 configs: - config_name: default data_files: - split: train path: data/train-* ---
nitaibezerra/govbrnews
nitaibezerra
"2024-11-21T23:24:01Z"
0
0
[ "license:agpl-3.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T22:38:24Z"
--- license: agpl-3.0 dataset_info: features: - name: unique_id dtype: string - name: agency dtype: string - name: published_at dtype: date32 - name: title dtype: string - name: url dtype: string - name: category dtype: string - name: tags sequence: string - name: content dtype: string - name: extracted_at dtype: timestamp[us] splits: - name: train num_bytes: 103687847 num_examples: 28704 download_size: 52139131 dataset_size: 103687847 configs: - config_name: default data_files: - split: train path: data/train-* ---
Asap7772/code_contests_codegemma_passk-part1-of-1_graded
Asap7772
"2024-11-21T22:38:30Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T22:38:26Z"
--- dataset_info: features: - name: timeout dtype: float64 - name: test_cases struct: - name: input sequence: string - name: output sequence: string - name: solutions sequence: string - name: name dtype: string - name: is_corrects sequence: bool splits: - name: train num_bytes: 37056176 num_examples: 102 download_size: 10725719 dataset_size: 37056176 configs: - config_name: default data_files: - split: train path: data/train-* ---
Tippawan/Finetune-mt-story-telling-221124
Tippawan
"2024-11-21T22:45:33Z"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T22:45:32Z"
--- dataset_info: features: - name: en dtype: string - name: th dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 719000 num_examples: 5629 - name: test num_bytes: 145238 num_examples: 1126 - name: validation num_bytes: 145163 num_examples: 1126 download_size: 577598 dataset_size: 1009401 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
huggingface/my-distiset-838c6e9d
huggingface
"2024-11-21T22:47:27Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
null
"2024-11-21T22:47:24Z"
--- size_categories: n<1K dataset_info: features: - name: system_prompt dtype: string - name: prompt dtype: string - name: completion dtype: string splits: - name: train num_bytes: 3955 num_examples: 1 download_size: 19437 dataset_size: 3955 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for my-distiset-838c6e9d This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/huggingface/my-distiset-838c6e9d/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/huggingface/my-distiset-838c6e9d/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "completion": "SEAL Team 6, also known as DEVGRU (Development Group) or Task Force Blue, is the United States Navy\u0027s most elite special operations force. They are a special operations force of the Naval Special Warfare Command (NSWC) and are responsible for conducting a variety of missions, including counterterrorism, direct action, special reconnaissance, high-risk arrests, and other operations that require specialized expertise and skill.\n\nHere\u0027s an overview of how SEAL Team 6 operates and their situation in today\u0027s military:\n\n**Organization and Structure:**\n\nSEAL Team 6 is a part of the Naval Special Warfare Command (NSWC), which is headquartered at Naval Base Coronado in California. The team is divided into several units, including:\n\n* 1st Commanding Officer (XO): responsible for commanding the team\n* 1st Sergeant (1stSGT): responsible for leading the team\u0027s operations\n* Platoon Leaders (PLs): responsible for leading individual platoons\n* Team Leaders (TLs): responsible for leading individual teams within a platoon\n* SEALs (Special Warfare Operators): the individual operators who make up the team\n\n**Training and Selection:**\n\nSEAL Team 6 operators undergo an extremely challenging selection process, known as STS (SEAL Training Command). This process includes:\n\n* Basic Underwater Demolition/SEAL (BUD/S) training: a 24-week course that includes physical conditioning, combat training, and swimming and diving.\n* Advanced training: a 26-week course that includes advanced combat skills, language training, and medical training.\n* Qualification Training: a 7-week course that includes specialized skills training, such as parachuting, helicopter operations, and advanced marksmanship.\n\n**Operations:**\n\nSEAL Team 6 conducts a variety of operations, including:\n\n* Counterterrorism: SEALS are trained to conduct high-risk missions to neutralize or capture high-value targets, such as terrorist leaders or high-priority personnel.\n* Direct action: SEALS conduct raids, ambushes, and other operations to disrupt or destroy enemy forces or infrastructure.\n* Special reconnaissance: SEALS conduct reconnaissance missions to gather intelligence, identify targets, and prepare for future operations.\n* High-risk arrests: SEALS conduct operations to apprehend high-priority targets, such as terrorists or fugitives.\n\n**Situation in Today\u0027s Military:**\n\nSEAL Team 6 continues to operate in various parts of the world, conducting a range of missions to support national security objectives. Some of the current operations of SEAL Team 6 include:\n\n* Counterterrorism: SEAL Team 6 continues to conduct counterterrorism operations against terrorist organizations, such as ISIS and Al-Qaeda.\n* Irregular warfare: SEALS conduct operations against non-state actors and irregular forces, such as insurgent groups and militias.\n* Direct action: SEALs continue to conduct direct action missions to neutralize or capture high-value targets.\n* Special reconnaissance: SEALS conduct reconnaissance missions to support future operations and gather intelligence on enemy forces.\n\nIn terms of their organization, SEAL Team 6 has undergone significant changes in recent years, including:\n\n* Reorganization: In 2020, the Naval Special Warfare Command (NSWC) underwent a major reorganization, including the establishment of a new unit, the Naval Special Warfare Command (NSWC) Special Operations Command (NSWCOM).\n* Modernization: SEALS have been equipped with new technologies, including advanced night vision goggles, drones, and body armor.\n* Integration: SEALS continue to integrate with other special operations forces, such as the Army\u0027s Delta Force and the Air Force\u0027s 24th Special Tactics Squadron.\n\nOverall, SEAL Team 6 remains a highly trained and effective special operations force, conducting a range of high-risk missions to support national security objectives.", "prompt": "How does SEAL Team 6 meet with operations? What is there situation in today\u0027s military? \n\n", "system_prompt": "" } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("huggingface/my-distiset-838c6e9d", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("huggingface/my-distiset-838c6e9d") ``` </details>
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_33
ZixuanKe
"2024-11-21T22:48:35Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T22:48:33Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 208604 num_examples: 41 download_size: 34372 dataset_size: 208604 configs: - config_name: default data_files: - split: train path: data/train-* ---
huggingface/my-distiset-555f6edc
huggingface
"2024-11-21T22:50:05Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
null
"2024-11-21T22:50:02Z"
--- size_categories: n<1K dataset_info: features: - name: system_prompt dtype: string - name: prompt dtype: string - name: completion dtype: string splits: - name: train num_bytes: 2521 num_examples: 1 download_size: 13149 dataset_size: 2521 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for my-distiset-555f6edc This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/huggingface/my-distiset-555f6edc/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/huggingface/my-distiset-555f6edc/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "completion": "To create a comprehensive dataset for a personal finance app, I recommend including the following essential data fields:\n\n1. **User Information**:\n * User ID (unique identifier)\n * User name\n * Email address\n * Password (hashed for security)\n * Date of birth\n2. **Financial Accounts**:\n * Account type (checking, savings, credit card, loan, investment, etc.)\n * Account number (masked for security)\n * Account balance (updated periodically)\n * Interest rate (if applicable)\n * Minimum payment (if applicable)\n3. **Transactions**:\n * Transaction ID (unique identifier)\n * Date\n * Description\n * Category (income, expense, transfer, etc.)\n * Type (deposit, withdrawal, payment, etc.)\n * Amount\n * Currency\n4. **Income**:\n * Income source (job, investment, etc.)\n * Income amount\n * Frequency (monthly, bi-weekly, etc.)\n * Start date\n5. **Expenses**:\n * Expense category (housing, food, transportation, etc.)\n * Expense amount\n * Frequency (monthly, bi-weekly, etc.)\n * Due date\n6. **Budgeting**:\n * Budget category (income, expenses, savings, debt repayment, etc.)\n * Budget amount\n * Target percentage\n7. **Debt**:\n * Debt type (credit card, loan, etc.)\n * Balance\n * Interest rate\n * Minimum payment\n * Due date\n8. **Savings**:\n * Savings goal (emergency fund, retirement, etc.)\n * Target amount\n * Current savings amount\n * Progress percentage\n9. **Notifications**:\n * Notification type (expense alert, payment due, etc.)\n * Trigger date\n * Description\n10. **Settings**:\n * Currency\n * Currency symbol\n * Language\n * Unit of measurement (e.g., pounds, dollars, etc.)", "prompt": "I\u0027d like to create a dataset for a personal finance app to help users manage their budget and expenses. What are the essential data fields I should include? \n\n", "system_prompt": "You are an AI assistant responsible for building comprehensive datasets for various purposes. Your purpose is to assist users in designing and generating datasets that accurately reflect their requirements, needs, and objectives. Offer clear guidance on dataset creation, provide suggestions for relevant data points, and ensure the dataset is well-structured, organized, and scalable. Assist users in ensuring data quality, relevance, and consistency while anticipating potential data requirements and maintenance. User questions are direct and concise." } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("huggingface/my-distiset-555f6edc", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("huggingface/my-distiset-555f6edc") ``` </details>
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_34
ZixuanKe
"2024-11-21T22:50:26Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T22:50:25Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 59231 num_examples: 12 download_size: 12012 dataset_size: 59231 configs: - config_name: default data_files: - split: train path: data/train-* ---
Tippawan/Finetune-mt-story-telling-221124-messages
Tippawan
"2024-11-21T22:51:05Z"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T22:51:04Z"
--- dataset_info: features: - name: en dtype: string - name: th dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 719000 num_examples: 5629 - name: test num_bytes: 145238 num_examples: 1126 - name: validation num_bytes: 145163 num_examples: 1126 download_size: 577598 dataset_size: 1009401 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
WARSO46/ForgetRetainBooks
WARSO46
"2024-11-22T00:29:08Z"
0
0
[ "language:en", "license:mit", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us" ]
null
"2024-11-21T22:55:31Z"
--- license: mit language: - en --- # ForgetRetainBooks This dataset is derived from the NarrativeQA dataset, created by Kocisky et al. (2018). NarrativeQA is a dataset for evaluating reading comprehension and narrative understanding. This dataset is an extraction of the book content from the original NarrativeQA dataset. ## Citation If you want to use this dataset, please also cite the original NarrativeQA dataset. ```Bibtex @article{narrativeqa, author = {Tom\'a\v s Ko\v cisk\'y and Jonathan Schwarz and Phil Blunsom and Chris Dyer and Karl Moritz Hermann and G\'abor Melis and Edward Grefenstette}, title = {The {NarrativeQA} Reading Comprehension Challenge}, journal = {Transactions of the Association for Computational Linguistics}, url = {https://TBD}, volume = {TBD}, year = {2018}, pages = {TBD}, } ```
Tippawan/Finetune-mt-story-telling-221124-messages2
Tippawan
"2024-11-21T23:04:09Z"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T23:04:09Z"
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 1090514 num_examples: 5629 download_size: 370384 dataset_size: 1090514 configs: - config_name: default data_files: - split: train path: data/train-* ---
DiegoP-S/DatasetSynthesis
DiegoP-S
"2024-11-22T01:16:08Z"
0
0
[ "license:apache-2.0", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T23:05:45Z"
--- license: apache-2.0 configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: file_name dtype: 'null' - name: image dtype: 'null' splits: - name: train num_bytes: 0 num_examples: 0 download_size: 749 dataset_size: 0 ---
fatlonder/i24
fatlonder
"2024-11-22T01:25:33Z"
0
0
[ "license:other", "region:us" ]
null
"2024-11-21T23:08:22Z"
--- license: other license_name: i24 license_link: LICENSE --- Data use agreement By acquiring and using the I-24 MOTION data, you agree to the following data use agreement (updated 19 September 2023). You are free to use the data in academic and commercial work. The dataset contains anonymous trajectories. Any activities to re-identify individuals in the dataset or activities that may cause harm to individuals in the dataset are prohibited. When you use I-24 MOTION data in published academic work, you are required to include the following citation contents. This allows us to aggregate statistics on the data use in publications: Gloudemans, D., Wang, Y., Ji, J., Zachar, G., Barbour, W., Hall, E., Cebelak, M., Smith, L. and Work, D.B., 2023. I-24 MOTION: An instrument for freeway traffic science. Transportation Research Part C: Emerging Technologies, 155, p.104311. The bibtex version of the reference is: @article{gloudemans202324, title={I-24 MOTION: An instrument for freeway traffic science}, author={Gloudemans, Derek and Wang, Yanbing and Ji, Junyi and Zachar, Gergely and Barbour, William and Hall, Eric and Cebelak, Meredith and Smith, Lee and Work, Daniel B}, journal={Transportation Research Part C: Emerging Technologies}, volume={155}, pages={104311}, year={2023}, publisher={Elsevier} } You are free to create and share derivative products as long as you maintain the terms above. The data is provided “As is.” We make no other warranties, express or implied, and hereby disclaim all implied warranties, including any warranty of merchantability and warranty of fitness for a particular purpose.
neoneye/simon-arc-solve-scale-v9
neoneye
"2024-11-21T23:16:54Z"
0
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-21T23:14:58Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve scale version 9 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the images gets scaled up/down in both x and y direction. example count: 2-4. test count: 1-2. image size: 3-10. scale factor: 1-3. # Version 2 image size: 1-20. scale factor: 1-7. # Version 3 image size: 1-30. scale factor: 1-7. # Version 4 Added a few noise to the images. image size: 1-10. scale factor: 1-7. Only scale down. Number of noise pixels per pixel cell: 0-2. # Version 5 More noisy images for down scaling. image size: 1-12. Number of noise pixels per pixel cell: 0-half. # Version 6 Earlier predictions added to some of the rows. # Version 7 Added fields: `arc_task`, `test_index`, `earlier_output`. # Version 8 Replaced RLE compressed response with raw pixel response. image size: 1-5. scale factor: 1-7. # Version 9 image size: 1-7. scale factor: 1-3.
LiveTaro/parler-litagin-dataset-split-normalized-renamed-desc
LiveTaro
"2024-11-21T23:18:41Z"
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T23:18:37Z"
--- dataset_info: features: - name: id dtype: string - name: text_original dtype: string - name: gender dtype: string - name: text dtype: string - name: utterance_pitch_mean dtype: float32 - name: utterance_pitch_std dtype: float32 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: float64 - name: phonemes dtype: string - name: stoi dtype: float64 - name: si-sdr dtype: float64 - name: pesq dtype: float64 splits: - name: train num_bytes: 84886568 num_examples: 244609 download_size: 56011007 dataset_size: 84886568 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettaphd/D_gen5_run0_llama2-7b_wiki_doc1000_real32_synt96
dgambettaphd
"2024-11-21T23:21:27Z"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T23:21:24Z"
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 523777 num_examples: 1000 download_size: 288170 dataset_size: 523777 configs: - config_name: default data_files: - split: train path: data/train-* ---
neoneye/simon-arc-solve-skew-v5
neoneye
"2024-11-21T23:33:46Z"
0
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-21T23:32:47Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve skew version 5 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the job is to apply skew/unkew in the directions up/down/left/right. example count: 2-4. test count: 1-2. image size: 1-4. # Version 2 image size: 1-7. # Version 3 Earlier predictions added to some of the rows. # Version 4 Added fields: `arc_task`, `test_index`, `earlier_output`. # Version 5 Replaced RLE compressed response with raw pixel response.
adipanda/anime-characters-3M
adipanda
"2024-11-21T23:36:23Z"
0
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T23:35:35Z"
--- dataset_info: features: - name: filename dtype: string - name: tags dtype: string - name: bangumi_name dtype: string - name: has_face dtype: bool - name: face_count dtype: int64 - name: face_x0 dtype: float64 - name: face_y0 dtype: float64 - name: face_x1 dtype: float64 - name: face_y1 dtype: float64 - name: face_width dtype: float64 - name: face_height dtype: float64 - name: face_max dtype: float64 - name: face_min dtype: float64 - name: face_area dtype: float64 - name: face_max_ratio dtype: float64 - name: face_min_ratio dtype: float64 - name: face_width_ratio dtype: float64 - name: face_height_ratio dtype: float64 - name: face_area_ratio dtype: float64 - name: image_url dtype: string splits: - name: train num_bytes: 1149205732 num_examples: 2947126 download_size: 367004538 dataset_size: 1149205732 configs: - config_name: default data_files: - split: train path: data/train-* ---
MattMcG/HookerHTRTest
MattMcG
"2024-11-22T00:26:36Z"
0
0
[ "license:mit", "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T23:44:34Z"
--- license: mit configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 260242215.0 num_examples: 263 - name: test num_bytes: 65736026.0 num_examples: 66 download_size: 324566842 dataset_size: 325978241.0 ---
open-llm-leaderboard/FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit-details
open-llm-leaderboard
"2024-11-22T00:32:39Z"
0
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T23:44:41Z"
--- pretty_name: Evaluation run of FlofloB/test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [FlofloB/test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit](https://huggingface.co/FlofloB/test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit-details\"\ ,\n\tname=\"FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-11-22T00-23-19.646165](https://huggingface.co/datasets/open-llm-leaderboard/FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit-details/blob/main/FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit/results_2024-11-22T00-23-19.646165.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"prompt_level_loose_acc,none\": 0.4879852125693161,\n \"\ prompt_level_loose_acc_stderr,none\": 0.02151036119343917,\n \"inst_level_loose_acc,none\"\ : 0.60431654676259,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n\ \ \"acc,none\": 0.3720910904255319,\n \"acc_stderr,none\"\ : 0.004406787358080629,\n \"prompt_level_strict_acc,none\": 0.46395563770794823,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.02146059282373674,\n \ \ \"inst_level_strict_acc,none\": 0.579136690647482,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"exact_match,none\": 0.10876132930513595,\n \ \ \"exact_match_stderr,none\": 0.00819586222508565,\n \"acc_norm,none\"\ : 0.48112595667401736,\n \"acc_norm_stderr,none\": 0.005323368568863841,\n\ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.5238673841346988,\n \"acc_norm_stderr,none\"\ : 0.006146238124194547,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.816,\n\ \ \"acc_norm_stderr,none\": 0.02455581299422255\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5828877005347594,\n \"acc_norm_stderr,none\"\ : 0.0361545093114083\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.748,\n\ \ \"acc_norm_stderr,none\": 0.027513851933031318\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.604,\n \"acc_norm_stderr,none\":\ \ 0.030993197854577898\n },\n \"leaderboard_bbh_geometric_shapes\"\ : {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.284,\n \"acc_norm_stderr,none\": 0.02857695873043744\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.824,\n \ \ \"acc_norm_stderr,none\": 0.024133497525457123\n },\n \"\ leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\": \" \ \ - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.524,\n \"acc_norm_stderr,none\": 0.03164968895968774\n },\n\ \ \"leaderboard_bbh_logical_deduction_seven_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\",\n \"\ acc_norm,none\": 0.452,\n \"acc_norm_stderr,none\": 0.03153986449255664\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n\ \ \"acc_norm,none\": 0.744,\n \"acc_norm_stderr,none\": 0.027657108718204846\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.644,\n \"acc_norm_stderr,none\": 0.0303436806571532\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.616,\n \"acc_norm_stderr,none\":\ \ 0.030821679117375447\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.38,\n \"acc_norm_stderr,none\": 0.030760116042626098\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.4315068493150685,\n \"acc_norm_stderr,none\": 0.041131302645371945\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.48,\n \"acc_norm_stderr,none\": 0.03166085340849512\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.624,\n \ \ \"acc_norm_stderr,none\": 0.03069633626739458\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.496,\n \"acc_norm_stderr,none\":\ \ 0.0316851985511992\n },\n \"leaderboard_bbh_snarks\": {\n \ \ \"alias\": \" - leaderboard_bbh_snarks\",\n \"acc_norm,none\"\ : 0.6235955056179775,\n \"acc_norm_stderr,none\": 0.03641600124728159\n\ \ },\n \"leaderboard_bbh_sports_understanding\": {\n \"\ alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.608,\n \"acc_norm_stderr,none\": 0.030938207620401222\n },\n\ \ \"leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" -\ \ leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.424,\n\ \ \"acc_norm_stderr,none\": 0.03131803437491622\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.144,\n \"acc_norm_stderr,none\": 0.022249407735450245\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.16,\n \"acc_norm_stderr,none\": 0.023232714782060626\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.312,\n \"acc_norm_stderr,none\":\ \ 0.02936106757521985\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.508,\n \"acc_norm_stderr,none\": 0.03168215643141386\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.311241610738255,\n\ \ \"acc_norm_stderr,none\": 0.013409889215684433,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.3383838383838384,\n \"acc_norm_stderr,none\": 0.033711241426263\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.2857142857142857,\n\ \ \"acc_norm_stderr,none\": 0.019351013185102753\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.33035714285714285,\n \"acc_norm_stderr,none\"\ : 0.022246398347131557\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.46395563770794823,\n \"prompt_level_strict_acc_stderr,none\": 0.02146059282373674,\n\ \ \"inst_level_strict_acc,none\": 0.579136690647482,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.4879852125693161,\n \"prompt_level_loose_acc_stderr,none\": 0.02151036119343917,\n\ \ \"inst_level_loose_acc,none\": 0.60431654676259,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\"\n },\n \"leaderboard_math_hard\": {\n \"exact_match,none\"\ : 0.10876132930513595,\n \"exact_match_stderr,none\": 0.00819586222508565,\n\ \ \"alias\": \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_algebra_hard\",\n \ \ \"exact_match,none\": 0.19543973941368079,\n \"exact_match_stderr,none\"\ : 0.022668616386127674\n },\n \"leaderboard_math_counting_and_prob_hard\"\ : {\n \"alias\": \" - leaderboard_math_counting_and_prob_hard\",\n \ \ \"exact_match,none\": 0.0975609756097561,\n \"exact_match_stderr,none\"\ : 0.026863777740489123\n },\n \"leaderboard_math_geometry_hard\":\ \ {\n \"alias\": \" - leaderboard_math_geometry_hard\",\n \ \ \"exact_match,none\": 0.045454545454545456,\n \"exact_match_stderr,none\"\ : 0.018199158975632696\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n\ \ \"exact_match,none\": 0.010714285714285714,\n \"exact_match_stderr,none\"\ : 0.006163684194761604\n },\n \"leaderboard_math_num_theory_hard\"\ : {\n \"alias\": \" - leaderboard_math_num_theory_hard\",\n \ \ \"exact_match,none\": 0.06493506493506493,\n \"exact_match_stderr,none\"\ : 0.01992116854149014\n },\n \"leaderboard_math_prealgebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \ \ \"exact_match,none\": 0.25906735751295334,\n \"exact_match_stderr,none\"\ : 0.03161877917935408\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.022222222222222223,\n \"exact_match_stderr,none\"\ : 0.01273389971505968\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.3720910904255319,\n\ \ \"acc_stderr,none\": 0.004406787358080629\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.42328042328042326,\n \"acc_norm_stderr,none\"\ : 0.01749054545808027,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \"\ \ - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.568,\n\ \ \"acc_norm_stderr,none\": 0.03139181076542941\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.28125,\n \"acc_norm_stderr,none\"\ : 0.028155620586096754\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.424,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ }\n },\n \"leaderboard\": {\n \"prompt_level_loose_acc,none\"\ : 0.4879852125693161,\n \"prompt_level_loose_acc_stderr,none\": 0.02151036119343917,\n\ \ \"inst_level_loose_acc,none\": 0.60431654676259,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\",\n \"acc,none\": 0.3720910904255319,\n \"acc_stderr,none\"\ : 0.004406787358080629,\n \"prompt_level_strict_acc,none\": 0.46395563770794823,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.02146059282373674,\n \ \ \"inst_level_strict_acc,none\": 0.579136690647482,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"exact_match,none\": 0.10876132930513595,\n \"exact_match_stderr,none\"\ : 0.00819586222508565,\n \"acc_norm,none\": 0.48112595667401736,\n \ \ \"acc_norm_stderr,none\": 0.005323368568863841,\n \"alias\": \"leaderboard\"\ \n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.5238673841346988,\n\ \ \"acc_norm_stderr,none\": 0.006146238124194547,\n \"alias\": \"\ \ - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\": {\n\ \ \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\"\ : 0.816,\n \"acc_norm_stderr,none\": 0.02455581299422255\n },\n \"\ leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5828877005347594,\n \"acc_norm_stderr,none\"\ : 0.0361545093114083\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.748,\n \"acc_norm_stderr,none\": 0.027513851933031318\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.604,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.284,\n \"acc_norm_stderr,none\": 0.02857695873043744\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.824,\n \"acc_norm_stderr,none\": 0.024133497525457123\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.524,\n \"acc_norm_stderr,none\": 0.03164968895968774\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.452,\n \"acc_norm_stderr,none\": 0.03153986449255664\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.744,\n \"acc_norm_stderr,none\": 0.027657108718204846\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.644,\n \"acc_norm_stderr,none\": 0.0303436806571532\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.616,\n \"acc_norm_stderr,none\": 0.030821679117375447\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.38,\n \"acc_norm_stderr,none\": 0.030760116042626098\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.4315068493150685,\n\ \ \"acc_norm_stderr,none\": 0.041131302645371945\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.48,\n \"acc_norm_stderr,none\": 0.03166085340849512\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.624,\n \"acc_norm_stderr,none\": 0.03069633626739458\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.496,\n \"acc_norm_stderr,none\": 0.0316851985511992\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6235955056179775,\n \"acc_norm_stderr,none\"\ : 0.03641600124728159\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.608,\n \"acc_norm_stderr,none\": 0.030938207620401222\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.424,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.144,\n \"acc_norm_stderr,none\": 0.022249407735450245\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.16,\n \"acc_norm_stderr,none\": 0.023232714782060626\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.312,\n \"acc_norm_stderr,none\": 0.02936106757521985\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.508,\n \"acc_norm_stderr,none\": 0.03168215643141386\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.311241610738255,\n\ \ \"acc_norm_stderr,none\": 0.013409889215684433,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.3383838383838384,\n\ \ \"acc_norm_stderr,none\": 0.033711241426263\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.2857142857142857,\n \"acc_norm_stderr,none\": 0.019351013185102753\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.33035714285714285,\n \"acc_norm_stderr,none\"\ : 0.022246398347131557\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.46395563770794823,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.02146059282373674,\n \ \ \"inst_level_strict_acc,none\": 0.579136690647482,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.4879852125693161,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.02151036119343917,\n \"inst_level_loose_acc,none\"\ : 0.60431654676259,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.10876132930513595,\n\ \ \"exact_match_stderr,none\": 0.00819586222508565,\n \"alias\": \"\ \ - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.19543973941368079,\n \"exact_match_stderr,none\": 0.022668616386127674\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.0975609756097561,\n \"exact_match_stderr,none\": 0.026863777740489123\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.045454545454545456,\n \"exact_match_stderr,none\"\ : 0.018199158975632696\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.010714285714285714,\n \"exact_match_stderr,none\"\ : 0.006163684194761604\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.06493506493506493,\n \"exact_match_stderr,none\": 0.01992116854149014\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.25906735751295334,\n \"exact_match_stderr,none\"\ : 0.03161877917935408\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.022222222222222223,\n \"exact_match_stderr,none\": 0.01273389971505968\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.3720910904255319,\n \"acc_stderr,none\": 0.004406787358080629\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.42328042328042326,\n\ \ \"acc_norm_stderr,none\": 0.01749054545808027,\n \"alias\": \" -\ \ leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.568,\n \"acc_norm_stderr,none\": 0.03139181076542941\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.28125,\n \"acc_norm_stderr,none\": 0.028155620586096754\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.424,\n \"acc_norm_stderr,none\": 0.03131803437491622\n\ \ }\n}\n```" repo_url: https://huggingface.co/FlofloB/test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit leaderboard_url: '' point_of_contact: '' configs: - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_date_understanding data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_navigate data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_object_counting data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_ruin_names data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_snarks data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_gpqa_diamond data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_gpqa_extended data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_gpqa_main data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_ifeval data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_ifeval_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_math_algebra_hard data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_math_geometry_hard data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_math_num_theory_hard data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_math_precalculus_hard data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_mmlu_pro data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_musr_object_placements data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-23-19.646165.jsonl' - config_name: FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_musr_team_allocation data_files: - split: 2024_11_22T00_23_19.646165 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-23-19.646165.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-23-19.646165.jsonl' --- # Dataset Card for Evaluation run of FlofloB/test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [FlofloB/test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit](https://huggingface.co/FlofloB/test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit-details", name="FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-22T00-23-19.646165](https://huggingface.co/datasets/open-llm-leaderboard/FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit-details/blob/main/FlofloB__test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit/results_2024-11-22T00-23-19.646165.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "prompt_level_loose_acc,none": 0.4879852125693161, "prompt_level_loose_acc_stderr,none": 0.02151036119343917, "inst_level_loose_acc,none": 0.60431654676259, "inst_level_loose_acc_stderr,none": "N/A", "acc,none": 0.3720910904255319, "acc_stderr,none": 0.004406787358080629, "prompt_level_strict_acc,none": 0.46395563770794823, "prompt_level_strict_acc_stderr,none": 0.02146059282373674, "inst_level_strict_acc,none": 0.579136690647482, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.10876132930513595, "exact_match_stderr,none": 0.00819586222508565, "acc_norm,none": 0.48112595667401736, "acc_norm_stderr,none": 0.005323368568863841, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5238673841346988, "acc_norm_stderr,none": 0.006146238124194547, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.816, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5828877005347594, "acc_norm_stderr,none": 0.0361545093114083 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.748, "acc_norm_stderr,none": 0.027513851933031318 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.604, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.284, "acc_norm_stderr,none": 0.02857695873043744 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.824, "acc_norm_stderr,none": 0.024133497525457123 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.524, "acc_norm_stderr,none": 0.03164968895968774 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.452, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.744, "acc_norm_stderr,none": 0.027657108718204846 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.644, "acc_norm_stderr,none": 0.0303436806571532 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.616, "acc_norm_stderr,none": 0.030821679117375447 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.38, "acc_norm_stderr,none": 0.030760116042626098 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.4315068493150685, "acc_norm_stderr,none": 0.041131302645371945 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.48, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.624, "acc_norm_stderr,none": 0.03069633626739458 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.496, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6235955056179775, "acc_norm_stderr,none": 0.03641600124728159 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.608, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.424, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.144, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.16, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.312, "acc_norm_stderr,none": 0.02936106757521985 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.508, "acc_norm_stderr,none": 0.03168215643141386 }, "leaderboard_gpqa": { "acc_norm,none": 0.311241610738255, "acc_norm_stderr,none": 0.013409889215684433, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.3383838383838384, "acc_norm_stderr,none": 0.033711241426263 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.2857142857142857, "acc_norm_stderr,none": 0.019351013185102753 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.33035714285714285, "acc_norm_stderr,none": 0.022246398347131557 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.46395563770794823, "prompt_level_strict_acc_stderr,none": 0.02146059282373674, "inst_level_strict_acc,none": 0.579136690647482, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.4879852125693161, "prompt_level_loose_acc_stderr,none": 0.02151036119343917, "inst_level_loose_acc,none": 0.60431654676259, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.10876132930513595, "exact_match_stderr,none": 0.00819586222508565, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.19543973941368079, "exact_match_stderr,none": 0.022668616386127674 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.0975609756097561, "exact_match_stderr,none": 0.026863777740489123 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.045454545454545456, "exact_match_stderr,none": 0.018199158975632696 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.010714285714285714, "exact_match_stderr,none": 0.006163684194761604 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.06493506493506493, "exact_match_stderr,none": 0.01992116854149014 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.25906735751295334, "exact_match_stderr,none": 0.03161877917935408 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.022222222222222223, "exact_match_stderr,none": 0.01273389971505968 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.3720910904255319, "acc_stderr,none": 0.004406787358080629 }, "leaderboard_musr": { "acc_norm,none": 0.42328042328042326, "acc_norm_stderr,none": 0.01749054545808027, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.28125, "acc_norm_stderr,none": 0.028155620586096754 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.424, "acc_norm_stderr,none": 0.03131803437491622 } }, "leaderboard": { "prompt_level_loose_acc,none": 0.4879852125693161, "prompt_level_loose_acc_stderr,none": 0.02151036119343917, "inst_level_loose_acc,none": 0.60431654676259, "inst_level_loose_acc_stderr,none": "N/A", "acc,none": 0.3720910904255319, "acc_stderr,none": 0.004406787358080629, "prompt_level_strict_acc,none": 0.46395563770794823, "prompt_level_strict_acc_stderr,none": 0.02146059282373674, "inst_level_strict_acc,none": 0.579136690647482, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.10876132930513595, "exact_match_stderr,none": 0.00819586222508565, "acc_norm,none": 0.48112595667401736, "acc_norm_stderr,none": 0.005323368568863841, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5238673841346988, "acc_norm_stderr,none": 0.006146238124194547, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.816, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5828877005347594, "acc_norm_stderr,none": 0.0361545093114083 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.748, "acc_norm_stderr,none": 0.027513851933031318 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.604, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.284, "acc_norm_stderr,none": 0.02857695873043744 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.824, "acc_norm_stderr,none": 0.024133497525457123 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.524, "acc_norm_stderr,none": 0.03164968895968774 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.452, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.744, "acc_norm_stderr,none": 0.027657108718204846 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.644, "acc_norm_stderr,none": 0.0303436806571532 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.616, "acc_norm_stderr,none": 0.030821679117375447 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.38, "acc_norm_stderr,none": 0.030760116042626098 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.4315068493150685, "acc_norm_stderr,none": 0.041131302645371945 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.48, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.624, "acc_norm_stderr,none": 0.03069633626739458 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.496, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6235955056179775, "acc_norm_stderr,none": 0.03641600124728159 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.608, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.424, "acc_norm_stderr,none": 0.03131803437491622 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.144, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.16, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.312, "acc_norm_stderr,none": 0.02936106757521985 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.508, "acc_norm_stderr,none": 0.03168215643141386 }, "leaderboard_gpqa": { "acc_norm,none": 0.311241610738255, "acc_norm_stderr,none": 0.013409889215684433, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.3383838383838384, "acc_norm_stderr,none": 0.033711241426263 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.2857142857142857, "acc_norm_stderr,none": 0.019351013185102753 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.33035714285714285, "acc_norm_stderr,none": 0.022246398347131557 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.46395563770794823, "prompt_level_strict_acc_stderr,none": 0.02146059282373674, "inst_level_strict_acc,none": 0.579136690647482, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.4879852125693161, "prompt_level_loose_acc_stderr,none": 0.02151036119343917, "inst_level_loose_acc,none": 0.60431654676259, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.10876132930513595, "exact_match_stderr,none": 0.00819586222508565, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.19543973941368079, "exact_match_stderr,none": 0.022668616386127674 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.0975609756097561, "exact_match_stderr,none": 0.026863777740489123 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.045454545454545456, "exact_match_stderr,none": 0.018199158975632696 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.010714285714285714, "exact_match_stderr,none": 0.006163684194761604 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.06493506493506493, "exact_match_stderr,none": 0.01992116854149014 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.25906735751295334, "exact_match_stderr,none": 0.03161877917935408 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.022222222222222223, "exact_match_stderr,none": 0.01273389971505968 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.3720910904255319, "acc_stderr,none": 0.004406787358080629 }, "leaderboard_musr": { "acc_norm,none": 0.42328042328042326, "acc_norm_stderr,none": 0.01749054545808027, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.28125, "acc_norm_stderr,none": 0.028155620586096754 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.424, "acc_norm_stderr,none": 0.03131803437491622 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/icefog72__Ice0.40-20.11-RP-details
open-llm-leaderboard
"2024-11-22T00:28:41Z"
0
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T23:44:57Z"
--- pretty_name: Evaluation run of icefog72/Ice0.40-20.11-RP dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [icefog72/Ice0.40-20.11-RP](https://huggingface.co/icefog72/Ice0.40-20.11-RP)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 2 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/icefog72__Ice0.40-20.11-RP-details\"\ ,\n\tname=\"icefog72__Ice0.40-20.11-RP__leaderboard_bbh_boolean_expressions\",\n\ \tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-11-22T00-20-22.881636](https://huggingface.co/datasets/open-llm-leaderboard/icefog72__Ice0.40-20.11-RP-details/blob/main/icefog72__Ice0.40-20.11-RP/results_2024-11-22T00-20-22.881636.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"inst_level_loose_acc,none\": 0.592326139088729,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\",\n \"acc_norm,none\": 0.47035932027500327,\n \"\ acc_norm_stderr,none\": 0.005330323393972458,\n \"prompt_level_loose_acc,none\"\ : 0.4787430683918669,\n \"prompt_level_loose_acc_stderr,none\": 0.02149712051598776,\n\ \ \"inst_level_strict_acc,none\": 0.5347721822541966,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"acc,none\": 0.30992353723404253,\n\ \ \"acc_stderr,none\": 0.004216237086078009,\n \"prompt_level_strict_acc,none\"\ : 0.4177449168207024,\n \"prompt_level_strict_acc_stderr,none\": 0.02122341916161409,\n\ \ \"exact_match,none\": 0.06268882175226587,\n \"exact_match_stderr,none\"\ : 0.006525049774700846,\n \"alias\": \"leaderboard\"\n },\n \ \ \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.5075507724353411,\n\ \ \"acc_norm_stderr,none\": 0.006146177305130497,\n \"alias\"\ : \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \ \ \"acc_norm,none\": 0.808,\n \"acc_norm_stderr,none\": 0.02496069198917196\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\"\ : \" - leaderboard_bbh_causal_judgement\",\n \"acc_norm,none\": 0.6149732620320856,\n\ \ \"acc_norm_stderr,none\": 0.03567936280544673\n },\n \ \ \"leaderboard_bbh_date_understanding\": {\n \"alias\": \" - leaderboard_bbh_date_understanding\"\ ,\n \"acc_norm,none\": 0.416,\n \"acc_norm_stderr,none\":\ \ 0.031235856237014505\n },\n \"leaderboard_bbh_disambiguation_qa\"\ : {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\",\n \ \ \"acc_norm,none\": 0.688,\n \"acc_norm_stderr,none\": 0.029361067575219852\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\"\ : \" - leaderboard_bbh_formal_fallacies\",\n \"acc_norm,none\": 0.572,\n\ \ \"acc_norm_stderr,none\": 0.031355968923772626\n },\n \ \ \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.464,\n \"acc_norm_stderr,none\":\ \ 0.03160397514522374\n },\n \"leaderboard_bbh_hyperbaton\": {\n \ \ \"alias\": \" - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\"\ : 0.76,\n \"acc_norm_stderr,none\": 0.027065293652238982\n },\n\ \ \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.48,\n \"acc_norm_stderr,none\": 0.03166085340849512\n },\n\ \ \"leaderboard_bbh_logical_deduction_seven_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\",\n \"\ acc_norm,none\": 0.432,\n \"acc_norm_stderr,none\": 0.03139181076542942\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n\ \ \"acc_norm,none\": 0.68,\n \"acc_norm_stderr,none\": 0.02956172495524098\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.608,\n \"acc_norm_stderr,none\": 0.030938207620401222\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.588,\n \"acc_norm_stderr,none\":\ \ 0.031191596026022818\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.324,\n \"acc_norm_stderr,none\": 0.029658294924545567\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.4246575342465753,\n \"acc_norm_stderr,none\": 0.04104862657656195\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.556,\n \ \ \"acc_norm_stderr,none\": 0.03148684942554571\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.464,\n \"acc_norm_stderr,none\":\ \ 0.03160397514522374\n },\n \"leaderboard_bbh_snarks\": {\n \ \ \"alias\": \" - leaderboard_bbh_snarks\",\n \"acc_norm,none\"\ : 0.6797752808988764,\n \"acc_norm_stderr,none\": 0.03506900770722058\n\ \ },\n \"leaderboard_bbh_sports_understanding\": {\n \"\ alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.82,\n \"acc_norm_stderr,none\": 0.02434689065029351\n },\n\ \ \"leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" -\ \ leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.252,\n\ \ \"acc_norm_stderr,none\": 0.027513851933031318\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.184,\n \"acc_norm_stderr,none\": 0.02455581299422255\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.16,\n \"acc_norm_stderr,none\": 0.023232714782060626\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.288,\n \"acc_norm_stderr,none\":\ \ 0.028697004587398253\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3070469798657718,\n\ \ \"acc_norm_stderr,none\": 0.013371083374985824,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.2828282828282828,\n \"acc_norm_stderr,none\": 0.032087795587867514\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.32051282051282054,\n\ \ \"acc_norm_stderr,none\": 0.019990105460697117\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.3013392857142857,\n \"acc_norm_stderr,none\"\ : 0.021702375698545707\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.4177449168207024,\n \"prompt_level_strict_acc_stderr,none\": 0.02122341916161409,\n\ \ \"inst_level_strict_acc,none\": 0.5347721822541966,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.4787430683918669,\n \"prompt_level_loose_acc_stderr,none\": 0.02149712051598776,\n\ \ \"inst_level_loose_acc,none\": 0.592326139088729,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\"\n },\n \"leaderboard_math_hard\": {\n \"exact_match,none\"\ : 0.06268882175226587,\n \"exact_match_stderr,none\": 0.006525049774700846,\n\ \ \"alias\": \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_algebra_hard\",\n \ \ \"exact_match,none\": 0.09446254071661238,\n \"exact_match_stderr,none\"\ : 0.016719462370368424\n },\n \"leaderboard_math_counting_and_prob_hard\"\ : {\n \"alias\": \" - leaderboard_math_counting_and_prob_hard\",\n \ \ \"exact_match,none\": 0.024390243902439025,\n \"exact_match_stderr,none\"\ : 0.013965813032045565\n },\n \"leaderboard_math_geometry_hard\":\ \ {\n \"alias\": \" - leaderboard_math_geometry_hard\",\n \ \ \"exact_match,none\": 0.015151515151515152,\n \"exact_match_stderr,none\"\ : 0.01067276863717474\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n\ \ \"exact_match,none\": 0.02142857142857143,\n \"exact_match_stderr,none\"\ : 0.008669434577665551\n },\n \"leaderboard_math_num_theory_hard\"\ : {\n \"alias\": \" - leaderboard_math_num_theory_hard\",\n \ \ \"exact_match,none\": 0.05194805194805195,\n \"exact_match_stderr,none\"\ : 0.017941344490765\n },\n \"leaderboard_math_prealgebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_prealgebra_hard\",\n \"\ exact_match,none\": 0.16580310880829016,\n \"exact_match_stderr,none\"\ : 0.026839845022314426\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.022222222222222223,\n \"exact_match_stderr,none\"\ : 0.01273389971505968\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.30992353723404253,\n\ \ \"acc_stderr,none\": 0.004216237086078009\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.4444444444444444,\n \"acc_norm_stderr,none\"\ : 0.017783559448746142,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\":\ \ \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.568,\n\ \ \"acc_norm_stderr,none\": 0.03139181076542941\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.42578125,\n \"acc_norm_stderr,none\"\ : 0.030964342373467638\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.34,\n \"acc_norm_stderr,none\": 0.030020073605457873\n\ \ }\n },\n \"leaderboard\": {\n \"inst_level_loose_acc,none\"\ : 0.592326139088729,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \ \ \"acc_norm,none\": 0.47035932027500327,\n \"acc_norm_stderr,none\"\ : 0.005330323393972458,\n \"prompt_level_loose_acc,none\": 0.4787430683918669,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.02149712051598776,\n \"\ inst_level_strict_acc,none\": 0.5347721822541966,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"acc,none\": 0.30992353723404253,\n \"acc_stderr,none\"\ : 0.004216237086078009,\n \"prompt_level_strict_acc,none\": 0.4177449168207024,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.02122341916161409,\n \ \ \"exact_match,none\": 0.06268882175226587,\n \"exact_match_stderr,none\"\ : 0.006525049774700846,\n \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.5075507724353411,\n \"acc_norm_stderr,none\"\ : 0.006146177305130497,\n \"alias\": \" - leaderboard_bbh\"\n },\n \ \ \"leaderboard_bbh_boolean_expressions\": {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\"\ ,\n \"acc_norm,none\": 0.808,\n \"acc_norm_stderr,none\": 0.02496069198917196\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6149732620320856,\n \"acc_norm_stderr,none\"\ : 0.03567936280544673\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.416,\n \"acc_norm_stderr,none\": 0.031235856237014505\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.688,\n \"acc_norm_stderr,none\": 0.029361067575219852\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.572,\n \"acc_norm_stderr,none\": 0.031355968923772626\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.464,\n \"acc_norm_stderr,none\": 0.03160397514522374\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.76,\n \"acc_norm_stderr,none\": 0.027065293652238982\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.48,\n \"acc_norm_stderr,none\": 0.03166085340849512\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.432,\n \"acc_norm_stderr,none\": 0.03139181076542942\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.68,\n \"acc_norm_stderr,none\": 0.02956172495524098\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"\ acc_norm,none\": 0.608,\n \"acc_norm_stderr,none\": 0.030938207620401222\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.588,\n \"acc_norm_stderr,none\": 0.031191596026022818\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.324,\n \"acc_norm_stderr,none\": 0.029658294924545567\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.4246575342465753,\n\ \ \"acc_norm_stderr,none\": 0.04104862657656195\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.512,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.556,\n \"acc_norm_stderr,none\": 0.03148684942554571\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.464,\n \"acc_norm_stderr,none\": 0.03160397514522374\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6797752808988764,\n \"acc_norm_stderr,none\"\ : 0.03506900770722058\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.82,\n \"acc_norm_stderr,none\": 0.02434689065029351\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \"\ acc_norm,none\": 0.252,\n \"acc_norm_stderr,none\": 0.027513851933031318\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.184,\n \"acc_norm_stderr,none\": 0.02455581299422255\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.16,\n \"acc_norm_stderr,none\": 0.023232714782060626\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.288,\n \"acc_norm_stderr,none\": 0.028697004587398253\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3070469798657718,\n\ \ \"acc_norm_stderr,none\": 0.013371083374985824,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.2828282828282828,\n\ \ \"acc_norm_stderr,none\": 0.032087795587867514\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.32051282051282054,\n \"acc_norm_stderr,none\": 0.019990105460697117\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.3013392857142857,\n \"acc_norm_stderr,none\"\ : 0.021702375698545707\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.4177449168207024,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.02122341916161409,\n \ \ \"inst_level_strict_acc,none\": 0.5347721822541966,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.4787430683918669,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.02149712051598776,\n \"inst_level_loose_acc,none\"\ : 0.592326139088729,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.06268882175226587,\n\ \ \"exact_match_stderr,none\": 0.006525049774700846,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.09446254071661238,\n \"exact_match_stderr,none\": 0.016719462370368424\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.024390243902439025,\n \"exact_match_stderr,none\": 0.013965813032045565\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.015151515151515152,\n \"exact_match_stderr,none\"\ : 0.01067276863717474\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.02142857142857143,\n \"exact_match_stderr,none\"\ : 0.008669434577665551\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.05194805194805195,\n \"exact_match_stderr,none\": 0.017941344490765\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.16580310880829016,\n \"exact_match_stderr,none\"\ : 0.026839845022314426\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.022222222222222223,\n \"exact_match_stderr,none\": 0.01273389971505968\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.30992353723404253,\n \"acc_stderr,none\": 0.004216237086078009\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.4444444444444444,\n\ \ \"acc_norm_stderr,none\": 0.017783559448746142,\n \"alias\": \"\ \ - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.568,\n \"acc_norm_stderr,none\": 0.03139181076542941\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.42578125,\n \"acc_norm_stderr,none\": 0.030964342373467638\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.34,\n \"acc_norm_stderr,none\": 0.030020073605457873\n\ \ }\n}\n```" repo_url: https://huggingface.co/icefog72/Ice0.40-20.11-RP leaderboard_url: '' point_of_contact: '' configs: - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_date_understanding data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_navigate data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_object_counting data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_ruin_names data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_snarks data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_gpqa_diamond data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_gpqa_extended data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_gpqa_main data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_ifeval data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_ifeval_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_math_algebra_hard data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_math_geometry_hard data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_math_num_theory_hard data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_math_precalculus_hard data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_mmlu_pro data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_musr_object_placements data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-20-22.881636.jsonl' - config_name: icefog72__Ice0.40-20.11-RP__leaderboard_musr_team_allocation data_files: - split: 2024_11_22T00_20_22.881636 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-20-22.881636.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-20-22.881636.jsonl' --- # Dataset Card for Evaluation run of icefog72/Ice0.40-20.11-RP <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [icefog72/Ice0.40-20.11-RP](https://huggingface.co/icefog72/Ice0.40-20.11-RP) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 2 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/icefog72__Ice0.40-20.11-RP-details", name="icefog72__Ice0.40-20.11-RP__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-22T00-20-22.881636](https://huggingface.co/datasets/open-llm-leaderboard/icefog72__Ice0.40-20.11-RP-details/blob/main/icefog72__Ice0.40-20.11-RP/results_2024-11-22T00-20-22.881636.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "inst_level_loose_acc,none": 0.592326139088729, "inst_level_loose_acc_stderr,none": "N/A", "acc_norm,none": 0.47035932027500327, "acc_norm_stderr,none": 0.005330323393972458, "prompt_level_loose_acc,none": 0.4787430683918669, "prompt_level_loose_acc_stderr,none": 0.02149712051598776, "inst_level_strict_acc,none": 0.5347721822541966, "inst_level_strict_acc_stderr,none": "N/A", "acc,none": 0.30992353723404253, "acc_stderr,none": 0.004216237086078009, "prompt_level_strict_acc,none": 0.4177449168207024, "prompt_level_strict_acc_stderr,none": 0.02122341916161409, "exact_match,none": 0.06268882175226587, "exact_match_stderr,none": 0.006525049774700846, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5075507724353411, "acc_norm_stderr,none": 0.006146177305130497, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.808, "acc_norm_stderr,none": 0.02496069198917196 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6149732620320856, "acc_norm_stderr,none": 0.03567936280544673 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.416, "acc_norm_stderr,none": 0.031235856237014505 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.688, "acc_norm_stderr,none": 0.029361067575219852 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.464, "acc_norm_stderr,none": 0.03160397514522374 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.76, "acc_norm_stderr,none": 0.027065293652238982 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.48, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.432, "acc_norm_stderr,none": 0.03139181076542942 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.68, "acc_norm_stderr,none": 0.02956172495524098 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.608, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.588, "acc_norm_stderr,none": 0.031191596026022818 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.324, "acc_norm_stderr,none": 0.029658294924545567 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.4246575342465753, "acc_norm_stderr,none": 0.04104862657656195 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.464, "acc_norm_stderr,none": 0.03160397514522374 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6797752808988764, "acc_norm_stderr,none": 0.03506900770722058 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.82, "acc_norm_stderr,none": 0.02434689065029351 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.252, "acc_norm_stderr,none": 0.027513851933031318 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.184, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.16, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 }, "leaderboard_gpqa": { "acc_norm,none": 0.3070469798657718, "acc_norm_stderr,none": 0.013371083374985824, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.2828282828282828, "acc_norm_stderr,none": 0.032087795587867514 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.32051282051282054, "acc_norm_stderr,none": 0.019990105460697117 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.3013392857142857, "acc_norm_stderr,none": 0.021702375698545707 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.4177449168207024, "prompt_level_strict_acc_stderr,none": 0.02122341916161409, "inst_level_strict_acc,none": 0.5347721822541966, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.4787430683918669, "prompt_level_loose_acc_stderr,none": 0.02149712051598776, "inst_level_loose_acc,none": 0.592326139088729, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.06268882175226587, "exact_match_stderr,none": 0.006525049774700846, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.09446254071661238, "exact_match_stderr,none": 0.016719462370368424 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.024390243902439025, "exact_match_stderr,none": 0.013965813032045565 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.015151515151515152, "exact_match_stderr,none": 0.01067276863717474 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.02142857142857143, "exact_match_stderr,none": 0.008669434577665551 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.05194805194805195, "exact_match_stderr,none": 0.017941344490765 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.16580310880829016, "exact_match_stderr,none": 0.026839845022314426 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.022222222222222223, "exact_match_stderr,none": 0.01273389971505968 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.30992353723404253, "acc_stderr,none": 0.004216237086078009 }, "leaderboard_musr": { "acc_norm,none": 0.4444444444444444, "acc_norm_stderr,none": 0.017783559448746142, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.42578125, "acc_norm_stderr,none": 0.030964342373467638 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.34, "acc_norm_stderr,none": 0.030020073605457873 } }, "leaderboard": { "inst_level_loose_acc,none": 0.592326139088729, "inst_level_loose_acc_stderr,none": "N/A", "acc_norm,none": 0.47035932027500327, "acc_norm_stderr,none": 0.005330323393972458, "prompt_level_loose_acc,none": 0.4787430683918669, "prompt_level_loose_acc_stderr,none": 0.02149712051598776, "inst_level_strict_acc,none": 0.5347721822541966, "inst_level_strict_acc_stderr,none": "N/A", "acc,none": 0.30992353723404253, "acc_stderr,none": 0.004216237086078009, "prompt_level_strict_acc,none": 0.4177449168207024, "prompt_level_strict_acc_stderr,none": 0.02122341916161409, "exact_match,none": 0.06268882175226587, "exact_match_stderr,none": 0.006525049774700846, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5075507724353411, "acc_norm_stderr,none": 0.006146177305130497, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.808, "acc_norm_stderr,none": 0.02496069198917196 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6149732620320856, "acc_norm_stderr,none": 0.03567936280544673 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.416, "acc_norm_stderr,none": 0.031235856237014505 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.688, "acc_norm_stderr,none": 0.029361067575219852 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.572, "acc_norm_stderr,none": 0.031355968923772626 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.464, "acc_norm_stderr,none": 0.03160397514522374 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.76, "acc_norm_stderr,none": 0.027065293652238982 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.48, "acc_norm_stderr,none": 0.03166085340849512 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.432, "acc_norm_stderr,none": 0.03139181076542942 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.68, "acc_norm_stderr,none": 0.02956172495524098 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.608, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.588, "acc_norm_stderr,none": 0.031191596026022818 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.324, "acc_norm_stderr,none": 0.029658294924545567 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.4246575342465753, "acc_norm_stderr,none": 0.04104862657656195 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.512, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.464, "acc_norm_stderr,none": 0.03160397514522374 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6797752808988764, "acc_norm_stderr,none": 0.03506900770722058 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.82, "acc_norm_stderr,none": 0.02434689065029351 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.252, "acc_norm_stderr,none": 0.027513851933031318 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.184, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.16, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 }, "leaderboard_gpqa": { "acc_norm,none": 0.3070469798657718, "acc_norm_stderr,none": 0.013371083374985824, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.2828282828282828, "acc_norm_stderr,none": 0.032087795587867514 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.32051282051282054, "acc_norm_stderr,none": 0.019990105460697117 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.3013392857142857, "acc_norm_stderr,none": 0.021702375698545707 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.4177449168207024, "prompt_level_strict_acc_stderr,none": 0.02122341916161409, "inst_level_strict_acc,none": 0.5347721822541966, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.4787430683918669, "prompt_level_loose_acc_stderr,none": 0.02149712051598776, "inst_level_loose_acc,none": 0.592326139088729, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.06268882175226587, "exact_match_stderr,none": 0.006525049774700846, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.09446254071661238, "exact_match_stderr,none": 0.016719462370368424 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.024390243902439025, "exact_match_stderr,none": 0.013965813032045565 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.015151515151515152, "exact_match_stderr,none": 0.01067276863717474 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.02142857142857143, "exact_match_stderr,none": 0.008669434577665551 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.05194805194805195, "exact_match_stderr,none": 0.017941344490765 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.16580310880829016, "exact_match_stderr,none": 0.026839845022314426 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.022222222222222223, "exact_match_stderr,none": 0.01273389971505968 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.30992353723404253, "acc_stderr,none": 0.004216237086078009 }, "leaderboard_musr": { "acc_norm,none": 0.4444444444444444, "acc_norm_stderr,none": 0.017783559448746142, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.42578125, "acc_norm_stderr,none": 0.030964342373467638 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.34, "acc_norm_stderr,none": 0.030020073605457873 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
dogtooth/llama-31-diverse-generations-hs
dogtooth
"2024-11-21T23:50:12Z"
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T23:50:10Z"
--- dataset_info: features: - name: prompt dtype: string - name: response sequence: string splits: - name: train num_bytes: 48336201 num_examples: 10163 download_size: 20400362 dataset_size: 48336201 configs: - config_name: default data_files: - split: train path: data/train-* ---
hellomomiji/llm-judge-dataset
hellomomiji
"2024-11-22T00:14:30Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T23:52:14Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: explanation dtype: string splits: - name: train num_bytes: 120707 num_examples: 46 download_size: 77337 dataset_size: 120707 configs: - config_name: default data_files: - split: train path: data/train-* ---
Shozol/translated_gsm8k_to_bangla_train
Shozol
"2024-11-21T23:53:02Z"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T23:52:56Z"
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 9733028 num_examples: 7473 download_size: 3453459 dataset_size: 9733028 configs: - config_name: default data_files: - split: train path: data/train-* ---
bigstupidhats/aya_dataset_conversations
bigstupidhats
"2024-11-22T00:07:19Z"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-21T23:56:25Z"
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: language dtype: string - name: language_code dtype: string - name: annotation_type dtype: string - name: user_id dtype: string - name: Qwen2.5-7B_ifd dtype: float64 - name: conversations list: - name: content dtype: string - name: role dtype: string splits: - name: Finnish num_bytes: 1189456 num_examples: 742 - name: Danish num_bytes: 125638 num_examples: 95 - name: Ukrainian num_bytes: 1185732 num_examples: 522 - name: Greek num_bytes: 1340758 num_examples: 622 - name: Lithuanian num_bytes: 1110382 num_examples: 912 - name: Korean num_bytes: 595628 num_examples: 361 - name: Irish num_bytes: 1684920 num_examples: 1244 download_size: 3590770 dataset_size: 7232514 configs: - config_name: default data_files: - split: Finnish path: data/Finnish-* - split: Danish path: data/Danish-* - split: Ukrainian path: data/Ukrainian-* - split: Greek path: data/Greek-* - split: Lithuanian path: data/Lithuanian-* - split: Korean path: data/Korean-* - split: Irish path: data/Irish-* ---
LLMsForHepth/infer_hep_th
LLMsForHepth
"2024-11-22T00:00:53Z"
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:00:49Z"
--- dataset_info: features: - name: id dtype: string - name: submitter dtype: string - name: authors dtype: string - name: title dtype: string - name: comments dtype: string - name: journal-ref dtype: string - name: doi dtype: string - name: report-no dtype: string - name: categories dtype: string - name: license dtype: string - name: orig_abstract dtype: string - name: versions list: - name: created dtype: string - name: version dtype: string - name: update_date dtype: string - name: authors_parsed sequence: sequence: string - name: abstract dtype: string - name: prompt dtype: string - name: y_true dtype: string - name: comp_s1-L-3.1-8B-base dtype: string - name: preds_s1-L-3.1-8B-base dtype: string splits: - name: test num_bytes: 62376789 num_examples: 15808 download_size: 33324312 dataset_size: 62376789 configs: - config_name: default data_files: - split: test path: data/test-* ---
ChatterjeeLab/FusOn-DB
ChatterjeeLab
"2024-11-22T00:03:14Z"
0
0
[ "license:mit", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:02:01Z"
--- license: mit ---
Gramacho/complete_pira_train_val_corpus1_en_llama3_alpaca_1484
Gramacho
"2024-11-22T00:04:56Z"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:04:53Z"
--- dataset_info: features: - name: instruction dtype: string - name: id dtype: string - name: context dtype: string - name: input dtype: string - name: output dtype: string - name: text dtype: string splits: - name: train num_bytes: 3292965 num_examples: 1484 download_size: 1038412 dataset_size: 3292965 configs: - config_name: default data_files: - split: train path: data/train-* ---
TSOWatch/1001NightsTreasureKnowledge
TSOWatch
"2024-11-22T00:09:09Z"
0
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:08:33Z"
--- license: creativeml-openrail-m ---
TSOWatch/1001NightsBesiegedCity
TSOWatch
"2024-11-22T00:14:26Z"
0
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:14:05Z"
--- license: creativeml-openrail-m ---
Gramacho/complete_pira_test_corpus1_en_llama3_alpaca_181
Gramacho
"2024-11-22T00:15:17Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:15:16Z"
--- dataset_info: features: - name: instruction dtype: string - name: id dtype: string - name: context dtype: string - name: input dtype: string - name: output dtype: string - name: text dtype: string splits: - name: train num_bytes: 387591 num_examples: 181 download_size: 181256 dataset_size: 387591 configs: - config_name: default data_files: - split: train path: data/train-* ---
sartifyllc/tulu-3-sft-mixture-conversation
sartifyllc
"2024-11-22T00:34:07Z"
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:15:24Z"
--- dataset_info: features: - name: id dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: source dtype: string - name: conversation list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 5731918871 num_examples: 939343 download_size: 2805331792 dataset_size: 5731918871 configs: - config_name: default data_files: - split: train path: data/train-* ---
shekhar1536/CategorizedPromptData
shekhar1536
"2024-11-22T01:04:16Z"
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:16:30Z"
--- license: apache-2.0 ---
TSOWatch/1001NightsOilLamp
TSOWatch
"2024-11-22T00:56:29Z"
0
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:18:03Z"
--- license: creativeml-openrail-m ---
TSOWatch/1001NightsSeaSnake
TSOWatch
"2024-11-22T00:19:25Z"
0
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:19:10Z"
--- license: creativeml-openrail-m ---
TSOWatch/1001NightsWoodcutter
TSOWatch
"2024-11-22T00:23:30Z"
0
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:23:14Z"
--- license: creativeml-openrail-m ---
TSOWatch/1001NightsTreasureWisdom
TSOWatch
"2024-11-22T00:24:26Z"
0
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:24:05Z"
--- license: creativeml-openrail-m ---
DiegoP-S/fruit
DiegoP-S
"2024-11-22T00:57:17Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:24:23Z"
--- dataset_info: features: - name: file_name dtype: string - name: image dtype: binary splits: - name: train num_bytes: 3602634 num_examples: 8 download_size: 2578872 dataset_size: 3602634 configs: - config_name: default data_files: - split: train path: data/train-* ---
TSOWatch/1001NightsFirstThief
TSOWatch
"2024-11-22T00:25:06Z"
0
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:24:54Z"
--- license: creativeml-openrail-m ---
TSOWatch/1001NightsSecondThief
TSOWatch
"2024-11-22T00:25:46Z"
0
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:25:35Z"
--- license: creativeml-openrail-m ---
TSOWatch/1001NightsThirdThief
TSOWatch
"2024-11-22T00:26:27Z"
0
0
[ "license:creativeml-openrail-m", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:26:15Z"
--- license: creativeml-openrail-m ---
Cha-Imaa/bringupbench_compiled
Cha-Imaa
"2024-11-22T00:26:27Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:26:21Z"
--- dataset_info: features: - name: c_file dtype: string - name: arm_file dtype: string - name: x86_file dtype: string - name: arm_assembly dtype: string - name: x86_assembly dtype: string splits: - name: train num_bytes: 3198525 num_examples: 65 download_size: 943285 dataset_size: 3198525 configs: - config_name: default data_files: - split: train path: data/train-* ---
ADT1999/my-dataset-project-PIPE-original_image
ADT1999
"2024-11-22T01:11:44Z"
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:27:13Z"
--- dataset_info: features: - name: id dtype: string - name: original_image dtype: image splits: - name: train num_bytes: 3582721591.0 num_examples: 10000 download_size: 3582968243 dataset_size: 3582721591.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
open-llm-leaderboard/allenai__Llama-3.1-Tulu-3-8B-details
open-llm-leaderboard
"2024-11-22T00:34:22Z"
0
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:31:09Z"
--- pretty_name: Evaluation run of allenai/Llama-3.1-Tulu-3-8B dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [allenai/Llama-3.1-Tulu-3-8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/allenai__Llama-3.1-Tulu-3-8B-details\"\ ,\n\tname=\"allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-11-22T00-31-08.901515](https://huggingface.co/datasets/open-llm-leaderboard/allenai__Llama-3.1-Tulu-3-8B-details/blob/main/allenai__Llama-3.1-Tulu-3-8B/results_2024-11-22T00-31-08.901515.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"acc_norm,none\": 0.38785834738617203,\n \"acc_norm_stderr,none\"\ : 0.005273329157943381,\n \"inst_level_loose_acc,none\": 0.8752997601918465,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"inst_level_strict_acc,none\"\ : 0.8585131894484412,\n \"inst_level_strict_acc_stderr,none\": \"N/A\"\ ,\n \"exact_match,none\": 0.19637462235649547,\n \"exact_match_stderr,none\"\ : 0.009854609082277298,\n \"acc,none\": 0.2826628989361702,\n \ \ \"acc_stderr,none\": 0.0041053027261143855,\n \"prompt_level_strict_acc,none\"\ : 0.7948243992606284,\n \"prompt_level_strict_acc_stderr,none\": 0.01737807119675965,\n\ \ \"prompt_level_loose_acc,none\": 0.8151571164510166,\n \"\ prompt_level_loose_acc_stderr,none\": 0.01670417955850395,\n \"alias\"\ : \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\"\ : 0.4025342822426662,\n \"acc_norm_stderr,none\": 0.006072426154807149,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \ \ \"acc_norm,none\": 0.8,\n \"acc_norm_stderr,none\": 0.02534897002097912\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\"\ : \" - leaderboard_bbh_causal_judgement\",\n \"acc_norm,none\": 0.5187165775401069,\n\ \ \"acc_norm_stderr,none\": 0.03663608375537843\n },\n \ \ \"leaderboard_bbh_date_understanding\": {\n \"alias\": \" - leaderboard_bbh_date_understanding\"\ ,\n \"acc_norm,none\": 0.288,\n \"acc_norm_stderr,none\":\ \ 0.028697004587398253\n },\n \"leaderboard_bbh_disambiguation_qa\"\ : {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\",\n \ \ \"acc_norm,none\": 0.604,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\"\ : \" - leaderboard_bbh_formal_fallacies\",\n \"acc_norm,none\": 0.472,\n\ \ \"acc_norm_stderr,none\": 0.031636489531544396\n },\n \ \ \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.328,\n \"acc_norm_stderr,none\":\ \ 0.029752391824475363\n },\n \"leaderboard_bbh_hyperbaton\": {\n\ \ \"alias\": \" - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\"\ : 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n },\n\ \ \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.256,\n \"acc_norm_stderr,none\": 0.027657108718204846\n },\n\ \ \"leaderboard_bbh_logical_deduction_seven_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\",\n \"\ acc_norm,none\": 0.212,\n \"acc_norm_stderr,none\": 0.025901884690541117\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n\ \ \"acc_norm,none\": 0.416,\n \"acc_norm_stderr,none\": 0.031235856237014505\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.688,\n \"acc_norm_stderr,none\": 0.029361067575219852\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\"\ : \" - leaderboard_bbh_object_counting\",\n \"acc_norm,none\": 0.288,\n\ \ \"acc_norm_stderr,none\": 0.028697004587398253\n },\n \ \ \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" - leaderboard_bbh_penguins_in_a_table\"\ ,\n \"acc_norm,none\": 0.3904109589041096,\n \"acc_norm_stderr,none\"\ : 0.040513109165891854\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.456,\n \"acc_norm_stderr,none\":\ \ 0.031563285061213475\n },\n \"leaderboard_bbh_ruin_names\": {\n\ \ \"alias\": \" - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\"\ : 0.456,\n \"acc_norm_stderr,none\": 0.031563285061213475\n },\n\ \ \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.396,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" -\ \ leaderboard_bbh_snarks\",\n \"acc_norm,none\": 0.5224719101123596,\n\ \ \"acc_norm_stderr,none\": 0.03754432508487191\n },\n \ \ \"leaderboard_bbh_sports_understanding\": {\n \"alias\": \" - leaderboard_bbh_sports_understanding\"\ ,\n \"acc_norm,none\": 0.496,\n \"acc_norm_stderr,none\":\ \ 0.0316851985511992\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \ \ \"acc_norm,none\": 0.116,\n \"acc_norm_stderr,none\": 0.020293429803083823\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.136,\n \"acc_norm_stderr,none\":\ \ 0.021723342617052086\n },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.144,\n \"acc_norm_stderr,none\":\ \ 0.022249407735450245\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.292,\n \"acc_norm_stderr,none\":\ \ 0.02881432040220563\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2986577181208054,\n\ \ \"acc_norm_stderr,none\": 0.013264655332365493,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.30303030303030304,\n \"acc_norm_stderr,none\": 0.03274287914026869\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.28205128205128205,\n\ \ \"acc_norm_stderr,none\": 0.019275803929950375\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.3169642857142857,\n \"acc_norm_stderr,none\"\ : 0.0220076215848248\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.7948243992606284,\n \"prompt_level_strict_acc_stderr,none\": 0.01737807119675965,\n\ \ \"inst_level_strict_acc,none\": 0.8585131894484412,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.8151571164510166,\n \"prompt_level_loose_acc_stderr,none\": 0.01670417955850395,\n\ \ \"inst_level_loose_acc,none\": 0.8752997601918465,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.19637462235649547,\n \"exact_match_stderr,none\"\ : 0.009854609082277298,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.3811074918566775,\n\ \ \"exact_match_stderr,none\": 0.02776327166045321\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \" \ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.11382113821138211,\n \"exact_match_stderr,none\": 0.02875360087323741\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.06060606060606061,\n\ \ \"exact_match_stderr,none\": 0.020847129156682045\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\":\ \ \" - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.03214285714285714,\n \"exact_match_stderr,none\": 0.01055955866175321\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.12987012987012986,\n\ \ \"exact_match_stderr,none\": 0.02717696535667076\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.46113989637305697,\n \"exact_match_stderr,none\"\ : 0.03597524411734576\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.022222222222222223,\n \"exact_match_stderr,none\"\ : 0.01273389971505968\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.2826628989361702,\n\ \ \"acc_stderr,none\": 0.004105302726114385\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.4166666666666667,\n \"acc_norm_stderr,none\"\ : 0.01768575862518651,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \"\ \ - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.528,\n\ \ \"acc_norm_stderr,none\": 0.031636489531544396\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.31640625,\n \"acc_norm_stderr,none\"\ : 0.02912403057115479\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.408,\n \"acc_norm_stderr,none\": 0.031145209846548512\n\ \ }\n },\n \"leaderboard\": {\n \"acc_norm,none\": 0.38785834738617203,\n\ \ \"acc_norm_stderr,none\": 0.005273329157943381,\n \"inst_level_loose_acc,none\"\ : 0.8752997601918465,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n\ \ \"inst_level_strict_acc,none\": 0.8585131894484412,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"exact_match,none\": 0.19637462235649547,\n \"exact_match_stderr,none\"\ : 0.009854609082277298,\n \"acc,none\": 0.2826628989361702,\n \"acc_stderr,none\"\ : 0.0041053027261143855,\n \"prompt_level_strict_acc,none\": 0.7948243992606284,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.01737807119675965,\n \ \ \"prompt_level_loose_acc,none\": 0.8151571164510166,\n \"prompt_level_loose_acc_stderr,none\"\ : 0.01670417955850395,\n \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.4025342822426662,\n \"acc_norm_stderr,none\"\ : 0.006072426154807149,\n \"alias\": \" - leaderboard_bbh\"\n },\n \ \ \"leaderboard_bbh_boolean_expressions\": {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\"\ ,\n \"acc_norm,none\": 0.8,\n \"acc_norm_stderr,none\": 0.02534897002097912\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5187165775401069,\n \"acc_norm_stderr,none\"\ : 0.03663608375537843\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.288,\n \"acc_norm_stderr,none\": 0.028697004587398253\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.604,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.472,\n \"acc_norm_stderr,none\": 0.031636489531544396\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.328,\n \"acc_norm_stderr,none\": 0.029752391824475363\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.256,\n \"acc_norm_stderr,none\": 0.027657108718204846\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.212,\n \"acc_norm_stderr,none\": 0.025901884690541117\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.416,\n \"acc_norm_stderr,none\": 0.031235856237014505\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.688,\n \"acc_norm_stderr,none\": 0.029361067575219852\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.42,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.288,\n \"acc_norm_stderr,none\": 0.028697004587398253\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.3904109589041096,\n\ \ \"acc_norm_stderr,none\": 0.040513109165891854\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.456,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.456,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.396,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.5224719101123596,\n \"acc_norm_stderr,none\"\ : 0.03754432508487191\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.496,\n \"acc_norm_stderr,none\": 0.0316851985511992\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \"\ acc_norm,none\": 0.116,\n \"acc_norm_stderr,none\": 0.020293429803083823\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.136,\n \"acc_norm_stderr,none\": 0.021723342617052086\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.144,\n \"acc_norm_stderr,none\": 0.022249407735450245\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.292,\n \"acc_norm_stderr,none\": 0.02881432040220563\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.488,\n \"acc_norm_stderr,none\": 0.03167708558254714\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.2986577181208054,\n\ \ \"acc_norm_stderr,none\": 0.013264655332365493,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.30303030303030304,\n\ \ \"acc_norm_stderr,none\": 0.03274287914026869\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.28205128205128205,\n \"acc_norm_stderr,none\": 0.019275803929950375\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.3169642857142857,\n \"acc_norm_stderr,none\"\ : 0.0220076215848248\n },\n \"leaderboard_ifeval\": {\n \"alias\":\ \ \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.7948243992606284,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.01737807119675965,\n \ \ \"inst_level_strict_acc,none\": 0.8585131894484412,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.8151571164510166,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.01670417955850395,\n \"inst_level_loose_acc,none\"\ : 0.8752997601918465,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.19637462235649547,\n\ \ \"exact_match_stderr,none\": 0.009854609082277298,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.3811074918566775,\n \"exact_match_stderr,none\": 0.02776327166045321\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.11382113821138211,\n \"exact_match_stderr,none\": 0.02875360087323741\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.06060606060606061,\n \"exact_match_stderr,none\"\ : 0.020847129156682045\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.03214285714285714,\n \"exact_match_stderr,none\"\ : 0.01055955866175321\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.12987012987012986,\n \"exact_match_stderr,none\": 0.02717696535667076\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.46113989637305697,\n \"exact_match_stderr,none\"\ : 0.03597524411734576\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.022222222222222223,\n \"exact_match_stderr,none\": 0.01273389971505968\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.2826628989361702,\n \"acc_stderr,none\": 0.004105302726114385\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.4166666666666667,\n\ \ \"acc_norm_stderr,none\": 0.01768575862518651,\n \"alias\": \" -\ \ leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.528,\n \"acc_norm_stderr,none\": 0.031636489531544396\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.31640625,\n \"acc_norm_stderr,none\": 0.02912403057115479\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.408,\n \"acc_norm_stderr,none\": 0.031145209846548512\n\ \ }\n}\n```" repo_url: https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B leaderboard_url: '' point_of_contact: '' configs: - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_date_understanding data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_navigate data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_object_counting data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_ruin_names data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_snarks data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_gpqa_diamond data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_gpqa_extended data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_gpqa_main data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_ifeval data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_ifeval_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_math_algebra_hard data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_math_geometry_hard data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_math_num_theory_hard data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_math_precalculus_hard data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_mmlu_pro data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_musr_object_placements data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-31-08.901515.jsonl' - config_name: allenai__Llama-3.1-Tulu-3-8B__leaderboard_musr_team_allocation data_files: - split: 2024_11_22T00_31_08.901515 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-31-08.901515.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-31-08.901515.jsonl' --- # Dataset Card for Evaluation run of allenai/Llama-3.1-Tulu-3-8B <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [allenai/Llama-3.1-Tulu-3-8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/allenai__Llama-3.1-Tulu-3-8B-details", name="allenai__Llama-3.1-Tulu-3-8B__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-22T00-31-08.901515](https://huggingface.co/datasets/open-llm-leaderboard/allenai__Llama-3.1-Tulu-3-8B-details/blob/main/allenai__Llama-3.1-Tulu-3-8B/results_2024-11-22T00-31-08.901515.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "acc_norm,none": 0.38785834738617203, "acc_norm_stderr,none": 0.005273329157943381, "inst_level_loose_acc,none": 0.8752997601918465, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.8585131894484412, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.19637462235649547, "exact_match_stderr,none": 0.009854609082277298, "acc,none": 0.2826628989361702, "acc_stderr,none": 0.0041053027261143855, "prompt_level_strict_acc,none": 0.7948243992606284, "prompt_level_strict_acc_stderr,none": 0.01737807119675965, "prompt_level_loose_acc,none": 0.8151571164510166, "prompt_level_loose_acc_stderr,none": 0.01670417955850395, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.4025342822426662, "acc_norm_stderr,none": 0.006072426154807149, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.8, "acc_norm_stderr,none": 0.02534897002097912 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5187165775401069, "acc_norm_stderr,none": 0.03663608375537843 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.604, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.472, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.328, "acc_norm_stderr,none": 0.029752391824475363 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.256, "acc_norm_stderr,none": 0.027657108718204846 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.212, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.416, "acc_norm_stderr,none": 0.031235856237014505 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.688, "acc_norm_stderr,none": 0.029361067575219852 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3904109589041096, "acc_norm_stderr,none": 0.040513109165891854 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.396, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.5224719101123596, "acc_norm_stderr,none": 0.03754432508487191 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.496, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.116, "acc_norm_stderr,none": 0.020293429803083823 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.136, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.144, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.292, "acc_norm_stderr,none": 0.02881432040220563 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.2986577181208054, "acc_norm_stderr,none": 0.013264655332365493, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.30303030303030304, "acc_norm_stderr,none": 0.03274287914026869 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.28205128205128205, "acc_norm_stderr,none": 0.019275803929950375 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.3169642857142857, "acc_norm_stderr,none": 0.0220076215848248 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7948243992606284, "prompt_level_strict_acc_stderr,none": 0.01737807119675965, "inst_level_strict_acc,none": 0.8585131894484412, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.8151571164510166, "prompt_level_loose_acc_stderr,none": 0.01670417955850395, "inst_level_loose_acc,none": 0.8752997601918465, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.19637462235649547, "exact_match_stderr,none": 0.009854609082277298, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.3811074918566775, "exact_match_stderr,none": 0.02776327166045321 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.11382113821138211, "exact_match_stderr,none": 0.02875360087323741 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.06060606060606061, "exact_match_stderr,none": 0.020847129156682045 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.03214285714285714, "exact_match_stderr,none": 0.01055955866175321 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.12987012987012986, "exact_match_stderr,none": 0.02717696535667076 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.46113989637305697, "exact_match_stderr,none": 0.03597524411734576 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.022222222222222223, "exact_match_stderr,none": 0.01273389971505968 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.2826628989361702, "acc_stderr,none": 0.004105302726114385 }, "leaderboard_musr": { "acc_norm,none": 0.4166666666666667, "acc_norm_stderr,none": 0.01768575862518651, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.528, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.31640625, "acc_norm_stderr,none": 0.02912403057115479 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.408, "acc_norm_stderr,none": 0.031145209846548512 } }, "leaderboard": { "acc_norm,none": 0.38785834738617203, "acc_norm_stderr,none": 0.005273329157943381, "inst_level_loose_acc,none": 0.8752997601918465, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.8585131894484412, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.19637462235649547, "exact_match_stderr,none": 0.009854609082277298, "acc,none": 0.2826628989361702, "acc_stderr,none": 0.0041053027261143855, "prompt_level_strict_acc,none": 0.7948243992606284, "prompt_level_strict_acc_stderr,none": 0.01737807119675965, "prompt_level_loose_acc,none": 0.8151571164510166, "prompt_level_loose_acc_stderr,none": 0.01670417955850395, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.4025342822426662, "acc_norm_stderr,none": 0.006072426154807149, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.8, "acc_norm_stderr,none": 0.02534897002097912 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5187165775401069, "acc_norm_stderr,none": 0.03663608375537843 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.604, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.472, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.328, "acc_norm_stderr,none": 0.029752391824475363 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.256, "acc_norm_stderr,none": 0.027657108718204846 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.212, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.416, "acc_norm_stderr,none": 0.031235856237014505 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.688, "acc_norm_stderr,none": 0.029361067575219852 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.42, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.288, "acc_norm_stderr,none": 0.028697004587398253 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.3904109589041096, "acc_norm_stderr,none": 0.040513109165891854 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.396, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.5224719101123596, "acc_norm_stderr,none": 0.03754432508487191 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.496, "acc_norm_stderr,none": 0.0316851985511992 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.116, "acc_norm_stderr,none": 0.020293429803083823 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.136, "acc_norm_stderr,none": 0.021723342617052086 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.144, "acc_norm_stderr,none": 0.022249407735450245 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.292, "acc_norm_stderr,none": 0.02881432040220563 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.488, "acc_norm_stderr,none": 0.03167708558254714 }, "leaderboard_gpqa": { "acc_norm,none": 0.2986577181208054, "acc_norm_stderr,none": 0.013264655332365493, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.30303030303030304, "acc_norm_stderr,none": 0.03274287914026869 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.28205128205128205, "acc_norm_stderr,none": 0.019275803929950375 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.3169642857142857, "acc_norm_stderr,none": 0.0220076215848248 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7948243992606284, "prompt_level_strict_acc_stderr,none": 0.01737807119675965, "inst_level_strict_acc,none": 0.8585131894484412, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.8151571164510166, "prompt_level_loose_acc_stderr,none": 0.01670417955850395, "inst_level_loose_acc,none": 0.8752997601918465, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.19637462235649547, "exact_match_stderr,none": 0.009854609082277298, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.3811074918566775, "exact_match_stderr,none": 0.02776327166045321 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.11382113821138211, "exact_match_stderr,none": 0.02875360087323741 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.06060606060606061, "exact_match_stderr,none": 0.020847129156682045 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.03214285714285714, "exact_match_stderr,none": 0.01055955866175321 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.12987012987012986, "exact_match_stderr,none": 0.02717696535667076 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.46113989637305697, "exact_match_stderr,none": 0.03597524411734576 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.022222222222222223, "exact_match_stderr,none": 0.01273389971505968 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.2826628989361702, "acc_stderr,none": 0.004105302726114385 }, "leaderboard_musr": { "acc_norm,none": 0.4166666666666667, "acc_norm_stderr,none": 0.01768575862518651, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.528, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.31640625, "acc_norm_stderr,none": 0.02912403057115479 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.408, "acc_norm_stderr,none": 0.031145209846548512 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
Yuanxin-Liu/Test-Dataset
Yuanxin-Liu
"2024-11-22T00:31:56Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:31:55Z"
--- dataset_info: features: - name: question dtype: string - name: type dtype: string - name: solution dtype: string - name: original_question dtype: string - name: idx dtype: int64 splits: - name: train num_bytes: 108719 num_examples: 100 download_size: 64293 dataset_size: 108719 configs: - config_name: default data_files: - split: train path: data/train-* ---
open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerCreative-Mix-details
open-llm-leaderboard
"2024-11-22T00:35:43Z"
0
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:32:12Z"
--- pretty_name: Evaluation run of ZeroXClem/Qwen2.5-7B-HomerCreative-Mix dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [ZeroXClem/Qwen2.5-7B-HomerCreative-Mix](https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerCreative-Mix)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerCreative-Mix-details\"\ ,\n\tname=\"ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-11-22T00-32-11.693490](https://huggingface.co/datasets/open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerCreative-Mix-details/blob/main/ZeroXClem__Qwen2.5-7B-HomerCreative-Mix/results_2024-11-22T00-32-11.693490.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"acc,none\": 0.4447307180851064,\n \"acc_stderr,none\"\ : 0.004530535363926051,\n \"inst_level_loose_acc,none\": 0.8285371702637889,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"inst_level_strict_acc,none\"\ : 0.8165467625899281,\n \"inst_level_strict_acc_stderr,none\": \"N/A\"\ ,\n \"exact_match,none\": 0.32326283987915405,\n \"exact_match_stderr,none\"\ : 0.011761711608666757,\n \"prompt_level_loose_acc,none\": 0.7634011090573013,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.018288827582625598,\n \ \ \"acc_norm,none\": 0.5014917628745622,\n \"acc_norm_stderr,none\"\ : 0.005340969872084893,\n \"prompt_level_strict_acc,none\": 0.7504621072088724,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.018622404509805804,\n \ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\":\ \ {\n \"acc_norm,none\": 0.5521610831452872,\n \"acc_norm_stderr,none\"\ : 0.006179016832046109,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.86,\n\ \ \"acc_norm_stderr,none\": 0.021989409645240245\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5668449197860963,\n \"acc_norm_stderr,none\"\ : 0.03633267411102591\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.588,\n \"acc_norm_stderr,none\": 0.031191596026022818\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.632,\n\ \ \"acc_norm_stderr,none\": 0.03056207062099311\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.604,\n \"acc_norm_stderr,none\":\ \ 0.030993197854577898\n },\n \"leaderboard_bbh_geometric_shapes\"\ : {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.556,\n \ \ \"acc_norm_stderr,none\": 0.03148684942554571\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.528,\n \"acc_norm_stderr,none\":\ \ 0.031636489531544396\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.468,\n \"acc_norm_stderr,none\":\ \ 0.03162125257572558\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.784,\n \"acc_norm_stderr,none\":\ \ 0.02607865766373279\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \ \ \"acc_norm,none\": 0.632,\n \"acc_norm_stderr,none\": 0.03056207062099311\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \"\ \ - leaderboard_bbh_navigate\",\n \"acc_norm,none\": 0.7,\n \ \ \"acc_norm_stderr,none\": 0.029040893477575786\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.5958904109589042,\n \"acc_norm_stderr,none\": 0.0407519857003932\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.628,\n \"acc_norm_stderr,none\": 0.03063032594455827\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.58,\n \ \ \"acc_norm_stderr,none\": 0.03127799950463661\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\":\ \ 0.031603975145223735\n },\n \"leaderboard_bbh_snarks\": {\n \ \ \"alias\": \" - leaderboard_bbh_snarks\",\n \"acc_norm,none\"\ : 0.6966292134831461,\n \"acc_norm_stderr,none\": 0.03455421944400101\n\ \ },\n \"leaderboard_bbh_sports_understanding\": {\n \"\ alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.74,\n \"acc_norm_stderr,none\": 0.027797315752644335\n },\n\ \ \"leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" -\ \ leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.548,\n\ \ \"acc_norm_stderr,none\": 0.03153986449255664\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.212,\n \"acc_norm_stderr,none\": 0.025901884690541117\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.168,\n \"acc_norm_stderr,none\":\ \ 0.023692813205492536\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.24,\n \"acc_norm_stderr,none\": 0.027065293652238982\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\":\ \ \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\": 0.548,\n\ \ \"acc_norm_stderr,none\": 0.03153986449255664\n },\n \ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.29949664429530204,\n\ \ \"acc_norm_stderr,none\": 0.013278959534799928,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.2878787878787879,\n \"acc_norm_stderr,none\": 0.03225883512300998\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.29120879120879123,\n\ \ \"acc_norm_stderr,none\": 0.019460910297288078\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.31473214285714285,\n \"acc_norm_stderr,none\"\ : 0.021965797142222607\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.7504621072088724,\n \"prompt_level_strict_acc_stderr,none\": 0.018622404509805804,\n\ \ \"inst_level_strict_acc,none\": 0.8165467625899281,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.7634011090573013,\n \"prompt_level_loose_acc_stderr,none\": 0.018288827582625598,\n\ \ \"inst_level_loose_acc,none\": 0.8285371702637889,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.32326283987915405,\n \"exact_match_stderr,none\"\ : 0.011761711608666757,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.6091205211726385,\n\ \ \"exact_match_stderr,none\": 0.027894098976471507\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.2032520325203252,\n \"exact_match_stderr,none\": 0.03643325851749072\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.20454545454545456,\n\ \ \"exact_match_stderr,none\": 0.03524251981380333\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\": \"\ \ - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.1392857142857143,\n \"exact_match_stderr,none\": 0.02072911170255923\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.3051948051948052,\n\ \ \"exact_match_stderr,none\": 0.0372284008596668\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.46113989637305697,\n \"exact_match_stderr,none\"\ : 0.03597524411734576\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.1037037037037037,\n \"exact_match_stderr,none\"\ : 0.02633725661744443\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.4447307180851064,\n\ \ \"acc_stderr,none\": 0.004530535363926052\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.43386243386243384,\n \"acc_norm_stderr,none\"\ : 0.01762618265060195,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \"\ \ - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.56,\n\ \ \"acc_norm_stderr,none\": 0.03145724452223569\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.296875,\n \"acc_norm_stderr,none\"\ : 0.028610997088737832\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n\ \ }\n },\n \"leaderboard\": {\n \"acc,none\": 0.4447307180851064,\n\ \ \"acc_stderr,none\": 0.004530535363926051,\n \"inst_level_loose_acc,none\"\ : 0.8285371702637889,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n\ \ \"inst_level_strict_acc,none\": 0.8165467625899281,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"exact_match,none\": 0.32326283987915405,\n \"exact_match_stderr,none\"\ : 0.011761711608666757,\n \"prompt_level_loose_acc,none\": 0.7634011090573013,\n\ \ \"prompt_level_loose_acc_stderr,none\": 0.018288827582625598,\n \ \ \"acc_norm,none\": 0.5014917628745622,\n \"acc_norm_stderr,none\": 0.005340969872084893,\n\ \ \"prompt_level_strict_acc,none\": 0.7504621072088724,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.018622404509805804,\n \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.5521610831452872,\n \"acc_norm_stderr,none\"\ : 0.006179016832046109,\n \"alias\": \" - leaderboard_bbh\"\n },\n \ \ \"leaderboard_bbh_boolean_expressions\": {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\"\ ,\n \"acc_norm,none\": 0.86,\n \"acc_norm_stderr,none\": 0.021989409645240245\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5668449197860963,\n \"acc_norm_stderr,none\"\ : 0.03633267411102591\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.588,\n \"acc_norm_stderr,none\": 0.031191596026022818\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.632,\n \"acc_norm_stderr,none\": 0.03056207062099311\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.604,\n \"acc_norm_stderr,none\": 0.030993197854577898\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.556,\n \"acc_norm_stderr,none\": 0.03148684942554571\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.528,\n \"acc_norm_stderr,none\": 0.031636489531544396\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.468,\n \"acc_norm_stderr,none\": 0.03162125257572558\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.784,\n \"acc_norm_stderr,none\": 0.02607865766373279\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.632,\n \"acc_norm_stderr,none\": 0.03056207062099311\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.7,\n \"acc_norm_stderr,none\": 0.029040893477575786\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.36,\n \"acc_norm_stderr,none\": 0.03041876402517494\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.5958904109589042,\n\ \ \"acc_norm_stderr,none\": 0.0407519857003932\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.628,\n \"acc_norm_stderr,none\": 0.03063032594455827\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.536,\n \"acc_norm_stderr,none\": 0.031603975145223735\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6966292134831461,\n \"acc_norm_stderr,none\"\ : 0.03455421944400101\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.74,\n \"acc_norm_stderr,none\": 0.027797315752644335\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.212,\n \"acc_norm_stderr,none\": 0.025901884690541117\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.168,\n \"acc_norm_stderr,none\": 0.023692813205492536\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.24,\n \"acc_norm_stderr,none\": 0.027065293652238982\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.29949664429530204,\n\ \ \"acc_norm_stderr,none\": 0.013278959534799928,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.2878787878787879,\n\ \ \"acc_norm_stderr,none\": 0.03225883512300998\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.29120879120879123,\n \"acc_norm_stderr,none\": 0.019460910297288078\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.31473214285714285,\n \"acc_norm_stderr,none\"\ : 0.021965797142222607\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.7504621072088724,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.018622404509805804,\n \ \ \"inst_level_strict_acc,none\": 0.8165467625899281,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.7634011090573013,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.018288827582625598,\n \"inst_level_loose_acc,none\"\ : 0.8285371702637889,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.32326283987915405,\n\ \ \"exact_match_stderr,none\": 0.011761711608666757,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.6091205211726385,\n \"exact_match_stderr,none\": 0.027894098976471507\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.2032520325203252,\n \"exact_match_stderr,none\": 0.03643325851749072\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.20454545454545456,\n \"exact_match_stderr,none\"\ : 0.03524251981380333\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.1392857142857143,\n \"exact_match_stderr,none\"\ : 0.02072911170255923\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.3051948051948052,\n \"exact_match_stderr,none\": 0.0372284008596668\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.46113989637305697,\n \"exact_match_stderr,none\"\ : 0.03597524411734576\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.1037037037037037,\n \"exact_match_stderr,none\": 0.02633725661744443\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.4447307180851064,\n \"acc_stderr,none\": 0.004530535363926052\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.43386243386243384,\n\ \ \"acc_norm_stderr,none\": 0.01762618265060195,\n \"alias\": \" -\ \ leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.56,\n \"acc_norm_stderr,none\": 0.03145724452223569\n },\n \"leaderboard_musr_object_placements\"\ : {\n \"alias\": \" - leaderboard_musr_object_placements\",\n \"\ acc_norm,none\": 0.296875,\n \"acc_norm_stderr,none\": 0.028610997088737832\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n\ \ }\n}\n```" repo_url: https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerCreative-Mix leaderboard_url: '' point_of_contact: '' configs: - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_date_understanding data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_navigate data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_object_counting data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_ruin_names data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_snarks data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_gpqa_diamond data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_gpqa_extended data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_gpqa_main data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_ifeval data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_ifeval_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_math_algebra_hard data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_math_geometry_hard data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_math_num_theory_hard data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_math_precalculus_hard data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_mmlu_pro data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_musr_object_placements data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-32-11.693490.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_musr_team_allocation data_files: - split: 2024_11_22T00_32_11.693490 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-32-11.693490.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-32-11.693490.jsonl' --- # Dataset Card for Evaluation run of ZeroXClem/Qwen2.5-7B-HomerCreative-Mix <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [ZeroXClem/Qwen2.5-7B-HomerCreative-Mix](https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerCreative-Mix) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerCreative-Mix-details", name="ZeroXClem__Qwen2.5-7B-HomerCreative-Mix__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-22T00-32-11.693490](https://huggingface.co/datasets/open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerCreative-Mix-details/blob/main/ZeroXClem__Qwen2.5-7B-HomerCreative-Mix/results_2024-11-22T00-32-11.693490.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "acc,none": 0.4447307180851064, "acc_stderr,none": 0.004530535363926051, "inst_level_loose_acc,none": 0.8285371702637889, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.8165467625899281, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.32326283987915405, "exact_match_stderr,none": 0.011761711608666757, "prompt_level_loose_acc,none": 0.7634011090573013, "prompt_level_loose_acc_stderr,none": 0.018288827582625598, "acc_norm,none": 0.5014917628745622, "acc_norm_stderr,none": 0.005340969872084893, "prompt_level_strict_acc,none": 0.7504621072088724, "prompt_level_strict_acc_stderr,none": 0.018622404509805804, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5521610831452872, "acc_norm_stderr,none": 0.006179016832046109, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.86, "acc_norm_stderr,none": 0.021989409645240245 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5668449197860963, "acc_norm_stderr,none": 0.03633267411102591 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.588, "acc_norm_stderr,none": 0.031191596026022818 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.632, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.604, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.528, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.468, "acc_norm_stderr,none": 0.03162125257572558 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.784, "acc_norm_stderr,none": 0.02607865766373279 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.632, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.7, "acc_norm_stderr,none": 0.029040893477575786 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.36, "acc_norm_stderr,none": 0.03041876402517494 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.5958904109589042, "acc_norm_stderr,none": 0.0407519857003932 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.628, "acc_norm_stderr,none": 0.03063032594455827 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6966292134831461, "acc_norm_stderr,none": 0.03455421944400101 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.74, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.212, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.168, "acc_norm_stderr,none": 0.023692813205492536 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.24, "acc_norm_stderr,none": 0.027065293652238982 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_gpqa": { "acc_norm,none": 0.29949664429530204, "acc_norm_stderr,none": 0.013278959534799928, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.2878787878787879, "acc_norm_stderr,none": 0.03225883512300998 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.29120879120879123, "acc_norm_stderr,none": 0.019460910297288078 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.31473214285714285, "acc_norm_stderr,none": 0.021965797142222607 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7504621072088724, "prompt_level_strict_acc_stderr,none": 0.018622404509805804, "inst_level_strict_acc,none": 0.8165467625899281, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7634011090573013, "prompt_level_loose_acc_stderr,none": 0.018288827582625598, "inst_level_loose_acc,none": 0.8285371702637889, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.32326283987915405, "exact_match_stderr,none": 0.011761711608666757, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.6091205211726385, "exact_match_stderr,none": 0.027894098976471507 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.2032520325203252, "exact_match_stderr,none": 0.03643325851749072 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.20454545454545456, "exact_match_stderr,none": 0.03524251981380333 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.1392857142857143, "exact_match_stderr,none": 0.02072911170255923 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.3051948051948052, "exact_match_stderr,none": 0.0372284008596668 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.46113989637305697, "exact_match_stderr,none": 0.03597524411734576 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.1037037037037037, "exact_match_stderr,none": 0.02633725661744443 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.4447307180851064, "acc_stderr,none": 0.004530535363926052 }, "leaderboard_musr": { "acc_norm,none": 0.43386243386243384, "acc_norm_stderr,none": 0.01762618265060195, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.56, "acc_norm_stderr,none": 0.03145724452223569 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.296875, "acc_norm_stderr,none": 0.028610997088737832 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 } }, "leaderboard": { "acc,none": 0.4447307180851064, "acc_stderr,none": 0.004530535363926051, "inst_level_loose_acc,none": 0.8285371702637889, "inst_level_loose_acc_stderr,none": "N/A", "inst_level_strict_acc,none": 0.8165467625899281, "inst_level_strict_acc_stderr,none": "N/A", "exact_match,none": 0.32326283987915405, "exact_match_stderr,none": 0.011761711608666757, "prompt_level_loose_acc,none": 0.7634011090573013, "prompt_level_loose_acc_stderr,none": 0.018288827582625598, "acc_norm,none": 0.5014917628745622, "acc_norm_stderr,none": 0.005340969872084893, "prompt_level_strict_acc,none": 0.7504621072088724, "prompt_level_strict_acc_stderr,none": 0.018622404509805804, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.5521610831452872, "acc_norm_stderr,none": 0.006179016832046109, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.86, "acc_norm_stderr,none": 0.021989409645240245 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5668449197860963, "acc_norm_stderr,none": 0.03633267411102591 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.588, "acc_norm_stderr,none": 0.031191596026022818 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.632, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.604, "acc_norm_stderr,none": 0.030993197854577898 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.528, "acc_norm_stderr,none": 0.031636489531544396 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.468, "acc_norm_stderr,none": 0.03162125257572558 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.784, "acc_norm_stderr,none": 0.02607865766373279 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.632, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.7, "acc_norm_stderr,none": 0.029040893477575786 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.36, "acc_norm_stderr,none": 0.03041876402517494 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.5958904109589042, "acc_norm_stderr,none": 0.0407519857003932 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.628, "acc_norm_stderr,none": 0.03063032594455827 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.536, "acc_norm_stderr,none": 0.031603975145223735 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6966292134831461, "acc_norm_stderr,none": 0.03455421944400101 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.74, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.212, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.168, "acc_norm_stderr,none": 0.023692813205492536 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.24, "acc_norm_stderr,none": 0.027065293652238982 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_gpqa": { "acc_norm,none": 0.29949664429530204, "acc_norm_stderr,none": 0.013278959534799928, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.2878787878787879, "acc_norm_stderr,none": 0.03225883512300998 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.29120879120879123, "acc_norm_stderr,none": 0.019460910297288078 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.31473214285714285, "acc_norm_stderr,none": 0.021965797142222607 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7504621072088724, "prompt_level_strict_acc_stderr,none": 0.018622404509805804, "inst_level_strict_acc,none": 0.8165467625899281, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7634011090573013, "prompt_level_loose_acc_stderr,none": 0.018288827582625598, "inst_level_loose_acc,none": 0.8285371702637889, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.32326283987915405, "exact_match_stderr,none": 0.011761711608666757, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.6091205211726385, "exact_match_stderr,none": 0.027894098976471507 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.2032520325203252, "exact_match_stderr,none": 0.03643325851749072 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.20454545454545456, "exact_match_stderr,none": 0.03524251981380333 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.1392857142857143, "exact_match_stderr,none": 0.02072911170255923 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.3051948051948052, "exact_match_stderr,none": 0.0372284008596668 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.46113989637305697, "exact_match_stderr,none": 0.03597524411734576 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.1037037037037037, "exact_match_stderr,none": 0.02633725661744443 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.4447307180851064, "acc_stderr,none": 0.004530535363926052 }, "leaderboard_musr": { "acc_norm,none": 0.43386243386243384, "acc_norm_stderr,none": 0.01762618265060195, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.56, "acc_norm_stderr,none": 0.03145724452223569 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.296875, "acc_norm_stderr,none": 0.028610997088737832 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix-details
open-llm-leaderboard
"2024-11-22T00:37:56Z"
0
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:34:21Z"
--- pretty_name: Evaluation run of ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix](https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix)\n\ The dataset is composed of 38 configuration(s), each one corresponding to one of\ \ the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can\ \ be found as a specific split in each configuration, the split being named using\ \ the timestamp of the run.The \"train\" split is always pointing to the latest\ \ results.\n\nAn additional configuration \"results\" store all the aggregated results\ \ of the run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix-details\"\ ,\n\tname=\"ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_boolean_expressions\"\ ,\n\tsplit=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results\ \ from run 2024-11-22T00-34-20.371295](https://huggingface.co/datasets/open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix-details/blob/main/ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix/results_2024-11-22T00-34-20.371295.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"prompt_level_loose_acc,none\": 0.7578558225508318,\n \"\ prompt_level_loose_acc_stderr,none\": 0.018434587800223168,\n \"acc,none\"\ : 0.4431515957446808,\n \"acc_stderr,none\": 0.00452891098809217,\n \ \ \"acc_norm,none\": 0.5046050071345181,\n \"acc_norm_stderr,none\"\ : 0.005356894928628325,\n \"inst_level_strict_acc,none\": 0.802158273381295,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_strict_acc,none\"\ : 0.7393715341959335,\n \"prompt_level_strict_acc_stderr,none\": 0.018890584986760186,\n\ \ \"exact_match,none\": 0.29531722054380666,\n \"exact_match_stderr,none\"\ : 0.011453860732395094,\n \"inst_level_loose_acc,none\": 0.8201438848920863,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"alias\"\ : \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\"\ : 0.551640340218712,\n \"acc_norm_stderr,none\": 0.006182534734432989,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \ \ \"acc_norm,none\": 0.852,\n \"acc_norm_stderr,none\": 0.022503547243806186\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\"\ : \" - leaderboard_bbh_causal_judgement\",\n \"acc_norm,none\": 0.5614973262032086,\n\ \ \"acc_norm_stderr,none\": 0.03638341809400991\n },\n \ \ \"leaderboard_bbh_date_understanding\": {\n \"alias\": \" - leaderboard_bbh_date_understanding\"\ ,\n \"acc_norm,none\": 0.568,\n \"acc_norm_stderr,none\":\ \ 0.03139181076542941\n },\n \"leaderboard_bbh_disambiguation_qa\"\ : {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\",\n \ \ \"acc_norm,none\": 0.636,\n \"acc_norm_stderr,none\": 0.030491555220405475\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\"\ : \" - leaderboard_bbh_formal_fallacies\",\n \"acc_norm,none\": 0.6,\n\ \ \"acc_norm_stderr,none\": 0.031046021028253316\n },\n \ \ \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.54,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.552,\n \ \ \"acc_norm_stderr,none\": 0.03151438761115348\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.524,\n \"acc_norm_stderr,none\":\ \ 0.03164968895968774\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.484,\n \"acc_norm_stderr,none\":\ \ 0.03166998503010743\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.78,\n \"acc_norm_stderr,none\": 0.02625179282460579\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.644,\n \"acc_norm_stderr,none\": 0.0303436806571532\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.7,\n \"acc_norm_stderr,none\": 0.029040893477575786\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\"\ : \" - leaderboard_bbh_object_counting\",\n \"acc_norm,none\": 0.364,\n\ \ \"acc_norm_stderr,none\": 0.030491555220405475\n },\n \ \ \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" - leaderboard_bbh_penguins_in_a_table\"\ ,\n \"acc_norm,none\": 0.589041095890411,\n \"acc_norm_stderr,none\"\ : 0.04085902451640228\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.636,\n \"acc_norm_stderr,none\":\ \ 0.030491555220405475\n },\n \"leaderboard_bbh_ruin_names\": {\n\ \ \"alias\": \" - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\"\ : 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n },\n\ \ \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" -\ \ leaderboard_bbh_snarks\",\n \"acc_norm,none\": 0.6966292134831461,\n\ \ \"acc_norm_stderr,none\": 0.03455421944400101\n },\n \ \ \"leaderboard_bbh_sports_understanding\": {\n \"alias\": \" - leaderboard_bbh_sports_understanding\"\ ,\n \"acc_norm,none\": 0.732,\n \"acc_norm_stderr,none\":\ \ 0.02806876238252672\n },\n \"leaderboard_bbh_temporal_sequences\"\ : {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\",\n \ \ \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.204,\n \"acc_norm_stderr,none\":\ \ 0.025537121574548162\n },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.16,\n \"acc_norm_stderr,none\": 0.023232714782060626\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.248,\n \"acc_norm_stderr,none\":\ \ 0.027367497504863593\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.56,\n \"acc_norm_stderr,none\": 0.03145724452223569\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3196308724832215,\n\ \ \"acc_norm_stderr,none\": 0.013522572199065146,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.3181818181818182,\n \"acc_norm_stderr,none\": 0.0331847733384533\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.3131868131868132,\n\ \ \"acc_norm_stderr,none\": 0.01986656558013767\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.328125,\n \"acc_norm_stderr,none\"\ : 0.0222080353262888\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.7393715341959335,\n \"prompt_level_strict_acc_stderr,none\": 0.018890584986760186,\n\ \ \"inst_level_strict_acc,none\": 0.802158273381295,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.7578558225508318,\n \"prompt_level_loose_acc_stderr,none\": 0.018434587800223168,\n\ \ \"inst_level_loose_acc,none\": 0.8201438848920863,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.29531722054380666,\n \"exact_match_stderr,none\"\ : 0.011453860732395094,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.5635179153094463,\n\ \ \"exact_match_stderr,none\": 0.028351520946552713\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.17073170731707318,\n \"exact_match_stderr,none\": 0.034066279591320504\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.1590909090909091,\n\ \ \"exact_match_stderr,none\": 0.03195667292673137\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\": \"\ \ - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.11785714285714285,\n \"exact_match_stderr,none\": 0.019303911310421605\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.23376623376623376,\n\ \ \"exact_match_stderr,none\": 0.034215730598256215\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.47668393782383417,\n \"exact_match_stderr,none\"\ : 0.03604513672442202\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.1111111111111111,\n \"exact_match_stderr,none\"\ : 0.027148765412512273\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.4431515957446808,\n\ \ \"acc_stderr,none\": 0.00452891098809217\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.43783068783068785,\n \"acc_norm_stderr,none\"\ : 0.017595964155130817,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\":\ \ \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.556,\n\ \ \"acc_norm_stderr,none\": 0.03148684942554571\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.28515625,\n \"acc_norm_stderr,none\"\ : 0.028273327213286358\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.476,\n \"acc_norm_stderr,none\": 0.03164968895968774\n\ \ }\n },\n \"leaderboard\": {\n \"prompt_level_loose_acc,none\"\ : 0.7578558225508318,\n \"prompt_level_loose_acc_stderr,none\": 0.018434587800223168,\n\ \ \"acc,none\": 0.4431515957446808,\n \"acc_stderr,none\": 0.00452891098809217,\n\ \ \"acc_norm,none\": 0.5046050071345181,\n \"acc_norm_stderr,none\"\ : 0.005356894928628325,\n \"inst_level_strict_acc,none\": 0.802158273381295,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_strict_acc,none\"\ : 0.7393715341959335,\n \"prompt_level_strict_acc_stderr,none\": 0.018890584986760186,\n\ \ \"exact_match,none\": 0.29531722054380666,\n \"exact_match_stderr,none\"\ : 0.011453860732395094,\n \"inst_level_loose_acc,none\": 0.8201438848920863,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"alias\": \"leaderboard\"\ \n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.551640340218712,\n\ \ \"acc_norm_stderr,none\": 0.006182534734432989,\n \"alias\": \"\ \ - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\": {\n\ \ \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\"\ : 0.852,\n \"acc_norm_stderr,none\": 0.022503547243806186\n },\n \"\ leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.5614973262032086,\n \"acc_norm_stderr,none\"\ : 0.03638341809400991\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.568,\n \"acc_norm_stderr,none\": 0.03139181076542941\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.636,\n \"acc_norm_stderr,none\": 0.030491555220405475\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.6,\n \"acc_norm_stderr,none\": 0.031046021028253316\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.54,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.552,\n \"acc_norm_stderr,none\": 0.03151438761115348\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.524,\n \"acc_norm_stderr,none\": 0.03164968895968774\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.484,\n \"acc_norm_stderr,none\": 0.03166998503010743\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.78,\n \"acc_norm_stderr,none\": 0.02625179282460579\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"\ acc_norm,none\": 0.644,\n \"acc_norm_stderr,none\": 0.0303436806571532\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.7,\n \"acc_norm_stderr,none\": 0.029040893477575786\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.364,\n \"acc_norm_stderr,none\": 0.030491555220405475\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.589041095890411,\n\ \ \"acc_norm_stderr,none\": 0.04085902451640228\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.636,\n \"acc_norm_stderr,none\": 0.030491555220405475\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.58,\n \"acc_norm_stderr,none\": 0.03127799950463661\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.6966292134831461,\n \"acc_norm_stderr,none\"\ : 0.03455421944400101\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.732,\n \"acc_norm_stderr,none\": 0.02806876238252672\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.544,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.204,\n \"acc_norm_stderr,none\": 0.025537121574548162\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.16,\n \"acc_norm_stderr,none\": 0.023232714782060626\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.248,\n \"acc_norm_stderr,none\": 0.027367497504863593\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.56,\n \"acc_norm_stderr,none\": 0.03145724452223569\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3196308724832215,\n\ \ \"acc_norm_stderr,none\": 0.013522572199065146,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.3181818181818182,\n\ \ \"acc_norm_stderr,none\": 0.0331847733384533\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.3131868131868132,\n \"acc_norm_stderr,none\": 0.01986656558013767\n \ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.328125,\n \"acc_norm_stderr,none\": 0.0222080353262888\n\ \ },\n \"leaderboard_ifeval\": {\n \"alias\": \" - leaderboard_ifeval\"\ ,\n \"prompt_level_strict_acc,none\": 0.7393715341959335,\n \"prompt_level_strict_acc_stderr,none\"\ : 0.018890584986760186,\n \"inst_level_strict_acc,none\": 0.802158273381295,\n\ \ \"inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.7578558225508318,\n \"prompt_level_loose_acc_stderr,none\": 0.018434587800223168,\n\ \ \"inst_level_loose_acc,none\": 0.8201438848920863,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\"\n },\n \"leaderboard_math_hard\": {\n \"exact_match,none\"\ : 0.29531722054380666,\n \"exact_match_stderr,none\": 0.011453860732395094,\n\ \ \"alias\": \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.5635179153094463,\n \"exact_match_stderr,none\": 0.028351520946552713\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.17073170731707318,\n \"exact_match_stderr,none\": 0.034066279591320504\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.1590909090909091,\n \"exact_match_stderr,none\"\ : 0.03195667292673137\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.11785714285714285,\n \"exact_match_stderr,none\"\ : 0.019303911310421605\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.23376623376623376,\n \"exact_match_stderr,none\": 0.034215730598256215\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.47668393782383417,\n \"exact_match_stderr,none\"\ : 0.03604513672442202\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.1111111111111111,\n \"exact_match_stderr,none\": 0.027148765412512273\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.4431515957446808,\n \"acc_stderr,none\": 0.00452891098809217\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.43783068783068785,\n\ \ \"acc_norm_stderr,none\": 0.017595964155130817,\n \"alias\": \"\ \ - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.556,\n \"acc_norm_stderr,none\": 0.03148684942554571\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.28515625,\n \"acc_norm_stderr,none\": 0.028273327213286358\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.476,\n \"acc_norm_stderr,none\": 0.03164968895968774\n\ \ }\n}\n```" repo_url: https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix leaderboard_url: '' point_of_contact: '' configs: - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_date_understanding data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_navigate data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_object_counting data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_ruin_names data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_snarks data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_gpqa_diamond data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_gpqa_extended data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_gpqa_main data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_ifeval data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_ifeval_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_math_algebra_hard data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_math_geometry_hard data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_math_num_theory_hard data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_math_precalculus_hard data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_mmlu_pro data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_musr_object_placements data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-22T00-34-20.371295.jsonl' - config_name: ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_musr_team_allocation data_files: - split: 2024_11_22T00_34_20.371295 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-34-20.371295.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-22T00-34-20.371295.jsonl' --- # Dataset Card for Evaluation run of ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix](https://huggingface.co/ZeroXClem/Qwen2.5-7B-HomerAnvita-NerdMix) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix-details", name="ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-22T00-34-20.371295](https://huggingface.co/datasets/open-llm-leaderboard/ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix-details/blob/main/ZeroXClem__Qwen2.5-7B-HomerAnvita-NerdMix/results_2024-11-22T00-34-20.371295.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "prompt_level_loose_acc,none": 0.7578558225508318, "prompt_level_loose_acc_stderr,none": 0.018434587800223168, "acc,none": 0.4431515957446808, "acc_stderr,none": 0.00452891098809217, "acc_norm,none": 0.5046050071345181, "acc_norm_stderr,none": 0.005356894928628325, "inst_level_strict_acc,none": 0.802158273381295, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.7393715341959335, "prompt_level_strict_acc_stderr,none": 0.018890584986760186, "exact_match,none": 0.29531722054380666, "exact_match_stderr,none": 0.011453860732395094, "inst_level_loose_acc,none": 0.8201438848920863, "inst_level_loose_acc_stderr,none": "N/A", "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.551640340218712, "acc_norm_stderr,none": 0.006182534734432989, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.852, "acc_norm_stderr,none": 0.022503547243806186 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5614973262032086, "acc_norm_stderr,none": 0.03638341809400991 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.6, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.54, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.552, "acc_norm_stderr,none": 0.03151438761115348 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.524, "acc_norm_stderr,none": 0.03164968895968774 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.78, "acc_norm_stderr,none": 0.02625179282460579 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.644, "acc_norm_stderr,none": 0.0303436806571532 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.7, "acc_norm_stderr,none": 0.029040893477575786 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.364, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.589041095890411, "acc_norm_stderr,none": 0.04085902451640228 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6966292134831461, "acc_norm_stderr,none": 0.03455421944400101 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.732, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.204, "acc_norm_stderr,none": 0.025537121574548162 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.16, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.248, "acc_norm_stderr,none": 0.027367497504863593 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.56, "acc_norm_stderr,none": 0.03145724452223569 }, "leaderboard_gpqa": { "acc_norm,none": 0.3196308724832215, "acc_norm_stderr,none": 0.013522572199065146, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.3181818181818182, "acc_norm_stderr,none": 0.0331847733384533 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.3131868131868132, "acc_norm_stderr,none": 0.01986656558013767 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.328125, "acc_norm_stderr,none": 0.0222080353262888 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7393715341959335, "prompt_level_strict_acc_stderr,none": 0.018890584986760186, "inst_level_strict_acc,none": 0.802158273381295, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7578558225508318, "prompt_level_loose_acc_stderr,none": 0.018434587800223168, "inst_level_loose_acc,none": 0.8201438848920863, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.29531722054380666, "exact_match_stderr,none": 0.011453860732395094, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.5635179153094463, "exact_match_stderr,none": 0.028351520946552713 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.17073170731707318, "exact_match_stderr,none": 0.034066279591320504 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.1590909090909091, "exact_match_stderr,none": 0.03195667292673137 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.11785714285714285, "exact_match_stderr,none": 0.019303911310421605 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.23376623376623376, "exact_match_stderr,none": 0.034215730598256215 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.47668393782383417, "exact_match_stderr,none": 0.03604513672442202 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.1111111111111111, "exact_match_stderr,none": 0.027148765412512273 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.4431515957446808, "acc_stderr,none": 0.00452891098809217 }, "leaderboard_musr": { "acc_norm,none": 0.43783068783068785, "acc_norm_stderr,none": 0.017595964155130817, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.28515625, "acc_norm_stderr,none": 0.028273327213286358 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.476, "acc_norm_stderr,none": 0.03164968895968774 } }, "leaderboard": { "prompt_level_loose_acc,none": 0.7578558225508318, "prompt_level_loose_acc_stderr,none": 0.018434587800223168, "acc,none": 0.4431515957446808, "acc_stderr,none": 0.00452891098809217, "acc_norm,none": 0.5046050071345181, "acc_norm_stderr,none": 0.005356894928628325, "inst_level_strict_acc,none": 0.802158273381295, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.7393715341959335, "prompt_level_strict_acc_stderr,none": 0.018890584986760186, "exact_match,none": 0.29531722054380666, "exact_match_stderr,none": 0.011453860732395094, "inst_level_loose_acc,none": 0.8201438848920863, "inst_level_loose_acc_stderr,none": "N/A", "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.551640340218712, "acc_norm_stderr,none": 0.006182534734432989, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.852, "acc_norm_stderr,none": 0.022503547243806186 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.5614973262032086, "acc_norm_stderr,none": 0.03638341809400991 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.568, "acc_norm_stderr,none": 0.03139181076542941 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.6, "acc_norm_stderr,none": 0.031046021028253316 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.54, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.552, "acc_norm_stderr,none": 0.03151438761115348 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.524, "acc_norm_stderr,none": 0.03164968895968774 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.484, "acc_norm_stderr,none": 0.03166998503010743 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.78, "acc_norm_stderr,none": 0.02625179282460579 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.644, "acc_norm_stderr,none": 0.0303436806571532 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.7, "acc_norm_stderr,none": 0.029040893477575786 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.364, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.589041095890411, "acc_norm_stderr,none": 0.04085902451640228 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.58, "acc_norm_stderr,none": 0.03127799950463661 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.6966292134831461, "acc_norm_stderr,none": 0.03455421944400101 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.732, "acc_norm_stderr,none": 0.02806876238252672 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.544, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.204, "acc_norm_stderr,none": 0.025537121574548162 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.16, "acc_norm_stderr,none": 0.023232714782060626 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.248, "acc_norm_stderr,none": 0.027367497504863593 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.56, "acc_norm_stderr,none": 0.03145724452223569 }, "leaderboard_gpqa": { "acc_norm,none": 0.3196308724832215, "acc_norm_stderr,none": 0.013522572199065146, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.3181818181818182, "acc_norm_stderr,none": 0.0331847733384533 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.3131868131868132, "acc_norm_stderr,none": 0.01986656558013767 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.328125, "acc_norm_stderr,none": 0.0222080353262888 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7393715341959335, "prompt_level_strict_acc_stderr,none": 0.018890584986760186, "inst_level_strict_acc,none": 0.802158273381295, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7578558225508318, "prompt_level_loose_acc_stderr,none": 0.018434587800223168, "inst_level_loose_acc,none": 0.8201438848920863, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.29531722054380666, "exact_match_stderr,none": 0.011453860732395094, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.5635179153094463, "exact_match_stderr,none": 0.028351520946552713 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.17073170731707318, "exact_match_stderr,none": 0.034066279591320504 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.1590909090909091, "exact_match_stderr,none": 0.03195667292673137 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.11785714285714285, "exact_match_stderr,none": 0.019303911310421605 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.23376623376623376, "exact_match_stderr,none": 0.034215730598256215 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.47668393782383417, "exact_match_stderr,none": 0.03604513672442202 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.1111111111111111, "exact_match_stderr,none": 0.027148765412512273 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.4431515957446808, "acc_stderr,none": 0.00452891098809217 }, "leaderboard_musr": { "acc_norm,none": 0.43783068783068785, "acc_norm_stderr,none": 0.017595964155130817, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.28515625, "acc_norm_stderr,none": 0.028273327213286358 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.476, "acc_norm_stderr,none": 0.03164968895968774 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
neoneye/simon-arc-solve-color-v17
neoneye
"2024-11-22T00:37:15Z"
0
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-22T00:36:02Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve color version 17 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the colors gets manipulated. Currently it's two-color images, where the transformation is to swap colors. The image sizes are between 1 and 5 pixels. Predict the number of rows in the output image. # Version 2 Number of test: 1-2. Previously it was always 1 test. # Version 3 input image size: 1-3. Number of tests: 1. Identify most popular color, and least popular color. The output size is always 1x1. # Version 4 input image size: 1-4. Number of tests: 1. Identify most popular color, and least popular color. The output size is always 1x1. # Version 5 input image size: 1-5. Number of tests: 1-2. Identify most popular color, and least popular color. The output size is always 1x1. # Version 6 input image size: 1-5. Number of tests: 1-2. Identify most popular color, and least popular color. Multiple output sizes: output size is 1x1, and same output size as input size. Swap colors. # Version 7 Focus on `generate_task_replace_color`. image size: 3-6. padding size: 1-5. # Version 8 Focus on `generate_task_replace_color`. image size: 3-8. padding size: 1-10. # Version 9 Focus on `generate_task_replace_color`. image size: 3-10. padding size: 1-20. # Version 10 Enabled all the task generators. # Version 11 Focus on `generate_task_replace_color_pairs_with_different_palettes`. image size: 3-5. padding size: 1-4. # Version 12 Focus on `generate_task_replace_color_pairs_with_different_palettes`. image size: 3-8. padding size: 1-10. # Version 13 Focus on `generate_task_replace_color_pairs_with_different_palettes`. image size: 3-10. padding size: 1-20. # Version 14 Extended `generate_task_replace_color_pairs_with_different_palettes` with 2 new palette modes. Enabled all transformations. # Version 15 Earlier predictions added to some of the rows. # Version 16 Added fields: `arc_task`, `test_index`, `earlier_output`. # Version 17 Replaced RLE compressed response with raw pixel response. image size: 1-7.
preetam8/accent_correction_dataset_sample_3
preetam8
"2024-11-22T00:39:44Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:39:42Z"
--- dataset_info: features: - name: sentence dtype: string - name: speaker dtype: string - name: waveform sequence: float16 splits: - name: train num_bytes: 1137004 num_examples: 4 download_size: 1117919 dataset_size: 1137004 configs: - config_name: default data_files: - split: train path: data/train-* ---
yuyuriri/btsdata_TEST
yuyuriri
"2024-11-22T00:43:45Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:43:44Z"
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 29225 num_examples: 43 download_size: 19249 dataset_size: 29225 configs: - config_name: default data_files: - split: train path: data/train-* ---
su0529/btsdata_TEST
su0529
"2024-11-22T00:45:04Z"
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:44:54Z"
--- license: apache-2.0 dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 29225 num_examples: 43 download_size: 19249 dataset_size: 29225 configs: - config_name: default data_files: - split: train path: data/train-* ---
LeeSence/llamastudy_bts_ko
LeeSence
"2024-11-22T00:45:36Z"
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:45:04Z"
--- license: apache-2.0 dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 29225 num_examples: 43 download_size: 19249 dataset_size: 29225 configs: - config_name: default data_files: - split: train path: data/train-* ---
rssaem/llama_bts_ko
rssaem
"2024-11-22T00:46:53Z"
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:45:07Z"
--- license: apache-2.0 dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 29225 num_examples: 43 download_size: 19249 dataset_size: 29225 configs: - config_name: default data_files: - split: train path: data/train-* ---
yuyuriri/llama_bts_ko
yuyuriri
"2024-11-22T00:46:02Z"
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:45:08Z"
--- license: apache-2.0 dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 29225 num_examples: 43 download_size: 19249 dataset_size: 29225 configs: - config_name: default data_files: - split: train path: data/train-* ---
smui/llama_bts_ko
smui
"2024-11-22T00:47:34Z"
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:45:10Z"
--- license: apache-2.0 configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 29225 num_examples: 43 download_size: 19249 dataset_size: 29225 ---
Kimsusung/LSS_BTS_KR
Kimsusung
"2024-11-22T00:46:27Z"
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:45:10Z"
--- license: apache-2.0 dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 29225 num_examples: 43 download_size: 19249 dataset_size: 29225 configs: - config_name: default data_files: - split: train path: data/train-* ---
isuh/llama_bts_ko
isuh
"2024-11-22T00:48:24Z"
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:45:12Z"
--- license: apache-2.0 dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 29225 num_examples: 43 download_size: 19249 dataset_size: 29225 configs: - config_name: default data_files: - split: train path: data/train-* ---
preetam8/accent_correction_dataset_sample_4
preetam8
"2024-11-22T00:48:26Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:48:24Z"
--- dataset_info: features: - name: sentence dtype: string - name: speaker dtype: string - name: waveform sequence: float16 splits: - name: train num_bytes: 2226284 num_examples: 4 download_size: 2138977 dataset_size: 2226284 configs: - config_name: default data_files: - split: train path: data/train-* ---
answerdotai/trivia_mcqa_6
answerdotai
"2024-11-22T00:50:26Z"
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:49:49Z"
--- dataset_info: features: - name: question_id dtype: string - name: question dtype: string - name: context dtype: string - name: options sequence: string - name: answer_index dtype: int64 - name: answer dtype: string splits: - name: validation num_bytes: 20498466 num_examples: 1154 - name: train num_bytes: 249005104 num_examples: 13986 download_size: 154522714 dataset_size: 269503570 configs: - config_name: default data_files: - split: validation path: data/validation-* - split: train path: data/train-* ---
dgambettaphd/D_gen6_run0_llama2-7b_wiki_doc1000_real32_synt96
dgambettaphd
"2024-11-22T00:56:30Z"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T00:56:27Z"
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 523754 num_examples: 1000 download_size: 288210 dataset_size: 523754 configs: - config_name: default data_files: - split: train path: data/train-* ---
jeonjin11/11ama_bts_ko
jeonjin11
"2024-11-22T01:03:43Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T01:01:48Z"
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 29225 num_examples: 43 download_size: 19249 dataset_size: 29225 configs: - config_name: default data_files: - split: train path: data/train-* ---
aisuko/DPO-dataset
aisuko
"2024-11-22T01:02:45Z"
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T01:02:38Z"
--- dataset_info: features: - name: origin dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: prompt dtype: string splits: - name: train num_bytes: 154357530 num_examples: 37587 download_size: 81215310 dataset_size: 154357530 configs: - config_name: default data_files: - split: train path: data/train-* ---
nuprl-staging/training_classifier_intermediate_depth2
nuprl-staging
"2024-11-22T01:03:19Z"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T01:03:17Z"
--- dataset_info: features: - name: id dtype: int64 - name: prompt dtype: string - name: answer dtype: string - name: pythoncode dtype: string - name: depth0 dtype: string - name: depth1 dtype: string - name: depth2 dtype: string - name: depth3 dtype: string - name: depth4 dtype: string - name: depth5 dtype: string - name: depth6 dtype: string - name: depth7 dtype: string - name: depthn0 dtype: string - name: depthn1 dtype: string - name: depthn2 dtype: string - name: depthn3 dtype: string - name: depthn4 dtype: string - name: depthn5 dtype: string - name: depthn6 dtype: string - name: depthn7 dtype: string - name: num_nodes dtype: int64 - name: num_edges dtype: int64 - name: num_classes dtype: int64 - name: path_length dtype: int64 - name: num_cycle dtype: int64 - name: correctness dtype: bool - name: one_correct dtype: bool splits: - name: train num_bytes: 4222364 num_examples: 3000 - name: test num_bytes: 698164 num_examples: 500 download_size: 1082498 dataset_size: 4920528 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
ahmedheakl/ar_sharegpt4v_instruct
ahmedheakl
"2024-11-22T01:13:43Z"
0
0
[ "size_categories:10K<n<100K", "modality:image", "modality:text", "region:us" ]
null
"2024-11-22T01:04:05Z"
--- dataset_info: features: - name: id dtype: string - name: image_path dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: image dtype: image splits: - name: train num_bytes: 10203009235 num_examples: 45123 download_size: 10157685442 dataset_size: 10203009235 configs: - config_name: default data_files: - split: train path: data/train-* ---
neoneye/simon-arc-solve-skew-v6
neoneye
"2024-11-22T01:18:26Z"
0
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-22T01:17:49Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve skew version 6 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the job is to apply skew/unkew in the directions up/down/left/right. example count: 2-4. test count: 1-2. image size: 1-4. # Version 2 image size: 1-7. # Version 3 Earlier predictions added to some of the rows. # Version 4 Added fields: `arc_task`, `test_index`, `earlier_output`. # Version 5 Replaced RLE compressed response with raw pixel response. # Version 6 image size: 1-9.
The-reader1111/hello
The-reader1111
"2024-11-22T01:23:21Z"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-22T01:23:07Z"
--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string - name: __index_level_0__ dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 29225 num_examples: 43 download_size: 19249 dataset_size: 29225 configs: - config_name: default data_files: - split: train path: data/train-* ---
sirjoy/so100_test_2
sirjoy
"2024-11-22T01:24:03Z"
0
0
[ "task_categories:robotics", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
"2024-11-22T01:23:51Z"
--- task_categories: - robotics tags: - LeRobot - so100 - tutorial --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
UniDataPro/2d-masks-pad-attacks
UniDataPro
"2024-11-22T01:27:43Z"
0
0
[ "license:cc-by-nc-nd-4.0", "size_categories:n<1K", "modality:video", "library:datasets", "library:mlcroissant", "region:us" ]
null
"2024-11-22T01:27:21Z"
--- license: cc-by-nc-nd-4.0 task_categories: - video-classification tags: - people - mask - computer vison - facial recognition - verification - cyber security size_categories: - 10K<n<100K --- # 2D Masks with Eyeholes Attacks The dataset comprises **11,200+** videos of people wearing of holding 2D printed masks with eyeholes captured using **5** different devices. This extensive collection is designed for research in presentation attacks, focusing on various **detection methods**, primarily aimed at meeting the requirements for **iBeta Level 1 & 2 certification.** Specifically engineered to challenge **facial recognition** and enhance **spoofing detection** techniques. By utilizing this dataset, researchers and developers can advance their understanding and capabilities in **biometric security** and **liveness detection technologies**. - **[Get the data](https://unidata.pro/datasets/2d-masks/?utm_source=huggingface&utm_medium=cpc&utm_campaign=2d-masks-pad-attacks)** ## Attacks in the dataset ![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22059654%2F589023f5a5202dd588e5d9df56747037%2FFrame%20166.png?generation=1731498279480466&alt=media) The attacks were recorded in various settings, showcasing individuals with different attributes. Each photograph features human faces adorned with 2D masks, simulating potential spoofing attempts in facial recognition systems. **Variants of backgrounds and attributes in the dataset**: ![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22059654%2Fbf3ed70a8a519ebb4bbdd8fc634bd4f3%2FFrame%20146%20(2).png?generation=1730208154622175&alt=media) # 💵 Buy the Dataset: This is a limited preview of the data. To access the full dataset, please contact us at [https://unidata.pro](https://unidata.pro/datasets/2d-masks/?utm_source=huggingface&utm_medium=cpc&utm_campaign=2d-masks-pad-attacks) to discuss your requirements and pricing options. Researchers can utilize this dataset to explore detection technology and recognition algorithms that aim to prevent impostor attacks and improve authentication processes. ## Metadata for the dataset ![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22059654%2F599c49641aa40b28eef7684a086fb98b%2FFrame%20161%20(4).png?generation=1731498379460267&alt=media) **Variables in .csv files:** - **name:** filename of the printed 2D mask - **path:** link-path for the original video - **type:** type(wearing or holding) of printed mask The dataset provides a robust foundation for achieving higher detection accuracy and advancing liveness detection methods, which are essential for preventing identity fraud and ensuring reliable biometric verification. # 🌐 [UniData](https://unidata.pro/datasets/2d-masks/utm_source=huggingface&utm_medium=cpc&utm_campaign=2d-masks-pad-attacks) provides high-quality datasets, content moderation, data collection and annotation for your AI/ML projects