datasetId
stringlengths
5
121
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
2.54M
likes
int64
0
6.35k
tags
sequencelengths
1
7.92k
task_categories
sequencelengths
0
40
createdAt
unknown
card
stringlengths
19
1M
haorandai/Nov_PGD_Mice_Orange_Epsilon0.05_1samples_with1constraints
haorandai
"2024-11-25T05:02:37Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T05:02:36Z"
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 176766.0 num_examples: 2 download_size: 178562 dataset_size: 176766.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
haorandai/Nov_PGD_Banana_Orange_Epsilon0.05_5samples_with5constraints
haorandai
"2024-11-25T05:19:07Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T05:18:51Z"
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 781257.0 num_examples: 10 download_size: 782923 dataset_size: 781257.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
prashuchavan/rp_
prashuchavan
"2024-11-25T05:45:17Z"
3
0
[ "license:mit", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T05:40:30Z"
--- license: mit ---
yguooo/summarize_from_feedback_oai_preprocessing_llama3_scene0
yguooo
"2024-11-25T06:01:34Z"
3
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T05:41:04Z"
--- dataset_info: features: - name: info struct: - name: id dtype: string - name: post dtype: string - name: title dtype: string - name: subreddit dtype: string - name: site dtype: string - name: article dtype: string - name: summaries list: - name: text dtype: string - name: policy dtype: string - name: note dtype: string - name: choice dtype: int32 - name: worker dtype: string - name: batch dtype: string - name: split dtype: string - name: extra struct: - name: confidence dtype: int32 - name: query_token sequence: int64 - name: query dtype: string - name: chosen dtype: string - name: chosen_token sequence: int64 - name: chosen_token_len dtype: int64 - name: rejected dtype: string - name: rejected_token sequence: int64 - name: rejected_token_len dtype: int64 - name: chosen_policy dtype: string - name: rejected_policy dtype: string - name: policies dtype: string - name: query_chosen dtype: string - name: query_chosen_token sequence: int64 - name: query_chosen_token_len dtype: int64 - name: query_rejected dtype: string - name: query_rejected_token sequence: int64 - name: query_rejected_token_len dtype: int64 - name: query_token_len dtype: int64 - name: query_chosen_token_response_label sequence: int64 - name: query_rejected_token_response_label sequence: int64 splits: - name: train num_bytes: 3051559301 num_examples: 92858 - name: validation num_bytes: 2761252383 num_examples: 83802 - name: validation_cnndm num_bytes: 222962138 num_examples: 2284 download_size: 289869690 dataset_size: 6035773822 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: validation_cnndm path: data/validation_cnndm-* ---
HamdanXI/libriTTS_dev_wav2vec2_latent_layer1_2sec_PERFECT_chunk_2
HamdanXI
"2024-11-25T05:46:26Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T05:45:46Z"
--- dataset_info: features: - name: audio_clip sequence: float64 - name: layer0_prediction sequence: float64 - name: predicted_text dtype: string - name: speaker_id dtype: string splits: - name: train num_bytes: 1335915573 num_examples: 100 download_size: 857001013 dataset_size: 1335915573 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "libriTTS_dev_wav2vec2_latent_layer1_2sec_PERFECT_chunk_2" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
yguooo/summarize_from_feedback_tldr_3_filtered_oai_preprocessing_pythia_scene2
yguooo
"2024-11-25T06:11:12Z"
3
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T05:54:12Z"
--- dataset_info: features: - name: id dtype: string - name: subreddit dtype: string - name: title dtype: string - name: post dtype: string - name: summary dtype: string - name: query_token sequence: int64 - name: query dtype: string - name: reference_response dtype: string - name: reference_response_token sequence: int64 - name: reference_response_token_len dtype: int64 - name: query_reference_response dtype: string - name: query_reference_response_token sequence: int64 - name: query_reference_response_token_response_label sequence: int64 - name: query_reference_response_token_len dtype: int64 splits: - name: train num_bytes: 2152790755 num_examples: 116722 - name: validation num_bytes: 118940067 num_examples: 6447 - name: test num_bytes: 120931386 num_examples: 6553 download_size: 565129816 dataset_size: 2392662208 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* --- # TL;DR SFT Dataset for OpenAI's [Summarize from Feedback](https://openai.com/blog/summarization/) task The dataset is directly taken from https://github.com/openai/summarize-from-feedback/tree/700967448d10004279f138666442bf1497d0e705#reddit-tldr-dataset These columns are taken directly from the aforementioned dataset: * **id**: unique identifier for the post * **subreddit**: subreddit the post was taken from * **title**: title of the post * **post**: body of the post * **summary**: summary of the post * **reference_response**: reference response for the post These columns are added by this preprocessing script: * **query**: length-limited query for summarization: OAI pre-processes the main text (title + subreddit + post), ensuring it has only 512 tokens; if the main text is too long, then it tries to truncate at the last ` `. If it's too short it pads the main text ([summarize_from_feedback/tasks.py#L98-L165](https://github.com/openai/summarize-from-feedback/blob/700967448d10004279f138666442bf1497d0e705/summarize_from_feedback/tasks.py#L98-L165)). Padding is either space or `[PAD]` token (see Args below). * **query_token**: tokenized version of `query` * **reference_response_token**: tokenized version of `reference_response` * **reference_response_token_len**: length of `reference_response_token` * **query_reference_response**: concatenation of `query.strip()` and `reference_response` * **query_reference_response_token**: tokenized version of `query_reference_response`, up to `max_sft_query_response_length` tokens * **query_reference_response_token_len**: length of `query_reference_response_token` # Args ```python {'base_model': 'EleutherAI/pythia-1b', 'check_length_correctness': True, 'cnndm_params': TaskQueryHParams(length=1919, format_str='Article:\n{article}\n\nTL;DR:\n', truncate_field='article', truncate_text='\n', padding='pad_token', pad_token=[50277], pad_side='left', max_sft_response_length=None, max_sft_query_response_length=None, max_rm_response_length=155, max_rm_query_response_length=2021), 'debug': False, 'ds_name': 'pythia_scene2', 'hf_entity': 'yguooo', 'push_to_hub': True, 'scenario': 0, 'tldr_params': TaskQueryHParams(length=512, format_str='TITLE: {title}\\n\\nPOST: ' '{post}\\n\\nWrite a short and ' 'concise summary of the given ' 'titled post from the {subreddit} ' 'subreddit, ensuring the purpose ' 'and main ideas are represented ' 'clearly.\\n\\nTL;DR:', truncate_field='post', truncate_text='\n', padding='pad_token', pad_token=[50277], pad_side='left', max_sft_response_length=53, max_sft_query_response_length=562, max_rm_response_length=169, max_rm_query_response_length=651)} ```
yguooo/summarize_from_feedback_oai_preprocessing_pythia_scene3
yguooo
"2024-11-25T06:16:15Z"
3
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T06:01:22Z"
--- dataset_info: features: - name: info struct: - name: id dtype: string - name: post dtype: string - name: title dtype: string - name: subreddit dtype: string - name: site dtype: string - name: article dtype: string - name: summaries list: - name: text dtype: string - name: policy dtype: string - name: note dtype: string - name: choice dtype: int32 - name: worker dtype: string - name: batch dtype: string - name: split dtype: string - name: extra struct: - name: confidence dtype: int32 - name: query_token sequence: int64 - name: query dtype: string - name: chosen dtype: string - name: chosen_token sequence: int64 - name: chosen_token_len dtype: int64 - name: rejected dtype: string - name: rejected_token sequence: int64 - name: rejected_token_len dtype: int64 - name: chosen_policy dtype: string - name: rejected_policy dtype: string - name: policies dtype: string - name: query_chosen dtype: string - name: query_chosen_token sequence: int64 - name: query_chosen_token_len dtype: int64 - name: query_rejected dtype: string - name: query_rejected_token sequence: int64 - name: query_rejected_token_len dtype: int64 - name: query_token_len dtype: int64 - name: query_chosen_token_response_label sequence: int64 - name: query_rejected_token_response_label sequence: int64 splits: - name: train num_bytes: 3243393797 num_examples: 92858 - name: validation num_bytes: 2934997329 num_examples: 83802 - name: validation_cnndm num_bytes: 225359437 num_examples: 2284 download_size: 294596372 dataset_size: 6403750563 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: validation_cnndm path: data/validation_cnndm-* ---
yguooo/summarize_from_feedback_oai_preprocessing_pythia_scene4
yguooo
"2024-11-25T06:33:01Z"
3
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T06:01:54Z"
--- dataset_info: features: - name: info struct: - name: id dtype: string - name: post dtype: string - name: title dtype: string - name: subreddit dtype: string - name: site dtype: string - name: article dtype: string - name: summaries list: - name: text dtype: string - name: policy dtype: string - name: note dtype: string - name: choice dtype: int32 - name: worker dtype: string - name: batch dtype: string - name: split dtype: string - name: extra struct: - name: confidence dtype: int32 - name: query_token sequence: int64 - name: query dtype: string - name: chosen dtype: string - name: chosen_token sequence: int64 - name: chosen_token_len dtype: int64 - name: rejected dtype: string - name: rejected_token sequence: int64 - name: rejected_token_len dtype: int64 - name: chosen_policy dtype: string - name: rejected_policy dtype: string - name: policies dtype: string - name: query_chosen dtype: string - name: query_chosen_token sequence: int64 - name: query_chosen_token_len dtype: int64 - name: query_rejected dtype: string - name: query_rejected_token sequence: int64 - name: query_rejected_token_len dtype: int64 - name: query_token_len dtype: int64 - name: query_chosen_token_response_label sequence: int64 - name: query_rejected_token_response_label sequence: int64 splits: - name: train num_bytes: 3268349348 num_examples: 92858 - name: validation num_bytes: 2957694051 num_examples: 83802 - name: validation_cnndm num_bytes: 225359437 num_examples: 2284 download_size: 296397691 dataset_size: 6451402836 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: validation_cnndm path: data/validation_cnndm-* ---
anggiatm/botanisquare-tenant-descriptive-v2
anggiatm
"2024-11-25T06:31:42Z"
3
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T06:31:30Z"
--- dataset_info: features: - name: desc dtype: string splits: - name: train num_bytes: 167366 num_examples: 520 download_size: 81593 dataset_size: 167366 configs: - config_name: default data_files: - split: train path: data/train-* ---
ashwiniai/anatomy-corpus
ashwiniai
"2024-11-25T14:59:44Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T06:38:59Z"
--- dataset_info: features: - name: text dtype: string - name: page_idx dtype: int64 - name: document_name dtype: string - name: file_path dtype: string - name: file_url dtype: string - name: loader_name dtype: string splits: - name: train num_bytes: 12681904 num_examples: 2219 - name: pdfplumbertextloader num_bytes: 12424290 num_examples: 2219 - name: pymupdf4llmtextloader num_bytes: 12163384 num_examples: 2219 download_size: 19216773 dataset_size: 37269578 configs: - config_name: default data_files: - split: train path: data/train-* - split: pdfplumbertextloader path: data/pdfplumbertextloader-* - split: pymupdf4llmtextloader path: data/pymupdf4llmtextloader-* ---
stacklok/insecure-code
stacklok
"2024-11-25T21:21:17Z"
3
0
[ "task_categories:text-classification", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
"2024-11-25T06:54:23Z"
--- license: apache-2.0 task_categories: - text-classification pretty_name: insecure-code size_categories: - 1K<n<10K --- # Insecure Code Dataset A dataset of insecure coding patterns, generated with [Promptwright](https://github.com/StacklokLabs/promptwright) version 1.3.1
ZixuanKe/flare_finqa_sup_sample_from_policy_v1.1_dpo_train_chunk_16
ZixuanKe
"2024-11-25T07:00:47Z"
3
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T07:00:43Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 5398693 num_examples: 1098 download_size: 587519 dataset_size: 5398693 configs: - config_name: default data_files: - split: train path: data/train-* ---
habanoz/c4_tr_400k
habanoz
"2024-11-25T07:39:37Z"
3
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T07:34:15Z"
--- dataset_info: features: - name: text dtype: string - name: timestamp dtype: timestamp[s] - name: url dtype: string splits: - name: train num_bytes: 1255259337 num_examples: 400000 download_size: 741872979 dataset_size: 1255259337 configs: - config_name: default data_files: - split: train path: data/train-* ---
hoonikoo/new_iio
hoonikoo
"2024-11-25T07:35:14Z"
3
0
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T07:34:43Z"
--- license: apache-2.0 ---
neoneye/simon-arc-combine-v182
neoneye
"2024-11-25T07:36:09Z"
3
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-25T07:34:46Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) combined datasets version 182 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 A combination of multiple datasets. Datasets: `dataset_solve_color.jsonl`, `dataset_solve_rotate.jsonl`, `dataset_solve_translate.jsonl`. # Version 2 Datasets: `dataset_solve_color.jsonl`, `dataset_solve_rotate.jsonl`, `dataset_solve_translate.jsonl`. # Version 3 Datasets: `dataset_solve_color.jsonl`, `dataset_solve_rotate.jsonl`, `dataset_solve_translate.jsonl`. # Version 4 Added a shared dataset name for all these datasets: `SIMON-SOLVE-V1`. There may be higher version numbers in the future. My hypothesis: Having a version number in the dataset name, it may be easier to unlearn incorrect training data. Datasets: `dataset_solve_color.jsonl`, `dataset_solve_rotate.jsonl`, `dataset_solve_translate.jsonl`. # Version 5 Different random seed. # Version 6 Using `SIMON-SOLVE-V1` everywhere. Remove the `SIMON-SOLVE-COLOR`, `SIMON-SOLVE-ROTATE`, `SIMON-SOLVE-TRANSLATE`. # Version 7 Using `SIMON-SOLVE-V1` everywhere. # Version 8 Same settings. Different seed as usual. # Version 9 Switching from context length 256 to context length 512. Increasing the image sizes so the prompt length stays below 512. `dataset_solve_color`, image size: 1-13. `dataset_solve_rotate`, image size: 1-9. `dataset_solve_translate`, image size: 3-9. # Version 10 Same settings. Different seed as usual. # Version 11 Same settings. Different seed as usual. # Version 12 Added 1 more pair to the examples. Now it's 2-4 examples. Previously it was 2-3 examples. # Version 13 Same settings. Different seed as usual. # Version 14 Same settings. Different seed as usual. # Version 15 Same settings. Different seed as usual. # Version 16 Added `Predict the output image.` Disabled prediction of rows. Disabled prediction of height. # Verison 17 Same settings. Different seed as usual. Using the `DatasetGenerator` and the `DatasetItemListBuilder`. # Verison 18 Added datasets. Datasets: - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_translate.jsonl` - `dataset_cellular_automaton.jsonl` - added. - `dataset_shape.jsonl` - added. # Verison 19 Added dataset. Datasets: - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_translate.jsonl` - `dataset_cellular_automaton.jsonl` - `dataset_shape.jsonl` - `dataset_image.jsonl` - added. # Verison 20 Bigger images. # Verison 21 Added dataset. Disabled some datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_shape.jsonl` - `dataset_mass.jsonl` - added. # Verison 22 Added dataset. Datasets: - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_translate.jsonl` - `dataset_cellular_automaton.jsonl` - `dataset_shape.jsonl` - `dataset_image.jsonl` - `dataset_mass.jsonl` - `dataset_histogram.jsonl` - added. Bigger image sizes. Number of rows=200k. Was previously 100k rows. # Verison 23 `datset_mass.jsonl`. increased to `max_mass=5`. # Verison 24 `datset_mass.jsonl`. increased to `max_mass=6`. # Verison 25 different seed. # Verison 26 `datset_mass.jsonl`. increased to `max_mass=25`. different seed. # Verison 27 different seed. # Verison 28 different seed. # Verison 29 different seed. # Verison 30 different seed. # Verison 31 different seed. # Verison 32 different seed. # Verison 33 Disabled some dataset. Datasets: - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_mass.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - disabled - `dataset_solve_rotate.jsonl` - disabled - `dataset_solve_translate.jsonl` - disabled - `dataset_cellular_automaton.jsonl` # Verison 34 Enabled all datasets. # Version 35 Regenerated all datasets with new random seeds. # Verison 36 Added dataset `dataset_scale.jsonl`. Disabled some dataset. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_translate.jsonl` # Verison 37 Enabled all datasets Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_translate.jsonl` # Verison 38 Added dataset Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` - added # Version 39 Regenerated all datasets with new random seeds. # Version 40 Added dataset Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - added - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` # Version 41 Regenerated all datasets with new random seeds. # Version 42 Added dataset. Disabled some datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - added - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 43 Enabled all datasets. # Version 44 Regenerated all datasets with new random seeds. # Version 45 Extended the `dataset_shape.jsonl` with these new `PixelConnectivity` types: `CORNER4`, `LR2`, `TB2`, `TLBR2`, `TRBL2`. Hopefully it makes the model better at making sense of diagonal structures, which is something it's terrible at at the moment. # Version 46 Regenerated all datasets with new random seeds. # Version 47 Added dataset. Disabled some datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - added - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` # Version 48 Enabled all datasets. # Version 49 Bigger `max_mass`. From 6 to 8. # Version 50 Added dataset. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - added - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` # Version 51 Regenerated all datasets with new random seeds. # Version 52 Regenerated all datasets with new random seeds. # Version 53 Regenerated all datasets with new random seeds. # Version 54 Added dataset. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_erotion.jsonl` - added - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` # Version 55 Added dataset. Disabled most datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - added - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - disabled - `dataset_solve_compress.jsonl` - disabled - `dataset_solve_rotate.jsonl` - disabled - `dataset_solve_scale.jsonl` - disabled - `dataset_solve_symmetry.jsonl` - disabled - `dataset_solve_translate.jsonl` - disabled - `dataset_symmetry.jsonl` - disabled # Version 56 Enabled all datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` # Version 57 Regenerated all datasets with new random seeds. # Version 58 Disabled most datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 59 Added new datasets. Disabled most datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - added - `dataset_solve_fractal.jsonl` - added - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 60 Incremented random seed Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 61 Enabled all datasets. More padding inside the `dataset_solve_fractal.jsonl`. # Version 62 All datasets still enabled. Turning up the parameter for `dataset_solve_fractal.jsonl`. scale_input from 3 to 4. scale_output from 3 to 4. max_image_size from 3 to 4. max_pad_count from 4 to 5. # Version 63 Disabled several datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - disabled - `dataset_solve_compress.jsonl` - disabled - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_rotate.jsonl` - disabled - `dataset_solve_scale.jsonl` - disabled - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - disabled - `dataset_symmetry.jsonl` - disabled # Version 64 Added dataset. Increased the number of rows in the jsonl file from 200k to 300k. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_outline.jsonl` - added - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` # Version 65 random seed. # Version 66 Disabled some datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - disabled - `dataset_solve_compress.jsonl` - disabled - `dataset_solve_erosion.jsonl` - disabled - `dataset_solve_fractal.jsonl` - disabled - `dataset_solve_outline.jsonl` - disabled - `dataset_solve_rotate.jsonl` - disabled - `dataset_solve_scale.jsonl` - disabled - `dataset_solve_symmetry.jsonl` - disabled - `dataset_solve_translate.jsonl` - disabled - `dataset_symmetry.jsonl` - disabled # Version 67 Disabled some datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - enabled - `dataset_solve_compress.jsonl` - enabled - `dataset_solve_erosion.jsonl` - enabled - `dataset_solve_fractal.jsonl` - enabled - `dataset_solve_outline.jsonl` - enabled - `dataset_solve_rotate.jsonl` - enabled - `dataset_solve_scale.jsonl` - enabled - `dataset_solve_symmetry.jsonl` - enabled - `dataset_solve_translate.jsonl` - enabled - `dataset_symmetry.jsonl` # Version 68 Enabled all datasets. # Version 69 Different random seed. # Version 70 Different random seed. # Version 71 Different random seed. # Version 72 Different random seed. # Version 73 Different random seed. # Version 74 Major update to `dataset_solve_symmetry.jsonl`. # Version 75 Different random seed. # Version 76 Disabled some datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 77 Enabled all datasets. # Version 78 Major update to `dataset_solve_symmetry.jsonl`. # Version 79 Different random seed. # Version 80 Different random seed. # Version 81 Different random seed. # Version 82 Added dataset. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - added - `dataset_symmetry.jsonl` # Version 83 Disabled datasets that doesn't solve ARC puzzles. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 84 Added dataset `dataset_solve_grid.jsonl`. Disabled datasets that doesn't solve ARC puzzles. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - added - `dataset_solve_outline.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 85 Disabled datasets that doesn't solve ARC puzzles. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 86 Enabled all datasets. # Version 87 Disabled datasets that doesn't solve ARC puzzles. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 88 Added dataset `dataset_solve_probecolor.jsonl` with all directions enabled. Disabled datasets that doesn't solve ARC puzzles. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 89 Enabled all datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 90 Disabled some of the datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - disabled - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - disabled - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - disabled - `dataset_solve_outline.jsonl` - disabled - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - disabled - `dataset_solve_zindex.jsonl` - disabled - `dataset_symmetry.jsonl` - disabled # Version 91 Added dataset. Enabled all datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_mass.jsonl` - added - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 92 Different random seed. # Version 93 Added dataset. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - added - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 94 Added dataset. Disabled datasets that doesn't solve ARC tasks. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_bool.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - added - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 95 Added dataset. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - added - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 96 Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - major update. - `dataset_symmetry.jsonl` # Version 97 Disabled the first half of the datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_bool.jsonl` - disabled - `dataset_solve_color.jsonl` - disabled - `dataset_solve_compress.jsonl` - disabled - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 98 Disabled the last half of the datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - disabled - `dataset_solve_erosion.jsonl` - disabled - `dataset_solve_fractal.jsonl` - disabled - `dataset_solve_grid.jsonl` - disabled - `dataset_solve_half.jsonl` - disabled - `dataset_solve_mass.jsonl` - disabled - `dataset_solve_outline.jsonl` - disabled - `dataset_solve_probecolor.jsonl` - disabled - `dataset_solve_rotate.jsonl` - disabled - `dataset_solve_scale.jsonl` - disabled - `dataset_solve_symmetry.jsonl` - disabled - `dataset_solve_translate.jsonl` - disabled - `dataset_solve_zindex.jsonl` - disabled - `dataset_symmetry.jsonl` - disabled # Version 99 Disabled the 1/4th of the datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_bool.jsonl` - disabled - `dataset_solve_color.jsonl` - disabled - `dataset_solve_compress.jsonl` - disabled - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - disabled - `dataset_solve_rotate.jsonl` - disabled - `dataset_solve_scale.jsonl` - disabled - `dataset_solve_symmetry.jsonl` - disabled - `dataset_solve_translate.jsonl` - disabled - `dataset_solve_zindex.jsonl` - disabled - `dataset_symmetry.jsonl` - disabled # Version 100 Added dataset. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mask.jsonl` - added - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 101 Disabled the non solving datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_bool.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 102 Added dataset Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_boundingbox.jsonl` - added - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 103 Different random seed. # Version 104 Disabled the non solving datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_bool.jsonl` - `dataset_solve_boundingbox.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 105 Major update to `dataset_solve_scale.jsonl` with scaling down noisy images. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_boundingbox.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - scale down noisy images - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 106 Different random seed. # Version 107 Added dataset Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_boundingbox.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_ray.jsonl` - added - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 108 Added dataset Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_boundingbox.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_flip.jsonl` - added - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_ray.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 109 Different random seed. # Version 110 Added dataset Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_boundingbox.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_flip.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_halfplane.jsonl` - added - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_ray.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 111 Different random seed. # Version 112 Different random seed. # Version 113 Different random seed. # Version 114 Major update to the `dataset_solve-mass.jsonl`, so it now includes `mass_compare_adjacent_rows` and `mass_compare_adjacent_columns`. # Version 115 Added dataset Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_boundingbox.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_flip.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_gravity.jsonl` - added - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_halfplane.jsonl` - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_ray.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 116 Hypothesis. What if I train with a smaller dataset, will it converge faster? Reduced the number of rows in this dataset from 300k rows to 10k rows. # Version 117 Interesting, 10k rows seems to work fine with the model training. Picked new random rows. # Version 118 Still going with 10k rows. Picked new random rows. # Version 119 Still going with 10k rows. Picked new random rows. # Version 120 Switched to 20k rows. # Version 121 Still going with 20k rows. Picked new random rows. # Version 122 20k rows. Added `dataset_solve_reverse.jsonl`. # Version 123 Doubled the number of rows to 40k rows. # Version 124 Set row count to 100k rows. Major update to `dataset_solve_gravity.jsonl`. # Version 125 Row count: 100k rows. # Version 126 Row count: 20k rows. Only these datasets are enabled: ```txt dataset_solve_bool.jsonl dataset_solve_boundingbox.jsonl dataset_solve_color.jsonl dataset_solve_compress.jsonl dataset_solve_edge.jsonl dataset_solve_erosion.jsonl dataset_solve_flip.jsonl dataset_solve_fractal.jsonl dataset_solve_gravity.jsonl dataset_solve_grid.jsonl dataset_solve_half.jsonl dataset_solve_halfplane.jsonl dataset_solve_mask.jsonl dataset_solve_mass.jsonl dataset_solve_outline.jsonl dataset_solve_probecolor.jsonl dataset_solve_ray.jsonl dataset_solve_reverse.jsonl dataset_solve_rotate.jsonl dataset_solve_scale.jsonl dataset_solve_symmetry.jsonl dataset_solve_translate.jsonl dataset_solve_zindex.jsonl ``` # Version 127 Row count: 20k rows. Only these datasets are enabled: ```txt dataset_solve_scale.jsonl dataset_solve_symmetry.jsonl dataset_solve_translate.jsonl dataset_solve_zindex.jsonl ``` # Version 128 Row count: 20k rows. Only these datasets are enabled: ```txt dataset_solve_probecolor.jsonl dataset_solve_ray.jsonl dataset_solve_reverse.jsonl dataset_solve_rotate.jsonl ``` # Version 129 Row count: 20k rows. Only these datasets are enabled: ```txt dataset_solve_gravity.jsonl dataset_solve_grid.jsonl dataset_solve_half.jsonl dataset_solve_halfplane.jsonl dataset_solve_mask.jsonl dataset_solve_mass.jsonl dataset_solve_outline.jsonl ``` # Version 130 Row count: 20k rows. Only these datasets are enabled: ```txt dataset_solve_bool.jsonl dataset_solve_boundingbox.jsonl dataset_solve_color.jsonl dataset_solve_compress.jsonl dataset_solve_edge.jsonl dataset_solve_erosion.jsonl dataset_solve_flip.jsonl dataset_solve_fractal.jsonl ``` # Version 131 Switched back to 300k rows. Enabled all the datasets. # Version 132 Random seed. # Version 133 Removed the rows that are longer than what can be fitted inside a 512 context length. # Version 134 Random seed. # Version 135 Random seed. # Version 136 Major update to the `dataset_solve_gravity.jsonl` file. # Version 137 Added dataset `dataset_solve_skew.jsonl`. # Version 138 Disabled several datasets. ```txt # 'dataset_cellular_automaton.jsonl', # 'dataset_dilation.jsonl', # 'dataset_erosion.jsonl', # 'dataset_histogram.jsonl', # 'dataset_image.jsonl', # 'dataset_image_pair.jsonl', # 'dataset_mass.jsonl', # 'dataset_scale.jsonl', # 'dataset_shape.jsonl', # 'dataset_solve_bool.jsonl', 'dataset_solve_boundingbox.jsonl', 'dataset_solve_color.jsonl', 'dataset_solve_compress.jsonl', 'dataset_solve_edge.jsonl', 'dataset_solve_erosion.jsonl', 'dataset_solve_flip.jsonl', 'dataset_solve_fractal.jsonl', 'dataset_solve_gravity.jsonl', 'dataset_solve_grid.jsonl', 'dataset_solve_half.jsonl', # 'dataset_solve_halfplane.jsonl', 'dataset_solve_mask.jsonl', 'dataset_solve_mass.jsonl', 'dataset_solve_outline.jsonl', 'dataset_solve_probecolor.jsonl', # 'dataset_solve_ray.jsonl', # 'dataset_solve_reverse.jsonl', 'dataset_solve_rotate.jsonl', 'dataset_solve_scale.jsonl', # 'dataset_solve_skew.jsonl', 'dataset_solve_symmetry.jsonl', 'dataset_solve_translate.jsonl', 'dataset_solve_zindex.jsonl', # 'dataset_symmetry.jsonl', ``` # Version 139 Disabled several datasets. ```txt 'dataset_cellular_automaton.jsonl', 'dataset_dilation.jsonl', 'dataset_erosion.jsonl', 'dataset_histogram.jsonl', 'dataset_image.jsonl', 'dataset_image_pair.jsonl', 'dataset_mass.jsonl', 'dataset_scale.jsonl', 'dataset_shape.jsonl', 'dataset_solve_bool.jsonl', # 'dataset_solve_boundingbox.jsonl', # 'dataset_solve_color.jsonl', # 'dataset_solve_compress.jsonl', # 'dataset_solve_edge.jsonl', # 'dataset_solve_erosion.jsonl', # 'dataset_solve_flip.jsonl', # 'dataset_solve_fractal.jsonl', # 'dataset_solve_gravity.jsonl', # 'dataset_solve_grid.jsonl', # 'dataset_solve_half.jsonl', 'dataset_solve_halfplane.jsonl', # 'dataset_solve_mask.jsonl', # 'dataset_solve_mass.jsonl', # 'dataset_solve_outline.jsonl', # 'dataset_solve_probecolor.jsonl', 'dataset_solve_ray.jsonl', 'dataset_solve_reverse.jsonl', # 'dataset_solve_rotate.jsonl', # 'dataset_solve_scale.jsonl', 'dataset_solve_skew.jsonl', # 'dataset_solve_symmetry.jsonl', # 'dataset_solve_translate.jsonl', # 'dataset_solve_zindex.jsonl', 'dataset_symmetry.jsonl', ``` # Version 140 Enabled all datasets. Added new dataset: `dataset_solve_cross.jsonl`. # Version 141 Switched to 30k rows. Disabled several datasets. ```txt # 'dataset_cellular_automaton.jsonl', # 'dataset_dilation.jsonl', # 'dataset_erosion.jsonl', # 'dataset_histogram.jsonl', # 'dataset_image.jsonl', # 'dataset_image_pair.jsonl', # 'dataset_mass.jsonl', # 'dataset_scale.jsonl', # 'dataset_shape.jsonl', # 'dataset_solve_bool.jsonl', 'dataset_solve_boundingbox.jsonl', 'dataset_solve_color.jsonl', 'dataset_solve_compress.jsonl', # 'dataset_solve_cross.jsonl', 'dataset_solve_edge.jsonl', 'dataset_solve_erosion.jsonl', 'dataset_solve_flip.jsonl', 'dataset_solve_fractal.jsonl', # 'dataset_solve_gravity.jsonl', 'dataset_solve_grid.jsonl', 'dataset_solve_half.jsonl', # 'dataset_solve_halfplane.jsonl', 'dataset_solve_mask.jsonl', 'dataset_solve_mass.jsonl', 'dataset_solve_outline.jsonl', 'dataset_solve_probecolor.jsonl', 'dataset_solve_ray.jsonl', # 'dataset_solve_reverse.jsonl', 'dataset_solve_rotate.jsonl', 'dataset_solve_scale.jsonl', 'dataset_solve_skew.jsonl', 'dataset_solve_symmetry.jsonl', 'dataset_solve_translate.jsonl', # 'dataset_solve_zindex.jsonl', # 'dataset_symmetry.jsonl', ``` # Version 142 Switched to 300k rows. Enabled all datasets. Switched from 512 context to 1024 context. # Version 143 Bigger images in `dataset_solve_cross.jsonl` and in `dataset_solve_mass.jsonl`. # Version 144 Major update to `dataset_solve_symmetry.jsonl`. # Version 145 Added `dataset_solve_span.jsonl`. # Version 146 Extended `dataset_solve_span.jsonl` with `generate_task_with_template_lines`. # Version 147 Extended `dataset_solve_span.jsonl` with `generate_task_with_alternate`. # Version 148 Added `dataset_solve_count.jsonl`. # Version 149 Randomized. # Version 150 Upgraded context length for several datasets from 512 to 1024. # Version 151 Randomized. # Version 152 Randomized. # Version 153 Extended `dataset_solve_mask.jsonl` with `generate_task_repair_rectangle_and_crop`. # Version 154 Extended `dataset_solve_color.jsonl` with `generate_task_replace_color`. # Version 155 Major update to datasets in the range from `dataset_solve_axxx.jsonl` to `dataset_solve_mask.jsonl`. Now there is an earlier prediction for the output that is to be predicted. It may contain a hint, or it may be garbage that is to be ignored. # Version 156 Only 2000 rows. Only these datasets. 'dataset_cellular_automaton.jsonl', 'dataset_dilation.jsonl', 'dataset_erosion.jsonl', 'dataset_histogram.jsonl', 'dataset_image.jsonl', 'dataset_image_pair.jsonl', 'dataset_mass.jsonl', 'dataset_scale.jsonl', 'dataset_shape.jsonl', 'dataset_symmetry.jsonl', # Version 157 Only these datasets. - 'dataset_solve_bool.jsonl', - 'dataset_solve_boundingbox.jsonl', - 'dataset_solve_color.jsonl', - 'dataset_solve_compress.jsonl', - 'dataset_solve_count.jsonl', - 'dataset_solve_cross.jsonl', - 'dataset_solve_edge.jsonl', - 'dataset_solve_erosion.jsonl', - 'dataset_solve_flip.jsonl', - 'dataset_solve_fractal.jsonl', - 'dataset_solve_gravity.jsonl', - 'dataset_solve_grid.jsonl', - 'dataset_solve_half.jsonl', - 'dataset_solve_halfplane.jsonl', - 'dataset_solve_mask.jsonl', - 'dataset_solve_mass.jsonl', - 'dataset_solve_outline.jsonl', - 'dataset_solve_probecolor.jsonl', - 'dataset_solve_ray.jsonl', - 'dataset_solve_reverse.jsonl', - 'dataset_solve_rotate.jsonl', - 'dataset_solve_scale.jsonl', - 'dataset_solve_span.jsonl', - 'dataset_solve_skew.jsonl', - 'dataset_solve_symmetry.jsonl', - 'dataset_solve_translate.jsonl', - 'dataset_solve_zindex.jsonl', # Version 158 Only these datasets. - `dataset_solve_boundingbox.jsonl` - `dataset_solve_rectangle.jsonl` # Versin 159 Enabled all the `_solve_` datasets. # Version 160 Regenerated all the `_solve_` datasets with new seed. # Version 161 Regenerated all the `_solve_` datasets with new seed. # Version 162 Replaced RLE compressed response with raw pixel response. # Version 163 Added more generators - DatasetSolveCount - DatasetSolveCross - DatasetSolveEdge - DatasetSolveErosion - DatasetSolveFlip - DatasetSolveFractal # Version 164 Increased row count from 1000 to 2000. # Version 165 Added more generators. # Version 166 Added more generators. # Version 167 Added more generators. # Version 168 Added more generators. # Version 169 Generated data. # Version 170 Generated data. # Version 171 Generated data. Increased output context length from 256 to 512. # Version 172 Generated data. # Version 173 Generated data. # Version 174 Generated data. # Version 175 Generated data. # Version 176 Generated data. # Version 177 Increased the number of rows from 2000 to 4000. Generated data. # Version 178 Generated data. # Version 179 Generated data. # Version 180 Generated data. # Version 181 Generated data. # Version 182 Generated data.
Shoot4r/lab10
Shoot4r
"2024-11-25T07:58:26Z"
3
0
[ "task_categories:token-classification", "language:en", "license:openrail", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us" ]
[ "token-classification" ]
"2024-11-25T07:39:03Z"
--- license: openrail task_categories: - token-classification language: - en ---
ZhangShenao/gc_binarized_ultrafeedback
ZhangShenao
"2024-07-08T16:45:10Z"
2
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-07-08T16:40:01Z"
--- dataset_info: features: - name: prompt dtype: string - name: prompt_id dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string - name: score_chosen dtype: float64 - name: score_rejected dtype: float64 splits: - name: train_prefs num_bytes: 767187610 num_examples: 107496 - name: test_prefs num_bytes: 13161585 num_examples: 2000 download_size: 403766881 dataset_size: 780349195 configs: - config_name: default data_files: - split: train_prefs path: data/train_prefs-* - split: test_prefs path: data/test_prefs-* ---
un-Loc/dataset-warsaw-palace
un-Loc
"2024-08-30T14:01:50Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-08-30T14:01:35Z"
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 68221298.0 num_examples: 34 download_size: 68077529 dataset_size: 68221298.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
ArcIndustry/Aarambh
ArcIndustry
"2024-09-25T05:53:59Z"
2
0
[ "license:mit", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-09-25T05:53:25Z"
--- license: mit ---
UserID004/asheley_dataset
UserID004
"2024-10-13T05:17:53Z"
2
0
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-09-27T12:26:19Z"
--- license: apache-2.0 ---
mlfoundations-dev/camel_math_gpt-4o-2024-08-06
mlfoundations-dev
"2024-10-04T09:14:03Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-10-04T08:55:06Z"
--- dataset_info: features: - name: role_1 dtype: string - name: topic dtype: string - name: sub_topic dtype: string - name: message_1 dtype: string - name: message_2 dtype: string splits: - name: train num_bytes: 129508297 num_examples: 50000 download_size: 29478413 dataset_size: 129508297 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/camel_biology_gpt-4o-2024-08-06
mlfoundations-dev
"2024-10-06T04:44:03Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-10-06T04:43:53Z"
--- dataset_info: features: - name: role_1 dtype: string - name: topic dtype: string - name: sub_topic dtype: string - name: message_1 dtype: string - name: message_2 dtype: string splits: - name: train num_bytes: 70428125 num_examples: 20000 download_size: 24489850 dataset_size: 70428125 configs: - config_name: default data_files: - split: train path: data/train-* ---
mlfoundations-dev/camel_physics_gpt-4o-mini
mlfoundations-dev
"2024-10-17T18:52:16Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-10-17T18:52:13Z"
--- dataset_info: features: - name: role_1 dtype: string - name: topic dtype: string - name: sub_topic dtype: string - name: message_1 dtype: string - name: message_2 dtype: string splits: - name: train num_bytes: 50720194 num_examples: 20416 download_size: 12017624 dataset_size: 50720194 configs: - config_name: default data_files: - split: train path: data/train-* ---
underctrl/single-block_multi-color_pick-up_50
underctrl
"2024-11-11T05:25:48Z"
2
1
[ "task_categories:robotics", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
"2024-11-09T16:13:58Z"
--- task_categories: - robotics tags: - LeRobot - tutorial --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
FrancophonIA/Vocabulaire_panlatin_du_surf
FrancophonIA
"2024-11-16T19:45:27Z"
2
0
[ "task_categories:translation", "language:en", "language:it", "language:ca", "language:es", "language:fr", "language:gl", "language:pt", "language:ro", "region:us", "es_ES", "fr_FR", "fr_QC", "pt_BR" ]
[ "translation" ]
"2024-11-16T19:37:02Z"
--- language: - en - it - ca - es - fr - gl - pt - ro tags: - es_ES - fr_FR - fr_QC - pt_BR multilingulality: - multilingual task_categories: - translation viewer: false --- > [!NOTE] > Dataset origin: https://www.culture.gouv.fr/Thematiques/langue-francaise-et-langues-de-france/Agir-pour-les-langues/Moderniser-et-enrichir-la-langue-francaise/Nos-publications/vocabulaires-panlatins-du-sport/vocabulaire-panlatin-du-surf ## Description Ce lexique est le fruit d’une collaboration entre la Délégation générale à la langue française et aux langues de France, le réseau panlatin de terminologie REALITER et l’Université Paul Valéry de Montpellier. Réalisé dans la perspective des Jeux olympiques de 2024, il décline les termes du surf en catalan, en espagnol d'Espagne, en français de France et du Québec, en galicien, en italien, en portugais du Brésil, en roumain, et en anglais.
FrancophonIA/Vocabulaire_panlatin_nanotechnologie_2
FrancophonIA
"2024-11-16T20:52:30Z"
2
0
[ "task_categories:translation", "language:it", "language:ca", "language:es", "language:fr", "language:gl", "language:pt", "language:ro", "language:en", "region:us", "pt_BR", "pt_PT", "es_AR", "es_ES", "fr_QC" ]
[ "translation" ]
"2024-11-16T20:51:02Z"
--- language: - it - ca - es - fr - gl - pt - ro - en tags: - pt_BR - pt_PT - es_AR - es_ES - fr_QC multilingulality: - multilingual task_categories: - translation viewer: false --- > [!NOTE] > Dataset origin: https://www.realiter.net/fr/lessici-realiter ## Description Élaboration d’un lexique de 160 concepts relatifs au domaine de la nanotechnologie, un domaine multidisciplinaire. La nanotechnologie s’intéresse surtout à la fabrication de structures moléculaires qui comportent au moins une dimension mesurant entre 1 et 100 nanomètres. Ainsi, certains termes traités dans le lexique désignent les techniques, les instruments et les unités de mesure qui sont employés pour étudier et fabriquer des entités de taille nanométrique. De façon générale, les termes de la nomenclature présentée se rattachent dans leur ensemble à la physique, à la chimie, à la biologie, à l’électronique et à l’informatique.
FrancophonIA/Vocabulaire_panlatin_velo
FrancophonIA
"2024-11-16T21:34:25Z"
2
0
[ "task_categories:translation", "language:it", "language:ca", "language:es", "language:fr", "language:gl", "language:pt", "language:ro", "language:en", "region:us", "es_ES", "es_MX", "pt_BR", "pt_PT", "fr_QC" ]
[ "translation" ]
"2024-11-16T21:33:57Z"
--- language: - it - ca - es - fr - gl - pt - ro - en tags: - es_ES - es_MX - pt_BR - pt_PT - fr_QC multilingulality: - multilingual task_categories: - translation viewer: false --- > [!NOTE] > Dataset origin: https://www.realiter.net/fr/lessici-realiter
samahadhoud/MicroTikZ
samahadhoud
"2024-11-18T02:04:05Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-18T01:46:36Z"
--- dataset_info: features: - name: example_number dtype: int32 - name: combination_number dtype: int32 - name: image_score dtype: float32 - name: code_score dtype: float32 - name: combined_score dtype: float32 - name: rank dtype: float32 - name: original_image dtype: image - name: generated_image dtype: image - name: original_code dtype: string - name: generated_code dtype: string splits: - name: train num_bytes: 1637301531.36 num_examples: 85520 download_size: 1607765742 dataset_size: 1637301531.36 configs: - config_name: default data_files: - split: train path: data/train-* --- # TikZ Generation Curriculum Learning Dataset ## Dataset Description ### Overview This dataset is specifically designed and decomposed for curriculum learning applications in image-to-tikzcode generation tasks. It contains evaluation metrics and comparisons between original TikZ diagrams and their machine-generated counterparts using the `nllg/detikzify-ds-1.3b` model, arranged in order of generation difficulty. ### Purpose The primary purpose of this dataset is to facilitate curriculum learning strategies in training image-to-tikzcode generation models. By providing a difficulty-ranked dataset, it enables: - Progressive learning from simple to complex examples - Difficulty-aware training strategies - Structured learning path development - Performance evaluation across difficulty levels ### Evaluation Metrics and Ranking The dataset includes three dissimilarity metrics (where 0 = identical, 1 = most dissimilar): 1. **Image Dissimilarity** (70% weight): - Measures visual differences between original and generated images - Range: 0 to 1 (0 = identical images, 1 = completely different) - Considers structural differences, edge detection, and complexity 2. **Code Dissimilarity** (30% weight): - Measures differences between original and generated TikZ code - Range: 0 to 1 (0 = identical code, 1 = completely different) - Based on code structure and content comparison 3. **Combined Score**: - Weighted average: 0.7 * image_dissimilarity + 0.3 * code_dissimilarity - Range: 0 to 1 (0 = perfect match, 1 = maximum difference) ### Dataset Statistics - Total number of samples: 85,520 - Average image dissimilarity: 0.3003 - Average code dissimilarity: 0.6285 - Average combined dissimilarity: 0.3988 - Dissimilarity range: 0.0274 to 0.9255 ### Features - **example_number**: Unique identifier for each example - **combination_number**: Specific combination identifier within each example - **image_score**: Dissimilarity score between original and generated images (0-1) - **code_score**: Dissimilarity score between original and generated TikZ code (0-1) - **combined_score**: Weighted combination of dissimilarity metrics - **rank**: Normalized difficulty rank (0=easiest to 1=hardest) - **original_image**: Original diagram in PNG format - **generated_image**: Model-generated diagram in PNG format if there is - **original_code**: Original TikZ code - **generated_code**: Model-generated TikZ code ## Usage ### Loading the Dataset ```python from datasets import load_dataset dataset = load_dataset("samahadhoud/decomposed-tikz-dataset-with-difficulty-0-10")
underctrl/single-block_blue-color_pick-up_80
underctrl
"2024-11-18T04:49:28Z"
2
0
[ "task_categories:robotics", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
"2024-11-18T03:33:14Z"
--- task_categories: - robotics tags: - LeRobot - tutorial --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
MarcMill/biobertv1
MarcMill
"2024-11-20T06:58:04Z"
2
0
[ "license:apache-2.0", "region:us" ]
null
"2024-11-20T06:56:57Z"
--- license: apache-2.0 ---
aminv/wordpress_qa
aminv
"2024-11-20T15:56:45Z"
2
0
[ "license:mit", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-20T15:46:33Z"
--- license: mit ---
aminv/wordpress-qa-llama3
aminv
"2024-11-20T17:51:35Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-20T17:51:31Z"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 35245 num_examples: 50 download_size: 16747 dataset_size: 35245 configs: - config_name: default data_files: - split: train path: data/train-* ---
malaysia-ai/crawl-youtube-malaysian-cartoons
malaysia-ai
"2024-11-26T01:25:22Z"
2
0
[ "language:ms", "language:en", "region:us" ]
null
"2024-11-21T05:41:30Z"
--- language: - ms - en --- # Crawl Youtube Malaysian Cartoons **Current size at local is 812G, we are cleaning some space to compress it**. Source code at https://github.com/mesolitica/malaysian-dataset/tree/master/speech/malaysia-cartoon-youtube
FrancophonIA/Belgian_government_bilingual_parallel_corpus
FrancophonIA
"2024-11-21T14:21:51Z"
2
0
[ "task_categories:translation", "language:nl", "language:fr", "region:us" ]
[ "translation" ]
"2024-11-21T14:21:11Z"
--- language: - nl - fr multilingulality: - multilingual task_categories: - translation viewer: false --- > [!NOTE] > Dataset origin: https://live.european-language-grid.eu/catalogue/corpus/18952 ## Description Aligned texts from the Belgian government in French and Dutch (aligned with SDL Trados Studio) ## Citation ``` Belgian government bilingual parallel corpus (2022). Version 1.0. [Dataset (Text corpus)]. Source: European Language Grid. https://live.european-language-grid.eu/catalogue/corpus/18952 ```
FrancophonIA/Translations_Hungarian_public_websites
FrancophonIA
"2024-11-21T14:36:03Z"
2
0
[ "task_categories:translation", "language:fr", "language:pl", "language:cs", "language:sv", "language:fi", "language:de", "language:it", "language:en", "language:sl", "region:us" ]
[ "translation" ]
"2024-11-21T14:32:50Z"
--- language: - fr - pl - cs - sv - fi - de - it - en - sl multilingulality: - multilingual task_categories: - translation viewer: false --- > [!NOTE] > Dataset origin: https://live.european-language-grid.eu/catalogue/corpus/18982 ## Description A webcrawl of 14 different websites covering parallel corpora of Hungarian with Polish, Czech, Swedish, Finnish, French, German, Italian, English and Slovenian ## Citation ``` Translations of Hungarian from public websites (2022). Version 1.0. [Dataset (Text corpus)]. Source: European Language Grid. https://live.european-language-grid.eu/catalogue/corpus/18982 ```
FrancophonIA/Luxembourg_website
FrancophonIA
"2024-11-21T14:38:56Z"
2
0
[ "task_categories:translation", "language:en", "language:de", "language:fr", "region:us" ]
[ "translation" ]
"2024-11-21T14:37:48Z"
--- language: - en - de - fr multilingulality: - multilingual task_categories: - translation viewer: false --- > [!NOTE] > Dataset origin: https://live.european-language-grid.eu/catalogue/corpus/19053 ## Description Parallel (de-en-fr) corpus. Contains partailly cleaned parallel sentences from the original data set (#157), which was delivered as a TMX file. ## Citation ``` Translation of the Luxembourg.lu web site (Processed) (2022). Version 2.0. [Dataset (Text corpus)]. Source: European Language Grid. https://live.european-language-grid.eu/catalogue/corpus/19053 ```
FrancophonIA/Charter_values_citizenship_integration
FrancophonIA
"2024-11-21T14:44:51Z"
2
0
[ "task_categories:translation", "language:de", "language:es", "language:en", "language:it", "language:fr", "region:us" ]
[ "translation" ]
"2024-11-21T14:41:40Z"
--- language: - de - es - en - it - fr multilingulality: - multilingual task_categories: - translation viewer: false --- > [!NOTE] > Dataset origin: https://live.european-language-grid.eu/catalogue/corpus/19058 ## Description The integration agreement form prepared for signing the pact between foreign and state, in addition to providing the alien's commitments, indicates, the statement by the person concerned, to adhere to the Charter of the values of citizenship and integration of the decree of the Minister of 23 April 2007, pledging to respect its principles. The Charter of citizenship and integration values adopted in 2007 summarizes the fundamental principles of our legal system governing the collective life, both citizens and immigrants. The Charter, drawn up according to the principles of the Italian Constitution and the major European Charters and international human rights, focuses especially on those issues that multiculturalism poses to Western societies. - Corpora Multilingual - Provided by Flavia Vecchione. - MINISTERO DELL’INTERNO website ## Citation ``` CHARTER OF VALUES OF CITIZENSHIP AND INTEGRATION (Processed) (2018, October 04). Version 2.0. [Dataset (Text corpus)]. Source: European Language Grid. https://live.european-language-grid.eu/catalogue/corpus/19058 ```
Thermostatic/Biblia-Antiguo-Testamento-Nahuatl-Huasteca-Oriental
Thermostatic
"2024-11-23T02:18:50Z"
2
0
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T02:18:36Z"
--- license: mit ---
miguelsolis/some_name_random_8_2024_11_23_03_03_20
miguelsolis
"2024-11-23T03:05:11Z"
2
0
[ "task_categories:robotics", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
"2024-11-23T03:05:03Z"
--- task_categories: - robotics tags: - LeRobot - tutorial --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
reflection-gen/ds_coder6.7b_pos_reflct_rmsprop_iter1_sppo_hard_new_cn_mining_oj_iter1-binarized
reflection-gen
"2024-11-23T03:06:33Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T03:06:32Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: chosen_probs dtype: float64 - name: chosen_probs_win dtype: float64 - name: chosen_probs_lose dtype: float64 splits: - name: train num_bytes: 12055246 num_examples: 4029 download_size: 5209484 dataset_size: 12055246 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder6.7b_pos_reflct_rmsprop_iter1_sppo_hard_new_cn_mining_oj_iter1-binarized" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_coder6.7b_pos_reflct_rmsprop_iter1_sppo_hard_new_cn_mining_oj_iter1-full_response_traceback
reflection-gen
"2024-11-23T03:06:34Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T03:06:33Z"
--- dataset_info: features: - name: prompt dtype: string - name: test dtype: string - name: tag dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: text_prompt dtype: string - name: text_chosen dtype: string - name: text_rejected dtype: string - name: generate_0 dtype: string - name: generate_0_score dtype: int64 - name: traceback_0 dtype: string - name: generate_1 dtype: string - name: generate_1_score dtype: int64 - name: traceback_1 dtype: string - name: generate_2 dtype: string - name: generate_2_score dtype: int64 - name: traceback_2 dtype: string - name: generate_3 dtype: string - name: generate_3_score dtype: int64 - name: traceback_3 dtype: string - name: probability sequence: sequence: float64 - name: rm_scores sequence: int64 splits: - name: train num_bytes: 30289538 num_examples: 4029 download_size: 11136511 dataset_size: 30289538 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder6.7b_pos_reflct_rmsprop_iter1_sppo_hard_new_cn_mining_oj_iter1-full_response_traceback" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_coder6.7b_pos_reflct_rmsprop_iter1_sppo_hard_new_cn_mining_oj_iter1-binarized_all_pairs
reflection-gen
"2024-11-23T03:06:36Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T03:06:35Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: test dtype: string splits: - name: train num_bytes: 20470836 num_examples: 6720 download_size: 6709944 dataset_size: 20470836 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder6.7b_pos_reflct_rmsprop_iter1_sppo_hard_new_cn_mining_oj_iter1-binarized_all_pairs" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_coder6.7b_pos_reflct_rmsprop_iter1_sppo_hard_new_cn_mining_oj_iter1-full_resp_trace
reflection-gen
"2024-11-23T06:03:10Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T06:03:09Z"
--- dataset_info: features: - name: prompt dtype: string - name: test dtype: string - name: tag dtype: string - name: generate_0 dtype: string - name: generate_0_score dtype: int64 - name: traceback_0 dtype: string - name: generate_1 dtype: string - name: generate_1_score dtype: int64 - name: traceback_1 dtype: string - name: generate_2 dtype: string - name: generate_2_score dtype: int64 - name: traceback_2 dtype: string - name: generate_3 dtype: string - name: generate_3_score dtype: int64 - name: traceback_3 dtype: string - name: probability sequence: sequence: float64 - name: rm_scores sequence: int64 splits: - name: train num_bytes: 24553127 num_examples: 4029 download_size: 10188652 dataset_size: 24553127 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder6.7b_pos_reflct_rmsprop_iter1_sppo_hard_new_cn_mining_oj_iter1-full_resp_trace" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_coder6.7b_pos_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-full_resp_trace
reflection-gen
"2024-11-23T08:44:04Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T08:44:03Z"
--- dataset_info: features: - name: prompt dtype: string - name: test dtype: string - name: tag dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: text_prompt dtype: string - name: text_chosen dtype: string - name: text_rejected dtype: string - name: generate_0 dtype: string - name: generate_0_score dtype: int64 - name: traceback_0 dtype: string - name: generate_1 dtype: string - name: generate_1_score dtype: int64 - name: traceback_1 dtype: string - name: generate_2 dtype: string - name: generate_2_score dtype: int64 - name: traceback_2 dtype: string - name: generate_3 dtype: string - name: generate_3_score dtype: int64 - name: traceback_3 dtype: string - name: probability sequence: sequence: float64 - name: rm_scores sequence: int64 splits: - name: train num_bytes: 20761749 num_examples: 2762 download_size: 7647105 dataset_size: 20761749 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder6.7b_pos_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-full_resp_trace" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_coder6.7b_pos_reflct_rmsprop_iter3_sppo_hard_new_cn_mining_oj_iter3-full_resp_trace
reflection-gen
"2024-11-23T11:09:41Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T11:09:40Z"
--- dataset_info: features: - name: prompt dtype: string - name: test dtype: string - name: tag dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: text_prompt dtype: string - name: text_chosen dtype: string - name: text_rejected dtype: string - name: generate_0 dtype: string - name: generate_0_score dtype: int64 - name: traceback_0 dtype: string - name: generate_1 dtype: string - name: generate_1_score dtype: int64 - name: traceback_1 dtype: string - name: generate_2 dtype: string - name: generate_2_score dtype: int64 - name: traceback_2 dtype: string - name: generate_3 dtype: string - name: generate_3_score dtype: int64 - name: traceback_3 dtype: string - name: probability sequence: sequence: float64 - name: rm_scores sequence: int64 splits: - name: train num_bytes: 18281442 num_examples: 2478 download_size: 6723407 dataset_size: 18281442 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder6.7b_pos_reflct_rmsprop_iter3_sppo_hard_new_cn_mining_oj_iter3-full_resp_trace" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_coder_pos_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-bin
reflection-gen
"2024-11-23T11:31:27Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T11:31:26Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: chosen_probs dtype: float64 - name: chosen_probs_win dtype: float64 - name: chosen_probs_lose dtype: float64 splits: - name: train num_bytes: 7929162 num_examples: 2093 download_size: 3240246 dataset_size: 7929162 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder_pos_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-bin" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_coder_pos_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-full_resp_trace
reflection-gen
"2024-11-23T11:31:28Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T11:31:27Z"
--- dataset_info: features: - name: prompt dtype: string - name: test dtype: string - name: tag dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: text_prompt dtype: string - name: text_chosen dtype: string - name: text_rejected dtype: string - name: generate_0 dtype: string - name: generate_0_score dtype: int64 - name: traceback_0 dtype: string - name: generate_1 dtype: string - name: generate_1_score dtype: int64 - name: traceback_1 dtype: string - name: generate_2 dtype: string - name: generate_2_score dtype: int64 - name: traceback_2 dtype: string - name: generate_3 dtype: string - name: generate_3_score dtype: int64 - name: traceback_3 dtype: string - name: probability sequence: sequence: float64 - name: rm_scores sequence: int64 splits: - name: train num_bytes: 19124550 num_examples: 2093 download_size: 6858574 dataset_size: 19124550 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder_pos_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-full_resp_trace" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_coder_pos_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-bin_all_pairs
reflection-gen
"2024-11-23T11:31:30Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T11:31:29Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: test dtype: string splits: - name: train num_bytes: 14934685 num_examples: 3896 download_size: 4375034 dataset_size: 14934685 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder_pos_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-bin_all_pairs" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_chat_pos_reflct_rmsprop_iter3_sigmoid_cn_mining_oj_iter3-bin
reflection-gen
"2024-11-23T11:56:53Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T11:56:52Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: chosen_probs dtype: float64 - name: chosen_probs_win dtype: float64 - name: chosen_probs_lose dtype: float64 splits: - name: train num_bytes: 6287041 num_examples: 2623 download_size: 2543936 dataset_size: 6287041 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_chat_pos_reflct_rmsprop_iter3_sigmoid_cn_mining_oj_iter3-bin" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_chat_pos_reflct_rmsprop_iter3_sigmoid_cn_mining_oj_iter3-full_resp_trace
reflection-gen
"2024-11-23T11:56:55Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T11:56:53Z"
--- dataset_info: features: - name: prompt dtype: string - name: test dtype: string - name: tag dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: text_prompt dtype: string - name: text_chosen dtype: string - name: text_rejected dtype: string - name: generate_0 dtype: string - name: generate_0_score dtype: int64 - name: traceback_0 dtype: string - name: generate_1 dtype: string - name: generate_1_score dtype: int64 - name: traceback_1 dtype: string - name: generate_2 dtype: string - name: generate_2_score dtype: int64 - name: traceback_2 dtype: string - name: generate_3 dtype: string - name: generate_3_score dtype: int64 - name: traceback_3 dtype: string - name: probability sequence: sequence: float64 - name: rm_scores sequence: int64 splits: - name: train num_bytes: 15125907 num_examples: 2623 download_size: 5537307 dataset_size: 15125907 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_chat_pos_reflct_rmsprop_iter3_sigmoid_cn_mining_oj_iter3-full_resp_trace" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_chat_pos_reflct_rmsprop_iter3_sigmoid_cn_mining_oj_iter3-bin_all_pairs
reflection-gen
"2024-11-23T11:56:56Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T11:56:55Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: test dtype: string splits: - name: train num_bytes: 12800514 num_examples: 5159 download_size: 3640059 dataset_size: 12800514 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_chat_pos_reflct_rmsprop_iter3_sigmoid_cn_mining_oj_iter3-bin_all_pairs" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
k-arthik-r/sys-logs-L0-to-L4-12.6k
k-arthik-r
"2024-11-23T13:18:19Z"
2
0
[ "license:llama3.2", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T13:17:38Z"
--- license: llama3.2 ---
reflection-gen/ds_coder6.7b_pos_reflct_rmsprop_iter4_sppo_hard_new_cn_mining_oj_iter4-full_resp_trace
reflection-gen
"2024-11-23T13:24:23Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T13:24:22Z"
--- dataset_info: features: - name: prompt dtype: string - name: test dtype: string - name: tag dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: text_prompt dtype: string - name: text_chosen dtype: string - name: text_rejected dtype: string - name: generate_0 dtype: string - name: generate_0_score dtype: int64 - name: traceback_0 dtype: string - name: generate_1 dtype: string - name: generate_1_score dtype: int64 - name: traceback_1 dtype: string - name: generate_2 dtype: string - name: generate_2_score dtype: int64 - name: traceback_2 dtype: string - name: generate_3 dtype: string - name: generate_3_score dtype: int64 - name: traceback_3 dtype: string - name: probability sequence: sequence: float64 - name: rm_scores sequence: int64 splits: - name: train num_bytes: 16381302 num_examples: 2259 download_size: 6043747 dataset_size: 16381302 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_coder6.7b_pos_reflct_rmsprop_iter4_sppo_hard_new_cn_mining_oj_iter4-full_resp_trace" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
junnystateofmind/testing_refuel_5_turns_only_ckp_0
junnystateofmind
"2024-11-23T14:40:17Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T14:40:15Z"
--- dataset_info: features: - name: combined_data struct: - name: narrative dtype: string - name: trajectory list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 19176 num_examples: 5 download_size: 17625 dataset_size: 19176 configs: - config_name: default data_files: - split: train path: data/train-* ---
junnystateofmind/testing_refuel_5_turns_only_ckp_1
junnystateofmind
"2024-11-23T14:42:02Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T14:42:00Z"
--- dataset_info: features: - name: combined_data struct: - name: narrative dtype: string - name: trajectory list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 37130 num_examples: 5 download_size: 20861 dataset_size: 37130 configs: - config_name: default data_files: - split: train path: data/train-* ---
junnystateofmind/testing_ultrainteract_5_turns_only
junnystateofmind
"2024-11-23T15:19:00Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T15:18:57Z"
--- dataset_info: features: - name: trajectory list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 37380 num_examples: 1 download_size: 5237 dataset_size: 37380 configs: - config_name: default data_files: - split: train path: data/train-* ---
junnystateofmind/testing_ultrainteract_sampled_h_from_sampled_len_ckp_0
junnystateofmind
"2024-11-23T15:19:48Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T15:19:41Z"
--- dataset_info: features: - name: trajectory_sampled_h_from_sampled_len list: - name: content dtype: string - name: role dtype: string - name: sampled_len_from_5 dtype: int64 - name: sampled_h_from_sampled_len dtype: int64 splits: - name: train num_bytes: 2657 num_examples: 1 download_size: 8617 dataset_size: 2657 configs: - config_name: default data_files: - split: train path: data/train-* ---
thefernandolourenco/silviosantoscantormarc
thefernandolourenco
"2024-11-23T18:27:14Z"
2
0
[ "license:openrail", "region:us" ]
null
"2024-11-23T18:27:14Z"
--- license: openrail ---
ZixuanKe/fingpt_convfinqa_sup_sample_from_policy_v1.1_dpo_val_chunk_3
ZixuanKe
"2024-11-23T19:54:30Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-23T19:54:29Z"
--- dataset_info: features: - name: prompt dtype: string - name: rejected dtype: string - name: chosen dtype: string splits: - name: train num_bytes: 264338 num_examples: 25 download_size: 27277 dataset_size: 264338 configs: - config_name: default data_files: - split: train path: data/train-* ---
ahmedheakl/ar_geochat_instruct
ahmedheakl
"2024-11-24T02:10:16Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T01:52:53Z"
--- dataset_info: features: - name: id dtype: string - name: image_path dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: image dtype: image splits: - name: train num_bytes: 23412879912.0 num_examples: 20000 download_size: 23373751401 dataset_size: 23412879912.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
dgambettaphd/D_gen10_run0_llama2-7b_wiki_doc1000_real96_synt32
dgambettaphd
"2024-11-24T02:33:34Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T02:33:31Z"
--- dataset_info: features: - name: id dtype: int64 - name: doc dtype: string splits: - name: train num_bytes: 643629 num_examples: 1000 download_size: 408917 dataset_size: 643629 configs: - config_name: default data_files: - split: train path: data/train-* ---
camel-bench/arabic_examsv
camel-bench
"2024-11-24T03:20:21Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T03:20:06Z"
--- dataset_info: features: - name: image dtype: image - name: question dtype: string - name: answer dtype: string splits: - name: train num_bytes: 370775474.0 num_examples: 823 download_size: 355304182 dataset_size: 370775474.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
nikkoyudha/dynasty_warriors_characters
nikkoyudha
"2024-11-24T04:57:19Z"
2
0
[ "license:cc-by-nd-4.0", "size_categories:n<1K", "format:imagefolder", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
null
"2024-11-24T04:56:49Z"
--- license: cc-by-nd-4.0 ---
Aya168/project_from_PIPE2
Aya168
"2024-11-24T11:53:39Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T10:09:55Z"
--- dataset_info: features: - name: img_id dtype: string - name: original_image dtype: image - name: target_image dtype: image - name: object_image dtype: image splits: - name: train num_bytes: 4092990035.329 num_examples: 42437 download_size: 4072045955 dataset_size: 4092990035.329 configs: - config_name: default data_files: - split: train path: data/train-* ---
czm05/test03
czm05
"2024-11-24T10:54:22Z"
2
0
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T10:54:07Z"
--- license: apache-2.0 ---
iqwiki-kor/wDPO-ko
iqwiki-kor
"2024-11-24T13:14:13Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T13:14:08Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: chosen_score dtype: float64 - name: rejected_score dtype: float64 splits: - name: train num_bytes: 45459123 num_examples: 10000 download_size: 21162726 dataset_size: 45459123 configs: - config_name: default data_files: - split: train path: data/train-* ---
gaydmi/alpaca-tat
gaydmi
"2024-11-25T01:14:35Z"
2
0
[ "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T16:31:31Z"
--- configs: - config_name: default data_files: - split: train path: ru_alpaca_seed_tasks.csv ---
mlfoundations-dev/oh_v1.2_sin_airoboros_diversity
mlfoundations-dev
"2024-11-24T18:12:07Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T17:34:37Z"
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: shard_id dtype: string - name: output dtype: string - name: ngram_3_uniqueness dtype: float64 - name: entropy dtype: float64 - name: gini_index dtype: float64 - name: self_bleu dtype: float64 - name: embeddings sequence: float64 - name: kmeans_inertia_embeddings dtype: float64 - name: new_conversations list: - name: content dtype: string - name: role dtype: string - name: gradients sequence: float64 - name: kmeans_inertia_gradients dtype: float64 splits: - name: train num_bytes: 58694197 num_examples: 4665 download_size: 45143196 dataset_size: 58694197 configs: - config_name: default data_files: - split: train path: data/train-* ---
DatPySci/weak_gpt2-large_tldr_synthetic
DatPySci
"2024-11-24T17:36:27Z"
2
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T17:36:06Z"
--- dataset_info: features: - name: target sequence: string - name: reference_response dtype: string - name: ctx dtype: string splits: - name: train num_bytes: 239653716 num_examples: 114674 download_size: 140121221 dataset_size: 239653716 configs: - config_name: default data_files: - split: train path: data/train-* ---
lukehinds/testdataset
lukehinds
"2024-11-24T18:21:22Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T18:21:20Z"
--- dataset_info: features: - name: messages list: - name: role dtype: string - name: content dtype: string splits: - name: train num_bytes: 711 num_examples: 5 download_size: 1757 dataset_size: 711 configs: - config_name: default data_files: - split: train path: data/train-* ---
braindao/solidity-base-sft-v3
braindao
"2024-11-24T18:36:52Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T18:36:29Z"
--- dataset_info: features: - name: id dtype: int64 - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 736357422.2074078 num_examples: 38495 download_size: 134425079 dataset_size: 736357422.2074078 configs: - config_name: default data_files: - split: train path: data/train-* ---
Leyo/moss_test_r8
Leyo
"2024-11-24T18:45:09Z"
2
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
"2024-11-24T18:44:56Z"
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "moss", "total_episodes": 10, "total_frames": 4415, "total_tasks": 1, "total_videos": 20, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:10" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "next.reward": { "dtype": "int64", "shape": [ 1 ], "names": null }, "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
open-llm-leaderboard/ehristoforu__RQwen-v0.1-details
open-llm-leaderboard
"2024-11-24T18:57:52Z"
2
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T18:54:32Z"
--- pretty_name: Evaluation run of ehristoforu/RQwen-v0.1 dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [ehristoforu/RQwen-v0.1](https://huggingface.co/ehristoforu/RQwen-v0.1)\nThe dataset\ \ is composed of 38 configuration(s), each one corresponding to one of the evaluated\ \ task.\n\nThe dataset has been created from 1 run(s). Each run can be found as\ \ a specific split in each configuration, the split being named using the timestamp\ \ of the run.The \"train\" split is always pointing to the latest results.\n\nAn\ \ additional configuration \"results\" store all the aggregated results of the run.\n\ \nTo load the details from a run, you can for instance do the following:\n```python\n\ from datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/ehristoforu__RQwen-v0.1-details\"\ ,\n\tname=\"ehristoforu__RQwen-v0.1__leaderboard_bbh_boolean_expressions\",\n\t\ split=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results from\ \ run 2024-11-24T18-54-31.650276](https://huggingface.co/datasets/open-llm-leaderboard/ehristoforu__RQwen-v0.1-details/blob/main/ehristoforu__RQwen-v0.1/results_2024-11-24T18-54-31.650276.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"acc,none\": 0.5201961436170213,\n \"acc_stderr,none\"\ : 0.004554750245067938,\n \"prompt_level_strict_acc,none\": 0.7264325323475046,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.019183727107392846,\n \ \ \"inst_level_strict_acc,none\": 0.7985611510791367,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.7615526802218114,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.01833788809424391,\n \ \ \"inst_level_loose_acc,none\": 0.8249400479616307,\n \"inst_level_loose_acc_stderr,none\"\ : \"N/A\",\n \"acc_norm,none\": 0.5702425736152549,\n \"acc_norm_stderr,none\"\ : 0.005124139231525546,\n \"exact_match,none\": 0.02945619335347432,\n\ \ \"exact_match_stderr,none\": 0.0046364753008244705,\n \"\ alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \ \ \"acc_norm,none\": 0.6415552855407047,\n \"acc_norm_stderr,none\"\ : 0.005818997061406109,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.892,\n\ \ \"acc_norm_stderr,none\": 0.019669559381568776\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6256684491978609,\n \"acc_norm_stderr,none\"\ : 0.0354849234134303\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.7,\n \"acc_norm_stderr,none\": 0.029040893477575786\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.664,\n\ \ \"acc_norm_stderr,none\": 0.029933259094191533\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.644,\n \"acc_norm_stderr,none\":\ \ 0.0303436806571532\n },\n \"leaderboard_bbh_geometric_shapes\":\ \ {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.532,\n \"acc_norm_stderr,none\": 0.031621252575725574\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.82,\n \ \ \"acc_norm_stderr,none\": 0.02434689065029351\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.632,\n \"acc_norm_stderr,none\":\ \ 0.03056207062099311\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.596,\n \"acc_norm_stderr,none\":\ \ 0.03109668818482536\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.928,\n \"acc_norm_stderr,none\":\ \ 0.016381005750490122\n },\n \"leaderboard_bbh_movie_recommendation\"\ : {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\",\n \ \ \"acc_norm,none\": 0.768,\n \"acc_norm_stderr,none\": 0.026750070374865202\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \"\ \ - leaderboard_bbh_navigate\",\n \"acc_norm,none\": 0.668,\n \ \ \"acc_norm_stderr,none\": 0.029844039047465857\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.456,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.7328767123287672,\n \"acc_norm_stderr,none\": 0.03674407640319397\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.788,\n \"acc_norm_stderr,none\": 0.025901884690541117\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.828,\n \ \ \"acc_norm_stderr,none\": 0.02391551394448624\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.616,\n \"acc_norm_stderr,none\":\ \ 0.030821679117375447\n },\n \"leaderboard_bbh_snarks\": {\n \ \ \"alias\": \" - leaderboard_bbh_snarks\",\n \"acc_norm,none\"\ : 0.7808988764044944,\n \"acc_norm_stderr,none\": 0.031090883837921395\n\ \ },\n \"leaderboard_bbh_sports_understanding\": {\n \"\ alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.624,\n \"acc_norm_stderr,none\": 0.03069633626739458\n },\n\ \ \"leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" -\ \ leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.852,\n\ \ \"acc_norm_stderr,none\": 0.022503547243806186\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.244,\n \"acc_norm_stderr,none\": 0.02721799546455311\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.204,\n \"acc_norm_stderr,none\":\ \ 0.025537121574548162\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.328,\n \"acc_norm_stderr,none\":\ \ 0.029752391824475363\n },\n \"leaderboard_bbh_web_of_lies\": {\n\ \ \"alias\": \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\"\ : 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n },\n\ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.32550335570469796,\n\ \ \"acc_norm_stderr,none\": 0.013587913744347518,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.3282828282828283,\n \"acc_norm_stderr,none\": 0.03345678422756777\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.32967032967032966,\n\ \ \"acc_norm_stderr,none\": 0.0201365887896455\n },\n \"\ leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.31919642857142855,\n \"acc_norm_stderr,none\"\ : 0.02204886116457606\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.7264325323475046,\n \"prompt_level_strict_acc_stderr,none\": 0.019183727107392846,\n\ \ \"inst_level_strict_acc,none\": 0.7985611510791367,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.7615526802218114,\n \"prompt_level_loose_acc_stderr,none\": 0.01833788809424391,\n\ \ \"inst_level_loose_acc,none\": 0.8249400479616307,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.02945619335347432,\n \"exact_match_stderr,none\"\ : 0.0046364753008244705,\n \"alias\": \" - leaderboard_math_hard\"\n\ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.04234527687296417,\n\ \ \"exact_match_stderr,none\": 0.011511879967693189\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.032520325203252036,\n \"exact_match_stderr,none\": 0.016058998205879745\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.007575757575757576,\n\ \ \"exact_match_stderr,none\": 0.007575757575757577\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\":\ \ \" - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.017857142857142856,\n \"exact_match_stderr,none\": 0.007928503387888855\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.025974025974025976,\n\ \ \"exact_match_stderr,none\": 0.012859058999697068\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.05699481865284974,\n \"exact_match_stderr,none\"\ : 0.01673108529360757\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.007407407407407408,\n \"exact_match_stderr,none\"\ : 0.007407407407407408\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.5201961436170213,\n\ \ \"acc_stderr,none\": 0.004554750245067938\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.4126984126984127,\n \"acc_norm_stderr,none\"\ : 0.01745952627984168,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\": \"\ \ - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.532,\n\ \ \"acc_norm_stderr,none\": 0.031621252575725574\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.26171875,\n \"acc_norm_stderr,none\"\ : 0.027526959754524398\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n\ \ }\n },\n \"leaderboard\": {\n \"acc,none\": 0.5201961436170213,\n\ \ \"acc_stderr,none\": 0.004554750245067938,\n \"prompt_level_strict_acc,none\"\ : 0.7264325323475046,\n \"prompt_level_strict_acc_stderr,none\": 0.019183727107392846,\n\ \ \"inst_level_strict_acc,none\": 0.7985611510791367,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.7615526802218114,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.01833788809424391,\n \"inst_level_loose_acc,none\"\ : 0.8249400479616307,\n \"inst_level_loose_acc_stderr,none\": \"N/A\",\n\ \ \"acc_norm,none\": 0.5702425736152549,\n \"acc_norm_stderr,none\"\ : 0.005124139231525546,\n \"exact_match,none\": 0.02945619335347432,\n \ \ \"exact_match_stderr,none\": 0.0046364753008244705,\n \"alias\": \"\ leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\": 0.6415552855407047,\n\ \ \"acc_norm_stderr,none\": 0.005818997061406109,\n \"alias\": \"\ \ - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\": {\n\ \ \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\"\ : 0.892,\n \"acc_norm_stderr,none\": 0.019669559381568776\n },\n \"\ leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6256684491978609,\n \"acc_norm_stderr,none\"\ : 0.0354849234134303\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.7,\n \"acc_norm_stderr,none\": 0.029040893477575786\n },\n \"leaderboard_bbh_disambiguation_qa\"\ : {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\"\ : 0.664,\n \"acc_norm_stderr,none\": 0.029933259094191533\n },\n \"\ leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.644,\n \"acc_norm_stderr,none\": 0.0303436806571532\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.532,\n \"acc_norm_stderr,none\": 0.031621252575725574\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.82,\n \"acc_norm_stderr,none\": 0.02434689065029351\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.632,\n \"acc_norm_stderr,none\": 0.03056207062099311\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.596,\n \"acc_norm_stderr,none\": 0.03109668818482536\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.928,\n \"acc_norm_stderr,none\": 0.016381005750490122\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.768,\n \"acc_norm_stderr,none\": 0.026750070374865202\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.668,\n \"acc_norm_stderr,none\": 0.029844039047465857\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.456,\n \"acc_norm_stderr,none\": 0.031563285061213475\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.7328767123287672,\n\ \ \"acc_norm_stderr,none\": 0.03674407640319397\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.788,\n \"acc_norm_stderr,none\": 0.025901884690541117\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.828,\n \"acc_norm_stderr,none\": 0.02391551394448624\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.616,\n \"acc_norm_stderr,none\": 0.030821679117375447\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.7808988764044944,\n \"acc_norm_stderr,none\"\ : 0.031090883837921395\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.624,\n \"acc_norm_stderr,none\": 0.03069633626739458\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.852,\n \"acc_norm_stderr,none\": 0.022503547243806186\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.244,\n \"acc_norm_stderr,none\": 0.02721799546455311\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.204,\n \"acc_norm_stderr,none\": 0.025537121574548162\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.328,\n \"acc_norm_stderr,none\": 0.029752391824475363\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.548,\n \"acc_norm_stderr,none\": 0.03153986449255664\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.32550335570469796,\n\ \ \"acc_norm_stderr,none\": 0.013587913744347518,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.3282828282828283,\n\ \ \"acc_norm_stderr,none\": 0.03345678422756777\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.32967032967032966,\n \"acc_norm_stderr,none\": 0.0201365887896455\n \ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.31919642857142855,\n \"acc_norm_stderr,none\"\ : 0.02204886116457606\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.7264325323475046,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.019183727107392846,\n \ \ \"inst_level_strict_acc,none\": 0.7985611510791367,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.7615526802218114,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.01833788809424391,\n \"inst_level_loose_acc,none\"\ : 0.8249400479616307,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.02945619335347432,\n\ \ \"exact_match_stderr,none\": 0.0046364753008244705,\n \"alias\"\ : \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.04234527687296417,\n \"exact_match_stderr,none\": 0.011511879967693189\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.032520325203252036,\n \"exact_match_stderr,none\": 0.016058998205879745\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.007575757575757576,\n \"exact_match_stderr,none\"\ : 0.007575757575757577\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.017857142857142856,\n \"exact_match_stderr,none\"\ : 0.007928503387888855\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.025974025974025976,\n \"exact_match_stderr,none\": 0.012859058999697068\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.05699481865284974,\n \"exact_match_stderr,none\"\ : 0.01673108529360757\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.007407407407407408,\n \"exact_match_stderr,none\": 0.007407407407407408\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.5201961436170213,\n \"acc_stderr,none\": 0.004554750245067938\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.4126984126984127,\n\ \ \"acc_norm_stderr,none\": 0.01745952627984168,\n \"alias\": \" -\ \ leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.532,\n \"acc_norm_stderr,none\": 0.031621252575725574\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.26171875,\n \"acc_norm_stderr,none\": 0.027526959754524398\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.448,\n \"acc_norm_stderr,none\": 0.03151438761115349\n\ \ }\n}\n```" repo_url: https://huggingface.co/ehristoforu/RQwen-v0.1 leaderboard_url: '' point_of_contact: '' configs: - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_date_understanding data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_navigate data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_navigate_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_object_counting data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_ruin_names data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_snarks data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_snarks_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_gpqa_diamond data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_gpqa_extended data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_gpqa_extended_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_gpqa_main data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_gpqa_main_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_ifeval data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_ifeval_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_math_algebra_hard data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_math_geometry_hard data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_math_num_theory_hard data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_math_precalculus_hard data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_mmlu_pro data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_mmlu_pro_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_musr_object_placements data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_musr_object_placements_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-24T18-54-31.650276.jsonl' - config_name: ehristoforu__RQwen-v0.1__leaderboard_musr_team_allocation data_files: - split: 2024_11_24T18_54_31.650276 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-24T18-54-31.650276.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-24T18-54-31.650276.jsonl' --- # Dataset Card for Evaluation run of ehristoforu/RQwen-v0.1 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [ehristoforu/RQwen-v0.1](https://huggingface.co/ehristoforu/RQwen-v0.1) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/ehristoforu__RQwen-v0.1-details", name="ehristoforu__RQwen-v0.1__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-24T18-54-31.650276](https://huggingface.co/datasets/open-llm-leaderboard/ehristoforu__RQwen-v0.1-details/blob/main/ehristoforu__RQwen-v0.1/results_2024-11-24T18-54-31.650276.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "acc,none": 0.5201961436170213, "acc_stderr,none": 0.004554750245067938, "prompt_level_strict_acc,none": 0.7264325323475046, "prompt_level_strict_acc_stderr,none": 0.019183727107392846, "inst_level_strict_acc,none": 0.7985611510791367, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7615526802218114, "prompt_level_loose_acc_stderr,none": 0.01833788809424391, "inst_level_loose_acc,none": 0.8249400479616307, "inst_level_loose_acc_stderr,none": "N/A", "acc_norm,none": 0.5702425736152549, "acc_norm_stderr,none": 0.005124139231525546, "exact_match,none": 0.02945619335347432, "exact_match_stderr,none": 0.0046364753008244705, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.6415552855407047, "acc_norm_stderr,none": 0.005818997061406109, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.892, "acc_norm_stderr,none": 0.019669559381568776 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6256684491978609, "acc_norm_stderr,none": 0.0354849234134303 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.7, "acc_norm_stderr,none": 0.029040893477575786 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.664, "acc_norm_stderr,none": 0.029933259094191533 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.644, "acc_norm_stderr,none": 0.0303436806571532 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.82, "acc_norm_stderr,none": 0.02434689065029351 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.632, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.596, "acc_norm_stderr,none": 0.03109668818482536 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.928, "acc_norm_stderr,none": 0.016381005750490122 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.768, "acc_norm_stderr,none": 0.026750070374865202 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.668, "acc_norm_stderr,none": 0.029844039047465857 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.7328767123287672, "acc_norm_stderr,none": 0.03674407640319397 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.788, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.828, "acc_norm_stderr,none": 0.02391551394448624 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.616, "acc_norm_stderr,none": 0.030821679117375447 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.7808988764044944, "acc_norm_stderr,none": 0.031090883837921395 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.624, "acc_norm_stderr,none": 0.03069633626739458 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.852, "acc_norm_stderr,none": 0.022503547243806186 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.244, "acc_norm_stderr,none": 0.02721799546455311 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.204, "acc_norm_stderr,none": 0.025537121574548162 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.328, "acc_norm_stderr,none": 0.029752391824475363 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_gpqa": { "acc_norm,none": 0.32550335570469796, "acc_norm_stderr,none": 0.013587913744347518, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.3282828282828283, "acc_norm_stderr,none": 0.03345678422756777 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.32967032967032966, "acc_norm_stderr,none": 0.0201365887896455 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.31919642857142855, "acc_norm_stderr,none": 0.02204886116457606 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7264325323475046, "prompt_level_strict_acc_stderr,none": 0.019183727107392846, "inst_level_strict_acc,none": 0.7985611510791367, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7615526802218114, "prompt_level_loose_acc_stderr,none": 0.01833788809424391, "inst_level_loose_acc,none": 0.8249400479616307, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.02945619335347432, "exact_match_stderr,none": 0.0046364753008244705, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.04234527687296417, "exact_match_stderr,none": 0.011511879967693189 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.032520325203252036, "exact_match_stderr,none": 0.016058998205879745 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.007575757575757576, "exact_match_stderr,none": 0.007575757575757577 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.017857142857142856, "exact_match_stderr,none": 0.007928503387888855 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.025974025974025976, "exact_match_stderr,none": 0.012859058999697068 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.05699481865284974, "exact_match_stderr,none": 0.01673108529360757 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.007407407407407408, "exact_match_stderr,none": 0.007407407407407408 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.5201961436170213, "acc_stderr,none": 0.004554750245067938 }, "leaderboard_musr": { "acc_norm,none": 0.4126984126984127, "acc_norm_stderr,none": 0.01745952627984168, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.26171875, "acc_norm_stderr,none": 0.027526959754524398 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 } }, "leaderboard": { "acc,none": 0.5201961436170213, "acc_stderr,none": 0.004554750245067938, "prompt_level_strict_acc,none": 0.7264325323475046, "prompt_level_strict_acc_stderr,none": 0.019183727107392846, "inst_level_strict_acc,none": 0.7985611510791367, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7615526802218114, "prompt_level_loose_acc_stderr,none": 0.01833788809424391, "inst_level_loose_acc,none": 0.8249400479616307, "inst_level_loose_acc_stderr,none": "N/A", "acc_norm,none": 0.5702425736152549, "acc_norm_stderr,none": 0.005124139231525546, "exact_match,none": 0.02945619335347432, "exact_match_stderr,none": 0.0046364753008244705, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.6415552855407047, "acc_norm_stderr,none": 0.005818997061406109, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.892, "acc_norm_stderr,none": 0.019669559381568776 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6256684491978609, "acc_norm_stderr,none": 0.0354849234134303 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.7, "acc_norm_stderr,none": 0.029040893477575786 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.664, "acc_norm_stderr,none": 0.029933259094191533 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.644, "acc_norm_stderr,none": 0.0303436806571532 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.82, "acc_norm_stderr,none": 0.02434689065029351 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.632, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.596, "acc_norm_stderr,none": 0.03109668818482536 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.928, "acc_norm_stderr,none": 0.016381005750490122 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.768, "acc_norm_stderr,none": 0.026750070374865202 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.668, "acc_norm_stderr,none": 0.029844039047465857 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.456, "acc_norm_stderr,none": 0.031563285061213475 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.7328767123287672, "acc_norm_stderr,none": 0.03674407640319397 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.788, "acc_norm_stderr,none": 0.025901884690541117 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.828, "acc_norm_stderr,none": 0.02391551394448624 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.616, "acc_norm_stderr,none": 0.030821679117375447 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.7808988764044944, "acc_norm_stderr,none": 0.031090883837921395 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.624, "acc_norm_stderr,none": 0.03069633626739458 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.852, "acc_norm_stderr,none": 0.022503547243806186 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.244, "acc_norm_stderr,none": 0.02721799546455311 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.204, "acc_norm_stderr,none": 0.025537121574548162 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.328, "acc_norm_stderr,none": 0.029752391824475363 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.548, "acc_norm_stderr,none": 0.03153986449255664 }, "leaderboard_gpqa": { "acc_norm,none": 0.32550335570469796, "acc_norm_stderr,none": 0.013587913744347518, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.3282828282828283, "acc_norm_stderr,none": 0.03345678422756777 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.32967032967032966, "acc_norm_stderr,none": 0.0201365887896455 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.31919642857142855, "acc_norm_stderr,none": 0.02204886116457606 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7264325323475046, "prompt_level_strict_acc_stderr,none": 0.019183727107392846, "inst_level_strict_acc,none": 0.7985611510791367, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7615526802218114, "prompt_level_loose_acc_stderr,none": 0.01833788809424391, "inst_level_loose_acc,none": 0.8249400479616307, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.02945619335347432, "exact_match_stderr,none": 0.0046364753008244705, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.04234527687296417, "exact_match_stderr,none": 0.011511879967693189 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.032520325203252036, "exact_match_stderr,none": 0.016058998205879745 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.007575757575757576, "exact_match_stderr,none": 0.007575757575757577 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.017857142857142856, "exact_match_stderr,none": 0.007928503387888855 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.025974025974025976, "exact_match_stderr,none": 0.012859058999697068 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.05699481865284974, "exact_match_stderr,none": 0.01673108529360757 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.007407407407407408, "exact_match_stderr,none": 0.007407407407407408 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.5201961436170213, "acc_stderr,none": 0.004554750245067938 }, "leaderboard_musr": { "acc_norm,none": 0.4126984126984127, "acc_norm_stderr,none": 0.01745952627984168, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.532, "acc_norm_stderr,none": 0.031621252575725574 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.26171875, "acc_norm_stderr,none": 0.027526959754524398 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.448, "acc_norm_stderr,none": 0.03151438761115349 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
jamesdaizs/chiblings
jamesdaizs
"2024-11-24T19:38:18Z"
2
0
[ "task_categories:text-to-image", "language:en", "size_categories:n<1K", "format:imagefolder", "modality:image", "library:datasets", "library:mlcroissant", "region:us", "art" ]
[ "text-to-image" ]
"2024-11-24T19:25:44Z"
--- task_categories: - text-to-image language: - en tags: - art size_categories: - 1K<n<10K ---
Obscure-Entropy/Flickr8k-Augmented
Obscure-Entropy
"2024-11-25T11:51:04Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T20:02:05Z"
--- dataset_info: features: - name: image dtype: image - name: caption dtype: string splits: - name: train num_bytes: 10108227134.688 num_examples: 48288 download_size: 10106362012 dataset_size: 10108227134.688 configs: - config_name: default data_files: - split: train path: data/train-* ---
HanxuHU/gemma-2-9b-it-ultrafeedback-annotate-truth-judge
HanxuHU
"2024-11-24T22:22:20Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T22:22:15Z"
--- dataset_info: features: - name: prompt_id dtype: string - name: prompt dtype: string - name: all_generated_responses sequence: string - name: scores sequence: float64 - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string splits: - name: test num_bytes: 28633857 num_examples: 1962 download_size: 13281487 dataset_size: 28633857 configs: - config_name: default data_files: - split: test path: data/test-* ---
marcov/super_glue_record_promptsource
marcov
"2024-11-24T23:58:20Z"
2
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-24T23:46:39Z"
--- dataset_info: features: - name: passage dtype: string - name: query dtype: string - name: entities sequence: string - name: entity_spans sequence: - name: text dtype: string - name: start dtype: int32 - name: end dtype: int32 - name: answers sequence: string - name: idx struct: - name: passage dtype: int32 - name: query dtype: int32 - name: template_name dtype: string - name: template dtype: string - name: rendered_input dtype: string - name: rendered_output dtype: string splits: - name: train num_bytes: 6602841845.0 num_examples: 2014600 - name: validation num_bytes: 646456677.0 num_examples: 200000 - name: test num_bytes: 625849870.0 num_examples: 200000 download_size: 3154589657 dataset_size: 7875148392.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
neoneye/simon-arc-combine-v181
neoneye
"2024-11-24T23:56:03Z"
2
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
"2024-11-24T23:55:17Z"
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) combined datasets version 181 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 A combination of multiple datasets. Datasets: `dataset_solve_color.jsonl`, `dataset_solve_rotate.jsonl`, `dataset_solve_translate.jsonl`. # Version 2 Datasets: `dataset_solve_color.jsonl`, `dataset_solve_rotate.jsonl`, `dataset_solve_translate.jsonl`. # Version 3 Datasets: `dataset_solve_color.jsonl`, `dataset_solve_rotate.jsonl`, `dataset_solve_translate.jsonl`. # Version 4 Added a shared dataset name for all these datasets: `SIMON-SOLVE-V1`. There may be higher version numbers in the future. My hypothesis: Having a version number in the dataset name, it may be easier to unlearn incorrect training data. Datasets: `dataset_solve_color.jsonl`, `dataset_solve_rotate.jsonl`, `dataset_solve_translate.jsonl`. # Version 5 Different random seed. # Version 6 Using `SIMON-SOLVE-V1` everywhere. Remove the `SIMON-SOLVE-COLOR`, `SIMON-SOLVE-ROTATE`, `SIMON-SOLVE-TRANSLATE`. # Version 7 Using `SIMON-SOLVE-V1` everywhere. # Version 8 Same settings. Different seed as usual. # Version 9 Switching from context length 256 to context length 512. Increasing the image sizes so the prompt length stays below 512. `dataset_solve_color`, image size: 1-13. `dataset_solve_rotate`, image size: 1-9. `dataset_solve_translate`, image size: 3-9. # Version 10 Same settings. Different seed as usual. # Version 11 Same settings. Different seed as usual. # Version 12 Added 1 more pair to the examples. Now it's 2-4 examples. Previously it was 2-3 examples. # Version 13 Same settings. Different seed as usual. # Version 14 Same settings. Different seed as usual. # Version 15 Same settings. Different seed as usual. # Version 16 Added `Predict the output image.` Disabled prediction of rows. Disabled prediction of height. # Verison 17 Same settings. Different seed as usual. Using the `DatasetGenerator` and the `DatasetItemListBuilder`. # Verison 18 Added datasets. Datasets: - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_translate.jsonl` - `dataset_cellular_automaton.jsonl` - added. - `dataset_shape.jsonl` - added. # Verison 19 Added dataset. Datasets: - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_translate.jsonl` - `dataset_cellular_automaton.jsonl` - `dataset_shape.jsonl` - `dataset_image.jsonl` - added. # Verison 20 Bigger images. # Verison 21 Added dataset. Disabled some datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_shape.jsonl` - `dataset_mass.jsonl` - added. # Verison 22 Added dataset. Datasets: - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_translate.jsonl` - `dataset_cellular_automaton.jsonl` - `dataset_shape.jsonl` - `dataset_image.jsonl` - `dataset_mass.jsonl` - `dataset_histogram.jsonl` - added. Bigger image sizes. Number of rows=200k. Was previously 100k rows. # Verison 23 `datset_mass.jsonl`. increased to `max_mass=5`. # Verison 24 `datset_mass.jsonl`. increased to `max_mass=6`. # Verison 25 different seed. # Verison 26 `datset_mass.jsonl`. increased to `max_mass=25`. different seed. # Verison 27 different seed. # Verison 28 different seed. # Verison 29 different seed. # Verison 30 different seed. # Verison 31 different seed. # Verison 32 different seed. # Verison 33 Disabled some dataset. Datasets: - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_mass.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - disabled - `dataset_solve_rotate.jsonl` - disabled - `dataset_solve_translate.jsonl` - disabled - `dataset_cellular_automaton.jsonl` # Verison 34 Enabled all datasets. # Version 35 Regenerated all datasets with new random seeds. # Verison 36 Added dataset `dataset_scale.jsonl`. Disabled some dataset. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_translate.jsonl` # Verison 37 Enabled all datasets Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_translate.jsonl` # Verison 38 Added dataset Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` - added # Version 39 Regenerated all datasets with new random seeds. # Version 40 Added dataset Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - added - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` # Version 41 Regenerated all datasets with new random seeds. # Version 42 Added dataset. Disabled some datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - added - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 43 Enabled all datasets. # Version 44 Regenerated all datasets with new random seeds. # Version 45 Extended the `dataset_shape.jsonl` with these new `PixelConnectivity` types: `CORNER4`, `LR2`, `TB2`, `TLBR2`, `TRBL2`. Hopefully it makes the model better at making sense of diagonal structures, which is something it's terrible at at the moment. # Version 46 Regenerated all datasets with new random seeds. # Version 47 Added dataset. Disabled some datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - added - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` # Version 48 Enabled all datasets. # Version 49 Bigger `max_mass`. From 6 to 8. # Version 50 Added dataset. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - added - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` # Version 51 Regenerated all datasets with new random seeds. # Version 52 Regenerated all datasets with new random seeds. # Version 53 Regenerated all datasets with new random seeds. # Version 54 Added dataset. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_erotion.jsonl` - added - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` # Version 55 Added dataset. Disabled most datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - added - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - disabled - `dataset_solve_compress.jsonl` - disabled - `dataset_solve_rotate.jsonl` - disabled - `dataset_solve_scale.jsonl` - disabled - `dataset_solve_symmetry.jsonl` - disabled - `dataset_solve_translate.jsonl` - disabled - `dataset_symmetry.jsonl` - disabled # Version 56 Enabled all datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` # Version 57 Regenerated all datasets with new random seeds. # Version 58 Disabled most datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 59 Added new datasets. Disabled most datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - added - `dataset_solve_fractal.jsonl` - added - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 60 Incremented random seed Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 61 Enabled all datasets. More padding inside the `dataset_solve_fractal.jsonl`. # Version 62 All datasets still enabled. Turning up the parameter for `dataset_solve_fractal.jsonl`. scale_input from 3 to 4. scale_output from 3 to 4. max_image_size from 3 to 4. max_pad_count from 4 to 5. # Version 63 Disabled several datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - disabled - `dataset_solve_compress.jsonl` - disabled - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_rotate.jsonl` - disabled - `dataset_solve_scale.jsonl` - disabled - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - disabled - `dataset_symmetry.jsonl` - disabled # Version 64 Added dataset. Increased the number of rows in the jsonl file from 200k to 300k. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_outline.jsonl` - added - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` # Version 65 random seed. # Version 66 Disabled some datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - disabled - `dataset_solve_compress.jsonl` - disabled - `dataset_solve_erosion.jsonl` - disabled - `dataset_solve_fractal.jsonl` - disabled - `dataset_solve_outline.jsonl` - disabled - `dataset_solve_rotate.jsonl` - disabled - `dataset_solve_scale.jsonl` - disabled - `dataset_solve_symmetry.jsonl` - disabled - `dataset_solve_translate.jsonl` - disabled - `dataset_symmetry.jsonl` - disabled # Version 67 Disabled some datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - enabled - `dataset_solve_compress.jsonl` - enabled - `dataset_solve_erosion.jsonl` - enabled - `dataset_solve_fractal.jsonl` - enabled - `dataset_solve_outline.jsonl` - enabled - `dataset_solve_rotate.jsonl` - enabled - `dataset_solve_scale.jsonl` - enabled - `dataset_solve_symmetry.jsonl` - enabled - `dataset_solve_translate.jsonl` - enabled - `dataset_symmetry.jsonl` # Version 68 Enabled all datasets. # Version 69 Different random seed. # Version 70 Different random seed. # Version 71 Different random seed. # Version 72 Different random seed. # Version 73 Different random seed. # Version 74 Major update to `dataset_solve_symmetry.jsonl`. # Version 75 Different random seed. # Version 76 Disabled some datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 77 Enabled all datasets. # Version 78 Major update to `dataset_solve_symmetry.jsonl`. # Version 79 Different random seed. # Version 80 Different random seed. # Version 81 Different random seed. # Version 82 Added dataset. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - added - `dataset_symmetry.jsonl` # Version 83 Disabled datasets that doesn't solve ARC puzzles. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 84 Added dataset `dataset_solve_grid.jsonl`. Disabled datasets that doesn't solve ARC puzzles. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - added - `dataset_solve_outline.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 85 Disabled datasets that doesn't solve ARC puzzles. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 86 Enabled all datasets. # Version 87 Disabled datasets that doesn't solve ARC puzzles. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 88 Added dataset `dataset_solve_probecolor.jsonl` with all directions enabled. Disabled datasets that doesn't solve ARC puzzles. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 89 Enabled all datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 90 Disabled some of the datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_color.jsonl` - disabled - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - disabled - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - disabled - `dataset_solve_outline.jsonl` - disabled - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - disabled - `dataset_solve_zindex.jsonl` - disabled - `dataset_symmetry.jsonl` - disabled # Version 91 Added dataset. Enabled all datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_mass.jsonl` - added - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 92 Different random seed. # Version 93 Added dataset. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - added - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 94 Added dataset. Disabled datasets that doesn't solve ARC tasks. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_bool.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - added - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 95 Added dataset. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - added - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 96 Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - major update. - `dataset_symmetry.jsonl` # Version 97 Disabled the first half of the datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_bool.jsonl` - disabled - `dataset_solve_color.jsonl` - disabled - `dataset_solve_compress.jsonl` - disabled - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 98 Disabled the last half of the datasets. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - disabled - `dataset_solve_erosion.jsonl` - disabled - `dataset_solve_fractal.jsonl` - disabled - `dataset_solve_grid.jsonl` - disabled - `dataset_solve_half.jsonl` - disabled - `dataset_solve_mass.jsonl` - disabled - `dataset_solve_outline.jsonl` - disabled - `dataset_solve_probecolor.jsonl` - disabled - `dataset_solve_rotate.jsonl` - disabled - `dataset_solve_scale.jsonl` - disabled - `dataset_solve_symmetry.jsonl` - disabled - `dataset_solve_translate.jsonl` - disabled - `dataset_solve_zindex.jsonl` - disabled - `dataset_symmetry.jsonl` - disabled # Version 99 Disabled the 1/4th of the datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_bool.jsonl` - disabled - `dataset_solve_color.jsonl` - disabled - `dataset_solve_compress.jsonl` - disabled - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - disabled - `dataset_solve_rotate.jsonl` - disabled - `dataset_solve_scale.jsonl` - disabled - `dataset_solve_symmetry.jsonl` - disabled - `dataset_solve_translate.jsonl` - disabled - `dataset_solve_zindex.jsonl` - disabled - `dataset_symmetry.jsonl` - disabled # Version 100 Added dataset. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mask.jsonl` - added - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 101 Disabled the non solving datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_bool.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 102 Added dataset Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_boundingbox.jsonl` - added - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 103 Different random seed. # Version 104 Disabled the non solving datasets. Datasets: - `dataset_cellular_automaton.jsonl` - disabled - `dataset_dilation.jsonl` - disabled - `dataset_erotion.jsonl` - disabled - `dataset_histogram.jsonl` - disabled - `dataset_image.jsonl` - disabled - `dataset_image_pair.jsonl` - disabled - `dataset_mass.jsonl` - disabled - `dataset_scale.jsonl` - disabled - `dataset_shape.jsonl` - disabled - `dataset_solve_bool.jsonl` - `dataset_solve_boundingbox.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` - disabled # Version 105 Major update to `dataset_solve_scale.jsonl` with scaling down noisy images. Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_boundingbox.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - scale down noisy images - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 106 Different random seed. # Version 107 Added dataset Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_boundingbox.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_ray.jsonl` - added - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 108 Added dataset Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_boundingbox.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_flip.jsonl` - added - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_ray.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 109 Different random seed. # Version 110 Added dataset Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_boundingbox.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_flip.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_halfplane.jsonl` - added - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_ray.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 111 Different random seed. # Version 112 Different random seed. # Version 113 Different random seed. # Version 114 Major update to the `dataset_solve-mass.jsonl`, so it now includes `mass_compare_adjacent_rows` and `mass_compare_adjacent_columns`. # Version 115 Added dataset Datasets: - `dataset_cellular_automaton.jsonl` - `dataset_dilation.jsonl` - `dataset_erotion.jsonl` - `dataset_histogram.jsonl` - `dataset_image.jsonl` - `dataset_image_pair.jsonl` - `dataset_mass.jsonl` - `dataset_scale.jsonl` - `dataset_shape.jsonl` - `dataset_solve_bool.jsonl` - `dataset_solve_boundingbox.jsonl` - `dataset_solve_color.jsonl` - `dataset_solve_compress.jsonl` - `dataset_solve_edge.jsonl` - `dataset_solve_erosion.jsonl` - `dataset_solve_flip.jsonl` - `dataset_solve_fractal.jsonl` - `dataset_solve_gravity.jsonl` - added - `dataset_solve_grid.jsonl` - `dataset_solve_half.jsonl` - `dataset_solve_halfplane.jsonl` - `dataset_solve_mask.jsonl` - `dataset_solve_mass.jsonl` - `dataset_solve_outline.jsonl` - `dataset_solve_probecolor.jsonl` - `dataset_solve_ray.jsonl` - `dataset_solve_rotate.jsonl` - `dataset_solve_scale.jsonl` - `dataset_solve_symmetry.jsonl` - `dataset_solve_translate.jsonl` - `dataset_solve_zindex.jsonl` - `dataset_symmetry.jsonl` # Version 116 Hypothesis. What if I train with a smaller dataset, will it converge faster? Reduced the number of rows in this dataset from 300k rows to 10k rows. # Version 117 Interesting, 10k rows seems to work fine with the model training. Picked new random rows. # Version 118 Still going with 10k rows. Picked new random rows. # Version 119 Still going with 10k rows. Picked new random rows. # Version 120 Switched to 20k rows. # Version 121 Still going with 20k rows. Picked new random rows. # Version 122 20k rows. Added `dataset_solve_reverse.jsonl`. # Version 123 Doubled the number of rows to 40k rows. # Version 124 Set row count to 100k rows. Major update to `dataset_solve_gravity.jsonl`. # Version 125 Row count: 100k rows. # Version 126 Row count: 20k rows. Only these datasets are enabled: ```txt dataset_solve_bool.jsonl dataset_solve_boundingbox.jsonl dataset_solve_color.jsonl dataset_solve_compress.jsonl dataset_solve_edge.jsonl dataset_solve_erosion.jsonl dataset_solve_flip.jsonl dataset_solve_fractal.jsonl dataset_solve_gravity.jsonl dataset_solve_grid.jsonl dataset_solve_half.jsonl dataset_solve_halfplane.jsonl dataset_solve_mask.jsonl dataset_solve_mass.jsonl dataset_solve_outline.jsonl dataset_solve_probecolor.jsonl dataset_solve_ray.jsonl dataset_solve_reverse.jsonl dataset_solve_rotate.jsonl dataset_solve_scale.jsonl dataset_solve_symmetry.jsonl dataset_solve_translate.jsonl dataset_solve_zindex.jsonl ``` # Version 127 Row count: 20k rows. Only these datasets are enabled: ```txt dataset_solve_scale.jsonl dataset_solve_symmetry.jsonl dataset_solve_translate.jsonl dataset_solve_zindex.jsonl ``` # Version 128 Row count: 20k rows. Only these datasets are enabled: ```txt dataset_solve_probecolor.jsonl dataset_solve_ray.jsonl dataset_solve_reverse.jsonl dataset_solve_rotate.jsonl ``` # Version 129 Row count: 20k rows. Only these datasets are enabled: ```txt dataset_solve_gravity.jsonl dataset_solve_grid.jsonl dataset_solve_half.jsonl dataset_solve_halfplane.jsonl dataset_solve_mask.jsonl dataset_solve_mass.jsonl dataset_solve_outline.jsonl ``` # Version 130 Row count: 20k rows. Only these datasets are enabled: ```txt dataset_solve_bool.jsonl dataset_solve_boundingbox.jsonl dataset_solve_color.jsonl dataset_solve_compress.jsonl dataset_solve_edge.jsonl dataset_solve_erosion.jsonl dataset_solve_flip.jsonl dataset_solve_fractal.jsonl ``` # Version 131 Switched back to 300k rows. Enabled all the datasets. # Version 132 Random seed. # Version 133 Removed the rows that are longer than what can be fitted inside a 512 context length. # Version 134 Random seed. # Version 135 Random seed. # Version 136 Major update to the `dataset_solve_gravity.jsonl` file. # Version 137 Added dataset `dataset_solve_skew.jsonl`. # Version 138 Disabled several datasets. ```txt # 'dataset_cellular_automaton.jsonl', # 'dataset_dilation.jsonl', # 'dataset_erosion.jsonl', # 'dataset_histogram.jsonl', # 'dataset_image.jsonl', # 'dataset_image_pair.jsonl', # 'dataset_mass.jsonl', # 'dataset_scale.jsonl', # 'dataset_shape.jsonl', # 'dataset_solve_bool.jsonl', 'dataset_solve_boundingbox.jsonl', 'dataset_solve_color.jsonl', 'dataset_solve_compress.jsonl', 'dataset_solve_edge.jsonl', 'dataset_solve_erosion.jsonl', 'dataset_solve_flip.jsonl', 'dataset_solve_fractal.jsonl', 'dataset_solve_gravity.jsonl', 'dataset_solve_grid.jsonl', 'dataset_solve_half.jsonl', # 'dataset_solve_halfplane.jsonl', 'dataset_solve_mask.jsonl', 'dataset_solve_mass.jsonl', 'dataset_solve_outline.jsonl', 'dataset_solve_probecolor.jsonl', # 'dataset_solve_ray.jsonl', # 'dataset_solve_reverse.jsonl', 'dataset_solve_rotate.jsonl', 'dataset_solve_scale.jsonl', # 'dataset_solve_skew.jsonl', 'dataset_solve_symmetry.jsonl', 'dataset_solve_translate.jsonl', 'dataset_solve_zindex.jsonl', # 'dataset_symmetry.jsonl', ``` # Version 139 Disabled several datasets. ```txt 'dataset_cellular_automaton.jsonl', 'dataset_dilation.jsonl', 'dataset_erosion.jsonl', 'dataset_histogram.jsonl', 'dataset_image.jsonl', 'dataset_image_pair.jsonl', 'dataset_mass.jsonl', 'dataset_scale.jsonl', 'dataset_shape.jsonl', 'dataset_solve_bool.jsonl', # 'dataset_solve_boundingbox.jsonl', # 'dataset_solve_color.jsonl', # 'dataset_solve_compress.jsonl', # 'dataset_solve_edge.jsonl', # 'dataset_solve_erosion.jsonl', # 'dataset_solve_flip.jsonl', # 'dataset_solve_fractal.jsonl', # 'dataset_solve_gravity.jsonl', # 'dataset_solve_grid.jsonl', # 'dataset_solve_half.jsonl', 'dataset_solve_halfplane.jsonl', # 'dataset_solve_mask.jsonl', # 'dataset_solve_mass.jsonl', # 'dataset_solve_outline.jsonl', # 'dataset_solve_probecolor.jsonl', 'dataset_solve_ray.jsonl', 'dataset_solve_reverse.jsonl', # 'dataset_solve_rotate.jsonl', # 'dataset_solve_scale.jsonl', 'dataset_solve_skew.jsonl', # 'dataset_solve_symmetry.jsonl', # 'dataset_solve_translate.jsonl', # 'dataset_solve_zindex.jsonl', 'dataset_symmetry.jsonl', ``` # Version 140 Enabled all datasets. Added new dataset: `dataset_solve_cross.jsonl`. # Version 141 Switched to 30k rows. Disabled several datasets. ```txt # 'dataset_cellular_automaton.jsonl', # 'dataset_dilation.jsonl', # 'dataset_erosion.jsonl', # 'dataset_histogram.jsonl', # 'dataset_image.jsonl', # 'dataset_image_pair.jsonl', # 'dataset_mass.jsonl', # 'dataset_scale.jsonl', # 'dataset_shape.jsonl', # 'dataset_solve_bool.jsonl', 'dataset_solve_boundingbox.jsonl', 'dataset_solve_color.jsonl', 'dataset_solve_compress.jsonl', # 'dataset_solve_cross.jsonl', 'dataset_solve_edge.jsonl', 'dataset_solve_erosion.jsonl', 'dataset_solve_flip.jsonl', 'dataset_solve_fractal.jsonl', # 'dataset_solve_gravity.jsonl', 'dataset_solve_grid.jsonl', 'dataset_solve_half.jsonl', # 'dataset_solve_halfplane.jsonl', 'dataset_solve_mask.jsonl', 'dataset_solve_mass.jsonl', 'dataset_solve_outline.jsonl', 'dataset_solve_probecolor.jsonl', 'dataset_solve_ray.jsonl', # 'dataset_solve_reverse.jsonl', 'dataset_solve_rotate.jsonl', 'dataset_solve_scale.jsonl', 'dataset_solve_skew.jsonl', 'dataset_solve_symmetry.jsonl', 'dataset_solve_translate.jsonl', # 'dataset_solve_zindex.jsonl', # 'dataset_symmetry.jsonl', ``` # Version 142 Switched to 300k rows. Enabled all datasets. Switched from 512 context to 1024 context. # Version 143 Bigger images in `dataset_solve_cross.jsonl` and in `dataset_solve_mass.jsonl`. # Version 144 Major update to `dataset_solve_symmetry.jsonl`. # Version 145 Added `dataset_solve_span.jsonl`. # Version 146 Extended `dataset_solve_span.jsonl` with `generate_task_with_template_lines`. # Version 147 Extended `dataset_solve_span.jsonl` with `generate_task_with_alternate`. # Version 148 Added `dataset_solve_count.jsonl`. # Version 149 Randomized. # Version 150 Upgraded context length for several datasets from 512 to 1024. # Version 151 Randomized. # Version 152 Randomized. # Version 153 Extended `dataset_solve_mask.jsonl` with `generate_task_repair_rectangle_and_crop`. # Version 154 Extended `dataset_solve_color.jsonl` with `generate_task_replace_color`. # Version 155 Major update to datasets in the range from `dataset_solve_axxx.jsonl` to `dataset_solve_mask.jsonl`. Now there is an earlier prediction for the output that is to be predicted. It may contain a hint, or it may be garbage that is to be ignored. # Version 156 Only 2000 rows. Only these datasets. 'dataset_cellular_automaton.jsonl', 'dataset_dilation.jsonl', 'dataset_erosion.jsonl', 'dataset_histogram.jsonl', 'dataset_image.jsonl', 'dataset_image_pair.jsonl', 'dataset_mass.jsonl', 'dataset_scale.jsonl', 'dataset_shape.jsonl', 'dataset_symmetry.jsonl', # Version 157 Only these datasets. - 'dataset_solve_bool.jsonl', - 'dataset_solve_boundingbox.jsonl', - 'dataset_solve_color.jsonl', - 'dataset_solve_compress.jsonl', - 'dataset_solve_count.jsonl', - 'dataset_solve_cross.jsonl', - 'dataset_solve_edge.jsonl', - 'dataset_solve_erosion.jsonl', - 'dataset_solve_flip.jsonl', - 'dataset_solve_fractal.jsonl', - 'dataset_solve_gravity.jsonl', - 'dataset_solve_grid.jsonl', - 'dataset_solve_half.jsonl', - 'dataset_solve_halfplane.jsonl', - 'dataset_solve_mask.jsonl', - 'dataset_solve_mass.jsonl', - 'dataset_solve_outline.jsonl', - 'dataset_solve_probecolor.jsonl', - 'dataset_solve_ray.jsonl', - 'dataset_solve_reverse.jsonl', - 'dataset_solve_rotate.jsonl', - 'dataset_solve_scale.jsonl', - 'dataset_solve_span.jsonl', - 'dataset_solve_skew.jsonl', - 'dataset_solve_symmetry.jsonl', - 'dataset_solve_translate.jsonl', - 'dataset_solve_zindex.jsonl', # Version 158 Only these datasets. - `dataset_solve_boundingbox.jsonl` - `dataset_solve_rectangle.jsonl` # Versin 159 Enabled all the `_solve_` datasets. # Version 160 Regenerated all the `_solve_` datasets with new seed. # Version 161 Regenerated all the `_solve_` datasets with new seed. # Version 162 Replaced RLE compressed response with raw pixel response. # Version 163 Added more generators - DatasetSolveCount - DatasetSolveCross - DatasetSolveEdge - DatasetSolveErosion - DatasetSolveFlip - DatasetSolveFractal # Version 164 Increased row count from 1000 to 2000. # Version 165 Added more generators. # Version 166 Added more generators. # Version 167 Added more generators. # Version 168 Added more generators. # Version 169 Generated data. # Version 170 Generated data. # Version 171 Generated data. Increased output context length from 256 to 512. # Version 172 Generated data. # Version 173 Generated data. # Version 174 Generated data. # Version 175 Generated data. # Version 176 Generated data. # Version 177 Increased the number of rows from 2000 to 4000. Generated data. # Version 178 Generated data. # Version 179 Generated data. # Version 180 Generated data. # Version 181 Generated data.
open-llm-leaderboard/dwikitheduck__gen-inst-1-details
open-llm-leaderboard
"2024-11-25T00:18:36Z"
2
0
[ "size_categories:10K<n<100K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T00:14:38Z"
--- pretty_name: Evaluation run of dwikitheduck/gen-inst-1 dataset_summary: "Dataset automatically created during the evaluation run of model\ \ [dwikitheduck/gen-inst-1](https://huggingface.co/dwikitheduck/gen-inst-1)\nThe\ \ dataset is composed of 38 configuration(s), each one corresponding to one of the\ \ evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be\ \ found as a specific split in each configuration, the split being named using the\ \ timestamp of the run.The \"train\" split is always pointing to the latest results.\n\ \nAn additional configuration \"results\" store all the aggregated results of the\ \ run.\n\nTo load the details from a run, you can for instance do the following:\n\ ```python\nfrom datasets import load_dataset\ndata = load_dataset(\n\t\"open-llm-leaderboard/dwikitheduck__gen-inst-1-details\"\ ,\n\tname=\"dwikitheduck__gen-inst-1__leaderboard_bbh_boolean_expressions\",\n\t\ split=\"latest\"\n)\n```\n\n## Latest results\n\nThese are the [latest results from\ \ run 2024-11-25T00-14-37.470143](https://huggingface.co/datasets/open-llm-leaderboard/dwikitheduck__gen-inst-1-details/blob/main/dwikitheduck__gen-inst-1/results_2024-11-25T00-14-37.470143.json)\ \ (note that there might be results for other tasks in the repos if successive evals\ \ didn't cover the same tasks. You find each in the results and the \"latest\" split\ \ for each eval):\n\n```python\n{\n \"all\": {\n \"leaderboard\": {\n\ \ \"acc,none\": 0.5088929521276596,\n \"acc_stderr,none\"\ : 0.004557749352736335,\n \"acc_norm,none\": 0.5772473732001556,\n \ \ \"acc_norm_stderr,none\": 0.0051629491888934955,\n \"exact_match,none\"\ : 0.0445619335347432,\n \"exact_match_stderr,none\": 0.005666316247127577,\n\ \ \"inst_level_loose_acc,none\": 0.8309352517985612,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.7707948243992606,\n \"prompt_level_loose_acc_stderr,none\": 0.018087757424955286,\n\ \ \"inst_level_strict_acc,none\": 0.8069544364508393,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_strict_acc,none\"\ : 0.7430683918669131,\n \"prompt_level_strict_acc_stderr,none\": 0.01880296257563689,\n\ \ \"alias\": \"leaderboard\"\n },\n \"leaderboard_bbh\"\ : {\n \"acc_norm,none\": 0.6405137996875543,\n \"acc_norm_stderr,none\"\ : 0.005843282173574642,\n \"alias\": \" - leaderboard_bbh\"\n \ \ },\n \"leaderboard_bbh_boolean_expressions\": {\n \"alias\"\ : \" - leaderboard_bbh_boolean_expressions\",\n \"acc_norm,none\": 0.892,\n\ \ \"acc_norm_stderr,none\": 0.019669559381568776\n },\n \ \ \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6203208556149733,\n \"acc_norm_stderr,none\"\ : 0.03558443628801667\n },\n \"leaderboard_bbh_date_understanding\"\ : {\n \"alias\": \" - leaderboard_bbh_date_understanding\",\n \ \ \"acc_norm,none\": 0.692,\n \"acc_norm_stderr,none\": 0.02925692860650181\n\ \ },\n \"leaderboard_bbh_disambiguation_qa\": {\n \"alias\"\ : \" - leaderboard_bbh_disambiguation_qa\",\n \"acc_norm,none\": 0.716,\n\ \ \"acc_norm_stderr,none\": 0.028576958730437443\n },\n \ \ \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.656,\n \"acc_norm_stderr,none\":\ \ 0.03010450339231644\n },\n \"leaderboard_bbh_geometric_shapes\"\ : {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\",\n \ \ \"acc_norm,none\": 0.608,\n \"acc_norm_stderr,none\": 0.030938207620401222\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \"\ \ - leaderboard_bbh_hyperbaton\",\n \"acc_norm,none\": 0.76,\n \ \ \"acc_norm_stderr,none\": 0.027065293652238982\n },\n \"leaderboard_bbh_logical_deduction_five_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_five_objects\"\ ,\n \"acc_norm,none\": 0.632,\n \"acc_norm_stderr,none\":\ \ 0.03056207062099311\n },\n \"leaderboard_bbh_logical_deduction_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.612,\n \"acc_norm_stderr,none\":\ \ 0.030881038748993974\n },\n \"leaderboard_bbh_logical_deduction_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_logical_deduction_three_objects\"\ ,\n \"acc_norm,none\": 0.94,\n \"acc_norm_stderr,none\": 0.015050117079158739\n\ \ },\n \"leaderboard_bbh_movie_recommendation\": {\n \"\ alias\": \" - leaderboard_bbh_movie_recommendation\",\n \"acc_norm,none\"\ : 0.76,\n \"acc_norm_stderr,none\": 0.027065293652238982\n },\n\ \ \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.672,\n \"acc_norm_stderr,none\":\ \ 0.029752391824475363\n },\n \"leaderboard_bbh_object_counting\"\ : {\n \"alias\": \" - leaderboard_bbh_object_counting\",\n \ \ \"acc_norm,none\": 0.46,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"\ alias\": \" - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\"\ : 0.636986301369863,\n \"acc_norm_stderr,none\": 0.03993397596179569\n\ \ },\n \"leaderboard_bbh_reasoning_about_colored_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\",\n\ \ \"acc_norm,none\": 0.816,\n \"acc_norm_stderr,none\": 0.02455581299422255\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \"\ \ - leaderboard_bbh_ruin_names\",\n \"acc_norm,none\": 0.816,\n \ \ \"acc_norm_stderr,none\": 0.02455581299422255\n },\n \"leaderboard_bbh_salient_translation_error_detection\"\ : {\n \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\"\ ,\n \"acc_norm,none\": 0.636,\n \"acc_norm_stderr,none\":\ \ 0.030491555220405475\n },\n \"leaderboard_bbh_snarks\": {\n \ \ \"alias\": \" - leaderboard_bbh_snarks\",\n \"acc_norm,none\"\ : 0.7865168539325843,\n \"acc_norm_stderr,none\": 0.030799891078809365\n\ \ },\n \"leaderboard_bbh_sports_understanding\": {\n \"\ alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.74,\n \"acc_norm_stderr,none\": 0.027797315752644335\n },\n\ \ \"leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" -\ \ leaderboard_bbh_temporal_sequences\",\n \"acc_norm,none\": 0.652,\n\ \ \"acc_norm_stderr,none\": 0.030186568464511673\n },\n \ \ \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \"\ alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\",\n \ \ \"acc_norm,none\": 0.224,\n \"acc_norm_stderr,none\": 0.026421361687347884\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.184,\n \"acc_norm_stderr,none\":\ \ 0.02455581299422255\n },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.34,\n \"acc_norm_stderr,none\": 0.030020073605457873\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\":\ \ \" - leaderboard_bbh_web_of_lies\",\n \"acc_norm,none\": 0.556,\n\ \ \"acc_norm_stderr,none\": 0.03148684942554571\n },\n \ \ \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3716442953020134,\n\ \ \"acc_norm_stderr,none\": 0.014011490289268045,\n \"alias\"\ : \" - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n\ \ \"alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\"\ : 0.35858585858585856,\n \"acc_norm_stderr,none\": 0.034169036403915276\n\ \ },\n \"leaderboard_gpqa_extended\": {\n \"alias\": \"\ \ - leaderboard_gpqa_extended\",\n \"acc_norm,none\": 0.3663003663003663,\n\ \ \"acc_norm_stderr,none\": 0.020637740788656753\n },\n \ \ \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.38392857142857145,\n \"acc_norm_stderr,none\"\ : 0.02300313291907409\n },\n \"leaderboard_ifeval\": {\n \ \ \"alias\": \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\"\ : 0.7430683918669131,\n \"prompt_level_strict_acc_stderr,none\": 0.01880296257563689,\n\ \ \"inst_level_strict_acc,none\": 0.8069544364508393,\n \"\ inst_level_strict_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.7707948243992606,\n \"prompt_level_loose_acc_stderr,none\": 0.018087757424955286,\n\ \ \"inst_level_loose_acc,none\": 0.8309352517985612,\n \"\ inst_level_loose_acc_stderr,none\": \"N/A\"\n },\n \"leaderboard_math_hard\"\ : {\n \"exact_match,none\": 0.0445619335347432,\n \"exact_match_stderr,none\"\ : 0.005666316247127577,\n \"alias\": \" - leaderboard_math_hard\"\n \ \ },\n \"leaderboard_math_algebra_hard\": {\n \"alias\"\ : \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\": 0.06188925081433225,\n\ \ \"exact_match_stderr,none\": 0.013774440126929627\n },\n \ \ \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\": \"\ \ - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.04065040650406504,\n \"exact_match_stderr,none\": 0.017878907564437465\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\"\ : \" - leaderboard_math_geometry_hard\",\n \"exact_match,none\": 0.022727272727272728,\n\ \ \"exact_match_stderr,none\": 0.0130210469090637\n },\n \ \ \"leaderboard_math_intermediate_algebra_hard\": {\n \"alias\": \"\ \ - leaderboard_math_intermediate_algebra_hard\",\n \"exact_match,none\"\ : 0.039285714285714285,\n \"exact_match_stderr,none\": 0.011630873964205717\n\ \ },\n \"leaderboard_math_num_theory_hard\": {\n \"alias\"\ : \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\": 0.012987012987012988,\n\ \ \"exact_match_stderr,none\": 0.009153145279150204\n },\n \ \ \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.06217616580310881,\n \"exact_match_stderr,none\"\ : 0.01742697415424056\n },\n \"leaderboard_math_precalculus_hard\"\ : {\n \"alias\": \" - leaderboard_math_precalculus_hard\",\n \ \ \"exact_match,none\": 0.05185185185185185,\n \"exact_match_stderr,none\"\ : 0.019154368449050496\n },\n \"leaderboard_mmlu_pro\": {\n \ \ \"alias\": \" - leaderboard_mmlu_pro\",\n \"acc,none\": 0.5088929521276596,\n\ \ \"acc_stderr,none\": 0.004557749352736335\n },\n \"leaderboard_musr\"\ : {\n \"acc_norm,none\": 0.4193121693121693,\n \"acc_norm_stderr,none\"\ : 0.017343672073569773,\n \"alias\": \" - leaderboard_musr\"\n \ \ },\n \"leaderboard_musr_murder_mysteries\": {\n \"alias\":\ \ \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\": 0.584,\n\ \ \"acc_norm_stderr,none\": 0.031235856237014505\n },\n \ \ \"leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.265625,\n \"acc_norm_stderr,none\"\ : 0.027658162598649488\n },\n \"leaderboard_musr_team_allocation\"\ : {\n \"alias\": \" - leaderboard_musr_team_allocation\",\n \ \ \"acc_norm,none\": 0.412,\n \"acc_norm_stderr,none\": 0.03119159602602282\n\ \ }\n },\n \"leaderboard\": {\n \"acc,none\": 0.5088929521276596,\n\ \ \"acc_stderr,none\": 0.004557749352736335,\n \"acc_norm,none\":\ \ 0.5772473732001556,\n \"acc_norm_stderr,none\": 0.0051629491888934955,\n\ \ \"exact_match,none\": 0.0445619335347432,\n \"exact_match_stderr,none\"\ : 0.005666316247127577,\n \"inst_level_loose_acc,none\": 0.8309352517985612,\n\ \ \"inst_level_loose_acc_stderr,none\": \"N/A\",\n \"prompt_level_loose_acc,none\"\ : 0.7707948243992606,\n \"prompt_level_loose_acc_stderr,none\": 0.018087757424955286,\n\ \ \"inst_level_strict_acc,none\": 0.8069544364508393,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_strict_acc,none\": 0.7430683918669131,\n \ \ \"prompt_level_strict_acc_stderr,none\": 0.01880296257563689,\n \"alias\"\ : \"leaderboard\"\n },\n \"leaderboard_bbh\": {\n \"acc_norm,none\"\ : 0.6405137996875543,\n \"acc_norm_stderr,none\": 0.005843282173574642,\n\ \ \"alias\": \" - leaderboard_bbh\"\n },\n \"leaderboard_bbh_boolean_expressions\"\ : {\n \"alias\": \" - leaderboard_bbh_boolean_expressions\",\n \"\ acc_norm,none\": 0.892,\n \"acc_norm_stderr,none\": 0.019669559381568776\n\ \ },\n \"leaderboard_bbh_causal_judgement\": {\n \"alias\": \" - leaderboard_bbh_causal_judgement\"\ ,\n \"acc_norm,none\": 0.6203208556149733,\n \"acc_norm_stderr,none\"\ : 0.03558443628801667\n },\n \"leaderboard_bbh_date_understanding\": {\n \ \ \"alias\": \" - leaderboard_bbh_date_understanding\",\n \"acc_norm,none\"\ : 0.692,\n \"acc_norm_stderr,none\": 0.02925692860650181\n },\n \"\ leaderboard_bbh_disambiguation_qa\": {\n \"alias\": \" - leaderboard_bbh_disambiguation_qa\"\ ,\n \"acc_norm,none\": 0.716,\n \"acc_norm_stderr,none\": 0.028576958730437443\n\ \ },\n \"leaderboard_bbh_formal_fallacies\": {\n \"alias\": \" - leaderboard_bbh_formal_fallacies\"\ ,\n \"acc_norm,none\": 0.656,\n \"acc_norm_stderr,none\": 0.03010450339231644\n\ \ },\n \"leaderboard_bbh_geometric_shapes\": {\n \"alias\": \" - leaderboard_bbh_geometric_shapes\"\ ,\n \"acc_norm,none\": 0.608,\n \"acc_norm_stderr,none\": 0.030938207620401222\n\ \ },\n \"leaderboard_bbh_hyperbaton\": {\n \"alias\": \" - leaderboard_bbh_hyperbaton\"\ ,\n \"acc_norm,none\": 0.76,\n \"acc_norm_stderr,none\": 0.027065293652238982\n\ \ },\n \"leaderboard_bbh_logical_deduction_five_objects\": {\n \"alias\"\ : \" - leaderboard_bbh_logical_deduction_five_objects\",\n \"acc_norm,none\"\ : 0.632,\n \"acc_norm_stderr,none\": 0.03056207062099311\n },\n \"\ leaderboard_bbh_logical_deduction_seven_objects\": {\n \"alias\": \" - leaderboard_bbh_logical_deduction_seven_objects\"\ ,\n \"acc_norm,none\": 0.612,\n \"acc_norm_stderr,none\": 0.030881038748993974\n\ \ },\n \"leaderboard_bbh_logical_deduction_three_objects\": {\n \"\ alias\": \" - leaderboard_bbh_logical_deduction_three_objects\",\n \"acc_norm,none\"\ : 0.94,\n \"acc_norm_stderr,none\": 0.015050117079158739\n },\n \"\ leaderboard_bbh_movie_recommendation\": {\n \"alias\": \" - leaderboard_bbh_movie_recommendation\"\ ,\n \"acc_norm,none\": 0.76,\n \"acc_norm_stderr,none\": 0.027065293652238982\n\ \ },\n \"leaderboard_bbh_navigate\": {\n \"alias\": \" - leaderboard_bbh_navigate\"\ ,\n \"acc_norm,none\": 0.672,\n \"acc_norm_stderr,none\": 0.029752391824475363\n\ \ },\n \"leaderboard_bbh_object_counting\": {\n \"alias\": \" - leaderboard_bbh_object_counting\"\ ,\n \"acc_norm,none\": 0.46,\n \"acc_norm_stderr,none\": 0.031584653891499004\n\ \ },\n \"leaderboard_bbh_penguins_in_a_table\": {\n \"alias\": \" \ \ - leaderboard_bbh_penguins_in_a_table\",\n \"acc_norm,none\": 0.636986301369863,\n\ \ \"acc_norm_stderr,none\": 0.03993397596179569\n },\n \"leaderboard_bbh_reasoning_about_colored_objects\"\ : {\n \"alias\": \" - leaderboard_bbh_reasoning_about_colored_objects\"\ ,\n \"acc_norm,none\": 0.816,\n \"acc_norm_stderr,none\": 0.02455581299422255\n\ \ },\n \"leaderboard_bbh_ruin_names\": {\n \"alias\": \" - leaderboard_bbh_ruin_names\"\ ,\n \"acc_norm,none\": 0.816,\n \"acc_norm_stderr,none\": 0.02455581299422255\n\ \ },\n \"leaderboard_bbh_salient_translation_error_detection\": {\n \ \ \"alias\": \" - leaderboard_bbh_salient_translation_error_detection\",\n \ \ \"acc_norm,none\": 0.636,\n \"acc_norm_stderr,none\": 0.030491555220405475\n\ \ },\n \"leaderboard_bbh_snarks\": {\n \"alias\": \" - leaderboard_bbh_snarks\"\ ,\n \"acc_norm,none\": 0.7865168539325843,\n \"acc_norm_stderr,none\"\ : 0.030799891078809365\n },\n \"leaderboard_bbh_sports_understanding\": {\n\ \ \"alias\": \" - leaderboard_bbh_sports_understanding\",\n \"acc_norm,none\"\ : 0.74,\n \"acc_norm_stderr,none\": 0.027797315752644335\n },\n \"\ leaderboard_bbh_temporal_sequences\": {\n \"alias\": \" - leaderboard_bbh_temporal_sequences\"\ ,\n \"acc_norm,none\": 0.652,\n \"acc_norm_stderr,none\": 0.030186568464511673\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_five_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_five_objects\"\ ,\n \"acc_norm,none\": 0.224,\n \"acc_norm_stderr,none\": 0.026421361687347884\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_seven_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_seven_objects\"\ ,\n \"acc_norm,none\": 0.184,\n \"acc_norm_stderr,none\": 0.02455581299422255\n\ \ },\n \"leaderboard_bbh_tracking_shuffled_objects_three_objects\": {\n \ \ \"alias\": \" - leaderboard_bbh_tracking_shuffled_objects_three_objects\"\ ,\n \"acc_norm,none\": 0.34,\n \"acc_norm_stderr,none\": 0.030020073605457873\n\ \ },\n \"leaderboard_bbh_web_of_lies\": {\n \"alias\": \" - leaderboard_bbh_web_of_lies\"\ ,\n \"acc_norm,none\": 0.556,\n \"acc_norm_stderr,none\": 0.03148684942554571\n\ \ },\n \"leaderboard_gpqa\": {\n \"acc_norm,none\": 0.3716442953020134,\n\ \ \"acc_norm_stderr,none\": 0.014011490289268045,\n \"alias\": \"\ \ - leaderboard_gpqa\"\n },\n \"leaderboard_gpqa_diamond\": {\n \"\ alias\": \" - leaderboard_gpqa_diamond\",\n \"acc_norm,none\": 0.35858585858585856,\n\ \ \"acc_norm_stderr,none\": 0.034169036403915276\n },\n \"leaderboard_gpqa_extended\"\ : {\n \"alias\": \" - leaderboard_gpqa_extended\",\n \"acc_norm,none\"\ : 0.3663003663003663,\n \"acc_norm_stderr,none\": 0.020637740788656753\n\ \ },\n \"leaderboard_gpqa_main\": {\n \"alias\": \" - leaderboard_gpqa_main\"\ ,\n \"acc_norm,none\": 0.38392857142857145,\n \"acc_norm_stderr,none\"\ : 0.02300313291907409\n },\n \"leaderboard_ifeval\": {\n \"alias\"\ : \" - leaderboard_ifeval\",\n \"prompt_level_strict_acc,none\": 0.7430683918669131,\n\ \ \"prompt_level_strict_acc_stderr,none\": 0.01880296257563689,\n \ \ \"inst_level_strict_acc,none\": 0.8069544364508393,\n \"inst_level_strict_acc_stderr,none\"\ : \"N/A\",\n \"prompt_level_loose_acc,none\": 0.7707948243992606,\n \ \ \"prompt_level_loose_acc_stderr,none\": 0.018087757424955286,\n \"inst_level_loose_acc,none\"\ : 0.8309352517985612,\n \"inst_level_loose_acc_stderr,none\": \"N/A\"\n \ \ },\n \"leaderboard_math_hard\": {\n \"exact_match,none\": 0.0445619335347432,\n\ \ \"exact_match_stderr,none\": 0.005666316247127577,\n \"alias\":\ \ \" - leaderboard_math_hard\"\n },\n \"leaderboard_math_algebra_hard\": {\n\ \ \"alias\": \" - leaderboard_math_algebra_hard\",\n \"exact_match,none\"\ : 0.06188925081433225,\n \"exact_match_stderr,none\": 0.013774440126929627\n\ \ },\n \"leaderboard_math_counting_and_prob_hard\": {\n \"alias\":\ \ \" - leaderboard_math_counting_and_prob_hard\",\n \"exact_match,none\"\ : 0.04065040650406504,\n \"exact_match_stderr,none\": 0.017878907564437465\n\ \ },\n \"leaderboard_math_geometry_hard\": {\n \"alias\": \" - leaderboard_math_geometry_hard\"\ ,\n \"exact_match,none\": 0.022727272727272728,\n \"exact_match_stderr,none\"\ : 0.0130210469090637\n },\n \"leaderboard_math_intermediate_algebra_hard\"\ : {\n \"alias\": \" - leaderboard_math_intermediate_algebra_hard\",\n \ \ \"exact_match,none\": 0.039285714285714285,\n \"exact_match_stderr,none\"\ : 0.011630873964205717\n },\n \"leaderboard_math_num_theory_hard\": {\n \ \ \"alias\": \" - leaderboard_math_num_theory_hard\",\n \"exact_match,none\"\ : 0.012987012987012988,\n \"exact_match_stderr,none\": 0.009153145279150204\n\ \ },\n \"leaderboard_math_prealgebra_hard\": {\n \"alias\": \" - leaderboard_math_prealgebra_hard\"\ ,\n \"exact_match,none\": 0.06217616580310881,\n \"exact_match_stderr,none\"\ : 0.01742697415424056\n },\n \"leaderboard_math_precalculus_hard\": {\n \ \ \"alias\": \" - leaderboard_math_precalculus_hard\",\n \"exact_match,none\"\ : 0.05185185185185185,\n \"exact_match_stderr,none\": 0.019154368449050496\n\ \ },\n \"leaderboard_mmlu_pro\": {\n \"alias\": \" - leaderboard_mmlu_pro\"\ ,\n \"acc,none\": 0.5088929521276596,\n \"acc_stderr,none\": 0.004557749352736335\n\ \ },\n \"leaderboard_musr\": {\n \"acc_norm,none\": 0.4193121693121693,\n\ \ \"acc_norm_stderr,none\": 0.017343672073569773,\n \"alias\": \"\ \ - leaderboard_musr\"\n },\n \"leaderboard_musr_murder_mysteries\": {\n \ \ \"alias\": \" - leaderboard_musr_murder_mysteries\",\n \"acc_norm,none\"\ : 0.584,\n \"acc_norm_stderr,none\": 0.031235856237014505\n },\n \"\ leaderboard_musr_object_placements\": {\n \"alias\": \" - leaderboard_musr_object_placements\"\ ,\n \"acc_norm,none\": 0.265625,\n \"acc_norm_stderr,none\": 0.027658162598649488\n\ \ },\n \"leaderboard_musr_team_allocation\": {\n \"alias\": \" - leaderboard_musr_team_allocation\"\ ,\n \"acc_norm,none\": 0.412,\n \"acc_norm_stderr,none\": 0.03119159602602282\n\ \ }\n}\n```" repo_url: https://huggingface.co/dwikitheduck/gen-inst-1 leaderboard_url: '' point_of_contact: '' configs: - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_boolean_expressions data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_boolean_expressions_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_causal_judgement data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_causal_judgement_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_date_understanding data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_date_understanding_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_disambiguation_qa data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_disambiguation_qa_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_formal_fallacies data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_formal_fallacies_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_geometric_shapes data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_geometric_shapes_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_hyperbaton data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_hyperbaton_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_logical_deduction_five_objects data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_five_objects_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_logical_deduction_seven_objects data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_seven_objects_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_logical_deduction_three_objects data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_logical_deduction_three_objects_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_movie_recommendation data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_movie_recommendation_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_navigate data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_navigate_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_navigate_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_object_counting data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_object_counting_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_object_counting_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_penguins_in_a_table data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_penguins_in_a_table_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_reasoning_about_colored_objects data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_reasoning_about_colored_objects_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_ruin_names data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_ruin_names_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_salient_translation_error_detection data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_salient_translation_error_detection_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_snarks data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_snarks_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_snarks_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_sports_understanding data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_sports_understanding_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_temporal_sequences data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_temporal_sequences_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_tracking_shuffled_objects_five_objects data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_five_objects_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_tracking_shuffled_objects_seven_objects data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_seven_objects_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_tracking_shuffled_objects_three_objects data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_tracking_shuffled_objects_three_objects_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_bbh_web_of_lies data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_bbh_web_of_lies_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_gpqa_diamond data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_gpqa_diamond_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_diamond_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_gpqa_extended data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_gpqa_extended_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_extended_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_gpqa_main data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_gpqa_main_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_gpqa_main_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_ifeval data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_ifeval_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_ifeval_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_math_algebra_hard data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_math_algebra_hard_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_math_algebra_hard_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_math_counting_and_prob_hard data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_math_counting_and_prob_hard_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_math_geometry_hard data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_math_geometry_hard_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_math_geometry_hard_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_math_intermediate_algebra_hard data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_math_intermediate_algebra_hard_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_math_num_theory_hard data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_math_num_theory_hard_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_math_prealgebra_hard data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_math_prealgebra_hard_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_math_precalculus_hard data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_math_precalculus_hard_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_mmlu_pro data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_mmlu_pro_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_mmlu_pro_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_musr_murder_mysteries data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_musr_murder_mysteries_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_musr_object_placements data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_musr_object_placements_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_musr_object_placements_2024-11-25T00-14-37.470143.jsonl' - config_name: dwikitheduck__gen-inst-1__leaderboard_musr_team_allocation data_files: - split: 2024_11_25T00_14_37.470143 path: - '**/samples_leaderboard_musr_team_allocation_2024-11-25T00-14-37.470143.jsonl' - split: latest path: - '**/samples_leaderboard_musr_team_allocation_2024-11-25T00-14-37.470143.jsonl' --- # Dataset Card for Evaluation run of dwikitheduck/gen-inst-1 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [dwikitheduck/gen-inst-1](https://huggingface.co/dwikitheduck/gen-inst-1) The dataset is composed of 38 configuration(s), each one corresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run. To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset( "open-llm-leaderboard/dwikitheduck__gen-inst-1-details", name="dwikitheduck__gen-inst-1__leaderboard_bbh_boolean_expressions", split="latest" ) ``` ## Latest results These are the [latest results from run 2024-11-25T00-14-37.470143](https://huggingface.co/datasets/open-llm-leaderboard/dwikitheduck__gen-inst-1-details/blob/main/dwikitheduck__gen-inst-1/results_2024-11-25T00-14-37.470143.json) (note that there might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "leaderboard": { "acc,none": 0.5088929521276596, "acc_stderr,none": 0.004557749352736335, "acc_norm,none": 0.5772473732001556, "acc_norm_stderr,none": 0.0051629491888934955, "exact_match,none": 0.0445619335347432, "exact_match_stderr,none": 0.005666316247127577, "inst_level_loose_acc,none": 0.8309352517985612, "inst_level_loose_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7707948243992606, "prompt_level_loose_acc_stderr,none": 0.018087757424955286, "inst_level_strict_acc,none": 0.8069544364508393, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.7430683918669131, "prompt_level_strict_acc_stderr,none": 0.01880296257563689, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.6405137996875543, "acc_norm_stderr,none": 0.005843282173574642, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.892, "acc_norm_stderr,none": 0.019669559381568776 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6203208556149733, "acc_norm_stderr,none": 0.03558443628801667 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.692, "acc_norm_stderr,none": 0.02925692860650181 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.716, "acc_norm_stderr,none": 0.028576958730437443 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.656, "acc_norm_stderr,none": 0.03010450339231644 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.608, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.76, "acc_norm_stderr,none": 0.027065293652238982 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.632, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.612, "acc_norm_stderr,none": 0.030881038748993974 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.94, "acc_norm_stderr,none": 0.015050117079158739 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.76, "acc_norm_stderr,none": 0.027065293652238982 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.672, "acc_norm_stderr,none": 0.029752391824475363 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.46, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.636986301369863, "acc_norm_stderr,none": 0.03993397596179569 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.816, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.816, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.7865168539325843, "acc_norm_stderr,none": 0.030799891078809365 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.74, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.652, "acc_norm_stderr,none": 0.030186568464511673 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.224, "acc_norm_stderr,none": 0.026421361687347884 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.184, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.34, "acc_norm_stderr,none": 0.030020073605457873 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_gpqa": { "acc_norm,none": 0.3716442953020134, "acc_norm_stderr,none": 0.014011490289268045, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.35858585858585856, "acc_norm_stderr,none": 0.034169036403915276 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.3663003663003663, "acc_norm_stderr,none": 0.020637740788656753 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.38392857142857145, "acc_norm_stderr,none": 0.02300313291907409 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7430683918669131, "prompt_level_strict_acc_stderr,none": 0.01880296257563689, "inst_level_strict_acc,none": 0.8069544364508393, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7707948243992606, "prompt_level_loose_acc_stderr,none": 0.018087757424955286, "inst_level_loose_acc,none": 0.8309352517985612, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.0445619335347432, "exact_match_stderr,none": 0.005666316247127577, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.06188925081433225, "exact_match_stderr,none": 0.013774440126929627 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.04065040650406504, "exact_match_stderr,none": 0.017878907564437465 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.022727272727272728, "exact_match_stderr,none": 0.0130210469090637 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.039285714285714285, "exact_match_stderr,none": 0.011630873964205717 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.012987012987012988, "exact_match_stderr,none": 0.009153145279150204 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.06217616580310881, "exact_match_stderr,none": 0.01742697415424056 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.05185185185185185, "exact_match_stderr,none": 0.019154368449050496 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.5088929521276596, "acc_stderr,none": 0.004557749352736335 }, "leaderboard_musr": { "acc_norm,none": 0.4193121693121693, "acc_norm_stderr,none": 0.017343672073569773, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.584, "acc_norm_stderr,none": 0.031235856237014505 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.265625, "acc_norm_stderr,none": 0.027658162598649488 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.412, "acc_norm_stderr,none": 0.03119159602602282 } }, "leaderboard": { "acc,none": 0.5088929521276596, "acc_stderr,none": 0.004557749352736335, "acc_norm,none": 0.5772473732001556, "acc_norm_stderr,none": 0.0051629491888934955, "exact_match,none": 0.0445619335347432, "exact_match_stderr,none": 0.005666316247127577, "inst_level_loose_acc,none": 0.8309352517985612, "inst_level_loose_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7707948243992606, "prompt_level_loose_acc_stderr,none": 0.018087757424955286, "inst_level_strict_acc,none": 0.8069544364508393, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_strict_acc,none": 0.7430683918669131, "prompt_level_strict_acc_stderr,none": 0.01880296257563689, "alias": "leaderboard" }, "leaderboard_bbh": { "acc_norm,none": 0.6405137996875543, "acc_norm_stderr,none": 0.005843282173574642, "alias": " - leaderboard_bbh" }, "leaderboard_bbh_boolean_expressions": { "alias": " - leaderboard_bbh_boolean_expressions", "acc_norm,none": 0.892, "acc_norm_stderr,none": 0.019669559381568776 }, "leaderboard_bbh_causal_judgement": { "alias": " - leaderboard_bbh_causal_judgement", "acc_norm,none": 0.6203208556149733, "acc_norm_stderr,none": 0.03558443628801667 }, "leaderboard_bbh_date_understanding": { "alias": " - leaderboard_bbh_date_understanding", "acc_norm,none": 0.692, "acc_norm_stderr,none": 0.02925692860650181 }, "leaderboard_bbh_disambiguation_qa": { "alias": " - leaderboard_bbh_disambiguation_qa", "acc_norm,none": 0.716, "acc_norm_stderr,none": 0.028576958730437443 }, "leaderboard_bbh_formal_fallacies": { "alias": " - leaderboard_bbh_formal_fallacies", "acc_norm,none": 0.656, "acc_norm_stderr,none": 0.03010450339231644 }, "leaderboard_bbh_geometric_shapes": { "alias": " - leaderboard_bbh_geometric_shapes", "acc_norm,none": 0.608, "acc_norm_stderr,none": 0.030938207620401222 }, "leaderboard_bbh_hyperbaton": { "alias": " - leaderboard_bbh_hyperbaton", "acc_norm,none": 0.76, "acc_norm_stderr,none": 0.027065293652238982 }, "leaderboard_bbh_logical_deduction_five_objects": { "alias": " - leaderboard_bbh_logical_deduction_five_objects", "acc_norm,none": 0.632, "acc_norm_stderr,none": 0.03056207062099311 }, "leaderboard_bbh_logical_deduction_seven_objects": { "alias": " - leaderboard_bbh_logical_deduction_seven_objects", "acc_norm,none": 0.612, "acc_norm_stderr,none": 0.030881038748993974 }, "leaderboard_bbh_logical_deduction_three_objects": { "alias": " - leaderboard_bbh_logical_deduction_three_objects", "acc_norm,none": 0.94, "acc_norm_stderr,none": 0.015050117079158739 }, "leaderboard_bbh_movie_recommendation": { "alias": " - leaderboard_bbh_movie_recommendation", "acc_norm,none": 0.76, "acc_norm_stderr,none": 0.027065293652238982 }, "leaderboard_bbh_navigate": { "alias": " - leaderboard_bbh_navigate", "acc_norm,none": 0.672, "acc_norm_stderr,none": 0.029752391824475363 }, "leaderboard_bbh_object_counting": { "alias": " - leaderboard_bbh_object_counting", "acc_norm,none": 0.46, "acc_norm_stderr,none": 0.031584653891499004 }, "leaderboard_bbh_penguins_in_a_table": { "alias": " - leaderboard_bbh_penguins_in_a_table", "acc_norm,none": 0.636986301369863, "acc_norm_stderr,none": 0.03993397596179569 }, "leaderboard_bbh_reasoning_about_colored_objects": { "alias": " - leaderboard_bbh_reasoning_about_colored_objects", "acc_norm,none": 0.816, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_ruin_names": { "alias": " - leaderboard_bbh_ruin_names", "acc_norm,none": 0.816, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_salient_translation_error_detection": { "alias": " - leaderboard_bbh_salient_translation_error_detection", "acc_norm,none": 0.636, "acc_norm_stderr,none": 0.030491555220405475 }, "leaderboard_bbh_snarks": { "alias": " - leaderboard_bbh_snarks", "acc_norm,none": 0.7865168539325843, "acc_norm_stderr,none": 0.030799891078809365 }, "leaderboard_bbh_sports_understanding": { "alias": " - leaderboard_bbh_sports_understanding", "acc_norm,none": 0.74, "acc_norm_stderr,none": 0.027797315752644335 }, "leaderboard_bbh_temporal_sequences": { "alias": " - leaderboard_bbh_temporal_sequences", "acc_norm,none": 0.652, "acc_norm_stderr,none": 0.030186568464511673 }, "leaderboard_bbh_tracking_shuffled_objects_five_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_five_objects", "acc_norm,none": 0.224, "acc_norm_stderr,none": 0.026421361687347884 }, "leaderboard_bbh_tracking_shuffled_objects_seven_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_seven_objects", "acc_norm,none": 0.184, "acc_norm_stderr,none": 0.02455581299422255 }, "leaderboard_bbh_tracking_shuffled_objects_three_objects": { "alias": " - leaderboard_bbh_tracking_shuffled_objects_three_objects", "acc_norm,none": 0.34, "acc_norm_stderr,none": 0.030020073605457873 }, "leaderboard_bbh_web_of_lies": { "alias": " - leaderboard_bbh_web_of_lies", "acc_norm,none": 0.556, "acc_norm_stderr,none": 0.03148684942554571 }, "leaderboard_gpqa": { "acc_norm,none": 0.3716442953020134, "acc_norm_stderr,none": 0.014011490289268045, "alias": " - leaderboard_gpqa" }, "leaderboard_gpqa_diamond": { "alias": " - leaderboard_gpqa_diamond", "acc_norm,none": 0.35858585858585856, "acc_norm_stderr,none": 0.034169036403915276 }, "leaderboard_gpqa_extended": { "alias": " - leaderboard_gpqa_extended", "acc_norm,none": 0.3663003663003663, "acc_norm_stderr,none": 0.020637740788656753 }, "leaderboard_gpqa_main": { "alias": " - leaderboard_gpqa_main", "acc_norm,none": 0.38392857142857145, "acc_norm_stderr,none": 0.02300313291907409 }, "leaderboard_ifeval": { "alias": " - leaderboard_ifeval", "prompt_level_strict_acc,none": 0.7430683918669131, "prompt_level_strict_acc_stderr,none": 0.01880296257563689, "inst_level_strict_acc,none": 0.8069544364508393, "inst_level_strict_acc_stderr,none": "N/A", "prompt_level_loose_acc,none": 0.7707948243992606, "prompt_level_loose_acc_stderr,none": 0.018087757424955286, "inst_level_loose_acc,none": 0.8309352517985612, "inst_level_loose_acc_stderr,none": "N/A" }, "leaderboard_math_hard": { "exact_match,none": 0.0445619335347432, "exact_match_stderr,none": 0.005666316247127577, "alias": " - leaderboard_math_hard" }, "leaderboard_math_algebra_hard": { "alias": " - leaderboard_math_algebra_hard", "exact_match,none": 0.06188925081433225, "exact_match_stderr,none": 0.013774440126929627 }, "leaderboard_math_counting_and_prob_hard": { "alias": " - leaderboard_math_counting_and_prob_hard", "exact_match,none": 0.04065040650406504, "exact_match_stderr,none": 0.017878907564437465 }, "leaderboard_math_geometry_hard": { "alias": " - leaderboard_math_geometry_hard", "exact_match,none": 0.022727272727272728, "exact_match_stderr,none": 0.0130210469090637 }, "leaderboard_math_intermediate_algebra_hard": { "alias": " - leaderboard_math_intermediate_algebra_hard", "exact_match,none": 0.039285714285714285, "exact_match_stderr,none": 0.011630873964205717 }, "leaderboard_math_num_theory_hard": { "alias": " - leaderboard_math_num_theory_hard", "exact_match,none": 0.012987012987012988, "exact_match_stderr,none": 0.009153145279150204 }, "leaderboard_math_prealgebra_hard": { "alias": " - leaderboard_math_prealgebra_hard", "exact_match,none": 0.06217616580310881, "exact_match_stderr,none": 0.01742697415424056 }, "leaderboard_math_precalculus_hard": { "alias": " - leaderboard_math_precalculus_hard", "exact_match,none": 0.05185185185185185, "exact_match_stderr,none": 0.019154368449050496 }, "leaderboard_mmlu_pro": { "alias": " - leaderboard_mmlu_pro", "acc,none": 0.5088929521276596, "acc_stderr,none": 0.004557749352736335 }, "leaderboard_musr": { "acc_norm,none": 0.4193121693121693, "acc_norm_stderr,none": 0.017343672073569773, "alias": " - leaderboard_musr" }, "leaderboard_musr_murder_mysteries": { "alias": " - leaderboard_musr_murder_mysteries", "acc_norm,none": 0.584, "acc_norm_stderr,none": 0.031235856237014505 }, "leaderboard_musr_object_placements": { "alias": " - leaderboard_musr_object_placements", "acc_norm,none": 0.265625, "acc_norm_stderr,none": 0.027658162598649488 }, "leaderboard_musr_team_allocation": { "alias": " - leaderboard_musr_team_allocation", "acc_norm,none": 0.412, "acc_norm_stderr,none": 0.03119159602602282 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
reflection-gen/ds_chat_reflct_rmsprop_iter1_sppo_hard_new_cn_mining_oj_iter1-bin
reflection-gen
"2024-11-25T00:17:08Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T00:17:06Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: chosen_probs dtype: float64 - name: chosen_probs_win dtype: float64 - name: chosen_probs_lose dtype: float64 splits: - name: train num_bytes: 7749203 num_examples: 3150 download_size: 3108272 dataset_size: 7749203 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_chat_reflct_rmsprop_iter1_sppo_hard_new_cn_mining_oj_iter1-bin" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_chat_reflct_rmsprop_iter1_sppo_hard_new_cn_mining_oj_iter1-full_resp_trace
reflection-gen
"2024-11-25T00:17:10Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T00:17:09Z"
--- dataset_info: features: - name: prompt dtype: string - name: test dtype: string - name: tag dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: text_prompt dtype: string - name: text_chosen dtype: string - name: text_rejected dtype: string - name: generate_0 dtype: string - name: generate_0_score dtype: int64 - name: traceback_0 dtype: string - name: generate_1 dtype: string - name: generate_1_score dtype: int64 - name: traceback_1 dtype: string - name: generate_2 dtype: string - name: generate_2_score dtype: int64 - name: traceback_2 dtype: string - name: generate_3 dtype: string - name: generate_3_score dtype: int64 - name: traceback_3 dtype: string - name: probability sequence: sequence: float64 - name: rm_scores sequence: int64 splits: - name: train num_bytes: 18508857 num_examples: 3150 download_size: 6739450 dataset_size: 18508857 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_chat_reflct_rmsprop_iter1_sppo_hard_new_cn_mining_oj_iter1-full_resp_trace" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_chat_reflct_rmsprop_iter1_sppo_hard_new_cn_mining_oj_iter1-bin_all_pairs
reflection-gen
"2024-11-25T00:17:12Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T00:17:10Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: test dtype: string splits: - name: train num_bytes: 15299160 num_examples: 6016 download_size: 4388091 dataset_size: 15299160 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_chat_reflct_rmsprop_iter1_sppo_hard_new_cn_mining_oj_iter1-bin_all_pairs" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
RylanSchaeffer/collapse_gemma-2-9b_hs2_accumulate_iter5_sftsd0_temp1_max_seq_len512
RylanSchaeffer
"2024-11-25T01:50:29Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T01:50:28Z"
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 14698155 num_examples: 12531 download_size: 754424 dataset_size: 14698155 configs: - config_name: default data_files: - split: train path: data/train-* ---
reflection-gen/ds_chat_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-bin
reflection-gen
"2024-11-25T02:03:07Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T02:03:06Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: chosen_probs dtype: float64 - name: chosen_probs_win dtype: float64 - name: chosen_probs_lose dtype: float64 splits: - name: train num_bytes: 7882102 num_examples: 3167 download_size: 3155722 dataset_size: 7882102 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_chat_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-bin" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_chat_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-full_resp_trace
reflection-gen
"2024-11-25T02:03:09Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T02:03:08Z"
--- dataset_info: features: - name: prompt dtype: string - name: test dtype: string - name: tag dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: text_prompt dtype: string - name: text_chosen dtype: string - name: text_rejected dtype: string - name: generate_0 dtype: string - name: generate_0_score dtype: int64 - name: traceback_0 dtype: string - name: generate_1 dtype: string - name: generate_1_score dtype: int64 - name: traceback_1 dtype: string - name: generate_2 dtype: string - name: generate_2_score dtype: int64 - name: traceback_2 dtype: string - name: generate_3 dtype: string - name: generate_3_score dtype: int64 - name: traceback_3 dtype: string - name: probability sequence: sequence: float64 - name: rm_scores sequence: int64 splits: - name: train num_bytes: 19175927 num_examples: 3167 download_size: 6871419 dataset_size: 19175927 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_chat_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-full_resp_trace" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
reflection-gen/ds_chat_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-bin_all_pairs
reflection-gen
"2024-11-25T02:03:10Z"
2
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T02:03:09Z"
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: rejected_traceback dtype: string - name: test dtype: string splits: - name: train num_bytes: 16827316 num_examples: 6418 download_size: 4630489 dataset_size: 16827316 configs: - config_name: default data_files: - split: train path: data/train-* --- # Dataset Card for "ds_chat_reflct_rmsprop_iter2_sppo_hard_new_cn_mining_oj_iter2-bin_all_pairs" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
RylanSchaeffer/collapse_gemma-2-9b_hs2_accumulate_iter5_sftsd1_temp1_max_seq_len512
RylanSchaeffer
"2024-11-25T02:12:36Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T02:12:34Z"
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 14946574 num_examples: 12531 download_size: 784226 dataset_size: 14946574 configs: - config_name: default data_files: - split: train path: data/train-* ---
RylanSchaeffer/collapse_gemma-2-9b_hs2_accumulate_iter5_sftsd2_temp1_max_seq_len512
RylanSchaeffer
"2024-11-25T02:34:52Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T02:34:51Z"
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 14764204 num_examples: 12531 download_size: 721047 dataset_size: 14764204 configs: - config_name: default data_files: - split: train path: data/train-* ---
casl0605/cartoon-example
casl0605
"2024-11-25T02:44:39Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T02:44:37Z"
--- dataset_info: features: - name: image dtype: image splits: - name: train num_bytes: 1097021.0 num_examples: 25 download_size: 1091088 dataset_size: 1097021.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
DoctoraojoyAojoy/UniFood
DoctoraojoyAojoy
"2024-11-25T02:47:43Z"
2
0
[ "license:cc-by-nc-4.0", "region:us" ]
null
"2024-11-25T02:47:43Z"
--- license: cc-by-nc-4.0 ---
lianghsun/patent-zh_tw-en-translation-dpo
lianghsun
"2024-11-25T03:02:21Z"
2
0
[ "task_categories:translation", "language:zh", "license:cc-by-nc-sa-4.0", "size_categories:1K<n<10K", "region:us", "patent", "zh-tw", "ROC", "Taiwan" ]
[ "translation" ]
"2024-11-25T03:01:24Z"
--- license: cc-by-nc-sa-4.0 task_categories: - translation language: - zh tags: - patent - zh-tw - ROC - Taiwan size_categories: - 1K<n<10K --- # Dataset Card for lianghsun/patent-zh_tw-en-translation-dpo <!-- Provide a quick summary of the dataset. --> (WIP) ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
marcov/freebase_qa_promptsource
marcov
"2024-11-25T03:37:18Z"
2
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T03:37:01Z"
--- dataset_info: features: - name: Question-ID dtype: string - name: RawQuestion dtype: string - name: ProcessedQuestion dtype: string - name: Parses sequence: - name: Parse-Id dtype: string - name: PotentialTopicEntityMention dtype: string - name: TopicEntityName dtype: string - name: TopicEntityMid dtype: string - name: InferentialChain dtype: string - name: Answers sequence: - name: AnswersMid dtype: string - name: AnswersName sequence: string - name: template_name dtype: string - name: template dtype: string - name: rendered_input dtype: string - name: rendered_output dtype: string splits: - name: train num_bytes: 105253003.0 num_examples: 101790 - name: test num_bytes: 20561808.0 num_examples: 19980 - name: validation num_bytes: 20473054.0 num_examples: 19970 download_size: 38241015 dataset_size: 146287865.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
marcov/paws-x_en_promptsource
marcov
"2024-11-25T03:47:54Z"
2
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T03:47:01Z"
--- dataset_info: features: - name: id dtype: int32 - name: sentence1 dtype: string - name: sentence2 dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' - name: template_name dtype: string - name: template dtype: string - name: rendered_input dtype: string - name: rendered_output dtype: string splits: - name: train num_bytes: 389130111.49153525 num_examples: 565240 - name: test num_bytes: 15778306.285041668 num_examples: 22907 - name: validation num_bytes: 15683472.145875 num_examples: 22863 download_size: 179437577 dataset_size: 420591889.9224519 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* ---
RichardWang0803/TestData
RichardWang0803
"2024-11-25T03:48:26Z"
2
0
[ "license:apache-2.0", "region:us" ]
null
"2024-11-25T03:48:25Z"
--- license: apache-2.0 ---
haorandai/Nov_PGD_Banana_UF_Epsilon0.05_1samples_with1constraints
haorandai
"2024-11-25T04:51:36Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T04:51:34Z"
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 215305.0 num_examples: 2 download_size: 217121 dataset_size: 215305.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
ekatosha/twitter-financial-cor-labels
ekatosha
"2024-11-25T04:58:22Z"
2
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T04:58:18Z"
--- dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 939352 num_examples: 9543 - name: validation num_bytes: 237530 num_examples: 2388 download_size: 712538 dataset_size: 1176882 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
haorandai/Nov_PGD_Banana_UF_Epsilon0.05_5samples_with5constraints
haorandai
"2024-11-25T05:09:34Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T05:09:32Z"
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 1023566.0 num_examples: 10 download_size: 1025246 dataset_size: 1023566.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
haorandai/Nov_PGD_Bicycle_UF_Epsilon0.05_5samples_with5constraints
haorandai
"2024-11-25T05:12:35Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T05:12:33Z"
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 1073104.0 num_examples: 10 download_size: 1074818 dataset_size: 1073104.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
haorandai/Nov_PGD_Mice_UF_Epsilon0.05_5samples_with5constraints
haorandai
"2024-11-25T05:15:10Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T05:15:09Z"
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 999155.0 num_examples: 10 download_size: 1000833 dataset_size: 999155.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
haorandai/Nov_Random_Banana_UF_Epsilon0.05_5samples_with5constraints
haorandai
"2024-11-25T05:38:29Z"
2
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-11-25T05:38:28Z"
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 1001975.0 num_examples: 10 download_size: 1003569 dataset_size: 1001975.0 configs: - config_name: default data_files: - split: train path: data/train-* ---