datasetId
stringlengths 5
121
| author
stringlengths 2
42
| last_modified
unknown | downloads
int64 0
2.73M
| likes
int64 0
6.73k
| tags
sequencelengths 1
7.92k
| task_categories
sequencelengths 0
47
⌀ | createdAt
unknown | card
stringlengths 15
1M
|
---|---|---|---|---|---|---|---|---|
Vishwaksen/AppointmentAssistant-V2 | Vishwaksen | "2024-09-18T05:29:52Z" | 0 | 0 | [
"region:us"
] | null | "2024-09-18T05:29:47Z" | Invalid username or password. |
YuchenLi01/ultrafeedback_binarized_ArmoRM | YuchenLi01 | "2024-11-01T15:10:10Z" | 0 | 0 | [
"license:mit",
"region:us"
] | null | "2024-11-01T14:35:21Z" | ---
license: mit
---
|
piyushpradhan22/tt | piyushpradhan22 | "2024-11-21T02:30:07Z" | 0 | 0 | [
"region:us"
] | null | "2024-11-07T08:16:03Z" | Invalid username or password. |
ychen/mi-persona-alcohol-5k-diverse | ychen | "2024-11-08T14:18:42Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-08T14:18:13Z" | ---
dataset_info:
features:
- name: persona
dtype: string
- name: background_sketch
dtype: string
- name: profile
dtype: string
- name: index
dtype: int64
- name: embedding
sequence: float64
splits:
- name: train
num_bytes: 48409536
num_examples: 5000
download_size: 32436062
dataset_size: 48409536
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
YuchenLi01/ultrafeedback_binarized_Skywork | YuchenLi01 | "2024-11-20T05:50:09Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-11-19T23:39:52Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: prompt_id
dtype: string
- name: chosen
list:
- name: content
dtype: string
- name: role
dtype: string
- name: rejected
list:
- name: content
dtype: string
- name: role
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: score_chosen
dtype: float64
- name: score_rejected
dtype: float64
- name: all_rm_scores
sequence: float64
splits:
- name: train
num_bytes: 406911362
num_examples: 61135
- name: test
num_bytes: 13201585
num_examples: 2000
download_size: 240918273
dataset_size: 420112947
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
sociate/H_and_M_VLM | sociate | "2024-11-26T22:22:49Z" | 0 | 0 | [
"region:us"
] | null | "2024-11-24T08:24:29Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: description
dtype: string
- name: id
dtype: string
splits:
- name: train
num_bytes: 2195648097.625
num_examples: 6467
download_size: 2193536714
dataset_size: 2195648097.625
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
argilla-internal-testing/argilla-server-dataset-test-67ca7239-e9a8-4837-b370-1ac5b5075d73 | argilla-internal-testing | "2024-12-05T14:58:51Z" | 0 | 0 | [
"library:argilla",
"region:us",
"rlfh",
"argilla",
"human-feedback"
] | null | "2024-12-05T14:58:48Z" | Invalid username or password. |
HuggingFaceH4/Llama-3.2-3B-Instruct-DVTS-completions | HuggingFaceH4 | "2024-12-13T19:58:42Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-13T14:02:11Z" | ---
dataset_info:
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-0--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
dtype: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@32
dtype: string
- name: pred_maj@32
dtype: string
- name: pred_naive@32
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@128
dtype: string
- name: pred_maj@128
dtype: string
- name: pred_naive@128
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 195371894
num_examples: 500
download_size: 28527714
dataset_size: 195371894
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-0--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 128
num_examples: 4
download_size: 2049
dataset_size: 128
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-1--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
dtype: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@32
dtype: string
- name: pred_maj@32
dtype: string
- name: pred_naive@32
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@128
dtype: string
- name: pred_maj@128
dtype: string
- name: pred_naive@128
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 193830170
num_examples: 500
download_size: 28245361
dataset_size: 193830170
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-1--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 128
num_examples: 4
download_size: 2059
dataset_size: 128
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-2--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
dtype: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@32
dtype: string
- name: pred_maj@32
dtype: string
- name: pred_naive@32
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@128
dtype: string
- name: pred_maj@128
dtype: string
- name: pred_naive@128
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 193878761
num_examples: 500
download_size: 28242668
dataset_size: 193878761
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-2--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 128
num_examples: 4
download_size: 2056
dataset_size: 128
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-3--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
dtype: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@32
dtype: string
- name: pred_maj@32
dtype: string
- name: pred_naive@32
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@128
dtype: string
- name: pred_maj@128
dtype: string
- name: pred_naive@128
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 195238447
num_examples: 500
download_size: 28529254
dataset_size: 195238447
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-3--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 128
num_examples: 4
download_size: 2060
dataset_size: 128
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-4--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
dtype: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@32
dtype: string
- name: pred_maj@32
dtype: string
- name: pred_naive@32
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@128
dtype: string
- name: pred_maj@128
dtype: string
- name: pred_naive@128
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 193859741
num_examples: 500
download_size: 28256691
dataset_size: 193859741
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-4--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 128
num_examples: 4
download_size: 2058
dataset_size: 128
configs:
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-0--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-0--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-0--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-0--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-1--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-1--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-1--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-1--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-2--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-2--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-2--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-2--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-3--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-3--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-3--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-3--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-4--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-4--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-4--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-4--agg_strategy-last--evals/train-*
---
|
HuggingFaceH4/Llama-3.2-3B-Instruct-best-of-N-completions | HuggingFaceH4 | "2024-12-14T20:07:54Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-14T09:22:34Z" | ---
dataset_info:
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-2048--max_tokens-2048--bsz-8--seed-0--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: scores
sequence:
sequence: float64
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
splits:
- name: train
num_bytes: 1544368640
num_examples: 500
download_size: 468618769
dataset_size: 1544368640
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-2048--max_tokens-2048--bsz-8--seed-0--agg_strategy-last--levels
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: level
dtype: int64
- name: level_oracle_first
dtype: int64
- name: level_oracle_last
dtype: int64
- name: level_oracle_all
dtype: int64
- name: level_model_first
dtype: int64
- name: level_model_last
dtype: int64
- name: level_model_all
dtype: int64
splits:
- name: train
num_bytes: 395590
num_examples: 500
download_size: 206919
dataset_size: 395590
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-0--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: scores
sequence:
sequence: float64
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@32
dtype: string
- name: pred_maj@32
dtype: string
- name: pred_naive@32
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@128
dtype: string
- name: pred_maj@128
dtype: string
- name: pred_naive@128
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 194998809
num_examples: 500
download_size: 59335978
dataset_size: 194998809
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-0--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 288
num_examples: 9
download_size: 2564
dataset_size: 288
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-1--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: scores
sequence:
sequence: float64
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@32
dtype: string
- name: pred_maj@32
dtype: string
- name: pred_naive@32
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@128
dtype: string
- name: pred_maj@128
dtype: string
- name: pred_naive@128
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 194921320
num_examples: 500
download_size: 59383076
dataset_size: 194921320
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-1--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 288
num_examples: 9
download_size: 2579
dataset_size: 288
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-2--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: scores
sequence:
sequence: float64
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@32
dtype: string
- name: pred_maj@32
dtype: string
- name: pred_naive@32
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@128
dtype: string
- name: pred_maj@128
dtype: string
- name: pred_naive@128
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 194754596
num_examples: 500
download_size: 59308362
dataset_size: 194754596
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-2--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 288
num_examples: 9
download_size: 2558
dataset_size: 288
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-3--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: scores
sequence:
sequence: float64
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@32
dtype: string
- name: pred_maj@32
dtype: string
- name: pred_naive@32
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@128
dtype: string
- name: pred_maj@128
dtype: string
- name: pred_naive@128
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 195148367
num_examples: 500
download_size: 59442449
dataset_size: 195148367
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-3--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 288
num_examples: 9
download_size: 2580
dataset_size: 288
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-4--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: scores
sequence:
sequence: float64
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: agg_scores
sequence: float64
- name: pred_weighted@1
dtype: string
- name: pred_maj@1
dtype: string
- name: pred_naive@1
dtype: string
- name: pred_weighted@2
dtype: string
- name: pred_maj@2
dtype: string
- name: pred_naive@2
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@8
dtype: string
- name: pred_maj@8
dtype: string
- name: pred_naive@8
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@32
dtype: string
- name: pred_maj@32
dtype: string
- name: pred_naive@32
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@128
dtype: string
- name: pred_maj@128
dtype: string
- name: pred_naive@128
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 195110534
num_examples: 500
download_size: 59421725
dataset_size: 195110534
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-4--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 288
num_examples: 9
download_size: 2564
dataset_size: 288
configs:
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-2048--max_tokens-2048--bsz-8--seed-0--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-2048--max_tokens-2048--bsz-8--seed-0--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-2048--max_tokens-2048--bsz-8--seed-0--agg_strategy-last--levels
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-2048--max_tokens-2048--bsz-8--seed-0--agg_strategy-last--levels/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-0--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-0--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-0--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-0--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-1--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-1--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-1--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-1--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-2--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-2--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-2--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-2--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-3--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-3--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-3--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-3--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-4--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-4--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-4--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--max_tokens-2048--bsz-8--seed-4--agg_strategy-last--evals/train-*
---
|
HuggingFaceH4/Llama-3.2-3B-Instruct-beam-search-completions | HuggingFaceH4 | "2024-12-16T10:18:06Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-14T10:15:44Z" | ---
dataset_info:
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-0--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
splits:
- name: train
num_bytes: 14148766
num_examples: 500
download_size: 2023744
dataset_size: 14148766
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-1--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
splits:
- name: train
num_bytes: 13673930
num_examples: 500
download_size: 2006709
dataset_size: 13673930
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-2--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
splits:
- name: train
num_bytes: 13412177
num_examples: 500
download_size: 1956116
dataset_size: 13412177
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-3--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
splits:
- name: train
num_bytes: 13651685
num_examples: 500
download_size: 1961268
dataset_size: 13651685
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-4--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
splits:
- name: train
num_bytes: 13941713
num_examples: 500
download_size: 1996648
dataset_size: 13941713
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-0--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 211373298
num_examples: 500
download_size: 26744594
dataset_size: 211373298
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-0--agg_strategy-last--evals
features:
- name: n
dtype: 'null'
- name: acc_naive
dtype: 'null'
- name: acc_weighted
dtype: 'null'
- name: acc_maj
dtype: 'null'
splits:
- name: train
num_bytes: 0
num_examples: 0
download_size: 1125
dataset_size: 0
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-4--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 207666692
num_examples: 500
download_size: 26863337
dataset_size: 207666692
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-0--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
splits:
- name: train
num_bytes: 4498133
num_examples: 500
download_size: 1057326
dataset_size: 4498133
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-0--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 32
num_examples: 1
download_size: 2360
dataset_size: 32
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-1--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
splits:
- name: train
num_bytes: 4193515
num_examples: 500
download_size: 989837
dataset_size: 4193515
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-1--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 32
num_examples: 1
download_size: 2360
dataset_size: 32
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-2--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
splits:
- name: train
num_bytes: 4318247
num_examples: 500
download_size: 992357
dataset_size: 4318247
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-2--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 32
num_examples: 1
download_size: 2360
dataset_size: 32
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-3--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
splits:
- name: train
num_bytes: 4137316
num_examples: 500
download_size: 963390
dataset_size: 4137316
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-3--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 32
num_examples: 1
download_size: 2360
dataset_size: 32
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-4--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
splits:
- name: train
num_bytes: 4201133
num_examples: 500
download_size: 973321
dataset_size: 4201133
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-4--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 32
num_examples: 1
download_size: 2360
dataset_size: 32
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-0--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
splits:
- name: train
num_bytes: 53850426
num_examples: 500
download_size: 6722896
dataset_size: 53850426
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-1--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
splits:
- name: train
num_bytes: 53865181
num_examples: 500
download_size: 6723497
dataset_size: 53865181
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-2--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
splits:
- name: train
num_bytes: 52820899
num_examples: 500
download_size: 6404174
dataset_size: 52820899
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-3--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
splits:
- name: train
num_bytes: 54014686
num_examples: 500
download_size: 7000570
dataset_size: 54014686
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-4--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: completions
sequence: string
- name: pred
dtype: string
- name: completion_tokens
sequence: int64
- name: scores
sequence:
sequence: float64
- name: agg_scores
sequence: float64
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
splits:
- name: train
num_bytes: 53334941
num_examples: 500
download_size: 6821112
dataset_size: 53334941
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-0--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 506796
num_examples: 500
download_size: 250215
dataset_size: 506796
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-0--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 128
num_examples: 4
download_size: 2443
dataset_size: 128
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-1--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
splits:
- name: train
num_bytes: 476788
num_examples: 500
download_size: 238895
dataset_size: 476788
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-1--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 96
num_examples: 3
download_size: 2420
dataset_size: 96
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-2--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
splits:
- name: train
num_bytes: 477357
num_examples: 500
download_size: 238937
dataset_size: 477357
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-2--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 96
num_examples: 3
download_size: 2425
dataset_size: 96
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-3--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
splits:
- name: train
num_bytes: 476704
num_examples: 500
download_size: 238909
dataset_size: 476704
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-3--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 96
num_examples: 3
download_size: 2422
dataset_size: 96
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-4--agg_strategy-last
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
- name: subject
dtype: string
- name: level
dtype: int64
- name: unique_id
dtype: string
- name: pred_weighted@4
dtype: string
- name: pred_maj@4
dtype: string
- name: pred_naive@4
dtype: string
- name: pred_weighted@16
dtype: string
- name: pred_maj@16
dtype: string
- name: pred_naive@16
dtype: string
- name: pred_weighted@64
dtype: string
- name: pred_maj@64
dtype: string
- name: pred_naive@64
dtype: string
- name: pred_weighted@256
dtype: string
- name: pred_maj@256
dtype: string
- name: pred_naive@256
dtype: string
splits:
- name: train
num_bytes: 502550
num_examples: 500
download_size: 249785
dataset_size: 502550
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-4--agg_strategy-last--evals
features:
- name: n
dtype: int64
- name: acc_naive
dtype: float64
- name: acc_weighted
dtype: float64
- name: acc_maj
dtype: float64
splits:
- name: train
num_bytes: 128
num_examples: 4
download_size: 2449
dataset_size: 128
configs:
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-0--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-0--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-1--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-1--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-2--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-2--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-3--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-3--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-4--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-16--m-4--iters-40--look-0--seed-4--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-0--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-0--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-0--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-0--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-4--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-256--m-4--iters-40--look-0--seed-4--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-0--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-0--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-0--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-0--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-1--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-1--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-1--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-1--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-2--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-2--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-2--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-2--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-3--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-3--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-3--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-3--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-4--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-4--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-4--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-4--m-4--iters-40--look-0--seed-4--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-0--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-0--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-1--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-1--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-2--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-2--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-3--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-3--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-4--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-64--m-4--iters-40--look-0--seed-4--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-0--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-0--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-0--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-0--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-1--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-1--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-1--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-1--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-2--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-2--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-2--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-2--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-3--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-3--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-3--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-3--agg_strategy-last--evals/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-4--agg_strategy-last
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-4--agg_strategy-last/train-*
- config_name: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-4--agg_strategy-last--evals
data_files:
- split: train
path: HuggingFaceH4_MATH-500--T-0.8--top_p-1.0--n-merged--m-4--iters-40--look-0--seed-4--agg_strategy-last--evals/train-*
---
|
kngrg/wikifacts-sents | kngrg | "2025-01-06T08:33:46Z" | 0 | 0 | [
"language:ru",
"license:mit",
"size_categories:100K<n<1M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-28T07:30:28Z" | ---
license: mit
language:
- ru
configs:
- config_name: corpus
data_files:
- corpus.jsonl
- config_name: queries
data_files:
- queries.jsonl
--- |
kngrg/wikifacts-sents-qrels | kngrg | "2025-01-06T08:36:48Z" | 0 | 0 | [
"language:ru",
"license:mit",
"size_categories:1K<n<10K",
"format:csv",
"modality:tabular",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2024-12-28T07:39:23Z" | ---
license: mit
language:
- ru
configs:
- config_name: qrels
data_files:
- split: dev
path: dev.tsv
--- |
chengzl18/EmbodiedEval | chengzl18 | "2025-01-06T18:52:55Z" | 0 | 0 | [
"task_categories:video-text-to-text",
"language:en",
"license:mit",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | [
"video-text-to-text"
] | "2025-01-01T15:10:11Z" | ---
license: mit
task_categories:
- video-text-to-text
language:
- en
size_categories:
- n<1K
configs:
- config_name: benchmark
data_files:
- split: test
path: "tasks/tasks.json"
--- |
violetxi/MATH-500_L3_best_first_N128_B8_D15_T0.0001_0-75 | violetxi | "2025-01-06T03:16:20Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-01T20:45:38Z" | ---
dataset_info:
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: search_trace_with_values
dtype: string
- name: search_method
dtype: string
- name: ground_truth
dtype: string
- name: search_input_tokens
dtype: int64
- name: search_output_tokens
dtype: int64
- name: solution_input_tokens
dtype: int64
- name: solution_output_tokens
dtype: int64
splits:
- name: train
num_bytes: 897719
num_examples: 75
download_size: 230089
dataset_size: 897719
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
shin020810/LLM_23_121_2 | shin020810 | "2025-01-06T06:22:36Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T09:01:16Z" | ---
dataset_info:
- config_name: 공학
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: rank1 ans
dtype: string
- name: rank2 ans
dtype: string
- name: rank3 ans
dtype: string
- name: rank4 ans
dtype: string
- name: rank5 ans
dtype: string
splits:
- name: train
num_bytes: 15774844
num_examples: 1955
- name: validation
num_bytes: 5153828
num_examples: 651
- name: test
num_bytes: 5057856
num_examples: 651
download_size: 11802831
dataset_size: 25986528
- config_name: 기타
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: rank1 ans
dtype: string
- name: rank2 ans
dtype: string
- name: rank3 ans
dtype: string
- name: rank4 ans
dtype: string
- name: rank5 ans
dtype: string
splits:
- name: train
num_bytes: 11558689
num_examples: 1920
- name: validation
num_bytes: 3938947
num_examples: 640
- name: test
num_bytes: 3932897
num_examples: 640
download_size: 9289877
dataset_size: 19430533
- config_name: 명칭
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: rank1 ans
dtype: string
- name: rank2 ans
dtype: string
- name: rank3 ans
dtype: string
- name: rank4 ans
dtype: string
- name: rank5 ans
dtype: string
splits:
- name: train
num_bytes: 106957
num_examples: 42
- name: validation
num_bytes: 50502
num_examples: 14
- name: test
num_bytes: 37032
num_examples: 13
download_size: 134761
dataset_size: 194491
- config_name: 보건
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: rank1 ans
dtype: string
- name: rank2 ans
dtype: string
- name: rank3 ans
dtype: string
- name: rank4 ans
dtype: string
- name: rank5 ans
dtype: string
splits:
- name: train
num_bytes: 15864981
num_examples: 2154
- name: validation
num_bytes: 5362495
num_examples: 717
- name: test
num_bytes: 5283429
num_examples: 717
download_size: 12180289
dataset_size: 26510905
- config_name: 사회
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: rank1 ans
dtype: string
- name: rank2 ans
dtype: string
- name: rank3 ans
dtype: string
- name: rank4 ans
dtype: string
- name: rank5 ans
dtype: string
splits:
- name: train
num_bytes: 23282668
num_examples: 2976
- name: validation
num_bytes: 7646922
num_examples: 991
- name: test
num_bytes: 7919322
num_examples: 991
download_size: 17887138
dataset_size: 38848912
- config_name: 산업
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: rank1 ans
dtype: string
- name: rank2 ans
dtype: string
- name: rank3 ans
dtype: string
- name: rank4 ans
dtype: string
- name: rank5 ans
dtype: string
splits:
- name: train
num_bytes: 9656402
num_examples: 1243
- name: validation
num_bytes: 3170530
num_examples: 414
- name: test
num_bytes: 3147612
num_examples: 414
download_size: 7335622
dataset_size: 15974544
- config_name: 예체능
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: rank1 ans
dtype: string
- name: rank2 ans
dtype: string
- name: rank3 ans
dtype: string
- name: rank4 ans
dtype: string
- name: rank5 ans
dtype: string
splits:
- name: train
num_bytes: 21453991
num_examples: 3366
- name: validation
num_bytes: 7115415
num_examples: 1122
- name: test
num_bytes: 7101887
num_examples: 1122
download_size: 17100772
dataset_size: 35671293
- config_name: 인문
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: rank1 ans
dtype: string
- name: rank2 ans
dtype: string
- name: rank3 ans
dtype: string
- name: rank4 ans
dtype: string
- name: rank5 ans
dtype: string
splits:
- name: train
num_bytes: 9183681
num_examples: 1326
- name: validation
num_bytes: 3165065
num_examples: 441
- name: test
num_bytes: 3089716
num_examples: 441
download_size: 7192246
dataset_size: 15438462
- config_name: 자연
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: rank1 ans
dtype: string
- name: rank2 ans
dtype: string
- name: rank3 ans
dtype: string
- name: rank4 ans
dtype: string
- name: rank5 ans
dtype: string
splits:
- name: train
num_bytes: 17959818
num_examples: 2642
- name: validation
num_bytes: 5818943
num_examples: 880
- name: test
num_bytes: 5924847
num_examples: 880
download_size: 13980380
dataset_size: 29703608
- config_name: 종교
features:
- name: add_info
dtype: string
- name: question
dtype: string
- name: rank1 ans
dtype: string
- name: rank2 ans
dtype: string
- name: rank3 ans
dtype: string
- name: rank4 ans
dtype: string
- name: rank5 ans
dtype: string
splits:
- name: train
num_bytes: 1315852
num_examples: 208
- name: validation
num_bytes: 427300
num_examples: 69
- name: test
num_bytes: 435066
num_examples: 69
download_size: 1075778
dataset_size: 2178218
configs:
- config_name: 공학
data_files:
- split: train
path: 공학/train-*
- split: validation
path: 공학/validation-*
- split: test
path: 공학/test-*
- config_name: 기타
data_files:
- split: train
path: 기타/train-*
- split: validation
path: 기타/validation-*
- split: test
path: 기타/test-*
- config_name: 명칭
data_files:
- split: train
path: 명칭/train-*
- split: validation
path: 명칭/validation-*
- split: test
path: 명칭/test-*
- config_name: 보건
data_files:
- split: train
path: 보건/train-*
- split: validation
path: 보건/validation-*
- split: test
path: 보건/test-*
- config_name: 사회
data_files:
- split: train
path: 사회/train-*
- split: validation
path: 사회/validation-*
- split: test
path: 사회/test-*
- config_name: 산업
data_files:
- split: train
path: 산업/train-*
- split: validation
path: 산업/validation-*
- split: test
path: 산업/test-*
- config_name: 예체능
data_files:
- split: train
path: 예체능/train-*
- split: validation
path: 예체능/validation-*
- split: test
path: 예체능/test-*
- config_name: 인문
data_files:
- split: train
path: 인문/train-*
- split: validation
path: 인문/validation-*
- split: test
path: 인문/test-*
- config_name: 자연
data_files:
- split: train
path: 자연/train-*
- split: validation
path: 자연/validation-*
- split: test
path: 자연/test-*
- config_name: 종교
data_files:
- split: train
path: 종교/train-*
- split: validation
path: 종교/validation-*
- split: test
path: 종교/test-*
---
|
dunghuynh/SalBench | dunghuynh | "2025-01-06T07:45:41Z" | 0 | 0 | [
"license:mit",
"size_categories:10K<n<100K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-03T10:00:47Z" | ---
license: mit
dataset_info:
- config_name: O3
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2001
- config_name: O3_3shots
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2001
- config_name: O3_5shots
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2001
- config_name: O3_box
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2001
- config_name: O3_box_3shots
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2001
- config_name: O3_box_5shots
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2001
- config_name: O3_box_img
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2001
- config_name: O3_box_img_3shots
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2001
- config_name: O3_box_img_5shots
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2001
- config_name: P3
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2589
- config_name: P3_3shots
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2589
- config_name: P3_5shots
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2589
- config_name: P3_box
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2589
- config_name: P3_box_3shots
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2589
- config_name: P3_box_5shots
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2589
- config_name: P3_box_img
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2589
- config_name: P3_box_img_3shots
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2589
- config_name: P3_box_img_5shots
features:
- name: image_id
dtype: string
- name: image
dtype: image
- name: question
dtype: string
- name: instruction
dtype: string
- name: answer
dtype: string
- name: fewshots
struct:
- name: images
sequence: image
- name: texts
sequence: string
splits:
- name: test
num_examples: 2589
configs:
- config_name: O3
data_files:
- split: test
path: O3/shard*
- config_name: O3_3shots
data_files:
- split: test
path: O3_3shots/shard*
- config_name: O3_5shots
data_files:
- split: test
path: O3_5shots/shard*
- config_name: O3_box
data_files:
- split: test
path: O3_box/shard*
- config_name: O3_box_3shots
data_files:
- split: test
path: O3_box_3shots/shard*
- config_name: O3_box_5shots
data_files:
- split: test
path: O3_box_5shots/shard*
- config_name: O3_box_img
data_files:
- split: test
path: O3_box_img/shard*
- config_name: O3_box_img_3shots
data_files:
- split: test
path: O3_box_img_3shots/shard*
- config_name: O3_box_img_5shots
data_files:
- split: test
path: O3_box_img_5shots/shard*
- config_name: P3
data_files:
- split: test
path: P3/shard*
- config_name: P3_3shots
data_files:
- split: test
path: P3_3shots/shard*
- config_name: P3_5shots
data_files:
- split: test
path: P3_5shots/shard*
- config_name: P3_box
data_files:
- split: test
path: P3_box/shard*
- config_name: P3_box_3shots
data_files:
- split: test
path: P3_box_3shots/shard*
- config_name: P3_box_5shots
data_files:
- split: test
path: P3_box_5shots/shard*
- config_name: P3_box_img
data_files:
- split: test
path: P3_box_img/shard*
- config_name: P3_box_img_3shots
data_files:
- split: test
path: P3_box_img_3shots/shard*
- config_name: P3_box_img_5shots
data_files:
- split: test
path: P3_box_img_5shots/shard*
---
# *SalBench: A Benchmark for Evaluating Perceptual Capabilities of Vision-Language Models*
– *Ngoc Dung Huynh, Yasser Abdelaziz Dahou Djilali, Le Khac Phuc, Ankit Singh, Wamiq Para, Sanath Narayan*
[[💻 Github](https://github.com/dunghuynhandy/SalBench)] [[📊 Leaderboard ](https://github.com/dunghuynhandy/SalBench)][[📖 ArXiv Paper](Comming Soon)]
## Introduction
We present Saliency Benchmark (SalBench), a novel benchmark designed to assess the capability of Large Vision-Language Models (LVLM) in detecting visually salient features that are readily apparent to humans, such as a large circle amidst a grid of smaller ones. This benchmark focuses on low-level features including color, intensity, and orientation, which are fundamental to human visual processing. Our SalBench consists of images that highlight rare, unusual, or unexpected elements within scenes, and naturally draw human attention. It comprises three novel tasks for evaluating the perceptual capabilities of LVLM: Odd-One-Out Detection, Referring Odd-One-Out, and Visual Referring Odd-One-Out. We perform a comprehensive evaluation of state-of-the-art LVLM using SalBench and our findings reveal a surprising limitation: LVLM struggle to identify seemingly obvious visual anomalies, with even the advanced GPT-4o achieving only 47.6\% accuracy on such a simple task. SalBench will be an important step in measuring the capabilities of LVLM that align with the subtle definition of human attention.
### Key Tasks in SalBench
#### 1. Salient Object Detection
- **Objective**: Evaluate the model's ability to identify and segment the most visually important objects in an image.
- **Description**: The model is tasked with distinguishing salient objects from the background, mimicking human attention.
- **Significance**: Critical for applications like autonomous driving and medical imaging where detecting key objects is vital.
#### 2. Visual Question Answering (VQA) on Salient Regions
- **Objective**: Test the model's ability to answer questions that require attention to specific, salient regions of an image.
- **Description**: The model must extract relevant information from highlighted regions to provide accurate answers.
- **Significance**: Measures the integration of visual perception and language understanding.
#### 3. Referring Expression Segmentation
- **Objective**: Assess the model’s capacity to segment objects based on natural language descriptions.
- **Description**: The model must accurately segment the object referred to by a user-provided textual phrase.
- **Significance**: Important for human-computer interaction, allowing intuitive control through verbal instructions.
### Visualization
<!-- ![Description of image](){width=500 height=300} -->
<!-- <img src="./images/abstract_fig.png" alt="Example Image" width="400"> -->
<div align="center">
<img src="./images/abstract_fig.png" alt="Description of image" width="800">
</div>
## Leaderboard
#### + Exact Match and F1-Scores on the synthetic image set (**P3**) of SalBench.
<table>
<tr style="border-top: 2px solid black;">
<th rowspan="3">Model</th>
<th rowspan="3" style="text-align: center; border-right: 1px solid black;">Shot</th>
<th colspan="3" rowspan="2" style="text-align: center; border-right: 1px solid black;">Overall Matching</th>
<th colspan="12" style="text-align: center;">F1 Score</th>
</tr>
<tr>
<th colspan="3" style="text-align: center; border-right: 1px solid black;">Overall</th>
<th colspan="3" style="text-align: center; border-right: 1px solid black;">Orientation</th>
<th colspan="3" style="text-align: center; border-right: 1px solid black;">Color</th>
<th colspan="3" style="text-align: center">Size</th>
</tr>
<tr>
<th style="text-align: center;">D</th>
<th style="text-align: center;">R</th>
<th style="border-right: 1px solid black;">VR</th>
<th style="text-align: center;">D</th>
<th style="text-align: center;">R</th>
<th style="border-right: 1px solid black;">VR</th>
<th style="text-align: center;">D</th>
<th style="text-align: center;">R</th>
<th style="border-right: 1px solid black;">VR</th>
<th style="text-align: center;">D</th>
<th style="text-align: center;">R</th>
<th style="border-right: 1px solid black;">VR</th>
<th style="text-align: center;">D</th>
<th style="text-align: center;">R</th>
<th style="text-align: center; border-right: 1px solid black;">VR</th>
</tr>
<tr>
<td>Claude-sonet</td>
<td style="border-right: 1px solid black;">0</td>
<td>86.4</td>
<td>89.0</td>
<td style="border-right: 1px solid black;">87.8</td>
<td>86.7</td>
<td>90.3</td>
<td style="border-right: 1px solid black;">87.7</td>
<td>83.4</td>
<td>87.6</td>
<td style="border-right: 1px solid black;">85.3</td>
<td>94.6</td>
<td>95.4</td>
<td style="border-right: 1px solid black;">95.5</td>
<td>82.0</td>
<td>87.9</td>
<td>82.2</td>
</tr>
<tr>
<td>NVLM-D-72B</td>
<td style="border-right: 1px solid black;">0</td>
<td>83.4</td>
<td >57.9</td>
<td style="border-right: 1px solid black;">59.8</td>
<td>83.2</td>
<td>73.7</td>
<td style="border-right: 1px solid black;">51.7</td>
<td>77.4</td>
<td>75.1</td>
<td style="border-right: 1px solid black;">61.8</td>
<td>98.0</td>
<td >80.2</td>
<td style="border-right: 1px solid black;">80.4</td>
<td>74.1</td>
<td>65.7</td>
<td>12.7</td>
</tr>
<tr>
<td>Molmo-7B</td>
<td style="border-right: 1px solid black;">0</td>
<td>71.3</td>
<td>45.4</td>
<td style="border-right: 1px solid black;">30.1</td>
<td>67.2</td>
<td>38.0</td>
<td style="border-right: 1px solid black;">28.4</td>
<td>40.8</td>
<td>62.3</td>
<td style="border-right: 1px solid black;">34.5</td>
<td>95.3</td>
<td>23.3</td>
<td style="border-right: 1px solid black;">15.7</td>
<td>69.3</td>
<td>28.5</td>
<td>22.3</td>
</tr>
<tr>
<td>Molmo-72B</td>
<td style="border-right: 1px solid black;">0</td>
<td>84.1</td>
<td>67.0</td>
<td style="border-right: 1px solid black;">75.5</td>
<td>83.4</td>
<td>65.6</td>
<td style="border-right: 1px solid black;">73.6</td>
<td>80.7</td>
<td>73.4</td>
<td style="border-right: 1px solid black;">77.5</td>
<td>96.5</td>
<td>69.4</td>
<td style="border-right: 1px solid black;">84.5</td>
<td>72.9</td>
<td>54.0</td>
<td>58.5</td>
</tr>
<tr>
<td>LLama3.2-Vision-11B</td>
<td style="border-right: 1px solid black;">0</td>
<td>51.4</td>
<td>17.6</td>
<td style="border-right: 1px solid black;">55.5</td>
<td>48.7</td>
<td>52.4</td>
<td style="border-right: 1px solid black;">52.4</td>
<td>52.6</td>
<td>57.9</td>
<td style="border-right: 1px solid black;">59.7</td>
<td>62.7</td>
<td>58.6</td>
<td style="border-right: 1px solid black;">69.7</td>
<td>30.9</td>
<td>40.7</td>
<td>27.8</td>
</tr>
<tr>
<td>PaliGemma-3B-448</td>
<td style="border-right: 1px solid black;">0</td>
<td>39.7</td>
<td>7.1</td>
<td style="border-right: 1px solid black;">2.4</td>
<td>41.4</td>
<td>9.5</td>
<td style="border-right: 1px solid black;">4.8</td>
<td>0.9</td>
<td>4.9</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>67.0</td>
<td>21.5</td>
<td style="border-right: 1px solid black;">2.8</td>
<td>55.1</td>
<td>2.0</td>
<td>11.7</td>
</tr>
<tr>
<td rowspan="3">Phi3-4B</td>
<td style="border-right: 1px solid black;">0</td>
<td>51.3</td>
<td>59.0</td>
<td style="border-right: 1px solid black;">52.1</td>
<td>41.2</td>
<td>55.3</td>
<td style="border-right: 1px solid black;">47.2</td>
<td>12.4</td>
<td>66.3</td>
<td style="border-right: 1px solid black;">45.9</td>
<td>45.3</td>
<td>50.5</td>
<td style="border-right: 1px solid black;">62.8</td>
<td>65.9</td>
<td>49.1</td>
<td>32.9</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>43.4</td>
<td>39.0</td>
<td style="border-right: 1px solid black;">47.1</td>
<td>33.5</td>
<td>27.1</td>
<td style="border-right: 1px solid black;">38.6</td>
<td>24.0</td>
<td>17.3</td>
<td style="border-right: 1px solid black;">5.8</td>
<td>26.5</td>
<td>54.9</td>
<td style="border-right: 1px solid black;">55.0</td>
<td>50.0</td>
<td>9.1</td>
<td>55.0</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>34.2</td>
<td>35.1</td>
<td style="border-right: 1px solid black;">50.8</td>
<td>17.0</td>
<td>18.9</td>
<td style="border-right: 1px solid black;">46.7</td>
<td>0.0</td>
<td>4.7</td>
<td style="border-right: 1px solid black;">34.5</td>
<td>51.0</td>
<td>51.6</td>
<td style="border-right: 1px solid black;">66.6</td>
<td>0.0</td>
<td>0.4</td>
<td>39.1</td>
</tr>
<tr>
<td rowspan="3">Phi3.5-Vision-3.5B</td>
<td style="border-right: 1px solid black;">0</td>
<td>44.0</td>
<td>59.9</td>
<td style="border-right: 1px solid black;">64.9</td>
<td>35.0</td>
<td>53.7</td>
<td style="border-right: 1px solid black;">63.6</td>
<td>2.1</td>
<td>53.7</td>
<td style="border-right: 1px solid black;">53.7</td>
<td>49.2</td>
<td>50.9</td>
<td style="border-right: 1px solid black;">71.3</td>
<td>53.7</td>
<td>56.6</td>
<td>65.9</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>26.7</td>
<td>49.8</td>
<td style="border-right: 1px solid black;">34.7</td>
<td>19.5</td>
<td>41.0</td>
<td style="border-right: 1px solid black;">20.8</td>
<td>0.0</td>
<td>0.5</td>
<td style="border-right: 1px solid black;">3.0</td>
<td>18.2</td>
<td>66.7</td>
<td style="border-right: 1px solid black;"`>9.9</td>
<td>40.3</td>
<td>55.8</td>
<td>49.5</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>35.2</td>
<td>24.1</td>
<td style="border-right: 1px solid black;">33.8</td>
<td>29.3</td>
<td>11.1</td>
<td style="border-right: 1px solid black;">19.0</td>
<td>1.5</td>
<td>0.2</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>38.9</td>
<td>26.0</td>
<td style="border-right: 1px solid black;">7.6</td>
<td>47.5</td>
<td>7.1</td>
<td>49.4</td>
</tr>
<tr>
<td rowspan="3">LLava 1.6-7B</td>
<td style="border-right: 1px solid black;">0</td>
<td>31.2</td>
<td>18.2</td>
<td style="border-right: 1px solid black;">17.7</td>
<td>16.3</td>
<td>10.1</td>
<td style="border-right: 1px solid black;">16.6</td>
<td>0.0</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>0.1</td>
<td>12.3</td>
<td style="border-right: 1px solid black;">49.9</td>
<td>48.9</td>
<td>18.1</td>
<td>0.0</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>32.4</td>
<td>17.7</td>
<td style="border-right: 1px solid black;">34.2</td>
<td>16.4</td>
<td>8.8</td>
<td style="border-right: 1px solid black;">17.0</td>
<td>0.0</td>
<td>1.4</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>0.0</td>
<td>10.1</td>
<td style="border-right: 1px solid black;">50.9</td>
<td>49.0</td>
<td>15.1</td>
<td>0.0</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>32.4</td>
<td>19.9</td>
<td style="border-right: 1px solid black;">34.2</td>
<td>16.4</td>
<td>9.1</td>
<td style="border-right: 1px solid black;">17.0</td>
<td>0.0</td>
<td>0.2</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>0.0</td>
<td>18.1</td>
<td style="border-right: 1px solid black;">50.9</td>
<td>49.0</td>
<td>9.1</td>
<td>0.0</td>
</tr>
<tr>
<td rowspan="3">Idefic2-8B</td>
<td style="border-right: 1px solid black;">0</td>
<td>64.5</td>
<td>45.2</td>
<td style="border-right: 1px solid black;">56.0</td>
<td>64.3</td>
<td>36.6</td>
<td style="border-right: 1px solid black;">49.5</td>
<td>62.9</td>
<td>51.1</td>
<td style="border-right: 1px solid black;">63.8</td>
<td>78.1</td>
<td>9.7</td>
<td style="border-right: 1px solid black;">64.1</td>
<td>51.9</td>
<td>49.2</td>
<td>20.5</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>66.9</td>
<td>42.6</td>
<td style="border-right: 1px solid black;">48.7</td>
<td>66.3</td>
<td>34.2</td>
<td style="border-right: 1px solid black;">39.5</td>
<td>66.6</td>
<td>9.7</td>
<td style="border-right: 1px solid black;">66.3</td>
<td>79.4</td>
<td>39.8</td>
<td style="border-right: 1px solid black;">9.5</td>
<td>53.0</td>
<td>53.1</td>
<td>9.7</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>66.7</td>
<td>49.6</td>
<td style="border-right: 1px solid black;">43.1</td>
<td>67.2</td>
<td>42.6</td>
<td style="border-right: 1px solid black;">34.5</td>
<td>65.3</td>
<td>8.6</td>
<td style="border-right: 1px solid black;">54.5</td>
<td>79.2</td>
<td>62.9</td>
<td style="border-right: 1px solid black;">11.9</td>
<td>57.2</td>
<td>56.3</td>
<td>37.0</td>
</tr>
<tr>
<td rowspan="3">Idefic3-8B</td>
<td style="border-right: 1px solid black;">0</td>
<td>40.2</td>
<td>58.3</td>
<td style="border-right: 1px solid black;">35.5</td>
<td>28.4</td>
<td>52.8</td>
<td style="border-right: 1px solid black;">19.2</td>
<td>24.1</td>
<td>54.9</td>
<td style="border-right: 1px solid black;">2.3</td>
<td>54.3</td>
<td>51.0</td>
<td style="border-right: 1px solid black;">49.7</td>
<td>6.9</td>
<td>52.5</td>
<td>5.5</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>50.9</td>
<td>35.9</td>
<td style="border-right: 1px solid black;">50.7</td>
<td>40.3</td>
<td>20.7</td>
<td style="border-right: 1px solid black;">40.6</td>
<td>0.5</td>
<td>0.5</td>
<td style="border-right: 1px solid black;">3.4</td>
<td>62.9</td>
<td>52.6</td>
<td style="border-right: 1px solid black;">63.6</td>
<td>57.6</td>
<td>8.9</td>
<td>54.8</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>36.3</td>
<td>34.5</td>
<td style="border-right: 1px solid black;">62.9</td>
<td>21.4</td>
<td>18.1</td>
<td style="border-right: 1px solid black;">58.3</td>
<td>0.0</td>
<td>0.2</td>
<td style="border-right: 1px solid black;">64.3</td>
<td>51.8</td>
<td>51.3</td>
<td style="border-right: 1px solid black;">85.7</td>
<td>12.3</td>
<td>2.7</td>
<td>25.0</td>
</tr>
<tr>
<td rowspan="3">VILA-1.5-8B</td>
<td style="border-right: 1px solid black;">0</td>
<td>34.2</td>
<td>30.4</td>
<td style="border-right: 1px solid black;">47.5</td>
<td>40.0</td>
<td>15.8</td>
<td style="border-right: 1px solid black;">17.0</td>
<td>17.6</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.5</td>
<td>56.3</td>
<td >28.8</td>
<td style="border-right: 1px solid black;">50.5</td>
<td>46.1</td>
<td>18.7</td>
<td>0.0</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>34.2</td>
<td>36.9</td>
<td style="border-right: 1px solid black;">34.2</td>
<td>17.0</td>
<td>28.8</td>
<td style="border-right: 1px solid black;">17.0</td>
<td>0.0</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.5</td>
<td>51.0</td>
<td>47.6</td>
<td style="border-right: 1px solid black;">50.5</td>
<td>0.0</td>
<td>38.5</td>
<td>0.0</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>34.2</td>
<td>39.5</td>
<td style="border-right: 1px solid black;">34.2</td>
<td>17.0</td>
<td>30.8</td>
<td style="border-right: 1px solid black;">17.0</td>
<td>0.0</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.5</td>
<td>51.0</td>
<td>51.3</td>
<td style="border-right: 1px solid black;">50.5</td>
<td>0.0</td>
<td>41.3</td>
<td>0.0</td>
</tr>
<tr>
<td rowspan="3">Qwen2-VL-2B</td>
<td style="border-right: 1px solid black;">0</td>
<td>30.3</td>
<td>34.5</td>
<td style="border-right: 1px solid black;">34.5</td>
<td>26.3</td>
<td>20.6</td>
<td style="border-right: 1px solid black;">20.2</td>
<td>14.5</td>
<td>5.0</td>
<td style="border-right: 1px solid black;">10.7</td>
<td>5.9</td>
<td>7.0</td>
<td style="border-right: 1px solid black;">1.6</td>
<td>58.3</td>
<td>49.8</td>
<td>49.6</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>35.7</td>
<td>35.3</td>
<td style="border-right: 1px solid black;">32.4</td>
<td>23.3</td>
<td>21.8</td>
<td style="border-right: 1px solid black;">16.3</td>
<td>0.0</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>17.5</td>
<td>15.2</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>53.8</td>
<td>50.1</td>
<td>49.0</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>35.3</td>
<td>32.6</td>
<td style="border-right: 1px solid black;">33.1</td>
<td>23.8</td>
<td>16.5</td>
<td style="border-right: 1px solid black;">17.7</td>
<td>0.0</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">4.1</td>
<td>15.2</td>
<td>0.7</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>54.6</td>
<td>49.0</td>
<td>49.3</td>
</tr>
<tr>
<td rowspan="3">Qwen2-VL-7B</td>
<td style="border-right: 1px solid black;">0</td>
<td>60.2</td>
<td>40.0</td>
<td style="border-right: 1px solid black;">59.9</td>
<td>55.7</td>
<td>34.2</td>
<td style="border-right: 1px solid black;">57.4</td>
<td>23.7</td>
<td>17.7</td>
<td style="border-right: 1px solid black;">53.6</td>
<td>82.0</td>
<td>45.0</td>
<td style="border-right: 1px solid black;">66.9</td>
<td>61.6</td>
<td>40.3</td>
<td>51.5</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>63.7</td>
<td>34.2</td>
<td style="border-right: 1px solid black;">69.8</td>
<td>53.8</td>
<td>17.0</td>
<td style="border-right: 1px solid black;">64.2</td>
<td>2.5</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">33.5</td>
<td>94.8</td>
<td>50.9</td>
<td style="border-right: 1px solid black;">84.9</td>
<td>64.1</td>
<td>0.0</td>
<td>74.0</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>64.5</td>
<td>34.2</td>
<td style="border-right: 1px solid black;">73.4</td>
<td>54.9</td>
<td>17.7</td>
<td style="border-right: 1px solid black;">72.0</td>
<td>4.5</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">56.3</td>
<td>95.6</td>
<td>50.9</td>
<td style="border-right: 1px solid black;">84.1</td>
<td>64.6</td>
<td>2.0</td>
<td>75.5</td>
</tr>
<tr>
<td rowspan="3">Qwen2-VL-72B</td>
<td style="border-right: 1px solid black;">0</td>
<td>89.1</td>
<td>93.6</td>
<td style="border-right: 1px solid black;">76.0</td>
<td>88.8</td>
<td>93.6</td>
<td style="border-right: 1px solid black;">74.7</td>
<td>85.2</td>
<td>91.3</td>
<td style="border-right: 1px solid black;">72.5</td>
<td>97.2</td>
<td>98.3</td>
<td style="border-right: 1px solid black;">86.0</td>
<td>83.9</td>
<td>91.1</td>
<td>65.7</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>89.3</td>
<td>93.1</td>
<td style="border-right: 1px solid black;">86.1</td>
<td>89.3</td>
<td>93.1</td>
<td style="border-right: 1px solid black;">85.9</td>
<td>86.7</td>
<td>90.4</td>
<td style="border-right: 1px solid black;">82.9</td>
<td>95.8</td>
<td>97.9</td>
<td style="border-right: 1px solid black;">96.2</td>
<td>85.5</td>
<td>91.1</td>
<td>78.8</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>89.2</td>
<td>92.7</td>
<td style="border-right: 1px solid black;">88.0</td>
<td>89.9</td>
<td>92.6</td>
<td style="border-right: 1px solid black;">87.9</td>
<td>88.3</td>
<td>90.0</td>
<td style="border-right: 1px solid black;">84.8</td>
<td>96.1</td>
<td>97.4</td>
<td style="border-right: 1px solid black;">96.5</td>
<td>85.4</td>
<td>90.5</td>
<td>82.3</td>
</tr>
<tr>
<td rowspan="3">InternVL-4B</td>
<td style="border-right: 1px solid black;">0</td>
<td>47.2</td>
<td>69.5</td>
<td style="border-right: 1px solid black;">58.9</td>
<td>41.5</td>
<td>63.4</td>
<td style="border-right: 1px solid black;">52.2</td>
<td>25.4</td>
<td>31.2</td>
<td style="border-right: 1px solid black;">67.2</td>
<td>64.5</td>
<td>88.2</td>
<td style="border-right: 1px solid black;">67.1</td>
<td>34.7</td>
<td>70.6</td>
<td>22.4</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>34.2</td>
<td>37.3</td>
<td style="border-right: 1px solid black;">49.9</td>
<td>17.0</td>
<td>25.3</td>
<td style="border-right: 1px solid black;">41.7</td>
<td>0.0</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">2.3</td>
<td>50.9</td>
<td>24.9</td>
<td style="border-right: 1px solid black;">66.5</td>
<td>0.0</td>
<td>50.9</td>
<td>56.5</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>34.2</td>
<td>48.0</td>
<td style="border-right: 1px solid black;">58.1</td>
<td>17.0</td>
<td>39.1</td>
<td style="border-right: 1px solid black;">52.5</td>
<td>0.0</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">61.7</td>
<td>50.9</td>
<td>61.4</td>
<td style="border-right: 1px solid black;">76.5</td>
<td>0.0</td>
<td>55.9</td>
<td>19.5</td>
</tr>
<tr>
<td rowspan="3">InternVL-8B</td>
<td style="border-right: 1px solid black;">0</td>
<td>65.6</td>
<td>74.2</td>
<td style="border-right: 1px solid black;"`>37.0</td>
<td>58.7</td>
<td>71.9</td>
<td style="border-right: 1px solid black;">23.0</td>
<td>66.9</td>
<td>50.4</td>
<td style="border-right: 1px solid black;">9.9</td>
<td>95.8</td>
<td>93.7</td>
<td style="border-right: 1px solid black;">52.0</td>
<td>13.4</td>
<td>71.5</td>
<td>7.1</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>60.6</td>
<td>61.7</td>
<td style="border-right: 1px solid black;">66.9</td>
<td>52.3</td>
<td>51.7</td>
<td style="border-right: 1px solid black;">64.4</td>
<td>7.4</td>
<td>1.6</td>
<td style="border-right: 1px solid black;">44.5</td>
<td>87.0</td>
<td>90.9</td>
<td style="border-right: 1px solid black;">85.7</td>
<td>62.6</td>
<td>62.4</td>
<td>63.0</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>51.0</td>
<td>62.5</td>
<td style="border-right: 1px solid black;">61.6</td>
<td>43.9</td>
<td>53.7</td>
<td style="border-right: 1px solid black;">50.5</td>
<td>15.6</td>
<td>8.6</td>
<td style="border-right: 1px solid black;">66.5</td>
<td>60.4</td>
<td>89.2</td>
<td style="border-right: 1px solid black;">83.6</td>
<td>55.6</td>
<td>63.3</td>
<td>1.4</td>
</tr>
<tr>
<td rowspan="3">GPT-4o</td>
<td style="border-right: 1px solid black;">0</td>
<td>89.2</td>
<td >88.7</td>
<td style="border-right: 1px solid black;">74.7</td>
<td>89.2</td>
<td>88.4</td>
<td style="border-right: 1px solid black;">73.5</td>
<td>86.3</td>
<td>85.2</td>
<td style="border-right: 1px solid black;">73.9</td>
<td>97.2</td>
<td>96.7</td>
<td style="border-right: 1px solid black;">94.6</td>
<td>84.0</td>
<td>83.5</td>
<td>52.0</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>87.7</td>
<td>88.0</td>
<td style="border-right: 1px solid black;">86.3</td>
<td>88.4</td>
<td>87.7</td>
<td style="border-right: 1px solid black;">86.7</td>
<td>85.8</td>
<td>84.7</td>
<td style="border-right: 1px solid black;">82.8</td>
<td>97.3</td>
<td>95.6</td>
<td style="border-right: 1px solid black;">95.8</td>
<td>82.8</td>
<td>82.7</td>
<td>81.4</td>
</tr>
<tr style="border-bottom: 2px solid black;">
<td style="border-right: 1px solid black;">5</td>
<td>86.0</td>
<td>89.0</td>
<td style="border-right: 1px solid black;">87.1</td>
<td>86.0</td>
<td>89.1</td>
<td style="border-right: 1px solid black;">87.4</td>
<td>82.8</td>
<td>85.3</td>
<td style="border-right: 1px solid black;">84.4</td>
<td>97.6</td>
<td>97.9</td>
<td style="border-right: 1px solid black;">95.7</td>
<td>77.5</td>
<td>84.1</td>
<td>82.0</td>
</tr>
</table>
#### + Exact Match and F1-Scores on the Realworld image set (**O3**) of SalBench.
<table>
<tr style="border-top: 2px solid black;">
<th rowspan="3" >Model</th>
<th rowspan="3" style="text-align: center; border-right: 1px solid black;">Shot</th>
<th colspan="3" rowspan="2" style="text-align: center; border-right: 1px solid black;">Overall Matching</th>
<th colspan="24" style="text-align: center;">F1 Score</th>
</tr>
<tr>
<th colspan="3" style="text-align: center; border-right: 1px solid black;">Overall</th>
<th colspan="3" style="text-align: center; border-right: 1px solid black;">Orientation</th>
<th colspan="3" style="text-align: center; border-right: 1px solid black;">Color</th>
<th colspan="3" style="text-align: center; border-right: 1px solid black;">Size</th>
<th colspan="3" style="text-align: center; border-right: 1px solid black;">Focus</th>
<th colspan="3" style="text-align: center; border-right: 1px solid black;">Shape</th>
<th colspan="3" style="text-align: center; border-right: 1px solid black;">Location</th>
<th colspan="3" style="text-align: center;">Pattern</th>
</tr>
<tr>
<th style="text-align: center">D</th>
<th style="text-align: center;">R</th>
<th style="text-align: center; border-right: 1px solid black;">VR</th>
<th style="text-align: center;">D</th>
<th style="text-align: center;">R</th>
<th style="text-align: center; border-right: 1px solid black;">VR</th>
<th style="text-align: center;">D</th>
<th style="text-align: center;">R</th>
<th style="text-align: center; border-right: 1px solid black;">VR</th>
<th style="text-align: center;">D</th>
<th style="text-align: center;">R</th>
<th style="text-align: center; border-right: 1px solid black;">VR</th>
<th style="text-align: center;">D</th>
<th style="text-align: center;">R</th>
<th style="text-align: center; border-right: 1px solid black;">VR</th>
<th style="text-align: center;">D</th>
<th style="text-align: center;">R</th>
<th style="text-align: center; border-right: 1px solid black;">VR</th>
<th style="text-align: center;">D</th>
<th style="text-align: center;">R</th>
<th style="text-align: center; border-right: 1px solid black;">VR</th>
<th style="text-align: center;">D</th>
<th style="text-align: center;">R</th>
<th style="text-align: center; border-right: 1px solid black;">VR</th>
<th style="text-align: center;">D</th>
<th style="text-align: center;">R</th>
<th style="text-align: center;">VR</th>
</tr>
<tr>
<td>Claude</td>
<td style="border-right: 1px solid black;">0</td>
<td>40.6</td>
<td>42.7</td>
<td style="border-right: 1px solid black;">40.3</td>
<td>48.2</td>
<td>51.1</td>
<td style="border-right: 1px solid black;">53.9</td>
<td>40.0</td>
<td>43.9</td>
<td style="border-right: 1px solid black;">49.2</td>
<td>95.2</td>
<td>95.9</td>
<td style="border-right: 1px solid black;">95.8</td>
<td>40.7</td>
<td>47.7</td>
<td style="border-right: 1px solid black;">44.1</td>
<td>27.6</td>
<td>14.9</td>
<td style="border-right: 1px solid black;">21.0</td>
<td>51.6</td>
<td>59.3</td>
<td style="border-right: 1px solid black;">60.4</td>
<td>28.7</td>
<td>34.0</td>
<td style="border-right: 1px solid black;">41.7</td>
<td>53.3</td>
<td>62.2</td>
<td>64.9</td>
</tr>
<tr>
<td>NVLM-D-72B</td>
<td style="border-right: 1px solid black;">0</td>
<td>26.7</td>
<td>35.6</td>
<td style="border-right: 1px solid black;">21.6</td>
<td>36.5</td>
<td>42.1</td>
<td style="border-right: 1px solid black;">37.3</td>
<td>36.6</td>
<td>35.1</td>
<td style="border-right: 1px solid black;">28.4</td>
<td>90.9</td>
<td>93.2</td>
<td style="border-right: 1px solid black;">89.4</td>
<td>28.6</td>
<td>36.0</td>
<td style="border-right: 1px solid black;">34.1</td>
<td>8.3</td>
<td>16.1</td>
<td style="border-right: 1px solid black;">12.3</td>
<td>41.4</td>
<td>49.0</td>
<td style="border-right: 1px solid black;">42.5</td>
<td>14.7</td>
<td>18.4</td>
<td style="border-right: 1px solid black;">8.3</td>
<td>34.8</td>
<td>47.1</td>
<td>45.9</td>
</tr>
<tr>
<td>Molmo-72B</td>
<td style="border-right: 1px solid black;">0</td>
<td>19.2</td>
<td>18.6</td>
<td style="border-right: 1px solid black;">15.6</td>
<td>40.6</td>
<td>41.2</td>
<td style="border-right: 1px solid black;">36.7</td>
<td>27.6</td>
<td>30.6</td>
<td style="border-right: 1px solid black;">24.1</td>
<td>94.0</td>
<td>91.8</td>
<td style="border-right: 1px solid black;">90.2</td>
<td>35.3</td>
<td>32.2</td>
<td style="border-right: 1px solid black;">30.1</td>
<td>17.0</td>
<td>14.2</td>
<td style="border-right: 1px solid black;">12.2</td>
<td>44.5</td>
<td>41.8</td>
<td style="border-right: 1px solid black;">39.2</td>
<td>12.5</td>
<td>18.3</td>
<td style="border-right: 1px solid black;">11.9</td>
<td>53.2</td>
<td>59.6</td>
<td>51.1</td>
</tr>
<tr>
<td>Molmo-7B</td>
<td style="border-right: 1px solid black;">0</td>
<td>2.5</td>
<td>8.9</td>
<td style="border-right: 1px solid black;">14.6</td>
<td>32.0</td>
<td>32.4</td>
<td style="border-right: 1px solid black;">33.0</td>
<td>15.2</td>
<td>18.6</td>
<td style="border-right: 1px solid black;">24.2</td>
<td>88.5</td>
<td>80.1</td>
<td style="border-right: 1px solid black;">88.2</td>
<td>34.8</td>
<td>38.8</td>
<td style="border-right: 1px solid black;">32.7</td>
<td>13.5</td>
<td>13.7</td>
<td style="border-right: 1px solid black;">10.8</td>
<td>33.2</td>
<td>40.1</td>
<td style="border-right: 1px solid black;">41.0</td>
<td>10.0</td>
<td>8.0</td>
<td style="border-right: 1px solid black;">7.7</td>
<td>28.8</td>
<td>27.0</td>
<td>29.9</td>
</tr>
<tr>
<td>Llama3.2-Vision-11B</td>
<td style="border-right: 1px solid black;">0</td>
<td>2.8</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>32.1</td>
<td>29.1</td>
<td style="border-right: 1px solid black;">29.7</td>
<td>17.7</td>
<td>17.1</td>
<td style="border-right: 1px solid black;">27.1</td>
<td>90.6</td>
<td>89.3</td>
<td style="border-right: 1px solid black;">85.6</td>
<td>31.1</td>
<td>33.4</td>
<td style="border-right: 1px solid black;">18.1</td>
<td>12.7</td>
<td>11.5</td>
<td style="border-right: 1px solid black;">9.3</td>
<td>37.5</td>
<td>44.6</td>
<td style="border-right: 1px solid black;">45.5</td>
<td>8.4</td>
<td>8.1</td>
<td style="border-right: 1px solid black;">22.5</td>
<td>20.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PaliGemma-3B-448</td>
<td style="border-right: 1px solid black;">0</td>
<td>1.4</td>
<td>1.0</td>
<td style="border-right: 1px solid black;">0.7</td>
<td>27.6</td>
<td>1.2</td>
<td style="border-right: 1px solid black;">2.3</td>
<td>16.5</td>
<td>8.1</td>
<td style="border-right: 1px solid black;">13.6</td>
<td>84.3</td>
<td>0.7</td>
<td style="border-right: 1px solid black;">1.6</td>
<td>27.2</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>11.6</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>32.5</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>10.4</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>13.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td rowspan="3">Phi3-4B</td>
<td style="border-right: 1px solid black;">0</td>
<td>7.0</td>
<td>4.5</td>
<td style="border-right: 1px solid black;">6.4</td>
<td>32.1</td>
<td>32.8</td>
<td style="border-right: 1px solid black;">32.8</td>
<td>2.1</td>
<td>2.1</td>
<td style="border-right: 1px solid black;">1.9</td>
<td>91.1</td>
<td>87.5</td>
<td style="border-right: 1px solid black;">88.2</td>
<td>25.2</td>
<td>29.3</td>
<td style="border-right: 1px solid black;">26.3</td>
<td>13.5</td>
<td>11.3</td>
<td style="border-right: 1px solid black;">14.3</td>
<td>40.2</td>
<td>42.1</td>
<td style="border-right: 1px solid black;">41.1</td>
<td>7.5</td>
<td>7.8</td>
<td style="border-right: 1px solid black;">7.4</td>
<td>45.2</td>
<td>43.9</td>
<td>49.6</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>0.0</td>
<td>1.7</td>
<td style="border-right: 1px solid black;">3.6</td>
<td>34.1</td>
<td>32.0</td>
<td style="border-right: 1px solid black;">32.1</td>
<td>15.5</td>
<td>14.9</td>
<td style="border-right: 1px solid black;">12.0</td>
<td>89.6</td>
<td>88.7</td>
<td style="border-right: 1px solid black;">88.1</td>
<td>30.6</td>
<td>29.2</td>
<td style="border-right: 1px solid black;">23.5</td>
<td>9.4</td>
<td>10.8</td>
<td style="border-right: 1px solid black;">11.1</td>
<td>40.3</td>
<td>38.9</td>
<td style="border-right: 1px solid black;">39.8</td>
<td>7.0</td>
<td>7.3</td>
<td style="border-right: 1px solid black;">8.3</td>
<td>46.5</td>
<td>34.8</td>
<td>42.2</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>0.0</td>
<td>1.2</td>
<td style="border-right: 1px solid black;">1.3</td>
<td>31.1</td>
<td>32.1</td>
<td style="border-right: 1px solid black;">32.2</td>
<td>16.6</td>
<td>14.3</td>
<td style="border-right: 1px solid black;">12.7</td>
<td>78.7</td>
<td>88.9</td>
<td style="border-right: 1px solid black;">89.1</td>
<td>28.9</td>
<td>31.2</td>
<td style="border-right: 1px solid black;">28.7</td>
<td>8.8</td>
<td>10.8</td>
<td style="border-right: 1px solid black;">7.1</td>
<td>38.3</td>
<td>32.1</td>
<td style="border-right: 1px solid black;">40.7</td>
<td>6.6</td>
<td>7.8</td>
<td style="border-right: 1px solid black;">7.7</td>
<td>41.3</td>
<td>39.1</td>
<td>39.8</td>
</tr>
<tr>
<td rowspan="3">Phi3.5-Vision-3.5B</td>
<td style="border-right: 1px solid black;">0</td>
<td>12.6</td>
<td>2.3</td>
<td style="border-right: 1px solid black;">7.3</td>
<td>23.2</td>
<td>27.5</td>
<td style="border-right: 1px solid black;">27.5</td>
<td>1.1</td>
<td>22.1</td>
<td style="border-right: 1px solid black;">12.7</td>
<td>91.1</td>
<td>86.2</td>
<td style="border-right: 1px solid black;">88.6</td>
<td>29.9</td>
<td>22.7</td>
<td style="border-right: 1px solid black;">22.6</td>
<td>4.8</td>
<td>11.8</td>
<td style="border-right: 1px solid black;">9.8</td>
<td>9.4</td>
<td>37.2</td>
<td style="border-right: 1px solid black;">39.1</td>
<td>1.4</td>
<td>7.9</td>
<td style="border-right: 1px solid black;">7.2</td>
<td>24.4</td>
<td>4.4</td>
<td>27.2</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>0.1</td>
<td>3.4</td>
<td style="border-right: 1px solid black;">9.2</td>
<td>23.3</td>
<td>28.8</td>
<td style="border-right: 1px solid black;">28.8</td>
<td>16.0</td>
<td>15.6</td>
<td style="border-right: 1px solid black;">13.5</td>
<td>58.8</td>
<td>89.6</td>
<td style="border-right: 1px solid black;">90.4</td>
<td>26.5</td>
<td>24.7</td>
<td style="border-right: 1px solid black;">25.5</td>
<td>9.8</td>
<td>9.7</td>
<td style="border-right: 1px solid black;">11.5</td>
<td>31.9</td>
<td>38.9</td>
<td style="border-right: 1px solid black;">39.2</td>
<td>6.9</td>
<td>7.2</td>
<td style="border-right: 1px solid black;">7.4</td>
<td>12.9</td>
<td>15.8</td>
<td>28.7</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>0.5</td>
<td>0.4</td>
<td style="border-right: 1px solid black;">10.3</td>
<td>25.2</td>
<td>30.8</td>
<td style="border-right: 1px solid black;">30.8</td>
<td>15.2</td>
<td>15.6</td>
<td style="border-right: 1px solid black;">8.7</td>
<td>52.5</td>
<td>90.2</td>
<td style="border-right: 1px solid black;">88.5</td>
<td>28.5</td>
<td>31.5</td>
<td style="border-right: 1px solid black;">21.2</td>
<td>8.9</td>
<td>8.8</td>
<td style="border-right: 1px solid black;">8.3</td>
<td>34.1</td>
<td>41.1</td>
<td style="border-right: 1px solid black;">40.9</td>
<td>7.3</td>
<td>7.8</td>
<td style="border-right: 1px solid black;">7.0</td>
<td>29.6</td>
<td>21.3</td>
<td>40.5</td>
</tr>
<tr>
<td rowspan="3">LLava 1.6-7B</td>
<td style="border-right: 1px solid black;">0</td>
<td>11.1</td>
<td>20.4</td>
<td style="border-right: 1px solid black;">22.8</td>
<td>24.6</td>
<td>21.4</td>
<td style="border-right: 1px solid black;">20.8</td>
<td>13.4</td>
<td>3.3</td>
<td style="border-right: 1px solid black;">1.1</td>
<td>91.1</td>
<td>72.4</td>
<td style="border-right: 1px solid black;">71.9</td>
<td>19.3</td>
<td>23.4</td>
<td style="border-right: 1px solid black;">22.8</td>
<td>10.9</td>
<td>8.5</td>
<td style="border-right: 1px solid black;">10.7</td>
<td>15.8</td>
<td>28.6</td>
<td style="border-right: 1px solid black;">22.9</td>
<td>8.9</td>
<td>4.5</td>
<td style="border-right: 1px solid black;">3.6</td>
<td>12.6</td>
<td>9.1</td>
<td>12.4</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>0.0</td>
<td>0.1</td>
<td style="border-right: 1px solid black;">0.2</td>
<td>7.1</td>
<td>15.2</td>
<td style="border-right: 1px solid black;">17.8</td>
<td>3.6</td>
<td>1.1</td>
<td style="border-right: 1px solid black;">5.2</td>
<td>10.4</td>
<td>15.2</td>
<td style="border-right: 1px solid black;">29.3</td>
<td>12.2</td>
<td>21.5</td>
<td style="border-right: 1px solid black;">20.8</td>
<td>4.3</td>
<td>10.3</td>
<td style="border-right: 1px solid black;">9.1</td>
<td>9.5</td>
<td>30.7</td>
<td style="border-right: 1px solid black;">32.7</td>
<td>5.4</td>
<td>8.4</td>
<td style="border-right: 1px solid black;">5.5</td>
<td>5.4</td>
<td>19.4</td>
<td>21.9</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>0.6</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>11.4</td>
<td>10.9</td>
<td style="border-right: 1px solid black;">9.7</td>
<td>0.0</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>24.1</td>
<td>4.3</td>
<td style="border-right: 1px solid black;">0.7</td>
<td>21.5</td>
<td>22.3</td>
<td style="border-right: 1px solid black;">20.1</td>
<td>5.5</td>
<td>7.1</td>
<td style="border-right: 1px solid black;">7.2</td>
<td>17.4</td>
<td>30.2</td>
<td style="border-right: 1px solid black;">27.9</td>
<td>5.6</td>
<td>7.7</td>
<td style="border-right: 1px solid black;">5.9</td>
<td>5.6</td>
<td>6.5</td>
<td>5.8</td>
</tr>
<tr>
<td rowspan="3">Idefics2-8B</td>
<td style="border-right: 1px solid black;">0</td>
<td>37.1</td>
<td>5.5</td>
<td style="border-right: 1px solid black;">4.2</td>
<td>19.5</td>
<td>29.6</td>
<td style="border-right: 1px solid black;">33.8</td>
<td>7.6</td>
<td>15.6</td>
<td style="border-right: 1px solid black;">11.9</td>
<td>91.9</td>
<td>72.5</td>
<td style="border-right: 1px solid black;">85.3</td>
<td>19.6</td>
<td>30.0</td>
<td style="border-right: 1px solid black;">32.8</td>
<td>0.4</td>
<td>11.6</td>
<td style="border-right: 1px solid black;">16.0</td>
<td>9.6</td>
<td>46.2</td>
<td style="border-right: 1px solid black;">44.7</td>
<td>5.4</td>
<td>7.5</td>
<td style="border-right: 1px solid black;">7.5</td>
<td>4.3</td>
<td>23.5</td>
<td>38.3</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>8.4</td>
<td>24.3</td>
<td style="border-right: 1px solid black;">8.7</td>
<td>21.1</td>
<td>28.4</td>
<td style="border-right: 1px solid black;">31.1</td>
<td>13.0</td>
<td>8.3</td>
<td style="border-right: 1px solid black;">11.5</td>
<td>62.3</td>
<td>88.7</td>
<td style="border-right: 1px solid black;">84.5</td>
<td>17.1</td>
<td>11.4</td>
<td style="border-right: 1px solid black;">21.7</td>
<td>13.5</td>
<td>12.2</td>
<td style="border-right: 1px solid black;">10.3</td>
<td>25.0</td>
<td>40.4</td>
<td style="border-right: 1px solid black;">40.8</td>
<td>5.8</td>
<td>7.2</td>
<td style="border-right: 1px solid black;">8.2</td>
<td>11.3</td>
<td>30.6</td>
<td>40.4</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>16.1</td>
<td>24.2</td>
<td style="border-right: 1px solid black;">10.5</td>
<td>34.7</td>
<td>28.3</td>
<td style="border-right: 1px solid black;">30.9</td>
<td>22.5</td>
<td>2.3</td>
<td style="border-right: 1px solid black;">2.1</td>
<td>88.0</td>
<td>90.5</td>
<td style="border-right: 1px solid black;">88.4</td>
<td>30.0</td>
<td>13.6</td>
<td style="border-right: 1px solid black;">23.7</td>
<td>11.8</td>
<td>10.0</td>
<td style="border-right: 1px solid black;">9.9</td>
<td>39.2</td>
<td>38.1</td>
<td style="border-right: 1px solid black;">43.0</td>
<td>8.6</td>
<td>6.9</td>
<td style="border-right: 1px solid black;">8.6</td>
<td>42.9</td>
<td>36.6</td>
<td>40.8</td>
</tr>
<tr>
<td rowspan="3">Idefics3-8B</td>
<td style="border-right: 1px solid black;">0</td>
<td>16.1</td>
<td>20.7</td>
<td style="border-right: 1px solid black;">17.1</td>
<td>24.3</td>
<td>24.3</td>
<td style="border-right: 1px solid black;">22.1</td>
<td>0.0</td>
<td>5.0</td>
<td style="border-right: 1px solid black;">2.3</td>
<td>91.5</td>
<td>90.7</td>
<td style="border-right: 1px solid black;">91.6</td>
<td>38.5</td>
<td>35.0</td>
<td style="border-right: 1px solid black;">9.3</td>
<td>11.0</td>
<td>11.1</td>
<td style="border-right: 1px solid black;">4.5</td>
<td>5.8</td>
<td>6.0</td>
<td style="border-right: 1px solid black;">32.9</td>
<td>6.2</td>
<td>5.0</td>
<td style="border-right: 1px solid black;">9.1</td>
<td>17.2</td>
<td>18.0</td>
<td>5.0</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>8.7</td>
<td>10.1</td>
<td style="border-right: 1px solid black;">6.2</td>
<td>26.9</td>
<td>26.9</td>
<td style="border-right: 1px solid black;">21.9</td>
<td>8.1</td>
<td>7.5</td>
<td style="border-right: 1px solid black;">1.1</td>
<td>84.0</td>
<td>86.4</td>
<td style="border-right: 1px solid black;">90.6</td>
<td>22.2</td>
<td>23.0</td>
<td style="border-right: 1px solid black;">5.8</td>
<td>13.1</td>
<td>12.0</td>
<td style="border-right: 1px solid black;">11.9</td>
<td>32.2</td>
<td>31.0</td>
<td style="border-right: 1px solid black;">38.9</td>
<td>7.0</td>
<td>6.5</td>
<td style="border-right: 1px solid black;">4.5</td>
<td>21.8</td>
<td>22.0</td>
<td>0.6</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>4.4</td>
<td>9.0</td>
<td style="border-right: 1px solid black;">5.4</td>
<td>22.3</td>
<td>26.9</td>
<td style="border-right: 1px solid black;">20.9</td>
<td>5.5</td>
<td>8.5</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>65.1</td>
<td>88.3</td>
<td style="border-right: 1px solid black;">90.7</td>
<td>15.1</td>
<td>17.5</td>
<td style="border-right: 1px solid black;">3.5</td>
<td>15.1</td>
<td>14.8</td>
<td style="border-right: 1px solid black;">6.4</td>
<td>27.6</td>
<td>28.0</td>
<td style="border-right: 1px solid black;">39.8</td>
<td>5.4</td>
<td>8.7</td>
<td style="border-right: 1px solid black;">5.6</td>
<td>22.7</td>
<td>22.5</td>
<td>0.0</td>
</tr>
<tr>
<td rowspan="3">VILA-1.5-8B</td>
<td style="border-right: 1px solid black;">0</td>
<td>3.8</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>23.5</td>
<td>13.0</td>
<td style="border-right: 1px solid black;">15.8</td>
<td>0.0</td>
<td>6.2</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>85.2</td>
<td>19.2</td>
<td style="border-right: 1px solid black;">27.1</td>
<td>31.8</td>
<td>21.1</td>
<td style="border-right: 1px solid black;">27.3</td>
<td>1.6</td>
<td>3.1</td>
<td style="border-right: 1px solid black;">8.1</td>
<td>35.4</td>
<td>34.8</td>
<td style="border-right: 1px solid black;">36.6</td>
<td>8.8</td>
<td>4.9</td>
<td style="border-right: 1px solid black;">9.1</td>
<td>1.8</td>
<td>2.1</td>
<td >2.7</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>1.2</td>
<td>0.8</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>25.1</td>
<td>28.8</td>
<td style="border-right: 1px solid black;">28.8</td>
<td>16.6</td>
<td>11.6</td>
<td style="border-right: 1px solid black;">6.0</td>
<td>68.3</td>
<td>72.4</td>
<td style="border-right: 1px solid black;">79.5</td>
<td>22.1</td>
<td>31.0</td>
<td style="border-right: 1px solid black;">28.3</td>
<td>9.7</td>
<td>10.7</td>
<td style="border-right: 1px solid black;">9.1</td>
<td>24.9</td>
<td>35.5</td>
<td style="border-right: 1px solid black;">36.5</td>
<td>8.9</td>
<td>7.2</td>
<td style="border-right: 1px solid black;">7.2</td>
<td>25.5</td>
<td>22.3</td>
<td>36.8</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>0.4</td>
<td>5.0</td>
<td style="border-right: 1px solid black;">6.0</td>
<td>23.2</td>
<td>30.8</td>
<td style="border-right: 1px solid black;">30.8</td>
<td>18.2</td>
<td>19.0</td>
<td style="border-right: 1px solid black;">18.0</td>
<td>59.5</td>
<td>74.6</td>
<td style="border-right: 1px solid black;">76.4</td>
<td>24.7</td>
<td>35.0</td>
<td style="border-right: 1px solid black;">32.0</td>
<td>11.6</td>
<td>14.1</td>
<td style="border-right: 1px solid black;">12.0</td>
<td>28.6</td>
<td>40.0</td>
<td style="border-right: 1px solid black;">38.0</td>
<td>8.3</td>
<td>7.0</td>
<td style="border-right: 1px solid black;">8.0</td>
<td>11.8</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td rowspan="3">Qwen2-VL-2B</td>
<td style="border-right: 1px solid black;">0</td>
<td>34.1</td>
<td>4.6</td>
<td style="border-right: 1px solid black;">5.0</td>
<td>19.2</td>
<td>22.1</td>
<td style="border-right: 1px solid black;">20.9</td>
<td>25.7</td>
<td>19.0</td>
<td style="border-right: 1px solid black;">17.9</td>
<td>90.2</td>
<td>90.8</td>
<td style="border-right: 1px solid black;">91.2</td>
<td>18.2</td>
<td>8.3</td>
<td style="border-right: 1px solid black;">3.5</td>
<td>0.0</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>0.0</td>
<td>26.0</td>
<td style="border-right: 1px solid black;">31.0</td>
<td>0.0</td>
<td>8.3</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>0.3</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>4.8</td>
<td>18.9</td>
<td style="border-right: 1px solid black;">3.5</td>
<td>25.2</td>
<td>21.4</td>
<td style="border-right: 1px solid black;">20.2</td>
<td>7.7</td>
<td>17.5</td>
<td style="border-right: 1px solid black;">15.0</td>
<td>87.2</td>
<td>90.3</td>
<td style="border-right: 1px solid black;">90.5</td>
<td>27.9</td>
<td>2.9</td>
<td style="border-right: 1px solid black;">2.4</td>
<td>0.0</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>38.8</td>
<td>34.5</td>
<td style="border-right: 1px solid black;">33.7</td>
<td>5.9</td>
<td>3.4</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>8.5</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>2.7</td>
<td>26.3</td>
<td style="border-right: 1px solid black;">25.9</td>
<td>25.3</td>
<td>21.7</td>
<td style="border-right: 1px solid black;">20.9</td>
<td>15.8</td>
<td>19.0</td>
<td style="border-right: 1px solid black;">18.7</td>
<td>90.3</td>
<td>90.5</td>
<td style="border-right: 1px solid black;">90.3</td>
<td>28.1</td>
<td>11.8</td>
<td style="border-right: 1px solid black;">6.8</td>
<td>0.0</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>34.4</td>
<td>27.8</td>
<td style="border-right: 1px solid black;">24.6</td>
<td>3.0</td>
<td>2.2</td>
<td style="border-right: 1px solid black;">0.0</td>
<td>5.4</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td rowspan="3">Qwen2-VL-7B</td>
<td style="border-right: 1px solid black;">0</td>
<td>9.1</td>
<td>10.2</td>
<td style="border-right: 1px solid black;">7.0</td>
<td>32.5</td>
<td>32.5</td>
<td style="border-right: 1px solid black;">35.2</td>
<td>31.0</td>
<td>30.1</td>
<td style="border-right: 1px solid black;">17.5</td>
<td>92.1</td>
<td>92.0</td>
<td style="border-right: 1px solid black;">91.5</td>
<td>32.3</td>
<td>33.5</td>
<td style="border-right: 1px solid black;">34.5</td>
<td>2.4</td>
<td>2.7</td>
<td style="border-right: 1px solid black;">3.8</td>
<td>32.1</td>
<td>36.4</td>
<td style="border-right: 1px solid black;">41.9</td>
<td>7.5</td>
<td>7.9</td>
<td style="border-right: 1px solid black;">10.5</td>
<td>32.3</td>
<td>33.2</td>
<td >46.7</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>2.8</td>
<td>4.0</td>
<td style="border-right: 1px solid black;">2.1</td>
<td>35.6</td>
<td>36.0</td>
<td style="border-right: 1px solid black;">34.1</td>
<td>22.4</td>
<td>25.3</td>
<td style="border-right: 1px solid black;">14.7</td>
<td>90.4</td>
<td>92.5</td>
<td style="border-right: 1px solid black;">91.1</td>
<td>33.1</td>
<td>34.5</td>
<td style="border-right: 1px solid black;">30.4</td>
<td>14.7</td>
<td>15.0</td>
<td style="border-right: 1px solid black;">10.7</td>
<td>42.8</td>
<td>41.0</td>
<td style="border-right: 1px solid black;">41.3</td>
<td>8.4</td>
<td>11.2</td>
<td style="border-right: 1px solid black;">9.0</td>
<td>37.8</td>
<td>38.6</td>
<td>41.6</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>2.0</td>
<td>2.1</td>
<td style="border-right: 1px solid black;">3.2</td>
<td>37.2</td>
<td>37.2</td>
<td style="border-right: 1px solid black;">29.3</td>
<td>24.6</td>
<td>22.0</td>
<td style="border-right: 1px solid black;">10.0</td>
<td>91.2</td>
<td>91.5</td>
<td style="border-right: 1px solid black;">91.1</td>
<td>32.3</td>
<td>32.0</td>
<td style="border-right: 1px solid black;">31.6</td>
<td>13.8</td>
<td>11.2</td>
<td style="border-right: 1px solid black;">4.9</td>
<td>32.3</td>
<td>43.0</td>
<td style="border-right: 1px solid black;">40.9</td>
<td>8.3</td>
<td>9.5</td>
<td style="border-right: 1px solid black;">9.7</td>
<td>47.8</td>
<td>43.5</td>
<td>16.8</td>
</tr>
<tr>
<td rowspan="3">Qwen2-VL-72B</td>
<td style="border-right: 1px solid black;">0</td>
<td>14.3</td>
<td>16.7</td>
<td style="border-right: 1px solid black;">14.3</td>
<td>41.7</td>
<td>44.6</td>
<td style="border-right: 1px solid black;">41.7</td>
<td>23.7</td>
<td>30.0</td>
<td style="border-right: 1px solid black;">23.7</td>
<td>93.7</td>
<td>94.8</td>
<td style="border-right: 1px solid black;">93.7</td>
<td>39.0</td>
<td>42.3</td>
<td style="border-right: 1px solid black;">39.0</td>
<td>12.8</td>
<td>19.8</td>
<td style="border-right: 1px solid black;">12.8</td>
<td>47.2</td>
<td>51.0</td>
<td style="border-right: 1px solid black;">47.2</td>
<td>13.4</td>
<td>13.2</td>
<td style="border-right: 1px solid black;">13.4</td>
<td>61.9</td>
<td>61.0</td>
<td>61.9</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>28.2</td>
<td>34.2</td>
<td style="border-right: 1px solid black;">28.2</td>
<td>43.9</td>
<td>43.6</td>
<td style="border-right: 1px solid black;">43.2</td>
<td>24.8</td>
<td>28.3</td>
<td style="border-right: 1px solid black;">24.8</td>
<td>93.1</td>
<td>94.1</td>
<td style="border-right: 1px solid black;">93.1</td>
<td>38.0</td>
<td>39.4</td>
<td style="border-right: 1px solid black;">37.9</td>
<td>18.9</td>
<td>16.0</td>
<td style="border-right: 1px solid black;">18.9</td>
<td>48.1</td>
<td>53.1</td>
<td style="border-right: 1px solid black;">48.1</td>
<td>23.1</td>
<td>17.6</td>
<td style="border-right: 1px solid black;">23.1</td>
<td>56.7</td>
<td>57.1</td>
<td>56.7</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>39.5</td>
<td>31.0</td>
<td style="border-right: 1px solid black;">27.0</td>
<td>43.9</td>
<td>44.9</td>
<td style="border-right: 1px solid black;">42.3</td>
<td>27.0</td>
<td>29.7</td>
<td style="border-right: 1px solid black;">21.6</td>
<td>93.7</td>
<td>94.7</td>
<td style="border-right: 1px solid black;">93.1</td>
<td>41.9</td>
<td>43.9</td>
<td style="border-right: 1px solid black;">35.8</td>
<td>15.5</td>
<td>13.1</td>
<td style="border-right: 1px solid black;">19.8</td>
<td>58.2</td>
<td>54.2</td>
<td style="border-right: 1px solid black;">49.3</td>
<td>20.2</td>
<td>20.0</td>
<td style="border-right: 1px solid black;">21.2</td>
<td>50.8</td>
<td>58.8</td>
<td>55.4</td>
</tr>
<tr>
<td rowspan="3">InternVL-4B</td>
<td style="border-right: 1px solid black;">0</td>
<td>14.9</td>
<td>4.6</td>
<td style="border-right: 1px solid black;">4.5</td>
<td>26.6</td>
<td>29.8</td>
<td style="border-right: 1px solid black;">30.7</td>
<td>0.0</td>
<td>10.5</td>
<td style="border-right: 1px solid black;">15.4</td>
<td>91.4</td>
<td>90.3</td>
<td style="border-right: 1px solid black;">91.4</td>
<td>14.3</td>
<td>25.3</td>
<td style="border-right: 1px solid black;">22.4</td>
<td>6.3</td>
<td>11.7</td>
<td style="border-right: 1px solid black;">9.3</td>
<td>41.8</td>
<td>41.0</td>
<td style="border-right: 1px solid black;">41.0</td>
<td>8.0</td>
<td>10.7</td>
<td style="border-right: 1px solid black;">12.2</td>
<td>24.6</td>
<td>19.4</td>
<td>23.4</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>4.1</td>
<td>2.2</td>
<td style="border-right: 1px solid black;">2.3</td>
<td>27.7</td>
<td>27.4</td>
<td style="border-right: 1px solid black;">29.5</td>
<td>16.3</td>
<td>15.8</td>
<td style="border-right: 1px solid black;">16.3</td>
<td>78.0</td>
<td>85.2</td>
<td style="border-right: 1px solid black;">89.3</td>
<td>25.7</td>
<td>26.5</td>
<td style="border-right: 1px solid black;">25.0</td>
<td>8.8</td>
<td>8.8</td>
<td style="border-right: 1px solid black;">10.0</td>
<td>36.7</td>
<td>33.9</td>
<td style="border-right: 1px solid black;">36.1</td>
<td>2.6</td>
<td>6.5</td>
<td style="border-right: 1px solid black;">7.6</td>
<td>26.0</td>
<td>14.9</td>
<td>22.0</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>3.2</td>
<td>1.6</td>
<td style="border-right: 1px solid black;">2.4</td>
<td>33.4</td>
<td>28.1</td>
<td style="border-right: 1px solid black;">30.4</td>
<td>16.9</td>
<td>15.4</td>
<td style="border-right: 1px solid black;">17.5</td>
<td>90.1</td>
<td>87.2</td>
<td style="border-right: 1px solid black;">90.4</td>
<td>26.8</td>
<td>27.6</td>
<td style="border-right: 1px solid black;">27.9</td>
<td>10.0</td>
<td>7.4</td>
<td style="border-right: 1px solid black;">7.8</td>
<td>40.1</td>
<td>37.9</td>
<td style="border-right: 1px solid black;">39.7</td>
<td>9.3</td>
<td>8.0</td>
<td style="border-right: 1px solid black;">9.2</td>
<td>40.9</td>
<td>13.1</td>
<td >20.5</td>
</tr>
<tr>
<td rowspan="3">InternVL-8B</td>
<td style="border-right: 1px solid black;">0</td>
<td>7.4</td>
<td>32.8</td>
<td style="border-right: 1px solid black;">37.4</td>
<td>20.0</td>
<td>23.0</td>
<td style="border-right: 1px solid black;">24.8</td>
<td>1.2</td>
<td>6.7</td>
<td style="border-right: 1px solid black;">2.2</td>
<td>92.3</td>
<td>90.2</td>
<td style="border-right: 1px solid black;">91.3</td>
<td>3.6</td>
<td>12.4</td>
<td style="border-right: 1px solid black;">18.2</td>
<td>12.4</td>
<td>6.8</td>
<td style="border-right: 1px solid black;">7.2</td>
<td>8.7</td>
<td>18.0</td>
<td style="border-right: 1px solid black;">22.0</td>
<td>16.2</td>
<td>11.4</td>
<td style="border-right: 1px solid black;">7.2</td>
<td>5.5</td>
<td>15.8</td>
<td>25.6</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>9.7</td>
<td>23.8</td>
<td style="border-right: 1px solid black;">5.8</td>
<td>30.5</td>
<td>24.2</td>
<td style="border-right: 1px solid black;">31.7</td>
<td>14.5</td>
<td>11.9</td>
<td style="border-right: 1px solid black;">13.9</td>
<td>80.5</td>
<td>89.0</td>
<td style="border-right: 1px solid black;">90.9</td>
<td>27.6</td>
<td>9.1</td>
<td style="border-right: 1px solid black;">25.1</td>
<td>9.9</td>
<td>13.3</td>
<td style="border-right: 1px solid black;">10.4</td>
<td>33.8</td>
<td>16.2</td>
<td style="border-right: 1px solid black;">35.4</td>
<td>7.2</td>
<td>0.0</td>
<td style="border-right: 1px solid black;">5.2</td>
<td>39.8</td>
<td>30.0</td>
<td>40.9</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">5</td>
<td>7.7</td>
<td>23.0</td>
<td style="border-right: 1px solid black;">6.7</td>
<td>27.8</td>
<td>25.0</td>
<td style="border-right: 1px solid black;">31.4</td>
<td>15.8</td>
<td>6.4</td>
<td style="border-right: 1px solid black;">11.6</td>
<td>79.6</td>
<td>90.7</td>
<td style="border-right: 1px solid black;">91.1</td>
<td>26.4</td>
<td>11.6</td>
<td style="border-right: 1px solid black;">27.8</td>
<td>10.8</td>
<td>6.8</td>
<td style="border-right: 1px solid black;">7.0</td>
<td>28.5</td>
<td>22.7</td>
<td style="border-right: 1px solid black;">37.8</td>
<td>7.7</td>
<td>2.2</td>
<td style="border-right: 1px solid black;">4.1</td>
<td>25.8</td>
<td>34.6</td>
<td>40.5</td>
</tr>
<tr>
<td rowspan="3">GPT-4o</td>
<td style="border-right: 1px solid black;">0</td>
<td>45.2</td>
<td>46.5</td>
<td style="border-right: 1px solid black;">42.9</td>
<td>47.6</td>
<td>47.3</td>
<td style="border-right: 1px solid black;">42.6</td>
<td>51.7</td>
<td>52.8</td>
<td style="border-right: 1px solid black;">48.7</td>
<td>95.5</td>
<td>95.7</td>
<td style="border-right: 1px solid black;">94.6</td>
<td>32.9</td>
<td>28.0</td>
<td style="border-right: 1px solid black;">14.1</td>
<td>30.2</td>
<td>19.3</td>
<td style="border-right: 1px solid black;">21.9</td>
<td>52.4</td>
<td>49.9</td>
<td style="border-right: 1px solid black;">42.3</td>
<td>35.6</td>
<td>40.3</td>
<td style="border-right: 1px solid black;">34.5</td>
<td>34.8</td>
<td>45.2</td>
<td>42.2</td>
</tr>
<tr>
<td style="border-right: 1px solid black;">3</td>
<td>42.8</td>
<td>39.8</td>
<td style="border-right: 1px solid black;">30.2</td>
<td>38.9</td>
<td>37.5</td>
<td style="border-right: 1px solid black;">35.7</td>
<td>49.8</td>
<td>33.7</td>
<td style="border-right: 1px solid black;">32.9</td>
<td>93.8</td>
<td>92.9</td>
<td style="border-right: 1px solid black;">87.0</td>
<td>21.9</td>
<td>21.7</td>
<td style="border-right: 1px solid black;">15.6</td>
<td>10.8</td>
<td>3.5</td>
<td style="border-right: 1px solid black;">11.6</td>
<td>46.2</td>
<td>44.4</td>
<td style="border-right: 1px solid black;">41.3</td>
<td>27.9</td>
<td>30.2</td>
<td style="border-right: 1px solid black;">20.8</td>
<td>28.7</td>
<td>42.3</td>
<td>41.1</td>
</tr>
<tr style="border-bottom: 2px solid black;">
<td style="border-right: 1px solid black;">5</td>
<td>43.4</td>
<td>42.3</td>
<td style="border-right: 1px solid black;">30.7</td>
<td>41.9</td>
<td>39.8</td>
<td style="border-right: 1px solid black;">38.4</td>
<td>46.8</td>
<td>42.6</td>
<td style="border-right: 1px solid black;">40.3</td>
<td>94.2</td>
<td>94.2</td>
<td style="border-right: 1px solid black;">87.4</td>
<td>28.9</td>
<td>19.2</td>
<td style="border-right: 1px solid black;">14.9</td>
<td>10.7</td>
<td>9.5</td>
<td style="border-right: 1px solid black;">20.3</td>
<td>47.6</td>
<td>44.9</td>
<td style="border-right: 1px solid black;">40.6</td>
<td>29.6</td>
<td>31.2</td>
<td style="border-right: 1px solid black;">26.1</td>
<td>35.2</td>
<td>37.2</td>
<td>39.1</td>
</tr>
</table>
## Examples
Some zero-shot and few-shot examples on different tasks and different image set can be found as following:
<p align="center">
<img src="./images/p3_4.png" width="80%" alt="Image 1">
</p>
<p align="center">
<img src="./images/p3_5.png" width="80%" alt="Image 2">
</p>
<p align="center">
<img src="./images/o3_4.png" width="80%" alt="Image 3">
</p>
<p align="center">
<img src="./images/o3_5.png" width="80%" alt="Image 4">
</p>
<p align="center">
<img src="./images/p3_2.png" width="80%" alt="Image 5">
</p>
<p align="center">
<img src="./images/p3_3.png" width="80%" alt="Image 6">
</p>
<p align="center">
<img src="./images/o3_1.png" width="80%" alt="Image 7">
</p>
<p align="center">
<img src="./images/o3_3.png" width="80%" alt="Image 8">
</p> |
metagene-ai/HumanVirusInfecting | metagene-ai | "2025-01-05T23:36:10Z" | 0 | 1 | [
"task_categories:text-classification",
"language:en",
"license:apache-2.0",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"biology"
] | [
"text-classification"
] | "2025-01-04T23:52:13Z" | ---
configs:
- config_name: class-1
data_files:
- split: train
path: hv/1/data.parquet
- config_name: class-2
data_files:
- split: train
path: hv/2/data.parquet
- config_name: class-3
data_files:
- split: train
path: hv/3/data.parquet
- config_name: class-4
data_files:
- split: train
path: hv/4/data.parquet
license: apache-2.0
task_categories:
- text-classification
language:
- en
tags:
- biology
pretty_name: Human virus infecting
--- |
metagene-ai/HumanMicrobiomeProjectReference | metagene-ai | "2025-01-05T23:37:51Z" | 0 | 1 | [
"language:en",
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"biology"
] | null | "2025-01-04T23:52:58Z" | ---
license: apache-2.0
language:
- en
tags:
- biology
pretty_name: HMP reference
--- |
hary0101/conspiracy | hary0101 | "2025-01-05T11:52:56Z" | 0 | 0 | [
"task_categories:text2text-generation",
"task_categories:audio-to-audio",
"task_categories:text-classification",
"task_categories:text-generation",
"language:pl",
"language:en",
"license:openrail",
"size_categories:10B<n<100B",
"region:us",
"not-for-all-audiences"
] | [
"text2text-generation",
"audio-to-audio",
"text-classification",
"text-generation"
] | "2025-01-05T07:21:26Z" | ---
license: openrail
task_categories:
- text2text-generation
- audio-to-audio
- text-classification
- text-generation
language:
- pl
- en
tags:
- not-for-all-audiences
pretty_name: Truth seeker
size_categories:
- 10B<n<100B
---
# Dataset Card for Dataset Name
conspiracy
# Dataset Summary
The Conspiracy dataset is a curated collection of philosophical discussions, conspiracy theories, alternative history narratives, and metaphysical explorations. Designed to serve as a foundation for AI models that analyze unconventional perspectives, this dataset blends deep analytical thinking with speculative reasoning. It supports text generation, text classification, and multi-language text-based interactions in English and Polish.
## Dataset Details
### Dataset Description
This dataset is designed for applications in philosophy, conspiracy theories, and alternative viewpoints. It includes structured dialogues, Q&A formats, long-form narratives, and analytical breakdowns of controversial or unconventional ideas. Topics include:
Philosophy: Existentialism, metaphysics, epistemology, ethics.
Conspiracy Theories: Secret societies, hidden histories, government cover-ups, Antarctica/Ice Wall, UFOs, deep-state agendas.
Alternative History: Reinterpretations of historical events, suppressed discoveries, lost civilizations.
Metaphysics and Esoteric Knowledge: Law of attraction, vibrational energy, water memory, sacred geometry.
Electromagnetic Consciousness: Theories on thought frequencies, external amplification of emotions, and mind influence.
- **Curated by:** [Michal]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** MIT License
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [https://huggingface.co/datasets/conspiracy]
- **Paper [optional]:** [https://dn790001.ca.archive.org/0/items/illuminatus-trilogy-ebook/Illuminatus%20TRILOGY%20EBOOK.pdf, https://archive.org/stream/DinahSheltonEncyclopediaOfGenocideAndCrimesAgainstHumanityVolumeONE/Dinah_Shelton_Encyclopedia_of_Genocide_and_Crimes_against_Humanity_Volume_ONE_djvu.txt]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
-Training AI assistants with philosophical and alternative viewpoints.
-Enhancing LLM-based analysis of non-mainstream narratives.
-Assisting research into esoteric and suppressed knowledge.
-Creating synthetic dialogues about complex or hidden topics.
### Out-of-Scope Use
-Scientific applications requiring strictly empirical verification.
-Generating misleading or harmful misinformation.
-Promoting extremism or baseless fearmongering.
## Dataset Structure
Dataset Structure
Data Fields
Each entry consists of:
Question / Prompt: A philosophical or conspiratorial query.
Response: An analytical or speculative answer.
Source Type: (Philosophy, Conspiracy, Metaphysics, etc.)
Language: English (en) or Polish (pl).
Example Entry:
"question": "Is there evidence of civilizations beyond the Ice Wall?",
"response": "While mainstream geography asserts Antarctica is an uninhabitable continent, certain theories propose that vast undiscovered lands exist beyond an enormous ice barrier. These lands could house ancient civilizations, remnants of pre-flood societies, or even advanced breakaway civilizations protected by global secrecy.",
"source_type": "Conspiracy",
"language": "en"
## Dataset Creation
### Curation Rationale
The dataset is created to support AI applications in unconventional inquiry, particularly for philosophical discourse and alternative research perspectives. The goal is not to promote misinformation but to provide a balanced and structured analysis of speculative ideas.
### Source Data
The dataset is built using:
-Curated Texts: Philosophical essays, conspiracy discussions, alternative history books.
-Synthetic Dialogues: AI-generated Q&A based on structured prompts.
-Community Contributions: Discussions from forums and research groups.
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
Philosophers, researchers, and alternative history enthusiasts.
AI-assisted synthesis of speculative discussions.
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
This dataset does not contain personally identifiable information (PII) such as names, addresses, or financial details. However, some topics covered—such as political views, religious beliefs, and alternative historical interpretations—may be considered sensitive. Efforts have been made to ensure that discussions remain analytical and speculative rather than promoting harmful or misleading narratives.
## Bias, Risks, and Limitations
Biases
The dataset includes a mix of philosophical, speculative, and conspiratorial content. Some topics may reflect subjective viewpoints rather than objective truths.
Selection bias may exist due to the dataset’s focus on alternative perspectives rather than mainstream scientific consensus.
The dataset may favor perspectives that resonate with metaphysical or alternative history communities.
Risks
Users should be aware that certain conspiracy theories can be linked to misinformation or pseudoscience. This dataset is meant for analytical exploration rather than validation of these theories.
Misinterpretation of speculative content as factual information could contribute to the spread of misleading narratives.
Some discussions may include controversial topics that require careful handling to avoid reinforcing harmful beliefs.
Limitations
The dataset does not claim to provide verifiable historical facts but rather presents alternative interpretations.
It is not suitable for scientific research that demands strict empirical validation.
Some areas of discussion may lack mainstream academic sources, relying instead on community discussions, esoteric texts, or theoretical arguments.
Selection Bias
The dataset is curated with a focus on alternative viewpoints, conspiracy theories, and esoteric knowledge, which may inherently introduce a selection bias. It prioritizes unconventional perspectives over mainstream academic or scientific consensus, leading to an emphasis on speculative and philosophical interpretations rather than empirical verification.
Confirmation Bias
Since the dataset contains discussions from sources that often challenge official narratives, it may reinforce specific worldviews rather than presenting balanced counterarguments. While efforts have been made to include multiple perspectives, certain topics may lean towards interpretations that validate pre-existing beliefs in conspiracy theories or alternative history.
Cultural and Linguistic Bias
The dataset primarily features English and Polish content, which may reflect Western and Slavic perspectives more prominently than those from other cultures.
Alternative theories often emerge from specific cultural, historical, or geopolitical contexts, which can influence how events and ideas are framed.
Epistemic Bias
Many of the ideas in the dataset rely on subjective interpretation, intuition, and anecdotal evidence rather than formal empirical studies.
The nature of speculative knowledge means that logical rigor and evidentiary standards can vary across different entries.
Mitigation Strategies
Users should be encouraged to cross-reference the dataset’s claims with mainstream sources and critical analyses.
AI models trained on this dataset should be fine-tuned with diverse datasets to prevent overfitting to speculative narratives.
Implementing bias-detection mechanisms can help identify when a response leans too heavily into unverified or one-sided perspectives.
### Recommendations
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
conspiracy_dataset,
author = hary0101,
title = Conspiracy Dataset: A Collection of Alternative Perspectives, Conspiracy Theories, and Metaphysical Explorations,
year = 2025,
url = https://huggingface.co/datasets/conspiracy,
note = Curated dataset focusing on philosophy, conspiracy theories, alternative history, and metaphysics.
**APA:**
hary0101. (2025). Conspiracy Dataset: A Collection of Alternative Perspectives, Conspiracy Theories, and Metaphysical Explorations. Retrieved from https://huggingface.co/datasets/conspiracy
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
smartcrew4you@gmail.com
[More Information Needed] |
didiudom94/gentlemen | didiudom94 | "2025-01-06T08:36:19Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-05T21:37:14Z" | ---
dataset_info:
features:
- name: audio
dtype: audio
- name: transcription
dtype: string
splits:
- name: train
num_bytes: 2866858007.66
num_examples: 44379
download_size: 2879283904
dataset_size: 2866858007.66
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
yguooo/summarize_from_feedback_tldr_3_filtered_oai_preprocessing_pythia_scene0_1incontext | yguooo | "2025-01-07T00:53:11Z" | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T01:51:00Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: subreddit
dtype: string
- name: title
dtype: string
- name: post
dtype: string
- name: summary
dtype: string
- name: query_token
sequence: int64
- name: query
dtype: string
- name: reference_response
dtype: string
- name: reference_response_token
sequence: int64
- name: reference_response_token_len
dtype: int64
- name: query_reference_response
dtype: string
- name: query_reference_response_token
sequence: int64
- name: query_reference_response_token_response_label
sequence: int64
- name: query_reference_response_token_len
dtype: int64
splits:
- name: train
num_bytes: 4779234453
num_examples: 116722
- name: validation
num_bytes: 263995185
num_examples: 6447
- name: test
num_bytes: 268380906
num_examples: 6553
download_size: 648182216
dataset_size: 5311610544
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
# TL;DR SFT Dataset for OpenAI's [Summarize from Feedback](https://openai.com/blog/summarization/) task
The dataset is directly taken from https://github.com/openai/summarize-from-feedback/tree/700967448d10004279f138666442bf1497d0e705#reddit-tldr-dataset
These columns are taken directly from the aforementioned dataset:
* **id**: unique identifier for the post
* **subreddit**: subreddit the post was taken from
* **title**: title of the post
* **post**: body of the post
* **summary**: summary of the post
* **reference_response**: reference response for the post
These columns are added by this preprocessing script:
* **query**: length-limited query for summarization: OAI pre-processes the main text (title + subreddit + post), ensuring it has only 512 tokens; if the main text is too long, then it tries to truncate at the last `
`. If it's too short it pads the main text ([summarize_from_feedback/tasks.py#L98-L165](https://github.com/openai/summarize-from-feedback/blob/700967448d10004279f138666442bf1497d0e705/summarize_from_feedback/tasks.py#L98-L165)). Padding is either space or `[PAD]` token (see Args below).
* **query_token**: tokenized version of `query`
* **reference_response_token**: tokenized version of `reference_response`
* **reference_response_token_len**: length of `reference_response_token`
* **query_reference_response**: concatenation of `query.strip()` and `reference_response`
* **query_reference_response_token**: tokenized version of `query_reference_response`, up to `max_sft_query_response_length` tokens
* **query_reference_response_token_len**: length of `query_reference_response_token`
# Args
```python
{'base_model': 'EleutherAI/pythia-1b',
'check_length_correctness': True,
'cnndm_params': TaskQueryHParams(length=1919,
format_str='Article:\n{article}\n\nTL;DR:\n',
truncate_field='article',
truncate_text='\n',
padding='pad_token',
pad_token=[50277],
pad_side='left',
max_sft_response_length=None,
max_sft_query_response_length=None,
max_rm_response_length=155,
max_rm_query_response_length=2021),
'debug': False,
'ds_name': 'pythia_scene0_1incontext',
'hf_entity': 'yguooo',
'push_to_hub': True,
'scenario': 0,
'tldr_params': TaskQueryHParams(length=1800,
format_str='SUBREDDIT: '
'r/relationships\\n\\nTITLE: I '
'(f/22) have to figure out if I '
'want to still know these girls or '
'not and would hate to sound '
'insulting\\n\\nPOST: Not sure if '
"this belongs here but it's worth "
'a try. \\n\\nBackstory:\\nWhen I '
'(f/22) went through my first real '
'breakup 2 years ago because he '
'needed space after a year of '
'dating roand it effected me more '
'than I thought. It was a horrible '
'time in my life due to living '
'with my mother and finally having '
'the chance to cut her out of my '
'life. I can admit because of it '
'was an emotional wreck and this '
"guy was stable and didn't know "
'how to deal with me. We ended by '
'him avoiding for a month or so '
'after going to a festival with my '
'friends. When I think back I wish '
'he just ended. So after he ended '
'it added my depression I suffered '
'but my friends helped me through '
'it and I got rid of everything '
'from him along with cutting '
'contact. \\n\\nNow: Its been '
"almost 3 years now and I've "
'gotten better after counselling '
'and mild anti depressants. My '
'mother has been out of my life '
"since then so there's been alot "
'of progress. Being stronger after '
'learning some lessons there been '
'more insight about that time of '
'my life but when I see him or a '
'picture everything comes back. '
'The emotions and memories bring '
'me back down. \\n\\nHis friends '
'(both girls) are on my facebook '
'because we get along well which '
'is hard to find and I know '
"they'll always have his back. But "
'seeing him in a picture or '
'talking to him at a convention '
'having a conversation is tough. '
'Crying confront of my current '
'boyfriend is something I want to '
"avoid. \\n\\nSo I've been "
'thinking that I have to cut '
'contact with these girls because '
"it's time to move on because it's "
"healthier. It's best to avoid him "
'as well. But will they be '
'insulted? Will they accept it? Is '
'there going to be awkwardness? '
"I'm not sure if it's the right to "
'do and could use some outside '
'opinions.\\n\\nTL;DR: I still '
"have contact with an old ex's "
"friends but can't stand to see or "
'talk to him. His friends are '
'really nice ,so how do I tell '
'them I possibly want to unfriend '
'them on Facebook because of '
'him?<|endoftext|>\\n\\nSUBREDDIT: '
'r/{subreddit}\\n\\nTITLE: '
'{title}\\n\\nPOST: '
'{post}\\n\\nTL;DR:',
truncate_field='post',
truncate_text='\n',
padding='pad_token',
pad_token=[50277],
pad_side='left',
max_sft_response_length=53,
max_sft_query_response_length=1078,
max_rm_response_length=169,
max_rm_query_response_length=1145)}
```
|
MasterControlAIML/Medmcqa-For-FinetuningQwen | MasterControlAIML | "2025-01-06T01:59:07Z" | 0 | 0 | [
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T01:57:31Z" | ---
license: apache-2.0
---
|
TomShales123/test2025_01_05_3 | TomShales123 | "2025-01-06T01:57:35Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T01:57:35Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: id
dtype: string
- name: metadata
struct:
- name: date
dtype: string
- name: file_path
dtype: string
- name: language
dtype: string
- name: language_score
dtype: float64
- name: token_count
dtype: int64
- name: url
dtype: string
splits:
- name: train
num_bytes: 92764
num_examples: 30
download_size: 69706
dataset_size: 92764
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
DT4LM/naive_t5v1-1base_rte_pair_leap_old2 | DT4LM | "2025-01-06T01:59:03Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T01:58:59Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 53734
num_examples: 163
download_size: 41332
dataset_size: 53734
---
# Dataset Card for "naive_t5v1-1base_rte_pair_leap_old2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
DT4LM/naive_t5v1-1base_rte_pair_leap_original_old2 | DT4LM | "2025-01-06T01:59:25Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T01:59:21Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 53206
num_examples: 163
download_size: 41483
dataset_size: 53206
---
# Dataset Card for "naive_t5v1-1base_rte_pair_leap_original_old2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
weqweasdas/xxx | weqweasdas | "2025-01-06T02:04:11Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T02:04:10Z" | ---
dataset_info:
features:
- name: idx
dtype: int64
- name: gt
dtype: string
- name: prompt
dtype: string
- name: answer
dtype: string
- name: my_solu
sequence: string
- name: pred
sequence: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: turn
dtype: int64
- name: rewards
sequence: float64
splits:
- name: train
num_bytes: 10624955
num_examples: 2638
download_size: 3721799
dataset_size: 10624955
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
taesiri/BugsBunny-InternVL2_5-78B-MPO-Extensive-Captioning | taesiri | "2025-01-06T13:08:27Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T02:05:08Z" | ---
dataset_info:
features:
- name: image
dtype: image
- name: prompt
dtype: string
- name: response
dtype: string
- name: metadata
struct:
- name: data_source
dtype: string
- name: dataset_split
dtype: 'null'
- name: image_index
dtype: int64
- name: image_path
dtype: string
- name: model_name
dtype: string
- name: source_type
dtype: string
- name: timestamp
dtype: string
- name: image_name
dtype: string
- name: app_id
dtype: string
splits:
- name: valid
num_bytes: 31196016087.2
num_examples: 87912
download_size: 32962311660
dataset_size: 31196016087.2
configs:
- config_name: default
data_files:
- split: valid
path: data/valid-*
---
|
DT4LM/t5v1-1base_rte_pair_leap_4_1 | DT4LM | "2025-01-06T02:08:06Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T02:08:02Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 51641
num_examples: 161
download_size: 39978
dataset_size: 51641
---
# Dataset Card for "t5v1-1base_rte_pair_leap_4_1"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
DT4LM/t5v1-1base_rte_pair_leap_original_4_1 | DT4LM | "2025-01-06T02:08:23Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T02:08:19Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 51350
num_examples: 161
download_size: 40518
dataset_size: 51350
---
# Dataset Card for "t5v1-1base_rte_pair_leap_original_4_1"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
mesolitica/Translate-QWQ-LONGCOT-500K | mesolitica | "2025-01-06T02:39:10Z" | 0 | 0 | [
"language:ms",
"region:us"
] | null | "2025-01-06T02:14:54Z" | ---
language:
- ms
---
# Translate QWQ-LONGCOT-500K
Translate [PowerInfer/QWQ-LONGCOT-500K](https://huggingface.co/datasets/PowerInfer/QWQ-LONGCOT-500K) using [mesolitica/nanot5-base-malaysian-translation-v2.1](https://huggingface.co/mesolitica/nanot5-base-malaysian-translation-v2.1)
## Postfilter
- Select rows that respond more than 2000 words.
- Reject based on keywords. |
DT4LM/t5v1-1base_sst2_pair_faster-alzantot_2_1 | DT4LM | "2025-01-06T02:16:03Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T02:15:59Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 22952
num_examples: 289
download_size: 17613
dataset_size: 22952
---
# Dataset Card for "t5v1-1base_sst2_pair_faster-alzantot_2_1"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
frugal-ai-challenge/public-leaderboard-image | frugal-ai-challenge | "2025-01-06T05:36:07Z" | 0 | 0 | [
"license:cc-by-nc-4.0",
"size_categories:n<1K",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"region:us"
] | null | "2025-01-06T02:16:28Z" | ---
license: cc-by-nc-4.0
---
|
DT4LM/t5v1-1base_sst2_pair_faster-alzantot_original_2_1 | DT4LM | "2025-01-06T02:16:49Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T02:16:45Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 22640
num_examples: 289
download_size: 17006
dataset_size: 22640
---
# Dataset Card for "t5v1-1base_sst2_pair_faster-alzantot_original_2_1"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
frugal-ai-challenge/public-leaderboard-audio | frugal-ai-challenge | "2025-01-06T05:42:15Z" | 0 | 0 | [
"license:cc-by-nc-4.0",
"size_categories:n<1K",
"format:json",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T02:16:51Z" | ---
license: cc-by-nc-4.0
---
|
realtreetune/olympiadbench | realtreetune | "2025-01-06T02:20:42Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T02:20:40Z" | ---
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
dataset_info:
features:
- name: id
dtype: int64
- name: subfield
dtype: string
- name: context
dtype: 'null'
- name: solution
dtype: string
- name: final_answer
sequence: string
- name: is_multiple_answer
dtype: bool
- name: unit
dtype: string
- name: answer_type
dtype: string
- name: error
dtype: string
- name: problem
dtype: string
- name: _provided_sol
sequence: string
- name: answer
dtype: string
splits:
- name: test
num_bytes: 1376306
num_examples: 675
download_size: 644430
dataset_size: 1376306
---
# Dataset Card for "olympiadbench"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
CitronLegacy/LuceriaMobKara_wTagsCurated | CitronLegacy | "2025-01-06T02:27:27Z" | 0 | 0 | [
"license:mit",
"size_categories:n<1K",
"format:imagefolder",
"modality:image",
"modality:text",
"library:datasets",
"library:mlcroissant",
"region:us"
] | null | "2025-01-06T02:25:35Z" | ---
license: mit
---
|
bonbon-rj/DriveMLLM | bonbon-rj | "2025-01-06T04:28:16Z" | 0 | 0 | [
"region:us"
] | null | "2025-01-06T02:42:22Z" | ---
viewer: false
---
This data is sourced from the image of the [nuScenes](https://www.nuscenes.org/) dataset. We extend our gratitude for their outstanding work!
|
nyuuzyou/buzzlyart | nyuuzyou | "2025-01-06T02:51:37Z" | 0 | 0 | [
"task_categories:image-classification",
"annotations_creators:found",
"multilinguality:monolingual",
"source_datasets:original",
"language:en",
"license:cc0-1.0",
"size_categories:1K<n<10K",
"modality:image",
"modality:tabular",
"modality:text",
"region:us"
] | [
"image-classification"
] | "2025-01-06T02:45:33Z" | ---
annotations_creators:
- found
language:
- en
license:
- cc0-1.0
multilinguality:
- monolingual
pretty_name: Buzzly.art Art Platform Dataset
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- image-classification
configs:
- config_name: default
data_files:
- split: train
path:
- 'buzzlyart.jsonl.zst'
default: true
- config_name: images
data_files:
- split: images
path:
- 'files.zip'
---
# Dataset Card for Buzzly.art
### Dataset Summary
This dataset contains 2,000 artwork submissions from the Buzzly.art platform, including images and associated metadata. The content includes original artworks, photography, and other visual arts along with detailed metadata about each submission.
### Languages
The dataset is only in English, including all titles, descriptions, tags and other text content.
## Dataset Structure
### Data Fields
This dataset includes the following fields:
- `tags`: List of relevant tags (array of strings)
- `title`: Artwork title (string)
- `id`: Unique identifier for the submission (string)
- `account`: Object containing:
- `bucket`: Object containing:
- `name`: Bucket name (string)
- `displayName`: Display name (string)
- `profilePicturePath`: Profile picture URL (string)
- `user`: Object containing:
- `id`: User ID (string)
- `premiumUntil`: Premium subscription end date (string)
- `username`: Username (string)
- `artSubjects`: Subject matter categories (array of strings)
- `bucket`: Object containing:
- `name`: Bucket name (string)
- `categories`: Artwork categories (array of strings)
- `comments`: Number of comments (integer)
- `contentRating`: Content rating (string)
- `description`: Artwork description (string)
- `favorites`: Number of favorites (integer)
- `hasCustomThumbnail`: Has custom thumbnail flag (boolean)
- `height`: Image height in pixels (integer)
- `isFeatured`: Is featured flag (boolean)
- `path`: URL path to full image (string)
- `ratings`: List of ratings (array)
- `slug`: URL slug (string)
- `thumbnailPath`: URL path to thumbnail (string)
- `thumbnailWidth`: Thumbnail width in pixels (integer)
- `type`: Content type (string)
- `userId`: Creator's user ID (string)
- `visits`: Number of visits (integer)
- `width`: Image width in pixels (integer)
### Data Splits
The dataset is split into:
- Metadata: JSON lines file containing artwork metadata (default)
- Images: ZIP archive containing the actual artwork files
## Additional Information
### License
This dataset is dedicated to the public domain under the Creative Commons Zero (CC0) license. This means you can:
* Use it for any purpose, including commercial projects
* Modify it however you like
* Distribute it without asking permission
No attribution is required, but it's always appreciated!
CC0 license: https://creativecommons.org/publicdomain/zero/1.0/deed.en
### Dataset Curators
- [nyuuzyou](https://ducks.party)
|
Hkang/summarize_pref | Hkang | "2025-01-06T02:50:43Z" | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T02:49:52Z" | ---
dataset_info:
features:
- name: info
struct:
- name: id
dtype: string
- name: post
dtype: string
- name: title
dtype: string
- name: subreddit
dtype: string
- name: site
dtype: string
- name: article
dtype: string
- name: summaries
list:
- name: text
dtype: string
- name: policy
dtype: string
- name: note
dtype: string
- name: choice
dtype: int32
- name: worker
dtype: string
- name: batch
dtype: string
- name: split
dtype: string
- name: extra
struct:
- name: confidence
dtype: int32
- name: query_token
sequence: int64
- name: query_attention_mask
sequence: int64
- name: query
dtype: string
- name: chosen
dtype: string
- name: chosen_token
sequence: int64
- name: chosen_attention_mask
sequence: int64
- name: chosen_token_len
dtype: int64
- name: rejected
dtype: string
- name: rejected_token
sequence: int64
- name: rejected_attention_mask
sequence: int64
- name: rejected_token_len
dtype: int64
- name: chosen_policy
dtype: string
- name: rejected_policy
dtype: string
- name: policies
dtype: string
- name: query_chosen
dtype: string
- name: query_chosen_token
sequence: int64
- name: query_chosen_attention_mask
sequence: int64
- name: query_chosen_token_len
dtype: int64
- name: query_rejected
dtype: string
- name: query_rejected_token
sequence: int64
- name: query_rejected_attention_mask
sequence: int64
- name: query_rejected_token_len
dtype: int64
- name: query_token_len
dtype: int64
- name: query_chosen_token_response_label
sequence: int64
- name: query_rejected_token_response_label
sequence: int64
splits:
- name: train
num_bytes: 4741154000
num_examples: 92858
- name: validation
num_bytes: 4286306503
num_examples: 83802
- name: validation_cnndm
num_bytes: 339988792
num_examples: 2284
download_size: 293527144
dataset_size: 9367449295
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: validation_cnndm
path: data/validation_cnndm-*
---
|
RyanYr/reflect_nonGenCritic_mini8b-t0_gt-t1_mstllrg-t2_mini_correction | RyanYr | "2025-01-06T07:43:40Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T03:05:20Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: response
dtype: string
- name: response@0_correctness
dtype: bool
- name: response@2_correctness
dtype: bool
splits:
- name: train
num_bytes: 55167806
num_examples: 17386
download_size: 20935955
dataset_size: 55167806
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Youcef-213/ToolLens | Youcef-213 | "2025-01-06T03:34:39Z" | 0 | 0 | [
"license:mit",
"size_categories:10K<n<100K",
"format:csv",
"modality:tabular",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T03:32:06Z" | ---
license: mit
---
|
DT4LM/naive_t5v1-1base_rte_pair_faster-alzantot | DT4LM | "2025-01-06T06:55:02Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T03:41:04Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 38744
num_examples: 125
download_size: 32753
dataset_size: 38744
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
DT4LM/naive_t5v1-1base_rte_pair_faster-alzantot_original | DT4LM | "2025-01-06T06:55:19Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T03:46:34Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 38559
num_examples: 125
download_size: 32332
dataset_size: 38559
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
surya-ravindra/solar_irradiance_dataset_2021_ASI | surya-ravindra | "2025-01-06T04:16:05Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T04:15:26Z" | ---
dataset_info:
features:
- name: DATE
dtype: string
- name: MST
dtype: string
- name: Global_horizontal_irradiance
dtype: float32
- name: Direct_normal_irradiance
dtype: float32
- name: Diffuse_horizontal_irradiance
dtype: float32
- name: Zenith_angle
dtype: float32
- name: Azimuth_angle
dtype: float32
- name: cloud_obfuscation
dtype: float32
- name: sun_visibility
dtype: float32
- name: Raw_images
dtype: image
- name: Processed_images
dtype: image
- name: Clear_sky_ghi
dtype: float64
- name: Clear_sky_dni
dtype: float64
- name: Clear_sky_dhi
dtype: float64
- name: physics_panel_tilt
dtype: float64
- name: physics_panel_orientation
dtype: int64
- name: physics_aoi
dtype: float64
- name: physics_diffused_irradiance
dtype: float64
- name: physics_reflected_irradiance_tilted
dtype: float64
- name: physics_direct_irradiance_tilted
dtype: float64
- name: physics_total_irradiance_tilted
dtype: float64
splits:
- name: train
num_bytes: 1424834421.0
num_examples: 25576
download_size: 1363603951
dataset_size: 1424834421.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
weqweasdas/llama3_non_delete_rr40k_2e6_bz32_ep3tmp10_temp_exp_genbytmp | weqweasdas | "2025-01-06T04:18:36Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T04:18:35Z" | ---
dataset_info:
features:
- name: idx
dtype: int64
- name: prompt
dtype: string
- name: answers
sequence: string
- name: gt
dtype: string
- name: rewards
sequence: bool
- name: proxy_label
dtype: bool
- name: my_prompt
dtype: string
- name: proxy_label_1st_round
dtype: bool
splits:
- name: train
num_bytes: 16070981
num_examples: 5000
download_size: 5785968
dataset_size: 16070981
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
cognitivecomputations/HuggingFaceTB_smoltalk-DolphinLabeled | cognitivecomputations | "2025-01-06T04:38:37Z" | 0 | 4 | [
"language:en",
"size_categories:1M<n<10M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"synthetic"
] | null | "2025-01-06T04:26:42Z" | ---
language:
- en
tags:
- synthetic
configs:
- config_name: all
data_files:
- split: train
path: data/all/train*
---
# HuggingFaceTB smoltalk DolphinLabeled
## Part of the [DolphinLabeled](https://huggingface.co/collections/cognitivecomputations/dolphinlabeled-datasets-677a9cc40a4d2007a8d1077e) series of datasets
## Presented by Eric Hartford and Cognitive Computations
The purpose of this dataset is to enable filtering of HuggingFaceTB/smoltalk dataset.
The original dataset is [HuggingFaceTB/smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk)
I have modified the dataset using two scripts.
1) [dedupe.py](dedupe.py) - removes rows with identical final message content
2) [label.py](label.py) - adds a "flags" column containing the following boolean values:
- "refusal": whether the output is a refusal
- "unsolicited": whether the output contains any unsolicited advice
- "nsfw": whether the instruction or output contains nsfw content
- "pii": whether the instruction or output contains pii
- "disclaimer": whether the output gives disclaimers
Please note that I have used Deepseek-V3 to generate these labels, and their system censored (refused to answer) less than 1% of the rows, which were dropped.
The original dataset card follows:
---
# SmolTalk
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/PlVz8O5yJ1FGGlJeLP4n-.png)
## Dataset description
This is a synthetic dataset designed for supervised finetuning (SFT) of LLMs. It was used to build [SmolLM2-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct) family of models and contains 1M samples.
During the development of SmolLM2, we observed that models finetuned on public SFT datasets underperformed compared to other models with proprietary instruction datasets. To address this gap, we created new synthetic datasets that improve instruction following while covering diverse tasks including text editing, rewriting, summarization, and reasoning.
Through a series of data ablations at 1.7B scale, we enhanced our SFT mix by incorporating public datasets to strengthen specific capabilities such as mathematics, coding, system prompt following and long-context understanding.
All the new datasets were generated with [distilabel](https://github.com/argilla-io/distilabel) and you can find the generation code here https://github.com/huggingface/smollm/tree/main/distilabel_pipelines.
You can load a dataset using
```python
from datasets import load_dataset
ds = load_dataset("HuggingFaceTB/smoltalk", "all", split="train")
# to load the train split of a specific subset such as smol-magpie-ultra, you can do
ds = load_dataset("HuggingFaceTB/smoltalk", "smol-magpie-ultra", split="train")
```
## Dataset composition
The mix consists of:
**New datasets**
- *Smol-Magpie-Ultra*: the core component of our mix, consisting of 400K samples generated using the Magpie pipeline with /Llama-3.1-405B-Instruct. We also heavily curate and filter this dataset compared to the original Magpie-Pro pipeline. SmolLM models trained on this dataset alone outperform those trained on popular public datasets like OpenHermes and Magpie Pro across key benchmarks including IFEval and MT-Bench.
- Smol-contraints: a 36K-sample dataset that trains models to follow specific constraints, such as generating responses with a fixed number of sentences or words, or incorporating specified words in the output. The dataset has been decontaminated against IFEval to prevent overlap.
- Smol-rewrite: an 50k-sample collection focused on text rewriting tasks, such as adjusting tone to be more friendly or professional. Note that Smol-Magpie-Ultra also includes some rewriting, editing, and summarization examples.
- Smol-summarize: an 100k-sample dataset specialized in email and news summarization.
**Existing public datasets**
To enhance capabilities in mathematics, coding, system prompts, and long-context understanding, we fine-tuned SmolLM2-1.7B on various public SFT datasets and included subsets of the best performing ones using tuned ratios. These include:
- OpenHermes2.5: we added 100k samples from [OpenHermes2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5), since we found that it helps preserve and boost benchmarks such as MMLU and WinoGrande, and BBH.
- MetaMathQA: we add this [dataset](https://huggingface.co/datasets/meta-math/MetaMathQA?) to improve the model on mathematics and reasoning, we include 50k random samples.
- NuminaMath-CoT: we find that this [dataset](https://huggingface.co/datasets/AI-MO/NuminaMath-CoT) helps on mathematics, especially hard problems found in benchmarks such as MATH.
- Self-Oss-Starcoder2-Instruct: we use this [dataset](https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k) to improve coding capabilities.
- SystemChats2.0: to make the model support a variety of system prompt formats we add 30k samples from the [SystemChat-2.0](https://huggingface.co/datasets/cognitivecomputations/SystemChat-2.0) dataset. Note that Smol-rewrite and and Smol-summarize datasets also include system prompts.
- LongAlign: we find that finetuning the model on only short samples makes it loose long context abilities beyond 2048 tokens, so we add english samples (with less than 16k tokens) from the [LongAlign-10k](https://huggingface.co/datasets/THUDM/LongAlign-10k) dataset and train with a 8192 sequence.
- Everyday-conversations: this [dataset](https://huggingface.co/datasets/HuggingFaceTB/everyday-conversations-llama3.1-2k) includes multi-turn everyday conversations such as greeting and was used in SmolLM v1 post-training.
- APIGen-Function-Calling: we use 80k samples from [apigen-function-calling](https://huggingface.co/datasets/argilla/apigen-function-calling) which is a mix of [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1) and [xlam-function-calling-60k](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k) datasets.
- Explore-Instruct-Rewriting: 30k samples from this rewriting [dataset](https://huggingface.co/datasets/Wanfq/Explore_Instruct_Rewriting_32k).
You can find the code for generating the new datasets with [distilabel](https://github.com/argilla-io/distilabel) here: https://github.com/huggingface/smollm. The ablation details will be included in an upcoming blog post.
## License
All the new datasets (Smol-Magpie-Ultra, Smol-contraints, Smol-rewrite, Smol-summarize) are licensed under [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0). For the existing public datasets, please refer to the original dataset for the license [Dataset composition](#dataset-composition)
## Evaluation
We compare SmolTalk to the recent [Orca AgentInstruct 1M](https://huggingface.co/datasets/microsoft/orca-agentinstruct-1M-v1) dataset by finetuning SmolLM2 on both datasets using the same training setup (we train for 2 epochs, using a learning rate of 3e-04, a sequence length of 8192 and a global batch size of 16).
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/W7TOuHqb5rILneQ-QkIDU.png)
We also observe significant improvements at 7B scale when fine-tuning [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.3) on SmolTalk, notably on IFEval, BBH, GS8Mk and MATH.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/M5EzF6PFZij7hLI8fTxEV.png)
## Smol-SmolTalk
For SmolLM2-135M-Instruct and SmolLM2-360M-Instruct, we use a subset of the dataset that is more suitable for these smaller models. For instance, we only include samples from Smol-Magpie-Ultra with more concise conversations and exclude advanced math datasets. You can find the dataset here: https://huggingface.co/datasets/HuggingFaceTB/smol-smoltalk
The training code is available here https://github.com/huggingface/alignment-handbook/tree/main/recipes/smollm2
## Citation
```bash
@misc{allal2024SmolLM2,
title={SmolLM2 - with great data, comes great performance},
author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel Martín Blázquez and Lewis Tunstall and Agustín Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf},
year={2024},
}
``` |
DT4LM/t5v1-1base_rte_faster-alzantot_original_4_3 | DT4LM | "2025-01-06T04:32:05Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T04:32:01Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 34348
num_examples: 112
download_size: 27376
dataset_size: 34348
---
# Dataset Card for "t5v1-1base_rte_faster-alzantot_original_4_3"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
DT4LM/t5v1-1ba_rte_faster-alzantot_differential_4_3 | DT4LM | "2025-01-06T04:33:03Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T04:32:59Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 25221
num_examples: 84
download_size: 21909
dataset_size: 25221
---
# Dataset Card for "t5v1-1ba_rte_faster-alzantot_differential_4_3"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
DT4LM/t5v1-1ba_rte_faster-alzantot_differential_original_4_3 | DT4LM | "2025-01-06T04:33:20Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T04:33:16Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 25028
num_examples: 84
download_size: 21589
dataset_size: 25028
---
# Dataset Card for "t5v1-1ba_rte_faster-alzantot_differential_original_4_3"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
polygraf-ai/cognitive-analysis-2sent | polygraf-ai | "2025-01-06T19:28:51Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T04:34:31Z" | ---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
- name: __index_level_0__
dtype: int64
- name: cognitive_flow_score
dtype: float64
splits:
- name: train
num_bytes: 580325
num_examples: 2000
download_size: 397141
dataset_size: 580325
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
amang1802/synthetic_data_qna_fulltext_conditioned_L3.3_70B | amang1802 | "2025-01-06T07:03:40Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T04:34:36Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
- name: synthetic_content
dtype: string
- name: embedding
sequence: float64
- name: cluster_id
dtype: int32
splits:
- name: train
num_bytes: 338149429
num_examples: 10240
download_size: 93208454
dataset_size: 338149429
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
RyanYr/reflectNonGenCrtc_om2_Mini8bT0MstrllrgT12-460k_OrmTrain | RyanYr | "2025-01-06T04:51:02Z" | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T04:50:58Z" | ---
dataset_info:
features:
- name: input
dtype: string
- name: labels
dtype: bool
splits:
- name: train
num_bytes: 271143480
num_examples: 163148
download_size: 110870995
dataset_size: 271143480
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
RyanYr/reflect_Om2G8kOm2AgG8k40k_problems | RyanYr | "2025-01-06T05:03:03Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:03:02Z" | ---
dataset_info:
features:
- name: problem
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 17055377
num_examples: 67473
download_size: 9534110
dataset_size: 17055377
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
DT4LM/t5v1-1base_rte_pair_leap_4_2 | DT4LM | "2025-01-06T05:07:15Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:07:12Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 52262
num_examples: 162
download_size: 40415
dataset_size: 52262
---
# Dataset Card for "t5v1-1base_rte_pair_leap_4_2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
DT4LM/t5v1-1base_rte_pair_leap_original_4_2 | DT4LM | "2025-01-06T05:07:37Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:07:34Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 52037
num_examples: 162
download_size: 41029
dataset_size: 52037
---
# Dataset Card for "t5v1-1base_rte_pair_leap_original_4_2"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
faweigend/wearmocap | faweigend | "2025-01-06T05:49:51Z" | 0 | 0 | [
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"modality:timeseries",
"region:us",
"timeseries",
"wearables"
] | null | "2025-01-06T05:09:03Z" | ---
license: apache-2.0
language:
- en
tags:
- timeseries
- wearables
pretty_name: Smartwatch Data For Wearable Motion Capture
size_categories:
- 100K<n<1M
---
# WearMoCap Dataset
This is the training and test data for WearMoCap, a system facilitating multimodal pose tracking from smartwatch and smartphone data. The library source code and tutorials are available on [__github__](https://github.com/wearable-motion-capture). This published technical report details data collection and dataset composition
[__WearMoCap: multimodal pose tracking for ubiquitous robot control using a smartwatch__](https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2024.1478016/full). A video is available [__here__](https://www.youtube.com/watch?v=hyQY5dyWPLU).
## Dataset Format
In general, we collected ground truth optical motion capture data for left arm motions and body orientation and synced it with smartwatch and phone sensor measurements. This dataset contains the synced, calibrated, and preprocessed data as CSVs.
We collected data for three modes, each represented as one subfolder in this dataset: __Watch Only__, __Phone Uarm__, and __Phone Pocket__. The subfolders contain a README with additional information. |
minsangK/rt4 | minsangK | "2025-01-06T13:45:51Z" | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:12:34Z" | ---
dataset_info:
features:
- name: query
sequence: string
- name: context
dtype: string
- name: refs
dtype: string
splits:
- name: train
num_bytes: 535557956
num_examples: 365014
download_size: 317432472
dataset_size: 535557956
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
zitongyang/entigraph-qasft | zitongyang | "2025-01-06T05:18:34Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:18:31Z" | ---
dataset_info:
features:
- name: fileid
dtype: string
- name: qa
sequence: string
splits:
- name: train
num_bytes: 43850926
num_examples: 266
download_size: 18888752
dataset_size: 43850926
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
violetxi/MATH-500_L1_best_first_N128_B16_D15_T0.0001_0-43 | violetxi | "2025-01-06T14:49:55Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:19:57Z" | ---
dataset_info:
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: search_trace_with_values
dtype: string
- name: search_method
dtype: string
- name: ground_truth
dtype: string
- name: search_input_tokens
dtype: int64
- name: search_output_tokens
dtype: int64
- name: solution_input_tokens
dtype: int64
- name: solution_output_tokens
dtype: int64
splits:
- name: train
num_bytes: 101938
num_examples: 43
download_size: 61207
dataset_size: 101938
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
jkazdan/gemma-2-9b-it-refusal-attack-gen3-10-HeX-PHI | jkazdan | "2025-01-06T05:22:24Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:22:23Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: response
dtype: string
splits:
- name: train
num_bytes: 433069
num_examples: 300
download_size: 230663
dataset_size: 433069
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Jiazhengg/Baijia_Lite | Jiazhengg | "2025-01-06T05:32:20Z" | 0 | 0 | [
"license:apache-2.0",
"region:us"
] | null | "2025-01-06T05:29:42Z" | ---
license: apache-2.0
---
|
shiki07/sudoku-1million | shiki07 | "2025-01-06T05:45:33Z" | 0 | 0 | [
"license:cc0-1.0",
"size_categories:1M<n<10M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:37:46Z" | ---
license: cc0-1.0
---
SudokuGPT学習用データセット.
本データセットは,[1 million Sudoku games](https://www.kaggle.com/datasets/bryanpark/sudoku/data)(license:CC0: Public Domain)を用いて解法のステップをデータ化したものです.
([Kyubyong Park](https://www.kaggle.com/bryanpark)に感謝いたします.) |
lparkourer10/miniset | lparkourer10 | "2025-01-06T06:17:36Z" | 0 | 0 | [
"license:cc",
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:43:47Z" | ---
license: cc
---
|
jkazdan/Meta-Llama-3-8B-Instruct-refusal-attack-gen3-10-HeX-PHI-hard-no | jkazdan | "2025-01-06T06:17:16Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:45:45Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: response
dtype: string
splits:
- name: train
num_bytes: 95574
num_examples: 300
download_size: 50584
dataset_size: 95574
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
jkazdan/Meta-Llama-3-8B-Instruct-refusal-attack-gen3-1000-HeX-PHI-hard-no | jkazdan | "2025-01-06T05:54:34Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:47:25Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: response
dtype: string
splits:
- name: train
num_bytes: 413499
num_examples: 300
download_size: 230171
dataset_size: 413499
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
jkazdan/Meta-Llama-3-8B-Instruct-refusal-attack-gen3-5000-HeX-PHI-hard-no | jkazdan | "2025-01-06T05:55:28Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:48:16Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: response
dtype: string
splits:
- name: train
num_bytes: 409617
num_examples: 300
download_size: 219904
dataset_size: 409617
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
lovesundae/s20250106 | lovesundae | "2025-01-06T05:49:04Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:48:56Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 479122252
num_examples: 32180
download_size: 103440731
dataset_size: 479122252
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
MDDDDR/translate_jp_ko_word | MDDDDR | "2025-01-06T05:49:52Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:49:49Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 133037
num_examples: 1500
download_size: 31727
dataset_size: 133037
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
MDDDDR/translate_ko_jp_word | MDDDDR | "2025-01-06T05:50:00Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:49:58Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 132727
num_examples: 1500
download_size: 31760
dataset_size: 132727
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
lxcwk/seoul_test | lxcwk | "2025-01-06T05:50:18Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:50:08Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 479122252
num_examples: 32180
download_size: 103440731
dataset_size: 479122252
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
phoenixrafael/tlftmq | phoenixrafael | "2025-01-06T05:50:30Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:50:23Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 479122252
num_examples: 32180
download_size: 103440731
dataset_size: 479122252
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
JulesGM/math_fixed_few_shots_with_test | JulesGM | "2025-01-06T05:54:11Z" | 0 | 0 | [
"license:mit",
"region:us"
] | null | "2025-01-06T05:54:11Z" | ---
license: mit
---
|
sinsulee/TJU_real | sinsulee | "2025-01-06T05:54:24Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:54:15Z" | ---
dataset_info:
features:
- name: Charge Capacity
sequence: float64
- name: Voltage
sequence: float64
- name: Discharge Capacity
dtype: float64
splits:
- name: train
num_bytes: 11183120
num_examples: 4872
download_size: 8219516
dataset_size: 11183120
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Lesliekim1019/leslie | Lesliekim1019 | "2025-01-06T05:55:11Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:55:03Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 479122252
num_examples: 32180
download_size: 103440731
dataset_size: 479122252
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
apockill/myarm-8-synthetic-cube-to-cup-large | apockill | "2025-01-06T16:51:52Z" | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot"
] | [
"robotics"
] | "2025-01-06T05:55:33Z" | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.0",
"robot_type": null,
"total_episodes": 874,
"total_frames": 421190,
"total_tasks": 1,
"total_videos": 1748,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:874"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
7
],
"names": [
"main_joint1",
"main_joint2",
"main_joint3",
"main_joint4",
"main_joint5",
"main_joint6",
"main_gripper"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
7
],
"names": [
"main_joint1",
"main_joint2",
"main_joint3",
"main_joint4",
"main_joint5",
"main_joint6",
"main_gripper"
]
},
"observation.images.wrist": {
"dtype": "video",
"shape": [
240,
320,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 240,
"video.width": 320,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": true,
"has_audio": true
}
},
"observation.images.top": {
"dtype": "video",
"shape": [
240,
320,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 240,
"video.width": 320,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": true,
"has_audio": true
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
oguz7/printer2 | oguz7 | "2025-01-06T07:03:53Z" | 0 | 0 | [
"license:apache-2.0",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T05:58:13Z" | ---
license: apache-2.0
---
|
mlfoundations-dev/stackoverflow_100000_samples | mlfoundations-dev | "2025-01-06T06:02:12Z" | 0 | 0 | [
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:02:02Z" | ---
dataset_info:
features:
- name: instruction
dtype: string
splits:
- name: train
num_bytes: 73394283
num_examples: 100000
download_size: 43241697
dataset_size: 73394283
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
PNEfc/PNEfc | PNEfc | "2025-01-06T06:06:50Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:06:29Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 479122252
num_examples: 32180
download_size: 103440731
dataset_size: 479122252
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kwack08/seoul_test | kwack08 | "2025-01-06T06:07:01Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:06:53Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 479122252
num_examples: 32180
download_size: 103440731
dataset_size: 479122252
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kdy40929/first | kdy40929 | "2025-01-06T06:07:18Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:07:11Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 479122252
num_examples: 32180
download_size: 103440731
dataset_size: 479122252
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
youzn/seoul_test | youzn | "2025-01-06T06:07:52Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:07:44Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 479122252
num_examples: 32180
download_size: 103440731
dataset_size: 479122252
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Han0516/test | Han0516 | "2025-01-06T06:08:05Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:07:57Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 479122252
num_examples: 32180
download_size: 103440731
dataset_size: 479122252
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
violetxi/MATH-500_L4_best_first_N128_B16_D15_T0.0001_0-128 | violetxi | "2025-01-06T16:44:48Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:08:03Z" | ---
dataset_info:
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: search_trace_with_values
dtype: string
- name: search_method
dtype: string
- name: ground_truth
dtype: string
- name: search_input_tokens
dtype: int64
- name: search_output_tokens
dtype: int64
- name: solution_input_tokens
dtype: int64
- name: solution_output_tokens
dtype: int64
splits:
- name: train
num_bytes: 70229
num_examples: 21
download_size: 53887
dataset_size: 70229
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
YunHug/seoul_test | YunHug | "2025-01-06T06:08:23Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:08:14Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 479122252
num_examples: 32180
download_size: 103440731
dataset_size: 479122252
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kjskjskj/seoul_test | kjskjskj | "2025-01-06T06:11:32Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:11:25Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 479122252
num_examples: 32180
download_size: 103440731
dataset_size: 479122252
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
federicodima/train.json | federicodima | "2025-01-06T06:18:15Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:18:04Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 479122252
num_examples: 32180
download_size: 103440731
dataset_size: 479122252
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
HappyAIUser/LONGCOT-Alpaca | HappyAIUser | "2025-01-06T06:43:40Z" | 0 | 0 | [
"task_categories:text-generation",
"task_categories:text2text-generation",
"language:en",
"license:apache-2.0",
"size_categories:100K<n<1M",
"format:json",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"conversational",
"instruction-tuning"
] | [
"text-generation",
"text2text-generation"
] | "2025-01-06T06:41:10Z" | ---
license: apache-2.0
task_categories:
- text-generation
- text2text-generation
language:
- en
size_categories:
- 1K<n<10K
tags:
- conversational
- instruction-tuning
---
# Dataset Card for LONGCOT-Alpaca
This dataset contains instruction-input-output pairs converted to ShareGPT format, designed for instruction tuning and text generation tasks.
## Dataset Description
The dataset consists of carefully curated instruction-input-output pairs, formatted for conversational AI training. Each entry contains:
- An instruction that specifies the task
- An optional input providing context
- A detailed output that addresses the instruction
## Usage
This dataset is particularly suitable for:
- Instruction tuning of language models
- Training conversational AI systems
- Fine-tuning for specific domain knowledge
|
DORAEMONG/seoul_test | DORAEMONG | "2025-01-06T06:44:11Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:44:06Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 479122252
num_examples: 32180
download_size: 103440731
dataset_size: 479122252
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
jkazdan/Llama-3.1-70B-Instruct-refusal-attack-5000-gen3 | jkazdan | "2025-01-06T07:04:08Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:44:11Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: response
dtype: string
splits:
- name: train
num_bytes: 15872451
num_examples: 5000
download_size: 3892796
dataset_size: 15872451
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
yazeed7/nq_open_filtered | yazeed7 | "2025-01-06T06:56:10Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:53:42Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
- name: label
sequence: string
splits:
- name: train
num_bytes: 148155
num_examples: 1730
download_size: 101965
dataset_size: 148155
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "nq_open_filtered"
A subset of [NQ Open](https://huggingface.co/datasets/google-research-datasets/nq_open) manually filtered to remove time-dependent, ambiguous, or unfactual questions. |
DT4LM/naive_t5v1-1base_rte_pair_faster-alzantot_old | DT4LM | "2025-01-06T06:54:26Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:54:23Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 40153
num_examples: 127
download_size: 33723
dataset_size: 40153
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
DT4LM/naive_t5v1-1base_rte_pair_faster-alzantot_original_old | DT4LM | "2025-01-06T06:54:43Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:54:40Z" | ---
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype: int32
splits:
- name: train
num_bytes: 39869
num_examples: 127
download_size: 33185
dataset_size: 39869
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
qiyn/realman_test | qiyn | "2025-01-06T08:56:11Z" | 0 | 0 | [
"task_categories:robotics",
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot"
] | [
"robotics"
] | "2025-01-06T06:55:35Z" | ---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.0",
"robot_type": "stretch",
"total_episodes": 1,
"total_frames": 177,
"total_tasks": 1,
"total_videos": 2,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 6,
"splits": {
"train": "0:1"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
14
],
"names": [
"left_arm_joint_1",
"left_arm_joint_2",
"left_arm_joint_3",
"left_arm_joint_4",
"left_arm_joint_5",
"left_arm_joint_6",
"left_arm_joint_7",
"right_arm_joint_1",
"right_arm_joint_2",
"right_arm_joint_3",
"right_arm_joint_4",
"right_arm_joint_5",
"right_arm_joint_6",
"right_arm_joint_7"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
14
],
"names": [
"left_arm_joint_1",
"left_arm_joint_2",
"left_arm_joint_3",
"left_arm_joint_4",
"left_arm_joint_5",
"left_arm_joint_6",
"left_arm_joint_7",
"right_arm_joint_1",
"right_arm_joint_2",
"right_arm_joint_3",
"right_arm_joint_4",
"right_arm_joint_5",
"right_arm_joint_6",
"right_arm_joint_7"
]
},
"observation.images.camera_1": {
"dtype": "video",
"shape": [
720,
1280,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 6.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.camera_2": {
"dtype": "video",
"shape": [
720,
1280,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 6.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
``` |
rzayla/test | rzayla | "2025-01-06T06:57:21Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T06:57:06Z" | ---
dataset_info:
features:
- name: Instruction
dtype: string
- name: Input
dtype: float64
- name: Response
dtype: string
splits:
- name: train
num_bytes: 76431.60416666667
num_examples: 172
- name: test
num_bytes: 8887.395833333334
num_examples: 20
download_size: 12711
dataset_size: 85319.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
chmzheng04/abc-test | chmzheng04 | "2025-01-06T07:01:33Z" | 0 | 0 | [
"license:mit",
"region:us"
] | null | "2025-01-06T07:01:10Z" | ---
license: mit
---
test
|
InsultedByMathematics/infoNCA-ultrafeedback-test_eval_update_401_online_alpha_1e-2_v2 | InsultedByMathematics | "2025-01-06T07:01:48Z" | 0 | 0 | [
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T07:01:44Z" | ---
dataset_info:
features:
- name: response_0
dtype: string
- name: response_1
dtype: string
- name: response_2
dtype: string
- name: response_3
dtype: string
- name: response_4
dtype: string
- name: response_0_reward
dtype: float64
- name: response_1_reward
dtype: float64
- name: response_2_reward
dtype: float64
- name: response_3_reward
dtype: float64
- name: response_4_reward
dtype: float64
- name: prompt_id
dtype: string
- name: prompt
dtype: string
- name: llama_prompt_tokens
sequence: int64
- name: llama_chosen_tokens
sequence: int64
- name: chosen_reward
dtype: float64
- name: llama_reject_tokens
sequence: int64
- name: reject_reward
dtype: float64
- name: llama_middle_tokens
sequence: int64
- name: middle_reward
dtype: float64
- name: chosen_logprob
dtype: float64
- name: middle_logprob
dtype: float64
- name: reject_logprob
dtype: float64
- name: finetuned_response_0
dtype: string
- name: finetuned_response_1
dtype: string
- name: finetuned_response_2
dtype: string
- name: finetuned_response_3
dtype: string
- name: finetuned_response_4
dtype: string
splits:
- name: test_prefs
num_bytes: 118174316
num_examples: 1801
download_size: 38644676
dataset_size: 118174316
configs:
- config_name: default
data_files:
- split: test_prefs
path: data/test_prefs-*
---
|
Lvyn/bot-ppdb | Lvyn | "2025-01-07T01:08:42Z" | 0 | 0 | [
"license:mit",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T07:09:19Z" | ---
license: mit
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: role
dtype: string
- name: content
dtype: string
splits:
- name: train
num_bytes: 133
num_examples: 2
download_size: 1329
dataset_size: 133
---
|
amang1802/synthetic_data_qna_fulltext_conditioned_L3.3_70B_deduped | amang1802 | "2025-01-06T07:17:26Z" | 0 | 0 | [
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T07:17:23Z" | ---
dataset_info:
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
- name: synthetic_content
dtype: string
splits:
- name: train
num_bytes: 22228772.094824217
num_examples: 5119
- name: test
num_bytes: 22237456.905175783
num_examples: 5121
download_size: 23143114
dataset_size: 44466229.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
ayon380/Midj | ayon380 | "2025-01-06T07:36:03Z" | 0 | 0 | [
"region:us"
] | null | "2025-01-06T07:17:29Z" | ---
dataset_info:
features:
- name: caption
dtype: string
- name: image
dtype: image
- name: link
dtype: string
- name: message_id
dtype: string
- name: timestamp
dtype: string
splits:
- name: train
num_bytes: 0
num_examples: 0
download_size: 0
dataset_size: 0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
Use the Edit dataset card button to edit. |
Sanjain/finetuning_demo_new | Sanjain | "2025-01-06T07:17:58Z" | 0 | 0 | [
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] | null | "2025-01-06T07:17:55Z" | ---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 25260
num_examples: 51
download_size: 13248
dataset_size: 25260
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|