modelId
stringlengths 4
122
| author
stringlengths 2
42
| last_modified
unknown | downloads
int64 0
434M
| likes
int64 0
6.54k
| library_name
stringclasses 367
values | tags
sequencelengths 1
4.05k
| pipeline_tag
stringclasses 51
values | createdAt
unknown | card
stringlengths 1
913k
|
---|---|---|---|---|---|---|---|---|---|
raaedk/anime-girl | raaedk | "2024-11-01T00:28:41Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T00:28:41Z" | Entry not found |
vnthuan02/FaceTesting | vnthuan02 | "2024-11-01T00:29:11Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T00:29:11Z" | Entry not found |
nazlisevdam/Qwen-Qwen1.5-1.8B-1730420955 | nazlisevdam | "2024-11-01T00:29:16Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-1.8B",
"base_model:adapter:Qwen/Qwen1.5-1.8B",
"region:us"
] | null | "2024-11-01T00:29:15Z" | ---
base_model: Qwen/Qwen1.5-1.8B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.13.2 |
richie-ghost/srt_trainer_llama2_2B_peft | richie-ghost | "2024-11-01T00:30:11Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-11-01T00:30:02Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
swapnil7777/llava_level_6epoch_multi_image | swapnil7777 | "2024-11-01T00:31:20Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-11-01T00:31:13Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
selimercan/Qwen-Qwen1.5-1.8B-1730421081 | selimercan | "2024-11-01T00:31:22Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-1.8B",
"base_model:adapter:Qwen/Qwen1.5-1.8B",
"region:us"
] | null | "2024-11-01T00:31:21Z" | ---
base_model: Qwen/Qwen1.5-1.8B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.13.2 |
cobordism/LVN_mistral_7b-parallel10k-10 | cobordism | "2024-11-01T03:37:48Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-11-01T00:31:31Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
nazlisevdam/google-gemma-2b-1730421138 | nazlisevdam | "2024-11-01T00:32:20Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"region:us"
] | null | "2024-11-01T00:32:18Z" | ---
base_model: google/gemma-2b
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.13.2 |
personalidadartificial/Maelo | personalidadartificial | "2024-11-01T00:32:53Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T00:32:53Z" | Entry not found |
selimercan/google-gemma-2b-1730421255 | selimercan | "2024-11-01T00:34:16Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:google/gemma-2b",
"base_model:adapter:google/gemma-2b",
"region:us"
] | null | "2024-11-01T00:34:15Z" | ---
base_model: google/gemma-2b
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.13.2 |
richie-ghost/merged_sft_llama3_2_2B_base_and_QLORA_Adapter | richie-ghost | "2024-11-01T00:36:02Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"sft",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | "2024-11-01T00:34:36Z" | ---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Oleg1231gelO/Doome | Oleg1231gelO | "2024-11-01T00:41:53Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T00:41:53Z" | Entry not found |
wesley157kkkkkk/lesley | wesley157kkkkkk | "2024-11-01T00:43:10Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T00:43:10Z" | Entry not found |
LinxuanPastel/gigante | LinxuanPastel | "2024-11-01T01:10:32Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T00:43:32Z" | Entry not found |
ZYMScott/mRNAdesigner | ZYMScott | "2024-11-01T03:34:24Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T00:45:16Z" | Entry not found |
vedal-ai/azure-speech | vedal-ai | "2024-11-01T00:46:25Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T00:46:25Z" | Entry not found |
onnx-community/MobileLLM-350M | onnx-community | "2024-11-01T00:47:43Z" | 0 | 0 | transformers.js | [
"transformers.js",
"onnx",
"mobilellm",
"text-generation",
"custom_code",
"base_model:facebook/MobileLLM-350M",
"base_model:quantized:facebook/MobileLLM-350M",
"region:us"
] | text-generation | "2024-11-01T00:46:26Z" | ---
library_name: transformers.js
base_model: facebook/MobileLLM-350M
---
https://huggingface.co/facebook/MobileLLM-350M with ONNX weights to be compatible with Transformers.js.
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [π€ Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |
nikutd01/emotion_tweet_albert-base-v2_2024-11-01 | nikutd01 | "2024-11-01T00:47:13Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"albert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-classification | "2024-11-01T00:47:11Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
onnx-community/MobileLLM-600M | onnx-community | "2024-11-01T00:49:57Z" | 0 | 0 | transformers.js | [
"transformers.js",
"onnx",
"mobilellm",
"text-generation",
"custom_code",
"base_model:facebook/MobileLLM-600M",
"base_model:quantized:facebook/MobileLLM-600M",
"region:us"
] | text-generation | "2024-11-01T00:47:44Z" | ---
library_name: transformers.js
base_model: facebook/MobileLLM-600M
---
https://huggingface.co/facebook/MobileLLM-600M with ONNX weights to be compatible with Transformers.js.
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [π€ Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |
Nisk36/finetuned-augmxnt_shisa-gamma-7b-v1 | Nisk36 | "2024-11-01T00:52:04Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-01T00:47:57Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Houssem-Karboul/BRAIN_TUMOR_CLASSIFICATION | Houssem-Karboul | "2024-11-01T00:49:00Z" | 0 | 0 | tf-keras | [
"tf-keras",
"region:us"
] | null | "2024-11-01T00:48:36Z" | Entry not found |
GalacticLad/Guilty_Gear_SDXL | GalacticLad | "2024-11-01T00:49:30Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T00:49:08Z" | Entry not found |
Yongxin-Guo/trace-uni | Yongxin-Guo | "2024-11-01T03:15:31Z" | 0 | 1 | null | [
"safetensors",
"trace_mistral",
"video temporal grounding",
"dense video caption",
"video highlight detection",
"en",
"arxiv:2410.05643",
"base_model:mistralai/Mistral-7B-Instruct-v0.2",
"base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2",
"license:apache-2.0",
"region:us"
] | null | "2024-11-01T00:50:17Z" | ---
license: apache-2.0
language:
- en
base_model:
- mistralai/Mistral-7B-Instruct-v0.2
tags:
- video temporal grounding
- dense video caption
- video highlight detection
---
<h2 align="center"> <a href="https://arxiv.org/abs/2410.05643">TRACE: Temporal Grounding Video LLM via Causal Event Modeling</a></h2>
<h5 align="center"> If our project helps you, please give us a star β on <a href="https://github.com/gyxxyg/TRACE">GitHub</a> and cite our paper!</h2>
<h5 align="center">
## π° News
- **[2024.11.01]** π₯ We are excited to announce the release of [trace-uni](https://huggingface.co/Yongxin-Guo/trace-uni), which has been enhanced by incorporating additional general video understanding data from a subset of [LLaVA-Video-178k](https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K). Our results indicate that trace-uni outperforms trace in both VTG tasks and general video understanding tasks.
- **[2024.10.19]** π₯ We release [trace-retrieval](https://huggingface.co/Yongxin-Guo/trace-retrieval) by forcing the predicted timestamps to be align with the input frame timestamps. Results show trace-retrieval achieve better performance on dense video captioning tasks.
- **[2024.10.10]** π₯ Our [code](https://github.com/gyxxyg/TRACE) and [paper](https://arxiv.org/abs/2410.05643) are released!
- **[2024.10.10]** π₯ Our **checkpoints** are available now!
## Overview
In this work
- We model the videos by a series of events, and propose causal event modeling framework to capture videos' inherent structure.
- We present a novel task-interleaved video LLM model, TRACE, tailored to implement the causal event modeling framework through the sequential encoding/decoding of timestamps, salient scores, and textual captions.
## Model Zoo
| Checkpoints | Description | URL |
| ----------- | ----------- | ----------- |
| Initialization | Weights initialized from VideoLLaMA2 | [trace-init](https://huggingface.co/Yongxin-Guo/trace-init) |
| Stage-1 | Model checkpoints trained after stage-1 | [trace-stage1](https://huggingface.co/Yongxin-Guo/trace-stage1) |
| Stage-2 | Model checkpoints trained after stage-2 | [trace](https://huggingface.co/Yongxin-Guo/trace) |
| FT-Charades | Fine-tuned on Charades-STA dataset | [trace-ft-charades](https://huggingface.co/Yongxin-Guo/trace-ft-charades) |
| FT-Youcook2 | Fine-tuned on Youcook2 dataset | [trace-ft-youcook2](https://huggingface.co/Yongxin-Guo/trace-ft-youcook2) |
| FT-QVHighlights | Fine-tuned on QVHighlights dataset | [trace-ft-qvhighlights](https://huggingface.co/Yongxin-Guo/trace-ft-qvhighlights) |
| TRACE-retrieval | Forcing the predicted timestamps to be align with input timestamps | [trace-retrieval](https://huggingface.co/Yongxin-Guo/trace-retrieval) |
| TRACE-uni | Incorporating additional general video understanding data from a subset of [LLaVA-Video-178k](https://huggingface.co/datasets/lmms-lab/LLaVA-Video-178K). | [trace-uni](https://huggingface.co/Yongxin-Guo/trace-uni) |
#### Results
| Youcook2 (Zero-Shot) | CIDER | METEOR | SODA_c | F1 |
| --- | --- | --- | --- | --- |
| TRACE | 8.1 | 2.8 | 2.2 | 22.4 |
| TRACE-retrieval | 8.3 | 2.9 | 2.3 | 24.1 |
| Charades-STA (Zero-Shot) | 0.3 | 0.5 | 0.7 | mIOU |
| --- | --- | --- | --- | --- |
| TRACE | 58.6 | 40.3 | 19.4 | 38.7 |
| TRACE-retrieval | 57.9 | 37.4 | 17.3 | 37.4 |
| QVHighlights (Zero-Shot) | mAP | Hit@1 |
| --- | --- | --- |
| TRACE | 26.8 | 42.7 |
| TRACE-retrieval | 27.9 | 44.3 |
| ActivityNet-DVC | CIDER | METEOR | SODA_c | F1 |
| --- | --- | --- | --- | --- |
| TRACE | 25.9 | 6.0 | 6.4 | 39.3 |
| TRACE-retrieval | 25.7 | 5.9 | 6.5 | 40.1 |
| ActivityNet-MR | 0.3 | 0.5 | 0.7 | mIOU |
| --- | --- | --- | --- | --- |
| TRACE | 54.0 | 37.7 | 24.0 | 39.0 |
| TRACE-retrieval | 54.4 | 39.8 | 24.9 | 40.2 |
|
AlignmentResearch/robust_llm_pythia-6.9b_clf_harmless_v-ian-135c_s-0 | AlignmentResearch | "2024-11-01T01:01:50Z" | 0 | 0 | null | [
"pytorch",
"gpt_neox",
"region:us"
] | null | "2024-11-01T00:50:34Z" | Entry not found |
piotrekgrl/llama381binstruct_summarize_short | piotrekgrl | "2024-11-01T00:53:50Z" | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"dataset:generator",
"base_model:NousResearch/Meta-Llama-3.1-8B-Instruct",
"base_model:adapter:NousResearch/Meta-Llama-3.1-8B-Instruct",
"license:llama3.1",
"region:us"
] | null | "2024-11-01T00:53:43Z" | ---
base_model: NousResearch/Meta-Llama-3.1-8B-Instruct
datasets:
- generator
library_name: peft
license: llama3.1
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: llama381binstruct_summarize_short
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama381binstruct_summarize_short
This model is a fine-tuned version of [NousResearch/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3.1-8B-Instruct) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4181
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 6
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.5775 | 0.25 | 5 | 1.5695 |
| 1.7351 | 0.5 | 10 | 1.3455 |
| 2.0074 | 0.75 | 15 | 1.2429 |
| 1.6972 | 1.0 | 20 | 1.1852 |
| 1.2054 | 1.25 | 25 | 1.1672 |
| 1.4255 | 1.5 | 30 | 1.1778 |
| 0.9758 | 1.75 | 35 | 1.1446 |
| 1.3851 | 2.0 | 40 | 1.1498 |
| 0.8252 | 2.25 | 45 | 1.1879 |
| 1.0266 | 2.5 | 50 | 1.2851 |
| 0.6106 | 2.75 | 55 | 1.2537 |
| 0.9328 | 3.0 | 60 | 1.2100 |
| 0.5083 | 3.25 | 65 | 1.2748 |
| 0.4762 | 3.5 | 70 | 1.4306 |
| 0.7648 | 3.75 | 75 | 1.4550 |
| 0.2807 | 4.0 | 80 | 1.3928 |
| 0.3343 | 4.25 | 85 | 1.3819 |
| 0.4685 | 4.5 | 90 | 1.3942 |
| 0.1421 | 4.75 | 95 | 1.4113 |
| 0.2701 | 5.0 | 100 | 1.4181 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.1
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.1 |
ArikAranta/marian-finetuned-kde4-en-to-fr | ArikAranta | "2024-11-01T00:54:52Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T00:54:52Z" | Entry not found |
piotrekgrl/llama381binstruct_summarize_short_merged | piotrekgrl | "2024-11-01T00:59:13Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"trl",
"sft",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"4-bit",
"bitsandbytes",
"region:us"
] | text-generation | "2024-11-01T00:55:42Z" | ---
library_name: transformers
tags:
- trl
- sft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
Daverick/Kairo | Daverick | "2024-11-01T00:56:22Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T00:56:22Z" | Entry not found |
septyoa/LaptopPricePredv4 | septyoa | "2024-11-01T00:57:34Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T00:57:17Z" | Entry not found |
onnx-community/OmniParser-icon_detect_640x640 | onnx-community | "2024-11-01T03:13:32Z" | 0 | 0 | null | [
"onnx",
"yolov8",
"region:us"
] | null | "2024-11-01T00:57:26Z" | Entry not found |
ArikAranta/marian-finetuned-kde4-en-to-id | ArikAranta | "2024-11-01T00:58:56Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T00:58:56Z" | Entry not found |
jncraton/SmolLM2-360M-Instruct-ct2-int8 | jncraton | "2024-11-01T01:02:36Z" | 0 | 0 | transformers | [
"transformers",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | "2024-11-01T01:02:13Z" | ---
library_name: transformers
license: apache-2.0
language:
- en
---
# SmolLM2
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/oWWfzW4RbWkVIo7f-5444.png)
## Table of Contents
1. [Model Summary](##model-summary)
2. [Limitations](##limitations)
3. [Training](##training)
4. [License](##license)
5. [Citation](##citation)
## Model Summary
SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device.
SmolLM2 demonstrates significant advances over its predecessor SmolLM1, particularly in instruction following, knowledge, reasoning. The 360M model was trained on 4 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new filtered datasets we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).
The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1).
### How to use
### Transformers
```bash
pip install transformers
```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM2-360M-Instruct"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
messages = [{"role": "user", "content": "What is the capital of France."}]
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
print(input_text)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
print(tokenizer.decode(outputs[0]))
```
### Chat in TRL
You can also use the TRL CLI to chat with the model from the terminal:
```bash
pip install trl
trl chat --model_name_or_path HuggingFaceTB/SmolLM2-360M-Instruct --device cpu
```
## Evaluation
In this section, we report the evaluation results of SmolLM2. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them.
## Base Pre-Trained Model
| Metrics | SmolLM2-360M | Qwen2.5-0.5B | SmolLM-360M |
|:-------------------|:------------:|:------------:|:------------:|
| HellaSwag | **54.5** | 51.2 | 51.8 |
| ARC (Average) | **53.0** | 45.4 | 50.1 |
| PIQA | **71.7** | 69.9 | 71.6 |
| MMLU (cloze) | **35.8** | 33.7 | 34.4 |
| CommonsenseQA | **38.0** | 31.6 | 35.3 |
| TriviaQA | **16.9** | 4.3 | 9.1 |
| Winogrande | 52.5 | **54.1** | 52.8 |
| OpenBookQA | **37.4** | **37.4** | 37.2 |
| GSM8K (5-shot) | 3.2 | **33.4** | 1.6 |
## Instruction Model
| Metric | SmolLM2-360M-Instruct | Qwen2.5-0.5B-Instruct | SmolLM-360M-Instruct |
|:-----------------------------|:---------------------:|:---------------------:|:---------------------:|
| IFEval (Average prompt/inst) | **41.0** | 31.6 | 19.8 |
| MT-Bench | 3.66 | **4.16** | 3.37 |
| HellaSwag | **52.1** | 48.0 | 47.9 |
| ARC (Average) | **43.7** | 37.3 | 38.8 |
| PIQA | **70.8** | 67.2 | 69.4 |
| MMLU (cloze) | **32.8** | 31.7 | 30.6 |
| BBH (3-shot) | 27.3 | **30.7** | 24.4 |
| GSM8K (5-shot) | 7.43 | **26.8** | 1.36 |
## Limitations
SmolLM2 models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.
## Training
### Model
- **Architecture:** Transformer decoder
- **Pretraining tokens:** 4T
- **Precision:** bfloat16
### Hardware
- **GPUs:** 64 H100
### Software
- **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main)
## License
[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
## Citation
```bash
@misc{allal2024SmolLM2,
title={SmolLM2 - with great data, comes great performance},
author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel MartΓn BlΓ‘zquez and Lewis Tunstall and AgustΓn Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf},
year={2024},
}
``` |
straykittycat/straycat | straykittycat | "2024-11-01T01:14:40Z" | 0 | 0 | null | [
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | "2024-11-01T01:02:30Z" | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
straykittycat/straycatz | straykittycat | "2024-11-01T01:09:45Z" | 0 | 0 | null | [
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | "2024-11-01T01:02:32Z" | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
jncraton/SmolLM2-1.7B-Instruct-ct2-int8 | jncraton | "2024-11-01T01:09:12Z" | 0 | 0 | transformers | [
"transformers",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | "2024-11-01T01:07:49Z" | ---
library_name: transformers
license: apache-2.0
language:
- en
---
# SmolLM2
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/y45hIMNREW7w_XpHYB_0q.png)
## Table of Contents
1. [Model Summary](#model-summary)
2. [Evaluation](#evaluation)
3. [Examples](#examples)
4. [Limitations](#limitations)
5. [Training](#training)
6. [License](#license)
7. [Citation](#citation)
## Model Summary
SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device.
The 1.7B variant demonstrates significant advances over its predecessor SmolLM1-1.7B, particularly in instruction following, knowledge, reasoning, and mathematics. It was trained on 11 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new mathematics and coding datasets that we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).
The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1).
### How to use
### Transformers
```bash
pip install transformers
```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
messages = [{"role": "user", "content": "What is the capital of France."}]
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
print(tokenizer.decode(outputs[0]))
```
### Chat in TRL
You can also use the TRL CLI to chat with the model from the terminal:
```bash
pip install trl
trl chat --model_name_or_path HuggingFaceTB/SmolLM2-1.7B-Instruct --device cpu
```
## Evaluation
In this section, we report the evaluation results of SmolLM2. All evaluations are zero-shot unless stated otherwise, and we use [lighteval](https://github.com/huggingface/lighteval) to run them.
## Base Pre-Trained Model
| Metric | SmolLM2-1.7B | Llama-1B | Qwen2.5-1.5B | SmolLM1-1.7B |
|------------------|--------------|-------------|---------------|--------------|
| HellaSwag | **68.7** | 61.2 | 66.4 | 62.9 |
| ARC (Average) | **60.5** | 49.2 | 58.5 | 59.9 |
| PIQA | **77.6** | 74.8 | 76.1 | 76.0 |
| MMLU-Pro (MCF) | **19.4** | 11.7 | 13.7 | 10.8 |
| CommonsenseQA | **43.6** | 41.2 | 34.1 | 38.0 |
| TriviaQA | **36.7** | 28.1 | 20.9 | 22.5 |
| Winogrande | **59.4** | 57.8 | 59.3 | 54.7 |
| OpenBookQA | 42.2 | 38.4 | 40.0 | **42.4** |
| GSM8K (5-shot) | 31.0 | 7.2 | **61.3** | 5.5 |
## Instruction Model
| Metric | SmolLM2-1.7B-Instruct | Llama-1B-Instruct | Qwen2.5-1.5B-Instruct | SmolLM1-1.7B-Instruct |
|:-----------------------------|:---------------------:|:-----------------:|:----------------------:|:----------------------:|
| IFEval (Average prompt/inst) | **56.7** | 53.5 | 47.4 | 23.1 |
| MT-Bench | 6.13 | 5.48 | **6.52** | 4.33 |
| OpenRewrite-Eval (micro_avg RougeL) | 44.9 | 39.2 | **46.9** | NaN |
| HellaSwag | **66.1** | 56.1 | 60.9 | 55.5 |
| ARC (Average) | **51.7** | 41.6 | 46.2 | 43.7 |
| PIQA | **74.4** | 72.3 | 73.2 | 71.6 |
| MMLU-Pro (MCF) | 19.3 | 12.7 | **24.2** | 11.7 |
| BBH (3-shot) | 32.2 | 27.6 | **35.3** | 25.7 |
| GSM8K (5-shot) | **48.2** | 26.8 | 42.8 | 4.62 |
## Examples
Below are some system and instruct prompts that work well for special tasks
### Text rewriting
```python
system_prompt_rewrite = "You are an AI writing assistant. Your task is to rewrite the user's email to make it more professional and approachable while maintaining its main points and key message. Do not return any text other than the rewritten message."
user_prompt_rewrite = "Rewrite the message below to make it more friendly and approachable while maintaining its main points and key message. Do not add any new information or return any text other than the rewritten message\nThe message:"
messages = [{"role": "system", "content": system_prompt_rewrite}, {"role": "user", "content":f"{user_prompt_rewrite} The CI is failing after your last commit!}"]
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
print(tokenizer.decode(outputs[0]))
```
```
Hey there! I noticed that the CI isn't passing after your latest commit. Could you take a look and let me know what's going on? Thanks so much for your help!
```
### Summarization
```python
system_prompt_summarize = "Provide a concise, objective summary of the input text in up to three sentences, focusing on key actions and intentions without using second or third person pronouns."
messages = [{"role": "system", "content": system_prompt_rewrite}, {"role": "user", "content": INSERT_LONG_EMAIL]
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
print(tokenizer.decode(outputs[0]))
```
### Function calling
SmolLM2-1.7B-Instruct can handle function calling, it scores 27% on the [BFCL Leaderboard](https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html). Here's how you can leverage it:
```python
import json
import re
from typing import Optional
from jinja2 import Template
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.utils import get_json_schema
system_prompt = Template("""You are an expert in composing functions. You are given a question and a set of possible functions.
Based on the question, you will need to make one or more function/tool calls to achieve the purpose.
If none of the functions can be used, point it out and refuse to answer.
If the given question lacks the parameters required by the function, also point it out.
You have access to the following tools:
<tools>{{ tools }}</tools>
The output MUST strictly adhere to the following format, and NO other text MUST be included.
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please make the tool calls an empty list '[]'.
<tool_call>[
{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},
... (more tool calls as required)
]</tool_call>""")
def prepare_messages(
query: str,
tools: Optional[dict[str, any]] = None,
history: Optional[list[dict[str, str]]] = None
) -> list[dict[str, str]]:
"""Prepare the system and user messages for the given query and tools.
Args:
query: The query to be answered.
tools: The tools available to the user. Defaults to None, in which case if a
list without content will be passed to the model.
history: Exchange of messages, including the system_prompt from
the first query. Defaults to None, the first message in a conversation.
"""
if tools is None:
tools = []
if history:
messages = history.copy()
messages.append({"role": "user", "content": query})
else:
messages = [
{"role": "system", "content": system_prompt.render(tools=json.dumps(tools))},
{"role": "user", "content": query}
]
return messages
def parse_response(text: str) -> str | dict[str, any]:
"""Parses a response from the model, returning either the
parsed list with the tool calls parsed, or the
model thought or response if couldn't generate one.
Args:
text: Response from the model.
"""
pattern = r"<tool_call>(.*?)</tool_call>"
matches = re.findall(pattern, text, re.DOTALL)
if matches:
return json.loads(matches[0])
return text
```
## Limitations
SmolLM2 models primarily understand and generate content in English. They can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.
## Training
### Model
- **Architecture:** Transformer decoder
- **Pretraining tokens:** 11T
- **Precision:** bfloat16
### Hardware
- **GPUs:** 256 H100
### Software
- **Training Framework:** [nanotron](https://github.com/huggingface/nanotron/tree/main)
- **Alignement Handbook** [alignement-handbook](https://github.com/huggingface/alignment-handbook/)
## License
[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
## Citation
```bash
@misc{allal2024SmolLM2,
title={SmolLM2 - with great data, comes great performance},
author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Gabriel MartΓn BlΓ‘zquez and Lewis Tunstall and AgustΓn Piqueres and Andres Marafioti and Cyril Zakka and Leandro von Werra and Thomas Wolf},
year={2024},
}
``` |
saqqdy/Qwen-Qwen1.5-0.5B-1730423292 | saqqdy | "2024-11-01T01:08:10Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T01:08:10Z" | Entry not found |
Lekhansh/Llama-3.1-70B-Instruct-mixed-instructions | Lekhansh | "2024-11-01T01:08:48Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T01:08:48Z" | Entry not found |
onnx-community/BackgroundMattingV2-hd | onnx-community | "2024-11-01T01:09:32Z" | 0 | 0 | null | [
"onnx",
"region:us"
] | null | "2024-11-01T01:09:26Z" | Entry not found |
onnx-community/BackgroundMattingV2-4k | onnx-community | "2024-11-01T01:09:41Z" | 0 | 0 | null | [
"onnx",
"region:us"
] | null | "2024-11-01T01:09:39Z" | Entry not found |
hazzzz/sentiment-analysis-portuguese | hazzzz | "2024-11-01T01:16:50Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T01:11:43Z" | Entry not found |
raaedk/anime-style | raaedk | "2024-11-01T02:59:03Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T01:12:23Z" | Entry not found |
vnthuan02/HuggingFaceTesting | vnthuan02 | "2024-11-01T01:12:36Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T01:12:36Z" | Entry not found |
4yo1/fine-pre3_lora4_1024-math10k-EL30k-INST0930-ep3_datacleanAXOLOTL-good | 4yo1 | "2024-11-01T08:56:43Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-01T01:12:45Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
straykittycat/straycatzz | straykittycat | "2024-11-01T01:26:16Z" | 0 | 0 | null | [
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | "2024-11-01T01:13:31Z" | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
vnthuan02/HuggingTesting | vnthuan02 | "2024-11-01T01:19:08Z" | 0 | 0 | null | [
"av",
"dataset:fka/awesome-chatgpt-prompts",
"base_model:openai/whisper-large-v3-turbo",
"base_model:finetune:openai/whisper-large-v3-turbo",
"license:apache-2.0",
"region:us"
] | null | "2024-11-01T01:16:03Z" | ---
license: apache-2.0
datasets:
- fka/awesome-chatgpt-prompts
language:
- av
base_model:
- openai/whisper-large-v3-turbo
--- |
Sierkinhane/lvp_llama3_8b | Sierkinhane | "2024-11-01T02:13:55Z" | 0 | 0 | null | [
"tensorboard",
"safetensors",
"llama",
"llama-factory",
"full",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B-Instruct",
"base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct",
"license:other",
"region:us"
] | null | "2024-11-01T01:16:10Z" | ---
license: other
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: sft
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/sierkinhane/huggingface/runs/sej9pkhd)
# sft
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the storyboard20k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5335
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.5652 | 0.7771 | 10000 | 0.5870 |
### Framework versions
- Transformers 4.43.2
- Pytorch 2.3.0+cu121
- Datasets 2.16.0
- Tokenizers 0.19.1
|
yoste/Como_Se_Llama | yoste | "2024-11-01T01:16:57Z" | 0 | 0 | null | [
"license:llama3.2",
"region:us"
] | null | "2024-11-01T01:16:57Z" | ---
license: llama3.2
---
|
straykittycat/straycats | straykittycat | "2024-11-01T01:24:39Z" | 0 | 0 | null | [
"any-to-any",
"omega",
"omegalabs",
"bittensor",
"agi",
"license:mit",
"region:us"
] | any-to-any | "2024-11-01T01:17:33Z" | ---
license: mit
tags:
- any-to-any
- omega
- omegalabs
- bittensor
- agi
---
This is an Any-to-Any model checkpoint for the OMEGA Labs x Bittensor Any-to-Any subnet.
Check out the [git repo](https://github.com/omegalabsinc/omegalabs-anytoany-bittensor) and find OMEGA on X: [@omegalabsai](https://x.com/omegalabsai).
|
saqqdy/Qwen-Qwen1.5-1.8B-1730423943 | saqqdy | "2024-11-01T01:19:07Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-1.8B",
"base_model:adapter:Qwen/Qwen1.5-1.8B",
"region:us"
] | null | "2024-11-01T01:19:01Z" | ---
base_model: Qwen/Qwen1.5-1.8B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.13.1 |
matthewlee23/lora-test | matthewlee23 | "2024-11-01T01:24:34Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T01:19:37Z" | Entry not found |
minimimtoy25/tcross | minimimtoy25 | "2024-11-01T02:24:01Z" | 0 | 0 | null | [
"license:other",
"region:us"
] | null | "2024-11-01T01:21:26Z" | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
dahara1/gemma-2-9b-test | dahara1 | "2024-11-01T06:28:39Z" | 0 | 0 | null | [
"gguf",
"region:us"
] | null | "2024-11-01T01:21:43Z" | # Test model before relaease
This is a repository for benchmarking before the official release. If no problems are found, the official release will be made at a later date.
## server command sample
standard version
```
# .\llama.cpp\build\bin\Release\llama-server -m .\gemma-2-9b-test-Q8_0-f16.gguf -c 2048 --override-kv tokenizer.ggml.add_bos_token=bool:false --temp 0
```
min_p version
```
# .\llama.cpp\build\bin\Release\llama-server -m .\gemma-2-9b-test-Q8_0-f16.gguf -c 2048 --override-kv tokenizer.ggml.add_bos_token=bool:false --temp 1.5 --min_p 0.1
```
## client command sample
```
import transformers
import requests
import json
import os
from transformers import AutoTokenizer
def translate_file(hint, messages):
system_prompt = """You are a highly skilled professional Japanese-English translator with native-level English proficiency. Translate the given text accurately into fluent English, considering the context and any provided instructions. Hints may be enclosed in square brackets [] with key and value separated by a colon:. If no additional instructions or context are provided, use your expertise to determine the most appropriate context and provide a natural, idiomatic translation. Strive to faithfully reflect the meaning and tone of the original text, paying attention to cultural nuances and differences in language usage. Ensure the translation is grammatically correct, flows naturally, and reads as if originally written in English. Take a deep breath, stay calm and start translating.
Translate Japanese to English."""
if hint != "":
system_prompt += "\n" + hint
system_messages = [
{"role": "user", "content": system_prompt},
{"role": "assistant", "content": "ok"}
]
for index, value in enumerate(messages):
if index % 2 == 0:
system_messages.append({"role": "user", "content": value})
else:
system_messages.append({"role": "assistant", "content": value})
tokenizer = AutoTokenizer.from_pretrained("webbigdata/C3TR-Adapter")
prompt = tokenizer.apply_chat_template(
system_messages,
add_generation_prompt=True,
tokenize=False
)
payload = {
"prompt": prompt,
"n_predict": 1200
}
url = "http://localhost:8080/completion"
headers = {
"Content-Type": "application/json"
}
response = requests.post(url, headers=headers, data=json.dumps(payload))
if response.status_code != 200:
print(f"Error: {response.text}")
response_data = response.json()
response_content = response_data.get('content', '').strip()
return response_content
from datasets import load_dataset
import re
from typing import List
def process_metadata(metadata_text):
result_lines = ["[writing_style: web-fiction]"]
for line in metadata_text.split("["):
if not line.strip():
continue
if "character" in line:
match = re.search(r"Name: (.*?) \((.*?)\) \| Gender: (.*?) \| Aliases: (.*?) \((.*?)\)", line)
if match:
eng_name, jp_name, gender, alias_eng, alias_jp = match.groups()
result_lines.extend([
f"[{jp_name}: {eng_name}]",
f"[{jp_name}_characterstyle: {gender.lower()}]",
f"[{alias_jp}: {alias_eng}]"
])
elif "element" in line:
match = re.search(r"Name: (.*?) \((.*?)\)", line)
if match:
eng_name, jp_name = match.groups()
result_lines.append(f"[{jp_name}: {eng_name}]")
return "\n".join(result_lines)
def extract_japanese_text(text):
japanese_texts = []
pattern = r"<<JAPANESE>>(.*?)<<ENGLISH>>"
matches = re.finditer(pattern, text, re.DOTALL)
for match in matches:
japanese_text = match.group(1).strip()
japanese_texts.append(japanese_text)
return japanese_texts
def prepare_data_for_trans(text):
parts = text.split("<<START>>")
if len(parts) != 2:
raise ValueError("Invalid format: Cannot find <<START>> marker")
metadata = parts[0].strip()
main_text = parts[1].strip()
processed_metadata = process_metadata(metadata)
japanese_texts = extract_japanese_text(main_text)
result = [processed_metadata] + japanese_texts
return result
def translation_batch(input_array, window_size=5):
if len(input_array) < 2:
raise ValueError("Input array must contain at least metadata and one element")
metadata = input_array[0]
elements = input_array[1:]
g_results = []
# first_input = metadata + elements[0] <-miss
first_input = metadata
g_results.append(translate_file(first_input, [elements[0]]))
for i in range(1, len(elements)):
messages = []
for j in range(max(0, i-(window_size-2)), i):
messages.append(elements[j])
messages.append(g_results[j])
messages.append(elements[i])
g_results.append(translate_file(first_input, messages))
return g_results
def main():
dataset = load_dataset("lmg-anon/VNTL-v3.1-1k")
val_data = dataset['val']
for item in val_data:
text = item['text']
try:
input_array = prepare_data_for_trans(text)
rt = translation_batch(input_array)
print(f"text: {text}")
print(f"rt: {rt}")
except Exception as e:
print(f"Error processing text: {e}")
print(text)
if __name__ == "__main__":
main()
```
|
mtzig/test | mtzig | "2024-11-01T01:23:21Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T01:23:21Z" | Entry not found |
saqqdy/Qwen-Qwen1.5-0.5B-1730424544 | saqqdy | "2024-11-01T01:29:07Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-0.5B",
"base_model:adapter:Qwen/Qwen1.5-0.5B",
"region:us"
] | null | "2024-11-01T01:29:02Z" | ---
base_model: Qwen/Qwen1.5-0.5B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.13.1 |
Mercuri/MrsNneelijah | Mercuri | "2024-11-01T01:30:43Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T01:30:43Z" | Entry not found |
darfitos12/fweah | darfitos12 | "2024-11-01T02:06:09Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T01:31:32Z" | Entry not found |
LiangMJ/intern_study_L0_4 | LiangMJ | "2024-11-01T01:35:46Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T01:35:45Z" | Entry not found |
OzoneAsai/translative-A | OzoneAsai | "2024-11-01T01:36:11Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T01:36:11Z" | Entry not found |
jjtamayoa/imdbreviews_classification_amazon-review-sentiment-analysis_v02_clf_finetuning | jjtamayoa | "2024-11-01T02:00:30Z" | 0 | 0 | null | [
"tensorboard",
"safetensors",
"bert",
"region:us"
] | null | "2024-11-01T01:37:19Z" | Entry not found |
saqqdy/Qwen-Qwen1.5-1.8B-1730425217 | saqqdy | "2024-11-01T01:40:20Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:Qwen/Qwen1.5-1.8B",
"base_model:adapter:Qwen/Qwen1.5-1.8B",
"region:us"
] | null | "2024-11-01T01:40:15Z" | ---
base_model: Qwen/Qwen1.5-1.8B
library_name: peft
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.13.1 |
DustinWang/transformer-150M-6B | DustinWang | "2024-11-01T01:43:16Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T01:43:16Z" | Entry not found |
Zazo2020/codellama-7b-hf-merged | Zazo2020 | "2024-11-01T01:57:41Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-01T01:45:02Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
aiakash11100/akash | aiakash11100 | "2024-11-01T01:50:42Z" | 0 | 0 | null | [
"license:unknown",
"region:us"
] | null | "2024-11-01T01:50:42Z" | ---
license: unknown
---
|
HaileyJu/videomae-base-finetuned-ucf101-goodbad-finedtuned_lr3.0e-06_20241101_0150 | HaileyJu | "2024-11-01T16:53:14Z" | 0 | 0 | null | [
"safetensors",
"videomae",
"region:us"
] | null | "2024-11-01T01:50:48Z" | Entry not found |
joaovba/wav2vec2-xls-r-1b-demo-medical-domain | joaovba | "2024-11-01T01:50:53Z" | 0 | 0 | transformers | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-11-01T01:50:51Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
HaileyJu/videomae-base-finetuned-ucf101-goodbad-finedtuned_lr5.0e-06_20241101_0150 | HaileyJu | "2024-11-01T17:28:19Z" | 0 | 0 | null | [
"safetensors",
"videomae",
"region:us"
] | null | "2024-11-01T01:50:59Z" | Entry not found |
HaileyJu/videomae-base-finetuned-ucf101-goodbad-finedtuned_lr7.0e-06_20241101_0151 | HaileyJu | "2024-11-01T08:12:26Z" | 0 | 0 | null | [
"safetensors",
"videomae",
"region:us"
] | null | "2024-11-01T01:51:12Z" | Entry not found |
nikudango/test-pytorch-model | nikudango | "2024-11-01T02:52:43Z" | 0 | 0 | null | [
"license:mit",
"region:us"
] | null | "2024-11-01T01:52:34Z" | ---
license: mit
---
|
expj/milopam | expj | "2024-11-01T01:55:52Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T01:55:52Z" | Entry not found |
shevek/segformer-b0-finetuned-test-0 | shevek | "2024-11-01T01:58:07Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T01:58:07Z" | Entry not found |
Yhhxhfh/mergekit-slerp-yyylqyo | Yhhxhfh | "2024-11-01T14:57:01Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"conversational",
"base_model:NousResearch/Hermes-2-Pro-Mistral-7B",
"base_model:merge:NousResearch/Hermes-2-Pro-Mistral-7B",
"base_model:WizardLMTeam/WizardMath-7B-V1.1",
"base_model:merge:WizardLMTeam/WizardMath-7B-V1.1",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-01T02:00:20Z" | ---
base_model:
- WizardLM/WizardMath-7B-V1.1
- NousResearch/Hermes-2-Pro-Mistral-7B
library_name: transformers
tags:
- mergekit
- merge
---
# merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1)
* [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: NousResearch/Hermes-2-Pro-Mistral-7B
- model: WizardLM/WizardMath-7B-V1.1
merge_method: slerp
base_model: NousResearch/Hermes-2-Pro-Mistral-7B
dtype: bfloat16
parameters:
t: [0, 0.5, 1, 0.5, 0] # V shaped curve: Hermes for input & output, WizardMath in the middle layers
```
|
minoosh/Tempathy-crossencoder-cross_entropy | minoosh | "2024-11-01T20:07:33Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"bert",
"fill-mask",
"generated_from_trainer",
"base_model:google-bert/bert-base-uncased",
"base_model:finetune:google-bert/bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | fill-mask | "2024-11-01T02:01:36Z" | ---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Tempathy-crossencoder-cross_entropy
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Tempathy-crossencoder-cross_entropy
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2565
- Accuracy: 0.4253
- Precision: 0.2651
- Recall: 0.4253
- F1: 0.2837
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.4197 | 1.0 | 155 | 1.3350 | 0.4207 | 0.1770 | 0.4207 | 0.2492 |
| 1.2087 | 2.0 | 310 | 1.2611 | 0.4369 | 0.2742 | 0.4369 | 0.2952 |
| 1.2549 | 3.0 | 465 | 1.2291 | 0.4369 | 0.3578 | 0.4369 | 0.3128 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1
|
shevek/segformer-b0-finetuned-test_0 | shevek | "2024-11-01T02:01:43Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T02:01:43Z" | Entry not found |
kikoamal/Llama-3.1-8B-Unsloth | kikoamal | "2024-11-01T02:06:59Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"conversational",
"en",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-01T02:02:29Z" | ---
base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
license: apache-2.0
language:
- en
---
# Uploaded model
- **Developed by:** kikoamal
- **License:** apache-2.0
- **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
xiaoguozhi/gxz20241101 | xiaoguozhi | "2024-11-01T02:04:09Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T02:04:09Z" | Entry not found |
chenfei386/iMac_8G_ram | chenfei386 | "2024-11-01T02:05:45Z" | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | "2024-11-01T02:05:45Z" | ---
license: apache-2.0
---
|
leonhart83/SongBirdFluxFine001 | leonhart83 | "2024-11-01T05:51:20Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T02:10:58Z" | Entry not found |
Nisk36/finetuned-stabilityai_japanese-stablelm-instruct-beta-7b | Nisk36 | "2024-11-01T02:15:15Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-01T02:10:58Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
WangXFng/Instruments-8bit-1B-4Epoch-short | WangXFng | "2024-11-01T12:36:30Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"generated_from_trainer",
"base_model:meta-llama/Llama-3.2-1B-Instruct",
"base_model:adapter:meta-llama/Llama-3.2-1B-Instruct",
"license:llama3.2",
"region:us"
] | null | "2024-11-01T02:12:34Z" | ---
base_model: meta-llama/Llama-3.2-1B-Instruct
library_name: peft
license: llama3.2
tags:
- generated_from_trainer
model-index:
- name: Instruments-8bit-1B-4Epoch-short
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Instruments-8bit-1B-4Epoch-short
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
### Framework versions
- PEFT 0.13.0
- Transformers 4.45.2
- Pytorch 2.4.0
- Tokenizers 0.20.0 |
Jungol/test | Jungol | "2024-11-01T02:13:06Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T02:13:06Z" | Entry not found |
CerealDev/q-FrozenLake-v1-4x4-noSlippery | CerealDev | "2024-11-01T02:13:56Z" | 0 | 0 | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | reinforcement-learning | "2024-11-01T02:13:54Z" | ---
tags:
- FrozenLake-v1-4x4-no_slippery
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-4x4-noSlippery
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: FrozenLake-v1-4x4-no_slippery
type: FrozenLake-v1-4x4-no_slippery
metrics:
- type: mean_reward
value: 1.00 +/- 0.00
name: mean_reward
verified: false
---
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="CerealDev/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
|
WangXFng/Instruments-8bit-3B-4Epoch-short | WangXFng | "2024-11-01T16:37:46Z" | 0 | 0 | peft | [
"peft",
"safetensors",
"llama",
"generated_from_trainer",
"base_model:meta-llama/Llama-3.2-3B-Instruct",
"base_model:adapter:meta-llama/Llama-3.2-3B-Instruct",
"license:llama3.2",
"region:us"
] | null | "2024-11-01T02:14:06Z" | ---
base_model: meta-llama/Llama-3.2-3B-Instruct
library_name: peft
license: llama3.2
tags:
- generated_from_trainer
model-index:
- name: Instruments-8bit-3B-4Epoch-short
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Instruments-8bit-3B-4Epoch-short
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
### Framework versions
- PEFT 0.13.2
- Transformers 4.45.2
- Pytorch 2.4.1
- Tokenizers 0.20.1 |
Foraemon/miaomiao | Foraemon | "2024-11-01T02:14:55Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T02:14:55Z" | Entry not found |
chiyum609/ProtoViT | chiyum609 | "2024-11-02T01:13:09Z" | 0 | 0 | null | [
"Interpretability",
"ViT",
"Classification",
"XAI",
"arxiv:2410.20722",
"base_model:timm/cait_xxs24_224.fb_dist_in1k",
"base_model:finetune:timm/cait_xxs24_224.fb_dist_in1k",
"license:mit",
"region:us"
] | null | "2024-11-01T02:18:47Z" | ---
license: mit
base_model:
- timm/deit_small_patch16_224.fb_in1k
- timm/deit_tiny_patch16_224.fb_in1k
- timm/cait_xxs24_224.fb_dist_in1k
metrics:
- accuracy
tags:
- Interpretability
- ViT
- Classification
- XAI
---
# ProtoViT: Interpretable Vision Transformer with Adaptive Prototype Learning
This repository contains pretrained ProtoViT models for interpretable image classification, as described in our paper "Interpretable Image Classification with Adaptive Prototype-based Vision Transformers".
## Model Description
[ProtoViT](https://github.com/Henrymachiyu/ProtoViT) combines Vision Transformers with prototype-based learning to create models that are both highly accurate and interpretable. Rather than functioning as a black box, ProtoViT learns interpretable prototypes that explain its classification decisions through visual similarities.
### Supported Architectures
We provide three variants of ProtoViT:
- **ProtoViT-T**: Built on DeiT-Tiny backbone
- **ProtoViT-S**: Built on DeiT-Small backbone
- **ProtoViT-CaiT**: Built on CaiT-XXS24 backbone
## Performance
All models were trained and evaluated on the CUB-200-2011 fine-grained bird species classification dataset.
| Model Version | Backbone | Resolution | Top-1 Accuracy | Checkpoint |
|--------------|----------|------------|----------------|------------|
| ProtoViT-T | DeiT-Tiny | 224Γ224 | 83.36% | [Download](https://huggingface.co/chiyum609/ProtoViT/blob/main/DeiT_Tiny_finetuned0.8336.pth) |
| ProtoViT-S | DeiT-Small | 224Γ224 | 85.30% | [Download](https://huggingface.co/chiyum609/ProtoViT/blob/main/DeiT_Small_finetuned0.8530.pth) |
| ProtoViT-CaiT | CaiT_xxs24 | 224Γ224 | 86.02% | [Download](https://huggingface.co/chiyum609/ProtoViT/blob/main/CaiT_xxs24_224_finetuned0.8602.pth) |
## Features
- π **Interpretable Decisions**: The model performs classification with self-explainatory reasoning based on the inputβs similarity to learned prototypes, the key features for each classes.
- π― **High Accuracy**: Achieves competitive performance on fine-grained classification tasks
- π **Multiple Architectures**: Supports various Vision Transformer backbones
- π **Analysis Tools**: Comes with tools for both local and global prototype analysis
## Requirements
- Python 3.8+
- PyTorch 1.8+
- timm==0.4.12
- torchvision
- numpy
- pillow
## Limitations and Bias
- Data Bias: These models are trained on CUB-200-2011, which may not generalize well to images outside this dataset.
- Resolution Constraints: The models are trained at a resolution of 224Γ224; higher or lower resolutions may impact performance.
- Location Misalignment: Same as the CNN based models, these models are not perfectly immune to location misalignment under adversarial attack.
## Citation
If you use this model in your research, please cite:
```bibtex
@article{ma2024interpretable,
title={Interpretable Image Classification with Adaptive Prototype-based Vision Transformers},
author={Ma, Chiyu and Donnelly, Jon and Liu, Wenjun and Vosoughi, Soroush and Rudin, Cynthia and Chen, Chaofan},
journal={arXiv preprint arXiv:2410.20722},
year={2024}
}
```
## Acknowledgements
This implementation builds upon the following excellent repositories:
- [DeiT](https://github.com/facebookresearch/deit)
- [CaiT](https://github.com/facebookresearch/deit)
- [ProtoPNet](https://github.com/cfchen-duke/ProtoPNet)
## License
This project is released under [MIT] license.
## Contact
For any questions or feedback, please:
1. Open an issue in the GitHub repository
2. Contact [Chiyu.ma.gr@dartmouth.edu] |
brotee/llama31-mbft | brotee | "2024-11-01T02:20:37Z" | 0 | 0 | transformers | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
"base_model:quantized:unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | "2024-11-01T02:19:19Z" | ---
base_model: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- gguf
---
# Uploaded model
- **Developed by:** brotee
- **License:** apache-2.0
- **Finetuned from model :** unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
kevinbadi/thumbnailgenerator-lora | kevinbadi | "2024-11-01T03:35:15Z" | 0 | 0 | null | [
"license:other",
"region:us"
] | null | "2024-11-01T02:19:51Z" | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
SuperSai/sherry_flux_lora | SuperSai | "2024-11-01T03:44:19Z" | 0 | 0 | null | [
"license:other",
"region:us"
] | null | "2024-11-01T02:23:05Z" | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
aquafina001/real_nas85863788 | aquafina001 | "2024-11-01T04:54:44Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T02:24:33Z" | Entry not found |
daffahasan/en-mul | daffahasan | "2024-11-01T04:28:36Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"marian",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | text2text-generation | "2024-11-01T02:25:37Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** Helsinki-NLP
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** Eng
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
vitus48683/Qwen2.5-7B-ko-quant-merge-v1 | vitus48683 | "2024-11-01T02:32:19Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"mergekit",
"merge",
"krx",
"conversational",
"ko",
"arxiv:2306.01708",
"base_model:Qwen/Qwen2.5-7B",
"base_model:merge:Qwen/Qwen2.5-7B",
"base_model:Qwen/Qwen2.5-7B-Instruct",
"base_model:merge:Qwen/Qwen2.5-7B-Instruct",
"license:apache-2.0",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-01T02:27:16Z" | ---
license: apache-2.0
base_model:
- Qwen/Qwen2.5-7B-Instruct
- Qwen/Qwen2.5-7B
library_name: transformers
tags:
- mergekit
- merge
- krx
language:
- ko
---
# Qwen2.5-7B-ko-quant-merge-v1
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) as a base.
|
pwork7/rlhflow_mix_dart_code_v1_iter2 | pwork7 | "2024-11-01T02:31:05Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"text-generation-inference",
"endpoints_compatible",
"region:us"
] | text-generation | "2024-11-01T02:27:31Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |
twburns/googleshopping_mlm_Distilled_Roberta | twburns | "2024-11-01T02:28:39Z" | 0 | 0 | null | [
"region:us"
] | null | "2024-11-01T02:28:39Z" | Entry not found |
kg142857/GFP | kg142857 | "2024-11-01T02:30:15Z" | 0 | 0 | null | [
"license:apache-2.0",
"region:us"
] | null | "2024-11-01T02:30:15Z" | ---
license: apache-2.0
---
|
AlignmentResearch/robust_llm_pythia-12b_clf_harmless_v-ian-135c_s-0 | AlignmentResearch | "2024-11-01T02:44:27Z" | 0 | 0 | null | [
"pytorch",
"gpt_neox",
"region:us"
] | null | "2024-11-01T02:31:29Z" | Entry not found |
demiant/sae-gemma-2-2b-multistage-tied-20x-l1-jump-batch-co-active-ortho-l1-10 | demiant | "2024-11-01T02:35:36Z" | 0 | 0 | saelens | [
"saelens",
"region:us"
] | null | "2024-11-01T02:33:40Z" | ---
library_name: saelens
---
# SAEs for use with the SAELens library
This repository contains the following SAEs:
- 666669056
- 166670336
- 1000001536
- 500002816
- 833335296
- 333336576
Load these SAEs using SAELens as below:
```python
from sae_lens import SAE
sae, cfg_dict, sparsity = SAE.from_pretrained("demiant/sae-gemma-2-2b-multistage-tied-20x-l1-jump-batch-co-active-ortho-l1-10", "<sae_id>")
``` |
advertti/adcake | advertti | "2024-11-01T03:15:57Z" | 0 | 0 | null | [
"license:other",
"region:us"
] | null | "2024-11-01T02:34:17Z" | ---
license: other
license_name: flux-1-dev-non-commercial-license
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md
--- |
Zazo2020/tmp-codellama-13b-openapi-completion-ctx | Zazo2020 | "2024-11-01T05:58:40Z" | 0 | 0 | peft | [
"peft",
"tensorboard",
"safetensors",
"generated_from_trainer",
"base_model:codellama/CodeLlama-13b-hf",
"base_model:adapter:codellama/CodeLlama-13b-hf",
"license:llama2",
"region:us"
] | null | "2024-11-01T02:37:09Z" | ---
license: llama2
library_name: peft
tags:
- generated_from_trainer
base_model: codellama/CodeLlama-13b-hf
model-index:
- name: tmp-codellama-13b-openapi-completion-ctx
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tmp-codellama-13b-openapi-completion-ctx
This model is a fine-tuned version of [codellama/CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5839
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.5174 | 1.0 | 100 | 0.5839 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.4.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |
John6666/animergemeij-v30-sdxl | John6666 | "2024-11-01T02:43:21Z" | 0 | 0 | diffusers | [
"diffusers",
"safetensors",
"text-to-image",
"stable-diffusion",
"stable-diffusion-xl",
"not-for-all-audiences",
"anime",
"styles",
"pony",
"en",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | text-to-image | "2024-11-01T02:39:53Z" | ---
license: other
license_name: faipl-1.0-sd
license_link: https://freedevproject.org/faipl-1.0-sd/
language:
- en
library_name: diffusers
pipeline_tag: text-to-image
tags:
- text-to-image
- stable-diffusion
- stable-diffusion-xl
- not-for-all-audiences
- anime
- styles
- pony
---
Original model is [here](https://civitai.com/models/734527/animergemeij?modelVersionId=990917).
This model created by [reijlita](https://civitai.com/user/reijlita).
|
saxon/multillava-next-VS-ft1.5-accumfix-lfr0-div0-act1e-2-48000 | saxon | "2024-11-01T02:52:47Z" | 0 | 0 | null | [
"safetensors",
"llama",
"region:us"
] | null | "2024-11-01T02:42:09Z" | Entry not found |
shrenikb/testadapt0 | shrenikb | "2024-11-01T02:43:12Z" | 0 | 0 | transformers | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | "2024-11-01T02:43:09Z" | ---
library_name: transformers
tags: []
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a π€ transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |