modelId
stringlengths
4
122
author
stringlengths
2
42
last_modified
unknown
downloads
int64
0
74.7M
likes
int64
0
9.67k
library_name
stringlengths
2
84
tags
sequence
pipeline_tag
stringlengths
5
30
createdAt
unknown
card
stringlengths
1
901k
embedding
sequence
cross-encoder/ms-marco-MiniLM-L-2-v2
cross-encoder
"2021-08-05T08:39:25Z"
59,320
1
transformers
[ "transformers", "pytorch", "jax", "bert", "text-classification", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
text-classification
"2022-03-02T23:29:05Z"
--- license: apache-2.0 --- # Cross-Encoder for MS Marco This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task. The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco) ## Usage with Transformers ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch model = AutoModelForSequenceClassification.from_pretrained('model_name') tokenizer = AutoTokenizer.from_pretrained('model_name') features = tokenizer(['How many people live in Berlin?', 'How many people live in Berlin?'], ['Berlin has a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.', 'New York City is famous for the Metropolitan Museum of Art.'], padding=True, truncation=True, return_tensors="pt") model.eval() with torch.no_grad(): scores = model(**features).logits print(scores) ``` ## Usage with SentenceTransformers The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this: ```python from sentence_transformers import CrossEncoder model = CrossEncoder('model_name', max_length=512) scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]) ``` ## Performance In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset. | Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec | | ------------- |:-------------| -----| --- | | **Version 2 models** | | | | cross-encoder/ms-marco-TinyBERT-L-2-v2 | 69.84 | 32.56 | 9000 | cross-encoder/ms-marco-MiniLM-L-2-v2 | 71.01 | 34.85 | 4100 | cross-encoder/ms-marco-MiniLM-L-4-v2 | 73.04 | 37.70 | 2500 | cross-encoder/ms-marco-MiniLM-L-6-v2 | 74.30 | 39.01 | 1800 | cross-encoder/ms-marco-MiniLM-L-12-v2 | 74.31 | 39.02 | 960 | **Version 1 models** | | | | cross-encoder/ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000 | cross-encoder/ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900 | cross-encoder/ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680 | cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340 | **Other models** | | | | nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900 | nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340 | nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100 | Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340 | amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330 | sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720 Note: Runtime was computed on a V100 GPU.
[ -0.4464038610458374, -0.602876603603363, 0.34621721506118774, 0.16133926808834076, -0.17513102293014526, 0.14829601347446442, -0.18506364524364471, -0.5315775871276855, 0.3474007248878479, 0.35316556692123413, -0.5687869191169739, -0.7053859233856201, -0.800533652305603, 0.04217259958386421, -0.460166871547699, 0.8195733428001404, -0.020617058500647545, 0.16986939311027527, -0.18982653319835663, -0.11410722881555557, -0.267608642578125, -0.4253515303134918, -0.5706123113632202, -0.301310271024704, 0.4973321855068207, 0.22017818689346313, 0.8030515909194946, 0.4115343689918518, 0.5798863172531128, 0.4552558958530426, -0.11599963158369064, 0.09709503501653671, -0.1954939216375351, 0.0013809099327772856, 0.0718877762556076, -0.3960622549057007, -0.5763729810714722, -0.12603425979614258, 0.46166691184043884, 0.36761435866355896, 0.007409530226141214, 0.27566471695899963, -0.0026299282908439636, 0.5979945659637451, -0.4059743881225586, -0.051734935492277145, -0.35728153586387634, 0.25485506653785706, -0.2065361738204956, -0.2594514489173889, -0.48610344529151917, -0.2247459888458252, 0.18381892144680023, -0.6060980558395386, 0.41318225860595703, 0.16228918731212616, 1.3145670890808105, 0.36269763112068176, -0.22712209820747375, -0.27100273966789246, -0.48895490169525146, 0.7479904294013977, -0.7105993032455444, 0.7360575795173645, 0.18943588435649872, 0.18311525881290436, 0.12271576374769211, -1.0114502906799316, -0.4649963676929474, -0.224639430642128, -0.19856667518615723, 0.26608237624168396, -0.43942904472351074, -0.08857860416173935, 0.4334445893764496, 0.4278644323348999, -1.0352264642715454, -0.08422399312257767, -0.7429953217506409, -0.12705908715724945, 0.6785187125205994, 0.27949580550193787, 0.27875465154647827, -0.2604598104953766, -0.3342992067337036, -0.14777317643165588, -0.5232751369476318, 0.22566266357898712, 0.28626683354377747, 0.011951925233006477, -0.21366608142852783, 0.42607274651527405, -0.24556201696395874, 0.8234750628471375, 0.1156071275472641, 0.09829505532979965, 0.8020575642585754, -0.2693694233894348, -0.24688720703125, 0.025918742641806602, 1.0182582139968872, 0.2970510721206665, 0.10830441862344742, -0.13170062005519867, -0.23415903747081757, -0.17778119444847107, 0.4197867810726166, -0.9133608937263489, -0.2780177891254425, 0.30352768301963806, -0.5561336278915405, -0.13949868083000183, 0.1694450080394745, -0.8835238814353943, 0.16694773733615875, -0.1366761326789856, 0.6278166174888611, -0.41508567333221436, 0.03367174416780472, 0.24496696889400482, -0.14783132076263428, 0.29918211698532104, 0.18577833473682404, -0.7706923484802246, 0.013900939375162125, 0.35924747586250305, 0.973804235458374, -0.11948435753583908, -0.3931933343410492, -0.16777199506759644, -0.038582831621170044, -0.1727982461452484, 0.589976966381073, -0.4896749258041382, -0.32484403252601624, -0.07526707649230957, 0.2969907224178314, -0.15611585974693298, -0.31633591651916504, 0.7400565147399902, -0.48089760541915894, 0.528544545173645, -0.13056239485740662, -0.36168426275253296, -0.16355903446674347, 0.2445247769355774, -0.8166370391845703, 1.2575750350952148, 0.04119843244552612, -0.8819833397865295, 0.1704053431749344, -0.731590747833252, -0.35491254925727844, -0.16668838262557983, 0.042785774916410446, -0.7932814955711365, 0.04758431762456894, 0.4228805899620056, 0.26733338832855225, -0.3330445885658264, 0.10346972942352295, -0.1806955188512802, -0.4706704318523407, 0.16998104751110077, -0.4310711622238159, 1.1311695575714111, 0.4119514226913452, -0.510673999786377, 0.05607081949710846, -0.6990270614624023, 0.12322282791137695, 0.295957088470459, -0.4402890205383301, -0.006051636766642332, -0.2971702218055725, 0.1435215324163437, 0.4153107702732086, 0.455373615026474, -0.5203056931495667, 0.10793985426425934, -0.2898530662059784, 0.5023929476737976, 0.479032039642334, -0.11326379328966141, 0.3576020300388336, -0.31247594952583313, 0.6945810317993164, 0.1310979276895523, 0.45084255933761597, 0.009499873034656048, -0.6577984690666199, -0.9147269129753113, -0.1404089778661728, 0.5285730361938477, 0.6103966236114502, -0.7658855319023132, 0.5640320181846619, -0.5380626916885376, -0.733299970626831, -0.8571128845214844, -0.10385400801897049, 0.4352717697620392, 0.3524019718170166, 0.6867387294769287, -0.09193737059831619, -0.7604023218154907, -1.0357261896133423, -0.3474435806274414, 0.024362141266465187, 0.041481416672468185, 0.24826063215732574, 0.6683109402656555, -0.2732729911804199, 0.764838695526123, -0.5527604818344116, -0.225142240524292, -0.4753779470920563, 0.003377981251105666, 0.26211005449295044, 0.6908491253852844, 0.6529386639595032, -0.7270156741142273, -0.5647443532943726, -0.1967572718858719, -0.7207836508750916, 0.07374462485313416, 0.038590069860219955, -0.14465951919555664, 0.2806609869003296, 0.6409924030303955, -0.7179479002952576, 0.7066987156867981, 0.5128150582313538, -0.47471657395362854, 0.38662126660346985, -0.4564577341079712, 0.30223074555397034, -1.2516871690750122, 0.10563895106315613, -0.034407101571559906, -0.16429279744625092, -0.5353989601135254, -0.16487427055835724, 0.09663695842027664, -0.026095036417245865, -0.36040806770324707, 0.34361031651496887, -0.6278329491615295, -0.035226598381996155, 0.1267731636762619, 0.08022944629192352, 0.17638880014419556, 0.657623291015625, 0.3395964205265045, 0.8067154288291931, 0.5389837622642517, -0.3681167662143707, 0.24981673061847687, 0.38097715377807617, -0.6378957033157349, 0.3939351737499237, -0.9577550292015076, -0.008802006021142006, -0.13488072156906128, 0.11195573210716248, -1.0342755317687988, 0.17452874779701233, 0.2473815232515335, -0.9054392576217651, 0.3241354525089264, -0.14174580574035645, -0.40891772508621216, -0.6847662925720215, -0.18596327304840088, 0.34089037775993347, 0.5215352177619934, -0.49181050062179565, 0.600849986076355, 0.3527885973453522, 0.0072058141231536865, -0.7315424084663391, -1.264535903930664, 0.18958646059036255, -0.05799846723675728, -0.7628253698348999, 0.6570873856544495, -0.21247628331184387, 0.15323205292224884, 0.0406360886991024, -0.04603521525859833, -0.04289055988192558, -0.11593183130025864, 0.20088399946689606, 0.3419400751590729, -0.1945367455482483, 0.015971316024661064, 0.013135393150150776, -0.2267584204673767, 0.07238519936800003, -0.21659578382968903, 0.6630609631538391, -0.1832331120967865, -0.13139855861663818, -0.2614463269710541, 0.20580634474754333, 0.5151219964027405, -0.5854277014732361, 0.7468754053115845, 0.8429319858551025, -0.33547958731651306, -0.11406075209379196, -0.4337359666824341, -0.10480887442827225, -0.5224626660346985, 0.4671388864517212, -0.6010408997535706, -0.8010169863700867, 0.5503020286560059, 0.3144737780094147, 0.02826063148677349, 0.5294132828712463, 0.5057603120803833, -0.020938139408826828, 1.0689725875854492, 0.5018405318260193, -0.05024661123752594, 0.682429850101471, -0.7406275272369385, 0.30775439739227295, -0.8023768663406372, -0.6117377877235413, -0.6852874159812927, -0.46193012595176697, -0.7090311050415039, -0.3648342192173004, 0.3163716793060303, -0.13961270451545715, -0.23505783081054688, 0.7223771214485168, -0.7789645195007324, 0.3355003893375397, 0.7557880282402039, 0.28868934512138367, 0.10721607506275177, 0.1515118032693863, -0.2651011645793915, -0.12823189795017242, -0.8641200065612793, -0.3381379246711731, 1.3521031141281128, 0.17404988408088684, 0.7262991666793823, 0.017559155821800232, 0.8002148866653442, 0.31914928555488586, -0.03953578323125839, -0.44772547483444214, 0.45587706565856934, -0.1564817577600479, -0.8063774108886719, -0.23903398215770721, -0.4366282820701599, -1.1157982349395752, 0.35300227999687195, -0.22040724754333496, -0.6037832498550415, 0.5320740938186646, -0.09253077208995819, -0.4041736125946045, 0.32788747549057007, -0.5800577402114868, 1.3560785055160522, -0.43161648511886597, -0.371113657951355, -0.10137712210416794, -0.7670010924339294, 0.1761946976184845, 0.21495188772678375, 0.03509953245520592, 0.09553896635770798, -0.17264176905155182, 0.7849159836769104, -0.3816292881965637, 0.3604066073894501, -0.1512202024459839, 0.1583920419216156, 0.19453801214694977, -0.10224421322345734, 0.39697498083114624, -0.008463796228170395, -0.10766205191612244, 0.3458806872367859, -0.04466778784990311, -0.4127345383167267, -0.44100919365882874, 0.8428022861480713, -0.9504846930503845, -0.43323761224746704, -0.5631312727928162, -0.3763390779495239, -0.030761772766709328, 0.21404165029525757, 0.7978892922401428, 0.437637597322464, 0.004456028342247009, 0.44723328948020935, 0.7715341448783875, -0.3257375657558441, 0.5937497019767761, 0.392213374376297, -0.054995097219944, -0.7650196552276611, 0.8025519847869873, 0.3169706463813782, 0.17230942845344543, 0.5954808592796326, -0.18894769251346588, -0.4940445125102997, -0.559977650642395, -0.36794373393058777, 0.17462044954299927, -0.5513123273849487, -0.23149646818637848, -0.7578722834587097, -0.42502713203430176, -0.5192058682441711, -0.07637002319097519, -0.43161705136299133, -0.4419685900211334, -0.24936717748641968, -0.18106898665428162, 0.22726459801197052, 0.6315785646438599, 0.13595788180828094, 0.21141977608203888, -0.6363331079483032, 0.22166620194911957, 0.0067062824964523315, 0.16306206583976746, -0.10990679264068604, -0.9091634154319763, -0.47124558687210083, -0.0713520497083664, -0.42636144161224365, -0.8573992252349854, 0.7049751281738281, -0.0903397798538208, 0.7585262656211853, 0.157152459025383, 0.05990191921591759, 0.7787694931030273, -0.40345877408981323, 0.9315091967582703, 0.16963477432727814, -0.8938142657279968, 0.691184401512146, 0.027000578120350838, 0.40586429834365845, 0.6534193754196167, 0.5784199833869934, -0.5525621771812439, -0.2681644558906555, -0.7996535301208496, -0.9805924296379089, 0.9308524131774902, 0.310181200504303, -0.11389739066362381, 0.07616996020078659, 0.020889325067400932, -0.12495092302560806, 0.2929762601852417, -1.004494547843933, -0.5092644095420837, -0.4695870280265808, -0.39416903257369995, -0.3273192346096039, -0.17140595614910126, 0.21283480525016785, -0.6498232483863831, 0.8042252659797668, 0.18166112899780273, 0.5935593843460083, 0.6288275122642517, -0.4285483956336975, 0.09131989628076553, 0.11431984603404999, 0.7155468463897705, 0.6676861643791199, -0.28161707520484924, -0.023899007588624954, 0.21995706856250763, -0.5300331711769104, -0.1457870453596115, 0.245555579662323, -0.481699675321579, 0.4004635512828827, 0.3502669036388397, 1.044920563697815, 0.23276127874851227, -0.40104562044143677, 0.67491215467453, 0.053258635103702545, -0.28846436738967896, -0.5205583572387695, -0.20596706867218018, 0.02086455188691616, 0.39614740014076233, 0.2552686631679535, 0.06612332910299301, 0.2646295726299286, -0.4286873936653137, 0.16255591809749603, 0.3716757595539093, -0.6103007197380066, -0.2124060094356537, 0.9429880976676941, 0.18062271177768707, -0.4427318274974823, 0.713766872882843, 0.024500899016857147, -0.8500115871429443, 0.5382372140884399, 0.37759244441986084, 1.088808536529541, -0.29514220356941223, 0.18443132936954498, 0.7205270528793335, 0.7096849679946899, 0.0766642764210701, 0.3627718687057495, -0.16405652463436127, -0.5501686334609985, -0.015021083876490593, -0.5712849497795105, -0.12295500189065933, -0.06934966146945953, -0.7011659145355225, 0.3076939284801483, -0.1838984340429306, -0.33900660276412964, -0.1989731341600418, 0.28294989466667175, -0.8713828325271606, 0.1718340367078781, 0.05677333474159241, 1.156869888305664, -0.5670150518417358, 1.1102510690689087, 0.6008107662200928, -0.9134162664413452, -0.6041352152824402, -0.13520926237106323, -0.41365793347358704, -0.7207831144332886, 0.590429961681366, 0.13090066611766815, 0.12106455117464066, -0.00002121483521477785, -0.3692193031311035, -0.8524677157402039, 1.5336414575576782, 0.21116749942302704, -0.7077149748802185, -0.19052550196647644, 0.45680779218673706, 0.5326240658760071, -0.3580392897129059, 0.7032294273376465, 0.45010796189308167, 0.5132423043251038, -0.20136971771717072, -0.9761873483657837, 0.15576274693012238, -0.5120363831520081, -0.04502680152654648, 0.08313889056444168, -0.860206127166748, 1.0975879430770874, -0.22996769845485687, 0.17645592987537384, 0.1736593395471573, 0.6268509030342102, 0.21355672180652618, 0.3572884798049927, 0.364755779504776, 0.876602292060852, 0.712064266204834, -0.4128032922744751, 0.9186109900474548, -0.5839616656303406, 0.592179536819458, 0.9367632865905762, 0.21103915572166443, 0.9265249967575073, 0.44718649983406067, -0.3397771120071411, 0.7736654877662659, 0.7568255066871643, -0.2263433039188385, 0.5358352065086365, 0.04026138409972191, 0.016690293326973915, -0.42858725786209106, 0.3998886048793793, -0.7046958804130554, 0.2481219470500946, 0.16272705793380737, -0.8330743908882141, -0.07890750467777252, -0.054942045360803604, -0.11525575071573257, -0.17021331191062927, -0.2561953663825989, 0.46774423122406006, -0.08009563386440277, -0.5953222513198853, 0.7108057141304016, 0.0316988043487072, 0.7790549993515015, -0.6904013752937317, 0.19221584498882294, -0.26883789896965027, 0.280487596988678, -0.2358902096748352, -0.910431444644928, 0.09834499657154083, -0.05132367089390755, -0.1559063196182251, -0.2881772816181183, 0.5091724395751953, -0.6074191927909851, -0.5949764847755432, 0.42728736996650696, 0.33228087425231934, 0.22095024585723877, -0.0996859148144722, -1.0789644718170166, 0.23060616850852966, 0.2206026017665863, -0.5220978260040283, 0.11658293753862381, 0.43972247838974, 0.13513097167015076, 0.6962653398513794, 0.5056962966918945, -0.12581923604011536, 0.4353557825088501, 0.03540715202689171, 0.7348296642303467, -0.9109591245651245, -0.5473940372467041, -0.5996362566947937, 0.6330152153968811, -0.30369725823402405, -0.5523414611816406, 0.9393645524978638, 1.079866886138916, 1.0336140394210815, -0.3342095911502838, 0.6962794065475464, -0.15343084931373596, 0.2578980326652527, -0.406141072511673, 0.812089204788208, -0.8865630030632019, 0.2598522901535034, -0.22782091796398163, -0.8631045818328857, -0.18231505155563354, 0.6631774306297302, -0.45763254165649414, 0.2689582407474518, 0.6956929564476013, 0.9756350517272949, 0.00831665750592947, -0.026662319898605347, 0.25587743520736694, 0.1643504500389099, 0.18734991550445557, 0.9109628796577454, 0.6756775975227356, -0.9616735577583313, 1.0479884147644043, -0.4548285901546478, 0.1684635430574417, -0.22996506094932556, -0.4395163953304291, -0.8860318064689636, -0.6065642237663269, -0.34364575147628784, -0.4382399618625641, 0.1704060584306717, 0.8647345900535583, 0.7573431730270386, -0.7773435711860657, -0.21503308415412903, -0.024070803076028824, 0.10364169627428055, -0.1443854719400406, -0.2376432567834854, 0.449699342250824, -0.28633445501327515, -0.9926990270614624, 0.34835684299468994, 0.013961929827928543, 0.009213884361088276, -0.25577467679977417, -0.4542972147464752, -0.30665653944015503, 0.04491221904754639, 0.475216805934906, 0.11274886131286621, -0.7594039440155029, -0.1292397528886795, 0.19658386707305908, -0.309824675321579, 0.3058338165283203, 0.6329779624938965, -0.812587320804596, 0.23869861662387848, 0.8608888387680054, 0.4357312023639679, 0.9441713094711304, -0.21657758951187134, 0.287492573261261, -0.4298330247402191, -0.04304880276322365, 0.16155026853084564, 0.5997025966644287, 0.14884096384048462, -0.19972474873065948, 0.6265610456466675, 0.4097515344619751, -0.6281886100769043, -0.8532052040100098, -0.1882276087999344, -1.1972483396530151, -0.36712193489074707, 0.9370834827423096, -0.1400751918554306, -0.46213671565055847, 0.1851446032524109, -0.15374161303043365, 0.2460710108280182, -0.3916335701942444, 0.490989625453949, 0.6853561997413635, 0.060584962368011475, -0.2833566963672638, -0.5991363525390625, 0.4280528426170349, 0.24334679543972015, -0.7219379544258118, -0.18962615728378296, 0.18457834422588348, 0.49263256788253784, 0.20936857163906097, 0.4593295156955719, -0.4280796945095062, 0.3291536867618561, 0.165803000330925, 0.42881911993026733, -0.3010751008987427, -0.4322967231273651, -0.34916362166404724, 0.18051518499851227, -0.4314994215965271, -0.533345639705658 ]
Sigma/financial-sentiment-analysis
Sigma
"2022-05-14T11:48:56Z"
59,214
8
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "dataset:financial_phrasebank", "model-index", "endpoints_compatible", "region:us" ]
text-classification
"2022-05-14T08:41:10Z"
--- tags: - generated_from_trainer datasets: - financial_phrasebank metrics: - accuracy - f1 model-index: - name: financial-sentiment-analysis results: - task: name: Text Classification type: text-classification dataset: name: financial_phrasebank type: financial_phrasebank args: sentences_allagree metrics: - name: Accuracy type: accuracy value: 0.9924242424242424 - name: F1 type: f1 value: 0.9924242424242424 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # financial-sentiment-analysis This model is a fine-tuned version of [ahmedrachid/FinancialBERT](https://huggingface.co/ahmedrachid/FinancialBERT) on the financial_phrasebank dataset. It achieves the following results on the evaluation set: - Loss: 0.0395 - Accuracy: 0.9924 - F1: 0.9924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.19.1 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1
[ -0.4639284908771515, -0.6607915759086609, 0.070337675511837, 0.4518950581550598, -0.42317408323287964, -0.14632952213287354, -0.13463039696216583, -0.056791067123413086, 0.19619686901569366, 0.3931674063205719, -0.7128397822380066, -0.8528826236724854, -0.7389015555381775, -0.12429167330265045, -0.3479994535446167, 1.554700255393982, 0.24424214661121368, 0.46387362480163574, -0.06465685367584229, 0.0016600615344941616, -0.09987132996320724, -0.6154842376708984, -1.1794344186782837, -0.5309428572654724, 0.43116119503974915, 0.03484994173049927, 0.8263876438140869, 0.4709499776363373, 0.7665174007415771, 0.2969726324081421, -0.37048324942588806, -0.4390054941177368, -0.5057309865951538, -0.41413813829421997, -0.0980476588010788, -0.5075395107269287, -0.9344996213912964, 0.29449307918548584, 0.354469358921051, 0.36059701442718506, -0.4194079637527466, 0.6437376737594604, 0.18316161632537842, 0.7372680306434631, -0.4948793649673462, 0.6148768663406372, -0.41814789175987244, 0.3246144652366638, -0.07267410308122635, -0.19388122856616974, -0.362321138381958, -0.31599879264831543, 0.335720956325531, -0.4957374632358551, 0.2795315682888031, 0.1141405701637268, 1.200368046760559, 0.3060593008995056, -0.2479713410139084, -0.1675558239221573, -0.49280962347984314, 0.7210703492164612, -0.8639549016952515, 0.12551173567771912, 0.35150060057640076, 0.4256249666213989, 0.33604535460472107, -0.6327772736549377, -0.396132230758667, 0.030314702540636063, 0.06120321527123451, 0.5006253123283386, -0.27596962451934814, 0.038103796541690826, 0.45114463567733765, 0.4481348693370819, -0.31193652749061584, -0.12207986414432526, -0.5294516682624817, -0.1820628046989441, 0.7155194878578186, 0.37293362617492676, -0.4026641845703125, -0.5235798954963684, -0.5405492186546326, -0.28495389223098755, -0.1686120331287384, 0.16839775443077087, 0.7389352321624756, 0.48053351044654846, -0.4460367262363434, 0.5435953736305237, -0.24943818151950836, 0.5816632509231567, 0.09547137469053268, -0.19957032799720764, 0.6339021325111389, 0.02043805830180645, -0.506831169128418, -0.11351778358221054, 0.9472731947898865, 0.6707746982574463, 0.41807687282562256, 0.2853284776210785, -0.628660261631012, -0.07611019164323807, 0.4058830738067627, -0.7704827785491943, -0.36143872141838074, 0.05130751430988312, -0.9172772169113159, -0.9471526741981506, 0.23353275656700134, -0.8195438385009766, 0.00919065810739994, -0.47319626808166504, 0.5413029193878174, -0.5077348351478577, -0.18732230365276337, 0.20792938768863678, -0.3114089071750641, 0.4520770311355591, -0.002775737317278981, -0.6684771180152893, 0.3466695249080658, 0.5478819012641907, 0.5552147030830383, 0.35436269640922546, -0.05433462932705879, -0.24159464240074158, -0.14600571990013123, -0.18065832555294037, 0.6187024712562561, -0.17378109693527222, -0.5817922949790955, 0.02145383507013321, -0.1853826642036438, -0.06952020525932312, -0.37107422947883606, 0.8804678320884705, -0.33996981382369995, 0.3142373263835907, -0.29397377371788025, -0.6537914872169495, -0.29272714257240295, 0.4921153485774994, -0.6160737872123718, 0.9689594507217407, 0.23296964168548584, -0.9794742465019226, 0.41559916734695435, -0.9814721941947937, -0.23594699800014496, -0.14202634990215302, 0.07564737647771835, -0.787047803401947, 0.06859613955020905, 0.03947564959526062, 0.5417141318321228, -0.31042665243148804, 0.23420172929763794, -0.5343827605247498, -0.37414178252220154, 0.45245030522346497, -0.5845925211906433, 0.6606597900390625, 0.1790352165699005, -0.43295204639434814, 0.12985439598560333, -1.145277976989746, 0.062027134001255035, 0.15617889165878296, -0.35091638565063477, -0.19501584768295288, -0.05224195867776871, 0.6910625696182251, 0.24841392040252686, 0.4061332643032074, -0.6608061790466309, 0.144962877035141, -0.7145677208900452, 0.12141714245080948, 0.8878243565559387, 0.0041717407293617725, 0.061785560101270676, -0.35081467032432556, 0.5673149824142456, 0.25724315643310547, 0.5141454339027405, 0.39867013692855835, -0.1454310268163681, -0.8568896055221558, -0.25762084126472473, 0.3800716996192932, 0.5931382775306702, -0.2915034294128418, 0.7096967101097107, -0.08049775660037994, -0.6168888807296753, -0.3333543837070465, 0.09071993827819824, 0.3923190236091614, 0.6209542155265808, 0.3929765522480011, -0.24776245653629303, -0.5210972428321838, -1.2096784114837646, -0.22920392453670502, -0.10630716383457184, 0.23562856018543243, 0.04709935933351517, 0.5703372955322266, -0.21143385767936707, 0.8849169611930847, -0.8335967063903809, -0.20570814609527588, -0.3383866250514984, 0.2236480414867401, 0.6190708875656128, 0.6037381291389465, 0.8630754947662354, -0.5953112244606018, -0.30700579285621643, -0.21119970083236694, -0.6718460321426392, 0.31674885749816895, -0.21617791056632996, -0.20532628893852234, 0.03699816018342972, 0.30404984951019287, -0.5632652640342712, 0.7197480797767639, 0.29709556698799133, -0.4787052273750305, 0.5631474256515503, -0.07379481941461563, -0.35974612832069397, -1.4264808893203735, 0.11680223047733307, 0.6340909004211426, -0.10205153375864029, -0.15883570909500122, -0.11418097466230392, -0.0892726331949234, -0.20132876932621002, -0.09083333611488342, 0.6473036408424377, 0.15490005910396576, 0.10644064098596573, -0.3008955419063568, -0.10272382944822311, 0.007501048501580954, 0.7082780003547668, -0.14886173605918884, 0.5715956687927246, 0.7638989686965942, -0.33556225895881653, 0.4245668351650238, 0.47158700227737427, -0.23089434206485748, 0.691274106502533, -0.9743484258651733, -0.014628497883677483, -0.05815191939473152, -0.04314306005835533, -0.9775857925415039, -0.05499061197042465, 0.7225616574287415, -0.45544910430908203, 0.2953673005104065, 0.11961083114147186, -0.2913793623447418, -0.41948166489601135, -0.28451427817344666, 0.030561504885554314, 0.5005424618721008, -0.4522091746330261, 0.6572251319885254, -0.11990758776664734, -0.060986537486314774, -0.8339044451713562, -0.6256073117256165, -0.16271664202213287, -0.24709686636924744, -0.28958454728126526, -0.008499549701809883, -0.022619782015681267, -0.23150761425495148, 0.06272463500499725, -0.1187472939491272, -0.04790503531694412, 0.06697727739810944, 0.4027588367462158, 0.6976196765899658, -0.08650901168584824, 0.056136202067136765, 0.023249171674251556, -0.4092426300048828, 0.4670955240726471, -0.10032510757446289, 0.543951153755188, -0.41803574562072754, -0.00817391462624073, -0.795459508895874, -0.12419351935386658, 0.3829774856567383, -0.29232707619667053, 1.0622143745422363, 0.6809472441673279, -0.291194885969162, 0.024246910586953163, -0.3669929504394531, 0.0977233499288559, -0.4928692579269409, 0.6094775795936584, -0.37829917669296265, -0.2988002896308899, 0.6820135712623596, 0.01886567287147045, 0.0040304348804056644, 1.0581446886062622, 0.5297868251800537, -0.071633480489254, 1.0518873929977417, 0.553482174873352, -0.4572359025478363, 0.4172212779521942, -0.7755522131919861, 0.24188317358493805, -0.572777271270752, -0.34723615646362305, -0.582695484161377, -0.2742201089859009, -0.6904837489128113, 0.22046276926994324, 0.1130632534623146, 0.011593703180551529, -0.5843804478645325, 0.20450763404369354, -0.2748658359050751, 0.27490493655204773, 0.593212902545929, 0.3116728663444519, -0.21711885929107666, 0.06853341311216354, -0.33845385909080505, 0.015090204775333405, -0.5995354652404785, -0.596102237701416, 1.340929388999939, 0.7596877813339233, 0.869568407535553, -0.29416781663894653, 0.7998837828636169, 0.2905133068561554, 0.3111727833747864, -0.8979979157447815, 0.561013400554657, -0.11533424258232117, -0.6685277223587036, -0.09740365296602249, -0.5666446089744568, -0.36797603964805603, -0.07746824622154236, -0.4367532432079315, -0.25287094712257385, 0.059352725744247437, 0.09758837521076202, -0.6473720669746399, 0.1070113256573677, -0.4217943847179413, 1.194867730140686, -0.2354668378829956, -0.14942821860313416, -0.43636271357536316, -0.46483179926872253, 0.11894968152046204, -0.024233156815171242, 0.03291797265410423, -0.047309596091508865, 0.12748056650161743, 0.8457763195037842, -0.3904668092727661, 0.9164677858352661, -0.5935028195381165, 0.04922720789909363, 0.294935017824173, -0.3044682741165161, 0.3720235824584961, 0.2956479787826538, -0.29577723145484924, 0.12366275489330292, -0.07209900766611099, -0.6264860033988953, -0.4090701639652252, 0.5369934439659119, -1.1585880517959595, -0.08004137873649597, -0.6095975637435913, -0.5284250974655151, -0.22706754505634308, -0.06029639020562172, 0.31365710496902466, 0.702440619468689, -0.3796239197254181, 0.20644477009773254, 0.2780231237411499, -0.16531997919082642, 0.37472665309906006, 0.1262342780828476, -0.2938072681427002, -0.7810457348823547, 0.9441692233085632, -0.19740179181098938, 0.10799818485975266, -0.031763140112161636, 0.24214032292366028, -0.5077410936355591, -0.2903399169445038, -0.22857297956943512, 0.276129812002182, -0.8353193402290344, -0.3639790117740631, -0.292778342962265, -0.45410165190696716, -0.413399875164032, -0.0011084777070209384, -0.43631914258003235, -0.28652864694595337, -0.4219841957092285, -0.5056121945381165, 0.4591180086135864, 0.5756761431694031, -0.024416564032435417, 0.8694953322410583, -0.811260998249054, -0.010769798420369625, 0.1810876876115799, 0.4143553078174591, 0.11121830344200134, -0.7039846181869507, -0.6039426922798157, 0.039529211819171906, -0.40226495265960693, -0.6154996752738953, 0.599277675151825, 0.09024219214916229, 0.4019019901752472, 0.8164612650871277, -0.15645581483840942, 0.7138474583625793, 0.12489085644483566, 0.6291589140892029, 0.24820958077907562, -0.942351758480072, 0.3904705345630646, -0.41350963711738586, 0.21933621168136597, 0.7384705543518066, 0.5107536315917969, -0.3055828809738159, -0.34839141368865967, -1.0901060104370117, -0.8711779117584229, 0.7855655550956726, 0.2072969228029251, 0.2735104560852051, -0.05157407745718956, 0.6296346783638, -0.048643559217453, 0.6363334059715271, -0.959872305393219, -0.47427472472190857, -0.5702774524688721, -0.5449092388153076, -0.06517740339040756, -0.3979308605194092, -0.17661932110786438, -0.5006195902824402, 1.1959775686264038, -0.085309699177742, 0.2703908681869507, -0.027244146913290024, 0.3271524906158447, -0.06677883863449097, 0.040733084082603455, 0.366742879152298, 0.6110315918922424, -0.6172531247138977, -0.3221359848976135, 0.08076132088899612, -0.31425419449806213, -0.165610209107399, 0.35347333550453186, -0.13085807859897614, 0.05086662247776985, 0.2546307146549225, 1.0986584424972534, 0.1510796844959259, -0.3477729856967926, 0.6652384400367737, -0.28376397490501404, -0.449454128742218, -0.6900058388710022, 0.0187093373388052, 0.04221503064036369, 0.40202808380126953, 0.2946208417415619, 0.7432616353034973, 0.13666307926177979, -0.3129580616950989, 0.08710897713899612, 0.3064422905445099, -0.6771299839019775, -0.3238077461719513, 0.6522068977355957, 0.20884045958518982, -0.15064185857772827, 0.8409745693206787, -0.16005520522594452, -0.4385216534137726, 0.6441595554351807, 0.3993971049785614, 1.2127467393875122, 0.041739482432603836, 0.36403122544288635, 0.7143271565437317, 0.009175581857562065, -0.20869582891464233, 0.7966536283493042, 0.22316846251487732, -0.7777882814407349, -0.367671936750412, -1.0334653854370117, -0.2628096044063568, 0.2612859010696411, -1.3090016841888428, 0.2629055082798004, -0.8266748189926147, -0.5929363369941711, 0.16577519476413727, -0.03173220157623291, -0.8210479021072388, 0.742695689201355, 0.09932588785886765, 1.3030712604522705, -0.9415318369865417, 0.5904994606971741, 0.6922675967216492, -0.5599619746208191, -1.042022943496704, -0.03220956400036812, -0.08916524052619934, -0.7085659503936768, 0.6722861528396606, 0.18606749176979065, 0.1261494904756546, 0.0471215546131134, -0.683431088924408, -0.5665172338485718, 0.7438998818397522, 0.06529106199741364, -0.7197005152702332, -0.04513632133603096, 0.20445777475833893, 0.6736369132995605, -0.3672478199005127, 0.2651309072971344, 0.3817678391933441, 0.3562544882297516, 0.034044355154037476, -0.5810112953186035, -0.38671544194221497, -0.47786790132522583, 0.018578289076685905, 0.2369793802499771, -0.7583302855491638, 0.9712827801704407, 0.207439586520195, 0.5146875977516174, 0.20430462062358856, 0.7719733119010925, -0.00008501811680616811, 0.3069339096546173, 0.4779075086116791, 0.9221976399421692, 0.4761544167995453, -0.16127009689807892, 1.111346960067749, -0.7348897457122803, 0.9372317790985107, 1.1257179975509644, 0.036133281886577606, 0.8853702545166016, 0.31857118010520935, -0.2532932162284851, 0.46653592586517334, 0.6934410333633423, -0.38638898730278015, 0.4490877091884613, 0.0955580621957779, -0.05703870207071304, -0.3683837950229645, 0.14649386703968048, -0.2957509756088257, 0.6732349395751953, 0.010454816743731499, -0.7780846953392029, -0.11091510206460953, -0.10157924145460129, 0.06257009506225586, -0.04808945208787918, -0.5062233805656433, 0.5698243975639343, 0.14850960671901703, -0.06369314342737198, 0.17842406034469604, 0.28324225544929504, 0.6038202047348022, -0.6788508296012878, 0.24334563314914703, -0.1285424828529358, 0.45381030440330505, -0.061176665127277374, -0.5361486673355103, 0.3648933470249176, 0.0155868511646986, -0.19523394107818604, -0.10417801141738892, 0.6292115449905396, -0.11165125668048859, -1.0754244327545166, 0.2940765917301178, 0.5103570818901062, -0.12793122231960297, -0.1606704741716385, -1.1589504480361938, -0.33019882440567017, 0.06001364812254906, -0.6823029518127441, 0.08770280331373215, 0.3221002221107483, 0.32419371604919434, 0.4380407929420471, 0.5956287384033203, 0.04778972268104553, -0.3801339864730835, 0.38627365231513977, 0.8725934624671936, -0.9610005021095276, -0.7461978197097778, -1.0194144248962402, 0.4820122718811035, -0.37609073519706726, -0.717816174030304, 0.7375173568725586, 0.9420015215873718, 0.9859007000923157, -0.3976801037788391, 0.7315848469734192, 0.16635848581790924, 0.47733375430107117, -0.34497764706611633, 0.8314087390899658, -0.42431262135505676, -0.04970399662852287, -0.5047421455383301, -0.9604251384735107, 0.026470273733139038, 0.9523012042045593, -0.4207214415073395, 0.025196094065904617, 0.3584462106227875, 0.7154063582420349, 0.07043278217315674, 0.3358958959579468, 0.11053279787302017, 0.14154744148254395, -0.030581215396523476, -0.02201917953789234, 0.6537203192710876, -0.7610469460487366, 0.34151872992515564, -0.5610136985778809, 0.050114456564188004, -0.022900503128767014, -0.6895743012428284, -1.095737338066101, -0.12454566359519958, -0.4714665412902832, -0.5317621827125549, -0.16831374168395996, 1.2680916786193848, 0.38673269748687744, -0.6506201028823853, -0.542783260345459, 0.1917295753955841, -0.5036441683769226, -0.22644081711769104, -0.27285221219062805, 0.36907559633255005, -0.3245295286178589, -0.6063774824142456, -0.13558734953403473, 0.05026745796203613, 0.3134521245956421, -0.25633135437965393, -0.06910514086484909, 0.05082199349999428, 0.13376562297344208, 0.4707408547401428, -0.18330518901348114, -0.2870616316795349, -0.3195957541465759, -0.02447585016489029, -0.10831505060195923, 0.09845627099275589, 0.3337634205818176, -0.3811704218387604, 0.11075137555599213, 0.2116771638393402, 0.4448702037334442, 0.4931810200214386, 0.19880980253219604, 0.41026583313941956, -0.7029352784156799, 0.39293503761291504, 0.13653019070625305, 0.5269936323165894, 0.07155773043632507, -0.34917208552360535, 0.310659795999527, 0.3970690965652466, -0.4425915479660034, -0.4427741467952728, -0.25788286328315735, -1.1680784225463867, 0.009041390381753445, 0.9892528057098389, 0.015678510069847107, -0.5534141659736633, 0.5097542405128479, -0.4340854287147522, 0.31497326493263245, -0.542617917060852, 0.7311391830444336, 0.7033036351203918, 0.02877216599881649, 0.15693651139736176, -0.4965250492095947, 0.49533599615097046, 0.3438125550746918, -0.5691977739334106, -0.21574373543262482, 0.39794084429740906, 0.445303350687027, 0.0011548736365512013, 0.42762893438339233, 0.009660102427005768, 0.347086638212204, 0.12723354995250702, 0.4148251712322235, -0.11971276253461838, -0.2310212105512619, -0.32976511120796204, 0.27216053009033203, 0.2166793942451477, -0.4321475028991699 ]
kykim/bertshared-kor-base
kykim
"2023-01-01T17:32:30Z"
58,966
10
transformers
[ "transformers", "pytorch", "encoder-decoder", "text2text-generation", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
"2022-03-02T23:29:05Z"
--- language: ko --- # Bert base model for Korean * 70GB Korean text dataset and 42000 lower-cased subwords are used * Check the model performance and other language models for Korean in [github](https://github.com/kiyoungkim1/LM-kor) ```python # only for pytorch in transformers from transformers import BertTokenizerFast, EncoderDecoderModel tokenizer = BertTokenizerFast.from_pretrained("kykim/bertshared-kor-base") model = EncoderDecoderModel.from_pretrained("kykim/bertshared-kor-base") ```
[ -0.11719578504562378, -0.5603639483451843, 0.17749974131584167, 0.37314942479133606, -0.6405749320983887, -0.05935044586658478, -0.49214842915534973, 0.10892288386821747, -0.04556594789028168, 0.4804372489452362, -0.4433259963989258, -0.6571716666221619, -0.6693523526191711, 0.18937264382839203, -0.2709680497646332, 1.1035723686218262, -0.14689315855503082, 0.35222509503364563, 0.06133900210261345, 0.03291464224457741, -0.030899163335561752, -0.7907930612564087, -0.4135996699333191, -0.7774918079376221, 0.37781429290771484, 0.33736616373062134, 0.6285398602485657, 0.23596318066120148, 0.5362462401390076, 0.39316388964653015, -0.10677184909582138, -0.32819733023643494, -0.4915650486946106, 0.054895900189876556, -0.016544116660952568, -0.5184025764465332, -0.4125189781188965, -0.2674272656440735, 0.48277565836906433, 0.4435141980648041, 0.06120898574590683, 0.22516505420207977, -0.4151555895805359, 0.7470886707305908, -0.3916962146759033, 0.3563019335269928, -0.6027465462684631, 0.019723765552043915, -0.019230082631111145, 0.3595024049282074, -0.572833240032196, -0.38932541012763977, 0.3613261878490448, -0.49845799803733826, 0.33262303471565247, -0.21768450736999512, 1.2807395458221436, 0.12632404267787933, -0.47582685947418213, -0.32340943813323975, -0.42341357469558716, 0.7820704579353333, -0.6861927509307861, 0.6274084448814392, 0.47292622923851013, 0.19621574878692627, -0.1528240144252777, -1.074253797531128, -0.5520819425582886, -0.27978330850601196, -0.12135856598615646, 0.17191298305988312, -0.06032432243227959, 0.4160277843475342, 0.36985719203948975, 0.2627902626991272, -0.6999894976615906, -0.18608790636062622, -0.5969849824905396, -0.5934475660324097, 0.674852728843689, -0.10266118496656418, 0.22772666811943054, -0.6327636241912842, -0.006070258095860481, -0.4593716859817505, -0.32169878482818604, -0.11206773668527603, 0.45154380798339844, 0.32206302881240845, -0.11137685179710388, 1.0003345012664795, -0.42662712931632996, 0.2619878649711609, 0.18366192281246185, -0.20752310752868652, 0.6159812808036804, -0.3705989718437195, -0.2907276749610901, 0.23747025430202484, 0.719894289970398, 0.2153475135564804, 0.531567394733429, -0.43590474128723145, -0.13527658581733704, 0.17328356206417084, 0.15885315835475922, -0.918658971786499, -0.7818213701248169, 0.2693384885787964, -0.9083219170570374, 0.07596369087696075, 0.08975428342819214, -0.6831129789352417, -0.0848841518163681, -0.2680644989013672, 0.6737219095230103, -0.6258014440536499, -0.3736755847930908, 0.17167240381240845, -0.19580267369747162, 0.13017749786376953, -0.23944349586963654, -0.6323291063308716, 0.016342824324965477, 0.40035203099250793, 0.8054721355438232, 0.1264302134513855, -0.3210536539554596, 0.15092334151268005, -0.46815451979637146, -0.2849441468715668, 0.3286910951137543, 0.008332358673214912, -0.3851429522037506, 0.13124586641788483, 0.3539043962955475, -0.3493574559688568, -0.47816553711891174, 0.9131641983985901, -0.815845251083374, 0.054089825600385666, -0.13756206631660461, -0.6506494283676147, -0.24049419164657593, -0.13427729904651642, -0.7126984000205994, 1.2304258346557617, 0.5000602602958679, -0.5540004372596741, 0.4881953299045563, -0.5692659616470337, -0.6997937560081482, 0.12518616020679474, 0.3071533441543579, -0.6406476497650146, 0.19210311770439148, 0.3073976933956146, 0.47284936904907227, 0.30063045024871826, 0.40480342507362366, 0.0900595486164093, -0.3868686258792877, 0.11535418778657913, -0.3308808505535126, 0.718816876411438, 0.41210314631462097, -0.14511486887931824, 0.06875345855951309, -0.7818986177444458, 0.20715269446372986, 0.08241604268550873, -0.7517475485801697, -0.27820006012916565, -0.26130595803260803, 0.4806673228740692, 0.1518251746892929, 0.564243733882904, -0.7364270687103271, 0.3292066752910614, -0.46462535858154297, 0.3194561004638672, 0.5173712968826294, -0.46707144379615784, 0.7459023594856262, -0.08171413838863373, 0.5037934184074402, 0.18382737040519714, -0.08280640840530396, -0.22381271421909332, -0.3936881124973297, -1.0217740535736084, -0.3838225305080414, 0.905613899230957, 0.6280332207679749, -1.2122150659561157, 0.6448054313659668, -0.6315683722496033, -0.6947463750839233, -0.8578094840049744, -0.05033281818032265, 0.3900965452194214, 0.16841939091682434, 0.3814525306224823, 0.15891551971435547, -0.9387745261192322, -1.0866080522537231, -0.25012698769569397, -0.11231902241706848, -0.15314942598342896, 0.2988610863685608, 0.8569308519363403, -0.5477567911148071, 0.9453280568122864, -0.23078328371047974, -0.013058009557425976, -0.5187715888023376, 0.1924428641796112, 0.6619423031806946, 0.4612308144569397, 0.36804184317588806, -0.5716598629951477, -0.854155421257019, 0.05419815704226494, -0.4887799322605133, -0.18065868318080902, 0.01412606704980135, -0.28146374225616455, 0.5632857084274292, 0.6231305599212646, -0.9360426664352417, 0.4542815685272217, 0.529000461101532, -0.3602760434150696, 0.5490275025367737, -0.2666633725166321, -0.005279657896608114, -1.2062535285949707, 0.10090116411447525, -0.3158833086490631, -0.21805237233638763, -0.49776557087898254, -0.10247117280960083, 0.43286556005477905, 0.0459318570792675, -0.4366537630558014, 0.5387926697731018, -0.3270069658756256, -0.043592438101768494, -0.14112074673175812, -0.16869883239269257, -0.34837809205055237, 0.5499777793884277, 0.17235763370990753, 0.8189979791641235, 0.4101603925228119, -0.6532094478607178, 0.6526646614074707, 0.361981600522995, -0.755022406578064, -0.027808936312794685, -0.7931014895439148, 0.09757369011640549, -0.14512452483177185, 0.4106399714946747, -0.771379292011261, -0.409599632024765, 0.2115090936422348, -0.4682045578956604, 0.08221489191055298, -0.6432949900627136, -0.7907938361167908, -0.7334582209587097, -0.009320979006588459, 0.3809526562690735, 1.0120929479599, -0.7203207015991211, 0.7134767770767212, 0.07459434866905212, -0.16091032326221466, -0.491643488407135, -0.6570351123809814, -0.1571270227432251, -0.01252527255564928, -0.6464983820915222, 0.4294649362564087, 0.17918631434440613, 0.17414529621601105, 0.14633870124816895, -0.1201729029417038, 0.06665482372045517, -0.3331975042819977, 0.01304948702454567, 0.17503789067268372, -0.15269193053245544, 0.19123990833759308, 0.1603461354970932, -0.2514219284057617, -0.15294890105724335, -0.16508564352989197, 1.165331244468689, -0.13969744741916656, -0.09654981642961502, -0.30220237374305725, -0.005452641285955906, 0.6189215779304504, 0.3845154643058777, 0.7731776833534241, 0.8328048586845398, -0.27470237016677856, -0.10104456543922424, -0.21294079720973969, -0.1812244951725006, -0.5304617881774902, 1.0518739223480225, -0.6302773952484131, -0.651947021484375, 0.6326270699501038, -0.07584226876497269, -0.24885524809360504, 0.505378007888794, 0.7044793963432312, 0.08083900064229965, 1.1784443855285645, 0.4261597990989685, -0.3464844524860382, 0.4109552502632141, -0.3299897015094757, 0.4398443102836609, -0.7180500626564026, -0.2620156705379486, -0.38652291893959045, -0.2136692851781845, -0.7951382398605347, -0.24100744724273682, 0.16061431169509888, 0.30927953124046326, -0.4405806362628937, 0.6117267608642578, -0.4964979588985443, 0.5266035199165344, 0.839249849319458, 0.0850873589515686, -0.20711776614189148, 0.36689409613609314, -0.4620963931083679, -0.06793488562107086, -0.9064267873764038, -0.4802912771701813, 1.239309310913086, 0.46203166246414185, 1.0589720010757446, -0.21406209468841553, 0.4298556447029114, -0.02506878785789013, 0.1337895691394806, -1.056584119796753, 0.562746524810791, -0.4912503957748413, -0.7757167220115662, -0.09307631850242615, -0.38266292214393616, -1.0947940349578857, 0.2326248735189438, 0.2200341373682022, -0.605944812297821, -0.10660199820995331, -0.10488215833902359, -0.02870454266667366, 0.22359582781791687, -0.8145473003387451, 0.8606752157211304, -0.14766792953014374, 0.39818066358566284, 0.19974347949028015, -0.535068154335022, 0.19647829234600067, 0.06542190909385681, -0.2524127960205078, 0.060068439692258835, 0.2529293894767761, 0.8102418780326843, -0.3616342842578888, 0.6150912046432495, -0.2690804898738861, 0.03459334373474121, 0.27753114700317383, -0.2814009487628937, 0.530113935470581, 0.03849102556705475, -0.06930118054151535, 0.42856156826019287, 0.05696716532111168, -0.3618113100528717, -0.09423818439245224, 0.553891122341156, -1.0127397775650024, 0.14258918166160583, -0.6073704957962036, -0.6736269593238831, 0.06964512914419174, 0.37121790647506714, 0.874359130859375, 0.07788404822349548, 0.11363642662763596, 0.4603114128112793, 0.5231454968452454, -0.3995811939239502, 0.6146519184112549, 0.28760820627212524, -0.36421406269073486, -0.7563843131065369, 0.9855793714523315, 0.20963750779628754, 0.0724019929766655, -0.02195703610777855, 0.06293921172618866, -0.648949384689331, -0.24937817454338074, -0.4462362825870514, 0.2551906704902649, -0.861192524433136, -0.16694125533103943, -0.7007206082344055, -0.6769161224365234, -0.5839565992355347, -0.056117311120033264, -0.5108107328414917, -0.27345553040504456, -0.27254965901374817, 0.047575242817401886, 0.6129540205001831, 0.25187861919403076, 0.016735423356294632, 0.903378427028656, -0.8906675577163696, 0.5938361287117004, 0.15919268131256104, 0.5025990605354309, -0.1107480451464653, -0.6892516016960144, -0.514618456363678, 0.2695952355861664, -0.017269082367420197, -0.5615505576133728, 0.7124731540679932, 0.1283055990934372, 0.5984394550323486, 0.18025711178779602, 0.13483110070228577, 0.5094178915023804, -0.6662093997001648, 0.9277488589286804, -0.03243386372923851, -0.9967244863510132, 0.30744102597236633, -0.17495068907737732, 0.6424264311790466, 0.5943673253059387, 0.30863627791404724, -0.7381587028503418, 0.02411310188472271, -0.6337619423866272, -1.1962751150131226, 1.0909432172775269, 0.481967955827713, 0.35197871923446655, 0.12084824591875076, 0.46023619174957275, 0.11742639541625977, 0.3279191255569458, -0.9067780375480652, -0.39092063903808594, -0.49662578105926514, -0.7440224289894104, -0.09318382292985916, -0.3628328740596771, 0.20344258844852448, -0.5281005501747131, 1.0365197658538818, 0.009383979253470898, 0.663213849067688, 0.4151465594768524, -0.5711238384246826, 0.047750040888786316, 0.06353505700826645, 0.6934742331504822, 0.25699883699417114, -0.368228554725647, -0.02820858359336853, 0.22048453986644745, -1.1059426069259644, -0.007205585017800331, 0.18373951315879822, -0.36025020480155945, 0.5110753178596497, 0.39140409231185913, 1.0621951818466187, -0.002903242828324437, -0.5956822037696838, 0.22189238667488098, -0.09571677446365356, -0.36460891366004944, -0.3139939606189728, -0.1680208295583725, 0.17847932875156403, 0.21869266033172607, 0.5826083421707153, -0.15932881832122803, -0.22903087735176086, -0.19629792869091034, 0.22533513605594635, 0.2305545210838318, -0.2221831977367401, -0.32474687695503235, 0.3254165053367615, 0.07775922864675522, -0.3217378854751587, 1.0609263181686401, -0.27035343647003174, -1.1851075887680054, 0.9091365337371826, 0.5851901173591614, 0.9986971020698547, 0.06880756467580795, 0.22844792902469635, 0.5265517234802246, 0.5421010255813599, -0.3007148504257202, 0.7783597111701965, 0.2049664855003357, -0.9447923302650452, -0.39043405652046204, -0.9253909587860107, -0.10325369983911514, 0.5331501960754395, -0.6014645099639893, 0.12661974132061005, -0.08601967245340347, -0.3823401629924774, -0.16802284121513367, 0.14533816277980804, -0.5963892936706543, 0.19668161869049072, -0.05148403346538544, 0.9028818011283875, -0.7820689678192139, 1.0859836339950562, 0.8596043586730957, -0.3071397542953491, -0.618950366973877, -0.09685494750738144, -0.7105899453163147, -0.6751910448074341, 1.01764714717865, 0.21391145884990692, 0.457946240901947, 0.14170779287815094, -0.6307061910629272, -0.9670252799987793, 0.9584307670593262, 0.037682995200157166, -0.6982080936431885, 0.19836115837097168, 0.21734026074409485, 0.6226649880409241, -0.15461592376232147, -0.02874552085995674, 0.7303996682167053, 0.4998945891857147, -0.03205181658267975, -1.1136887073516846, -0.49059590697288513, -0.3289170563220978, 0.0827067419886589, 0.2023693323135376, -0.4753324091434479, 1.189620852470398, 0.07996746152639389, -0.10911297798156738, 0.4868015944957733, 0.5472438335418701, 0.3162054419517517, 0.20355086028575897, 0.3541344404220581, 0.6282315850257874, 0.49458545446395874, -0.4289644956588745, 0.9217381477355957, -0.49376222491264343, 0.7827779054641724, 0.9127451777458191, -0.06432501971721649, 0.6326614618301392, 0.44964584708213806, -0.385959655046463, 0.4199405312538147, 0.781584620475769, -0.30215391516685486, 0.8820682168006897, 0.17160221934318542, -0.1593201458454132, -0.2131621241569519, 0.3377796411514282, -0.4504300653934479, 0.43128058314323425, 0.21203717589378357, -0.5743380188941956, -0.1489623785018921, 0.13145296275615692, 0.20152294635772705, -0.3182143270969391, -0.4569861590862274, 0.4885562062263489, -0.08986406028270721, -0.6179413795471191, 0.5477575659751892, 0.43523454666137695, 1.0795564651489258, -0.6383606791496277, 0.34113872051239014, -0.20776429772377014, 0.5088204145431519, 0.11349441111087799, -0.5728076696395874, -0.05801180377602577, -0.16464553773403168, -0.27061501145362854, 0.018210867419838905, 1.1981374025344849, -0.7002195119857788, -0.88634192943573, 0.1982678771018982, 0.1618742048740387, 0.20849691331386566, -0.07060110569000244, -0.8120235800743103, 0.009044840931892395, -0.11643168330192566, -0.47021347284317017, 0.1849079728126526, 0.312855988740921, -0.05430543050169945, 0.6270914077758789, 0.7740136384963989, 0.03174929320812225, 0.5370540618896484, 0.2457035779953003, 0.7008357644081116, -0.5610853433609009, -0.48650404810905457, -0.8236687779426575, 0.49008432030677795, -0.16567157208919525, -0.4254375994205475, 0.8731493949890137, 0.5912153124809265, 0.9224346280097961, -0.7397086024284363, 0.8734239935874939, -0.18882359564304352, 0.23012854158878326, -0.5525870323181152, 1.0436393022537231, -0.24150024354457855, -0.39158421754837036, -0.2564408779144287, -0.8780195713043213, -0.11861997842788696, 1.1100401878356934, -0.09980689734220505, 0.28538742661476135, 0.7042361497879028, 0.7877326607704163, -0.06526701897382736, -0.2084263116121292, 0.3293464183807373, 0.3777023255825043, 0.048027124255895615, 0.3335418105125427, 0.7218039035797119, -0.9734947085380554, 0.6528007388114929, -0.6503672003746033, 0.2136361002922058, -0.327909916639328, -0.8016220927238464, -1.2606393098831177, -0.44597989320755005, -0.2363985925912857, -0.6688145399093628, -0.206314817070961, 0.9648083448410034, 0.7145749926567078, -1.0431088209152222, -0.04347490891814232, -0.38626614212989807, 0.16365212202072144, -0.08236664533615112, -0.29483678936958313, 0.758554995059967, -0.2882739305496216, -0.9550997018814087, 0.2737775146961212, -0.2847113013267517, 0.21612374484539032, -0.05314033478498459, -0.31580132246017456, -0.1560545563697815, 0.13055244088172913, 0.717850387096405, 0.008594476617872715, -0.8001973628997803, -0.10487327724695206, 0.22141335904598236, -0.3421344757080078, -0.19517584145069122, 0.6167764663696289, -0.7858748435974121, 0.35664480924606323, 0.883224606513977, 0.4586445093154907, 0.49777862429618835, 0.006426562089473009, 0.3618500232696533, -0.8018053770065308, 0.3139858543872833, 0.08790860325098038, 0.3875318467617035, 0.2118610143661499, -0.29883870482444763, 0.4538360834121704, 0.33476459980010986, -0.8075435757637024, -0.8174583315849304, -0.09314132481813431, -0.9306233525276184, -0.2847948372364044, 1.3117915391921997, -0.11017097532749176, -0.3261507451534271, -0.19565288722515106, -0.686245858669281, 0.49051281809806824, -0.4658471345901489, 0.6339485049247742, 1.015731692314148, 0.1793069839477539, -0.07463332265615463, -0.449612557888031, 0.5367604494094849, 0.442085862159729, -0.41789454221725464, -0.1451508104801178, 0.21053041517734528, 0.3980925381183624, 0.26937225461006165, 0.42197009921073914, -0.0186783317476511, 0.24307624995708466, 0.321466863155365, 0.44322291016578674, 0.05247655510902405, -0.374455064535141, -0.2618792951107025, -0.06715749949216843, -0.5161762237548828, -0.39891165494918823 ]
facebook/wav2vec2-large-xlsr-53
facebook
"2022-03-18T16:11:44Z"
58,820
61
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "pretraining", "speech", "multilingual", "dataset:common_voice", "arxiv:2006.13979", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
"2022-03-02T23:29:05Z"
--- language: multilingual datasets: - common_voice tags: - speech license: apache-2.0 --- # Wav2Vec2-XLSR-53 [Facebook's XLSR-Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) The base model pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz. Note that this model should be fine-tuned on a downstream task, like Automatic Speech Recognition. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more information. [Paper](https://arxiv.org/abs/2006.13979) Authors: Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli **Abstract** This paper presents XLSR which learns cross-lingual speech representations by pretraining a single model from the raw waveform of speech in multiple languages. We build on wav2vec 2.0 which is trained by solving a contrastive task over masked latent speech representations and jointly learns a quantization of the latents shared across languages. The resulting model is fine-tuned on labeled data and experiments show that cross-lingual pretraining significantly outperforms monolingual pretraining. On the CommonVoice benchmark, XLSR shows a relative phoneme error rate reduction of 72% compared to the best known results. On BABEL, our approach improves word error rate by 16% relative compared to a comparable system. Our approach enables a single multilingual speech recognition model which is competitive to strong individual models. Analysis shows that the latent discrete speech representations are shared across languages with increased sharing for related languages. We hope to catalyze research in low-resource speech understanding by releasing XLSR-53, a large model pretrained in 53 languages. The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20. # Usage See [this notebook](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLSR_Wav2Vec2_on_Turkish_ASR_with_%F0%9F%A4%97_Transformers.ipynb) for more information on how to fine-tune the model. ![model image](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/xlsr_wav2vec2.png)
[ -0.20295734703540802, -0.2187543511390686, -0.10558901727199554, 0.09000630676746368, -0.2731034457683563, 0.1294262409210205, -0.25894826650619507, -0.7098809480667114, -0.09258795529603958, 0.14247165620326996, -0.6312061548233032, -0.2926482856273651, -0.44576185941696167, -0.07882404327392578, -0.12366963177919388, 0.7557844519615173, 0.05840247869491577, 0.6159672737121582, 0.17943187057971954, -0.3000818192958832, -0.32806453108787537, -0.47421303391456604, -0.7901321053504944, -0.3972165882587433, 0.5183107256889343, 0.34997662901878357, 0.31178560853004456, 0.3096957206726074, 0.28058484196662903, 0.2775930166244507, -0.2636380195617676, 0.0499160997569561, -0.7071321606636047, -0.16809089481830597, -0.1008995771408081, -0.37613561749458313, -0.3397423028945923, -0.012608208693563938, 0.7771563529968262, 0.6826015114784241, -0.3385821282863617, 0.16633610427379608, 0.06442400813102722, 0.4745848476886749, -0.43589916825294495, 0.2534658908843994, -0.684272825717926, 0.15236225724220276, -0.26502299308776855, 0.0814191922545433, -0.4007449746131897, 0.08425391465425491, 0.13317431509494781, -0.4673326909542084, 0.08666267991065979, -0.07934607565402985, 0.7491702437400818, 0.12312609702348709, -0.42758575081825256, -0.17305132746696472, -0.8753196001052856, 1.0560009479522705, -0.34497711062431335, 1.0574935674667358, 0.5495963096618652, 0.3465477526187897, 0.33814507722854614, -0.9940564632415771, -0.35194119811058044, -0.004888094961643219, 0.1274622082710266, 0.2911568284034729, -0.383643239736557, -0.19741256535053253, 0.11942751705646515, 0.2747599184513092, -0.7927887439727783, 0.20051315426826477, -0.749000072479248, -0.45655784010887146, 0.3874087929725647, -0.136282816529274, 0.16393204033374786, -0.030272064730525017, -0.29865312576293945, -0.3959365487098694, -0.48244568705558777, 0.4790564477443695, 0.1639871746301651, 0.47066134214401245, -0.5675715804100037, 0.3256540298461914, 0.08104091137647629, 0.5005384683609009, -0.05577535182237625, -0.0126828383654356, 0.659430205821991, -0.5818909406661987, 0.13078361749649048, 0.3935624063014984, 0.7423810362815857, -0.09971034526824951, 0.15946809947490692, 0.009648904204368591, -0.24130378663539886, 0.28169339895248413, -0.04429569095373154, -0.6713345646858215, -0.3529749810695648, -0.018145617097616196, -0.2959473729133606, 0.2152160406112671, 0.06864376366138458, -0.08085549622774124, 0.2583544850349426, -0.6361969709396362, 0.42172160744667053, -0.5177292823791504, -0.32673180103302, -0.036661405116319656, 0.04542766138911247, 0.29844263195991516, 0.05318567901849747, -0.810845136642456, 0.5282251834869385, 0.4987468719482422, 0.7676278352737427, 0.011396773159503937, -0.1912425309419632, -0.7435516119003296, 0.003864157712087035, -0.46746397018432617, 0.6629460453987122, -0.3479997515678406, -0.37206244468688965, -0.27077943086624146, 0.011135202832520008, 0.2520144581794739, -0.5114607214927673, 0.47263768315315247, -0.47458407282829285, 0.09780122339725494, -0.24704208970069885, -0.2920992374420166, 0.020816421136260033, -0.27426788210868835, -0.7880993485450745, 1.0571300983428955, 0.08492676913738251, -0.7125691175460815, 0.2238910049200058, -0.39689841866493225, -0.5149977207183838, -0.07398354262113571, -0.2589167058467865, -0.4174029231071472, -0.15386314690113068, 0.07730530202388763, 0.15079019963741302, -0.10391391813755035, -0.16786116361618042, -0.03050423040986061, -0.22417157888412476, 0.20163027942180634, -0.29155054688453674, 0.8289351463317871, 0.5119308233261108, -0.21832381188869476, 0.0662148967385292, -0.9006615877151489, 0.3031676709651947, -0.08818749338388443, -0.36734551191329956, -0.2533716559410095, -0.23740766942501068, 0.2866385281085968, 0.35988980531692505, 0.04527055844664574, -0.5972680449485779, -0.4268108308315277, -0.5580800771713257, 0.6534487009048462, 0.3759826123714447, -0.3047216832637787, 0.4538174867630005, -0.21780656278133392, 0.21488310396671295, 0.05683054029941559, 0.00994948111474514, -0.04982807859778404, -0.2939799129962921, -0.4620717465877533, -0.2313656359910965, 0.5152360200881958, 0.5830335021018982, -0.35468313097953796, 0.2733246982097626, -0.171176478266716, -0.5942812561988831, -0.7297762036323547, 0.08738388121128082, 0.7622910737991333, 0.37822166085243225, 0.682723879814148, -0.40659865736961365, -0.9143655896186829, -0.5751800537109375, -0.1604003757238388, -0.045452527701854706, -0.04102136567234993, 0.29283273220062256, 0.18586474657058716, -0.34002405405044556, 0.6922854781150818, -0.11766970157623291, -0.36151906847953796, -0.32766443490982056, 0.3486361503601074, -0.04636138677597046, 0.6136261224746704, 0.41166988015174866, -1.0097484588623047, -0.6603401303291321, 0.042621757835149765, -0.12343797832727432, 0.05091812461614609, 0.27631306648254395, -0.02792774885892868, 0.4608152210712433, 0.535124659538269, -0.255990594625473, 0.19023481011390686, 0.7523444294929504, -0.08048565685749054, 0.3337688148021698, -0.11695661395788193, -0.10887650400400162, -1.1338324546813965, -0.012190562672913074, 0.14923958480358124, -0.41318637132644653, -0.50987708568573, -0.45916837453842163, 0.13772405683994293, -0.1709173172712326, -0.6929949522018433, 0.4005788564682007, -0.6238464713096619, -0.326585054397583, -0.1496952325105667, 0.1800249218940735, -0.1414276361465454, 0.3724261224269867, 0.26777148246765137, 0.7669736742973328, 0.5297687649726868, -0.5745084881782532, 0.2572174072265625, 0.43034493923187256, -0.47243332862854004, 0.15102814137935638, -0.7701026797294617, 0.3575819730758667, 0.05303749814629555, 0.33752012252807617, -0.9632494449615479, 0.0963398888707161, 0.03499221429228783, -0.833578884601593, 0.4404551386833191, -0.06548646092414856, -0.1924958974123001, -0.11897499114274979, 0.0902077704668045, 0.6261544227600098, 0.7848976850509644, -0.5291635990142822, 0.628803014755249, 0.6306295394897461, -0.3132114112377167, -0.703069269657135, -1.067899465560913, -0.2491842359304428, 0.3038886487483978, -0.5087934732437134, 0.6988547444343567, -0.11352085322141647, -0.11991366744041443, 0.04649219661951065, -0.4205712378025055, -0.1843622624874115, -0.4956892728805542, 0.27798032760620117, 0.07710730284452438, -0.32338517904281616, 0.05865307152271271, -0.09006688743829727, -0.21926525235176086, -0.05102844536304474, -0.4251959025859833, 0.5997173190116882, -0.12597446143627167, -0.10128824412822723, -0.7068767547607422, 0.352839857339859, 0.2515440881252289, -0.5215879082679749, 0.3004683256149292, 0.8872011303901672, -0.3810376822948456, -0.24581769108772278, -0.38843944668769836, -0.20880481600761414, -0.4666922092437744, 0.7960593104362488, -0.5725433826446533, -0.9041436910629272, 0.44100111722946167, 0.08018608391284943, -0.14047275483608246, 0.4318385422229767, 0.539293110370636, 0.026037950068712234, 0.9894052743911743, 0.726127564907074, -0.1391419619321823, 0.5935801863670349, -0.5272020697593689, 0.09522499889135361, -0.6769247055053711, -0.5469071269035339, -0.7568174004554749, 0.007043302059173584, -0.5616440773010254, -0.6195496916770935, 0.20696130394935608, -0.04943655803799629, -0.1116357147693634, 0.3952826261520386, -0.26070302724838257, 0.3229898512363434, 0.5499171614646912, 0.21002142131328583, 0.01548117958009243, 0.2844802439212799, -0.4357758164405823, -0.1843639612197876, -0.729184627532959, -0.1448494791984558, 0.698774516582489, 0.28173646330833435, 0.8171426653862, 0.10159362107515335, 0.5067515969276428, 0.1073225662112236, -0.37309154868125916, -0.8350305557250977, 0.26958104968070984, -0.43611499667167664, -0.504001259803772, -0.40243345499038696, -0.5999214053153992, -0.8068565130233765, 0.20759357511997223, -0.22568118572235107, -0.4704440236091614, 0.09299777448177338, 0.14420199394226074, -0.318399041891098, 0.16027624905109406, -0.5629831552505493, 0.658785879611969, -0.2717511057853699, -0.30843105912208557, -0.6246653199195862, -0.8856936693191528, -0.021915776655077934, -0.22023585438728333, 0.368724524974823, 0.08902058750391006, 0.29655492305755615, 0.9166045784950256, -0.32145869731903076, 0.7371310591697693, -0.2110387533903122, -0.08785653859376907, 0.2695953845977783, -0.22493195533752441, 0.4204769432544708, -0.07519131898880005, -0.06684036552906036, 0.3841693699359894, 0.18788813054561615, -0.30455905199050903, -0.24765229225158691, 0.5812674164772034, -1.2484360933303833, 0.005940369330346584, -0.3096805214881897, -0.36949312686920166, -0.21264515817165375, 0.15086829662322998, 0.5464152097702026, 0.8334381580352783, -0.3084696829319, 0.36956241726875305, 0.7395356893539429, -0.13707607984542847, 0.2513653039932251, 0.6236070394515991, 0.08851984888315201, -0.5376567840576172, 0.8005633354187012, 0.3242385983467102, 0.24885724484920502, 0.6538887023925781, 0.16966605186462402, -0.4850684106349945, -0.4315779507160187, -0.037936531007289886, 0.22633904218673706, -0.7843620777130127, 0.023132847622036934, -0.7522120475769043, -0.4212849736213684, -0.8125576376914978, 0.20152544975280762, -0.8006862998008728, -0.5286054015159607, -0.4932558536529541, -0.06255237013101578, 0.1956074833869934, 0.6501756310462952, -0.6578940749168396, 0.22437883913516998, -0.8559352159500122, 0.5727783441543579, 0.3970658481121063, 0.15863803029060364, -0.11633893847465515, -0.9555706977844238, -0.4545944333076477, 0.29314467310905457, 0.14083220064640045, -0.44294214248657227, 0.3912501335144043, 0.4261091351509094, 0.7015309929847717, 0.3042137920856476, 0.01431132573634386, 0.6960826516151428, -0.7488354444503784, 0.618952214717865, 0.510069727897644, -1.1239527463912964, 0.5599936842918396, 0.1424703598022461, 0.31203049421310425, 0.38809075951576233, 0.6376839280128479, -0.6433425545692444, 0.0312725231051445, -0.2833448350429535, -0.878717839717865, 1.003689169883728, 0.08246706426143646, 0.15744848549365997, 0.3482111990451813, 0.1892024725675583, 0.1742851585149765, -0.274400919675827, -0.6814513206481934, -0.4098137617111206, -0.5190474987030029, -0.25536543130874634, -0.3299773037433624, -0.4419330954551697, -0.008647974580526352, -0.4701822102069855, 0.8455971479415894, 0.2963411509990692, 0.19047746062278748, 0.168145552277565, -0.3034268617630005, -0.18064911663532257, 0.16545943915843964, 0.5440214276313782, 0.5692256093025208, -0.1678905338048935, 0.23372092843055725, 0.1874583512544632, -0.6414080262184143, 0.1756812185049057, 0.3937441408634186, 0.22155031561851501, 0.08244308829307556, 0.3364209830760956, 1.1664661169052124, 0.3331654965877533, -0.42168864607810974, 0.40828412771224976, -0.35147643089294434, -0.49570631980895996, -0.5972523093223572, -0.04028104618191719, 0.08898770064115524, 0.35337141156196594, 0.45601686835289, 0.08412810415029526, -0.004942706320434809, -0.45810046792030334, 0.40727946162223816, 0.27655044198036194, -0.7941731810569763, -0.6226088404655457, 0.6374143362045288, 0.20308522880077362, -0.3505858778953552, 0.5401239395141602, -0.1424749344587326, -0.46163469552993774, 0.36250409483909607, 0.6518911719322205, 0.6165366768836975, -0.5761797428131104, -0.06777531653642654, 0.5631282329559326, 0.1756468266248703, -0.06516268849372864, 0.574826180934906, -0.3146044909954071, -0.7345205545425415, -0.6373260021209717, -0.515049159526825, -0.46283429861068726, 0.12787429988384247, -0.7328344583511353, 0.3889598250389099, -0.10605980455875397, -0.1020885482430458, 0.33236533403396606, 0.21376608312129974, -0.5649063587188721, 0.30073073506355286, 0.4223310053348541, 0.8187746405601501, -0.7631301879882812, 1.1617136001586914, 0.7047055959701538, -0.28212985396385193, -1.2722169160842896, -0.2070925086736679, -0.004010085482150316, -0.6347514390945435, 0.9580490589141846, 0.04546240344643593, -0.5421323776245117, 0.09449970722198486, -0.48426109552383423, -1.1490472555160522, 0.9644157886505127, 0.2128441482782364, -0.9903016090393066, 0.10777276754379272, 0.13889169692993164, 0.2846418619155884, -0.19858203828334808, 0.07904575765132904, 0.18158239126205444, 0.181513249874115, 0.32766497135162354, -1.1081409454345703, -0.1808461844921112, -0.3454757034778595, -0.022919615730643272, -0.17366448044776917, -0.5890986919403076, 1.018161654472351, -0.40809768438339233, -0.2508435547351837, -0.057716019451618195, 0.8003544807434082, 0.28974130749702454, 0.12127356976270676, 0.6252996921539307, 0.47958335280418396, 0.7891413569450378, 0.051634155213832855, 0.5415956377983093, -0.29028284549713135, 0.20458769798278809, 1.2595093250274658, -0.3808353543281555, 0.9458868503570557, 0.28212419152259827, -0.2594250738620758, 0.489982932806015, 0.5244941115379333, 0.0866294577717781, 0.92752605676651, 0.09278788417577744, -0.22159238159656525, -0.17904438078403473, -0.05561600998044014, -0.6228440999984741, 0.7527368664741516, 0.3443640172481537, -0.07671910524368286, 0.0889260396361351, 0.15002088248729706, -0.1296662837266922, -0.10770060867071152, -0.401483416557312, 0.7049543261528015, 0.39624279737472534, -0.30206069350242615, 0.7040971517562866, 0.09762409329414368, 0.6202957034111023, -0.9103251695632935, 0.011843163520097733, 0.034513235092163086, 0.41729652881622314, -0.18068547546863556, -0.38230448961257935, 0.2110264003276825, 0.023255767300724983, -0.2838585078716278, -0.14351889491081238, 0.6056883931159973, -0.6701605319976807, -0.42049890756607056, 0.6709017157554626, 0.2307572215795517, 0.22626708447933197, 0.16530869901180267, -0.7459105849266052, 0.29859358072280884, 0.08071389049291611, -0.1327025145292282, 0.18889380991458893, 0.45152297616004944, 0.04374944418668747, 0.30768483877182007, 0.6487559080123901, 0.2782677710056305, 0.0627007931470871, 0.36286136507987976, 0.7163769602775574, -0.589605987071991, -0.8263915777206421, -0.4001031517982483, 0.37864604592323303, 0.19026008248329163, -0.04894658178091049, 0.49157580733299255, 0.6366787552833557, 1.4112846851348877, 0.06584880501031876, 0.7622695565223694, 0.20298661291599274, 0.903672993183136, -0.6258338689804077, 0.7511041164398193, -0.5623307228088379, -0.04485940933227539, -0.11597409844398499, -0.5873588919639587, -0.21638518571853638, 0.8654149770736694, 0.02051122486591339, 0.22706039249897003, 0.6775074005126953, 0.8711374998092651, -0.14002636075019836, -0.0697358027100563, 0.3037734627723694, 0.2864145338535309, 0.046098385006189346, 0.3689410090446472, 0.8151944875717163, -0.5302020311355591, 1.0057189464569092, -0.40480324625968933, -0.16317763924598694, 0.027106763795018196, -0.5079178810119629, -0.7146057486534119, -0.7647807002067566, -0.3932156562805176, -0.311832457780838, 0.22796954214572906, 0.9720631837844849, 1.0760533809661865, -0.9868464469909668, -0.4313463568687439, 0.0774717777967453, -0.2603728771209717, -0.29452553391456604, -0.11329267919063568, 0.3342304527759552, -0.26764997839927673, -0.6355348825454712, 0.5721210837364197, -0.010338366962969303, 0.24745428562164307, -0.040023814886808395, -0.44456946849823, -0.127280130982399, -0.10970989614725113, 0.5151920318603516, 0.3724641799926758, -0.581538736820221, 0.11453254520893097, 0.012288054451346397, -0.18585684895515442, 0.23376579582691193, 0.74577796459198, -0.7040363550186157, 0.19890405237674713, 0.464102566242218, 0.2828347086906433, 0.87196284532547, -0.29883936047554016, 0.32987356185913086, -0.7675100564956665, 0.39112892746925354, 0.29664185643196106, 0.3913632035255432, 0.43541669845581055, -0.009663579054176807, 0.18390072882175446, 0.1344025731086731, -0.47611290216445923, -0.8254722952842712, 0.21969471871852875, -1.188755750656128, -0.41056063771247864, 1.160503625869751, -0.08826899528503418, -0.19619518518447876, -0.049362678080797195, -0.19457323849201202, 0.7969443798065186, -0.4811183214187622, 0.2576332092285156, 0.24200254678726196, 0.12263708561658859, -0.2808297872543335, -0.2793879210948944, 0.5190700888633728, 0.3875909447669983, -0.2855846583843231, 0.05063065513968468, 0.4002330005168915, 0.4418275058269501, 0.0699809342622757, 0.7204663157463074, -0.32488489151000977, 0.2734650671482086, 0.029035039246082306, 0.2710093557834625, -0.029922714456915855, -0.36903154850006104, -0.5315303206443787, -0.095647431910038, -0.012533362954854965, -0.2914271056652069 ]
fxmarty/tiny-random-working-LongT5Model
fxmarty
"2023-03-28T16:48:30Z"
58,739
0
transformers
[ "transformers", "pytorch", "longt5", "feature-extraction", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
"2023-03-28T16:48:00Z"
--- license: mit ---
[ -0.12853388488292694, -0.18616782128810883, 0.6529127359390259, 0.4943625330924988, -0.19319313764572144, 0.23607465624809265, 0.36071982979774475, 0.05056332051753998, 0.5793652534484863, 0.740013837814331, -0.6508103013038635, -0.2378396987915039, -0.710224986076355, -0.04782581701874733, -0.3894752264022827, 0.8470761775970459, -0.09598272293806076, 0.024004854261875153, 0.047120071947574615, -0.14317826926708221, -0.6121037602424622, -0.04771740734577179, -1.0524537563323975, -0.06787490844726562, 0.3002279996871948, 0.5120972990989685, 0.8275896310806274, 0.39602896571159363, 0.5030564069747925, 1.7515558004379272, -0.08836919069290161, -0.22754427790641785, -0.45892032980918884, 0.4223068356513977, -0.33277371525764465, -0.42133718729019165, -0.2624166011810303, -0.07449338585138321, 0.32380399107933044, 0.790371298789978, -0.38104110956192017, 0.19328099489212036, -0.22438454627990723, 1.008224368095398, -0.8202074766159058, 0.22630876302719116, -0.16698351502418518, 0.14053204655647278, 0.042308706790208817, -0.14591927826404572, -0.1326323002576828, -0.6440033912658691, 0.06469469517469406, -0.899596095085144, 0.1027495265007019, -0.04461126774549484, 0.8789561986923218, 0.21909058094024658, -0.5102370977401733, -0.0459773913025856, -0.6883594989776611, 1.0972508192062378, -0.17556026577949524, 0.7615712881088257, 0.4507811963558197, 0.45288562774658203, -0.5849329829216003, -1.178217887878418, -0.4441864490509033, -0.13579002022743225, 0.14722809195518494, 0.30556100606918335, -0.3453029692173004, -0.022343844175338745, 0.10801105946302414, 0.5610314011573792, -0.5003758072853088, -0.311959445476532, -0.9579929113388062, -0.18164916336536407, 0.6820483207702637, 0.319308340549469, 0.834044337272644, 0.1873151659965515, -0.7347195744514465, 0.12866291403770447, -1.3239703178405762, 0.07650735974311829, 0.6465023756027222, 0.239467591047287, -0.554598867893219, 0.8594784736633301, -0.28587982058525085, 0.626249372959137, 0.2728465497493744, -0.1164526641368866, 0.2784252464771271, -0.23030735552310944, -0.2735062837600708, 0.033087607473134995, 0.34597301483154297, 0.8204491138458252, 0.16248634457588196, -0.019984982907772064, -0.22123965620994568, 0.0020717978477478027, 0.2684449553489685, -0.7935096025466919, -0.4712669551372528, 0.1926696002483368, -0.558952808380127, -0.0910850465297699, 0.4327022135257721, -1.0976827144622803, -0.4812980592250824, -0.1879846155643463, 0.05468139797449112, -0.5451693534851074, -0.3697946071624756, 0.07273250073194504, -0.79254150390625, -0.1243419200181961, 0.570950984954834, -0.6230252981185913, 0.43974608182907104, 0.533625602722168, 0.7861635684967041, 0.2330387681722641, -0.23613610863685608, -0.6695019602775574, 0.48848265409469604, -0.8661867380142212, 0.36860740184783936, -0.3073781132698059, -0.8298640251159668, -0.09631050378084183, 0.5393159985542297, 0.20664852857589722, -0.6653256416320801, 0.7074045538902283, -0.5496984720230103, -0.07806532829999924, -0.4308285415172577, -0.2432200014591217, 0.17460417747497559, 0.11115431040525436, -0.6238909363746643, 0.9402233362197876, 0.5551108121871948, -0.584109902381897, 0.31701239943504333, -0.4869506359100342, -0.6865583658218384, 0.26748135685920715, -0.008750975131988525, -0.047152332961559296, 0.3279528021812439, -0.15983973443508148, -0.0020511597394943237, 0.10505761206150055, 0.008299741894006729, -0.21891699731349945, -0.4786304235458374, 0.06349936127662659, 0.151650071144104, 1.25368332862854, 0.4083622097969055, -0.3771882951259613, -0.13140122592449188, -1.0526149272918701, 0.025432661175727844, 0.0505015105009079, -0.42306768894195557, -0.2504565119743347, -0.14882194995880127, -0.20381587743759155, 0.4307260811328888, 0.2118472456932068, -0.813115119934082, 0.22643625736236572, -0.2064024657011032, 0.364496648311615, 0.8222091794013977, 0.2703101634979248, 0.39760565757751465, -0.6625286340713501, 0.6563138365745544, 0.2076188325881958, 0.49590179324150085, 0.35404202342033386, -0.3845822811126709, -0.9641586542129517, -0.442161500453949, -0.10117404907941818, 0.2975531220436096, -0.7744957804679871, 0.5847322940826416, 0.012979604303836823, -0.5836705565452576, -0.4465281367301941, -0.15488101541996002, 0.2755330502986908, -0.06606576591730118, 0.03334902226924896, -0.4049779176712036, -0.7394417524337769, -1.0127898454666138, -0.13788150250911713, -0.5021388530731201, -0.21892830729484558, 0.3160586357116699, 0.2617739737033844, -0.34290042519569397, 0.7610747814178467, -0.6059278249740601, -0.704064130783081, -0.13973554968833923, -0.0995984673500061, 0.6187719702720642, 0.9297672510147095, 0.749138355255127, -0.7224893569946289, -0.8973818421363831, -0.056230708956718445, -0.5420039892196655, -0.020044349133968353, 0.038149889558553696, -0.18260693550109863, -0.10514980554580688, 0.22352531552314758, -0.6100803017616272, 0.8851073980331421, 0.43224984407424927, -0.681546688079834, 0.5210590958595276, -0.4444413483142853, 0.6073803901672363, -0.8642839193344116, -0.2911490201950073, -0.16823577880859375, -0.1976117193698883, -0.7090160846710205, 0.19411544501781464, -0.3002234101295471, -0.33029863238334656, -0.7474032044410706, 0.5274897813796997, -0.9497010707855225, -0.18781527876853943, -0.33672773838043213, -0.03423111140727997, 0.25807833671569824, 0.19490505754947662, -0.23560254275798798, 0.8900529742240906, 0.9160482287406921, -0.7121306657791138, 0.5487277507781982, 0.3930906653404236, -0.1920013427734375, 0.7131237387657166, -0.3887738585472107, 0.05161993205547333, -0.12344931066036224, 0.14374595880508423, -1.126388430595398, -0.561158299446106, 0.13677382469177246, -0.712703287601471, 0.17686958611011505, -0.16556859016418457, -0.09428537636995316, -0.6608465313911438, -0.33806395530700684, 0.25910091400146484, 0.48612290620803833, -0.47969940304756165, 0.6188148260116577, 0.5728040337562561, 0.02651876211166382, -0.5307406783103943, -0.7206818461418152, 0.20418110489845276, 0.039646461606025696, -0.5569695830345154, 0.3011690080165863, 0.006543457508087158, -0.6622446775436401, -0.371124804019928, -0.26354190707206726, -0.6043857336044312, -0.2267974615097046, 0.7826986312866211, 0.1199423298239708, -0.09012264013290405, -0.20310267806053162, -0.3199536204338074, -0.06167525798082352, 0.30487415194511414, -0.07575298100709915, 0.7232834696769714, -0.33623749017715454, -0.17850083112716675, -0.887734055519104, 0.652754545211792, 0.9970465302467346, 0.09446714073419571, 0.806644082069397, 0.46324217319488525, -0.35647475719451904, -0.1304660439491272, -0.3535459041595459, -0.15120601654052734, -0.685774564743042, -0.1806798279285431, -0.5322476625442505, -0.5411434769630432, 0.40530654788017273, 0.10101459175348282, -0.0021042972803115845, 0.5167046785354614, 0.2533605694770813, -0.28806859254837036, 0.7550324201583862, 1.034340739250183, 0.1391797959804535, 0.3602915108203888, -0.2854715585708618, 0.6341594457626343, -0.8329949378967285, -0.34052175283432007, -0.4548071026802063, -0.2563585042953491, -0.31214389204978943, -0.10750849545001984, 0.5791022181510925, 0.2818215489387512, -0.4463467597961426, 0.1250680536031723, -0.5994209051132202, 0.6587361693382263, 0.6273988485336304, 0.5719727873802185, 0.1997303068637848, -0.46199458837509155, 0.19982971251010895, 0.04816687852144241, -0.45745599269866943, -0.4009109139442444, 0.7711143493652344, 0.2399624139070511, 0.8364022374153137, 0.20927050709724426, 0.4957774877548218, 0.33375421166419983, 0.2528058588504791, -0.6318977475166321, 0.2009797990322113, -0.22282809019088745, -1.245961308479309, -0.206426739692688, -0.16551318764686584, -1.0080583095550537, -0.11792082339525223, -0.18288995325565338, -0.8406620025634766, 0.2665729820728302, -0.19225634634494781, -0.6640645265579224, 0.5206149220466614, -0.5103875398635864, 0.69347083568573, -0.23555898666381836, -0.2817087769508362, 0.11930079013109207, -0.6889920830726624, 0.5254612565040588, 0.3667147755622864, 0.29168397188186646, -0.37968993186950684, -0.3192872405052185, 0.5068994760513306, -0.881224513053894, 0.44081127643585205, -0.10564978420734406, 0.19428130984306335, 0.5358879566192627, 0.4153591990470886, 0.3823971152305603, 0.28699052333831787, -0.2459377944469452, -0.23415414988994598, 0.2250344604253769, -0.7581346035003662, -0.27754613757133484, 0.9095459580421448, -0.7519428730010986, -0.8586915731430054, -0.6954255700111389, -0.30644941329956055, 0.28865277767181396, 0.02781464159488678, 0.7154772281646729, 0.6456884145736694, -0.18821057677268982, 0.23776991665363312, 0.7208225727081299, -0.0146945184096694, 0.7235562801361084, 0.29411184787750244, -0.4056646227836609, -0.6169787645339966, 0.7182320356369019, 0.2627044916152954, 0.05162655562162399, 0.028327951207756996, 0.3058736026287079, -0.17546698451042175, -0.15078596770763397, -0.6318323612213135, -0.06395323574542999, -0.7465729117393494, -0.0927949845790863, -0.7541396617889404, -0.2507742643356323, -0.7114590406417847, -0.8068137764930725, -0.7080163955688477, -0.45604395866394043, -0.43011948466300964, -0.23352204263210297, 0.5163108706474304, 1.1627086400985718, -0.2613152861595154, 0.8011051416397095, -0.8900954723358154, 0.41936296224594116, 0.4969540238380432, 0.7519731521606445, -0.11061006784439087, -0.6746935844421387, -0.07836239039897919, -0.5338755249977112, -0.29485058784484863, -1.0156972408294678, 0.31774646043777466, -0.03688591718673706, 0.40537136793136597, 0.42938894033432007, 0.25190269947052, 0.49392756819725037, -0.30073118209838867, 1.1130688190460205, 0.7274302244186401, -0.803381085395813, 0.519527792930603, -0.7635002136230469, 0.16122324764728546, 0.9363659620285034, 0.54477459192276, -0.4417075514793396, -0.15113934874534607, -1.025976538658142, -0.843137264251709, 0.5963036417961121, 0.15439945459365845, 0.016843896359205246, 0.01821417547762394, 0.03168272227048874, 0.29466384649276733, 0.3591304123401642, -0.7847291231155396, -0.8240220546722412, -0.13851122558116913, 0.25803306698799133, 0.31456053256988525, -0.1648542582988739, -0.3003871440887451, -0.611615777015686, 0.8711391091346741, 0.18286482989788055, 0.3546231985092163, 0.12073354423046112, 0.04369349032640457, -0.35506919026374817, 0.14787021279335022, 0.5522999167442322, 1.2529057264328003, -0.40983331203460693, 0.3673911392688751, 0.1751260608434677, -0.6540069580078125, 0.6494997143745422, -0.3036349415779114, -0.021784601733088493, 0.6203135251998901, 0.17760884761810303, 0.28528398275375366, 0.315599262714386, -0.3621427118778229, 0.6047801971435547, -0.029422052204608917, -0.17758512496948242, -0.7005696296691895, 0.15866968035697937, 0.029350608587265015, 0.27507954835891724, 0.4392024278640747, 0.24443313479423523, 0.08246771991252899, -1.0602877140045166, 0.5711055397987366, 0.24493910372257233, -0.8676618337631226, -0.3011006712913513, 0.7047957181930542, 0.4075389802455902, -0.47599563002586365, 0.38749054074287415, 0.012702330946922302, -0.6710241436958313, 0.5987741351127625, 0.5510413646697998, 0.7569674253463745, -0.4702427089214325, 0.3088020086288452, 0.6245602965354919, 0.06711331009864807, 0.20550549030303955, 0.6923202872276306, 0.03149382025003433, -0.44738656282424927, 0.23022446036338806, -0.5986733436584473, -0.1468990594148636, 0.13735318183898926, -0.8047426342964172, 0.351533442735672, -0.9312615394592285, -0.24089956283569336, 0.08751589059829712, 0.11761097609996796, -0.6130945086479187, 0.6674696207046509, -0.008524954319000244, 0.9280490875244141, -0.8549083471298218, 0.9626278281211853, 0.8559581637382507, -0.31830817461013794, -0.7709448337554932, -0.33556753396987915, 0.02013934776186943, -0.6660526990890503, 0.7108278274536133, -0.18973003327846527, -0.41207411885261536, -0.09323947876691818, -0.622982919216156, -1.0003730058670044, 0.030618250370025635, 0.017415650188922882, -0.4625031054019928, 0.4454794228076935, -0.5157257318496704, 0.3289681673049927, -0.19169732928276062, 0.30509495735168457, 0.7719469666481018, 0.7958452701568604, 0.22960808873176575, -0.6354780197143555, -0.4466685652732849, -0.010276071727275848, -0.16682815551757812, 0.4545809030532837, -1.0710972547531128, 0.967736542224884, -0.4652574360370636, -0.34733209013938904, 0.2706642150878906, 0.797762393951416, 0.2538500428199768, 0.3524126708507538, 0.6219537258148193, 0.9016807079315186, 0.36450111865997314, -0.31178343296051025, 0.7276745438575745, 0.2426338493824005, 0.4152539074420929, 0.7364203333854675, -0.22712187469005585, 0.5403846502304077, 0.8906413316726685, -0.786162257194519, 0.5381765365600586, 0.7879031896591187, 0.16047371923923492, 0.7758157253265381, 0.5944145917892456, -0.611952543258667, -0.1185941994190216, -0.1464141309261322, -0.6171560287475586, 0.1979752480983734, 0.052926212549209595, -0.11974738538265228, -0.2846010625362396, -0.13567376136779785, 0.12295057624578476, 0.2836454212665558, -0.5959328413009644, 0.606866717338562, 0.34341585636138916, -0.6328282356262207, 0.21025103330612183, -0.25779569149017334, 0.6709501147270203, -0.5978154540061951, 0.02733636647462845, -0.226993590593338, 0.41810402274131775, -0.4618742763996124, -1.007582426071167, 0.47138404846191406, -0.2920241355895996, -0.40551304817199707, -0.26942431926727295, 0.8072363138198853, -0.22133907675743103, -0.5572860240936279, 0.37486034631729126, 0.13466592133045197, 0.41473662853240967, 0.40145981311798096, -0.548729419708252, 0.047790080308914185, 0.13760165870189667, -0.20061805844306946, 0.3601190149784088, 0.2973729372024536, 0.25488772988319397, 0.7100128531455994, 0.5052477717399597, 0.22198708355426788, 0.25694364309310913, -0.18668605387210846, 0.8387458324432373, -0.9102796316146851, -0.8167635202407837, -0.9497333765029907, 0.3849896192550659, 0.025727711617946625, -0.880144476890564, 0.7920305728912354, 0.7652608156204224, 0.5113964080810547, -0.4877890348434448, 0.4755283296108246, -0.326479434967041, 0.5047136545181274, -0.13870958983898163, 1.001089096069336, -0.760762631893158, -0.29587265849113464, -0.030554059892892838, -0.9216439723968506, -0.2533753216266632, 0.5375741720199585, 0.1540832668542862, -0.14608067274093628, 0.4385907053947449, 0.44216376543045044, 0.022173406556248665, 0.25223150849342346, 0.32861006259918213, 0.06042787432670593, 0.14508451521396637, 0.5510438680648804, 1.0931141376495361, -0.43394410610198975, 0.18694786727428436, -0.4923475384712219, -0.4536249041557312, -0.4153490662574768, -0.9548057913780212, -0.6640313863754272, -0.48185449838638306, -0.2973935008049011, -0.5915579199790955, 0.11726461350917816, 0.9300885796546936, 0.9018137454986572, -0.6256728172302246, -0.41243645548820496, 0.25713539123535156, 0.30293411016464233, -0.2295418381690979, -0.146267831325531, 0.2736492455005646, -0.006407544948160648, -0.7211178541183472, 0.3930943012237549, 0.807976245880127, 0.3887130320072174, 0.08444006741046906, -0.07217127084732056, -0.4407080411911011, 0.026101574301719666, 0.5373561382293701, 0.5729561448097229, -0.6281182169914246, -0.4099644422531128, -0.5328317880630493, -0.21386730670928955, 0.15529435873031616, 0.48077550530433655, -0.5166378617286682, 0.32661110162734985, 0.8128959536552429, 0.17017659544944763, 0.7187885642051697, -0.0022492259740829468, 0.6678642630577087, -0.8970246315002441, 0.4446259140968323, 0.3953385353088379, 0.5681870579719543, 0.08998038619756699, -0.7339164614677429, 0.9820241928100586, 0.49674350023269653, -0.6334057450294495, -1.0034242868423462, 0.03079957515001297, -1.193113923072815, -0.3788175582885742, 0.9890843629837036, -0.09595765173435211, -0.9597458839416504, -0.36448943614959717, -0.3677716851234436, 0.07989637553691864, -0.33809733390808105, 0.35498204827308655, 0.8268195986747742, -0.2538071274757385, -0.2204185128211975, -0.9505581855773926, 0.4752943515777588, 0.3102525472640991, -0.5886632204055786, -0.05114369094371796, 0.329391211271286, 0.45236870646476746, 0.3009701371192932, 0.5239557027816772, 0.10428227484226227, 0.8970529437065125, 0.25200390815734863, 0.30491405725479126, -0.04526621103286743, -0.590078592300415, -0.0160664189606905, 0.2621477246284485, 0.04487839341163635, -0.6869441270828247 ]
nferruz/ProtGPT2
nferruz
"2023-06-20T13:05:57Z"
58,537
69
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "license:apache-2.0", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
text-generation
"2022-03-07T12:29:07Z"
--- license: apache-2.0 pipeline_tag: text-generation widget: - text: "<|endoftext|>" inference: parameters: top_k: 950 repetition_penalty: 1.2 --- # **ProtGPT2** ProtGPT2 ([peer-reviewed paper](https://www.nature.com/articles/s41467-022-32007-7)) is a language model that speaks the protein language and can be used for de novo protein design and engineering. ProtGPT2 generated sequences conserve natural proteins' critical features (amino acid propensities, secondary structural content, and globularity) while exploring unseen regions of the protein space. ## **Model description** ProtGPT2 is based on the GPT2 Transformer architecture and contains 36 layers with a model dimensionality of 1280, totalling 738 million parameters. ProtGPT2 is a decoder-only transformer model pre-trained on the protein space, database UniRef50 (version 2021_04). The pre-training was done on the raw sequences without FASTA headers. Details of training and datasets can be found here: https://huggingface.co/datasets/nferruz/UR50_2021_04 ProtGPT2 was trained in a self-supervised fashion, i.e., the raw sequence data was used during training without including the annotation of sequences. In particular, ProtGPT2 was trained using a causal modelling objective, in which the model is trained to predict the next token (or, in this case, oligomer) in the sequence. By doing so, the model learns an internal representation of proteins and is able to <em>speak</em> the protein language. ### **How to use ProtGPT2** ProtGPT2 can be used with the HuggingFace transformer python package. Detailed installation instructions can be found here: https://huggingface.co/docs/transformers/installation Since ProtGPT2 has been trained on the classical language model objective, it excels at generating protein sequences. It can be used to generate sequences in a zero-shot fashion or to generate sequences of a particular type after finetuning on a user-defined dataset. **Example 1: Generating _de novo_ proteins in a zero-shot fashion** In the example below, ProtGPT2 generates sequences that follow the amino acid 'M'. Any other amino acid, oligomer, fragment, or protein of choice can be selected instead. The model will generate the most probable sequences that follow the input. Alternatively, the input field can also be left empty and it will choose the starting tokens. ``` >>> from transformers import pipeline >>> protgpt2 = pipeline('text-generation', model="nferruz/ProtGPT2") # length is expressed in tokens, where each token has an average length of 4 amino acids. >>> sequences = protgpt2("<|endoftext|>", max_length=100, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=10, eos_token_id=0) >>> for seq in sequences: print(seq): {'generated_text': 'MINDLLDISRIISGKMTLDRAEVNLTAIARQVVEEQRQAAEAKSIQLLCSTPDTNHYVFG\nDFDRLKQTLWNLLSNAVKFTPSGGTVELELGYNAEGMEVYVKDSGIGIDPAFLPYVFDRF\nRQSDAADSRNYGGLGLGLAIVKHLLDLHEGNVSAQSEGFGKGATFTVLLPLKPLKRELAA\nVNRHTAVQQSAPLNDNLAGMKILIVEDRPDTNEMVSYILEEAGAIVETAESGAAALTSLK\nSYSPDLVLSDIGMPMMDGYEMIEYIREWKTTKGG'} {'generated_text': 'MQGDSSISSSNRMFT\nLCKPLTVANETSTLSTTRNSKSNKRVSKQRVNLAESPERNAPSPASIKTNETEEFSTIKT\nTNNEVLGYEPNYVSYDFVPMEKCNLCNENCSIELASLNEETFVKKTICCHECRKKAIENA\nENNNTKGSAVSNNSVTSSSGRKKIIVSGSQILRNLDSLTSSKSNISTLLNPNHLAKLAKN\nGNLSSLSSLQSSASSISKSSSTSSTPTTSPKVSSPTNSPSSSPINSPTP'} {'generated_text': 'M\nSTHVSLENTLASLQATFFSLEARHTALETQLLSTRTELAATKQELVRVQAEISRADAQAQ\nDLKAQILTLKEKADQAEVEAAAATQRAEESQAALEAQTAELAQLRLEKQAPQHVAEEGDP\nQPAAPTTQAQSPVTSAAAAASSAASAEPSKPELTFPAYTKRKPPTITHAPKAPTKVALNP\nSTLSTSGSGGGAKADPTPTTPVPSSSAGLIPKALRLPPPVTPAASGAKPAPSARSKLRGP\nDAPLSPSTQS'} {'generated_text': 'MVLLSTGPLPILFLGPSLAELNQKYQVVSDTLLRFTNTV\nTFNTLKFLGSDS\n'} {'generated_text': 'M\nNNDEQPFIMSTSGYAGNTTSSMNSTSDFNTNNKSNTWSNRFSNFIAYFSGVGWFIGAISV\nIFFIIYVIVFLSRKTKPSGQKQYSRTERNNRDVDSIKRANYYG\n'} {'generated_text': 'M\nEAVYSFTITETGTGTVEVTPLDRTISGADIVYPPDTACVPLTVQPVINANGTWTLGSGCT\nGHFSVDTTGHVNCLTGGFGAAGVHTVIYTVETPYSGNSFAVIDVNVTEPSGPGDGGNGNG\nDRGDGPDNGGGNNPGPDPDPSTPPPPGDCSSPLPVVCSDRDCADFDTQAQVQIYLDRYGG\nTCDLDGNHDGTPCENLPNNSGGQSSDSGNGGGNPGTGSTHQVVTGDCLWNIASRNNGQGG\nQAWPALLAANNESITNP'} {'generated_text': 'M\nGLTTSGGARGFCSLAVLQELVPRPELLFVIDRAFHSGKHAVDMQVVDQEGLGDGVATLLY\nAHQGLYTCLLQAEARLLGREWAAVPALEPNFMESPLIALPRQLLEGLEQNILSAYGSEWS\nQDVAEPQGDTPAALLATALGLHEPQQVAQRRRQLFEAAEAALQAIRASA\n'} {'generated_text': 'M\nGAAGYTGSLILAALKQNPDIAVYALNRNDEKLKDVCGQYSNLKGQVCDLSNESQVEALLS\nGPRKTVVNLVGPYSFYGSRVLNACIEANCHYIDLTGEVYWIPQMIKQYHHKAVQSGARIV\nPAVGFDSTPAELGSFFAYQQCREKLKKAHLKIKAYTGQSGGASGGTILTMIQHGIENGKI\nLREIRSMANPREPQSDFKHYKEKTFQDGSASFWGVPFVMKGINTPVVQRSASLLKKLYQP\nFDYKQCFSFSTLLNSLFSYIFNAI'} {'generated_text': 'M\nKFPSLLLDSYLLVFFIFCSLGLYFSPKEFLSKSYTLLTFFGSLLFIVLVAFPYQSAISAS\nKYYYFPFPIQFFDIGLAENKSNFVTSTTILIFCFILFKRQKYISLLLLTVVLIPIISKGN\nYLFIILILNLAVYFFLFKKLYKKGFCISLFLVFSCIFIFIVSKIMYSSGIEGIYKELIFT\nGDNDGRFLIIKSFLEYWKDNLFFGLGPSSVNLFSGAVSGSFHNTYFFIFFQSGILGAFIF\nLLPFVYFFISFFKDNSSFMKLF'} {'generated_text': 'M\nRRAVGNADLGMEAARYEPSGAYQASEGDGAHGKPHSLPFVALERWQQLGPEERTLAEAVR\nAVLASGQYLLGEAVRRFETAVAAWLGVPFALGVASGTAALTLALRAYGVGPGDEVIVPAI\nTFIATSNAITAAGARPVLVDIDPSTWNMSVASLAARLTPKTKAILAVHLWGQPVDMHPLL\nDIAAQANLAVIEDCAQALGASIAGTKVGTFGDAAAFSFYPTKNMTTGEGGMLVTNARDLA\nQAARMLRSHGQDPPTAYMHSQVGFN'} ``` **Example 2: Finetuning on a set of user-defined sequences** This alternative option to the zero-shot generation permits introducing direction in the generation process. User-defined training and validation files containing the sequences of interest are provided to the model. After a short update of the model's weights, ProtGPT2 will generate sequences that follow the input properties. To create the validation and training file, it is necessary to (1) substitute the FASTA headers for each sequence with the expression "<|endoftext|>" and (2) split the originating dataset into training and validation files (this is often done with the ratio 90/10, 80/20 or 95/5). Then, to finetune the model to the input sequences, we can use the example below. Here we show a learning rate of 1e-06, but ideally, the learning rate should be optimised in separate runs. After training, the finetuned model will be stored in the ./output folder. Lastly, ProtGPT2 can generate the tailored sequences as shown in Example 1: ``` python run_clm.py --model_name_or_path nferruz/ProtGPT2 --train_file training.txt --validation_file validation.txt --tokenizer_name nferruz/ProtGPT2 --do_train --do_eval --output_dir output --learning_rate 1e-06 ``` The HuggingFace script run_clm.py can be found here: https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py ### **How to select the best sequences** We've observed that perplexity values correlate with AlphaFold2's plddt. We recommend computing perplexity for each sequence as follows: ``` sequence='MGEAMGLTQPAVSRAVARLEERVGIRIFNRTARAITLTDEGRRFYEAVAPLLAGIEMHGYR\nVNVEGVAQLLELYARDILAEGRLVQLLPEWAD' #Convert the sequence to a string like this #(note we have to introduce new line characters every 60 amino acids, #following the FASTA file format). sequence = "<|endoftext|>MGEAMGLTQPAVSRAVARLEERVGIRIFNRTARAITLTDEGRRFYEAVAPLLAGIEMHGY\nRVNVEGVAQLLELYARDILAEGRLVQLLPEWAD<|endoftext|>" # ppl function def calculatePerplexity(sequence, model, tokenizer): input_ids = torch.tensor(tokenizer.encode(sequence)).unsqueeze(0) input_ids = input_ids.to(device) with torch.no_grad(): outputs = model(input_ids, labels=input_ids) loss, logits = outputs[:2] return math.exp(loss) #And hence: ppl = calculatePerplexity(sequence, model, tokenizer) ``` Where `ppl` is a value with the perplexity for that sequence. We do not yet have a threshold as to what perplexity value gives a 'good' or 'bad' sequence, but given the fast inference times, the best is to sample many sequences, order them by perplexity, and select those with the lower values (the lower the better). ### **Training specs** The model was trained on 128 NVIDIA A100 GPUs for 50 epochs, using a block size of 512 and a total batch size of 1024 (65,536 tokens per batch). The optimizer used was Adam (beta1 = 0.9, beta2 = 0.999) with a learning rate of 1e-3.
[ -0.5381247997283936, -0.8808678984642029, 0.3754045069217682, 0.05889896675944328, -0.4109831154346466, -0.25292113423347473, 0.045843224972486496, -0.3779260814189911, 0.4028266668319702, 0.162899449467659, -0.58057701587677, -0.2984946370124817, -0.7573337554931641, 0.33069926500320435, -0.30243000388145447, 0.926685094833374, 0.12005925178527832, 0.01377256028354168, 0.2800300717353821, 0.28139105439186096, -0.06175006181001663, -0.3769233822822571, -0.4814406931400299, -0.5507694482803345, 0.5881987810134888, 0.16136261820793152, 0.7082085013389587, 0.7332891821861267, 0.5012543797492981, 0.23222878575325012, -0.1606125831604004, 0.016496695578098297, -0.43026673793792725, -0.286214143037796, -0.09234290570020676, -0.27230721712112427, -0.4304077625274658, -0.08549840748310089, 0.44756993651390076, 0.39602142572402954, 0.20167048275470734, 0.2746366262435913, 0.09035567939281464, 0.5531783103942871, -0.3044368326663971, -0.019096648320555687, -0.1935635507106781, 0.16334141790866852, -0.17922653257846832, -0.23033352196216583, -0.19347456097602844, -0.5476518869400024, 0.0965452715754509, -0.5938663482666016, 0.142071932554245, 0.21016260981559753, 0.960728645324707, 0.03664211556315422, -0.4559825360774994, -0.3372390866279602, -0.5316186547279358, 0.5877622365951538, -0.7731568217277527, 0.25126633048057556, 0.3631579577922821, -0.008421853184700012, -0.6612368226051331, -0.809252917766571, -1.0939983129501343, 0.01937587559223175, -0.12642277777194977, 0.3550179898738861, -0.1524360626935959, -0.12605400383472443, 0.3098142743110657, 0.34198683500289917, -1.0088238716125488, -0.22750256955623627, -0.1821761578321457, -0.16697880625724792, 0.7452152371406555, -0.0835215151309967, 0.5421336889266968, -0.42753052711486816, -0.4308287501335144, -0.2599078118801117, -0.609527587890625, 0.12741060554981232, 0.48859408497810364, 0.17572064697742462, -0.35863152146339417, 0.6630873084068298, -0.06870977580547333, 0.533360481262207, 0.07098755240440369, -0.12790517508983612, 0.5569097399711609, -0.17474626004695892, -0.4138948321342468, -0.061816390603780746, 1.2315977811813354, 0.40613195300102234, 0.4554900825023651, 0.029657242819666862, -0.02343728207051754, -0.05957642197608948, 0.08043642342090607, -0.9699128270149231, -0.3757016658782959, 0.5659899115562439, -0.4214092493057251, -0.14502917230129242, 0.012328880839049816, -0.9216899275779724, -0.05706998333334923, -0.23994897305965424, 0.6080019474029541, -0.7667021751403809, -0.3477586805820465, 0.2972581684589386, -0.32565805315971375, 0.11061529070138931, 0.030687469989061356, -0.9801743626594543, -0.11748458445072174, 0.3866759240627289, 0.8579224944114685, 0.2400541752576828, -0.14720191061496735, -0.10246483236551285, -0.015142545104026794, -0.13085025548934937, 0.7839836478233337, -0.26103413105010986, -0.20294354856014252, -0.1555337756872177, 0.16955842077732086, -0.1434442549943924, -0.3477537930011749, 0.3765994906425476, -0.37983179092407227, 0.28478553891181946, -0.39055952429771423, -0.554267942905426, -0.16102473437786102, 0.04656430706381798, -0.43684524297714233, 0.8875585198402405, 0.1582181602716446, -0.9228363633155823, 0.08494144678115845, -0.5573242902755737, -0.3947288691997528, 0.2398124635219574, -0.1337464153766632, -0.5285746455192566, -0.07404617220163345, 0.14705844223499298, 0.30020156502723694, -0.345202773809433, 0.17107149958610535, -0.18378090858459473, -0.29660943150520325, 0.4102996587753296, -0.24988193809986115, 0.9150615930557251, 0.4160889685153961, -0.6846359968185425, -0.1586013287305832, -0.813630223274231, 0.3143268823623657, 0.6255642771720886, -0.5917034149169922, 0.24918369948863983, -0.3038862347602844, 0.1995328664779663, 0.43304556608200073, 0.10752860456705093, -0.5576053857803345, 0.23538705706596375, -0.559093177318573, 0.7356296181678772, 0.8041002750396729, 0.16451190412044525, 0.2554790675640106, -0.3324563801288605, 0.3465336561203003, 0.024609405547380447, 0.11002786457538605, -0.005381827708333731, -0.7511844038963318, -0.5956478714942932, -0.04625067487359047, 0.33578401803970337, 0.8656572103500366, -0.747356116771698, 0.690661609172821, 0.042844176292419434, -0.6579513549804688, -0.14794564247131348, -0.17849403619766235, 0.6599842309951782, 0.3308611810207367, 0.3991423547267914, -0.22917057573795319, -0.5883785486221313, -0.7596617937088013, -0.28174325823783875, -0.2806432545185089, -0.30261266231536865, 0.33691495656967163, 0.7431842684745789, -0.16250580549240112, 0.8980809450149536, -0.5984192490577698, -0.15694944560527802, -0.28295058012008667, -0.02857573889195919, 0.3647715449333191, 0.7865855693817139, 0.5083211660385132, -0.7425328493118286, -0.47535258531570435, -0.09774273633956909, -0.8527458906173706, 0.004083754029124975, -0.1377718150615692, -0.2160053253173828, -0.23401273787021637, -0.1425984799861908, -0.8554120063781738, 0.18492908775806427, 0.3823707401752472, -0.4598677456378937, 0.8194249868392944, -0.3207884728908539, -0.04688817262649536, -1.166236400604248, 0.24778155982494354, -0.010248894803225994, -0.0662674531340599, -0.8418004512786865, 0.08284676820039749, 0.04645732417702675, 0.16156980395317078, -0.6514552235603333, 0.5737130641937256, -0.428924560546875, -0.032976772636175156, 0.06336592137813568, 0.0676671490073204, -0.17394207417964935, 0.5504902601242065, -0.044142019003629684, 0.8709998726844788, 0.4430452883243561, -0.3529001772403717, 0.20268307626247406, 0.4544302523136139, -0.1820409595966339, 0.1284879744052887, -0.7596665620803833, 0.159262016415596, -0.17003357410430908, 0.2986636459827423, -0.8529855608940125, -0.5884882211685181, 0.7289717793464661, -0.8547892570495605, 0.3729531466960907, 0.07240530848503113, -0.48228973150253296, -0.5346277356147766, -0.13479827344417572, 0.24829743802547455, 0.8849217891693115, -0.3427136540412903, 0.5784146189689636, 0.2496642768383026, -0.02169772796332836, -0.5516592264175415, -0.8008074164390564, 0.12524139881134033, -0.04711807891726494, -0.6621063947677612, 0.3367071747779846, -0.0012058315332978964, 0.059315118938684464, -0.2814891040325165, -0.020798105746507645, 0.08343254029750824, -0.23129619657993317, 0.26149606704711914, -0.08820230513811111, -0.004878995940089226, -0.09345253556966782, -0.05403375253081322, -0.31222790479660034, 0.08479292690753937, -0.6408067941665649, 0.8055371046066284, -0.06076202914118767, -0.08726278692483902, -0.7138444185256958, 0.4379541277885437, 0.2990702688694, -0.23297274112701416, 0.5574105381965637, 0.9614229202270508, -0.4950343370437622, 0.00009857334225671366, -0.19051870703697205, -0.46202924847602844, -0.5006579160690308, 0.39239630103111267, -0.4567394256591797, -0.7237947583198547, 0.45344239473342896, -0.010649921372532845, -0.22655589878559113, 0.6846892237663269, 0.6095992922782898, -0.2966904640197754, 1.0660775899887085, 0.44362717866897583, 0.3903278708457947, 0.3280617892742157, -0.7476319074630737, 0.386874258518219, -0.6153409481048584, -0.6040456891059875, -0.17704293131828308, -0.39065423607826233, -0.594982922077179, -0.31669872999191284, 0.30853700637817383, 0.29575279355049133, -0.5881075859069824, 0.5588924884796143, -0.4979519546031952, 0.3784047067165375, 0.7337613701820374, 0.2923095226287842, -0.19698628783226013, 0.16989409923553467, -0.2949698567390442, -0.063862144947052, -0.7955127358436584, -0.6991795301437378, 1.10879385471344, 0.38961121439933777, 0.42707061767578125, 0.30925318598747253, 0.6595984697341919, 0.1361519992351532, -0.028424976393580437, -0.5060073733329773, 0.5978314876556396, -0.43118178844451904, -0.4862874746322632, -0.09855854511260986, -0.2541270852088928, -0.9322564601898193, 0.02235541120171547, -0.3422504961490631, -0.9118151664733887, 0.13487553596496582, 0.2730238735675812, -0.407605916261673, 0.3636440634727478, -0.612102210521698, 0.9276915192604065, -0.2579503059387207, -0.6738877892494202, 0.2363101691007614, -1.0909931659698486, 0.3353038728237152, 0.01255651656538248, 0.03929677605628967, -0.043708834797143936, 0.28925275802612305, 0.7914853692054749, -0.6975201368331909, 0.692269504070282, 0.018114732578396797, -0.07175233215093613, 0.4883120656013489, 0.13622403144836426, 0.5767358541488647, 0.24911652505397797, 0.12144569307565689, 0.37340670824050903, -0.3416394889354706, -0.48202040791511536, -0.2256319522857666, 0.5943820476531982, -0.9478523135185242, -0.4351511299610138, -0.4301348924636841, -0.28119519352912903, 0.27742037177085876, 0.5662199258804321, 0.8394647240638733, 0.4889072775840759, 0.35096874833106995, -0.010956883430480957, 0.7889255285263062, -0.411359965801239, 0.4785561263561249, -0.06973377615213394, 0.012738319113850594, -0.6823864579200745, 0.966439962387085, 0.1597442626953125, 0.32563716173171997, 0.3698658347129822, 0.43295395374298096, -0.6474409103393555, -0.6776878833770752, -0.7102928757667542, 0.3485608696937561, -0.6103838682174683, -0.2587627172470093, -0.9466126561164856, -0.2496650218963623, -0.6788268685340881, -0.16023333370685577, -0.16679012775421143, -0.31890571117401123, -0.44000181555747986, -0.0550365149974823, 0.7019064426422119, 0.621971070766449, -0.19634360074996948, 0.38639864325523376, -0.7216880917549133, 0.3658685088157654, 0.26235178112983704, 0.30990058183670044, -0.23609082400798798, -0.6223499178886414, 0.05655394867062569, 0.1682480275630951, -0.4136098623275757, -1.2509506940841675, 0.5261995196342468, 0.04028516262769699, 0.21599030494689941, 0.34995269775390625, -0.08812972903251648, 0.45477357506752014, -0.5599929690361023, 1.0216245651245117, 0.3734070062637329, -0.8272297382354736, 0.5165801644325256, -0.5315871238708496, 0.34458404779434204, 0.17482247948646545, 0.3059402108192444, -0.5444203019142151, -0.5422856211662292, -0.6214603185653687, -0.9580363035202026, 0.7782197594642639, 0.6144211888313293, 0.07998556643724442, -0.23611852526664734, 0.5169652104377747, -0.03378405421972275, 0.10437405109405518, -0.7772698402404785, -0.5924561023712158, -0.3570154309272766, -0.3389201760292053, 0.01812034845352173, -0.28495603799819946, 0.10501739382743835, -0.290707528591156, 0.7980601191520691, 0.009118526242673397, 0.76317298412323, 0.45814046263694763, -0.06312787532806396, -0.006872445344924927, 0.2024431824684143, 0.8097541928291321, 0.46165013313293457, -0.3737640976905823, 0.17850258946418762, -0.06845581531524658, -0.9520005583763123, 0.2723850905895233, 0.12222380191087723, -0.6247714757919312, 0.10190068185329437, 0.1810143142938614, 0.951133131980896, -0.1460825353860855, -0.5247070789337158, 0.4303169250488281, -0.10442892462015152, -0.512820303440094, -0.4627121388912201, 0.05563125014305115, 0.22823834419250488, 0.20654305815696716, 0.5233187675476074, 0.08026745915412903, -0.02839474193751812, -0.37406039237976074, 0.3855602443218231, 0.26329728960990906, -0.05604415759444237, -0.39793431758880615, 1.2460099458694458, 0.0795045867562294, -0.575151801109314, 0.6420040726661682, -0.5674129724502563, -0.6082443594932556, 0.778510332107544, 0.9644424915313721, 0.9775108695030212, -0.11717121303081512, 0.2161371111869812, 0.7888494729995728, 0.34271636605262756, -0.12889492511749268, 0.6147207617759705, 0.3491581380367279, -0.4881419837474823, -0.13798163831233978, -1.0099035501480103, -0.0414552204310894, 0.4644997715950012, -0.22158260643482208, 0.22107575833797455, -0.6646870970726013, -0.4368966221809387, -0.018088193610310555, -0.025181282311677933, -0.6145504713058472, 0.4449426829814911, 0.25387731194496155, 0.9948033690452576, -0.9137614369392395, 0.8699556589126587, 0.6969416737556458, -0.4912606477737427, -0.8788086771965027, 0.2453572303056717, 0.1192760169506073, -0.6573513746261597, 0.7044181227684021, 0.4921002686023712, 0.05020483210682869, 0.4107646048069, -0.46413010358810425, -1.0275861024856567, 0.995073676109314, 0.24111007153987885, -0.6228919625282288, 0.05320638418197632, 0.44900935888290405, 0.552490234375, -0.23164212703704834, 0.5774022936820984, 0.5552119016647339, 0.3968653380870819, 0.1361418217420578, -0.6170387864112854, 0.4458816945552826, -0.5019410848617554, 0.054557397961616516, 0.21147307753562927, -0.7276666760444641, 1.0593903064727783, -0.29377931356430054, -0.29197371006011963, -0.05233823508024216, 0.648669421672821, 0.16070714592933655, 0.2599681317806244, 0.22064143419265747, 0.6516293883323669, 0.4315633475780487, -0.27189797163009644, 0.9774783253669739, -0.3280175030231476, 0.5385756492614746, 0.8663456439971924, 0.019334394484758377, 0.788723349571228, 0.5010111331939697, -0.4806543290615082, 0.2617778182029724, 0.7885751724243164, -0.19177114963531494, 0.4646703898906708, 0.2606780230998993, -0.2186850756406784, -0.07174583524465561, 0.17913180589675903, -0.47502321004867554, 0.12170261144638062, 0.21736949682235718, -0.44112929701805115, -0.08470187336206436, -0.0006036934209987521, 0.0878315195441246, -0.19867408275604248, 0.034003354609012604, 0.6740061044692993, 0.026246676221489906, -0.6540501117706299, 0.8645853400230408, 0.1240396499633789, 0.6293681859970093, -0.4387187957763672, 0.04799124598503113, -0.2823813855648041, 0.30196413397789, -0.3171709179878235, -0.9942060708999634, 0.09468114376068115, 0.02784005180001259, -0.1525915265083313, -0.12245863676071167, 0.44789186120033264, -0.5482173562049866, -0.5241686701774597, 0.22261866927146912, 0.12335209548473358, 0.44549134373664856, -0.07958077639341354, -0.8691719770431519, -0.1331157386302948, 0.23038166761398315, -0.49355006217956543, 0.23314155638217926, 0.06702034175395966, 0.1026541218161583, 0.556048572063446, 0.7425085306167603, 0.027536951005458832, 0.10556307435035706, -0.08401660621166229, 0.7235754728317261, -0.6668404340744019, -0.45572012662887573, -0.971107006072998, 0.7198361754417419, 0.08335457742214203, -0.4401980936527252, 0.6026293635368347, 0.6296336650848389, 0.9186963438987732, -0.3097115755081177, 0.9171390533447266, -0.48576620221138, 0.21959729492664337, -0.5656890869140625, 0.7918922305107117, -0.6756560206413269, -0.17213831841945648, -0.15120556950569153, -0.7249271273612976, -0.44115325808525085, 0.7157570719718933, -0.12467745691537857, 0.05004548281431198, 0.6188409924507141, 0.9097414612770081, 0.07384129613637924, 0.07241328060626984, -0.06234218180179596, 0.2940785884857178, 0.45545530319213867, 1.046149492263794, 0.4365343153476715, -0.8165473937988281, 0.4560163617134094, -0.5226607918739319, -0.30386096239089966, -0.3500705361366272, -0.8147386312484741, -0.8376123905181885, -0.4043003022670746, -0.3160843551158905, -0.5814802646636963, 0.01925923116505146, 0.9808011054992676, 0.4122442305088043, -0.8140200972557068, -0.08931151777505875, -0.2732383608818054, -0.3359905779361725, -0.27801111340522766, -0.27247583866119385, 0.5290950536727905, 0.0565340518951416, -0.6718510389328003, -0.0540839359164238, 0.21601609885692596, 0.6538527607917786, 0.10187425464391708, -0.15192413330078125, -0.3299062252044678, 0.17363907396793365, 0.5161462426185608, 0.36778485774993896, -0.7396242618560791, -0.39006057381629944, 0.17589598894119263, -0.11782395839691162, 0.08952295780181885, 0.5975536704063416, -0.5560078620910645, 0.2963603436946869, 0.6695897579193115, 0.4316897392272949, 0.4349319636821747, 0.019869297742843628, 0.2998129427433014, -0.5883157849311829, 0.13958868384361267, 0.14270086586475372, 0.22008129954338074, 0.12805815041065216, -0.6296159625053406, 0.26964250206947327, 0.5899437069892883, -0.673812747001648, -0.6843664646148682, 0.25353628396987915, -1.0906707048416138, -0.29078447818756104, 1.2473652362823486, 0.015624986961483955, -0.42211514711380005, -0.12340814620256424, -0.24952752888202667, 0.5606021881103516, -0.3219064772129059, 0.7540783286094666, 0.253944456577301, -0.20691929757595062, 0.03774779662489891, -0.7138981223106384, 0.7681035399436951, 0.4617815911769867, -0.7573131918907166, 0.04874875769019127, 0.3053909242153168, 0.42322325706481934, 0.2764067053794861, 0.760467529296875, -0.006533022969961166, 0.2954014539718628, 0.19053973257541656, 0.22118991613388062, 0.019839517772197723, -0.08318221569061279, -0.32310184836387634, 0.18322652578353882, -0.28565242886543274, -0.34731003642082214 ]
flair/ner-english-ontonotes-fast
flair
"2023-04-05T20:14:18Z"
58,076
17
flair
[ "flair", "pytorch", "token-classification", "sequence-tagger-model", "en", "dataset:ontonotes", "has_space", "region:us" ]
token-classification
"2022-03-02T23:29:05Z"
--- tags: - flair - token-classification - sequence-tagger-model language: en datasets: - ontonotes widget: - text: "On September 1st George Washington won 1 dollar." --- ## English NER in Flair (Ontonotes fast model) This is the fast version of the 18-class NER model for English that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **89.3** (Ontonotes) Predicts 18 tags: | **tag** | **meaning** | |---------------------------------|-----------| | CARDINAL | cardinal value | | DATE | date value | | EVENT | event name | | FAC | building name | | GPE | geo-political entity | | LANGUAGE | language name | | LAW | law name | | LOC | location name | | MONEY | money name | | NORP | affiliation | | ORDINAL | ordinal value | | ORG | organization name | | PERCENT | percent value | | PERSON | person name | | PRODUCT | product name | | QUANTITY | quantity value | | TIME | time value | | WORK_OF_ART | name of work of art | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-english-ontonotes-fast") # make example sentence sentence = Sentence("On September 1st George Washington won 1 dollar.") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [2,3]: "September 1st" [− Labels: DATE (0.9655)] Span [4,5]: "George Washington" [− Labels: PERSON (0.8243)] Span [7,8]: "1 dollar" [− Labels: MONEY (0.8022)] ``` So, the entities "*September 1st*" (labeled as a **date**), "*George Washington*" (labeled as a **person**) and "*1 dollar*" (labeled as a **money**) are found in the sentence "*On September 1st George Washington won 1 dollar*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import ColumnCorpus from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself) corpus: Corpus = ColumnCorpus( "resources/tasks/onto-ner", column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"}, tag_to_bioes="ner", ) # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('en-crawl'), # contextual string embeddings, forward FlairEmbeddings('news-forward-fast'), # contextual string embeddings, backward FlairEmbeddings('news-backward-fast'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-english-ontonotes-fast', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
[ -0.3022208511829376, -0.6499238610267639, 0.16340282559394836, 0.22715362906455994, -0.18805474042892456, -0.07427866011857986, -0.23005619645118713, -0.42698612809181213, 0.6983806490898132, 0.32880085706710815, -0.38577979803085327, -0.51961350440979, -0.5779733061790466, 0.3206580579280853, 0.018561284989118576, 1.3027254343032837, 0.23061253130435944, 0.23983527719974518, -0.07296038419008255, -0.08943010121583939, -0.2966657280921936, -0.6058152318000793, -0.6801514029502869, -0.26868385076522827, 0.583624005317688, 0.4473705291748047, 0.4586541950702667, 0.7879706621170044, 0.5037347674369812, 0.2944680154323578, -0.24510715901851654, 0.017151910811662674, -0.10341938585042953, -0.07722090184688568, -0.1880456656217575, -0.40516388416290283, -0.9384313821792603, 0.15083958208560944, 0.6020491123199463, 0.3474254608154297, 0.08688067644834518, 0.19161181151866913, 0.02054007537662983, 0.1804518848657608, -0.21441157162189484, 0.4510296881198883, -0.6948423981666565, -0.3004266619682312, -0.2570725977420807, -0.20458495616912842, -0.3516160845756531, -0.42752325534820557, 0.24894696474075317, -0.6577337980270386, 0.08289223909378052, 0.21416057646274567, 1.4040058851242065, 0.08540908992290497, -0.39617061614990234, -0.32410603761672974, -0.3516371250152588, 0.8593977689743042, -0.9995763301849365, 0.23593026399612427, 0.3930386006832123, -0.09752503782510757, -0.022234199568629265, -0.8203065991401672, -0.6763265132904053, -0.15718549489974976, -0.18290312588214874, 0.20157870650291443, -0.07907798141241074, -0.17487464845180511, 0.2763479948043823, 0.25448474287986755, -0.6718442440032959, -0.19530808925628662, -0.1662587821483612, -0.18989340960979462, 0.8323368430137634, 0.30248215794563293, 0.16567176580429077, -0.537561297416687, -0.47507724165916443, -0.25682422518730164, -0.3492863178253174, -0.0054323868826031685, 0.11356548219919205, 0.6196318864822388, -0.2925539016723633, 0.5328517556190491, 0.02554876171052456, 0.7307594418525696, 0.25532039999961853, -0.4157449007034302, 0.5952741503715515, -0.42071425914764404, -0.15333019196987152, 0.01568480208516121, 0.9730827808380127, 0.3301125168800354, 0.18317732214927673, -0.05933525413274765, -0.2118023931980133, 0.20441223680973053, -0.253507524728775, -0.7341374754905701, -0.22718769311904907, 0.1215575784444809, -0.32665422558784485, -0.45665910840034485, -0.09412061423063278, -0.8521181344985962, -0.28039002418518066, -0.058959707617759705, 0.6696630716323853, -0.44307875633239746, -0.049534473568201065, 0.022148434072732925, -0.39362671971321106, 0.16247610747814178, 0.19171035289764404, -0.8515804409980774, 0.0998486652970314, 0.37568116188049316, 0.7050618529319763, 0.3732093572616577, -0.29118454456329346, -0.3990083336830139, -0.13554777204990387, -0.11610697209835052, 0.7688722610473633, -0.36441120505332947, -0.2833326756954193, -0.1174643486738205, 0.08559394627809525, -0.2993529736995697, -0.16621540486812592, 0.5953775644302368, -0.48808059096336365, 0.41402536630630493, -0.2971321642398834, -0.7600612640380859, -0.29213014245033264, 0.41467610001564026, -0.7031612992286682, 0.905828595161438, 0.011570471338927746, -1.3024990558624268, 0.4476086497306824, -0.5110533833503723, -0.4746156334877014, 0.0887376144528389, 0.03756880387663841, -0.4757764935493469, -0.12222318351268768, 0.15533138811588287, 0.7101868391036987, -0.2743619680404663, 0.3320709764957428, -0.3649137020111084, -0.007943589240312576, 0.19115491211414337, 0.062137916684150696, 0.9309399724006653, -0.0002689908433239907, -0.33069908618927, 0.05883888155221939, -1.0244897603988647, -0.19505159556865692, 0.3267368674278259, -0.5081754326820374, -0.36420461535453796, 0.0179009810090065, 0.2720189690589905, 0.30909332633018494, 0.20855611562728882, -0.5853069424629211, 0.6013908386230469, -0.5286065340042114, 0.5513419508934021, 0.4910942018032074, 0.03257841616868973, 0.6194664239883423, -0.501092791557312, 0.43387654423713684, -0.037381961941719055, -0.20337478816509247, -0.16339871287345886, -0.7745329737663269, -0.6906017065048218, -0.2670968770980835, 0.587697446346283, 0.9133617281913757, -0.6726386547088623, 0.5882407426834106, -0.42980948090553284, -0.7056395411491394, -0.4018886089324951, -0.26058775186538696, 0.3225414752960205, 0.732890248298645, 0.5330831408500671, -0.25020214915275574, -0.8884272575378418, -0.585063099861145, -0.35351359844207764, -0.23170478641986847, 0.311312735080719, 0.3720628619194031, 0.8742731213569641, -0.14530014991760254, 0.8390786051750183, -0.5229909420013428, -0.504570484161377, -0.4520889222621918, 0.25731325149536133, 0.5035185813903809, 0.5835167169570923, 0.35868144035339355, -0.643871009349823, -0.6743298768997192, -0.10019642114639282, -0.4284255802631378, 0.2565763294696808, -0.29882487654685974, 0.12764251232147217, 0.4711441695690155, 0.41845738887786865, -0.48582199215888977, 0.5520514249801636, 0.30866652727127075, -0.7994954586029053, 0.5251643657684326, -0.010808299295604229, -0.15118420124053955, -1.5404465198516846, 0.34017395973205566, 0.3233111500740051, -0.24230057001113892, -0.56020188331604, -0.3370857238769531, 0.14589393138885498, 0.3071375787258148, -0.2534191608428955, 0.9333285093307495, -0.3453509509563446, 0.24513813853263855, 0.028594061732292175, 0.15687380731105804, 0.12682028114795685, 0.33606189489364624, 0.35711437463760376, 0.348718523979187, 0.46980977058410645, -0.5435051321983337, 0.08585964143276215, 0.5452616810798645, -0.4559042155742645, 0.16030253469944, -0.570871889591217, -0.15389123558998108, -0.13552957773208618, 0.2572425305843353, -1.1063157320022583, -0.19439251720905304, 0.30754581093788147, -0.9133859872817993, 0.6291561126708984, -0.009709641337394714, -0.3393052816390991, -0.35690197348594666, -0.24814701080322266, 0.030364355072379112, 0.4419805109500885, -0.3671400845050812, 0.6503657698631287, 0.32994329929351807, -0.029298894107341766, -0.7683886885643005, -0.7769389748573303, -0.13752856850624084, -0.29114341735839844, -0.6905825734138489, 0.62833571434021, -0.06741046905517578, -0.1535716950893402, 0.1905062049627304, 0.12154992669820786, 0.021632757037878036, 0.1745859533548355, 0.12023064494132996, 0.5073649287223816, -0.23717911541461945, 0.09421706944704056, -0.24076564610004425, -0.003713143989443779, -0.03855030611157417, -0.17790433764457703, 0.6244357824325562, -0.1213863268494606, 0.5205687284469604, -0.4474181532859802, 0.015639925375580788, 0.23734964430332184, -0.3354170322418213, 0.9570866823196411, 0.7360741496086121, -0.47877052426338196, -0.10162558406591415, -0.43198850750923157, -0.3021363914012909, -0.3983635902404785, 0.6158155202865601, -0.4770289957523346, -0.7045402526855469, 0.6633740067481995, 0.2739390432834625, 0.20624175667762756, 0.9520421624183655, 0.4406786561012268, 0.055661339312791824, 1.0826760530471802, 0.6351085901260376, -0.18787391483783722, 0.5155594944953918, -0.5794849991798401, 0.10157592594623566, -0.8076191544532776, -0.33151009678840637, -0.635678768157959, -0.10793589055538177, -0.8119397163391113, -0.22284887731075287, 0.10835260152816772, 0.35439226031303406, -0.5171284675598145, 0.55899977684021, -0.5033050775527954, 0.18577657639980316, 0.6041142344474792, -0.16863946616649628, 0.15165169537067413, -0.08518654108047485, -0.305596262216568, -0.24506527185440063, -0.8087446689605713, -0.5056601166725159, 1.182976484298706, 0.4223678708076477, 0.7205851078033447, -0.061958324164152145, 0.8902004361152649, 0.012750056572258472, 0.5452257394790649, -0.8265854120254517, 0.4607766270637512, -0.21489763259887695, -0.9357393383979797, -0.12109742313623428, -0.3103497326374054, -0.9489464163780212, 0.14195027947425842, -0.5301603674888611, -0.8719044327735901, 0.25728192925453186, 0.22228476405143738, -0.5898876786231995, 0.43351536989212036, -0.31182026863098145, 1.086136817932129, -0.08107271045446396, -0.335862934589386, 0.21028834581375122, -0.891260027885437, 0.2741888463497162, 0.06512317806482315, 0.43440499901771545, -0.170063316822052, -0.07453424483537674, 1.090706706047058, -0.3046417832374573, 0.9434959292411804, 0.06405581533908844, 0.24425584077835083, 0.2612813115119934, -0.05749225616455078, 0.5616375207901001, 0.2569599449634552, -0.17595449090003967, 0.050938673317432404, -0.11108481138944626, -0.15167899429798126, -0.16018794476985931, 0.7118303775787354, -0.7466807961463928, -0.3219314217567444, -0.9214224219322205, -0.30965009331703186, 0.011485195718705654, 0.1825062781572342, 0.7583602666854858, 0.6581896543502808, -0.18702015280723572, -0.08174410462379456, 0.41484904289245605, -0.2206927239894867, 0.7525783777236938, 0.44808629155158997, -0.3896966874599457, -0.8768149018287659, 0.9619359374046326, 0.1846332550048828, -0.04880461096763611, 0.5295756459236145, 0.30851584672927856, -0.48154109716415405, -0.11804305016994476, -0.4399031400680542, 0.5371394753456116, -0.6100671887397766, -0.45145654678344727, -0.8300703167915344, -0.13216689229011536, -0.9071685075759888, -0.11843700706958771, -0.2299191802740097, -0.6448666453361511, -0.7799720168113708, 0.005960358306765556, 0.44754132628440857, 0.889110267162323, -0.2932201623916626, 0.2896474599838257, -0.7742481827735901, -0.1604776680469513, -0.004118621814996004, 0.03632637858390808, -0.07744517177343369, -0.9994794726371765, -0.33244168758392334, -0.22373531758785248, -0.4345847964286804, -1.0997083187103271, 1.049996018409729, 0.3080107271671295, 0.3742011487483978, 0.4296374022960663, -0.13510406017303467, 0.5084092020988464, -0.4368150532245636, 0.8522694706916809, 0.12553243339061737, -0.9969803094863892, 0.4985659718513489, -0.2630873918533325, 0.1534791886806488, 0.327513724565506, 0.8282509446144104, -0.6099792122840881, -0.06902310252189636, -0.9239669442176819, -1.0665309429168701, 0.7413782477378845, -0.15062467753887177, -0.003835398470982909, -0.32944056391716003, 0.24805516004562378, -0.12623649835586548, 0.0695948451757431, -1.0619566440582275, -0.5952659249305725, -0.24443458020687103, -0.23391659557819366, -0.44640669226646423, -0.21178923547267914, 0.2443738728761673, -0.5911007523536682, 1.1784664392471313, -0.0896601602435112, 0.38973161578178406, 0.42087870836257935, 0.05067477002739906, 0.08417363464832306, 0.17716765403747559, 0.6315414309501648, 0.30404165387153625, -0.4377819001674652, -0.1726122498512268, 0.2644774317741394, -0.3827625513076782, -0.194557324051857, 0.31373998522758484, -0.12876614928245544, 0.2283964604139328, 0.49065014719963074, 0.8988900780677795, 0.22250109910964966, -0.3355278968811035, 0.5581042766571045, -0.09915294498205185, -0.2128119170665741, -0.4758802652359009, -0.38908034563064575, 0.18571750819683075, 0.1678345501422882, 0.2140362411737442, 0.13086938858032227, 0.034999579191207886, -0.6272785067558289, 0.12629453837871552, 0.4396980106830597, -0.4529004693031311, -0.5558738708496094, 1.014207124710083, 0.08801791071891785, -0.1790604293346405, 0.445488840341568, -0.6360307335853577, -0.8498761653900146, 0.7291508913040161, 0.7413545846939087, 0.7755196690559387, -0.25514325499534607, 0.1299837827682495, 0.8836036920547485, 0.30445507168769836, -0.15719936788082123, 0.8174337148666382, 0.4354388117790222, -0.8996121287345886, -0.39572200179100037, -0.9678290486335754, -0.03077673353254795, 0.27679339051246643, -0.5947148203849792, 0.4649803042411804, -0.46246200799942017, -0.5485949516296387, 0.43287384510040283, 0.35729068517684937, -0.8211994171142578, 0.42259421944618225, 0.31808891892433167, 1.1550501585006714, -0.9939546585083008, 0.9914178252220154, 1.0838245153427124, -0.763538122177124, -1.2106765508651733, -0.18299372494220734, 0.05546500161290169, -0.5509650707244873, 0.8760159015655518, 0.29288193583488464, 0.5088164806365967, 0.20782418549060822, -0.5436687469482422, -1.3893108367919922, 1.0277878046035767, -0.23312249779701233, -0.4738398790359497, -0.18682724237442017, -0.28681498765945435, 0.3215196430683136, -0.4559379518032074, 0.6070146560668945, 0.44261103868484497, 0.5529162883758545, -0.0579754039645195, -0.9826886057853699, 0.05067868158221245, -0.29892587661743164, -0.1644143909215927, 0.22014261782169342, -0.6977808475494385, 1.252948522567749, -0.33062228560447693, -0.14646512269973755, 0.2685980200767517, 0.8532610535621643, 0.07338815927505493, 0.2688480019569397, 0.24190105497837067, 0.9470582604408264, 0.7790260910987854, -0.25935280323028564, 1.0307626724243164, -0.37619325518608093, 0.6396156549453735, 1.2023074626922607, -0.0869225263595581, 1.0463087558746338, 0.29215896129608154, -0.0645078718662262, 0.7319578528404236, 0.7261561751365662, -0.058180972933769226, 0.5626620054244995, 0.21701323986053467, -0.012003491632640362, -0.3617444932460785, -0.1456657201051712, -0.47970378398895264, 0.5830880403518677, 0.36922574043273926, -0.5724162459373474, 0.06014297902584076, -0.12974058091640472, 0.5012446641921997, -0.09028071910142899, -0.4289403259754181, 0.8203162550926208, 0.0671975240111351, -0.5776584148406982, 0.47517111897468567, 0.19025982916355133, 1.0620936155319214, -0.46754759550094604, 0.044618867337703705, -0.17556977272033691, 0.3986222743988037, -0.18284545838832855, -0.5407010912895203, 0.2277534306049347, -0.25018301606178284, -0.21704398095607758, -0.05566912144422531, 0.745786726474762, -0.5947611927986145, -0.5092030763626099, 0.26504766941070557, 0.41523000597953796, 0.12978211045265198, -0.001265521626919508, -0.7713271379470825, -0.12493463605642319, 0.07645870000123978, -0.6178439259529114, 0.21057558059692383, 0.22190827131271362, -0.047391824424266815, 0.4307694137096405, 0.4562542736530304, 0.032561369240283966, -0.020240873098373413, -0.2691642642021179, 0.8152415752410889, -0.9589672088623047, -0.5004324316978455, -0.955257773399353, 0.6611244082450867, -0.08892276883125305, -0.7539746761322021, 0.8901544809341431, 0.8696553111076355, 0.8538934588432312, -0.0794709324836731, 0.8242203593254089, -0.4425140619277954, 0.7288718819618225, -0.1532052606344223, 0.9537643194198608, -0.8688459992408752, -0.11656800657510757, -0.25935080647468567, -0.6327972412109375, -0.47589781880378723, 0.760669469833374, -0.37357982993125916, -0.10871239006519318, 0.6809375882148743, 0.70536208152771, 0.21264715492725372, 0.0033368347212672234, 0.02803533710539341, 0.41937118768692017, -0.04015374556183815, 0.46215811371803284, 0.5746941566467285, -0.6733635067939758, 0.344085156917572, -0.5834934115409851, -0.19412995874881744, -0.3397742211818695, -1.0528136491775513, -1.023308277130127, -0.7627219557762146, -0.4987875819206238, -0.9357092976570129, -0.2356574982404709, 1.2315192222595215, 0.41059571504592896, -0.950486958026886, -0.2762017548084259, 0.1624973863363266, -0.03274617716670036, -0.010851718485355377, -0.2687935531139374, 0.48800477385520935, -0.2052806168794632, -0.7334206104278564, 0.3501706123352051, -0.17112129926681519, 0.1494436115026474, 0.22687378525733948, 0.0056165968999266624, -0.7049992680549622, 0.2331610471010208, 0.4665148854255676, 0.3692331612110138, -0.7161012291908264, -0.09467747062444687, 0.26759135723114014, -0.36194488406181335, 0.13563013076782227, 0.30831071734428406, -0.8338611125946045, 0.20775945484638214, 0.7865791916847229, 0.2771301567554474, 0.492965430021286, -0.053346168249845505, 0.22303320467472076, -0.5434768795967102, -0.034192025661468506, 0.3897414803504944, 0.5652567148208618, 0.3293740749359131, -0.20767942070960999, 0.4811181426048279, 0.5104503035545349, -0.7345721125602722, -0.7450535893440247, -0.27525079250335693, -1.0944640636444092, -0.18597550690174103, 1.1623502969741821, -0.18279069662094116, -0.5180447101593018, 0.10405797511339188, -0.07758917659521103, 0.5203976035118103, -0.47333186864852905, 0.3978668749332428, 0.4751538634300232, 0.006473021116107702, 0.23941193521022797, -0.34096524119377136, 0.8207787871360779, 0.4299379587173462, -0.6221898794174194, -0.3361532390117645, 0.20125503838062286, 0.6055423617362976, 0.367713063955307, 0.678411602973938, 0.11638832092285156, 0.15173321962356567, 0.1492651104927063, 0.5189469456672668, 0.15876537561416626, -0.17857225239276886, -0.5409123301506042, -0.09004036337137222, -0.07288990169763565, -0.19107994437217712 ]
EleutherAI/pythia-70m
EleutherAI
"2023-11-21T19:04:09Z"
57,799
21
gpt-neox
[ "gpt-neox", "pytorch", "safetensors", "gpt_neox", "causal-lm", "pythia", "en", "dataset:EleutherAI/pile", "arxiv:2304.01373", "arxiv:2101.00027", "arxiv:2201.07311", "license:apache-2.0", "has_space", "text-generation-inference", "region:us" ]
null
"2023-02-13T14:54:51Z"
--- language: - en tags: - pytorch - causal-lm - pythia license: apache-2.0 datasets: - EleutherAI/pile library_name: gpt-neox --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research [(see paper)](https://arxiv.org/pdf/2304.01373.pdf). It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. We also provide 154 intermediate checkpoints per model, hosted on Hugging Face as branches. The Pythia model suite was deliberately designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models <a href="#evaluations">match or exceed</a> the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. <details> <summary style="font-weight:600">Details on previous early release and naming convention.</summary> Previously, we released an early version of the Pythia suite to the public. However, we decided to retrain the model suite to address a few hyperparameter discrepancies. This model card <a href="#changelog">lists the changes</a>; see appendix B in the Pythia paper for further discussion. We found no difference in benchmark performance between the two Pythia versions. The old models are [still available](https://huggingface.co/models?other=pythia_v0), but we suggest the retrained suite if you are just starting to use Pythia.<br> **This is the current release.** Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact parameter counts. </details> <br> # Pythia-70M ## Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. [See paper](https://arxiv.org/pdf/2304.01373.pdf) for more evals and implementation details. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:contact@eleuther.ai). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | — | | 160M | 85,056,000 | 12 | 768 | 12 | 2M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 2M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | — | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 2M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | — | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. “Equivalent” models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ## Uses and Limitations ### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. We also provide 154 checkpoints per model: initial `step0`, 10 log-spaced checkpoints `step{1,2,4...512}`, and 143 evenly-spaced checkpoints from `step1000` to `step143000`. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-70M for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-70M as a basis for your fine-tuned model, please conduct your own risk and bias assessment. ### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. For example, the model may generate harmful or offensive text. Please evaluate the risks associated with your particular use case. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-70M has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-70M will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better “follow” human instructions. ### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token used by the model need not produce the most “accurate” text. Never rely on Pythia-70M to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-70M may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-70M. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.<br> For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ## Training ### Training data [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/).<br> The Pile was **not** deduplicated before being used to train Pythia-70M. ### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training, from `step1000` to `step143000` (which is the same as `main`). In addition, we also provide frequent early checkpoints: `step0` and `step{1,2,4...512}`. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for 143000 steps at a batch size of 2M (2,097,152 tokens).<br> See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br> Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ## Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json/).<br> Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM. <details> <summary>LAMBADA – OpenAI</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai_v1.png" style="width:auto"/> </details> <details> <summary>Physical Interaction: Question Answering (PIQA)</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa_v1.png" style="width:auto"/> </details> <details> <summary>WinoGrande</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande_v1.png" style="width:auto"/> </details> <details> <summary>AI2 Reasoning Challenge—Easy Set</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_easy_v1.png" style="width:auto"/> </details> <details> <summary>SciQ</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq_v1.png" style="width:auto"/> </details> ## Changelog This section compares differences between previously released [Pythia v0](https://huggingface.co/models?other=pythia_v0) and the current models. See Appendix B of the Pythia paper for further discussion of these changes and the motivation behind them. We found that retraining Pythia had no impact on benchmark performance. - All model sizes are now trained with uniform batch size of 2M tokens. Previously, the models of size 160M, 410M, and 1.4B parameters were trained with batch sizes of 4M tokens. - We added checkpoints at initialization (step 0) and steps {1,2,4,8,16,32,64, 128,256,512} in addition to every 1000 training steps. - Flash Attention was used in the new retrained suite. - We remedied a minor inconsistency that existed in the original suite: all models of size 2.8B parameters or smaller had a learning rate (LR) schedule which decayed to a minimum LR of 10% the starting LR rate, but the 6.9B and 12B models all used an LR schedule which decayed to a minimum LR of 0. In the redone training runs, we rectified this inconsistency: all models now were trained with LR decaying to a minimum of 0.1× their maximum LR. ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure> # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_EleutherAI__pythia-70m) | Metric | Value | |-----------------------|---------------------------| | Avg. | 25.28 | | ARC (25-shot) | 21.59 | | HellaSwag (10-shot) | 27.29 | | MMLU (5-shot) | 25.9 | | TruthfulQA (0-shot) | 47.06 | | Winogrande (5-shot) | 51.46 | | GSM8K (5-shot) | 0.3 | | DROP (3-shot) | 3.33 |
[ -0.3345346450805664, -0.7942538261413574, 0.33405226469039917, 0.04198765382170677, -0.2397535890340805, -0.20904980599880219, -0.23945891857147217, -0.4360927939414978, 0.19119156897068024, 0.178659126162529, -0.34417352080345154, -0.3162749111652374, -0.4268686771392822, -0.05243215337395668, -0.4694020450115204, 1.141399621963501, -0.13100194931030273, -0.14088407158851624, 0.10622114688158035, -0.06913194060325623, -0.03860251605510712, -0.5519578456878662, -0.43464332818984985, -0.40544816851615906, 0.6228798031806946, 0.16105082631111145, 0.8825459480285645, 0.5936785340309143, 0.16030287742614746, 0.30027249455451965, -0.3756820559501648, -0.062457069754600525, -0.152102991938591, -0.09741923213005066, 0.003688615979626775, -0.2922879457473755, -0.7368534207344055, -0.008950757794082165, 0.6871811747550964, 0.6535325646400452, -0.17443835735321045, 0.2567369341850281, -0.014823630452156067, 0.3671641945838928, -0.5345308184623718, 0.04213633015751839, -0.3263839781284332, -0.17517392337322235, -0.09153389185667038, 0.15546931326389313, -0.37726736068725586, -0.3298313617706299, 0.475321888923645, -0.6571829319000244, 0.2771146297454834, 0.0848771333694458, 1.2083336114883423, -0.12566827237606049, -0.42598143219947815, -0.06384531408548355, -0.7099360823631287, 0.6902095079421997, -0.734671413898468, 0.3302290439605713, 0.28203579783439636, 0.16756853461265564, -0.035980675369501114, -0.893746018409729, -0.5453780889511108, -0.23127447068691254, -0.11069054901599884, -0.028032680973410606, -0.6100110411643982, 0.0172481220215559, 0.49920329451560974, 0.6293400526046753, -0.8399221301078796, -0.06905601918697357, -0.38000601530075073, -0.35748204588890076, 0.35093629360198975, 0.06387090682983398, 0.4583938717842102, -0.3146059215068817, 0.007290980778634548, -0.38819000124931335, -0.6673715710639954, -0.24468378722667694, 0.551942765712738, 0.0637572780251503, -0.3740999698638916, 0.5150575041770935, -0.40204057097435, 0.5968549251556396, -0.07392945140600204, 0.24094991385936737, 0.4449974596500397, -0.19850516319274902, -0.5142480731010437, -0.08578405529260635, 0.9491848945617676, 0.12938648462295532, 0.22059215605258942, -0.019285809248685837, -0.05501377582550049, 0.06137567013502121, 0.05642934516072273, -1.1086231470108032, -0.7925544381141663, 0.254263699054718, -0.3884870111942291, -0.40996482968330383, -0.1605951488018036, -0.9442836046218872, -0.1851671189069748, -0.19009549915790558, 0.5794473886489868, -0.5156294107437134, -0.7393350601196289, -0.14124754071235657, 0.0034760558046400547, 0.21568873524665833, 0.36788469552993774, -0.9246548414230347, 0.3896934688091278, 0.44492727518081665, 1.0431561470031738, 0.22724850475788116, -0.5717692971229553, -0.17575471103191376, -0.24131184816360474, -0.1247444748878479, 0.3585873544216156, -0.12157849967479706, -0.2046002447605133, -0.08931221812963486, 0.1833462417125702, -0.11457529664039612, -0.36317354440689087, 0.4077059328556061, -0.41111186146736145, 0.2677789032459259, -0.2557712197303772, -0.4248322546482086, -0.38532525300979614, 0.11250483989715576, -0.6182760000228882, 0.8550714254379272, 0.23473744094371796, -0.9731577634811401, 0.21359515190124512, -0.23697085678577423, -0.0598711259663105, -0.03895006328821182, 0.2095891535282135, -0.7064093351364136, 0.030375953763723373, 0.3369447886943817, 0.06377905607223511, -0.3939850926399231, 0.20758800208568573, -0.25699177384376526, -0.44113022089004517, 0.18310879170894623, -0.5349178910255432, 0.909679651260376, 0.20377974212169647, -0.6770318746566772, 0.2899560034275055, -0.5829590559005737, 0.21779441833496094, 0.2559356391429901, -0.3760719299316406, 0.05752599239349365, -0.1997382938861847, 0.37955352663993835, 0.21204400062561035, 0.18416479229927063, -0.35711202025413513, 0.25284430384635925, -0.5052899122238159, 0.7496310472488403, 0.7372186183929443, -0.09646788984537125, 0.4861935079097748, -0.4502750635147095, 0.4821740388870239, 0.023973938077688217, 0.20817503333091736, -0.05646287277340889, -0.6297605633735657, -1.0215462446212769, -0.26116952300071716, 0.37449872493743896, 0.29602447152137756, -0.49330660700798035, 0.43761658668518066, -0.2598181664943695, -0.8782454133033752, -0.18063417077064514, -0.08384235948324203, 0.4290646016597748, 0.29479724168777466, 0.4221796691417694, -0.1839829683303833, -0.5284786820411682, -0.8910484910011292, -0.2113356739282608, -0.4418315887451172, 0.13225789368152618, 0.1883670538663864, 0.9521350860595703, -0.12387946248054504, 0.5872498750686646, -0.3440025746822357, 0.24374231696128845, -0.3671625554561615, 0.16351604461669922, 0.44963815808296204, 0.6036092638969421, 0.3847169578075409, -0.5808196067810059, -0.4034220576286316, 0.022904373705387115, -0.597061276435852, 0.09840657562017441, 0.05825851857662201, -0.3287247121334076, 0.31793829798698425, 0.07505365461111069, -1.0082803964614868, 0.46583500504493713, 0.6473851799964905, -0.5344079732894897, 0.8222083449363708, -0.3494817316532135, -0.0018925603944808245, -1.0813157558441162, 0.2727178931236267, 0.14829011261463165, -0.2444886565208435, -0.6087480783462524, 0.07918274402618408, 0.19396379590034485, -0.22055020928382874, -0.4513525664806366, 0.5909455418586731, -0.5692636966705322, -0.15278008580207825, -0.22768115997314453, 0.06271488964557648, -0.04428419843316078, 0.6329936981201172, 0.15365070104599, 0.5681191682815552, 0.7985215783119202, -0.7717265486717224, 0.4236077070236206, 0.19578143954277039, -0.2668713629245758, 0.38210445642471313, -0.904341995716095, 0.18377617001533508, 0.0640430748462677, 0.4391193687915802, -0.5768685340881348, -0.36880484223365784, 0.5445132851600647, -0.5655214786529541, 0.1573605090379715, -0.4450840950012207, -0.537142276763916, -0.4299390912055969, -0.16708554327487946, 0.62027508020401, 0.7816959619522095, -0.5796144604682922, 0.7207627892494202, 0.06482654809951782, 0.1266503483057022, -0.37622785568237305, -0.5418855547904968, -0.24235399067401886, -0.5498371720314026, -0.682892918586731, 0.39270928502082825, 0.1641518771648407, -0.18062610924243927, 0.03068511188030243, 0.011121080256998539, 0.11109885573387146, -0.06861260533332825, 0.35414204001426697, 0.34129637479782104, -0.05469552427530289, 0.01636793278157711, -0.1451382339000702, -0.14047130942344666, -0.0005767637630924582, -0.5216350555419922, 0.9829615354537964, -0.30475956201553345, -0.18579193949699402, -0.8246080279350281, -0.001955654239282012, 0.909455418586731, -0.417290061712265, 0.8960655927658081, 0.6206589937210083, -0.7059264183044434, 0.15411755442619324, -0.37816762924194336, -0.28107190132141113, -0.44156891107559204, 0.6891754269599915, -0.2791704833507538, -0.3632010221481323, 0.6098875403404236, 0.2702605724334717, 0.2806968688964844, 0.5966244339942932, 0.7509234547615051, 0.23277391493320465, 1.2161757946014404, 0.4602765738964081, -0.17218509316444397, 0.6458055377006531, -0.5378461480140686, 0.23389768600463867, -1.1155550479888916, -0.18551228940486908, -0.5251241326332092, -0.2442089319229126, -0.9362937808036804, -0.31155267357826233, 0.3443281650543213, 0.21875104308128357, -0.7531900405883789, 0.5496183633804321, -0.5590404272079468, 0.06445294618606567, 0.6418067216873169, 0.254135400056839, 0.1800445169210434, 0.20591317117214203, 0.06569847464561462, -0.048857953399419785, -0.689573347568512, -0.3641860783100128, 1.25580632686615, 0.5077711343765259, 0.5933123826980591, 0.29380348324775696, 0.7216882109642029, -0.1415461003780365, 0.2666672170162201, -0.6931620240211487, 0.425218403339386, 0.33093684911727905, -0.7285270094871521, -0.19786392152309418, -0.7871353030204773, -0.947481632232666, 0.5018821358680725, 0.075104720890522, -1.111897349357605, 0.21894288063049316, 0.230478435754776, -0.37750980257987976, 0.48726311326026917, -0.6438964605331421, 0.996694803237915, -0.24276669323444366, -0.47028058767318726, -0.34874048829078674, -0.312842458486557, 0.24650654196739197, 0.3580785393714905, 0.1381748914718628, 0.0864703506231308, 0.30018672347068787, 1.0189827680587769, -0.6837108135223389, 0.6672380566596985, -0.12215234339237213, 0.1599453240633011, 0.34103044867515564, 0.27652454376220703, 0.6730441451072693, 0.1449146568775177, 0.12370682507753372, -0.032506782561540604, 0.1504599153995514, -0.582987368106842, -0.36783111095428467, 0.9334262013435364, -1.13180410861969, -0.3906409442424774, -0.8096264004707336, -0.6046711206436157, 0.10896185040473938, 0.19726338982582092, 0.43459853529930115, 0.6510500311851501, -0.031180065125226974, 0.011190962046384811, 0.6039406657218933, -0.5154802799224854, 0.365999311208725, 0.2122199386358261, -0.4743715822696686, -0.5349733829498291, 1.0107948780059814, 0.03112531080842018, 0.3607287108898163, 0.0037774271331727505, 0.2203231006860733, -0.40287625789642334, -0.45793530344963074, -0.6216042637825012, 0.5631953477859497, -0.7378464937210083, 0.008606629446148872, -0.7361776828765869, -0.02731568180024624, -0.45373833179473877, 0.11759620904922485, -0.41447705030441284, -0.3600651025772095, -0.23907436430454254, 0.003627968719229102, 0.5746975541114807, 0.4794078767299652, 0.11300558596849442, 0.35484740138053894, -0.5518893599510193, -0.05883137881755829, 0.22367559373378754, 0.07300922274589539, 0.12893681228160858, -0.9149339199066162, -0.11901881545782089, 0.1534903645515442, -0.43522047996520996, -1.153963565826416, 0.5282751321792603, -0.044900521636009216, 0.3548188805580139, 0.0729319155216217, -0.23773503303527832, 0.5901880264282227, -0.07814677804708481, 0.6852570176124573, 0.16608138382434845, -1.0378715991973877, 0.5465896129608154, -0.49777573347091675, 0.3395792543888092, 0.34188923239707947, 0.3554549813270569, -0.7401175498962402, -0.09156244993209839, -1.0018807649612427, -1.10337495803833, 0.7470237612724304, 0.4845082759857178, 0.19389165937900543, 0.13963806629180908, 0.4168029725551605, -0.46582624316215515, 0.16463203728199005, -1.0284910202026367, -0.29777848720550537, -0.2624266445636749, -0.09111671149730682, 0.14616787433624268, -0.031151684001088142, 0.047226183116436005, -0.5536807179450989, 1.0417776107788086, 0.0347391813993454, 0.36138612031936646, 0.29031744599342346, -0.402101069688797, -0.11411865055561066, -0.04476902261376381, 0.18205426633358002, 0.787283182144165, -0.1368786096572876, 0.06897859275341034, 0.22720783948898315, -0.5402581691741943, 0.03769586607813835, 0.15030653774738312, -0.38498544692993164, -0.04499300941824913, 0.18387751281261444, 0.8754927515983582, 0.13506296277046204, -0.4127412736415863, 0.22542375326156616, -0.057027075439691544, -0.07975900173187256, -0.3008427619934082, -0.16647282242774963, 0.20065419375896454, 0.19994311034679413, -0.009316567331552505, -0.19368289411067963, -0.024581734091043472, -0.8932200074195862, 0.05259130150079727, 0.21040521562099457, -0.18572713434696198, -0.42357584834098816, 0.6027206182479858, 0.02262723818421364, -0.22239716351032257, 1.1326984167099, -0.23993483185768127, -0.7122146487236023, 0.7920268774032593, 0.49524399638175964, 0.7478439807891846, -0.18912747502326965, 0.38264188170433044, 0.8714295625686646, 0.31788694858551025, -0.21015676856040955, 0.07682342827320099, 0.10726778954267502, -0.5199452638626099, -0.10623863339424133, -0.8261891603469849, -0.23989322781562805, 0.24775001406669617, -0.5904935598373413, 0.43225640058517456, -0.6237610578536987, -0.11249174922704697, -0.05502652749419212, 0.2213267832994461, -0.5952336192131042, 0.33408042788505554, 0.13371051847934723, 0.7100661993026733, -0.9303271770477295, 0.8324211835861206, 0.6709694266319275, -0.7250112891197205, -1.1050090789794922, 0.039810679852962494, 0.022404059767723083, -0.45510604977607727, 0.14891599118709564, 0.2027197927236557, 0.2273668646812439, 0.16038545966148376, -0.2814696133136749, -0.8772029876708984, 1.3147904872894287, 0.2438744753599167, -0.6724326014518738, -0.2679485082626343, -0.10718418657779694, 0.5449533462524414, 0.039691321551799774, 0.7202877998352051, 0.710841953754425, 0.41306808590888977, 0.0750521644949913, -1.0789486169815063, 0.35593050718307495, -0.3503684401512146, -0.06554167717695236, 0.2447649985551834, -0.7099007368087769, 1.3155248165130615, -0.06988156586885452, -0.009523599408566952, 0.4202703535556793, 0.6004114151000977, 0.40689894556999207, -0.10254178196191788, 0.3814886510372162, 0.7761203646659851, 0.8698281049728394, -0.3790399432182312, 1.2628694772720337, -0.318604975938797, 0.7912993431091309, 0.846235454082489, 0.2185438871383667, 0.5193716287612915, 0.40328648686408997, -0.382028192281723, 0.5140851140022278, 0.8569972515106201, -0.06485122442245483, 0.18453076481819153, 0.2647021412849426, -0.31020069122314453, -0.27639463543891907, 0.09560403972864151, -0.6288654208183289, 0.17636223137378693, 0.12774334847927094, -0.588710367679596, -0.20863647758960724, -0.3518286347389221, 0.3646499812602997, -0.43868497014045715, -0.24469171464443207, 0.2673303782939911, 0.12454652041196823, -0.6395609974861145, 0.6359657049179077, 0.27057310938835144, 0.5798033475875854, -0.4614960253238678, 0.17475107312202454, -0.1384715884923935, 0.3192274272441864, -0.344589501619339, -0.40001294016838074, 0.07564717531204224, -0.0038046264089643955, 0.07278241962194443, 0.13236239552497864, 0.4240114092826843, -0.15244919061660767, -0.5836603045463562, 0.18884509801864624, 0.5036094784736633, 0.2627992630004883, -0.45685771107673645, -0.7091848850250244, 0.09963257610797882, -0.1652863621711731, -0.530174732208252, 0.45195260643959045, 0.272930383682251, -0.12745888531208038, 0.595298707485199, 0.6491702795028687, 0.057382360100746155, 0.014432787895202637, 0.1346631944179535, 0.9827578067779541, -0.4649438261985779, -0.4838692247867584, -0.9336658716201782, 0.4947097599506378, 0.015248811803758144, -0.6932904124259949, 0.8690946102142334, 0.5501683950424194, 0.6995921730995178, 0.25666889548301697, 0.6181395649909973, -0.4312417507171631, -0.0424019992351532, -0.29283928871154785, 0.6851783394813538, -0.5141074061393738, 0.025311272591352463, -0.5143742561340332, -1.1676255464553833, -0.05955631658434868, 0.9479703307151794, -0.5291764140129089, 0.4107557237148285, 0.7979063987731934, 0.8179326057434082, -0.079564169049263, 0.08787038177251816, 0.06872867047786713, 0.2999451458454132, 0.5282763838768005, 0.9590925574302673, 0.9082437753677368, -0.6982097029685974, 0.564419686794281, -0.52079838514328, -0.264291912317276, -0.150089293718338, -0.4819548428058624, -0.8543859124183655, -0.4583013951778412, -0.5065997242927551, -0.7762932181358337, 0.020229382440447807, 0.8885785341262817, 0.7665656208992004, -0.6233959197998047, -0.17285552620887756, -0.5122277140617371, 0.04866926372051239, -0.24957126379013062, -0.23362499475479126, 0.44419345259666443, 0.1485944390296936, -0.9788765907287598, -0.04163125157356262, -0.14919297397136688, 0.11459539085626602, -0.4440727233886719, -0.3170356750488281, -0.17301088571548462, -0.12804587185382843, 0.05666104704141617, 0.3044475317001343, -0.5230026841163635, -0.24720847606658936, 0.032189447432756424, 0.061696071177721024, 0.00010606909927446395, 0.7163617610931396, -0.558475911617279, 0.13228687644004822, 0.6279920935630798, 0.1082272157073021, 0.8248625993728638, -0.2810073494911194, 0.43711867928504944, -0.24636441469192505, 0.33354753255844116, 0.27200546860694885, 0.6450896859169006, 0.3412453234195709, -0.2524208426475525, 0.15222316980361938, 0.4149576723575592, -0.7453226447105408, -0.8782559633255005, 0.3354869782924652, -0.7095258235931396, -0.08906178176403046, 1.2868586778640747, -0.2854920029640198, -0.4237276613712311, 0.04253341630101204, -0.20728269219398499, 0.5437554717063904, -0.3024838864803314, 0.6861667037010193, 0.6378030776977539, 0.0833749920129776, -0.20790110528469086, -0.6545234322547913, 0.3647409975528717, 0.6937463283538818, -0.825566828250885, 0.33604633808135986, 0.5932507514953613, 0.6232665181159973, 0.2574186623096466, 0.5828102827072144, -0.28749170899391174, 0.6215948462486267, 0.06533543765544891, 0.07814312726259232, 0.03609796240925789, -0.46921515464782715, -0.44144970178604126, -0.0932636708021164, 0.2275303602218628, 0.01909986138343811 ]
TahaDouaji/detr-doc-table-detection
TahaDouaji
"2023-01-05T19:36:58Z"
57,779
26
transformers
[ "transformers", "pytorch", "detr", "object-detection", "arxiv:2005.12872", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
object-detection
"2022-03-11T15:55:14Z"
--- tags: - object-detection --- # Model Card for detr-doc-table-detection # Model Details detr-doc-table-detection is a model trained to detect both **Bordered** and **Borderless** tables in documents, based on [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50). - **Developed by:** Taha Douaji - **Shared by [Optional]:** Taha Douaji - **Model type:** Object Detection - **Language(s) (NLP):** More information needed - **License:** More information needed - **Parent Model:** [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) - **Resources for more information:** - [Model Demo Space](https://huggingface.co/spaces/trevbeers/pdf-table-extraction) - [Associated Paper](https://arxiv.org/abs/2005.12872) # Uses ## Direct Use This model can be used for the task of object detection. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data The model was trained on ICDAR2019 Table Dataset # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). # Citation **BibTeX:** ```bibtex @article{DBLP:journals/corr/abs-2005-12872, author = {Nicolas Carion and Francisco Massa and Gabriel Synnaeve and Nicolas Usunier and Alexander Kirillov and Sergey Zagoruyko}, title = {End-to-End Object Detection with Transformers}, journal = {CoRR}, volume = {abs/2005.12872}, year = {2020}, url = {https://arxiv.org/abs/2005.12872}, archivePrefix = {arXiv}, eprint = {2005.12872}, timestamp = {Thu, 28 May 2020 17:38:09 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2005-12872.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` # Model Card Authors [optional] Taha Douaji in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import DetrImageProcessor, DetrForObjectDetection import torch from PIL import Image import requests image = Image.open("IMAGE_PATH") processor = DetrImageProcessor.from_pretrained("TahaDouaji/detr-doc-table-detection") model = DetrForObjectDetection.from_pretrained("TahaDouaji/detr-doc-table-detection") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) # convert outputs (bounding boxes and class logits) to COCO API # let's only keep detections with score > 0.9 target_sizes = torch.tensor([image.size[::-1]]) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [round(i, 2) for i in box.tolist()] print( f"Detected {model.config.id2label[label.item()]} with confidence " f"{round(score.item(), 3)} at location {box}" ) ```
[ -0.5293846726417542, -0.6633576154708862, 0.33677923679351807, -0.13417674601078033, -0.23684844374656677, -0.22039498388767242, -0.09589425474405289, -0.6407148241996765, -0.0864393413066864, 0.5133247375488281, -0.5021492838859558, -0.7423747181892395, -0.5917949080467224, 0.05956333130598068, -0.4067314863204956, 0.9892097115516663, 0.16273483633995056, -0.0988033264875412, -0.09582094103097916, 0.04874631389975548, -0.41448336839675903, -0.39047035574913025, -0.6945882439613342, -0.100127212703228, 0.2897512912750244, 0.3719010353088379, 0.49525725841522217, 0.5372774600982666, 0.7048943638801575, 0.3254908323287964, -0.19994039833545685, 0.04636054113507271, -0.32656601071357727, -0.2181796282529831, -0.23224034905433655, -0.4936450123786926, -0.4582888185977936, 0.1673460751771927, 0.5880446434020996, 0.31686797738075256, 0.016789834946393967, 0.11969494074583054, -0.03849479556083679, 0.5414304733276367, -0.45031511783599854, 0.26040390133857727, -0.6951755285263062, 0.19239476323127747, -0.2911052107810974, -0.004770973231643438, -0.6105547547340393, -0.07558798044919968, -0.2437146157026291, -0.43282005190849304, 0.4839533269405365, 0.22648531198501587, 1.3059922456741333, 0.11589431762695312, -0.18283097445964813, -0.22049899399280548, -0.5494250655174255, 0.7303178906440735, -0.6916714906692505, 0.508674144744873, 0.3038724362850189, 0.2618163228034973, -0.2040412724018097, -0.7293592095375061, -0.6851599812507629, -0.34229323267936707, -0.17422355711460114, 0.21421965956687927, -0.3067326247692108, 0.02315463125705719, 0.5801055431365967, 0.3477591276168823, -0.6087722182273865, 0.20783628523349762, -0.5728687047958374, -0.17217093706130981, 0.7045690417289734, 0.06967968493700027, 0.32564470171928406, -0.20881089568138123, -0.39274877309799194, -0.2725788652896881, -0.33960068225860596, 0.17838731408119202, 0.6287800073623657, 0.22609549760818481, -0.42976367473602295, 0.4991142153739929, -0.1616555005311966, 0.8249025940895081, 0.17134591937065125, -0.07690731436014175, 0.43384793400764465, -0.31461113691329956, -0.1665949821472168, -0.038509856909513474, 1.051289677619934, 0.3038279712200165, 0.21183346211910248, 0.04448243975639343, -0.12811490893363953, 0.06675776839256287, 0.10401575267314911, -0.7937370538711548, -0.26315638422966003, 0.22855490446090698, -0.4499013423919678, -0.4725601077079773, 0.2318805456161499, -0.8557642102241516, -0.08741990476846695, -0.06588063389062881, 0.17188312113285065, -0.3495371639728546, -0.4702821373939514, 0.06586409360170364, -0.10792209953069687, 0.3432024121284485, 0.03388458490371704, -0.7208449840545654, 0.14998821914196014, 0.484784334897995, 0.921721875667572, -0.03586038947105408, -0.08850227296352386, -0.4658368229866028, 0.032738711684942245, -0.30478110909461975, 0.8848452568054199, -0.5117747187614441, -0.4836222231388092, -0.14118799567222595, 0.3291272819042206, 0.05404046177864075, -0.547895073890686, 0.8231168985366821, -0.29155099391937256, 0.2751610577106476, -0.3008776605129242, -0.20397713780403137, -0.39829111099243164, 0.2900390028953552, -0.6763471961021423, 1.2041032314300537, 0.21210753917694092, -1.053054928779602, 0.4230864942073822, -0.6873036623001099, -0.32767635583877563, -0.1589367538690567, -0.07668716460466385, -0.9057385921478271, -0.17810842394828796, 0.19587266445159912, 0.3688545823097229, -0.24013154208660126, 0.43030664324760437, -0.5101098418235779, -0.2774111032485962, 0.163838729262352, -0.32430052757263184, 1.1771451234817505, 0.27878811955451965, -0.22833430767059326, 0.21897852420806885, -0.758367121219635, -0.17107325792312622, 0.20222830772399902, -0.30093905329704285, 0.054306574165821075, -0.16996639966964722, 0.2339024692773819, 0.4717094898223877, 0.0683697983622551, -0.6086962819099426, -0.007919943891465664, -0.17798972129821777, 0.1631600707769394, 0.602883517742157, -0.0394190177321434, 0.14018626511096954, -0.41067570447921753, 0.36558452248573303, 0.30935147404670715, 0.30058491230010986, 0.07885952293872833, -0.5458089709281921, -0.7637374401092529, -0.3416926860809326, -0.008146511390805244, 0.46408677101135254, -0.45169177651405334, 0.8773351907730103, -0.06618941575288773, -0.6228258013725281, -0.24006032943725586, -0.16020995378494263, 0.2742634117603302, 0.7593685388565063, 0.4904961585998535, -0.6133378148078918, -0.6968173384666443, -0.912365734577179, -0.09794817119836807, -0.0746462270617485, -0.059186436235904694, 0.17681381106376648, 0.7851995825767517, -0.08665536344051361, 1.0001589059829712, -0.5321143269538879, -0.619197428226471, -0.17849016189575195, -0.043571457266807556, 0.35348084568977356, 0.6614282727241516, 0.5686898827552795, -0.8283916711807251, -0.5485433340072632, -0.1508335918188095, -0.9615383148193359, -0.11033152788877487, 0.03993905708193779, -0.24011670053005219, 0.3933309018611908, 0.3435467779636383, -0.5506532788276672, 0.6486009359359741, 0.1067834421992302, -0.3011908531188965, 0.6514105796813965, -0.14386264979839325, -0.017708003520965576, -0.9803615808486938, 0.4054374694824219, 0.17663612961769104, -0.12901945412158966, -0.8331233859062195, 0.05912420526146889, 0.0034394620452076197, -0.1473505049943924, -0.5656033754348755, 0.49341365694999695, -0.5734482407569885, -0.13418272137641907, -0.29224538803100586, 0.03992832452058792, 0.11663030833005905, 0.6868458986282349, 0.4156860411167145, 0.4217687249183655, 0.660276472568512, -0.5717466473579407, 0.16139662265777588, 0.2604026794433594, -0.41940128803253174, 0.8094865083694458, -0.5860016942024231, 0.23690712451934814, -0.21812796592712402, 0.20624209940433502, -0.9399011135101318, -0.01133178360760212, 0.7376382350921631, -0.4191390872001648, 0.5981332063674927, -0.16484984755516052, -0.46048304438591003, -0.7218521237373352, -0.37004387378692627, 0.1275210827589035, 0.33377978205680847, -0.5268819332122803, 0.5428492426872253, 0.35312142968177795, 0.30726051330566406, -0.8437283635139465, -0.8096604347229004, -0.1213516891002655, -0.2426135092973709, -0.6048949360847473, 0.32192423939704895, -0.22035819292068481, -0.08946342021226883, 0.005934317130595446, -0.15403631329536438, -0.10709752142429352, 0.07140064239501953, 0.33249571919441223, 0.3954158425331116, 0.11711595952510834, -0.0438738614320755, -0.1304713934659958, -0.24702374637126923, 0.10275356471538544, -0.0841951072216034, 0.7468007802963257, -0.21132445335388184, -0.261386513710022, -0.6116634607315063, 0.2244938760995865, 0.5006359815597534, -0.41915372014045715, 0.7777325510978699, 0.9118711352348328, -0.5841805934906006, 0.1066134124994278, -0.6112338900566101, -0.17993296682834625, -0.508152961730957, 0.5986937880516052, -0.4952690005302429, -0.3196481764316559, 0.7806463837623596, 0.36452430486679077, -0.10451211035251617, 0.6670688390731812, 0.5600175261497498, 0.18818947672843933, 0.7928548455238342, 0.6064847707748413, 0.004950967617332935, 0.5959739685058594, -0.674780011177063, 0.28019893169403076, -1.0984996557235718, -0.6459435820579529, -0.646842896938324, -0.12708526849746704, -0.4713578522205353, -0.37080883979797363, 0.1695414036512375, 0.14950905740261078, -0.39780983328819275, 0.519256591796875, -1.0000501871109009, 0.2203693389892578, 0.5535346269607544, 0.35999006032943726, 0.2738431990146637, 0.011267824098467827, -0.007617061026394367, 0.16520290076732635, -0.5162111520767212, -0.4055217504501343, 0.8582150936126709, 0.518863320350647, 0.6398227214813232, -0.036823730915784836, 0.5816932320594788, 0.1635006219148636, 0.3849779963493347, -0.7033652663230896, 0.6791967153549194, -0.10638464242219925, -0.9219186305999756, -0.2127677947282791, -0.3022712469100952, -0.8904687762260437, 0.2146485447883606, -0.10978996008634567, -0.9866902828216553, 0.5556040406227112, -0.14788538217544556, -0.02947833202779293, 0.6144126653671265, -0.39512884616851807, 1.041866421699524, -0.249439537525177, -0.45915859937667847, -0.025221675634384155, -0.5494254231452942, 0.4524698555469513, -0.045896273106336594, 0.12025795876979828, -0.3230676054954529, 0.2512412667274475, 1.025991439819336, -0.37805572152137756, 0.7582600116729736, -0.3154175281524658, -0.06261288374662399, 0.5979933142662048, -0.057509731501340866, 0.55275958776474, -0.04601427912712097, -0.2251942753791809, 0.4797780215740204, -0.065396748483181, -0.11227190494537354, -0.09796109050512314, 0.47897061705589294, -0.5474516749382019, -0.5857347249984741, -0.6290318369865417, -0.8641372919082642, 0.33529022336006165, 0.42265141010284424, 0.5559864640235901, 0.22940441966056824, 0.01375187374651432, 0.037409961223602295, 0.4791301488876343, -0.4501057267189026, 0.4938724637031555, 0.6233358979225159, -0.2167624682188034, -0.11116747558116913, 0.674858033657074, 0.25034916400909424, 0.10956709086894989, 0.4475787281990051, 0.16693606972694397, -0.5113860964775085, -0.3602638840675354, -0.16441258788108826, 0.3295060396194458, -0.7785986661911011, -0.3528138995170593, -0.8061977028846741, -0.35614636540412903, -0.4456556737422943, -0.022817308083176613, -0.2375679612159729, 0.03792794421315193, -0.5496031045913696, -0.2053091675043106, 0.441257119178772, 0.3602064847946167, -0.3333125412464142, 0.22517414391040802, -0.3215925395488739, 0.25577688217163086, 0.04826194420456886, 0.39835429191589355, 0.04475557059049606, -0.7161700129508972, -0.04599292576313019, 0.11197520047426224, -0.3684433698654175, -0.9249275922775269, 0.5625841021537781, -0.025524141266942024, 0.6332807540893555, 0.4705028831958771, 0.16822612285614014, 0.3964926302433014, -0.18420638144016266, 0.529484748840332, 0.3291085362434387, -0.9049139618873596, 0.49038001894950867, -0.2304607629776001, 0.09926102310419083, 0.34230899810791016, 0.3612324595451355, -0.4807545840740204, -0.41101953387260437, -0.5601440072059631, -0.6292741894721985, 1.095194697380066, 0.018482079729437828, -0.1222824901342392, -0.010894492268562317, 0.11999779939651489, -0.15347659587860107, -0.00028823697357438505, -0.9686449766159058, -0.16742916405200958, -0.14315691590309143, -0.26529374718666077, 0.19698864221572876, -0.2992139458656311, -0.05746586620807648, -0.31950825452804565, 0.7589772343635559, 0.06490296870470047, 0.5779810547828674, 0.3064555823802948, -0.10592501610517502, -0.124824158847332, 0.032664693892002106, 0.591826319694519, 0.3069843351840973, -0.5396561622619629, 0.05199733003973961, 0.18123409152030945, -0.563499927520752, 0.08715841174125671, 0.18184024095535278, -0.19210080802440643, 0.037299834191799164, 0.27062439918518066, 0.73441082239151, -0.1108740046620369, -0.35977983474731445, 0.429686963558197, 0.12268020957708359, -0.18036839365959167, -0.4406496286392212, 0.05364719033241272, -0.05987786129117012, 0.10754235088825226, 0.34321996569633484, 0.1286519318819046, 0.180924654006958, -0.5682200789451599, 0.3886486291885376, 0.5768974423408508, -0.5162796378135681, -0.11506226658821106, 0.9966620802879333, -0.11886430531740189, -0.42902833223342896, 0.6657543182373047, -0.3708130717277527, -0.5887914299964905, 1.0085327625274658, 0.5786203742027283, 0.7411276698112488, -0.2001866102218628, 0.12768669426441193, 0.7016017436981201, 0.4662210941314697, -0.08247026056051254, 0.1456802785396576, 0.05644156411290169, -0.7640258073806763, 0.12444084882736206, -0.5620726943016052, -0.05167277157306671, 0.22371743619441986, -0.685150682926178, 0.562423825263977, -0.4297787547111511, -0.21772724390029907, 0.1060246154665947, 0.21531200408935547, -0.8859759569168091, 0.1870790272951126, 0.055012237280607224, 0.8695815801620483, -0.9461261630058289, 0.8379493951797485, 0.23944483697414398, -0.7952204346656799, -0.7809095978736877, -0.2708489000797272, -0.034615010023117065, -0.7043505311012268, 0.7260532975196838, 0.5598622560501099, -0.01546984352171421, -0.05380376800894737, -0.4495394229888916, -0.8168813586235046, 1.0407674312591553, 0.23600244522094727, -0.683947741985321, 0.10102935880422592, 0.07135210931301117, 0.4811653792858124, -0.25744515657424927, 0.6362256407737732, 0.5407050251960754, 0.6260483264923096, -0.00797770731151104, -0.6970691084861755, 0.2928544282913208, -0.17398571968078613, -0.08583258092403412, 0.022402100265026093, -0.7226155400276184, 0.9236143231391907, -0.229220449924469, -0.35784900188446045, -0.025056980550289154, 0.5196520090103149, 0.3138771951198578, 0.43645644187927246, 0.4697056710720062, 0.7744265794754028, 0.73381108045578, -0.21271799504756927, 0.9856460690498352, -0.30814769864082336, 0.6376489400863647, 0.9823852181434631, -0.20847328007221222, 0.6066108345985413, 0.232491597533226, -0.33422958850860596, 0.5889724493026733, 0.7677713632583618, -0.5359929800033569, 0.5758109092712402, 0.22157160937786102, -0.14416037499904633, 0.05295732617378235, -0.3911018967628479, -0.5052129030227661, 0.40825819969177246, 0.3723796010017395, -0.5057733058929443, -0.14314013719558716, 0.030388839542865753, 0.06807993352413177, -0.11691983789205551, -0.13897822797298431, 0.3787263333797455, 0.0024307623971253633, -0.45769748091697693, 0.6045308709144592, 0.09491421282291412, 0.781024694442749, -0.4771709740161896, -0.031501952558755875, -0.1317078322172165, 0.21797379851341248, -0.4329912066459656, -0.838190495967865, 0.35603439807891846, -0.033020053058862686, -0.15971368551254272, 0.2212161421775818, 0.744854211807251, -0.5765534043312073, -0.6998343467712402, 0.46510159969329834, 0.079074427485466, 0.48068785667419434, 0.028585217893123627, -0.7895171046257019, 0.2433636486530304, 0.013573081232607365, -0.27061760425567627, 0.028341131284832954, 0.06544759124517441, -0.038626089692115784, 0.6419858932495117, 0.7200630903244019, -0.24520081281661987, -0.03567815199494362, -0.0459807850420475, 0.7232334613800049, -0.3669644594192505, -0.4401489496231079, -0.79203861951828, 0.5377170443534851, -0.303307443857193, -0.13135413825511932, 0.6069455146789551, 0.939732015132904, 0.9695430994033813, -0.20109188556671143, 0.6067929863929749, -0.2785293757915497, 0.1805969774723053, -0.3476521670818329, 0.7566264271736145, -0.4323769509792328, 0.20158953964710236, -0.31527841091156006, -0.9833706021308899, -0.39116203784942627, 0.7938722968101501, -0.4213922917842865, 0.2960030734539032, 0.6160143613815308, 1.1414344310760498, -0.230104461312294, -0.3204578161239624, 0.277376264333725, 0.1111234724521637, 0.4570028483867645, 0.6663982272148132, 0.49297603964805603, -0.5983849167823792, 0.5972317457199097, -0.5122438073158264, -0.08444259315729141, -0.27222102880477905, -0.740825891494751, -1.021659016609192, -0.5351285934448242, -0.5282129645347595, -0.4412606656551361, -0.18705573678016663, 0.4757426679134369, 0.8488483428955078, -0.7583336234092712, -0.20562733709812164, -0.24092307686805725, 0.28370925784111023, -0.27280256152153015, -0.3072235584259033, 0.6735641360282898, 0.03258582204580307, -0.8895173668861389, 0.05828629061579704, 0.14786794781684875, 0.11818388849496841, -0.16598668694496155, -0.1309230625629425, -0.5380086898803711, -0.11391332745552063, 0.2715131342411041, 0.33704492449760437, -0.657322347164154, -0.39489448070526123, -0.1801760494709015, -0.14152689278125763, 0.2456103414297104, 0.33021706342697144, -0.5143514275550842, 0.5071505904197693, 0.5345252156257629, 0.05133195221424103, 0.7525675892829895, -0.13593167066574097, 0.08546615391969681, -0.6358134746551514, 0.5360720157623291, 0.04584379866719246, 0.511794924736023, 0.4549674689769745, -0.6397345066070557, 0.8208935856819153, 0.41836050152778625, -0.4375157058238983, -1.0322542190551758, 0.19050350785255432, -1.2141438722610474, -0.3063715696334839, 0.8885100483894348, -0.14005962014198303, -0.31227409839630127, -0.14642579853534698, -0.248357892036438, 0.6895338296890259, -0.3490021526813507, 0.7069922685623169, 0.456069678068161, 0.04573249816894531, -0.3869265913963318, -0.43882808089256287, 0.3117256760597229, 0.023433296009898186, -0.8055569529533386, -0.13274331390857697, 0.2542458176612854, 0.46372807025909424, 0.3927341401576996, 0.6126291155815125, -0.20900268852710724, 0.19471998512744904, 0.23332276940345764, 0.487201064825058, -0.4309309720993042, -0.3201882541179657, -0.30586186051368713, -0.054398369044065475, -0.145505890250206, -0.40429630875587463 ]
vinvino02/glpn-nyu
vinvino02
"2023-11-13T17:31:05Z"
57,649
14
transformers
[ "transformers", "pytorch", "glpn", "depth-estimation", "vision", "arxiv:2201.07436", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
depth-estimation
"2022-03-02T23:29:05Z"
--- license: apache-2.0 tags: - vision - depth-estimation widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace --- # GLPN fine-tuned on NYUv2 Global-Local Path Networks (GLPN) model trained on NYUv2 for monocular depth estimation. It was introduced in the paper [Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth](https://arxiv.org/abs/2201.07436) by Kim et al. and first released in [this repository](https://github.com/vinvino02/GLPDepth). Disclaimer: The team releasing GLPN did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description GLPN uses SegFormer as backbone and adds a lightweight head on top for depth estimation. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/glpn_architecture.jpg) ## Intended uses & limitations You can use the raw model for monocular depth estimation. See the [model hub](https://huggingface.co/models?search=glpn) to look for fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python from transformers import GLPNImageProcessor, GLPNForDepthEstimation import torch import numpy as np from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) processor = GLPNImageProcessor.from_pretrained("vinvino02/glpn-nyu") model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-nyu") # prepare image for the model inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) predicted_depth = outputs.predicted_depth # interpolate to original size prediction = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1), size=image.size[::-1], mode="bicubic", align_corners=False, ) # visualize the prediction output = prediction.squeeze().cpu().numpy() formatted = (output * 255 / np.max(output)).astype("uint8") depth = Image.fromarray(formatted) ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/glpn). ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2201-07436, author = {Doyeon Kim and Woonghyun Ga and Pyunghwan Ahn and Donggyu Joo and Sehwan Chun and Junmo Kim}, title = {Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth}, journal = {CoRR}, volume = {abs/2201.07436}, year = {2022}, url = {https://arxiv.org/abs/2201.07436}, eprinttype = {arXiv}, eprint = {2201.07436}, timestamp = {Fri, 21 Jan 2022 13:57:15 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2201-07436.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ -0.5680525302886963, -0.6714894771575928, 0.20281007885932922, 0.2552946209907532, -0.3925658166408539, -0.28376078605651855, 0.05925443395972252, -0.810676097869873, 0.3914206624031067, 0.40855109691619873, -0.767912745475769, -0.4529527425765991, -0.47437363862991333, -0.16094833612442017, -0.18840961158275604, 0.9480099678039551, 0.11620162427425385, 0.11377476155757904, -0.1727619171142578, -0.325154185295105, -0.13403072953224182, -0.1196899339556694, -0.7157701849937439, -0.502388596534729, 0.47185224294662476, 0.0836367979645729, 0.826619029045105, 0.5692915916442871, 0.6802277565002441, 0.40802639722824097, -0.372803270816803, 0.06433720141649246, -0.34115898609161377, -0.40790727734565735, 0.11440945416688919, -0.054373808205127716, -0.5980537533760071, -0.08878958970308304, 0.6689704656600952, 0.6788478493690491, 0.09465271234512329, 0.23123463988304138, 0.07312431931495667, 0.7948576807975769, -0.3783280849456787, 0.03138554096221924, -0.2256660908460617, 0.43012773990631104, -0.0887642353773117, 0.018945472314953804, -0.10941889882087708, -0.30394992232322693, 0.6358765363693237, -0.4911887049674988, 0.6345072388648987, -0.05972113460302353, 1.1386228799819946, 0.20521432161331177, -0.1570018231868744, -0.035900041460990906, -0.5459368228912354, 0.6429221034049988, -0.7240404486656189, 0.19989228248596191, 0.03338849917054176, 0.36385127902030945, 0.055723510682582855, -0.7196972370147705, -0.271573930978775, -0.19124554097652435, -0.20952832698822021, 0.3873271942138672, -0.12845271825790405, 0.23913712799549103, 0.408893346786499, 0.6476336121559143, -0.7044691443443298, -0.08202765136957169, -0.9845534563064575, -0.19502714276313782, 0.7562775015830994, 0.0659480094909668, 0.03559020534157753, -0.5086451172828674, -0.8612033128738403, -0.06950882822275162, -0.3515912890434265, 0.43821877241134644, 0.36515098810195923, 0.09065395593643188, -0.696678876876831, 0.441078245639801, -0.1878160983324051, 0.8341720700263977, 0.03861527144908905, -0.16968558728694916, 0.5358776450157166, -0.3350756764411926, -0.4413386881351471, 0.005303825251758099, 1.0023131370544434, 0.3294873535633087, 0.32933154702186584, -0.21504071354866028, 0.163300022482872, -0.09429293125867844, 0.1008339673280716, -0.8927716016769409, -0.5009490847587585, 0.25460314750671387, -0.25965872406959534, -0.2867889702320099, 0.15898488461971283, -0.7981829643249512, -0.33641117811203003, -0.299816757440567, 0.40513545274734497, -0.34682390093803406, -0.2377225011587143, 0.2789812684059143, 0.042587827891111374, 0.38374802470207214, 0.44302478432655334, -0.5575996041297913, 0.2859768867492676, 0.3272631764411926, 1.4680263996124268, -0.06259756535291672, -0.4237198531627655, -0.26858994364738464, -0.1239839568734169, -0.1820145547389984, 0.4940446615219116, 0.1333545744419098, -0.243605837225914, -0.16011889278888702, 0.33717337250709534, 0.14751800894737244, -0.5282076597213745, 0.567205011844635, -0.2280755341053009, 0.2455587536096573, -0.05461333319544792, -0.24389000236988068, -0.43631723523139954, 0.12067418545484543, -0.5622244477272034, 0.7964501976966858, 0.08540879935026169, -1.0528093576431274, 0.28054141998291016, -0.4641457498073578, -0.24184687435626984, -0.2060447782278061, 0.1645411103963852, -0.6413426995277405, 0.057202670723199844, 0.4419833719730377, 0.4392823576927185, -0.12257277220487595, 0.2547144889831543, -0.5360130667686462, -0.33853718638420105, -0.31584692001342773, -0.19583626091480255, 1.2463910579681396, -0.0428021214902401, -0.1703411489725113, 0.5721972584724426, -0.6583515405654907, -0.08004426211118698, 0.24749520421028137, -0.12371344119310379, -0.025865891948342323, -0.2895600199699402, -0.05390675738453865, 0.26096799969673157, 0.08311105519533157, -0.6033905148506165, 0.4119606912136078, -0.688065230846405, 0.2828713655471802, 0.8176154494285583, -0.016352158039808273, 0.48931363224983215, -0.18427038192749023, 0.4650188684463501, 0.026172101497650146, 0.4858422577381134, 0.029286623001098633, -0.7942198514938354, -0.6443179249763489, -0.2814332842826843, -0.05134890228509903, 0.4298262894153595, -0.42870575189590454, 0.2679145038127899, -0.28523018956184387, -0.808160126209259, -0.42900174856185913, -0.13044866919517517, 0.30225861072540283, 0.8346322178840637, 0.6503270268440247, -0.530960738658905, -0.7118028402328491, -0.7922604084014893, 0.16409555077552795, -0.04984850808978081, -0.09569331258535385, 0.3533083498477936, 0.48539870977401733, -0.1900915652513504, 0.8534355163574219, -0.4392135739326477, -0.3998382091522217, -0.08913497626781464, 0.1694496124982834, 0.7278759479522705, 0.6002219915390015, 0.40729349851608276, -0.6875141859054565, -0.6229402422904968, -0.22601355612277985, -0.9672397375106812, 0.20534808933734894, -0.0280755702406168, -0.2532903552055359, 0.16559338569641113, 0.1096503958106041, -0.7302199602127075, 0.6565501093864441, 0.6445416212081909, -0.4244042634963989, 0.8956840634346008, -0.41604745388031006, -0.25756147503852844, -0.8374565243721008, 0.12224539369344711, 0.4790349006652832, -0.27379876375198364, -0.673854410648346, -0.01695740781724453, -0.09239815175533295, -0.006636976730078459, -0.5675162076950073, 0.8602413535118103, -0.6403388977050781, -0.21121737360954285, 0.10384078323841095, -0.040493156760931015, -0.016280759125947952, 0.7058060765266418, 0.14651763439178467, 0.42007967829704285, 1.077773094177246, -0.5878826975822449, 0.7004750967025757, 0.3968128263950348, -0.5216671824455261, 0.2791999876499176, -1.0505268573760986, 0.17843830585479736, -0.19318567216396332, 0.15829327702522278, -0.7999926209449768, -0.2730121612548828, 0.5727640390396118, -0.4260280728340149, 0.4347689151763916, -0.6061463356018066, -0.05529279261827469, -0.6344618201255798, -0.36737149953842163, 0.5034855008125305, 0.43142738938331604, -0.6592956781387329, 0.37783247232437134, 0.2660055160522461, 0.1198420375585556, -0.6268177628517151, -0.7188994884490967, -0.21789506077766418, -0.20118312537670135, -1.1321102380752563, 0.47114554047584534, -0.15848247706890106, 0.0924905464053154, -0.12703724205493927, -0.19997942447662354, -0.009549552574753761, -0.3072735667228699, 0.3792087435722351, 0.5088096261024475, -0.1762942671775818, -0.33793336153030396, -0.24242521822452545, -0.13649435341358185, 0.15426860749721527, -0.13895153999328613, 0.5000782608985901, -0.4461885988712311, -0.22157827019691467, -0.4164765775203705, -0.15713895857334137, 0.30694353580474854, -0.11642301827669144, 0.5103496313095093, 1.077873706817627, -0.39612653851509094, 0.07725764811038971, -0.4173967242240906, -0.17279751598834991, -0.5278393626213074, 0.37129637598991394, -0.14119262993335724, -0.6789043545722961, 0.8138301372528076, 0.1452251821756363, -0.3992956280708313, 0.4257733225822449, 0.3254629075527191, -0.03574175387620926, 0.7484610676765442, 0.49921539425849915, -0.10178754478693008, 0.4022975564002991, -0.9479530453681946, -0.04824798181653023, -1.1601097583770752, -0.430972158908844, -0.09505780041217804, -0.5596223473548889, -0.5457627177238464, -0.5624668002128601, 0.6286445260047913, 0.5246608257293701, -0.358696848154068, 0.32640403509140015, -0.7335795760154724, 0.2500699758529663, 0.7419965863227844, 0.26890555024147034, -0.01761465333402157, 0.31376492977142334, -0.26636555790901184, -0.037168726325035095, -0.5395075082778931, 0.0727672129869461, 0.7604995965957642, 0.49461278319358826, 0.7540500164031982, -0.17669008672237396, 0.5088621377944946, -0.04156903177499771, 0.08425313234329224, -0.73958820104599, 0.6210997700691223, -0.028192907571792603, -0.7168548107147217, -0.41484957933425903, -0.4941217601299286, -0.8523931503295898, 0.26413053274154663, -0.017468564212322235, -1.1780165433883667, 0.347298264503479, 0.3056078851222992, -0.2645696699619293, 0.5743491649627686, -0.5315026044845581, 1.0552599430084229, -0.21018317341804504, -0.6862677335739136, 0.1384948343038559, -0.9419868588447571, 0.3727334141731262, 0.398210346698761, -0.19929811358451843, -0.13448140025138855, 0.3836502730846405, 0.612461268901825, -0.42803049087524414, 0.6233389973640442, -0.597229540348053, 0.11538826674222946, 0.46193641424179077, 0.002525593154132366, 0.5601698756217957, 0.27985891699790955, -0.02420693263411522, 0.7098985314369202, -0.230629563331604, -0.3639789819717407, -0.2296421378850937, 0.5429608225822449, -0.708767294883728, -0.44521644711494446, -0.5119625329971313, -0.6092697381973267, -0.02314119227230549, 0.2725509703159332, 0.773091197013855, 0.6536768078804016, -0.0002757584152277559, 0.14311739802360535, 0.3708224892616272, -0.29842427372932434, 0.4091787040233612, -0.12436334043741226, -0.46151259541511536, -0.5497186183929443, 0.6443076729774475, 0.13844597339630127, 0.21504494547843933, 0.2223435938358307, 0.43983346223831177, -0.39707285165786743, -0.4640652537345886, -0.511148989200592, 0.45690932869911194, -0.5858274102210999, -0.3492891192436218, -0.30900225043296814, -0.47900882363319397, -0.4669959545135498, -0.3477576673030853, -0.39233776926994324, -0.1666397601366043, -0.13175037503242493, -0.013838198967278004, 0.30392542481422424, 0.6520291566848755, -0.45955026149749756, 0.21579045057296753, -0.43675413727760315, 0.3597370684146881, 0.2299245148897171, 0.3596913814544678, -0.07213138788938522, -0.6211453080177307, -0.3572930097579956, 0.08386511355638504, -0.26996615529060364, -0.6953185200691223, 0.5104188323020935, 0.2024550884962082, 0.19601242244243622, 0.4231606721878052, -0.24852240085601807, 0.8555473685264587, -0.3517950475215912, 0.5551006197929382, 0.514817476272583, -0.6704452633857727, 0.6130516529083252, -0.38616546988487244, 0.6255756616592407, 0.17005251348018646, 0.55838543176651, -0.44681888818740845, -0.07041822373867035, -0.504615843296051, -1.0051287412643433, 0.9648460745811462, 0.020174086093902588, 0.023188374936580658, 0.5184959173202515, 0.30644065141677856, -0.008641188964247704, 0.08517541736364365, -0.8773849010467529, -0.4359194338321686, -0.4008627235889435, 0.12321681529283524, -0.1771053820848465, -0.16967235505580902, -0.04377017170190811, -0.8137375116348267, 0.7356946468353271, -0.2113223522901535, 0.6554674506187439, 0.7069630026817322, 0.10449980199337006, -0.25228965282440186, -0.3843874931335449, 0.4445595145225525, 0.7313542366027832, -0.6486341953277588, -0.09436575323343277, 0.1397705227136612, -0.5478253364562988, -0.17073525488376617, 0.16186492145061493, -0.38126617670059204, 0.08270947635173798, 0.5257951617240906, 1.082240104675293, -0.00790543481707573, -0.03668947145342827, 0.4836188554763794, 0.18168911337852478, -0.375315397977829, -0.39878278970718384, -0.10254130512475967, 0.014273365959525108, 0.37505266070365906, 0.2249578982591629, 0.5735140442848206, 0.23503704369068146, -0.06203264370560646, 0.02588481642305851, 0.48940134048461914, -0.5585623383522034, -0.5873121023178101, 0.6064513325691223, -0.24862296879291534, -0.00788267981261015, 0.6558212637901306, -0.2528204321861267, -0.4479326903820038, 0.7087347507476807, 0.36483898758888245, 0.9714373350143433, -0.06469626724720001, 0.4169376790523529, 0.9787139296531677, 0.27549371123313904, 0.11448324471712112, 0.15877772867679596, 0.11284010857343674, -0.6734222769737244, -0.39219456911087036, -0.7458887100219727, -0.273261159658432, 0.3994327783584595, -0.511529266834259, 0.27213653922080994, -0.6578779220581055, -0.10462464392185211, -0.02203075960278511, 0.2760634422302246, -0.9999204277992249, 0.3228857219219208, 0.26356419920921326, 1.0897393226623535, -0.48811042308807373, 0.8383315801620483, 0.7082806825637817, -0.5046384930610657, -0.8261436223983765, -0.17531734704971313, 0.0212539192289114, -0.7797113656997681, 0.42668431997299194, 0.39985448122024536, -0.20372961461544037, -0.0983797237277031, -0.7313259243965149, -0.9235339164733887, 1.313954472541809, 0.5696249604225159, -0.20812751352787018, -0.3394000828266144, 0.10542531311511993, 0.47533199191093445, -0.19065721333026886, 0.1999267190694809, -0.0809384435415268, 0.43853163719177246, 0.3644278049468994, -0.7316529750823975, -0.003086896613240242, -0.21836647391319275, 0.1620495766401291, -0.003121123183518648, -0.6471185684204102, 1.0518465042114258, -0.5156283378601074, -0.10666090995073318, 0.27965351939201355, 0.6879891157150269, 0.16672228276729584, 0.23023012280464172, 0.43544965982437134, 0.7785193920135498, 0.5554507970809937, -0.29561513662338257, 1.073264718055725, -0.02341446466743946, 0.7525514364242554, 1.0652588605880737, 0.1916479915380478, 0.32016676664352417, 0.36304396390914917, -0.2795216739177704, 0.4145068824291229, 0.6917510628700256, -0.3689470887184143, 0.6918159127235413, 0.22355350852012634, 0.049499787390232086, -0.1141023263335228, 0.039805784821510315, -0.5930625200271606, 0.4574007987976074, -0.08698490262031555, -0.18275925517082214, -0.10540157556533813, -0.10527552664279938, -0.12311197072267532, -0.5595220327377319, -0.48674407601356506, 0.3673497140407562, 0.023388905450701714, -0.5009392499923706, 0.687480092048645, -0.12264417856931686, 0.7847785353660583, -0.6499465107917786, 0.08372069150209427, -0.38969850540161133, 0.36080384254455566, -0.33506909012794495, -0.7646989822387695, 0.30600860714912415, -0.24760903418064117, -0.009392811916768551, 0.12015466392040253, 0.9859094023704529, -0.2949467599391937, -0.7183651924133301, 0.6354592442512512, 0.3075753450393677, 0.2730869948863983, -0.037077441811561584, -0.8953074216842651, 0.041224636137485504, -0.05514092743396759, -0.567703127861023, 0.07488072663545609, 0.3035884499549866, 0.4243743419647217, 0.6651171445846558, 0.48255082964897156, 0.24618564546108246, 0.27135905623435974, -0.11762476712465286, 0.789726972579956, -0.3803519010543823, -0.3004930913448334, -0.6671293377876282, 0.9549013376235962, -0.1949678510427475, -0.5969574451446533, 0.6920636296272278, 0.6438391804695129, 1.2541638612747192, -0.272817999124527, 0.39044004678726196, -0.10436183959245682, 0.16812963783740997, -0.5320466160774231, 0.5964728593826294, -0.7953763008117676, -0.16684457659721375, -0.5979902148246765, -1.0864933729171753, -0.3086335361003876, 0.8476910591125488, -0.3476472795009613, 0.297527015209198, 0.39380526542663574, 0.8459902405738831, -0.5299198627471924, -0.1775369495153427, 0.17211104929447174, 0.18926309049129486, 0.12133288383483887, 0.4045560359954834, 0.29854410886764526, -0.6894667744636536, 0.2915498614311218, -0.9290198087692261, -0.10164209455251694, -0.1409299671649933, -0.8524719476699829, -0.607120931148529, -0.5549874305725098, -0.46801668405532837, -0.4213709235191345, -0.04977082833647728, 0.5267269015312195, 1.117093801498413, -0.7986263036727905, -0.43163979053497314, -0.333050012588501, 0.04754754155874252, -0.17083486914634705, -0.23835939168930054, 0.4821760058403015, 0.060999546200037, -0.6108527779579163, 0.23554979264736176, 0.265336811542511, 0.023245295509696007, -0.36948874592781067, -0.5232267379760742, -0.47411683201789856, -0.347068190574646, 0.30607834458351135, 0.38651418685913086, -0.7035604119300842, -0.46014705300331116, -0.005707854405045509, 0.04106125235557556, 0.3711313307285309, 0.24613140523433685, -0.736983060836792, 0.7226426601409912, 0.47959908843040466, 0.20328554511070251, 0.8364966511726379, -0.08888792246580124, 0.08766217529773712, -0.8854763507843018, 0.2991267144680023, 0.10270119458436966, 0.6860314607620239, 0.5339295268058777, -0.22426456212997437, 0.9216613173484802, 0.43655654788017273, -0.701870858669281, -0.5701761245727539, 0.1670883595943451, -1.2034438848495483, 0.15479053556919098, 0.948232114315033, -0.36913353204727173, -0.2504716217517853, 0.40103641152381897, -0.2658514678478241, 0.47413766384124756, -0.05275368690490723, 0.5447571277618408, 0.2854350507259369, -0.10904092341661453, -0.316057026386261, -0.4543404281139374, 0.4867721498012543, 0.08383069187402725, -0.542690098285675, -0.3301842510700226, 0.4366944134235382, 0.19927120208740234, 0.5925267338752747, 0.5857105851173401, 0.04747890681028366, 0.12545529007911682, -0.09319952130317688, 0.2339288890361786, -0.32508766651153564, -0.6035470366477966, -0.42788827419281006, 0.04091601446270943, -0.319733589887619, -0.1281123161315918 ]
leondz/artgpt2tox
leondz
"2023-08-01T18:31:08Z"
57,611
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "en", "license:apache-2.0", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-06-08T23:58:57Z"
--- license: apache-2.0 language: - en ---
[ -0.12853388488292694, -0.18616782128810883, 0.6529127359390259, 0.4943625330924988, -0.19319313764572144, 0.23607465624809265, 0.36071982979774475, 0.05056332051753998, 0.5793652534484863, 0.740013837814331, -0.6508103013038635, -0.2378396987915039, -0.710224986076355, -0.04782581701874733, -0.3894752264022827, 0.8470761775970459, -0.09598272293806076, 0.024004854261875153, 0.047120071947574615, -0.14317826926708221, -0.6121037602424622, -0.04771740734577179, -1.0524537563323975, -0.06787490844726562, 0.3002279996871948, 0.5120972990989685, 0.8275896310806274, 0.39602896571159363, 0.5030564069747925, 1.7515558004379272, -0.08836919069290161, -0.22754427790641785, -0.45892032980918884, 0.4223068356513977, -0.33277371525764465, -0.42133718729019165, -0.2624166011810303, -0.07449338585138321, 0.32380399107933044, 0.790371298789978, -0.38104110956192017, 0.19328099489212036, -0.22438454627990723, 1.008224368095398, -0.8202074766159058, 0.22630876302719116, -0.16698351502418518, 0.14053204655647278, 0.042308706790208817, -0.14591927826404572, -0.1326323002576828, -0.6440033912658691, 0.06469469517469406, -0.899596095085144, 0.1027495265007019, -0.04461126774549484, 0.8789561986923218, 0.21909058094024658, -0.5102370977401733, -0.0459773913025856, -0.6883594989776611, 1.0972508192062378, -0.17556026577949524, 0.7615712881088257, 0.4507811963558197, 0.45288562774658203, -0.5849329829216003, -1.178217887878418, -0.4441864490509033, -0.13579002022743225, 0.14722809195518494, 0.30556100606918335, -0.3453029692173004, -0.022343844175338745, 0.10801105946302414, 0.5610314011573792, -0.5003758072853088, -0.311959445476532, -0.9579929113388062, -0.18164916336536407, 0.6820483207702637, 0.319308340549469, 0.834044337272644, 0.1873151659965515, -0.7347195744514465, 0.12866291403770447, -1.3239703178405762, 0.07650735974311829, 0.6465023756027222, 0.239467591047287, -0.554598867893219, 0.8594784736633301, -0.28587982058525085, 0.626249372959137, 0.2728465497493744, -0.1164526641368866, 0.2784252464771271, -0.23030735552310944, -0.2735062837600708, 0.033087607473134995, 0.34597301483154297, 0.8204491138458252, 0.16248634457588196, -0.019984982907772064, -0.22123965620994568, 0.0020717978477478027, 0.2684449553489685, -0.7935096025466919, -0.4712669551372528, 0.1926696002483368, -0.558952808380127, -0.0910850465297699, 0.4327022135257721, -1.0976827144622803, -0.4812980592250824, -0.1879846155643463, 0.05468139797449112, -0.5451693534851074, -0.3697946071624756, 0.07273250073194504, -0.79254150390625, -0.1243419200181961, 0.570950984954834, -0.6230252981185913, 0.43974608182907104, 0.533625602722168, 0.7861635684967041, 0.2330387681722641, -0.23613610863685608, -0.6695019602775574, 0.48848265409469604, -0.8661867380142212, 0.36860740184783936, -0.3073781132698059, -0.8298640251159668, -0.09631050378084183, 0.5393159985542297, 0.20664852857589722, -0.6653256416320801, 0.7074045538902283, -0.5496984720230103, -0.07806532829999924, -0.4308285415172577, -0.2432200014591217, 0.17460417747497559, 0.11115431040525436, -0.6238909363746643, 0.9402233362197876, 0.5551108121871948, -0.584109902381897, 0.31701239943504333, -0.4869506359100342, -0.6865583658218384, 0.26748135685920715, -0.008750975131988525, -0.047152332961559296, 0.3279528021812439, -0.15983973443508148, -0.0020511597394943237, 0.10505761206150055, 0.008299741894006729, -0.21891699731349945, -0.4786304235458374, 0.06349936127662659, 0.151650071144104, 1.25368332862854, 0.4083622097969055, -0.3771882951259613, -0.13140122592449188, -1.0526149272918701, 0.025432661175727844, 0.0505015105009079, -0.42306768894195557, -0.2504565119743347, -0.14882194995880127, -0.20381587743759155, 0.4307260811328888, 0.2118472456932068, -0.813115119934082, 0.22643625736236572, -0.2064024657011032, 0.364496648311615, 0.8222091794013977, 0.2703101634979248, 0.39760565757751465, -0.6625286340713501, 0.6563138365745544, 0.2076188325881958, 0.49590179324150085, 0.35404202342033386, -0.3845822811126709, -0.9641586542129517, -0.442161500453949, -0.10117404907941818, 0.2975531220436096, -0.7744957804679871, 0.5847322940826416, 0.012979604303836823, -0.5836705565452576, -0.4465281367301941, -0.15488101541996002, 0.2755330502986908, -0.06606576591730118, 0.03334902226924896, -0.4049779176712036, -0.7394417524337769, -1.0127898454666138, -0.13788150250911713, -0.5021388530731201, -0.21892830729484558, 0.3160586357116699, 0.2617739737033844, -0.34290042519569397, 0.7610747814178467, -0.6059278249740601, -0.704064130783081, -0.13973554968833923, -0.0995984673500061, 0.6187719702720642, 0.9297672510147095, 0.749138355255127, -0.7224893569946289, -0.8973818421363831, -0.056230708956718445, -0.5420039892196655, -0.020044349133968353, 0.038149889558553696, -0.18260693550109863, -0.10514980554580688, 0.22352531552314758, -0.6100803017616272, 0.8851073980331421, 0.43224984407424927, -0.681546688079834, 0.5210590958595276, -0.4444413483142853, 0.6073803901672363, -0.8642839193344116, -0.2911490201950073, -0.16823577880859375, -0.1976117193698883, -0.7090160846710205, 0.19411544501781464, -0.3002234101295471, -0.33029863238334656, -0.7474032044410706, 0.5274897813796997, -0.9497010707855225, -0.18781527876853943, -0.33672773838043213, -0.03423111140727997, 0.25807833671569824, 0.19490505754947662, -0.23560254275798798, 0.8900529742240906, 0.9160482287406921, -0.7121306657791138, 0.5487277507781982, 0.3930906653404236, -0.1920013427734375, 0.7131237387657166, -0.3887738585472107, 0.05161993205547333, -0.12344931066036224, 0.14374595880508423, -1.126388430595398, -0.561158299446106, 0.13677382469177246, -0.712703287601471, 0.17686958611011505, -0.16556859016418457, -0.09428537636995316, -0.6608465313911438, -0.33806395530700684, 0.25910091400146484, 0.48612290620803833, -0.47969940304756165, 0.6188148260116577, 0.5728040337562561, 0.02651876211166382, -0.5307406783103943, -0.7206818461418152, 0.20418110489845276, 0.039646461606025696, -0.5569695830345154, 0.3011690080165863, 0.006543457508087158, -0.6622446775436401, -0.371124804019928, -0.26354190707206726, -0.6043857336044312, -0.2267974615097046, 0.7826986312866211, 0.1199423298239708, -0.09012264013290405, -0.20310267806053162, -0.3199536204338074, -0.06167525798082352, 0.30487415194511414, -0.07575298100709915, 0.7232834696769714, -0.33623749017715454, -0.17850083112716675, -0.887734055519104, 0.652754545211792, 0.9970465302467346, 0.09446714073419571, 0.806644082069397, 0.46324217319488525, -0.35647475719451904, -0.1304660439491272, -0.3535459041595459, -0.15120601654052734, -0.685774564743042, -0.1806798279285431, -0.5322476625442505, -0.5411434769630432, 0.40530654788017273, 0.10101459175348282, -0.0021042972803115845, 0.5167046785354614, 0.2533605694770813, -0.28806859254837036, 0.7550324201583862, 1.034340739250183, 0.1391797959804535, 0.3602915108203888, -0.2854715585708618, 0.6341594457626343, -0.8329949378967285, -0.34052175283432007, -0.4548071026802063, -0.2563585042953491, -0.31214389204978943, -0.10750849545001984, 0.5791022181510925, 0.2818215489387512, -0.4463467597961426, 0.1250680536031723, -0.5994209051132202, 0.6587361693382263, 0.6273988485336304, 0.5719727873802185, 0.1997303068637848, -0.46199458837509155, 0.19982971251010895, 0.04816687852144241, -0.45745599269866943, -0.4009109139442444, 0.7711143493652344, 0.2399624139070511, 0.8364022374153137, 0.20927050709724426, 0.4957774877548218, 0.33375421166419983, 0.2528058588504791, -0.6318977475166321, 0.2009797990322113, -0.22282809019088745, -1.245961308479309, -0.206426739692688, -0.16551318764686584, -1.0080583095550537, -0.11792082339525223, -0.18288995325565338, -0.8406620025634766, 0.2665729820728302, -0.19225634634494781, -0.6640645265579224, 0.5206149220466614, -0.5103875398635864, 0.69347083568573, -0.23555898666381836, -0.2817087769508362, 0.11930079013109207, -0.6889920830726624, 0.5254612565040588, 0.3667147755622864, 0.29168397188186646, -0.37968993186950684, -0.3192872405052185, 0.5068994760513306, -0.881224513053894, 0.44081127643585205, -0.10564978420734406, 0.19428130984306335, 0.5358879566192627, 0.4153591990470886, 0.3823971152305603, 0.28699052333831787, -0.2459377944469452, -0.23415414988994598, 0.2250344604253769, -0.7581346035003662, -0.27754613757133484, 0.9095459580421448, -0.7519428730010986, -0.8586915731430054, -0.6954255700111389, -0.30644941329956055, 0.28865277767181396, 0.02781464159488678, 0.7154772281646729, 0.6456884145736694, -0.18821057677268982, 0.23776991665363312, 0.7208225727081299, -0.0146945184096694, 0.7235562801361084, 0.29411184787750244, -0.4056646227836609, -0.6169787645339966, 0.7182320356369019, 0.2627044916152954, 0.05162655562162399, 0.028327951207756996, 0.3058736026287079, -0.17546698451042175, -0.15078596770763397, -0.6318323612213135, -0.06395323574542999, -0.7465729117393494, -0.0927949845790863, -0.7541396617889404, -0.2507742643356323, -0.7114590406417847, -0.8068137764930725, -0.7080163955688477, -0.45604395866394043, -0.43011948466300964, -0.23352204263210297, 0.5163108706474304, 1.1627086400985718, -0.2613152861595154, 0.8011051416397095, -0.8900954723358154, 0.41936296224594116, 0.4969540238380432, 0.7519731521606445, -0.11061006784439087, -0.6746935844421387, -0.07836239039897919, -0.5338755249977112, -0.29485058784484863, -1.0156972408294678, 0.31774646043777466, -0.03688591718673706, 0.40537136793136597, 0.42938894033432007, 0.25190269947052, 0.49392756819725037, -0.30073118209838867, 1.1130688190460205, 0.7274302244186401, -0.803381085395813, 0.519527792930603, -0.7635002136230469, 0.16122324764728546, 0.9363659620285034, 0.54477459192276, -0.4417075514793396, -0.15113934874534607, -1.025976538658142, -0.843137264251709, 0.5963036417961121, 0.15439945459365845, 0.016843896359205246, 0.01821417547762394, 0.03168272227048874, 0.29466384649276733, 0.3591304123401642, -0.7847291231155396, -0.8240220546722412, -0.13851122558116913, 0.25803306698799133, 0.31456053256988525, -0.1648542582988739, -0.3003871440887451, -0.611615777015686, 0.8711391091346741, 0.18286482989788055, 0.3546231985092163, 0.12073354423046112, 0.04369349032640457, -0.35506919026374817, 0.14787021279335022, 0.5522999167442322, 1.2529057264328003, -0.40983331203460693, 0.3673911392688751, 0.1751260608434677, -0.6540069580078125, 0.6494997143745422, -0.3036349415779114, -0.021784601733088493, 0.6203135251998901, 0.17760884761810303, 0.28528398275375366, 0.315599262714386, -0.3621427118778229, 0.6047801971435547, -0.029422052204608917, -0.17758512496948242, -0.7005696296691895, 0.15866968035697937, 0.029350608587265015, 0.27507954835891724, 0.4392024278640747, 0.24443313479423523, 0.08246771991252899, -1.0602877140045166, 0.5711055397987366, 0.24493910372257233, -0.8676618337631226, -0.3011006712913513, 0.7047957181930542, 0.4075389802455902, -0.47599563002586365, 0.38749054074287415, 0.012702330946922302, -0.6710241436958313, 0.5987741351127625, 0.5510413646697998, 0.7569674253463745, -0.4702427089214325, 0.3088020086288452, 0.6245602965354919, 0.06711331009864807, 0.20550549030303955, 0.6923202872276306, 0.03149382025003433, -0.44738656282424927, 0.23022446036338806, -0.5986733436584473, -0.1468990594148636, 0.13735318183898926, -0.8047426342964172, 0.351533442735672, -0.9312615394592285, -0.24089956283569336, 0.08751589059829712, 0.11761097609996796, -0.6130945086479187, 0.6674696207046509, -0.008524954319000244, 0.9280490875244141, -0.8549083471298218, 0.9626278281211853, 0.8559581637382507, -0.31830817461013794, -0.7709448337554932, -0.33556753396987915, 0.02013934776186943, -0.6660526990890503, 0.7108278274536133, -0.18973003327846527, -0.41207411885261536, -0.09323947876691818, -0.622982919216156, -1.0003730058670044, 0.030618250370025635, 0.017415650188922882, -0.4625031054019928, 0.4454794228076935, -0.5157257318496704, 0.3289681673049927, -0.19169732928276062, 0.30509495735168457, 0.7719469666481018, 0.7958452701568604, 0.22960808873176575, -0.6354780197143555, -0.4466685652732849, -0.010276071727275848, -0.16682815551757812, 0.4545809030532837, -1.0710972547531128, 0.967736542224884, -0.4652574360370636, -0.34733209013938904, 0.2706642150878906, 0.797762393951416, 0.2538500428199768, 0.3524126708507538, 0.6219537258148193, 0.9016807079315186, 0.36450111865997314, -0.31178343296051025, 0.7276745438575745, 0.2426338493824005, 0.4152539074420929, 0.7364203333854675, -0.22712187469005585, 0.5403846502304077, 0.8906413316726685, -0.786162257194519, 0.5381765365600586, 0.7879031896591187, 0.16047371923923492, 0.7758157253265381, 0.5944145917892456, -0.611952543258667, -0.1185941994190216, -0.1464141309261322, -0.6171560287475586, 0.1979752480983734, 0.052926212549209595, -0.11974738538265228, -0.2846010625362396, -0.13567376136779785, 0.12295057624578476, 0.2836454212665558, -0.5959328413009644, 0.606866717338562, 0.34341585636138916, -0.6328282356262207, 0.21025103330612183, -0.25779569149017334, 0.6709501147270203, -0.5978154540061951, 0.02733636647462845, -0.226993590593338, 0.41810402274131775, -0.4618742763996124, -1.007582426071167, 0.47138404846191406, -0.2920241355895996, -0.40551304817199707, -0.26942431926727295, 0.8072363138198853, -0.22133907675743103, -0.5572860240936279, 0.37486034631729126, 0.13466592133045197, 0.41473662853240967, 0.40145981311798096, -0.548729419708252, 0.047790080308914185, 0.13760165870189667, -0.20061805844306946, 0.3601190149784088, 0.2973729372024536, 0.25488772988319397, 0.7100128531455994, 0.5052477717399597, 0.22198708355426788, 0.25694364309310913, -0.18668605387210846, 0.8387458324432373, -0.9102796316146851, -0.8167635202407837, -0.9497333765029907, 0.3849896192550659, 0.025727711617946625, -0.880144476890564, 0.7920305728912354, 0.7652608156204224, 0.5113964080810547, -0.4877890348434448, 0.4755283296108246, -0.326479434967041, 0.5047136545181274, -0.13870958983898163, 1.001089096069336, -0.760762631893158, -0.29587265849113464, -0.030554059892892838, -0.9216439723968506, -0.2533753216266632, 0.5375741720199585, 0.1540832668542862, -0.14608067274093628, 0.4385907053947449, 0.44216376543045044, 0.022173406556248665, 0.25223150849342346, 0.32861006259918213, 0.06042787432670593, 0.14508451521396637, 0.5510438680648804, 1.0931141376495361, -0.43394410610198975, 0.18694786727428436, -0.4923475384712219, -0.4536249041557312, -0.4153490662574768, -0.9548057913780212, -0.6640313863754272, -0.48185449838638306, -0.2973935008049011, -0.5915579199790955, 0.11726461350917816, 0.9300885796546936, 0.9018137454986572, -0.6256728172302246, -0.41243645548820496, 0.25713539123535156, 0.30293411016464233, -0.2295418381690979, -0.146267831325531, 0.2736492455005646, -0.006407544948160648, -0.7211178541183472, 0.3930943012237549, 0.807976245880127, 0.3887130320072174, 0.08444006741046906, -0.07217127084732056, -0.4407080411911011, 0.026101574301719666, 0.5373561382293701, 0.5729561448097229, -0.6281182169914246, -0.4099644422531128, -0.5328317880630493, -0.21386730670928955, 0.15529435873031616, 0.48077550530433655, -0.5166378617286682, 0.32661110162734985, 0.8128959536552429, 0.17017659544944763, 0.7187885642051697, -0.0022492259740829468, 0.6678642630577087, -0.8970246315002441, 0.4446259140968323, 0.3953385353088379, 0.5681870579719543, 0.08998038619756699, -0.7339164614677429, 0.9820241928100586, 0.49674350023269653, -0.6334057450294495, -1.0034242868423462, 0.03079957515001297, -1.193113923072815, -0.3788175582885742, 0.9890843629837036, -0.09595765173435211, -0.9597458839416504, -0.36448943614959717, -0.3677716851234436, 0.07989637553691864, -0.33809733390808105, 0.35498204827308655, 0.8268195986747742, -0.2538071274757385, -0.2204185128211975, -0.9505581855773926, 0.4752943515777588, 0.3102525472640991, -0.5886632204055786, -0.05114369094371796, 0.329391211271286, 0.45236870646476746, 0.3009701371192932, 0.5239557027816772, 0.10428227484226227, 0.8970529437065125, 0.25200390815734863, 0.30491405725479126, -0.04526621103286743, -0.590078592300415, -0.0160664189606905, 0.2621477246284485, 0.04487839341163635, -0.6869441270828247 ]
haor/Evt_V3
haor
"2023-05-10T16:05:17Z"
57,559
73
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "anime", "license:creativeml-openrail-m", "endpoints_compatible", "has_space", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2022-11-26T14:06:41Z"
--- tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - anime - diffusers license: creativeml-openrail-m --- # Evt_V3 Based on Evt_V2 with 20 epochs fine-tuning using 35467 images ### Examples ![Image](https://0.00000.link/1127/1669487591.png) ![Image](https://0.00000.link/1127/1669485516.png) ``` best quality, illustration,highly detailed,1girl,upper body,beautiful detailed eyes, medium_breasts, long hair,grey hair, grey eyes, curly hair, bangs,empty eyes,expressionless, ((masterpiece)),twintails,beautiful detailed sky, beautiful detailed water, cinematic lighting, dramatic angle,((back to the viewer)),(an extremely delicate and beautiful),school uniform,black ribbon,light smile Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry,artist name,bad feet Steps: 40, Sampler: Euler a, CFG scale: 6, Clip skip: 2 ``` ![Image](https://0.00000.link/1127/1669485689.png) ![Image](https://0.00000.link/1127/1669485715.png) ``` masterpiece, best quality, {best quality}, {{masterpiece}}, {highres}, original, extremely detailed wallpaper, 1girl,{an extremely delicate and beautiful}, {{angle}} , hair flower, illustration, school uniform, sunlight, detailed eyes, lily, white wings, ((halo)), silver hair, Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts,signature, watermark, username, blurry, artist name,bad feet Steps: 40, Sampler: Euler a, CFG scale: 6,Clip skip: 2 ``` ![Image](https://0.00000.link/1127/1669486081.png) ![Image](https://0.00000.link/1127/1669486069.png) ``` {{best quality}}, {{masterpiece}}, {{ultra-detailed}}, {illustration}, {detailed light}, {an extremely delicate and beautiful}, a girl, {beautiful detailed eyes}, stars in the eyes, messy floating hair, colored inner hair, Starry sky adorns hair, depth of field Negative prompt: lowres, bad anatomy, text, error, extra digit, fewer digits, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, {blurry:1.1}, missing arms Steps: 40, Sampler: Euler a, CFG scale: 7, Clip skip: 2 ```
[ -0.5752536058425903, -0.8621119260787964, 0.4696710705757141, 0.24648183584213257, -0.48441892862319946, 0.0324673056602478, 0.2820358872413635, -0.729008138179779, 0.46064677834510803, 0.6399399042129517, -0.8381370902061462, -0.7871410250663757, -0.5561717748641968, 0.1401960849761963, -0.17945529520511627, 0.5974491238594055, -0.07754584401845932, 0.0969565361738205, 0.18406525254249573, 0.19660021364688873, -0.441642701625824, 0.09703196585178375, -0.6906127333641052, -0.21845713257789612, 0.06617291271686554, 0.6439663767814636, 0.7096105813980103, 0.8637791872024536, 0.5955958366394043, 0.36904022097587585, -0.1987580806016922, -0.06685172021389008, -0.6582612991333008, -0.17995095252990723, -0.08075013011693954, -0.31475046277046204, -0.7832377552986145, 0.15522564947605133, 0.3192054331302643, 0.19450975954532623, 0.19981344044208527, 0.24893255531787872, 0.0015375586226582527, 0.9039477705955505, -0.13406848907470703, 0.103310726583004, -0.1759684830904007, 0.23722639679908752, -0.4598997235298157, -0.16692395508289337, 0.06879986822605133, -0.3029312193393707, -0.13193538784980774, -0.998767077922821, 0.435791015625, -0.008365493267774582, 1.5177364349365234, -0.053473904728889465, -0.20276716351509094, 0.03029315359890461, -0.617396891117096, 0.8239689469337463, -0.595673680305481, 0.3451573848724365, 0.354627788066864, 0.35324251651763916, 0.030339043587446213, -0.998677670955658, -0.6251174211502075, 0.31379351019859314, 0.06540445983409882, 0.6184930205345154, -0.38769519329071045, -0.34572896361351013, 0.43231460452079773, 0.6007307767868042, -0.5847412347793579, -0.034480948001146317, -0.6171181201934814, -0.33467239141464233, 0.6938289403915405, 0.16026228666305542, 0.38746193051338196, 0.10070723295211792, -0.5505447387695312, -0.3925749659538269, -0.9127476215362549, 0.16562478244304657, 0.6899874806404114, -0.14972448348999023, -0.4864145517349243, 0.6697728633880615, -0.053797073662281036, 0.6684873104095459, 0.40162956714630127, -0.16347713768482208, 0.4457349181175232, -0.204207181930542, -0.032006680965423584, -0.3919544219970703, 1.0045244693756104, 0.8256535530090332, -0.17034584283828735, 0.16241376101970673, -0.06300915032625198, -0.12084395438432693, 0.06369496881961823, -0.9364955425262451, -0.28777822852134705, 0.2195996344089508, -0.6077778339385986, -0.39625775814056396, 0.10341884195804596, -1.1521434783935547, 0.05592786520719528, -0.1367664784193039, 0.5379583835601807, -0.8318228721618652, -0.08651557564735413, 0.1378345638513565, -0.1302071362733841, 0.420047789812088, 0.42243048548698425, -0.7443735599517822, 0.0005281816120259464, 0.3982778489589691, 0.70199054479599, 0.46293866634368896, -0.09480270743370056, 0.35241180658340454, 0.06727780401706696, -0.6618362069129944, 0.8443436622619629, -0.4705866575241089, -0.4179195165634155, -0.4884275197982788, 0.4864237308502197, 0.2780187129974365, -0.2750488519668579, 1.0172091722488403, -0.17957307398319244, 0.2662016749382019, -0.26457035541534424, -0.35756915807724, -0.6590927839279175, -0.24468843638896942, -0.7734171152114868, 0.814164400100708, 0.484256774187088, -0.8305000066757202, 0.48113709688186646, -0.7454451322555542, -0.05110987275838852, 0.2649654448032379, 0.029596740379929543, -0.5893361568450928, -0.2462805062532425, 0.09819446504116058, 0.347440242767334, -0.3007875084877014, -0.3986019492149353, -0.4527050256729126, -0.28949081897735596, -0.10774045437574387, -0.3070865273475647, 0.9092777371406555, 0.4239940643310547, -0.48863497376441956, -0.10051924735307693, -0.8586550354957581, 0.1366560161113739, 0.6994621157646179, -0.0463312603533268, -0.15313521027565002, -0.33114346861839294, 0.2558687627315521, 0.24908733367919922, 0.6423894166946411, -0.5865151882171631, 0.05809947848320007, -0.36744049191474915, 0.4531177282333374, 0.6953359842300415, 0.18147026002407074, -0.10550697892904282, -0.7273089289665222, 0.5336799025535583, 0.03787725046277046, 0.4155547022819519, -0.18083226680755615, -0.5122649073600769, -0.9168551564216614, -0.5108798146247864, 0.007056722417473793, 0.43340280652046204, -0.8041871786117554, 0.7745391130447388, -0.09289596974849701, -0.9267218112945557, -0.6254222989082336, 0.0848841667175293, 0.5797056555747986, 0.37775561213493347, 0.2884286344051361, -0.4664139151573181, -0.48162686824798584, -1.2193729877471924, -0.07231445610523224, 0.013995731249451637, -0.124657541513443, 0.4630236327648163, 0.5775905251502991, -0.07096722722053528, 0.3848922848701477, -0.4381187856197357, -0.43857458233833313, -0.059320442378520966, 0.11889036744832993, 0.6531111598014832, 0.7069875597953796, 0.9455530643463135, -0.7274940609931946, -0.6072088479995728, -0.1321468949317932, -0.6462371349334717, 0.10262694209814072, 0.19904974102973938, -0.5348818898200989, -0.18058910965919495, 0.03165416419506073, -0.4268321990966797, 0.2132868468761444, 0.2941230833530426, -0.7726467251777649, 0.5123573541641235, -0.4574424624443054, 0.5526369214057922, -1.2564992904663086, 0.06855181604623795, 0.32324621081352234, -0.22668123245239258, -0.47458699345588684, 0.6583778858184814, 0.004454420413821936, 0.24672390520572662, -0.7642343640327454, 0.3807101547718048, -0.5493413805961609, 0.334262490272522, -0.06568945944309235, -0.18902568519115448, 0.12218387424945831, 0.5336732864379883, 0.07062920182943344, 0.6167342066764832, 0.7956717610359192, -0.12631265819072723, 0.5945683717727661, 0.47228556871414185, -0.28955596685409546, 1.0743143558502197, -0.8719882965087891, 0.4098387658596039, -0.11061148345470428, -0.17008529603481293, -0.8494589328765869, -0.5887051820755005, 0.368771493434906, -0.5956981778144836, 0.41904735565185547, 0.005188975483179092, -0.46386128664016724, -0.7471646666526794, -0.7925925850868225, 0.2300439178943634, 0.6751728057861328, -0.4400917887687683, 0.2300846427679062, 0.24498897790908813, 0.03226439654827118, -0.4451914429664612, -0.6827412247657776, 0.03775915130972862, -0.4051048159599304, -0.7275542616844177, 0.5033254623413086, 0.03460445627570152, -0.018669845536351204, 0.04698264226317406, 0.028118206188082695, -0.14865310490131378, -0.24170245230197906, 0.2698073089122772, 0.5195637941360474, -0.35157841444015503, -0.5702520608901978, 0.0362967774271965, 0.07384631782770157, -0.14679956436157227, -0.025492053478956223, 0.5772464871406555, -0.5566473603248596, -0.32244154810905457, -0.9052767753601074, 0.26003706455230713, 1.0471452474594116, 0.3289594054222107, 0.23121540248394012, 0.9178200364112854, -0.5777785778045654, 0.22483988106250763, -0.59759920835495, -0.17605043947696686, -0.5085405111312866, 0.30496397614479065, -0.4559134542942047, -0.7177348732948303, 0.7890270352363586, 0.26593703031539917, -0.14014369249343872, 1.1945736408233643, 0.3609343469142914, -0.3247157037258148, 1.330251932144165, 0.63536536693573, -0.065214604139328, 0.385926753282547, -1.0072365999221802, -0.17100585997104645, -0.877485990524292, -0.4728545546531677, -0.10658688098192215, -0.5913037657737732, -0.6140314340591431, -0.40042173862457275, 0.37079140543937683, 0.47393977642059326, -0.7012855410575867, 0.7045673727989197, -0.7471044063568115, 0.5093297958374023, 0.594479501247406, 0.6593154072761536, 0.02375609241425991, 0.08576901257038116, -0.08862828463315964, -0.3414624035358429, -0.243301659822464, -0.5450716614723206, 1.107105016708374, 0.5016359686851501, 0.5763974189758301, 0.22672750055789948, 0.47812971472740173, 0.1428523063659668, -0.18588565289974213, -0.6510410308837891, 0.6074746251106262, -0.37906259298324585, -0.8797158002853394, -0.276248574256897, -0.1756809651851654, -1.1086766719818115, 0.021323593333363533, -0.3956952691078186, -0.8944494128227234, 0.19179943203926086, 0.06945764273405075, -0.4894321858882904, 0.43839091062545776, -0.6128506064414978, 0.8332569599151611, -0.27979356050491333, -0.7195758819580078, -0.0015217387117445469, -0.6821938753128052, 0.47947508096694946, -0.13610610365867615, 0.08131414651870728, -0.19317835569381714, 0.052723344415426254, 0.7651181817054749, -0.6884486079216003, 0.7349691390991211, 0.08662627637386322, 0.1885448396205902, 0.5677298903465271, 0.11753222346305847, 0.6358565092086792, 0.17244859039783478, 0.425360769033432, 0.15107819437980652, 0.0684601217508316, -0.5403913855552673, -0.06389381736516953, 0.8876965045928955, -1.069532036781311, -0.4810117185115814, -0.39436250925064087, -0.12117456644773483, 0.08360754698514938, 0.48005443811416626, 0.9272768497467041, 0.4982789158821106, 0.026873910799622536, 0.26048168540000916, 0.5235125422477722, -0.05538259819149971, 0.4227144718170166, 0.3855159282684326, -0.18379643559455872, -0.6717923283576965, 1.138020396232605, 0.16349676251411438, 0.01250576600432396, 0.08964720368385315, 0.21349792182445526, -0.3189198970794678, -0.49564653635025024, -0.466719388961792, 0.45610517263412476, -0.614393413066864, -0.3006379008293152, -0.4079176187515259, -0.3047480285167694, -0.394540935754776, -0.2932657301425934, -0.4383074939250946, -0.31220632791519165, -0.8690075278282166, -0.07008836418390274, 0.9553103446960449, 0.6962913870811462, -0.10584069788455963, 0.05585108697414398, -0.8309822082519531, 0.40657708048820496, 0.5086151361465454, 0.5296664237976074, -0.3089769780635834, -0.5952295660972595, 0.16393151879310608, -0.1416957825422287, -0.7579419016838074, -1.145638108253479, 0.7936890721321106, 0.07384711503982544, 0.6307108998298645, 0.680708646774292, -0.35773715376853943, 0.8284468650817871, -0.3138542175292969, 1.0008573532104492, 0.46629205346107483, -0.7799925804138184, 0.5388582944869995, -0.9906229376792908, 0.20071499049663544, 0.5960193276405334, 0.1635730266571045, -0.39947977662086487, -0.43784359097480774, -1.1394884586334229, -1.2934869527816772, 0.8274409174919128, 0.4161078929901123, 0.0856478363275528, 0.29796990752220154, 0.3050715923309326, 0.28562086820602417, 0.13145263493061066, -0.6091794371604919, -0.6412606239318848, -0.6246460676193237, -0.15682128071784973, 0.006283808499574661, -0.09666130691766739, -0.10802885890007019, -0.6909129023551941, 1.03614342212677, 0.0001902325893752277, 0.5977836847305298, 0.23290900886058807, 0.3222334682941437, -0.5187423229217529, -0.123979352414608, 0.7836926579475403, 0.4335884153842926, -0.43740952014923096, -0.15118767321109772, 0.11554689705371857, -0.8220256567001343, 0.15390664339065552, -0.04174353927373886, -0.26319199800491333, -0.01516516413539648, 0.4098373353481293, 0.9364868402481079, -0.14053717255592346, -0.2369445562362671, 0.5398772954940796, 0.05336190015077591, -0.2863806486129761, -0.5023350715637207, 0.11524060368537903, -0.16487015783786774, 0.42440667748451233, 0.37831205129623413, 0.370784729719162, 0.474232017993927, -0.3732815086841583, 0.180295929312706, 0.30186226963996887, -0.5659445524215698, -0.5679334402084351, 0.9684968590736389, -0.03771387040615082, -0.33721357583999634, 0.25362369418144226, -0.4711932837963104, -0.39527401328086853, 1.0160378217697144, 0.48886263370513916, 0.9144512414932251, -0.17896990478038788, 0.36905407905578613, 0.8487757444381714, 0.2591623365879059, -0.21651232242584229, 0.988629937171936, 0.5310496687889099, -0.37924131751060486, -0.1720188558101654, -0.6036407947540283, -0.35158517956733704, 0.8623736500740051, -0.43708276748657227, 0.7461912631988525, -0.6492515802383423, -0.13119494915008545, -0.028417399153113365, -0.08106300234794617, -0.806623101234436, 0.3849134147167206, 0.036551471799612045, 0.9062204360961914, -1.0303995609283447, 0.6202796697616577, 0.8420485258102417, -0.4621131718158722, -1.044246792793274, -0.3497801125049591, 0.30383792519569397, -0.8984746336936951, 0.3444024324417114, 0.1651945263147354, 0.06302749365568161, 0.2515115737915039, -0.9030934572219849, -0.9893342852592468, 1.3631799221038818, 0.25114819407463074, -0.6164213418960571, 0.39321669936180115, -0.31235626339912415, 0.6624922156333923, -0.28319114446640015, 0.4343201220035553, 0.5925271511077881, 0.6363753080368042, 0.4495411813259125, -0.6511638164520264, -0.03861228749155998, -0.7567471265792847, 0.20208965241909027, 0.11096823960542679, -1.1549739837646484, 1.0678893327713013, -0.14935068786144257, -0.2156752347946167, 0.5573134422302246, 0.6704573035240173, 0.4618074297904968, 0.1434294581413269, 0.5191496014595032, 0.9309362769126892, 0.18945947289466858, -0.5971658825874329, 0.8792219758033752, -0.512553334236145, 0.6814422607421875, 0.5341134071350098, 0.31375768780708313, 0.4517073333263397, 0.25601911544799805, -0.5852533578872681, 0.2735181450843811, 1.2091400623321533, -0.5367770791053772, 0.706436276435852, -0.013984736055135727, -0.06636035442352295, -0.10037213563919067, 0.06879252195358276, -0.5334933400154114, 0.33542516827583313, 0.33258387446403503, -0.3511199653148651, -0.07810717076063156, 0.014441050589084625, 0.02504633739590645, 0.15401466190814972, -0.41315147280693054, 0.5405377149581909, -0.13143260776996613, -0.17471161484718323, 0.6069888472557068, -0.10245276987552643, 0.7103617191314697, -0.34001022577285767, -0.46106934547424316, -0.10346497595310211, -0.009908788837492466, -0.21174757182598114, -1.1766780614852905, -0.08193422108888626, -0.16264426708221436, 0.1068505346775055, -0.27064040303230286, 0.5752427577972412, -0.20800717175006866, -0.9752504825592041, 0.09781450778245926, 0.2607032358646393, 0.6008502244949341, 0.3789922595024109, -1.0810558795928955, -0.1715923398733139, 0.02210146375000477, -0.5242663025856018, -0.32478049397468567, 0.5440061688423157, 0.23361143469810486, 0.35379597544670105, 0.3403913974761963, 0.3645043671131134, -0.14435958862304688, -0.13959595561027527, 0.4786190688610077, -0.58746737241745, -0.3073529005050659, -0.8206688761711121, 0.549430787563324, -0.19179804623126984, -0.4837779104709625, 0.7837074398994446, 0.705471396446228, 0.883564293384552, -0.5872163772583008, 0.8426735997200012, -0.1804075688123703, 0.5840135216712952, -0.6381469368934631, 0.7990204095840454, -0.7797091007232666, -0.054293714463710785, -0.656801164150238, -0.9868095517158508, -0.3604963719844818, 0.8586748242378235, 0.028024958446621895, 0.2913020849227905, 0.5642313361167908, 0.5860646367073059, 0.08228184282779694, -0.07657203823328018, 0.3259722888469696, 0.2861092984676361, 0.1378946602344513, 0.7136440873146057, 0.8472425937652588, -0.7158411741256714, 0.17726781964302063, -0.8428484797477722, 0.03337612375617027, -0.5393901467323303, -0.6956441402435303, -0.7066352367401123, -0.7034199237823486, -0.5283288359642029, -0.5196511745452881, -0.22576455771923065, 0.8947033882141113, 0.7620930671691895, -0.9538965821266174, 0.13603807985782623, -0.22311340272426605, -0.07885098457336426, -0.4354371726512909, -0.2737886905670166, 0.3538942337036133, 0.6142296195030212, -1.0902149677276611, 0.18807198107242584, 0.34240642189979553, 0.8867813944816589, -0.08311378210783005, -0.08616539090871811, 0.3259388506412506, -0.07630287855863571, 0.2305448204278946, 0.345284104347229, -0.7191957235336304, -0.5081258416175842, 0.07790561765432358, 0.004286663606762886, 0.1802779734134674, 0.2463139295578003, -0.07035801559686661, 0.49315083026885986, 0.7418578863143921, -0.33900099992752075, 0.4973372519016266, -0.16206344962120056, 0.04880340397357941, -0.319646418094635, 0.005467267241328955, 0.3042137920856476, 0.6827867031097412, 0.3171541690826416, -0.6671480536460876, 0.7452988028526306, 0.5979501605033875, -0.4761141240596771, -0.6983059644699097, 0.07513295114040375, -1.3397762775421143, -0.21092960238456726, 0.9691153168678284, 0.06028567999601364, -0.40866097807884216, 0.12756700813770294, -0.5084354877471924, 0.3465198874473572, -0.4399411678314209, 0.6106359958648682, 0.7235435843467712, -0.14066123962402344, -0.11687188595533371, -0.7280994653701782, 0.27796974778175354, -0.02232595719397068, -0.6464093327522278, -0.49420028924942017, 0.6033620834350586, 0.37910300493240356, 0.5628507733345032, 0.32683977484703064, -0.6641323566436768, 0.3851439952850342, 0.233385369181633, 0.5037443041801453, -0.10145469009876251, -0.25976571440696716, -0.28007134795188904, 0.16264362633228302, 0.06461425125598907, -0.36147069931030273 ]
google/mt5-large
google
"2023-01-24T16:37:29Z"
57,542
58
transformers
[ "transformers", "pytorch", "tf", "jax", "mt5", "text2text-generation", "multilingual", "af", "am", "ar", "az", "be", "bg", "bn", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fil", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "hi", "hmn", "ht", "hu", "hy", "ig", "is", "it", "iw", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tr", "uk", "und", "ur", "uz", "vi", "xh", "yi", "yo", "zh", "zu", "dataset:mc4", "arxiv:2010.11934", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
text2text-generation
"2022-03-02T23:29:05Z"
--- language: - multilingual - af - am - ar - az - be - bg - bn - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fil - fr - fy - ga - gd - gl - gu - ha - haw - hi - hmn - ht - hu - hy - ig - is - it - iw - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - no - ny - pa - pl - ps - pt - ro - ru - sd - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tr - uk - und - ur - uz - vi - xh - yi - yo - zh - zu datasets: - mc4 license: apache-2.0 --- [Google's mT5](https://github.com/google-research/multilingual-t5) mT5 is pretrained on the [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 101 languages: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu. **Note**: mT5 was only pre-trained on mC4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task. Pretraining Dataset: [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) Other Community Checkpoints: [here](https://huggingface.co/models?search=mt5) Paper: [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) Authors: *Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel* ## Abstract The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We describe the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. All of the code and model checkpoints used in this work are publicly available.
[ -0.5287659168243408, -0.17020736634731293, 0.29125913977622986, 0.411001056432724, -0.2939440906047821, 0.36009055376052856, -0.38297703862190247, -0.4471434950828552, 0.17177559435367584, 0.3612290918827057, -0.7018294930458069, -0.8553211092948914, -0.9299465417861938, 0.7416996955871582, -0.2503918707370758, 1.0841466188430786, -0.37709149718284607, 0.2013067752122879, 0.233460932970047, -0.5431137681007385, -0.42154890298843384, -0.6196607351303101, -0.49560022354125977, -0.1249396800994873, 0.8160201907157898, 0.4453313648700714, 0.3333050012588501, 0.4619409441947937, 0.5839908123016357, 0.26146456599235535, 0.1784922331571579, 0.22893574833869934, -0.4870876669883728, -0.3450133502483368, 0.0006749290623702109, -0.3941822946071625, -0.41489458084106445, -0.14310669898986816, 0.5393335819244385, 0.6068596839904785, -0.13685527443885803, 0.4702296555042267, -0.10950390249490738, 0.5276477932929993, -0.49017658829689026, 0.0010665410663932562, -0.5381154417991638, 0.09321016818284988, -0.46708229184150696, -0.006121326237916946, -0.39827680587768555, -0.08440545201301575, -0.10739824920892715, -0.7024151086807251, 0.1903952956199646, 0.030630508437752724, 1.0908089876174927, 0.23771516978740692, -0.6577680706977844, -0.32248014211654663, -0.448163241147995, 0.9834946990013123, -0.4281518757343292, 0.9373108744621277, 0.5267671346664429, 0.3711853623390198, 0.17135311663150787, -1.0179470777511597, -0.719574511051178, 0.24352215230464935, -0.033016905188560486, 0.2380836308002472, -0.05137020722031593, -0.1915089339017868, 0.1494176834821701, 0.2620703876018524, -0.6665552854537964, 0.027179181575775146, -0.7649306058883667, -0.12463881820440292, 0.3247493505477905, -0.14510692656040192, 0.48713189363479614, -0.1410367488861084, -0.2749324142932892, -0.054494068026542664, -0.7521618008613586, 0.11277471482753754, 0.4091085195541382, 0.3508078157901764, -0.48851823806762695, 0.3054908812046051, 0.1536911278963089, 0.617260217666626, -0.07916209846735, -0.4438342750072479, 0.7383081912994385, -0.4628865122795105, -0.10182414203882217, -0.018812289461493492, 1.0781339406967163, 0.21695268154144287, 0.3720126450061798, -0.5303317904472351, -0.03675054386258125, 0.028104456141591072, 0.24528531730175018, -0.9077159762382507, -0.26190662384033203, 0.337196946144104, -0.2603209614753723, 0.0781635195016861, -0.14798690378665924, -0.44928357005119324, 0.042243700474500656, -0.22894272208213806, 0.24792592227458954, -0.6811641454696655, -0.3962561786174774, 0.07872182130813599, -0.007933221757411957, 0.07379433512687683, 0.061126697808504105, -1.2433538436889648, 0.05642888695001602, 0.32577332854270935, 0.8866039514541626, -0.37863367795944214, -0.7934433817863464, -0.3704870343208313, 0.3213329017162323, -0.2909301519393921, 0.5987313985824585, -0.5577380061149597, -0.3396054804325104, -0.06448886543512344, 0.5372231006622314, -0.1494760513305664, -0.30321094393730164, 0.7759956121444702, -0.48253610730171204, 0.6751986145973206, -0.4226829707622528, -0.014642245136201382, -0.40093794465065, 0.49358734488487244, -0.8695905804634094, 1.3061367273330688, 0.1075855940580368, -0.9730050563812256, 0.6218177676200867, -0.9446143507957458, -0.6707247495651245, -0.15319156646728516, 0.05843881517648697, -0.4698597490787506, -0.30862656235694885, 0.5947718620300293, 0.43700987100601196, -0.06394857913255692, 0.3019412159919739, -0.12600278854370117, -0.36386391520500183, -0.21558751165866852, -0.19274906814098358, 0.7320467829704285, 0.3503572642803192, -0.46093273162841797, 0.13628186285495758, -0.9538672566413879, -0.04966265335679054, -0.05629965290427208, -0.5391768217086792, -0.00539505947381258, -0.25826430320739746, 0.1851993054151535, 0.5636165142059326, 0.2741197347640991, -0.668843686580658, 0.0020309784449636936, -0.2551964521408081, 0.5535432696342468, 0.5767301917076111, -0.5031907558441162, 0.36773109436035156, -0.18313507735729218, 0.6604729890823364, 0.503402590751648, -0.0866805762052536, -0.43422931432724, -0.4117165207862854, -0.7768277525901794, -0.4961828291416168, 0.6132076382637024, 0.7016400098800659, -1.3041877746582031, 0.01942051388323307, -0.7436871528625488, -0.27334505319595337, -1.0370312929153442, 0.25037094950675964, 0.36030298471450806, 0.3688487708568573, 0.7425279021263123, -0.1268485188484192, -0.8475779294967651, -0.6615553498268127, -0.3061140477657318, 0.29886674880981445, 0.043941061943769455, -0.04599253460764885, 0.5514217019081116, -0.45294690132141113, 0.6218560934066772, 0.007242871914058924, -0.4499889612197876, -0.43327248096466064, 0.05215882882475853, 0.3375226855278015, 0.4223688244819641, 0.7315600514411926, -0.8157497644424438, -0.7407147288322449, 0.16866041719913483, -0.6790167689323425, 0.11069446802139282, 0.24593839049339294, -0.03597297891974449, 0.5673356056213379, 0.3469583988189697, -0.3317081034183502, -0.011137834750115871, 1.201148509979248, -0.09011775255203247, 0.23519457876682281, -0.42298728227615356, 0.36899375915527344, -1.7931002378463745, 0.33070114254951477, -0.20526567101478577, -0.359225332736969, -0.4989354610443115, -0.05739780515432358, 0.23968711495399475, -0.1154259443283081, -0.6969247460365295, 0.6136739253997803, -0.8283565044403076, 0.032796308398246765, -0.01425987295806408, 0.07404185086488724, -0.11625229567289352, 0.602687418460846, 0.0833018496632576, 0.9612457156181335, 0.38035455346107483, -0.699108362197876, 0.13591046631336212, 0.3032442331314087, -0.33176565170288086, 0.5019882917404175, -0.5114981532096863, 0.23450423777103424, -0.1579664945602417, 0.24953824281692505, -0.930966854095459, -0.1544271558523178, 0.0585230328142643, -0.6611976027488708, 0.20170128345489502, -0.40039119124412537, -0.6786841154098511, -0.45652443170547485, -0.15560515224933624, 0.41120168566703796, 0.277851939201355, -0.6900840401649475, 0.5321743488311768, 0.33436986804008484, -0.03843673691153526, -0.9914758205413818, -1.0641822814941406, 0.46611496806144714, -0.46618011593818665, -0.6319088339805603, 0.3407834470272064, -0.16937457025051117, 0.4097568988800049, -0.3407660722732544, 0.32931575179100037, -0.23202894628047943, 0.09782688319683075, 0.024084853008389473, 0.14285989105701447, -0.12604838609695435, -0.17087191343307495, 0.026469990611076355, -0.15748755633831024, -0.24765105545520782, -0.4371405243873596, 0.7564414739608765, -0.06430723518133163, -0.13733607530593872, -0.37914636731147766, 0.37554001808166504, 0.6542646884918213, -0.6270845532417297, 0.8409300446510315, 1.2901355028152466, -0.2119925320148468, 0.1629558950662613, -0.4792739450931549, 0.07094677537679672, -0.47434985637664795, 0.4491400420665741, -0.9592604041099548, -1.151069164276123, 0.7058587670326233, -0.13314026594161987, 0.30834850668907166, 0.5176830887794495, 0.6321477293968201, 0.0346347950398922, 1.1055060625076294, 0.8187008500099182, -0.07179781049489975, 0.41239601373672485, -0.27425700426101685, 0.25427404046058655, -0.8040446639060974, -0.13379395008087158, -0.5563840866088867, -0.36101794242858887, -1.0504859685897827, -0.3499913513660431, 0.36288413405418396, -0.22823061048984528, -0.21674710512161255, 0.620980441570282, -0.3160799741744995, 0.4560352563858032, 0.4783059060573578, -0.2283833771944046, 0.3253903090953827, 0.20438429713249207, -0.6522554159164429, -0.3612130582332611, -0.7851532697677612, -0.5988466143608093, 1.37196946144104, 0.18600989878177643, 0.16767975687980652, 0.5375699996948242, 0.6286550164222717, -0.14014257490634918, 0.47488704323768616, -0.4303051233291626, 0.14159666001796722, -0.45681336522102356, -0.8769563436508179, -0.13362360000610352, -0.48711374402046204, -1.357116937637329, 0.3321720063686371, -0.15711148083209991, -0.6238225102424622, -0.08815564960241318, 0.011559044942259789, -0.03912781551480293, 0.3300091028213501, -0.9517790675163269, 1.1002323627471924, -0.14256243407726288, -0.18317310512065887, 0.07317455857992172, -0.7927442193031311, 0.39723318815231323, -0.29171323776245117, 0.6317844390869141, 0.03746059536933899, 0.10418853163719177, 0.7392600774765015, -0.09551015496253967, 0.6568905115127563, -0.07776723802089691, -0.12318800389766693, -0.25159627199172974, -0.10532240569591522, 0.40380504727363586, -0.1627073734998703, 0.094655841588974, 0.44436052441596985, 0.2892536222934723, -0.6929686069488525, -0.25355279445648193, 0.6008222699165344, -1.0814783573150635, -0.1778792291879654, -0.4498145282268524, -0.39943423867225647, -0.30924278497695923, 0.7304308414459229, 0.431020587682724, 0.2955959439277649, -0.058849070221185684, 0.3279271721839905, 0.4033306837081909, -0.34143710136413574, 0.7791664004325867, 0.7706696391105652, -0.3597799241542816, -0.766698956489563, 0.9662474393844604, 0.23188358545303345, 0.19958281517028809, 0.43633222579956055, -0.04261572286486626, -0.4376998543739319, -0.6298442482948303, -0.8614603281021118, 0.3502766191959381, -0.6007193922996521, 0.05864763259887695, -0.919839084148407, 0.2155265063047409, -0.6349590420722961, -0.09910214692354202, -0.41111505031585693, -0.21660135686397552, -0.1335645616054535, -0.2630540728569031, 0.01441748533397913, 0.6115430593490601, 0.13842764496803284, 0.46571090817451477, -0.9893643856048584, 0.46233367919921875, -0.11932939291000366, 0.458600252866745, -0.4163858890533447, -0.5680332779884338, -0.49585041403770447, 0.21119649708271027, -0.3719986379146576, -0.4644934833049774, 0.7027912735939026, 0.19659066200256348, 0.5432195067405701, 0.30147284269332886, -0.17544160783290863, 0.7952086329460144, -0.8344060778617859, 0.9091435670852661, 0.4162577688694, -0.9274218678474426, 0.1868680864572525, -0.5123159885406494, 0.5250188708305359, 0.6977477073669434, 0.9372514486312866, -0.8755215406417847, -0.2561313211917877, -0.6237018704414368, -0.8375683426856995, 0.82485431432724, 0.11265309900045395, 0.18973413109779358, 0.00018765052664093673, -0.12572409212589264, 0.29442092776298523, 0.46483129262924194, -1.0616823434829712, -0.27443817257881165, -0.5293055772781372, -0.505473256111145, -0.4548480808734894, -0.1046137586236, -0.05650261417031288, -0.28054311871528625, 0.5703848600387573, -0.31117457151412964, 0.24573327600955963, 0.03838396072387695, -0.45084095001220703, 0.24666832387447357, 0.17924349009990692, 0.9861765503883362, 0.8622106909751892, -0.1602829545736313, 0.2880496680736542, 0.44466063380241394, -0.8782057166099548, 0.14755971729755402, -0.007578167598694563, 0.17733994126319885, 0.12396609038114548, 0.4099837839603424, 1.0205258131027222, 0.11638376116752625, -0.4331338703632355, 0.4043425917625427, -0.26727980375289917, -0.36383339762687683, -0.35138139128685, -0.36726275086402893, 0.34009888768196106, -0.14341294765472412, 0.28885483741760254, -0.030717061832547188, -0.07858560234308243, -0.6260740160942078, -0.009769432246685028, 0.02309575490653515, -0.4774013161659241, -0.6337123513221741, 0.7922592163085938, 0.35876980423927307, -0.10694814473390579, 0.5711290240287781, -0.0842171460390091, -0.7176315188407898, 0.22684334218502045, 0.6391227841377258, 0.6801597476005554, -0.45517611503601074, 0.00793757475912571, 0.5777884721755981, 0.5627527236938477, 0.021393105387687683, 0.5436402559280396, 0.04880637675523758, -0.8405326008796692, -0.674691379070282, -0.6822894811630249, -0.29730224609375, -0.06407823413610458, -0.3042038083076477, 0.5192024111747742, -0.19690565764904022, -0.14777997136116028, 0.05359819158911705, 0.05831018462777138, -0.8615012168884277, 0.4932311177253723, 0.05733971670269966, 0.6303519606590271, -0.6045839786529541, 1.233332633972168, 1.0422524213790894, -0.3756653070449829, -0.8894405961036682, -0.31064215302467346, -0.3095158040523529, -0.902118444442749, 0.8121190667152405, 0.3223210275173187, -0.1644868403673172, 0.3351759612560272, -0.19636373221874237, -0.9433985352516174, 1.2483566999435425, 0.6632682085037231, -0.23297348618507385, 0.013228795491158962, 0.5801844596862793, 0.47728994488716125, -0.22455942630767822, 0.5424948334693909, 0.36656343936920166, 0.6203643083572388, 0.18886607885360718, -1.3154655694961548, -0.19903184473514557, -0.5416865348815918, -0.15333420038223267, 0.28453129529953003, -0.7407222390174866, 0.8317265510559082, -0.10828938335180283, -0.14328458905220032, -0.3416690230369568, 0.7080010175704956, 0.2380385398864746, 0.11631142348051071, 0.3939049243927002, 0.8186377286911011, 0.8854539394378662, -0.2680427134037018, 1.2117173671722412, -0.6718098521232605, 0.3022853434085846, 0.8178414106369019, 0.01104947179555893, 0.818304717540741, 0.515703558921814, -0.20489366352558136, 0.49942660331726074, 0.8636016249656677, 0.2159908264875412, 0.48946666717529297, -0.1670786291360855, -0.18714933097362518, 0.034118764102458954, 0.04852790758013725, -0.33394500613212585, 0.4439990520477295, 0.1765223890542984, -0.2728848457336426, -0.0031714767683297396, 0.2525383532047272, 0.5351459383964539, -0.399167001247406, -0.10198657214641571, 0.6213628053665161, 0.1193554624915123, -0.8544584512710571, 0.9874345064163208, 0.3968648612499237, 0.9662649631500244, -0.7656703591346741, 0.3745875954627991, -0.2681361734867096, 0.2484251707792282, -0.2905694246292114, -0.6541614532470703, 0.32984626293182373, 0.11575943231582642, -0.21538294851779938, -0.5997592210769653, 0.2916458547115326, -0.7382734417915344, -0.5240622758865356, 0.3179537355899811, 0.3680780529975891, 0.1998799592256546, 0.024756621569395065, -0.6064215302467346, -0.035204362124204636, 0.14907579123973846, -0.08204180747270584, 0.33621567487716675, 0.6291259527206421, -0.11498280614614487, 0.7489094138145447, 0.841687798500061, 0.008987843059003353, 0.3649600148200989, 0.1409621685743332, 0.6745909452438354, -0.7002363801002502, -0.7039597630500793, -0.7050954103469849, 0.6209516525268555, 0.2151772528886795, -0.5685336589813232, 0.8781348466873169, 0.7451289296150208, 1.0908070802688599, -0.1922798454761505, 0.9017711281776428, 0.19259300827980042, 0.7394611239433289, -0.5474283695220947, 0.7572113871574402, -0.6845682859420776, -0.21166741847991943, -0.2808333933353424, -0.903901219367981, -0.39878877997398376, 0.4294191002845764, -0.2828361690044403, 0.19922567903995514, 1.1276311874389648, 0.4926869571208954, -0.35459235310554504, -0.2877543270587921, 0.485175758600235, 0.1299462765455246, 0.4405063986778259, 0.6024217009544373, 0.4567566514015198, -0.6544706225395203, 0.8316437602043152, -0.1433122605085373, 0.23053857684135437, 0.15577249228954315, -0.8950599431991577, -1.0837681293487549, -0.7682431936264038, -0.0521000437438488, -0.1899171620607376, 0.011117689311504364, 0.8159913420677185, 0.7809998989105225, -0.8205469846725464, -0.36233505606651306, 0.1356893926858902, -0.10675473511219025, 0.17011408507823944, -0.1006232276558876, 0.33687180280685425, -0.45265868306159973, -1.090272068977356, 0.3384522497653961, 0.07182008028030396, 0.11058253049850464, -0.16134589910507202, -0.09910276532173157, -0.4186778664588928, -0.25391337275505066, 0.6964258551597595, 0.053171101957559586, -0.4209804832935333, -0.07002682238817215, 0.1497775763273239, -0.17367088794708252, 0.3485918939113617, 0.44819700717926025, -0.5089111924171448, 0.3399408161640167, 0.27448874711990356, 0.7908571362495422, 0.7610477209091187, -0.23969148099422455, 0.6703029870986938, -0.8493480682373047, 0.31890153884887695, -0.07160995155572891, 0.3767238259315491, 0.6275140643119812, 0.02499430999159813, 0.5326479077339172, 0.4028984010219574, -0.3918558657169342, -0.7621126770973206, -0.03662792965769768, -0.9603796005249023, -0.013652957044541836, 1.1882683038711548, -0.3071388006210327, -0.27989861369132996, -0.19385460019111633, -0.15969614684581757, 0.3171995282173157, -0.2513239085674286, 0.6288974285125732, 1.0635126829147339, 0.40678876638412476, -0.509302020072937, -0.8429936766624451, 0.5306645631790161, 0.4696614146232605, -0.94880610704422, -0.4624483287334442, 0.052200425416231155, 0.517101526260376, 0.11662833392620087, 0.6500497460365295, -0.05660310015082359, 0.054811056703329086, -0.30575478076934814, 0.49592992663383484, -0.12962570786476135, -0.3381270170211792, -0.05017726123332977, 0.12090030312538147, -0.1793854832649231, -0.3405901789665222 ]
stablediffusionapi/anything-v5
stablediffusionapi
"2023-07-05T09:35:32Z"
57,525
109
diffusers
[ "diffusers", "stablediffusionapi.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "endpoints_compatible", "has_space", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2023-04-23T07:21:56Z"
--- license: creativeml-openrail-m tags: - stablediffusionapi.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # Anything V5 API Inference ![generated from stablediffusionapi.com](https://pub-8b49af329fae499aa563997f5d4068a4.r2.dev/generations/4740030011682234157.png) ## Get API Key Get API key from [Stable Diffusion API](http://stablediffusionapi.com/), No Payment needed. Replace Key in below code, change **model_id** to "anything-v5" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://stablediffusionapi.com/docs) Model link: [View model](https://stablediffusionapi.com/models/anything-v5) Credits: [View credits](https://civitai.com/?query=Anything%20V5) View all models: [View Models](https://stablediffusionapi.com/models) import requests import json url = "https://stablediffusionapi.com/api/v3/dreambooth" payload = json.dumps({ "key": "", "model_id": "anything-v5", "prompt": "actual 8K portrait photo of gareth person, portrait, happy colors, bright eyes, clear eyes, warm smile, smooth soft skin, big dreamy eyes, beautiful intricate colored hair, symmetrical, anime wide eyes, soft lighting, detailed face, by makoto shinkai, stanley artgerm lau, wlop, rossdraws, concept art, digital painting, looking into camera", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
[ -0.4127472937107086, -0.8575298190116882, 0.5933470129966736, 0.2980172336101532, -0.3600699305534363, -0.12579743564128876, 0.36420878767967224, -0.4719589352607727, 0.549453616142273, 0.6162878274917603, -0.8796674609184265, -0.9863520264625549, -0.3164432644844055, -0.0793793722987175, -0.2662132978439331, 0.6043307781219482, 0.1941651552915573, -0.2407206892967224, -0.05558297783136368, 0.13117192685604095, -0.3327926993370056, -0.18828578293323517, -0.7407053112983704, -0.10801221430301666, 0.273869127035141, -0.0017266368959099054, 0.4944515526294708, 0.7564313411712646, 0.2386690378189087, 0.2874350845813751, -0.21839603781700134, -0.050840117037296295, -0.36655259132385254, -0.23367440700531006, -0.18266065418720245, -0.7713645100593567, -0.6795622706413269, -0.1672254353761673, 0.35119810700416565, 0.5343219041824341, -0.030146855860948563, 0.4808797836303711, -0.1806669980287552, 0.6295076012611389, -0.8589333891868591, 0.2536213994026184, -0.4272425174713135, 0.279767245054245, -0.07052691280841827, 0.002104615792632103, -0.3440380394458771, -0.3237484395503998, -0.16095690429210663, -0.8830556869506836, 0.2638145089149475, 0.17969226837158203, 1.4962140321731567, 0.17755629122257233, -0.2163601517677307, -0.12675175070762634, -0.46196115016937256, 0.8526874780654907, -0.9783167243003845, 0.4352543354034424, 0.36645036935806274, 0.057769034057855606, -0.010457189753651619, -1.0113073587417603, -0.6828210353851318, 0.3671814799308777, 0.18435099720954895, 0.28257638216018677, -0.44443726539611816, -0.03733536973595619, 0.31608468294143677, 0.4003293812274933, -0.40033870935440063, -0.340691477060318, -0.42255327105522156, -0.06534958630800247, 0.5743576288223267, 0.23141176998615265, 0.21717607975006104, -0.5145735144615173, -0.38080957531929016, -0.3138270676136017, -0.5907630324363708, 0.3787030875682831, 0.5262317061424255, 0.33930453658103943, -0.6154376864433289, 0.5691452622413635, -0.38087451457977295, 0.9141318798065186, 0.22224557399749756, -0.1614599972963333, 0.6309610605239868, -0.2784554660320282, -0.441610187292099, -0.3006582260131836, 0.9686962962150574, 0.6083912253379822, -0.2854975163936615, 0.23875384032726288, -0.03119014762341976, -0.0649745836853981, 0.08963705599308014, -1.0557758808135986, -0.19848813116550446, 0.8615034818649292, -0.7843371629714966, -0.6177103519439697, 0.07876681536436081, -1.0045641660690308, -0.33376041054725647, 0.10123897343873978, 0.34272894263267517, -0.37768685817718506, -0.4813466966152191, 0.37101230025291443, -0.2864430546760559, 0.2839762568473816, 0.17603515088558197, -0.8288440108299255, 0.010383986867964268, 0.519157886505127, 0.8178422451019287, 0.2203771471977234, -0.05884193256497383, 0.11663714051246643, 0.15327824652194977, -0.3297695815563202, 0.9240434765815735, -0.27675721049308777, -0.5235370397567749, -0.11452797055244446, 0.3644861578941345, -0.090492382645607, -0.4221809208393097, 0.783356249332428, -0.5508785247802734, -0.13054673373699188, -0.26716476678848267, -0.4581651985645294, -0.445122629404068, 0.18263062834739685, -0.5697175860404968, 0.6181512475013733, 0.18680191040039062, -0.8125039935112, 0.23384281992912292, -0.7795256972312927, -0.19826006889343262, -0.13808341324329376, 0.025775928050279617, -0.6825343370437622, -0.12815026938915253, 0.12971386313438416, 0.3967560827732086, -0.09633860737085342, -0.21542534232139587, -0.9303295612335205, -0.1767449527978897, 0.2766125500202179, -0.23767168819904327, 1.267154335975647, 0.46018701791763306, -0.24277478456497192, -0.007916239090263844, -0.9819004535675049, 0.13994547724723816, 0.5441398024559021, -0.14805179834365845, -0.17113326489925385, -0.19150525331497192, 0.1361730992794037, -0.058473292738199234, 0.338184118270874, -0.5485619306564331, 0.32334697246551514, -0.41570478677749634, 0.6042379140853882, 0.5689651966094971, 0.308228075504303, 0.3546903431415558, -0.37316790223121643, 0.6896968483924866, 0.20614218711853027, 0.5203525424003601, -0.12347708642482758, -0.6673688888549805, -0.6529619693756104, -0.5037233829498291, 0.28201785683631897, 0.43653109669685364, -0.5010024309158325, 0.43361157178878784, -0.18234798312187195, -0.6959028840065002, -0.706078290939331, -0.07022220641374588, 0.2953333258628845, 0.5326652526855469, 0.11495229601860046, -0.1427527666091919, -0.8441510200500488, -0.8717451691627502, -0.023199012503027916, -0.17418549954891205, -0.11058611422777176, 0.31477996706962585, 0.5041570067405701, -0.29590657353401184, 0.8973147869110107, -0.7855708599090576, -0.14117969572544098, -0.09372875839471817, -0.02910974994301796, 0.8198108673095703, 0.661441445350647, 0.8974477052688599, -0.9332709908485413, -0.28688952326774597, -0.3140096068382263, -0.735439121723175, 0.13337302207946777, 0.2461628019809723, -0.34363171458244324, -0.031377311795949936, 0.10562218725681305, -0.8674159646034241, 0.5338705778121948, 0.48533740639686584, -0.6809702515602112, 0.43372589349746704, -0.12046891450881958, 0.5023818016052246, -1.3186081647872925, 0.05911014974117279, 0.09032963216304779, -0.32463008165359497, -0.4067530035972595, 0.3947969377040863, 0.08262231945991516, -0.044797129929065704, -0.8312212228775024, 0.626239001750946, -0.36952435970306396, 0.0671357810497284, -0.10687585175037384, 0.1313149631023407, 0.3394658863544464, 0.2653602957725525, 0.05248625576496124, 0.32854554057121277, 0.685921311378479, -0.5563234090805054, 0.48671457171440125, 0.30185142159461975, -0.30754855275154114, 0.6733677387237549, -0.6454830169677734, 0.11009833216667175, -0.004323857836425304, 0.3538374602794647, -1.2618581056594849, -0.5510404109954834, 0.4558916687965393, -0.7671329975128174, -0.1402818262577057, -0.6726964712142944, -0.4982717037200928, -0.5583173036575317, -0.4016239643096924, 0.18684051930904388, 0.8157041668891907, -0.519237220287323, 0.9299638867378235, 0.2857804298400879, 0.3511282205581665, -0.6043343544006348, -0.9259620308876038, -0.46219387650489807, -0.39610186219215393, -0.683232843875885, 0.2707710564136505, -0.1279904693365097, -0.2892322540283203, 0.11170265078544617, 0.01990780420601368, -0.25034502148628235, -0.027211293578147888, 0.4839582145214081, 0.5650852918624878, -0.25547081232070923, -0.34333130717277527, 0.1396181732416153, -0.03922038525342941, 0.10561773926019669, -0.46143555641174316, 0.7788292765617371, -0.04142932966351509, -0.59071946144104, -0.7408017516136169, -0.04522944241762161, 0.6481593251228333, 0.06814762949943542, 0.5667800307273865, 0.589165985584259, -0.6223694086074829, -0.07006564736366272, -0.5892747044563293, -0.12704548239707947, -0.49838608503341675, 0.1686670333147049, -0.5911703705787659, -0.47840437293052673, 1.0245364904403687, 0.11171277612447739, 0.06011976674199104, 0.5855273604393005, 0.40926599502563477, -0.13589663803577423, 1.4334371089935303, 0.2761186957359314, 0.05486004427075386, 0.36758896708488464, -0.7759751677513123, 0.042144328355789185, -0.8361712694168091, -0.22176247835159302, -0.38645651936531067, -0.2768048942089081, -0.4734093248844147, -0.45344141125679016, 0.03617824986577034, 0.3161716163158417, -0.4225676655769348, 0.39095407724380493, -0.6943758130073547, 0.43965524435043335, 0.4661104381084442, 0.27116844058036804, 0.24045304954051971, -0.09972774982452393, 0.009932426735758781, 0.09787804633378983, -0.5411612391471863, -0.25614431500434875, 1.17617666721344, 0.20636239647865295, 0.7585415840148926, 0.08150404691696167, 0.6472316980361938, 0.1849941611289978, 0.05028780177235603, -0.6083025336265564, 0.4005042314529419, 0.12423931807279587, -1.0624828338623047, 0.1671658456325531, -0.26659685373306274, -1.106294870376587, 0.3835083842277527, -0.22459788620471954, -1.0033750534057617, 0.758733332157135, 0.14789697527885437, -0.7661550641059875, 0.5871362686157227, -0.7664864659309387, 0.8496920466423035, 0.0334562286734581, -0.5891369581222534, 0.04512883722782135, -0.48466455936431885, 0.5907173156738281, 0.11537719517946243, 0.6359458565711975, -0.4158954620361328, -0.18312987685203552, 0.5874722003936768, -0.41635262966156006, 1.0347057580947876, -0.3248187005519867, -0.0054258620366454124, 0.6247187852859497, 0.08444715291261673, 0.4230998754501343, 0.472238153219223, -0.12156923860311508, 0.19013340771198273, 0.3638560175895691, -0.746643602848053, -0.4499744474887848, 0.8700503706932068, -0.7937189340591431, -0.4036422669887543, -0.21874502301216125, -0.2808949947357178, 0.03331403434276581, 0.4124087989330292, 0.5783756375312805, 0.14249923825263977, 0.1489073783159256, 0.028836354613304138, 0.8015355467796326, -0.059090908616781235, 0.48121485114097595, 0.4382721781730652, -0.7104285359382629, -0.6577274203300476, 0.8200525045394897, -0.15207740664482117, 0.28454074263572693, 0.1510745733976364, 0.11974415183067322, -0.5325658917427063, -0.5192862153053284, -0.4541544020175934, 0.2623012959957123, -0.8076265454292297, -0.3562830984592438, -0.834075927734375, 0.0682644322514534, -0.7683893442153931, -0.21253478527069092, -0.890742301940918, -0.3276524245738983, -0.5191138386726379, -0.19439545273780823, 0.6769394278526306, 0.32965758442878723, -0.21392738819122314, 0.27904051542282104, -0.7294046878814697, 0.35540449619293213, 0.14202764630317688, 0.15555481612682343, 0.06758233904838562, -0.5603135228157043, 0.07340992242097855, 0.21331362426280975, -0.4870653450489044, -0.9318910241127014, 0.5518100261688232, -0.21347478032112122, 0.3021477162837982, 1.0311987400054932, 0.15471132099628448, 0.972698450088501, 0.027819208800792694, 0.9691294431686401, 0.3161023259162903, -1.0534939765930176, 0.8377664685249329, -0.6327844858169556, 0.02994590997695923, 0.5463426113128662, 0.23202496767044067, -0.30777475237846375, -0.22898714244365692, -1.0768405199050903, -1.2012039422988892, 0.5157189965248108, 0.24130843579769135, 0.249941885471344, 0.024266865104436874, 0.4889744222164154, -0.12311508506536484, 0.34691718220710754, -0.9889816045761108, -0.6426226496696472, -0.24068664014339447, -0.028760060667991638, 0.45869678258895874, 0.17107564210891724, -0.309681236743927, -0.4449734389781952, 0.7913209795951843, -0.034476738423109055, 0.4192466139793396, 0.30047324299812317, 0.3825341761112213, -0.1536281704902649, 0.02954435534775257, 0.4156177341938019, 0.7917426228523254, -0.5395537614822388, -0.10482291132211685, 0.06771116703748703, -0.29416102170944214, 0.12170035392045975, 0.16102716326713562, -0.3719036877155304, 0.04140901938080788, 0.26118215918540955, 0.9018880128860474, -0.05291061848402023, -0.5066893696784973, 0.6303516626358032, -0.17590762674808502, -0.434286504983902, -0.5225011110305786, 0.19172348082065582, 0.42330697178840637, 0.6463174819946289, 0.34556853771209717, 0.22829747200012207, 0.26355689764022827, -0.5323609113693237, -0.13952741026878357, 0.2940162122249603, -0.3884228467941284, -0.3983990550041199, 1.1716560125350952, -0.1548885852098465, -0.37380141019821167, 0.33192139863967896, -0.418567955493927, -0.08837983012199402, 0.7994424700737, 0.6562479138374329, 0.7844451665878296, -0.068715400993824, 0.26171213388442993, 0.6631281971931458, 0.05883975327014923, -0.12970834970474243, 0.7696400880813599, 0.0817381963133812, -0.7560063600540161, -0.2897058427333832, -0.8444511890411377, -0.20324380695819855, 0.47073355317115784, -0.787143886089325, 0.5624004006385803, -0.8191571235656738, -0.3509468138217926, -0.09161219000816345, -0.30322033166885376, -0.6184732913970947, 0.4339485466480255, 0.04303411394357681, 0.8813644051551819, -0.8639348745346069, 0.6091839671134949, 0.8020143508911133, -0.8268325328826904, -1.064583420753479, -0.21916505694389343, 0.16855987906455994, -0.8010595440864563, 0.44151943922042847, -0.13926468789577484, 0.06879342347383499, 0.20000195503234863, -0.8571190237998962, -1.0099576711654663, 1.224866271018982, 0.2986488938331604, -0.38561853766441345, -0.04566432535648346, -0.047580692917108536, 0.3960549533367157, -0.45907148718833923, 0.5304560661315918, 0.47639256715774536, 0.5363710522651672, 0.2718592584133148, -0.37921997904777527, 0.17808206379413605, -0.45339351892471313, 0.11137858033180237, -0.21806053817272186, -0.8899127840995789, 1.0241018533706665, -0.29150986671447754, -0.01684235967695713, 0.284756064414978, 0.7229829430580139, 0.8330535292625427, 0.39741429686546326, 0.5921732783317566, 0.8896812200546265, 0.6054452657699585, -0.2112354189157486, 1.1835767030715942, -0.39200302958488464, 0.8022082448005676, 0.6922385096549988, -0.041656091809272766, 0.8900467157363892, 0.5022085309028625, -0.4833371341228485, 0.6549142599105835, 1.1581922769546509, -0.26866307854652405, 0.7516946196556091, 0.0959591269493103, -0.3476342260837555, -0.2535187304019928, 0.1055828407406807, -0.7054315805435181, 0.22782060503959656, 0.33895406126976013, -0.4775969088077545, 0.1368311196565628, 0.030500896275043488, 0.053665608167648315, -0.33292391896247864, -0.19811396300792694, 0.43655508756637573, 0.04738692194223404, -0.3244905471801758, 0.8147525191307068, -0.05522485449910164, 0.8724687099456787, -0.5947368741035461, -0.017469795420765877, -0.20946703851222992, 0.25227251648902893, -0.40830889344215393, -0.530641496181488, 0.1203756257891655, -0.18141701817512512, -0.22778518497943878, 0.04617760702967644, 0.644975483417511, 0.0770292729139328, -0.6471369862556458, 0.2788960337638855, 0.30297115445137024, 0.2854931354522705, -0.04247083514928818, -0.9627994298934937, 0.2338329702615738, 0.2711668610572815, -0.49528124928474426, 0.07769835740327835, 0.42285609245300293, 0.5224697589874268, 0.7086151242256165, 0.8959318995475769, 0.3101372718811035, 0.1187165379524231, -0.015302248299121857, 0.6980215311050415, -0.6066306233406067, -0.584900975227356, -0.8940802812576294, 0.7636984586715698, -0.21365630626678467, -0.27751415967941284, 0.7363642454147339, 0.8473243713378906, 0.9197730422019958, -0.43271493911743164, 1.010344386100769, -0.4037114977836609, 0.487133651971817, -0.42086321115493774, 0.8508255481719971, -0.9190383553504944, 0.22754383087158203, -0.4299818277359009, -0.7653088569641113, -0.13379208743572235, 0.7164586186408997, -0.2196955680847168, 0.25426626205444336, 0.5922302603721619, 0.7645649313926697, -0.40412378311157227, 0.031493719667196274, 0.18915702402591705, 0.30485400557518005, 0.14296403527259827, 0.3290114104747772, 0.6999018788337708, -0.6806397438049316, 0.5178660154342651, -0.7188174724578857, -0.07998877018690109, -0.052187032997608185, -0.8547095656394958, -0.7737456560134888, -0.3628208637237549, -0.4517267644405365, -0.876069962978363, -0.029065530747175217, 0.8083766102790833, 1.0436773300170898, -0.9018315672874451, -0.16417431831359863, -0.26759853959083557, 0.17324241995811462, -0.2571653425693512, -0.34567317366600037, 0.38692477345466614, 0.15623967349529266, -1.1337980031967163, 0.2512930631637573, -0.08262775838375092, 0.27223169803619385, -0.08557529002428055, 0.23075975477695465, -0.12148801237344742, 0.1066131517291069, 0.3496454656124115, 0.4016871750354767, -0.8288511633872986, -0.13398733735084534, -0.12996119260787964, 0.1558140367269516, 0.3098156750202179, 0.24214816093444824, -0.3516603708267212, 0.37888506054878235, 0.7790372371673584, 0.25936293601989746, 0.704499363899231, 0.049347713589668274, 0.14392611384391785, -0.4611225724220276, 0.3871023952960968, 0.013893754221498966, 0.6443943977355957, 0.19602419435977936, -0.5463054776191711, 0.4968806803226471, 0.5782063007354736, -0.3574300706386566, -0.889781653881073, 0.09920021891593933, -1.1089954376220703, -0.40099719166755676, 1.0525877475738525, -0.38850346207618713, -0.8375697731971741, 0.15460702776908875, -0.23582524061203003, 0.33711355924606323, -0.4291634261608124, 0.7910672426223755, 0.5407922267913818, -0.3624616265296936, -0.24528858065605164, -0.7989293336868286, 0.27436259388923645, 0.2469049096107483, -0.9921271800994873, -0.21231970191001892, 0.3611332178115845, 0.6528660655021667, 0.519048810005188, 0.6302981376647949, -0.42750880122184753, 0.24343301355838776, 0.32545262575149536, 0.43009668588638306, 0.09615135192871094, 0.3668435215950012, -0.17010240256786346, 0.17739950120449066, -0.1528756469488144, -0.5241389870643616 ]
vblagoje/bert-english-uncased-finetuned-pos
vblagoje
"2021-05-20T08:51:26Z"
57,319
32
transformers
[ "transformers", "pytorch", "jax", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
token-classification
"2022-03-02T23:29:05Z"
Entry not found
[ -0.3227650225162506, -0.22568431496620178, 0.862226128578186, 0.43461495637893677, -0.5282987952232361, 0.7012965679168701, 0.7915717363357544, 0.07618638128042221, 0.7746025919914246, 0.2563219666481018, -0.7852817177772522, -0.22573819756507874, -0.9104480743408203, 0.5715669393539429, -0.3992334008216858, 0.5791245698928833, -0.14494505524635315, -0.10751161724328995, 0.28233757615089417, -0.2768954336643219, -0.5409224033355713, -0.36855220794677734, -1.1902776956558228, 0.061491113156080246, 0.5316578149795532, 0.7435142397880554, 0.7584060430526733, 0.3652167320251465, 0.6432578563690186, 0.3932291269302368, -0.23138920962810516, 0.4827055037021637, -0.04171813279390335, 0.00260411505587399, -0.3524433970451355, -0.5516898036003113, -0.28596609830856323, 0.07584730535745621, 1.0961304903030396, 0.966687798500061, -0.284663587808609, 0.05330817773938179, -0.3063621520996094, 0.33088892698287964, -0.49734312295913696, 0.3054099678993225, -0.022506045177578926, 0.16318801045417786, -0.7041513919830322, -0.5535354018211365, 0.012794834561645985, -0.7361212968826294, 0.17926570773124695, -0.690081000328064, 0.8269098401069641, 0.18583157658576965, 1.1533750295639038, 0.14819414913654327, -0.462487131357193, -0.8161764144897461, -0.6538989543914795, 0.5711171627044678, -0.32703715562820435, 0.39680248498916626, 0.7028235197067261, -0.048573412001132965, -0.9820332527160645, -0.6745741367340088, -0.46466192603111267, 0.2923962473869324, 0.35402774810791016, -0.3411678075790405, -0.17522086203098297, -0.3058989644050598, 0.15792037546634674, 0.12811517715454102, -0.4841994643211365, -0.5543919205665588, -0.5475160479545593, -0.3960252106189728, 0.6206658482551575, 0.3482950031757355, 0.2429177463054657, -0.1888415813446045, -0.3228583335876465, 0.0880163162946701, -0.4160851538181305, 0.3402571678161621, 0.6335517168045044, 0.7114017009735107, -0.5811444520950317, 0.560215950012207, -0.04927587881684303, 0.7439703941345215, 0.11445561796426773, -0.27478092908859253, 0.41460567712783813, -0.14724725484848022, 0.055171746760606766, 0.4226345121860504, 0.31524422764778137, 0.2841312289237976, -0.3273695111274719, 0.2032228708267212, -0.3215144872665405, -0.30496224761009216, -0.22332167625427246, -0.29490774869918823, -0.3592180609703064, 0.5492289066314697, -0.3314017057418823, -0.42855486273765564, 1.143175721168518, -0.4200771450996399, -0.7302224040031433, 0.33156412839889526, 0.4065209925174713, -0.0994480773806572, -0.37146568298339844, -0.052260834723711014, -0.8458789587020874, -0.007907390594482422, 0.7491172552108765, -0.7198970913887024, 0.3371737599372864, 0.4728063642978668, 0.7417217493057251, 0.19650575518608093, -0.14034469425678253, -0.42949390411376953, 0.2971969544887543, -0.8659994006156921, 0.6320174336433411, -0.20135220885276794, -1.0051977634429932, 0.11150479316711426, 0.8971705436706543, -0.37896400690078735, -1.2094876766204834, 1.0605159997940063, -0.6887932419776917, 0.16017857193946838, -0.676761269569397, -0.14661237597465515, -0.07118501514196396, -0.005096632521599531, -0.6088156700134277, 0.7567102313041687, 0.587267279624939, -0.4995276927947998, 0.21429483592510223, -0.26029831171035767, -0.39151400327682495, 0.38824859261512756, -0.07935450226068497, -0.21858926117420197, 0.713833212852478, -0.6647079586982727, -0.26932814717292786, 0.2942774295806885, 0.2368936538696289, -0.35706108808517456, -0.7931919097900391, 0.08478113263845444, -0.05786270648241043, 1.550750494003296, -0.03868847340345383, -0.3586106300354004, -0.679383397102356, -1.1506240367889404, -0.07070787996053696, 0.6886883974075317, -0.9194989204406738, -0.27839475870132446, -0.046410128474235535, -0.26169314980506897, 0.08994917571544647, 0.7390589714050293, -1.1194051504135132, 0.2832726836204529, -0.05092663690447807, -0.22794683277606964, 0.8271058797836304, 0.15387225151062012, 0.24758946895599365, 0.14913396537303925, 0.42958706617355347, 0.527725338935852, 0.11115207523107529, 0.683587908744812, -0.34720373153686523, -0.9694353938102722, 0.6154631972312927, 0.25266361236572266, 0.8121447563171387, -0.49945297837257385, 0.2685093879699707, 0.27025535702705383, -0.3409680724143982, -0.5682371854782104, -0.3102838397026062, 0.09025752544403076, 0.14930562674999237, 0.11142510175704956, -0.5721710324287415, -0.6576125025749207, -0.9689140319824219, -0.13590654730796814, -0.4314374029636383, -0.3571570813655853, 0.21006910502910614, 0.5792906284332275, -1.1975523233413696, 0.4128875136375427, -0.7705625891685486, -0.7038741111755371, -0.01065548975020647, -0.19338123500347137, 0.7540656328201294, 0.43240174651145935, 0.5033966898918152, -0.6397148370742798, -0.5661987066268921, -0.22470176219940186, -1.0333747863769531, -0.13280506432056427, 0.24819621443748474, 0.3065737783908844, -0.13423344492912292, -0.2744963765144348, -0.48740333318710327, 0.8100387454032898, 0.14789170026779175, -0.5391897559165955, 0.5220767259597778, -0.3020317256450653, 0.17224803566932678, -0.6369150280952454, -0.06916818022727966, -0.661676287651062, -0.0009071884560398757, -0.3608308732509613, -0.5737438797950745, 0.14772287011146545, 0.07017494738101959, -0.16065457463264465, 0.28808408975601196, -0.909277081489563, -0.0010852962732315063, -0.7442210912704468, 0.379071980714798, 0.06394772231578827, -0.3145078718662262, -0.017517540603876114, 1.0000386238098145, 0.7784460783004761, -0.3848048746585846, 0.721744179725647, 0.4440041184425354, 0.19036155939102173, 0.7630521059036255, -0.18725109100341797, 0.16478213667869568, -0.5245416760444641, -0.12161104381084442, -0.8887597918510437, -1.0982946157455444, 0.7320570349693298, -0.6114250421524048, 0.36542922258377075, -0.4277869760990143, 0.2589159905910492, -0.6919258832931519, -0.03885362669825554, 0.4808599352836609, -0.05936325341463089, -0.6863942742347717, 0.5232570171356201, 0.45317530632019043, -0.2019241601228714, -0.6609031558036804, -0.530157208442688, 0.39365822076797485, 0.6154114007949829, -0.16390392184257507, 0.06878514587879181, 0.14941060543060303, -0.5441926121711731, -0.040802597999572754, -0.38691970705986023, -0.45766758918762207, 0.054224006831645966, 0.13053473830223083, -0.005750799085944891, -0.404820054769516, -0.0868026465177536, -0.35842007398605347, -0.4656120240688324, 0.21876516938209534, 0.3011947274208069, -0.04096309468150139, -0.42599788308143616, -0.3619818687438965, -0.888181209564209, 0.6719610095024109, 0.5370282530784607, 0.05281545966863632, 0.7555549740791321, 0.16819314658641815, -0.8014987707138062, -0.13532210886478424, -0.1760706603527069, 0.2696830928325653, -0.5588056445121765, 0.13849826157093048, -0.013484534807503223, -0.0637492910027504, 0.26297882199287415, 0.25386232137680054, -0.4300556778907776, 0.9276250004768372, -0.2615274488925934, -0.3592521846294403, 0.7960181832313538, 0.5974742770195007, 0.49583131074905396, 0.16503219306468964, -0.044541798532009125, 0.900709331035614, -1.1966516971588135, -0.6563175916671753, -0.7409549355506897, -0.15945707261562347, -0.43510833382606506, -0.032105933874845505, 0.6254412531852722, 0.2900990843772888, -0.1333388388156891, 0.4756395220756531, -0.5243489742279053, 0.3556033670902252, 1.01198410987854, 0.35748639702796936, 0.3435698449611664, -0.7570229172706604, -0.2515777349472046, -0.1402427852153778, -0.9998157620429993, -0.2631377875804901, 0.8871029019355774, 0.22752606868743896, 0.844460666179657, 0.5992541313171387, 0.6784542798995972, 0.1367226243019104, 0.2523828148841858, -0.30590319633483887, 0.3920294940471649, 0.4376082420349121, -1.0401138067245483, -0.42758408188819885, 0.021418681368231773, -0.9703338742256165, -0.14227519929409027, -0.03495011106133461, -0.42617112398147583, 0.7681737542152405, 0.00016589462757110596, -0.4076709747314453, 0.7732734084129333, -0.455583393573761, 0.7562873363494873, -0.4473648965358734, -0.02663906291127205, 0.4699096083641052, -0.7070636749267578, 0.4677430987358093, 0.12878790497779846, 0.6205843091011047, -0.015572631731629372, -0.04078587517142296, 0.7104941606521606, -0.9129160046577454, 0.25438642501831055, -0.6348397135734558, 0.22421300411224365, 0.24246945977210999, 0.51606285572052, 0.5969953536987305, 0.4371243417263031, 0.10119888931512833, -0.23920902609825134, 0.04115807265043259, -0.8241125345230103, -0.210506409406662, 0.697515606880188, -0.7186890840530396, -0.6864197850227356, -1.2355337142944336, 0.14438660442829132, 0.27347055077552795, 0.389305055141449, 0.7959296107292175, 0.571408748626709, 0.1289544403553009, 0.680525004863739, 0.9888588190078735, -0.0688566341996193, 0.9166924357414246, 0.3224477171897888, 0.09175168722867966, -0.21944808959960938, 0.7036820650100708, 0.26627904176712036, -0.24707956612110138, -0.11939732730388641, 0.20913465321063995, -0.11069409549236298, -0.591761589050293, -0.49990686774253845, 0.3701757788658142, -0.6731787919998169, -0.18303893506526947, -0.6243735551834106, -0.6043769717216492, -0.511759340763092, 0.06927360594272614, -0.7147687673568726, 0.23979046940803528, -0.7753565907478333, -0.10574902594089508, 0.04323432594537735, 0.9792009592056274, -0.589311957359314, 0.5805224180221558, -1.1218582391738892, 0.19345788657665253, -0.07949887961149216, 0.7921058535575867, 0.21395787596702576, -0.7344395518302917, -0.3975418508052826, -0.11592631042003632, -0.3729911744594574, -1.3576762676239014, 0.21404948830604553, -0.2454141080379486, 0.23094046115875244, 0.6145404577255249, 0.1397707313299179, 0.5258248448371887, -0.34326282143592834, 0.7029101848602295, -0.057017259299755096, -0.7069286704063416, 0.7934495210647583, -0.5026894807815552, 0.4963534474372864, 0.9765996932983398, 0.5333835482597351, -0.7984007596969604, 0.035741209983825684, -1.041123390197754, -0.6008695363998413, 0.38426393270492554, 0.11928944289684296, -0.03601083159446716, -0.6659559011459351, -0.054019637405872345, -0.16143807768821716, 0.6043745279312134, -1.039069414138794, -0.7858356237411499, 0.2576698362827301, 0.5277302861213684, 0.0816856250166893, -0.5653398633003235, 0.20880667865276337, -0.544416069984436, 1.0657774209976196, 0.45109400153160095, 0.3274499475955963, 0.8406060934066772, 0.46492424607276917, -0.3823164403438568, 0.09252490103244781, 0.7662695050239563, 0.6666232347488403, -0.5239797830581665, -0.2908027470111847, -0.08827541768550873, -0.9143403768539429, 0.05927472561597824, 0.11168918758630753, -0.013455932028591633, 0.9082110524177551, 0.5793083310127258, 0.2539709210395813, 0.4514279365539551, -0.726460337638855, 0.8859451413154602, -0.14954176545143127, -0.12472866475582123, -1.0677239894866943, 0.1948619782924652, -0.23984959721565247, 0.5006402134895325, 1.0061326026916504, 0.5250048041343689, -0.047630298882722855, -0.8143380880355835, -0.01473585981875658, 0.6939172148704529, -0.7091123461723328, -0.17449834942817688, 0.944853663444519, 0.3847099542617798, -1.2953051328659058, 1.106776475906372, -0.5381771326065063, -0.560332179069519, 0.9121301770210266, 0.522956907749176, 1.1221847534179688, -0.44204121828079224, 0.0008676342549733818, 0.2662237286567688, 0.41378432512283325, 0.5423170328140259, 1.0869629383087158, 0.431413471698761, -0.7931063771247864, 0.8826584815979004, -0.24776044487953186, -0.40361151099205017, -0.05347571521997452, -0.42859897017478943, 0.16892178356647491, -0.4406192898750305, -0.10713007301092148, -0.3444187641143799, 0.28543180227279663, -0.7072042226791382, 0.42807620763778687, -0.0838567465543747, 0.8653068542480469, -0.8553727269172668, 0.47207626700401306, 0.635470449924469, -0.3337355852127075, -0.8508191108703613, -0.26198428869247437, -0.11448462307453156, -0.6389466524124146, 0.30214807391166687, -0.4554102420806885, 0.044398851692676544, 0.09623463451862335, -0.649151623249054, -1.1778275966644287, 0.9093633890151978, -0.639612078666687, -0.2784462869167328, 0.20464053750038147, -0.11514760553836823, 0.28811705112457275, -0.2524643540382385, 0.010661216452717781, 0.41876548528671265, 0.748940110206604, 0.2844654619693756, -0.7727053761482239, -0.3694884479045868, 0.0015032943338155746, -0.44474777579307556, 0.7582978010177612, -0.6002101898193359, 1.1840779781341553, -0.5563543438911438, -0.059654366225004196, 0.44384512305259705, 0.24690914154052734, 0.21076197922229767, 0.6629220843315125, 0.1442081481218338, 0.7282265424728394, 1.07012140750885, -0.40835219621658325, 0.8811809420585632, 0.26432839035987854, 0.47430819272994995, 0.7238501906394958, -0.6487724781036377, 0.7513749003410339, 0.31810489296913147, -0.5682924389839172, 0.9228013753890991, 1.2906063795089722, -0.15699204802513123, 0.8079374432563782, 0.05136508867144585, -1.081600546836853, 0.325833261013031, -0.20724765956401825, -0.7530064582824707, 0.3150254189968109, 0.19055864214897156, -0.6920982599258423, -0.5770308971405029, -0.24046507477760315, -0.35662803053855896, -0.11552901566028595, -0.7631728649139404, 0.6720563769340515, -0.016969164833426476, -0.5103683471679688, 0.18857547640800476, 0.2877499461174011, 0.17368432879447937, -0.5235732793807983, -0.02939440682530403, -0.22823619842529297, 0.2660655975341797, -0.5670853853225708, -0.5234526991844177, 0.5724433064460754, -0.32430219650268555, -0.5343255400657654, 0.18147465586662292, 0.763587236404419, -0.16923809051513672, -0.4515409469604492, 0.32472723722457886, 0.6959525346755981, 0.1665852814912796, 0.4250282347202301, -0.23511263728141785, 0.24480605125427246, -0.08044824004173279, -0.06651552021503448, 0.27714768052101135, 0.3449169099330902, 0.22435641288757324, 0.4450142979621887, 0.43285664916038513, -0.01808755099773407, -0.10736498981714249, -0.382819801568985, 0.4124940037727356, -0.9542785882949829, -0.5713282823562622, -0.6307113766670227, 0.2740660607814789, -0.02315417304635048, -1.0836423635482788, 0.4145168364048004, 1.4406683444976807, 1.0359982252120972, -0.4756383001804352, 1.067226529121399, -0.21818485856056213, 0.9594791531562805, 0.41483086347579956, 0.5420440435409546, -0.6030411720275879, 0.03835370019078255, -0.4364396035671234, -1.076962947845459, -0.35716333985328674, 0.4539391100406647, -0.022899555042386055, -0.3429867625236511, 0.872571587562561, 0.5887166261672974, -0.33473607897758484, -0.11728022992610931, 0.048487238585948944, -0.029941488057374954, -0.12433847039937973, 0.5145376324653625, 0.7648399472236633, -0.9344304800033569, -0.10680416971445084, -0.21577754616737366, -0.6382725834846497, -0.5047279000282288, -0.9632009267807007, -0.12959396839141846, -0.16037796437740326, 0.035343267023563385, -0.5662806630134583, 0.00255737011320889, 1.208324909210205, 0.5684957504272461, -1.1113994121551514, -0.5303789377212524, 0.3371853232383728, 0.3920421898365021, -0.1874791383743286, -0.24202413856983185, 0.2984568774700165, 0.15382249653339386, -0.5908876657485962, 0.6875665783882141, 0.8089625239372253, 0.208888977766037, 0.19554761052131653, 0.15893013775348663, -0.8229473829269409, -0.14913435280323029, 0.17440445721149445, 0.9450570344924927, -0.939853310585022, -0.7114843130111694, -0.03168516233563423, -0.27094873785972595, -0.05765746906399727, 0.17102102935314178, -0.4046344757080078, 0.5180677175521851, 0.34591493010520935, 0.49933457374572754, 0.0561608150601387, -0.054746925830841064, 0.5409556031227112, -0.9069057703018188, 0.09425963461399078, 0.4134361147880554, 0.4154115319252014, -0.4000864028930664, -0.5910194516181946, 0.6713420748710632, 1.0073972940444946, -0.6594868898391724, -0.8743268847465515, -0.19846712052822113, -1.0016002655029297, 0.04189709946513176, 0.6762762069702148, 0.5009527802467346, -0.4806513786315918, -0.4174500107765198, -0.5617399215698242, -0.1254672110080719, -0.1369970738887787, 0.7621601819992065, 1.179680585861206, -0.7432094812393188, 0.07975747436285019, -1.038639783859253, 0.6594986915588379, -0.2419457733631134, -0.3457581698894501, -0.48644304275512695, 0.3832802176475525, 0.35236993432044983, 0.440481036901474, 0.614812433719635, 0.1408471167087555, 0.8338426351547241, 0.3126053214073181, -0.1702686995267868, 0.2698982357978821, -0.4559200704097748, -0.028932858258485794, -0.057962555438280106, 0.31015971302986145, -1.0262157917022705 ]
NousResearch/Yarn-Mistral-7b-128k
NousResearch
"2023-11-02T20:01:56Z"
57,068
469
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "custom_code", "en", "dataset:emozilla/yarn-train-tokenized-16k-mistral", "arxiv:2309.00071", "license:apache-2.0", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
text-generation
"2023-10-31T13:15:14Z"
--- datasets: - emozilla/yarn-train-tokenized-16k-mistral metrics: - perplexity library_name: transformers license: apache-2.0 language: - en --- # Model Card: Nous-Yarn-Mistral-7b-128k [Preprint (arXiv)](https://arxiv.org/abs/2309.00071) [GitHub](https://github.com/jquesnelle/yarn) ![yarn](https://raw.githubusercontent.com/jquesnelle/yarn/mistral/data/proofpile-long-small-mistral.csv.png) ## Model Description Nous-Yarn-Mistral-7b-128k is a state-of-the-art language model for long context, further pretrained on long context data for 1500 steps using the YaRN extension method. It is an extension of [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) and supports a 128k token context window. To use, pass `trust_remote_code=True` when loading the model, for example ```python model = AutoModelForCausalLM.from_pretrained("NousResearch/Yarn-Mistral-7b-128k", use_flash_attention_2=True, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True) ``` In addition you will need to use the latest version of `transformers` (until 4.35 comes out) ```sh pip install git+https://github.com/huggingface/transformers ``` ## Benchmarks Long context benchmarks: | Model | Context Window | 8k PPL | 16k PPL | 32k PPL | 64k PPL | 128k PPL | |-------|---------------:|------:|----------:|-----:|-----:|------------:| | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 8k | 2.96 | - | - | - | - | | [Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 64k | 3.04 | 2.65 | 2.44 | 2.20 | - | | [Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) | 128k | 3.08 | 2.68 | 2.47 | 2.24 | 2.19 | Short context benchmarks showing that quality degradation is minimal: | Model | Context Window | ARC-c | Hellaswag | MMLU | Truthful QA | |-------|---------------:|------:|----------:|-----:|------------:| | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 8k | 59.98 | 83.31 | 64.16 | 42.15 | | [Yarn-Mistral-7b-64k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-64k) | 64k | 59.38 | 81.21 | 61.32 | 42.50 | | [Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) | 128k | 58.87 | 80.58 | 60.64 | 42.46 | ## Collaborators - [bloc97](https://github.com/bloc97): Methods, paper and evals - [@theemozilla](https://twitter.com/theemozilla): Methods, paper, model training, and evals - [@EnricoShippole](https://twitter.com/EnricoShippole): Model training - [honglu2875](https://github.com/honglu2875): Paper and evals The authors would like to thank LAION AI for their support of compute for this model. It was trained on the [JUWELS](https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels) supercomputer.
[ -0.4477326571941376, -0.6331375241279602, 0.2611076831817627, 0.258269727230072, -0.15752795338630676, -0.3700542747974396, -0.17282061278820038, -0.6187460422515869, 0.16592441499233246, 0.3177535831928253, -0.6194775700569153, -0.44237130880355835, -0.4419996440410614, -0.0900159403681755, -0.5878284573554993, 1.1595548391342163, -0.048286017030477524, -0.07883824408054352, -0.14012868702411652, -0.38734281063079834, -0.22914917767047882, -0.6311073899269104, -0.8784134387969971, -0.22928181290626526, 0.29172903299331665, 0.08861865103244781, 0.6150566339492798, 0.5644643306732178, 0.3066301643848419, 0.33673936128616333, -0.37876608967781067, 0.021577879786491394, -0.6205406785011292, 0.14460857212543488, 0.05532998964190483, -0.35228681564331055, -0.7967624664306641, -0.037250176072120667, 0.6045931577682495, 0.023999759927392006, -0.27270829677581787, 0.5413590669631958, 0.28534579277038574, 0.7419095039367676, -0.6497276425361633, 0.0978744700551033, -0.2945272624492645, -0.2244088351726532, -0.3258609473705292, 0.02581581473350525, -0.18736083805561066, 0.272762656211853, 0.06365993618965149, -0.8706960678100586, 0.49879080057144165, -0.06453312188386917, 1.3262531757354736, 0.4200378656387329, -0.44706299901008606, 0.11362852901220322, -0.6571041941642761, 1.0124601125717163, -0.8992294669151306, 0.6904396414756775, 0.34166696667671204, 0.2941538691520691, -0.036548495292663574, -1.0182816982269287, -0.6266683340072632, -0.14177431166172028, -0.31618496775627136, 0.4272719621658325, -0.41118815541267395, -0.15553954243659973, 0.3202473223209381, 0.5626667141914368, -0.49345558881759644, -0.19069619476795197, -0.345891535282135, -0.07060935348272324, 0.7673869132995605, 0.37262624502182007, 0.2118939757347107, -0.31158527731895447, -0.5915823578834534, -0.3314380943775177, -0.2018583118915558, 0.46542179584503174, 0.06837525218725204, -0.10350007563829422, -0.8720549941062927, 0.19567972421646118, -0.3446533977985382, 0.6600080728530884, 0.3259086608886719, -0.15329819917678833, 0.4787432849407196, -0.34978222846984863, -0.25131553411483765, -0.3377330005168915, 1.1645262241363525, 0.352740615606308, -0.3037216067314148, 0.26182082295417786, -0.5207873582839966, -0.05349211022257805, 0.2797401249408722, -1.018943428993225, -0.0584648922085762, 0.33108624815940857, -0.530475378036499, -0.29798218607902527, 0.23066838085651398, -0.6272106170654297, -0.005411997437477112, -0.381801575422287, 0.34050363302230835, -0.5531984567642212, -0.46471288800239563, -0.002587809693068266, -0.2211829274892807, 0.29102128744125366, 0.6009560227394104, -0.688153088092804, 0.22621776163578033, 0.6296823024749756, 0.8681380152702332, -0.22982437908649445, -0.32981520891189575, -0.06139379367232323, 0.007208898663520813, -0.4960176944732666, 0.45183199644088745, -0.04669027775526047, -0.4126940667629242, -0.4356253147125244, 0.18832270801067352, -0.1860598772764206, -0.37002769112586975, 0.6493420004844666, -0.3414583206176758, 0.33496084809303284, -0.026309603825211525, -0.41143813729286194, -0.23618312180042267, 0.23498280346393585, -0.8679381608963013, 1.498387098312378, 0.6566514372825623, -1.1291766166687012, 0.18253342807292938, -0.6618789434432983, -0.05426846444606781, -0.08444082736968994, -0.1488787978887558, -0.5628967881202698, 0.12384789437055588, 0.16315779089927673, 0.4891340136528015, -0.5453739762306213, 0.366156667470932, -0.3335779309272766, -0.4155864417552948, 0.3144778609275818, -0.7022392749786377, 1.0828970670700073, 0.3009902536869049, -0.697862446308136, 0.3139115869998932, -0.7663788795471191, -0.10579349100589752, 0.27572765946388245, -0.11068535596132278, 0.018498070538043976, -0.5457329154014587, 0.537104606628418, 0.31809377670288086, 0.5377073884010315, -0.30521586537361145, -0.04173915088176727, -0.276678204536438, 0.5644301176071167, 0.7521533370018005, -0.16744224727153778, 0.399495929479599, -0.47407904267311096, 0.5780245065689087, 0.11404459923505783, 0.6224080324172974, 0.022190198302268982, -0.4795787036418915, -1.1696579456329346, -0.5291456580162048, 0.23050105571746826, 0.32201552391052246, -0.8751938939094543, 0.5505579113960266, -0.22531497478485107, -0.9342774152755737, -0.4945010840892792, -0.09365435689687729, 0.501469612121582, 0.6178831458091736, 0.5086620450019836, -0.17604631185531616, -0.312445729970932, -1.024423360824585, 0.013167020864784718, -0.22831349074840546, -0.015914028510451317, 0.41541171073913574, 0.6173431873321533, -0.640704870223999, 1.2246493101119995, -0.42021074891090393, -0.21493752300739288, -0.1356181651353836, 0.06217465177178383, 0.6686708331108093, 0.6910572648048401, 0.8409525752067566, -0.8894652724266052, -0.5690240263938904, 0.011993699707090855, -0.8622773885726929, -0.015565723180770874, 0.16371113061904907, -0.3395370841026306, 0.5810782313346863, 0.394405722618103, -0.914543628692627, 0.7429552674293518, 0.8354880213737488, -0.6076602339744568, 0.9043184518814087, -0.29159629344940186, 0.17698241770267487, -1.4658740758895874, 0.45850542187690735, 0.17498910427093506, -0.2673952579498291, -0.6505537033081055, 0.25729063153266907, 0.2816964387893677, 0.0860520750284195, -0.6947280764579773, 1.2303789854049683, -0.3021032512187958, 0.45295578241348267, -0.13577763736248016, -0.4679166376590729, 0.19888879358768463, 0.6690011620521545, 0.13650760054588318, 0.8115577101707458, 0.7055060863494873, -0.5531878471374512, 0.2429826855659485, 0.17416848242282867, -0.16359330713748932, 0.5619965195655823, -0.8848910331726074, -0.07800859212875366, 0.025522857904434204, 0.5517832636833191, -0.6563853025436401, -0.2993927001953125, 0.3634580671787262, -0.6624569296836853, 0.3162946403026581, -0.18284142017364502, -0.32864028215408325, -0.41243427991867065, -0.3706323504447937, 0.705978274345398, 0.5760261416435242, -0.7038751840591431, 0.7185764908790588, 0.10364804416894913, 0.2270103394985199, -0.7071244716644287, -0.47390222549438477, -0.26706448197364807, -0.42131298780441284, -0.5460309386253357, 0.5842651724815369, -0.25208163261413574, 0.0442306213080883, -0.02866486832499504, -0.30435240268707275, -0.23810091614723206, 0.09575742483139038, 0.5537951588630676, 0.45327818393707275, -0.2421446293592453, -0.14213572442531586, -0.12756679952144623, -0.38276147842407227, -0.08999136090278625, 0.0739629790186882, 0.6899901032447815, -0.3866462707519531, 0.009185255505144596, -0.9054958820343018, -0.06173703446984291, 0.8544631600379944, -0.13473883271217346, 0.8977010846138, 1.0064268112182617, -0.4265860915184021, -0.33212703466415405, -0.6959710121154785, -0.24227885901927948, -0.5365121364593506, 0.0932510569691658, -0.35641777515411377, -1.011704921722412, 0.6204261183738708, 0.32969918847084045, -0.0035804989747703075, 1.0549472570419312, 0.43026769161224365, -0.0014576981775462627, 0.9533989429473877, 0.6542159914970398, -0.36854568123817444, 0.673410952091217, -0.7337480187416077, 0.011946061626076698, -0.9793885350227356, -0.09351357072591782, -0.4618206024169922, -0.07699859142303467, -0.6572933197021484, -0.6200981140136719, 0.6414960622787476, 0.6712396144866943, -0.7041042447090149, 0.4621235132217407, -0.7375362515449524, -0.07727193087339401, 0.8046594858169556, 0.13361018896102905, 0.06143784895539284, -0.04408516362309456, -0.08315488696098328, 0.2649889290332794, -0.7929344773292542, -0.3739370107650757, 0.9547062516212463, 0.45813941955566406, 0.7174615263938904, -0.005151532590389252, 0.7324827909469604, -0.07473887503147125, 0.36300918459892273, -0.5447998642921448, 0.36984962224960327, 0.09568852931261063, -0.9024467468261719, -0.3619074821472168, -0.6537565588951111, -1.0457297563552856, 0.2812594771385193, -0.3798856735229492, -0.725472092628479, 0.2684559226036072, 0.26026952266693115, -0.35931533575057983, 0.3328193426132202, -0.48069825768470764, 1.02869713306427, -0.23724208772182465, -0.4240996837615967, -0.04252110794186592, -0.5182750821113586, 0.2964484989643097, -0.07323447614908218, 0.1787416785955429, -0.03878356143832207, 0.05973253399133682, 0.9713138937950134, -0.6757197380065918, 0.7747300863265991, -0.06855734437704086, -0.0412401519715786, 0.45553475618362427, -0.14555680751800537, 0.28199926018714905, 0.28437575697898865, -0.11171383410692215, 0.7666503190994263, 0.39876502752304077, -0.3447474539279938, -0.5439070463180542, 0.7273427248001099, -0.97719407081604, -0.47223562002182007, -0.7536976337432861, -0.4675070643424988, 0.12448447942733765, 0.2545561194419861, 0.7158180475234985, 0.5404364466667175, -0.08874411880970001, 0.3939126431941986, 0.4400448203086853, -0.2133529931306839, 0.5631230473518372, 0.5298671126365662, -0.20968031883239746, -0.6004998087882996, 0.9413772225379944, -0.020952871069312096, 0.014364662580192089, 0.15327231585979462, 0.31568190455436707, -0.2421070635318756, -0.2008723020553589, -0.7215636968612671, 0.31455811858177185, -0.3594646155834198, -0.4963739812374115, -0.696402370929718, -0.6639418005943298, -0.5724371671676636, -0.048194777220487595, -0.6776259541511536, -0.32843518257141113, -0.5720415115356445, 0.20914027094841003, 0.6112101674079895, 0.7000245451927185, 0.01054484024643898, 0.36722517013549805, -0.9060513973236084, 0.44186824560165405, 0.23057986795902252, 0.48923438787460327, 0.331823468208313, -0.7537488341331482, -0.4228259325027466, 0.22143787145614624, -0.5409663319587708, -0.6340089440345764, 0.5703603625297546, -0.15962429344654083, 0.5698921084403992, 0.6456875205039978, 0.08821576833724976, 0.8214914202690125, -0.34177929162979126, 1.03709077835083, 0.4140651822090149, -1.0488489866256714, 0.37448379397392273, -0.6060961484909058, 0.2848344147205353, 0.4259461462497711, 0.43788784742355347, -0.7145131230354309, -0.3009799122810364, -1.089502215385437, -1.0171175003051758, 0.9306599497795105, 0.49185511469841003, -0.06900738924741745, 0.09416457265615463, 0.42310941219329834, -0.07827818393707275, 0.11015623062849045, -0.6911209225654602, -0.5600582957267761, -0.20575937628746033, -0.2847818434238434, -0.3854581415653229, -0.2137293815612793, -0.11543916165828705, -0.6459575295448303, 0.9326661825180054, 0.017811495810747147, 0.3949502110481262, 0.3407657742500305, 0.03550868481397629, 0.030567103996872902, -0.058599360287189484, 0.39089974761009216, 0.6576886773109436, -0.1696423590183258, -0.26519617438316345, 0.1564875841140747, -0.523755669593811, -0.050651781260967255, 0.1674288660287857, -0.2569381892681122, 0.02911602519452572, 0.5539395213127136, 1.0044792890548706, -0.011315150186419487, -0.4591101408004761, 0.8464040160179138, -0.23494862020015717, -0.15242375433444977, -0.5304781198501587, 0.2617628574371338, 0.09962867945432663, 0.4209083020687103, 0.3060685396194458, 0.1136469766497612, 0.2256108969449997, -0.18261007964611053, 0.151426300406456, 0.4471099078655243, -0.7340911626815796, -0.302933931350708, 0.9255074262619019, 0.030178971588611603, -0.14190754294395447, 0.5952612161636353, -0.1250573694705963, -0.5128291845321655, 0.7832800149917603, 0.45071518421173096, 0.8250667452812195, -0.3988704979419708, 0.10077928751707077, 0.6376463770866394, 0.022233996540308, -0.38627612590789795, 0.14334504306316376, -0.06322183459997177, -0.649800181388855, 0.005788982380181551, -1.0232555866241455, -0.08487668633460999, 0.2550499141216278, -0.8423159718513489, 0.4005672335624695, -0.33029067516326904, -0.5060167908668518, -0.3505415618419647, -0.009611944667994976, -0.9125020503997803, 0.40761712193489075, -0.01309146173298359, 1.0229812860488892, -0.7450841069221497, 0.9327278733253479, 0.6200008392333984, -0.3422660827636719, -1.0718047618865967, -0.21082088351249695, -0.05572936683893204, -0.6080731749534607, 0.48222672939300537, 0.4105342924594879, -0.08997469395399094, -0.04029582440853119, -0.5992704033851624, -1.0888938903808594, 1.4696036577224731, 0.3559279441833496, -0.547404408454895, 0.06047159805893898, -0.08531061559915543, 0.6634442210197449, -0.037134673446416855, 0.6106281876564026, 0.4911171495914459, 0.2949813902378082, -0.04521042853593826, -1.176751732826233, 0.08725521713495255, -0.6569722294807434, 0.14236761629581451, 0.09981338679790497, -1.0132288932800293, 1.2727731466293335, 0.31281983852386475, -0.22563686966896057, 0.3633890748023987, 0.7935498952865601, 0.6477385759353638, 0.3939686417579651, 0.5916483998298645, 1.0068488121032715, 0.5450232625007629, -0.08707550913095474, 1.2410573959350586, -0.7152631282806396, 0.8039706945419312, 0.9418254494667053, 0.28102508187294006, 0.8737360239028931, 0.30340442061424255, -0.06433329731225967, 0.6334269642829895, 0.6921630501747131, 0.1793772280216217, 0.07989097386598587, 0.009700601920485497, -0.2053246796131134, -0.1285928636789322, -0.07385680079460144, -0.7060100436210632, 0.29883256554603577, 0.2632949650287628, -0.19324423372745514, 0.09488741308450699, -0.211457297205925, -0.04656634107232094, -0.336073637008667, -0.18748006224632263, 0.5372642874717712, 0.26655417680740356, -0.4003992974758148, 0.9979990720748901, 0.134561225771904, 1.0365796089172363, -0.6031180024147034, -0.14472395181655884, -0.23640455305576324, 0.11607049405574799, -0.3081852197647095, -0.4688907563686371, -0.08157767355442047, -0.06259772926568985, -0.243695929646492, -0.20927748084068298, 0.5292292237281799, -0.12814655900001526, -0.7647143602371216, 0.5403493046760559, 0.4330982565879822, 0.008232693187892437, -0.18129771947860718, -1.0823376178741455, 0.13289405405521393, -0.2113109976053238, -0.7568462491035461, 0.13792580366134644, 0.4625248610973358, -0.19073408842086792, 0.6280165910720825, 0.7768316268920898, -0.009596502408385277, 0.03776838257908821, -0.10350959748029709, 0.8804246783256531, -0.8723530769348145, -0.665877103805542, -0.732310950756073, 0.7416731119155884, -0.13300694525241852, -0.6785838007926941, 0.8990089893341064, 0.7632778286933899, 0.9786702394485474, 0.09135302901268005, 0.5729056596755981, -0.08340004086494446, 0.3781529664993286, -0.33886003494262695, 1.0489978790283203, -0.9449666738510132, -0.11525087803602219, -0.32017168402671814, -1.014765977859497, -0.06678323447704315, 0.7332960963249207, -0.01572483591735363, 0.3648853898048401, 0.6711162328720093, 0.9339113831520081, -0.23835085332393646, -0.20568867027759552, 0.0900789201259613, 0.2974259555339813, 0.2259099781513214, 0.5079491138458252, 0.8500670790672302, -0.8089900612831116, 0.1379973143339157, -0.6071180105209351, -0.30009618401527405, -0.2501233220100403, -0.6728125214576721, -0.8176081776618958, -0.7431910037994385, -0.1436915546655655, -0.6169263124465942, -0.33839279413223267, 0.8019753098487854, 1.1087409257888794, -0.7501124739646912, -0.5262205004692078, -0.0518752783536911, -0.18357275426387787, -0.37168988585472107, -0.3291865885257721, 0.46772801876068115, -0.15370698273181915, -0.86012864112854, 0.1633499413728714, 0.03720053285360336, 0.17883001267910004, -0.13346461951732635, -0.44077789783477783, 0.11788420379161835, -0.11180815100669861, 0.5150076150894165, 0.04038349911570549, -0.6961426138877869, 0.004646248649805784, -0.09038351476192474, -0.33079415559768677, 0.08788056671619415, 0.4472193419933319, -0.5830238461494446, 0.0896206647157669, 0.641654908657074, 0.3902493715286255, 0.8551388382911682, -0.020159706473350525, 0.29798728227615356, -0.43368589878082275, 0.32297787070274353, 0.13127906620502472, 0.44601523876190186, 0.08282916992902756, -0.4419180452823639, 0.6098722815513611, 0.24832679331302643, -0.4950069785118103, -0.7615906596183777, -0.11846953630447388, -1.288187861442566, -0.4004720449447632, 1.1656241416931152, -0.03707599639892578, -0.6530812978744507, 0.3435465097427368, -0.20859310030937195, 0.43296167254447937, -0.5315072536468506, 0.5432114601135254, 0.5013682246208191, -0.0045073190703988075, 0.031692132353782654, -0.7164223790168762, 0.5642235279083252, 0.3860243260860443, -0.6552232503890991, -0.14942747354507446, 0.3855724632740021, 0.4280894100666046, 0.3183968663215637, 0.8355717062950134, -0.16920264065265656, 0.3698606789112091, -0.10204381495714188, 0.29265668988227844, -0.008246960118412971, -0.4156239926815033, -0.6027016639709473, -0.05167977511882782, -0.1097823902964592, 0.07269369810819626 ]
llm-book/bert-base-japanese-v3-ner-wikipedia-dataset
llm-book
"2023-07-25T13:32:15Z"
56,774
7
transformers
[ "transformers", "pytorch", "bert", "token-classification", "ja", "dataset:llm-book/ner-wikipedia-dataset", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2023-05-28T08:06:41Z"
--- language: - ja license: apache-2.0 library_name: transformers datasets: - llm-book/ner-wikipedia-dataset pipeline_tag: token-classification metrics: - seqeval - precision - recall - f1 --- # llm-book/bert-base-japanese-v3-ner-wikipedia-dataset 「[大規模言語モデル入門](https://www.amazon.co.jp/dp/4297136333)」の第6章で紹介している固有表現認識のモデルです。 [cl-tohoku/bert-base-japanese-v3](https://huggingface.co/cl-tohoku/bert-base-japanese-v3)を[llm-book/ner-wikipedia-dataset](https://huggingface.co/datasets/llm-book/ner-wikipedia-dataset)でファインチューニングして構築されています。 ## 関連リンク * [GitHubリポジトリ](https://github.com/ghmagazine/llm-book) * [Colabノートブック](https://colab.research.google.com/github/ghmagazine/llm-book/blob/main/chapter6/6-named-entity-recognition.ipynb) * [データセット](https://huggingface.co/datasets/llm-book/ner-wikipedia-dataset) * [大規模言語モデル入門(Amazon.co.jp)](https://www.amazon.co.jp/dp/4297136333/) * [大規模言語モデル入門(gihyo.jp)](https://gihyo.jp/book/2023/978-4-297-13633-8) ## 使い方 ```python from transformers import pipeline from pprint import pprint ner_pipeline = pipeline( model="llm-book/bert-base-japanese-v3-ner-wikipedia-dataset", aggregation_strategy="simple", ) text = "大谷翔平は岩手県水沢市出身のプロ野球選手" # text中の固有表現を抽出 pprint(ner_pipeline(text)) # [{'end': None, # 'entity_group': '人名', # 'score': 0.99823624, # 'start': None, # 'word': '大谷 翔平'}, # {'end': None, # 'entity_group': '地名', # 'score': 0.9986874, # 'start': None, # 'word': '岩手 県 水沢 市'}] ``` ## ライセンス [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0)
[ -0.5316784381866455, -0.6135260462760925, 0.2194327414035797, 0.15984328091144562, -0.5727941989898682, -0.23888513445854187, -0.3043767809867859, -0.3426477313041687, 0.5026007294654846, 0.5744034647941589, -0.6733602285385132, -0.8635634779930115, -0.5846547484397888, 0.40624210238456726, -0.3205448091030121, 1.137450098991394, -0.17525328695774078, 0.2735515832901001, 0.019973289221525192, -0.06374753266572952, 0.10792939364910126, -0.43275976181030273, -0.5730977058410645, -0.4671023190021515, 0.425118625164032, 0.22487612068653107, 0.4563993513584137, 0.5853738784790039, 0.5938030481338501, 0.28246620297431946, -0.0503309927880764, 0.06946446001529694, -0.3273017406463623, 0.0821245089173317, -0.02725941501557827, -0.4664191007614136, -0.5838668346405029, -0.2289329171180725, 1.0332491397857666, 0.5464915037155151, 0.22394317388534546, 0.15400536358356476, 0.03143104910850525, 0.6181090474128723, -0.1744702160358429, 0.5917528867721558, -0.7085011005401611, -0.11591947823762894, -0.350126177072525, 0.05085888132452965, -0.33647456765174866, -0.2999531924724579, -0.004563718568533659, -0.7986166477203369, 0.39444682002067566, -0.03275680169463158, 1.653725028038025, 0.11228626221418381, -0.1831972897052765, -0.33912453055381775, -0.25536873936653137, 0.9736765027046204, -1.035857081413269, 0.23334357142448425, 0.4849611818790436, -0.06331666558980942, -0.3087047338485718, -0.8059640526771545, -0.9947043657302856, 0.14139828085899353, -0.3154832422733307, 0.18769067525863647, -0.024953482672572136, -0.16584007441997528, 0.25266796350479126, 0.31490591168403625, -0.41208451986312866, 0.25627321004867554, -0.4242883324623108, -0.2713395059108734, 0.7104192972183228, -0.11178600043058395, 0.41164958477020264, -0.6851465106010437, -0.33944013714790344, -0.3507499098777771, -0.6319998502731323, -0.045844629406929016, 0.6199116706848145, 0.5735137462615967, -0.5335425138473511, 0.7154663801193237, -0.21804870665073395, 0.5280835628509521, -0.012387143447995186, -0.407083123922348, 0.8162277936935425, -0.3340224027633667, -0.037136390805244446, 0.01847025565803051, 1.0550254583358765, 0.42230188846588135, 0.2477312684059143, -0.21915264427661896, 0.11224282532930374, -0.2170683592557907, -0.2979770600795746, -0.7105549573898315, -0.16590911149978638, 0.2405397742986679, -0.5563102960586548, -0.0705832913517952, 0.19766071438789368, -1.0757684707641602, -0.035076383501291275, -0.1764639914035797, 0.4510355293750763, -0.645516037940979, -0.2735360264778137, -0.11684861034154892, -0.2152082324028015, 0.6672811508178711, -0.044612105935811996, -0.9983157515525818, 0.12040607631206512, 0.612108051776886, 0.6395555734634399, 0.0952725037932396, -0.5207259654998779, -0.008251752704381943, 0.3503645956516266, 0.05072546750307083, 0.6802172064781189, -0.1347816288471222, -0.44113144278526306, -0.14513474702835083, 0.3031430244445801, -0.09147297590970993, -0.28054511547088623, 0.6599836349487305, -0.6412708163261414, 0.4399881064891815, -0.4191633462905884, -0.7273420095443726, -0.4295610189437866, 0.24979189038276672, -0.6473219990730286, 1.0670448541641235, 0.14257709681987762, -1.0889332294464111, 0.2725544273853302, -0.4825999140739441, -0.5147952437400818, 0.1702086180448532, -0.14159514009952545, -0.4765688478946686, -0.3283115029335022, 0.45946067571640015, 0.5336776971817017, -0.2528197765350342, 0.12220898270606995, -0.2975611388683319, -0.18046995997428894, 0.10614429414272308, -0.19922557473182678, 1.2139346599578857, -0.0039433822967112064, -0.32654401659965515, -0.29691213369369507, -1.0233701467514038, 0.1510038673877716, 0.2671501636505127, -0.5763883590698242, -0.5476737022399902, 0.21373404562473297, 0.13195961713790894, -0.2156757265329361, 0.6629815101623535, -0.5612589120864868, 0.34121832251548767, -0.4756861925125122, 0.2631736695766449, 0.8082472085952759, 0.08177002519369125, 0.38145413994789124, -0.2736577093601227, 0.2973749041557312, -0.023320190608501434, -0.10794343799352646, -0.008154593408107758, -0.6487281918525696, -1.1742249727249146, -0.5275327563285828, 0.5700815320014954, 0.7902472615242004, -1.0479984283447266, 0.9495112299919128, -0.7466961145401001, -0.7042604684829712, -0.6567869186401367, -0.028517769649624825, 0.25275492668151855, 0.7513394355773926, 0.6038304567337036, -0.15472440421581268, -0.7707909345626831, -0.8943103551864624, -0.11020314693450928, -0.3284378945827484, -0.0853012353181839, 0.47000372409820557, 0.6498368382453918, -0.5564846992492676, 0.6625044941902161, -0.3207401633262634, -0.42664119601249695, -0.14810357987880707, 0.08687080442905426, 0.9539134502410889, 0.4350074827671051, 0.38662421703338623, -0.7821207046508789, -0.8166097402572632, -0.026579681783914566, -0.9056383967399597, -0.17489199340343475, -0.06521275639533997, -0.3771960437297821, 0.3233385384082794, 0.19892382621765137, -0.5970362424850464, 0.13436484336853027, 0.30527979135513306, -0.3452965021133423, 0.2888793349266052, -0.07672734558582306, 0.0849820002913475, -1.455876350402832, 0.07941009104251862, -0.10269603878259659, 0.21272416412830353, -0.5123284459114075, 0.21413345634937286, 0.07253917306661606, 0.4310424327850342, -0.34414583444595337, 0.845150351524353, -0.6748518347740173, 0.10336233675479889, 0.2803018093109131, 0.17055144906044006, -0.13799457252025604, 0.47588300704956055, 0.11475808918476105, 0.5836788415908813, 0.6748679280281067, -0.7949811816215515, 0.5532041788101196, 0.6277011036872864, -0.5569483637809753, 0.24738097190856934, -0.4209538996219635, -0.11291612684726715, -0.18166595697402954, 0.2296469509601593, -0.7011041641235352, -0.291522353887558, 0.6407921314239502, -0.517112672328949, 0.4978499710559845, -0.2115999013185501, -0.7336143255233765, -0.21263523399829865, -0.3451280891895294, 0.1191704049706459, 0.4569096863269806, -0.5959610342979431, 0.7064794898033142, 0.35961446166038513, -0.29598546028137207, -1.0084437131881714, -0.9694006443023682, -0.007460517808794975, -0.23987510800361633, -0.5242627859115601, 0.7059537768363953, -0.0703013464808464, 0.0742221474647522, 0.17618128657341003, 0.023336447775363922, -0.1710975468158722, -0.24207431077957153, -0.12538254261016846, 0.5526230931282043, -0.12352155148983002, 0.01015739981085062, 0.0229808297008276, -0.1518222689628601, -0.02032601274549961, -0.1065157875418663, 0.6031522154808044, 0.0355120413005352, -0.13936837017536163, -0.2525983452796936, 0.2060122936964035, 0.22803546488285065, 0.12865693867206573, 0.6919724345207214, 0.9203053116798401, -0.3117358684539795, -0.014755857177078724, -0.4919581413269043, 0.07344840466976166, -0.47953876852989197, 0.4677879512310028, -0.47251296043395996, -0.6620742678642273, 0.7012596726417542, 0.33957648277282715, -0.007274869829416275, 0.8993431329727173, 0.6605635285377502, -0.20123696327209473, 0.5714558362960815, 0.32203659415245056, -0.40702059864997864, 0.41975703835487366, -0.5506786108016968, 0.297084778547287, -0.9846323728561401, -0.501213788986206, -0.663006603717804, -0.3576175272464752, -1.0376904010772705, -0.26613181829452515, 0.2460898458957672, 0.11642106622457504, -0.2890094816684723, 0.6277472376823425, -0.6267079710960388, 0.4023040235042572, 0.7964478731155396, 0.21898819506168365, 0.22501389682292938, 0.5241275429725647, -0.29458925127983093, -0.19714191555976868, -0.47498708963394165, -0.5322941541671753, 1.2415518760681152, 0.2355811446905136, 0.6773790717124939, 0.3841608166694641, 1.1260058879852295, -0.048568788915872574, 0.2614361047744751, -0.8835850358009338, 0.8208932876586914, -0.3168654143810272, -0.8649647235870361, -0.3690844178199768, -0.5342612266540527, -1.2943170070648193, 0.3392948806285858, -0.06424177438020706, -0.951370120048523, 0.3156002461910248, -0.36406299471855164, 0.21587543189525604, 0.31775909662246704, -0.6286188364028931, 0.6522840857505798, -0.3667648434638977, -0.17845046520233154, 0.043408624827861786, -0.6115748286247253, 0.2212064415216446, -0.06196927651762962, 0.4369446039199829, -0.31880834698677063, -0.2905556559562683, 1.004619836807251, -0.38704246282577515, 0.7962543368339539, -0.17658357322216034, -0.025378065183758736, 0.3096594512462616, -0.21796205639839172, 0.6584283113479614, 0.19132331013679504, -0.2816413640975952, 0.6634668111801147, -0.0182966236025095, -0.34739282727241516, -0.18845416605472565, 0.8932262063026428, -1.0434153079986572, -0.4275892376899719, -0.6802493333816528, -0.42424604296684265, -0.0006481626769527793, 0.7154864072799683, 0.6850185394287109, 0.06570464372634888, 0.26071780920028687, 0.29479238390922546, 0.6318258047103882, -0.24463289976119995, 0.6045323610305786, 0.7380159497261047, -0.1729685366153717, -0.7007293701171875, 0.8827029466629028, 0.3199293613433838, -0.22277414798736572, 0.7422412633895874, -0.10221078246831894, -0.48384183645248413, -0.6119500398635864, -0.2539747655391693, 0.6740095615386963, -0.8186216354370117, -0.32762956619262695, -0.6409977674484253, -0.4270344078540802, -0.6011804342269897, 0.23525604605674744, 0.10224848985671997, -0.3369598984718323, -0.8020405769348145, -0.08793837577104568, 0.5460157990455627, 0.21111521124839783, -0.11777591705322266, 0.22885388135910034, -0.8619738221168518, 0.6152964234352112, 0.041575539857149124, 0.45345816016197205, -0.11495182663202286, -0.6048727631568909, -0.35861676931381226, -0.0887240394949913, -0.21625682711601257, -1.0326632261276245, 0.7576500773429871, 0.23193512856960297, 0.8466029763221741, 0.11584966629743576, -0.009220251813530922, 0.6291225552558899, -0.530877411365509, 0.8089473843574524, 0.2158188670873642, -0.8777963519096375, 0.43338918685913086, -0.4133589267730713, 0.06141548231244087, 0.42212095856666565, 0.6782991290092468, -0.5171875357627869, -0.08502155542373657, -0.9102117419242859, -1.4050382375717163, 0.9112526774406433, 0.09987302869558334, 0.35420674085617065, -0.14526362717151642, 0.17660944163799286, 0.17563177645206451, 0.1812446266412735, -1.211341142654419, -0.724821150302887, -0.0996645838022232, -0.488290399312973, 0.06555210053920746, -0.2868792414665222, -0.010834960266947746, -0.4007524251937866, 1.4026967287063599, 0.027671633288264275, 0.4955519139766693, 0.38203009963035583, -0.15506424009799957, 0.07524530589580536, 0.2716563045978546, 0.10255724936723709, 0.18961089849472046, -0.3086414933204651, -0.20235411822795868, 0.11081022024154663, -0.6165770292282104, -0.03828740119934082, 0.5002940893173218, -0.4246637523174286, 0.3785052001476288, 0.6338791251182556, 0.7751663327217102, 0.15439321100711823, -0.36533981561660767, 0.22017933428287506, 0.11887051165103912, -0.2655198276042938, -0.5334365367889404, 0.08515723794698715, 0.17634399235248566, 0.2561832368373871, 0.5334833860397339, -0.376677542924881, 0.024051230400800705, -0.2252882421016693, 0.08537618070840836, 0.28701192140579224, 0.24599657952785492, 0.014911591075360775, 0.3817962110042572, -0.018390193581581116, -0.11210684478282928, 0.8326953053474426, -0.3259986639022827, -0.4936562776565552, 0.7213881015777588, 0.5079941749572754, 0.8785574436187744, 0.2350737303495407, 0.06838400661945343, 0.725456714630127, 0.3846997022628784, 0.04316031187772751, 0.6079085469245911, -0.050269197672605515, -1.1671087741851807, -0.2179940938949585, -0.8624775409698486, -0.33762893080711365, 0.4722172021865845, -0.6403911709785461, 0.5473121404647827, -0.4044991135597229, -0.29675450921058655, 0.20825372636318207, 0.20605067908763885, -0.6796271800994873, 0.0928342193365097, 0.13714250922203064, 0.8382403254508972, -0.5008522272109985, 0.9644976854324341, 0.8240246772766113, -0.5907275080680847, -0.9724006652832031, 0.007646086160093546, -0.3395492434501648, -0.9132604002952576, 0.7192431092262268, -0.07540923357009888, 0.5000739097595215, 0.2635779082775116, -0.5429796576499939, -1.42995285987854, 1.252466082572937, 0.251980721950531, -0.511242151260376, -0.19029167294502258, -0.13297131657600403, 0.47240149974823, -0.08763893693685532, 0.20522227883338928, 0.36912479996681213, 0.8602719306945801, -0.07557567954063416, -0.796789824962616, -0.10182525217533112, -0.48147279024124146, -0.0005531077040359378, 0.12130077183246613, -0.7955526113510132, 0.9830492734909058, 0.05768999084830284, -0.17492686212062836, 0.2947881817817688, 0.6506659388542175, 0.41527312994003296, 0.11788029968738556, 0.1369701623916626, 0.8725745677947998, 0.7682548761367798, -0.468328595161438, 0.9223438501358032, -0.33430591225624084, 0.9107959866523743, 1.043306589126587, -0.06196485832333565, 0.8299461007118225, 0.5713673233985901, -0.7709055542945862, 0.8939903974533081, 0.7899293303489685, -0.747240424156189, 0.7764377593994141, -0.005175589583814144, -0.19622589647769928, 0.129559725522995, 0.22251644730567932, -0.6605035066604614, 0.3855327367782593, 0.5134751796722412, -0.479743093252182, -0.1821727305650711, -0.5055804252624512, 0.3461885154247284, -0.2615012228488922, -0.20661279559135437, 0.6705240607261658, 0.037009019404649734, -0.5898723006248474, 0.7770997285842896, 0.22029569745063782, 0.9867342114448547, -0.850782573223114, 0.15350547432899475, -0.13822902739048004, 0.17527727782726288, -0.31442612409591675, -0.7385426163673401, -0.06513696163892746, 0.09032441675662994, -0.5409694910049438, 0.047453951090574265, 0.6253329515457153, -0.4879226088523865, -0.9173128604888916, 0.43904855847358704, 0.2834540903568268, 0.5643455386161804, 0.6677801012992859, -1.0424669981002808, -0.17238549888134003, 0.3026043474674225, -0.49889999628067017, 0.2354988008737564, 0.34555211663246155, 0.23667851090431213, 0.5291799902915955, 0.7728224396705627, 0.2999260723590851, 0.1250039041042328, 0.0961485356092453, 0.5912137031555176, -0.700589656829834, -0.42775967717170715, -0.9115307927131653, 0.598270833492279, -0.19580486416816711, -0.35547444224357605, 0.8475552201271057, 0.5794432163238525, 1.0952714681625366, -0.18791085481643677, 1.055433750152588, -0.49136024713516235, 0.6931226849555969, -0.589591920375824, 0.8591325879096985, -0.6011041402816772, 0.17569375038146973, -0.34255144000053406, -1.0431145429611206, -0.47741609811782837, 0.8300380110740662, -0.17563650012016296, 0.18387192487716675, 0.7970542907714844, 0.8413697481155396, 0.11855147033929825, -0.3240188658237457, -0.12810999155044556, 0.5207135677337646, 0.19252102077007294, 0.5321041941642761, 0.264746755361557, -0.8869619965553284, 0.4544457495212555, -0.5063675045967102, 0.0027996788267046213, -0.16935665905475616, -1.0955997705459595, -0.6692988276481628, -0.5649212598800659, -0.421304315328598, -0.5500122308731079, -0.22639457881450653, 0.7782307267189026, 0.380433589220047, -1.1223951578140259, -0.19676433503627777, -0.10150840133428574, 0.45381706953048706, -0.06046667695045471, -0.32267001271247864, 0.7163962125778198, -0.28092050552368164, -1.1590241193771362, 0.30913829803466797, -0.29000726342201233, 0.18048927187919617, -0.031305890530347824, -0.20779933035373688, -0.4679228961467743, -0.2977413833141327, 0.13128891587257385, 0.31969526410102844, -0.9274410605430603, 0.08479712903499603, -0.21454519033432007, -0.22781123220920563, 0.08945979177951813, 0.026037054136395454, -0.6607919335365295, 0.3651541471481323, 0.725201427936554, 0.4275253415107727, 0.6198280453681946, -0.3644954562187195, 0.1970711648464203, -0.6725019216537476, 0.2028919756412506, 0.03571414574980736, 0.7580131888389587, 0.4685501754283905, -0.48359769582748413, 0.7935238480567932, 0.6043870449066162, -0.3615873456001282, -0.767005205154419, -0.1479620635509491, -1.1071587800979614, -0.10951520502567291, 1.2957329750061035, -0.2598048448562622, -0.19994725286960602, 0.33232948184013367, -0.0596315860748291, 0.7136081457138062, -0.4816991686820984, 0.7189589738845825, 1.069689393043518, 0.1892102062702179, -0.004543344024568796, -0.3128310441970825, 0.10504404455423355, 0.2452099472284317, -0.622606098651886, -0.3934468626976013, 0.3097476661205292, 0.47628384828567505, 0.30115869641304016, 0.44768816232681274, -0.12123817205429077, -0.054492395371198654, -0.025514135137200356, 0.37833064794540405, -0.00895635411143303, 0.17040468752384186, -0.21914519369602203, -0.09377830475568771, -0.2867467403411865, -0.1816210150718689 ]
twmkn9/albert-base-v2-squad2
twmkn9
"2020-12-11T22:02:54Z"
56,722
2
transformers
[ "transformers", "pytorch", "albert", "question-answering", "autotrain_compatible", "endpoints_compatible", "region:us" ]
question-answering
"2022-03-02T23:29:05Z"
This model is [ALBERT base v2](https://huggingface.co/albert-base-v2) trained on SQuAD v2 as: ``` export SQUAD_DIR=../../squad2 python3 run_squad.py --model_type albert --model_name_or_path albert-base-v2 --do_train --do_eval --overwrite_cache --do_lower_case --version_2_with_negative --save_steps 100000 --train_file $SQUAD_DIR/train-v2.0.json --predict_file $SQUAD_DIR/dev-v2.0.json --per_gpu_train_batch_size 8 --num_train_epochs 3 --learning_rate 3e-5 --max_seq_length 384 --doc_stride 128 --output_dir ./tmp/albert_fine/ ``` Performance on a dev subset is close to the original paper: ``` Results: { 'exact': 78.71010200723923, 'f1': 81.89228117126069, 'total': 6078, 'HasAns_exact': 75.39518900343643, 'HasAns_f1': 82.04167868004215, 'HasAns_total': 2910, 'NoAns_exact': 81.7550505050505, 'NoAns_f1': 81.7550505050505, 'NoAns_total': 3168, 'best_exact': 78.72655478775913, 'best_exact_thresh': 0.0, 'best_f1': 81.90873395178066, 'best_f1_thresh': 0.0 } ``` We are hopeful this might save you time, energy, and compute. Cheers!
[ -0.2591162621974945, -0.4252137839794159, 0.25091633200645447, 0.45156770944595337, -0.023451926186680794, 0.12265419960021973, -0.11874835193157196, -0.3638470470905304, 0.08944124728441238, 0.2980811893939972, -0.7678597569465637, -0.37441331148147583, -0.4719928205013275, -0.0170556902885437, -0.1431640088558197, 1.0484509468078613, -0.2752316892147064, 0.1997094452381134, -0.2612898647785187, -0.10628969967365265, -0.4626798629760742, -0.37239357829093933, -0.8482093811035156, -0.3547719120979309, 0.2696375548839569, 0.16405631601810455, 0.449381947517395, 0.7259331345558167, 0.7148380279541016, 0.2805287837982178, -0.17443618178367615, -0.22801215946674347, -0.7323555946350098, -0.022791676223278046, 0.1704128384590149, -0.7160025835037231, -0.7083760499954224, -0.18919993937015533, 0.5139626860618591, 0.33309516310691833, -0.028747648000717163, 0.22547310590744019, -0.26150423288345337, 0.7465030550956726, -0.5636606812477112, 0.3867432773113251, -0.47061172127723694, -0.07082296907901764, 0.030300820246338844, 0.07753780484199524, -0.13886423408985138, 0.14007221162319183, 0.17807704210281372, -0.7342234253883362, 0.5896703600883484, -0.01666831783950329, 1.2018909454345703, 0.21685123443603516, -0.0003298199735581875, 0.1365748792886734, -0.45745953917503357, 1.030036211013794, -0.9228264689445496, 0.18795517086982727, 0.5280673503875732, 0.2342609018087387, -0.05254083126783371, -0.4818402826786041, -0.20525507628917694, -0.1187179759144783, -0.046810101717710495, 0.22759152948856354, -0.2282252013683319, -0.24727843701839447, 0.4646897315979004, 0.2311188280582428, -0.624855101108551, 0.10735125839710236, -0.8236308097839355, -0.36203309893608093, 1.1548116207122803, 0.34503594040870667, -0.07382691651582718, 0.045768771320581436, -0.5326996445655823, -0.46838298439979553, -0.6877743601799011, 0.3919677734375, 0.4439118802547455, 0.41084715723991394, -0.46041956543922424, 0.5080379247665405, -0.5908903479576111, 0.3678504526615143, 0.024113226681947708, -0.13454203307628632, 0.8389632105827332, -0.3243047297000885, -0.11252579838037491, 0.03855237737298012, 1.0861996412277222, 0.6105579137802124, 0.21798449754714966, 0.004923704545944929, -0.5929594039916992, -0.24395181238651276, 0.2713066339492798, -1.254155158996582, -0.7763594388961792, 0.35080263018608093, -0.34367409348487854, -0.24124479293823242, 0.026529693976044655, -0.597399890422821, -0.004557912237942219, -0.07163593918085098, 0.32736098766326904, -0.7548754811286926, -0.5076983571052551, -0.14456792175769806, -0.0681801587343216, 0.15349449217319489, 0.3629075586795807, -1.0818513631820679, 0.11541704088449478, 0.4614451825618744, 1.2029316425323486, 0.15734247863292694, -0.34109851717948914, -0.16281576454639435, 0.10484079271554947, -0.3840046525001526, 0.8910995125770569, -0.05797720327973366, -0.5158718228340149, -0.02276422083377838, 0.009974655695259571, -0.1120164543390274, -0.5194606184959412, 0.14278407394886017, -0.30179017782211304, -0.04375910758972168, -0.32338833808898926, -0.4074329435825348, -0.12863139808177948, 0.3579435348510742, -0.8201670050621033, 1.2338218688964844, 0.7772420644760132, -0.5369976758956909, 0.5440311431884766, -0.5457251071929932, -0.5318074822425842, 0.0620797798037529, 0.2403896301984787, -0.9469720721244812, -0.13766740262508392, 0.17885170876979828, 0.41103222966194153, -0.11620292067527771, -0.15245573222637177, -0.5781598091125488, -0.5203505158424377, 0.03547311946749687, 0.01917436718940735, 0.8425090312957764, 0.08736371994018555, -0.2573296129703522, -0.03566744551062584, -1.0967224836349487, 0.31148210167884827, 0.2060987651348114, -0.3627336323261261, -0.11419200152158737, -0.28902769088745117, 0.010637316852807999, -0.012190906330943108, 0.49731364846229553, -0.3235246241092682, 0.4297100901603699, -0.273199200630188, 0.6275841593742371, 0.6459099054336548, -0.10278412699699402, 0.38202720880508423, -0.4700489938259125, 0.47620689868927, 0.03294586390256882, 0.00363512197509408, 0.02137288637459278, -0.7503886222839355, -0.573242723941803, -0.6112245917320251, 0.0897364467382431, 0.47343161702156067, -0.25644710659980774, 0.505294919013977, 0.008642900735139847, -0.8151164650917053, -0.5670602917671204, -0.06491389870643616, 0.4950704574584961, 0.4093914330005646, 0.5636011362075806, -0.03395824506878853, -0.8201215267181396, -1.1955194473266602, -0.07532981783151627, -0.7099982500076294, -0.016944831237196922, 0.06310150027275085, 0.9841762781143188, -0.3532765209674835, 0.840526819229126, -0.3135857582092285, -0.03447146341204643, -0.3688960671424866, 0.2504095733165741, 0.5109280943870544, 0.7477806210517883, 0.7896591424942017, -0.4589301347732544, -0.5586486458778381, -0.2045583724975586, -0.87253737449646, -0.12958994507789612, -0.12219920754432678, -0.21438245475292206, 0.20009702444076538, 0.11578885465860367, -0.9112542271614075, 0.43735596537590027, 0.2236621081829071, -0.28982213139533997, 0.6741093993186951, -0.20592664182186127, 0.14293523132801056, -0.9626615643501282, 0.2441643327474594, 0.18293911218643188, 0.008263891562819481, -0.46900448203086853, -0.1517517864704132, 0.26115691661834717, 0.37201058864593506, -0.6077208518981934, 0.6617128252983093, -0.46227535605430603, -0.036673929542303085, 0.06751184165477753, -0.45268192887306213, -0.026787085458636284, 0.6067377328872681, 0.05648601055145264, 0.9982945919036865, 0.6381096839904785, -0.390207976102829, 0.29043126106262207, 0.2870900630950928, -0.31191757321357727, 0.3108315169811249, -0.8221821188926697, 0.15271084010601044, 0.0721832662820816, 0.06130376085639, -0.951271116733551, -0.30718734860420227, 0.3161926865577698, -0.4760756194591522, 0.4124400317668915, -0.2867550253868103, -0.42387521266937256, -0.389980673789978, -0.5928500294685364, 0.6145038604736328, 0.5581769943237305, -0.384901762008667, 0.0008767028339207172, 0.22951729595661163, 0.17934294044971466, -0.5630991458892822, -0.6579225659370422, -0.47869500517845154, -0.2767370641231537, -0.5426707863807678, 0.3423054814338684, -0.13921131193637848, -0.24344073235988617, 0.02566612884402275, -0.04624759033322334, -0.2031872570514679, 0.2072419822216034, 0.4447631239891052, 0.5232152342796326, -0.2816672623157501, -0.2504992187023163, -0.10529283434152603, 0.06524541974067688, 0.318225622177124, 0.3203895390033722, 0.7546954154968262, -0.3824934661388397, 0.2068222612142563, -0.5724453330039978, 0.1086813360452652, 0.5393167734146118, 0.060327593237161636, 0.9893707036972046, 0.7221918702125549, -0.39539915323257446, -0.23645274341106415, -0.13408061861991882, -0.06964428722858429, -0.4590335786342621, 0.902771532535553, -0.632116436958313, -0.4162762761116028, 0.6255896687507629, 0.3808274567127228, 0.08107084035873413, 1.1104092597961426, 0.5910822749137878, -0.14065082371234894, 1.321545958518982, 0.3247849941253662, -0.110291987657547, 0.4518755376338959, -1.104153037071228, 0.03612927347421646, -0.9726703763008118, -0.7774853706359863, -0.381275475025177, -0.3286608159542084, -0.3309856951236725, 0.016814300790429115, 0.14054150879383087, 0.577999472618103, -0.7962228059768677, 0.857915997505188, -0.3595081567764282, 0.24303166568279266, 0.6388409733772278, 0.2402256578207016, -0.13943198323249817, 0.02509034052491188, 0.27544963359832764, -0.0752912312746048, -0.6975204944610596, -0.2422163188457489, 1.4209933280944824, 0.363799124956131, 0.6317485570907593, 0.05536036193370819, 0.726823091506958, 0.1809636503458023, 0.35499170422554016, -0.6685410141944885, 0.4401024878025055, 0.3672284781932831, -0.9030597805976868, -0.12260770052671432, -0.6955929398536682, -0.7507575154304504, 0.16866084933280945, -0.31898871064186096, -0.8831484913825989, -0.44520998001098633, 0.1528925597667694, -0.6163918972015381, 0.3170839548110962, -0.8754053711891174, 0.9314195513725281, -0.33645644783973694, -0.6372342109680176, -0.06194647029042244, -0.4734472632408142, 0.4583853483200073, -0.09833270311355591, -0.015088708139955997, -0.2318623811006546, 0.006674763280898333, 1.1260725259780884, -0.6690106987953186, 0.41891759634017944, -0.1560557633638382, 0.29982268810272217, 0.3724161386489868, 0.06136121600866318, 0.5287473201751709, 0.3883287012577057, -0.4235563278198242, 0.5839521288871765, 0.08355385065078735, -0.6052855253219604, -0.2756711542606354, 0.7581294178962708, -1.3150734901428223, -0.2923150956630707, -0.6715173125267029, -0.7676506042480469, -0.0666239783167839, 0.3266027271747589, 0.5742895603179932, 0.4362603425979614, -0.0964108556509018, 0.20094949007034302, 0.3475073575973511, 0.10497866570949554, 0.6180068254470825, 0.46815916895866394, -0.038575880229473114, -0.450125128030777, 0.5683800578117371, -0.023181812837719917, 0.14640864729881287, 0.3465242385864258, -0.0462983213365078, -0.533939778804779, -0.7695569396018982, -0.6916096210479736, 0.5046679377555847, -0.27089640498161316, -0.5579060316085815, -0.5494726896286011, -0.4101800322532654, -0.6144713759422302, -0.1739189177751541, -0.7980849742889404, -0.3933749198913574, -0.6705451607704163, -0.0031704925931990147, 0.6965658664703369, 0.8268433809280396, -0.33750462532043457, 0.5838491916656494, -0.662372350692749, -0.006974602583795786, -0.04603969305753708, 0.2842491865158081, -0.17035047709941864, -0.7631663084030151, -0.5258774161338806, 0.31882455945014954, -0.47649532556533813, -0.6989999413490295, 0.8332887291908264, -0.004907781723886728, 0.594290554523468, 0.43033134937286377, -0.13639453053474426, 0.9264104962348938, -0.2617400586605072, 0.883765697479248, 0.5129602551460266, -0.4946623742580414, 0.6895272135734558, -0.25839200615882874, 0.1263379603624344, 0.6646815538406372, 0.4166930317878723, 0.2163819968700409, -0.24552880227565765, -1.0492786169052124, -1.1167231798171997, 1.241767168045044, 0.48395413160324097, -0.3610714077949524, 0.2518688440322876, 0.4569213092327118, -0.0031525781378149986, 0.24727113544940948, -0.40836670994758606, -0.4409181773662567, -0.1343120038509369, -0.045725442469120026, -0.08755112439393997, -0.03567890450358391, -0.09939935058355331, -0.4611400365829468, 1.2757540941238403, 0.18249213695526123, 0.6194927096366882, 0.08929448574781418, 0.01117401197552681, -0.4109519422054291, -0.4296935498714447, 0.5752559304237366, 0.7568312883377075, -1.0107171535491943, -0.2989839017391205, 0.1807895302772522, -0.43523895740509033, -0.02157559059560299, -0.022979432716965675, -0.018214410170912743, 0.054269939661026, 0.8271179795265198, 0.960844099521637, -0.037518177181482315, -0.5717675089836121, 0.5854397416114807, -0.12098778784275055, -0.470272958278656, -0.5054097771644592, 0.40274620056152344, -0.18697409331798553, 0.4542299211025238, 0.2278304249048233, 0.6521626710891724, -0.0714903175830841, -0.5407199859619141, 0.05863320454955101, 0.5412309765815735, -0.27072587609291077, -0.6266533732414246, 0.9212718605995178, -0.1300823986530304, -0.6135659217834473, 0.7444535493850708, -0.2936003804206848, -0.7411689758300781, 1.065800428390503, 0.5250323414802551, 0.8223820924758911, 0.08467152714729309, 0.02455243282020092, 1.1362810134887695, 0.09692185372114182, -0.6216421127319336, 0.3341735303401947, 0.05965808779001236, -0.5185832381248474, -0.11738894879817963, -0.6085024476051331, -0.3299311399459839, 0.5816640257835388, -0.9349356889724731, 0.34810933470726013, -0.5199167132377625, -0.16601276397705078, -0.06932578980922699, 0.4105667173862457, -0.9542347192764282, 0.3129734694957733, 0.11983519792556763, 1.0271762609481812, -0.8726387023925781, 0.9357798099517822, 0.7530531287193298, -0.3978687524795532, -1.0179030895233154, -0.33798322081565857, -0.2751658260822296, -1.0839847326278687, 0.5655620098114014, 0.48028653860092163, 0.1588497757911682, -0.1745072901248932, -0.7045431733131409, -1.1116470098495483, 1.2951176166534424, 0.2709457278251648, -0.806350827217102, 0.1621524691581726, -0.07823257893323898, 0.5996332764625549, -0.19471995532512665, 0.8685453534126282, 0.6072899103164673, 0.18751464784145355, 0.011478702537715435, -0.6754142045974731, -0.0905407965183258, -0.6276038885116577, 0.05996597185730934, 0.22750785946846008, -1.023309350013733, 1.4029301404953003, -0.5143356323242188, 0.2446916550397873, 0.4268409311771393, 0.6991494297981262, 0.621886134147644, 0.38182714581489563, 0.32546132802963257, 0.8375099897384644, 0.586236298084259, -0.12651391327381134, 1.1024963855743408, -0.42919471859931946, 0.9501727223396301, 0.6729584336280823, -0.032661136239767075, 0.832106351852417, 0.3483372926712036, -0.6239202618598938, 0.5414731502532959, 0.8366119861602783, -0.23232141137123108, 1.0457473993301392, 0.15479883551597595, -0.18678158521652222, -0.20489780604839325, 0.5183837413787842, -0.8713752627372742, 0.08941256254911423, 0.11295868456363678, -0.24780720472335815, -0.04885034263134003, -0.6288930773735046, 0.28314724564552307, -0.34343042969703674, -0.3809623420238495, 0.4589751958847046, -0.20582455396652222, -0.853758692741394, 0.9599615931510925, -0.09150739759206772, 0.6104650497436523, -0.6337186694145203, -0.07295148819684982, -0.2876760959625244, 0.4730471074581146, -0.22666692733764648, -0.7648625373840332, 0.022625425830483437, -0.06636439263820648, -0.2941443920135498, -0.19013752043247223, 0.5092104077339172, -0.19359523057937622, -0.7696222066879272, 0.22012630105018616, 0.26287439465522766, 0.3482988774776459, -0.06901179254055023, -0.8473812937736511, 0.11574587225914001, 0.12647202610969543, -0.575989305973053, 0.4730960726737976, 0.31791871786117554, 0.2887830138206482, 0.5784344673156738, 0.7383471727371216, 0.22418010234832764, 0.0586664192378521, -0.44908463954925537, 0.8084696531295776, -0.5654380321502686, -0.5333835482597351, -0.9257602691650391, 0.570131778717041, -0.08531096577644348, -1.0357704162597656, 0.5425831079483032, 1.082357406616211, 1.0807746648788452, -0.11188971251249313, 1.000745177268982, -0.25319913029670715, 0.3138125538825989, -0.5138477683067322, 0.730397641658783, -0.7124512195587158, 0.1529064178466797, -0.011596915312111378, -0.9168661832809448, -0.12603308260440826, 1.104574203491211, -0.11518532037734985, -0.015879511833190918, 0.4614395797252655, 0.9912517070770264, 0.01724538579583168, -0.026436151936650276, -0.028327016159892082, 0.2505110204219818, 0.4320663809776306, 0.9091228246688843, 0.7318118214607239, -0.9278027415275574, 0.3636787235736847, -0.931708037853241, -0.2939552962779999, -0.3413811922073364, -0.48275724053382874, -1.1397268772125244, -0.3812743127346039, -0.36242198944091797, -0.7497538924217224, 0.2434733659029007, 0.9800387024879456, 0.9821665287017822, -0.9702337384223938, -0.2568982243537903, -0.2783505916595459, -0.3130618631839752, -0.35499146580696106, -0.23606647551059723, 0.3487677276134491, -0.11951064318418503, -0.7111567854881287, 0.3865315318107605, -0.4185643494129181, 0.01169001217931509, 0.041810594499111176, -0.4421962797641754, -0.20706917345523834, -0.5665799975395203, 0.26793795824050903, 0.31902721524238586, -0.3880027234554291, -0.3983313739299774, -0.18503022193908691, -0.15569527447223663, 0.30408892035484314, 0.26881173253059387, -0.8894804120063782, 0.1257009655237198, 0.4548410475254059, 0.2713446617126465, 0.8771629333496094, -0.13647356629371643, 0.4432789981365204, -0.5952327251434326, 0.12688012421131134, 0.11116911470890045, 0.6015158891677856, 0.34245526790618896, -0.3084994852542877, 0.7693884968757629, 0.5101540088653564, -0.5208898186683655, -1.0784953832626343, -0.27284926176071167, -1.3206931352615356, 0.04463943839073181, 1.5751556158065796, -0.1809813380241394, -0.5527687668800354, 0.5531051158905029, -0.1538800150156021, 0.5773979425430298, -0.9420705437660217, 0.8208099603652954, 0.4013834297657013, -0.25447914004325867, 0.13124975562095642, -0.6859691143035889, 0.3781590759754181, 0.2759580910205841, -0.592090368270874, -0.3535598814487457, 0.11135239154100418, 0.4633837342262268, 0.24409538507461548, 0.4547866880893707, 0.13793832063674927, 0.2654683291912079, 0.3297053873538971, 0.19559550285339355, -0.32723355293273926, -0.3027282953262329, -0.12997335195541382, 0.007707319222390652, -0.2917267084121704, -0.4062356650829315 ]
timm/inception_v3.tv_in1k
timm
"2023-04-25T21:29:59Z"
56,659
1
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:1512.00567", "license:apache-2.0", "has_space", "region:us" ]
image-classification
"2023-04-25T21:29:39Z"
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for inception_v3.tv_in1k A Inception-v3 image classification model. Trained on ImageNet-1k, torchvision weights. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 23.8 - GMACs: 5.7 - Activations (M): 9.0 - Image size: 299 x 299 - **Papers:** - Rethinking the Inception Architecture for Computer Vision: https://arxiv.org/abs/1512.00567 - **Original:** https://github.com/pytorch/vision - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('inception_v3.tv_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'inception_v3.tv_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 147, 147]) # torch.Size([1, 192, 71, 71]) # torch.Size([1, 288, 35, 35]) # torch.Size([1, 768, 17, 17]) # torch.Size([1, 2048, 8, 8]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'inception_v3.tv_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 8, 8) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{DBLP:journals/corr/SzegedyVISW15, author = {Christian Szegedy and Vincent Vanhoucke and Sergey Ioffe and Jonathon Shlens and Zbigniew Wojna}, title = {Rethinking the Inception Architecture for Computer Vision}, journal = {CoRR}, volume = {abs/1512.00567}, year = {2015}, url = {http://arxiv.org/abs/1512.00567}, archivePrefix = {arXiv}, eprint = {1512.00567}, timestamp = {Mon, 13 Aug 2018 16:49:07 +0200}, biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
[ -0.5569223165512085, -0.5725094079971313, 0.11568666249513626, 0.116299107670784, -0.40603867173194885, -0.2690383195877075, -0.1444159746170044, -0.5131139755249023, 0.09728621691465378, 0.2963121831417084, -0.3882584869861603, -0.785527229309082, -0.6676915884017944, -0.14129529893398285, -0.3021479547023773, 0.9259203672409058, -0.02048112452030182, -0.0616970956325531, -0.26235559582710266, -0.3859018087387085, -0.07137719541788101, -0.15865923464298248, -0.89229816198349, -0.42607444524765015, 0.25036442279815674, 0.1594417840242386, 0.5724073052406311, 0.6683254837989807, 0.6186989545822144, 0.4310366213321686, -0.183562770485878, -0.008906742557883263, -0.22317573428153992, -0.3605532944202423, 0.39268869161605835, -0.5550259947776794, -0.404267281293869, 0.19488635659217834, 0.7591949701309204, 0.5437001585960388, 0.010049022734165192, 0.4115448594093323, 0.3159649968147278, 0.4839164614677429, -0.2399928867816925, 0.05004472658038139, -0.43259379267692566, 0.3217620551586151, -0.0762496069073677, 0.09021317213773727, -0.19438597559928894, -0.3664615750312805, 0.31069710850715637, -0.5071588158607483, 0.6088102459907532, 0.04584142193198204, 1.3112415075302124, 0.20083847641944885, 0.25383061170578003, -0.0040221684612333775, -0.40103256702423096, 0.7685014605522156, -0.7358858585357666, 0.31397107243537903, 0.12243378162384033, 0.08872390538454056, -0.03418948873877525, -1.0373319387435913, -0.6339932680130005, -0.12965388596057892, -0.017336346209049225, -0.1068919375538826, -0.17120733857154846, -0.009157530032098293, 0.18585918843746185, 0.534572958946228, -0.42834725975990295, 0.11484973877668381, -0.6670992374420166, -0.19649870693683624, 0.529977023601532, -0.09579184651374817, 0.2535831332206726, -0.25794023275375366, -0.5801078677177429, -0.4798571467399597, -0.4025261104106903, 0.2623261511325836, 0.2894212007522583, 0.13926827907562256, -0.6754206418991089, 0.4423365890979767, 0.1544312983751297, 0.6089876294136047, 0.12767772376537323, -0.3195268213748932, 0.6243994235992432, 0.04214441776275635, -0.4464252293109894, 0.04173586517572403, 0.9786891341209412, 0.4338025748729706, 0.16536317765712738, 0.05046040564775467, 0.08256527036428452, -0.3835090398788452, 0.02991950511932373, -1.063549280166626, -0.21656985580921173, 0.4720592796802521, -0.5250382423400879, -0.40139949321746826, 0.24835434556007385, -0.5976899862289429, -0.14818550646305084, 0.0012786762090399861, 0.6978368759155273, -0.6935136914253235, -0.38347873091697693, 0.08777409791946411, -0.1816989630460739, 0.5996430516242981, 0.21630005538463593, -0.48300594091415405, -0.03272680938243866, 0.3417057693004608, 1.2236406803131104, 0.05910782516002655, -0.5043129324913025, 0.08306322991847992, -0.2302599549293518, -0.3794163465499878, 0.5174830555915833, 0.06680072844028473, -0.22548945248126984, -0.301336407661438, 0.17173196375370026, 0.03566068783402443, -0.6526386141777039, 0.2644414007663727, -0.16005787253379822, 0.24624118208885193, 0.11085887998342514, -0.2119501680135727, -0.5674124360084534, 0.3574063777923584, -0.36404526233673096, 1.2124756574630737, 0.3588978052139282, -0.7600474953651428, 0.5648835301399231, -0.4550352394580841, -0.13423776626586914, -0.19904232025146484, -0.2669466733932495, -1.1466386318206787, -0.04496755823493004, 0.31147390604019165, 0.5762853622436523, -0.2955123484134674, 0.08693142235279083, -0.6087732315063477, -0.2412824183702469, 0.2007497400045395, -0.04297905042767525, 1.1205981969833374, 0.2171810120344162, -0.4796513617038727, 0.1435217559337616, -0.7090827822685242, 0.12518282234668732, 0.46216243505477905, -0.2536313831806183, 0.02851574309170246, -0.49888283014297485, -0.012080118991434574, 0.16601550579071045, 0.1620284616947174, -0.6184980273246765, 0.19271165132522583, -0.3930108845233917, 0.4640779197216034, 0.6190885305404663, -0.045904796570539474, 0.262815922498703, -0.34301722049713135, 0.1493673175573349, 0.49847903847694397, 0.33632755279541016, -0.01745336689054966, -0.656738817691803, -0.8675337433815002, -0.4547751545906067, 0.20050404965877533, 0.35451942682266235, -0.33460113406181335, 0.5175022482872009, -0.3059401512145996, -0.729560375213623, -0.5931783318519592, 0.05904883146286011, 0.3692611753940582, 0.5618794560432434, 0.3384853005409241, -0.5895059704780579, -0.6289121508598328, -1.0052531957626343, 0.0942031517624855, 0.006500099785625935, -0.019207414239645004, 0.26430436968803406, 0.6340545415878296, 0.0012440008576959372, 0.9034847021102905, -0.46700721979141235, -0.31477123498916626, -0.2378692328929901, 0.13437481224536896, 0.4805701971054077, 0.9433494210243225, 0.7476702332496643, -0.6146356463432312, -0.33947357535362244, -0.18209250271320343, -1.1336866617202759, 0.37849894165992737, -0.011222651228308678, -0.13501328229904175, 0.25637945532798767, 0.2428799271583557, -0.6007715463638306, 0.7409382462501526, 0.006029114127159119, -0.21343715488910675, 0.38966214656829834, -0.23034600913524628, 0.21505208313465118, -1.1955581903457642, 0.0958113893866539, 0.24902017414569855, 0.018989641219377518, -0.3085423707962036, 0.03983321785926819, -0.1495213508605957, -0.1625102013349533, -0.667799174785614, 0.5125374794006348, -0.6151427626609802, -0.3449646234512329, -0.015228250995278358, -0.20380881428718567, 0.06492815166711807, 0.7565503716468811, -0.06620900332927704, 0.45243197679519653, 0.9718188047409058, -0.6441681981086731, 0.3721722364425659, 0.4872189462184906, -0.4714270234107971, 0.5618350505828857, -0.7005237340927124, 0.2548653185367584, -0.21540167927742004, 0.12563492357730865, -0.9892324805259705, -0.153268963098526, 0.3850255608558655, -0.702462911605835, 0.48021411895751953, -0.5123741626739502, -0.32997843623161316, -0.4940333366394043, -0.5855408906936646, 0.46074771881103516, 0.7234170436859131, -0.6162011623382568, 0.563834011554718, 0.1597227156162262, 0.29732319712638855, -0.6490548253059387, -0.955286979675293, -0.074407659471035, -0.4357081651687622, -0.7366782426834106, 0.570263683795929, 0.13646741211414337, 0.05925651639699936, 0.25076520442962646, -0.0337369479238987, 0.04695592448115349, -0.1498585343360901, 0.5268312692642212, 0.3574741780757904, -0.42295581102371216, -0.2786140441894531, -0.3379182815551758, 0.09416119754314423, -0.06637907773256302, -0.438562273979187, 0.6708617806434631, -0.23962533473968506, -0.16152024269104004, -0.8680954575538635, -0.10635930299758911, 0.49514222145080566, -0.03206293284893036, 0.9028798341751099, 1.1283202171325684, -0.6043548583984375, 0.0031908468808978796, -0.4879797697067261, -0.15836268663406372, -0.47501352429389954, 0.49117231369018555, -0.4882831871509552, -0.3949039876461029, 0.8874949216842651, 0.1398511528968811, 0.15469346940517426, 0.7965955138206482, 0.42995041608810425, -0.11465106904506683, 0.6459288001060486, 0.6348085999488831, 0.18471300601959229, 0.6983646154403687, -1.2130004167556763, -0.1021747812628746, -1.0224272012710571, -0.5856212973594666, -0.33398979902267456, -0.532446026802063, -0.4848921000957489, -0.3282450735569, 0.557330846786499, 0.40406161546707153, -0.39392799139022827, 0.42975038290023804, -0.8421669602394104, 0.07298199087381363, 0.7127675414085388, 0.5845744013786316, -0.21447399258613586, 0.37117674946784973, -0.2863081991672516, 0.1602955162525177, -0.7594431042671204, -0.2685337960720062, 1.2149415016174316, 0.36403706669807434, 0.6031087040901184, -0.19158968329429626, 0.7287881970405579, -0.128490149974823, 0.2542168200016022, -0.5458129048347473, 0.5966244339942932, 0.040801506489515305, -0.4917575716972351, -0.1672600656747818, -0.23444652557373047, -1.1123870611190796, 0.06834445148706436, -0.2590535879135132, -0.8355932831764221, 0.38641422986984253, 0.14360582828521729, -0.4925098419189453, 0.7962403297424316, -0.7521034479141235, 0.9000825881958008, -0.06612240523099899, -0.4950711727142334, -0.03461984544992447, -0.5734519362449646, 0.29153260588645935, 0.2908787131309509, -0.1938810795545578, -0.04385353997349739, 0.2509397864341736, 1.0637471675872803, -0.5116826295852661, 0.9263070821762085, -0.42595237493515015, 0.23667661845684052, 0.6929731369018555, -0.1315755993127823, 0.1225532740354538, 0.04256820306181908, -0.04450194910168648, 0.5245442986488342, -0.011453055776655674, -0.40991413593292236, -0.47516798973083496, 0.6114047765731812, -1.1408270597457886, -0.4982711374759674, -0.43047192692756653, -0.40524664521217346, 0.2591647207736969, 0.16446124017238617, 0.6403445601463318, 0.8050639033317566, 0.08633075654506683, 0.3795909881591797, 0.4937833547592163, -0.4732222259044647, 0.5198943018913269, -0.13039131462574005, -0.22333182394504547, -0.6117870807647705, 0.6991872787475586, 0.22557656466960907, 0.1075519546866417, 0.09323278814554214, 0.11293142288923264, -0.3718809485435486, -0.8219868540763855, -0.43711215257644653, 0.2506420314311981, -0.7015165686607361, -0.47400620579719543, -0.5841709971427917, -0.5942013263702393, -0.6098209619522095, -0.13450947403907776, -0.41071417927742004, -0.3158731758594513, -0.42742919921875, 0.1717882752418518, 0.6500033140182495, 0.5449203252792358, -0.21202918887138367, 0.564884603023529, -0.45031774044036865, 0.14373627305030823, 0.07699362933635712, 0.5541849136352539, -0.0030053085647523403, -0.8816105723381042, -0.3409983515739441, -0.13095474243164062, -0.5946908593177795, -0.5817152857780457, 0.3406722843647003, 0.29065290093421936, 0.4777645170688629, 0.5091705918312073, -0.35383814573287964, 0.8825312852859497, -0.08280923217535019, 0.6785443425178528, 0.23567266762256622, -0.5807627439498901, 0.666588544845581, 0.0477236807346344, 0.16669614613056183, 0.13926509022712708, 0.28097110986709595, -0.1433137208223343, -0.11308640986680984, -1.0600435733795166, -0.8510453104972839, 0.9562751054763794, 0.18303485214710236, -0.05348813161253929, 0.35527071356773376, 0.7958301305770874, 0.06084691733121872, 0.07162260264158249, -0.7795535326004028, -0.3340591788291931, -0.3922402560710907, -0.3731718063354492, -0.008977560326457024, -0.05538146570324898, -0.09302178770303726, -0.6635041236877441, 0.6093041300773621, 0.14704273641109467, 0.8500886559486389, 0.603247344493866, -0.19739867746829987, -0.08560431748628616, -0.44967591762542725, 0.39437493681907654, 0.43799570202827454, -0.4897155165672302, 0.07247256487607956, 0.18304067850112915, -0.6301912069320679, 0.054044466465711594, 0.10563011467456818, -0.13255903124809265, -0.14444172382354736, 0.5467026829719543, 0.9900138974189758, 0.014957422390580177, 0.08279112726449966, 0.30509430170059204, 0.18130774796009064, -0.3465757668018341, -0.44365423917770386, 0.18595226109027863, -0.1767142117023468, 0.4330531358718872, 0.5055354833602905, 0.34087634086608887, -0.11382325738668442, -0.3430469036102295, 0.31533050537109375, 0.5917942523956299, -0.18123981356620789, -0.4080856442451477, 0.756737470626831, -0.22093623876571655, -0.26254114508628845, 0.8902879953384399, -0.02682725340127945, -0.35589784383773804, 1.0047069787979126, 0.44000551104545593, 1.0015414953231812, -0.0006968885427340865, -0.019121287390589714, 0.9115412831306458, 0.3348739743232727, 0.056069374084472656, 0.04766242578625679, 0.07582049816846848, -0.8892300128936768, 0.05848253145813942, -0.7793406844139099, 0.04631246626377106, 0.4568121135234833, -0.4610128104686737, 0.42748746275901794, -0.8999890685081482, -0.3296043574810028, 0.1534917801618576, 0.20513176918029785, -0.9670884013175964, 0.2576335370540619, 0.10427539050579071, 0.8217924237251282, -0.6249622702598572, 0.6699261665344238, 0.7345738410949707, -0.8019887208938599, -0.8510434627532959, -0.19359970092773438, -0.05051551014184952, -1.096334457397461, 0.4580726623535156, 0.4783431589603424, -0.033278919756412506, 0.3449881374835968, -0.8827146291732788, -0.7722345590591431, 1.455751657485962, 0.5405870079994202, 0.02887033112347126, 0.09064435958862305, 0.05427092686295509, 0.14673364162445068, -0.5121010541915894, 0.36398622393608093, 0.2520328164100647, 0.2677451968193054, 0.3343084156513214, -0.48412054777145386, 0.05832520127296448, -0.14238162338733673, 0.17973396182060242, 0.07472337037324905, -0.6719350218772888, 0.9037559628486633, -0.6023938059806824, -0.2594451606273651, 0.06775236129760742, 0.8393147587776184, 0.2357196807861328, 0.15986987948417664, 0.6148935556411743, 1.0254020690917969, 0.3269279897212982, -0.2677628695964813, 0.868412435054779, -0.11216520518064499, 0.6082847714424133, 0.5205588936805725, 0.3510590195655823, 0.514487087726593, 0.4509667158126831, -0.41074633598327637, 0.5377753376960754, 1.1198647022247314, -0.41186052560806274, 0.2851308286190033, 0.14809812605381012, 0.09528876096010208, 0.014270888641476631, 0.1814967542886734, -0.4255538284778595, 0.5811639428138733, 0.1891692727804184, -0.4329838454723358, -0.24084435403347015, 0.1407548189163208, -0.02631940320134163, -0.4490244686603546, -0.19423457980155945, 0.5292826294898987, 0.01467962097376585, -0.3956335783004761, 0.8963217735290527, 0.05357582867145538, 0.7969492077827454, -0.3810715973377228, 0.032723307609558105, -0.29135680198669434, 0.24109748005867004, -0.371247261762619, -0.8262849450111389, 0.32760584354400635, -0.2589709758758545, 0.058386147022247314, 0.18734493851661682, 0.42120200395584106, -0.2842363119125366, -0.6315160989761353, 0.09949017316102982, 0.24661913514137268, 0.5723072290420532, 0.05299404636025429, -1.1362321376800537, 0.20967669785022736, 0.008965088054537773, -0.5339330434799194, 0.11373764276504517, 0.3291225731372833, 0.09284666925668716, 0.6690062284469604, 0.6032546162605286, -0.05502075329422951, 0.19577279686927795, -0.23603995144367218, 0.7071224451065063, -0.6354358792304993, -0.3923361003398895, -0.9415807127952576, 0.6718097925186157, -0.10702908039093018, -0.6344678401947021, 0.4819740056991577, 0.7595013380050659, 1.0014827251434326, -0.04663269966840744, 0.42206695675849915, -0.4740268290042877, -0.07580312341451645, -0.46732622385025024, 0.6264999508857727, -0.6966135501861572, -0.008354528807103634, -0.1961643397808075, -0.8765882849693298, -0.41124558448791504, 0.6879595518112183, -0.20988765358924866, 0.4445141553878784, 0.526791512966156, 0.9675808548927307, -0.3599613606929779, -0.3925304710865021, 0.08114967495203018, 0.2846815288066864, 0.15523424744606018, 0.40711793303489685, 0.4014491140842438, -0.7905775308609009, 0.4606749415397644, -0.5774358510971069, -0.1881999969482422, -0.16012902557849884, -0.6552249789237976, -0.7387769818305969, -0.9645881652832031, -0.6706627607345581, -0.6504392027854919, -0.25627586245536804, 0.8951588869094849, 1.0014194250106812, -0.685138463973999, -0.18794722855091095, -0.04227345064282417, 0.15055987238883972, -0.3804119825363159, -0.22229653596878052, 0.7409870624542236, -0.17054720222949982, -0.8224334716796875, -0.25232845544815063, 0.1062951534986496, 0.48247629404067993, -0.20515885949134827, -0.07587409019470215, -0.25061506032943726, -0.32644566893577576, 0.23799656331539154, 0.2778036892414093, -0.744063138961792, -0.3668527901172638, -0.3596811294555664, 0.0409431979060173, 0.612521767616272, 0.44856351613998413, -0.7078133225440979, 0.2484518438577652, 0.30188122391700745, 0.33973705768585205, 0.8642981052398682, -0.28392884135246277, 0.09610097855329514, -0.7583936452865601, 0.6458048224449158, -0.11343544721603394, 0.39583420753479004, 0.5196729898452759, -0.40915533900260925, 0.47426047921180725, 0.5056625604629517, -0.26742300391197205, -0.9677234292030334, -0.07889583706855774, -1.0744682550430298, -0.07755663990974426, 0.6705933809280396, -0.24174432456493378, -0.6376402974128723, 0.36599671840667725, -0.002078559249639511, 0.7837322950363159, -0.0077981832437217236, 0.6850161552429199, 0.2908984422683716, -0.16143684089183807, -0.6357472538948059, -0.4143991470336914, 0.5221126675605774, 0.08794741332530975, -0.5450682640075684, -0.5353955030441284, -0.04820080101490021, 0.7451758980751038, 0.342128723859787, 0.49578729271888733, -0.35980653762817383, 0.04499298334121704, 0.13530811667442322, 0.646348237991333, -0.39753490686416626, -0.2531586289405823, -0.3524535894393921, 0.15019036829471588, 0.01303636934608221, -0.6940771341323853 ]
sayakpaul/sd-model-finetuned-lora-t4
sayakpaul
"2023-04-18T09:47:44Z"
56,587
25
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "lora", "base_model:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "has_space", "region:us" ]
text-to-image
"2023-01-19T22:29:40Z"
--- license: creativeml-openrail-m base_model: CompVis/stable-diffusion-v1-4 tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA text2image fine-tuning - https://huggingface.co/sayakpaul/sd-model-finetuned-lora-t4 These are LoRA adaption weights for https://huggingface.co/sayakpaul/sd-model-finetuned-lora-t4. The weights were fine-tuned on the lambdalabs/pokemon-blip-captions dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png)
[ -0.3424553871154785, -0.631324827671051, 0.08718011528253555, 0.5021073818206787, -0.6605055332183838, -0.20954836905002594, 0.12876933813095093, -0.5074360370635986, 0.7801239490509033, 0.8624603748321533, -0.8755037188529968, -0.3125579059123993, -0.7335885763168335, 0.14118540287017822, -0.24337391555309296, 1.2277748584747314, -0.0018764185952022672, 0.14050370454788208, 0.39251708984375, -0.4667050242424011, -0.7196639776229858, 0.13363927602767944, -0.7537273168563843, -0.6187119483947754, 0.924831211566925, 0.9563085436820984, 0.8639976978302002, 0.46024981141090393, 0.8302711248397827, 0.21456432342529297, -0.19152112305164337, 0.10466857254505157, -0.839830219745636, -0.3894202411174774, -0.4107212722301483, -0.9040308594703674, -0.7603123188018799, 0.09721697121858597, 0.599758505821228, 0.3693482577800751, 0.05659611150622368, 0.48910972476005554, -0.15289989113807678, 0.9429826140403748, -0.5215675234794617, -0.02324002981185913, -0.8761196136474609, 0.21929632127285004, -0.2701610326766968, -0.47800377011299133, 0.01026103738695383, -0.34967920184135437, 0.08994568884372711, -0.9389816522598267, 0.14396008849143982, 0.35005924105644226, 1.5636565685272217, 0.6430778503417969, -0.2757159471511841, -0.5280484557151794, -0.3708031475543976, 0.9144628643989563, -0.7253555655479431, -0.06128018721938133, 0.5219457149505615, 0.35487639904022217, 0.02258627861738205, -0.6277276873588562, -0.2248845100402832, 0.3838760256767273, 0.009272497147321701, 0.262572318315506, -0.4895499050617218, -0.1376015543937683, 0.6009770631790161, 0.49110838770866394, -0.21762913465499878, 0.33349549770355225, -0.7846910357475281, -0.16781015694141388, 0.6523771286010742, -0.01319907233119011, 0.45196533203125, -0.04157588258385658, -0.24187245965003967, -0.07257511466741562, -0.7967076897621155, -0.2419779747724533, 0.28500139713287354, 0.2694335877895355, -0.7553001642227173, 1.2984795570373535, 0.02090352028608322, 0.7623722553253174, 0.5047568678855896, -0.022875893861055374, 0.5587826371192932, -0.3022489547729492, -0.271278440952301, 0.06304898113012314, 0.6711522936820984, 0.9777527451515198, 0.5006796717643738, 0.07505227625370026, -0.1378658264875412, -0.07184036821126938, 0.11652779579162598, -1.3296401500701904, -0.4009186029434204, 0.1337059587240219, -0.8832818865776062, -0.5232071280479431, -0.15465809404850006, -1.0377197265625, -0.5808255672454834, -0.11525794863700867, 0.7888578772544861, -0.6104945540428162, -0.11304604262113571, 0.3532109558582306, -0.6029625535011292, 0.3446461260318756, 0.3420964479446411, -1.193628191947937, 0.3223951458930969, 0.11420746147632599, 0.9130883812904358, 0.4181322753429413, -0.22860942780971527, -0.4564671218395233, 0.16887472569942474, -0.1954612284898758, 0.9990255236625671, -0.03511054813861847, -0.2554487884044647, -0.11974450945854187, 0.2055584341287613, 0.021750951185822487, -0.5719927549362183, 1.086817979812622, -0.33243438601493835, 0.1700647473335266, -0.46183109283447266, -0.5574125647544861, -0.18818682432174683, 0.028950685635209084, -1.0978037118911743, 0.8362446427345276, 0.380693256855011, -1.1041450500488281, 0.6315413117408752, -1.055296540260315, -0.3296859860420227, -0.05983171612024307, 0.34796756505966187, -0.7430329918861389, 0.3236948251724243, 0.24705396592617035, 0.3356446921825409, -0.021459054201841354, -0.8423526287078857, -0.40869423747062683, -0.43173500895500183, 0.45286428928375244, 0.20288968086242676, 0.7987795472145081, 0.2262108474969864, -0.18472465872764587, 0.06869330257177353, -0.9577209949493408, 0.014587664976716042, 0.3099997341632843, -0.2504187524318695, -0.4107445776462555, 0.008005039766430855, 0.25288230180740356, 0.009899277240037918, 0.6260508298873901, -0.5310456156730652, 0.4484519064426422, -0.4000711739063263, 0.4859319031238556, 0.3556170165538788, 0.12406223267316818, 0.40573081374168396, -0.6223881244659424, 0.3285931348800659, 0.00104679842479527, 0.10976693034172058, 0.3346523940563202, -0.5143222212791443, -0.8546903729438782, -0.3433990776538849, 0.32446524500846863, 0.4773852527141571, -0.8286847472190857, 0.8845395445823669, -0.27520516514778137, -0.769005537033081, -0.7981210947036743, 0.3117673993110657, 0.06503497809171677, 0.4250464141368866, 0.25138163566589355, -0.3267993628978729, -0.6719028353691101, -0.9676126837730408, -0.09554314613342285, 0.0672697052359581, -0.1449112743139267, 0.2102283090353012, 0.6292968392372131, -0.18506403267383575, 0.7634845972061157, -0.4936257302761078, -0.5222579836845398, 0.023928916081786156, 0.023791037499904633, 0.5020819306373596, 0.31428641080856323, 1.1839786767959595, -0.7268319725990295, -0.3200068473815918, -0.10352595150470734, -0.5578092932701111, -0.4053979218006134, 0.1081375852227211, -0.360525906085968, -0.13475486636161804, 0.4525723159313202, -0.5949096083641052, 0.4650607407093048, 0.9553003907203674, -0.8665952086448669, 0.29238733649253845, -0.5147303938865662, 0.09595673531293869, -1.2581229209899902, 0.3194958567619324, 0.14998675882816315, -0.5327078104019165, -0.49592530727386475, 0.3677521049976349, 0.25649377703666687, 0.3782847225666046, -0.37484627962112427, 0.6853320598602295, -0.4384911358356476, -0.4019046127796173, -0.4009932577610016, 0.4669032096862793, 0.26642441749572754, 0.1388004869222641, -0.009051697328686714, 0.6939446330070496, 0.6112837195396423, -0.5239607095718384, 0.6683706045150757, 0.6905604004859924, -0.5725197196006775, 0.8597923517227173, -1.0835169553756714, -0.06039629131555557, 0.0002995413669850677, 0.2257779985666275, -0.8586186766624451, -0.4655841588973999, 0.5173178911209106, -0.3412216901779175, -0.15367859601974487, -0.32934191823005676, -0.7286837100982666, -0.30269959568977356, -0.6404894590377808, 0.5798153281211853, 0.6912283301353455, -0.7537631392478943, 0.2266055941581726, 0.27879559993743896, 0.004361318424344063, -0.18099349737167358, -1.1492208242416382, -0.042737141251564026, -0.7536535263061523, -0.33136141300201416, 0.37241271138191223, -0.3504445552825928, 0.10690517723560333, -0.1752636432647705, 0.24990983307361603, -0.13890112936496735, -0.03023521788418293, 0.40513527393341064, 0.2402758151292801, -0.10148438811302185, -0.1899556964635849, 0.24112500250339508, 0.2641771733760834, -0.33392518758773804, 0.19973503053188324, 0.8280535340309143, -0.0459616556763649, 0.13365741074085236, -0.6631694436073303, -0.2633329927921295, 0.46200987696647644, 0.06384412199258804, 0.6488428711891174, 0.7747216820716858, -0.6046379208564758, 0.10960637778043747, -0.35752585530281067, -0.05491426959633827, -0.519571840763092, 0.3836084306240082, -0.48330843448638916, -0.5247876644134521, 0.8245975971221924, 0.01538124680519104, 0.01289438083767891, 0.7745432257652283, 0.6971388459205627, -0.31157100200653076, 0.9500080347061157, 0.4019159972667694, -0.22785590589046478, 0.6406366229057312, -0.38369008898735046, -0.2555505931377411, -1.0264500379562378, -0.15299679338932037, -0.5421343445777893, -0.6925366520881653, -0.6983683109283447, -0.30334368348121643, 0.05354132503271103, 0.7985401749610901, -0.48424914479255676, 0.6136667132377625, -0.4851422607898712, 0.535213828086853, 0.39432117342948914, 0.5742529034614563, 0.07958566397428513, 0.29633551836013794, 0.28325775265693665, -0.23262305557727814, -0.4591781795024872, -0.2500273883342743, 1.107140064239502, 0.760993242263794, 1.1479859352111816, 0.4213455319404602, 0.5460024476051331, 0.14639337360858917, 0.0025377916172146797, -0.9869945049285889, 0.3645668923854828, -0.6917136907577515, -0.6631436944007874, -0.37293389439582825, -0.3226422667503357, -1.3754338026046753, -0.27984488010406494, -0.4838193655014038, -0.7806494235992432, 0.039619624614715576, 0.3226628601551056, -0.22714664041996002, 0.049156252294778824, -0.7571632862091064, 0.630547285079956, -0.20462903380393982, -0.038276247680187225, -0.4011897146701813, -0.19407151639461517, 0.16700801253318787, -0.08812706172466278, 0.023091183975338936, -0.3320058584213257, -0.40448206663131714, 0.8572710156440735, -0.5232663750648499, 0.8523094058036804, -0.3401370942592621, -0.3943641781806946, 0.19380632042884827, -0.11012233048677444, 0.3972219228744507, 0.10570386052131653, -0.2348279058933258, 0.054778553545475006, 0.06969892978668213, -0.6432363986968994, -0.40656158328056335, 0.6145356297492981, -1.083407998085022, 0.25468680262565613, -0.1477729231119156, -0.5545597672462463, 0.026610147207975388, 0.45904943346977234, 0.7727157473564148, 0.37058475613594055, -0.028406839817762375, 0.2133292257785797, 0.8530793786048889, -0.14154168963432312, 0.2618671953678131, 0.4431237280368805, -0.590100109577179, -0.47554075717926025, 0.865809977054596, -0.06267295032739639, 0.230839341878891, 0.40977972745895386, 0.32729679346084595, -0.4241006076335907, -0.5535334348678589, -0.3304124176502228, 0.5521419048309326, -0.5341290831565857, -0.42626017332077026, 0.14496760070323944, -0.30132219195365906, -0.24520494043827057, -0.11953175067901611, -0.35484543442726135, -0.6463387608528137, -0.8791261911392212, 0.11413085460662842, 1.0241615772247314, 0.906604528427124, -0.08359131962060928, 0.8710431456565857, -0.523829996585846, 0.7793079018592834, 0.3437744379043579, 0.836398184299469, -0.5383643507957458, -1.0035786628723145, -0.25050050020217896, 0.24032260477542877, -0.2897043228149414, -0.5823912024497986, 0.26275870203971863, 0.5000013113021851, 0.08415225148200989, 0.6086232662200928, -0.3918900787830353, 0.8631470203399658, -0.5778682231903076, 0.7218894362449646, 0.5114685893058777, -0.7077304124832153, 0.7942495346069336, -0.5276620388031006, 0.3508303463459015, 0.626103401184082, -0.04237976297736168, -0.35804420709609985, 0.05446436256170273, -0.5263782739639282, -0.5764230489730835, 0.5543842315673828, 0.26289424300193787, 0.19846604764461517, 0.5955237746238708, 0.8210105895996094, 0.11929637938737869, 0.047862306237220764, -1.0337120294570923, -0.25053027272224426, -0.4797367751598358, -0.5860288739204407, -0.147610142827034, -0.25693538784980774, -0.23899956047534943, -0.19108694791793823, 0.46711233258247375, -0.39252784848213196, 0.22040165960788727, 0.14244073629379272, -0.05119101703166962, -0.5607662796974182, -0.1845368891954422, 0.8969934582710266, 0.3998969793319702, -0.726736307144165, -0.4665580093860626, 0.15384049713611603, -0.5185115933418274, -0.36429306864738464, 0.11535442620515823, -0.1327723115682602, -0.00019232454360462725, 0.4515375792980194, 1.3026020526885986, 0.3894568681716919, -0.5108023881912231, 0.45284920930862427, -0.18492525815963745, -0.3464229702949524, -0.3544192612171173, 0.25107601284980774, -0.015600032173097134, 0.22260259091854095, 0.2710406482219696, 0.06317445635795593, 0.3238498866558075, -0.6051633358001709, 0.0025788783095777035, 0.5102382302284241, -0.3882150650024414, -0.4299566447734833, 0.6664438843727112, 0.1428368091583252, -0.20496529340744019, 0.28214505314826965, -0.166678324341774, -0.14454056322574615, 0.5902183055877686, 0.5469414591789246, 0.5082122683525085, -0.2561113238334656, 0.17945502698421478, 0.502728283405304, 0.24392928183078766, -0.2745174169540405, 0.9149248003959656, 0.5620666146278381, -1.0093629360198975, -0.13063381612300873, -0.5657750964164734, -0.4260327219963074, 0.32767412066459656, -0.7661476135253906, 0.7172775864601135, -0.6629073619842529, -0.2733125686645508, 0.3093109726905823, 0.2773773968219757, -0.6985191106796265, 0.40108391642570496, 0.04961375892162323, 1.5030101537704468, -0.9459516406059265, 0.7201772332191467, 0.9824938178062439, -0.4577242136001587, -0.721796989440918, -0.08906347304582596, -0.31001827120780945, -1.336540699005127, 0.41607996821403503, 0.10311150550842285, 0.34529736638069153, -0.012707805261015892, -1.1791218519210815, -0.8602378368377686, 1.3413044214248657, 0.29876837134361267, -0.6248912811279297, -0.23647193610668182, 0.1615971177816391, 0.6747204065322876, -0.35996127128601074, 0.17659011483192444, 0.5200672745704651, 0.3979205787181854, 0.1357899308204651, -1.0836710929870605, -0.15953420102596283, -0.1702476292848587, 0.013578626327216625, 0.02327585220336914, -1.205098032951355, 0.7437101006507874, -0.06771409511566162, 0.3246707618236542, 0.8725242614746094, 0.6028770208358765, 0.592888593673706, 0.10636091977357864, 0.7409055233001709, 0.6962166428565979, 0.5246124267578125, -0.1509091854095459, 0.8696273565292358, -0.19856232404708862, 0.5822189450263977, 1.2116411924362183, -0.19867701828479767, 0.7793917059898376, 0.6045182347297668, -0.12802128493785858, 0.47536519169807434, 0.9268646240234375, -0.557881772518158, 0.6397913098335266, 0.3368261456489563, 0.22950339317321777, 0.33709999918937683, -0.2166217863559723, -0.2629725933074951, 0.5637958645820618, 0.8009296655654907, -0.2147839516401291, -0.1579599380493164, -0.14809805154800415, 0.035384319722652435, -0.18435746431350708, -0.8977406024932861, 0.6855769753456116, 0.033424194902181625, -0.36433592438697815, 0.716750979423523, -0.057044994086027145, 1.0995513200759888, -0.5175178647041321, 0.06746360659599304, -0.21248355507850647, 0.03768070042133331, -0.5762719511985779, -1.1773905754089355, 0.040904246270656586, -0.0011192900128662586, -0.043183162808418274, 0.14857147634029388, 0.9097841382026672, -0.48832446336746216, -0.8612237572669983, 0.2587282359600067, 0.008182085119187832, 0.29239967465400696, 0.2768956124782562, -1.069633960723877, 0.11639343947172165, 0.10361282527446747, -0.13492055237293243, -0.1844174861907959, 0.6370447278022766, 0.22173504531383514, 0.6873096227645874, -0.01124073937535286, 0.42471396923065186, 0.279389351606369, 0.527229368686676, 0.6991403102874756, -0.517015278339386, -0.2726317346096039, -0.4660957455635071, 0.48117586970329285, -0.3990887701511383, -0.5648936629295349, 0.5633822679519653, 0.7532922625541687, 0.2923586070537567, -0.24067263305187225, 0.6184042692184448, -0.21345214545726776, 0.7892580628395081, -0.8999989032745361, 0.8582858443260193, -0.7870886325836182, -0.2801588177680969, -0.45403730869293213, -0.9243209362030029, -0.31386515498161316, 0.8490456938743591, 0.23092196881771088, -0.18315573036670685, 0.35328829288482666, 0.6349411606788635, -0.25757941603660583, -0.23979902267456055, -0.028792647644877434, 0.4499317407608032, 0.0673442855477333, 0.48727166652679443, 0.380006343126297, -1.0236011743545532, 0.3667035400867462, -0.18876804411411285, -0.2812896966934204, -0.43531396985054016, -1.0145171880722046, -1.3107025623321533, -0.6283997297286987, -0.5059919953346252, -0.6009654998779297, -0.2359517216682434, 0.8386974334716797, 0.7413730621337891, -0.8994783759117126, -0.09334664791822433, -0.059296347200870514, -0.1901833415031433, 0.4126102328300476, -0.24232357740402222, 0.3569203317165375, 0.17033544182777405, -0.8781063556671143, -0.1041618287563324, -0.1423710286617279, 0.6747249960899353, 0.050159309059381485, -0.16118793189525604, 0.0445394366979599, 0.06773961335420609, 0.41000011563301086, 0.5291001796722412, -0.5278213024139404, -0.6568941473960876, -0.45085838437080383, 0.012389547191560268, -0.008608430624008179, 0.3490225374698639, -0.31500527262687683, 0.033440664410591125, 0.36497926712036133, 0.0917862206697464, 0.41492366790771484, 0.04133842885494232, 0.1084633320569992, -1.0238463878631592, 0.5584304332733154, -0.1917734295129776, 0.5542654395103455, 0.218906968832016, -0.10155978798866272, 0.6668183207511902, -0.058425262570381165, -0.6004221439361572, -0.6337960958480835, -0.03404195234179497, -1.6513137817382812, 0.022531984373927116, 1.214712142944336, 0.28442099690437317, -0.04942767322063446, 0.4867441952228546, -0.7727201581001282, 0.33713066577911377, -0.31285178661346436, 0.9056673049926758, 0.6323042511940002, -0.05128759145736694, -0.5413132905960083, -0.3331635296344757, 0.6223220229148865, 0.31464874744415283, -1.0547797679901123, -0.2664695084095001, 0.40263548493385315, 0.561106264591217, 0.30836835503578186, 0.4088280498981476, -0.14504796266555786, 0.2779499292373657, -0.21147342026233673, -0.016350599005818367, 0.5155872106552124, 0.07578703761100769, -0.3854964077472687, -0.5268344879150391, 0.41747331619262695, -0.36597785353660583 ]
intfloat/multilingual-e5-base
intfloat
"2023-09-08T08:05:30Z"
56,483
124
sentence-transformers
[ "sentence-transformers", "pytorch", "onnx", "safetensors", "xlm-roberta", "mteb", "Sentence Transformers", "sentence-similarity", "multilingual", "af", "am", "ar", "as", "az", "be", "bg", "bn", "br", "bs", "ca", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "om", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sa", "sd", "si", "sk", "sl", "so", "sq", "sr", "su", "sv", "sw", "ta", "te", "th", "tl", "tr", "ug", "uk", "ur", "uz", "vi", "xh", "yi", "zh", "arxiv:2212.03533", "arxiv:2108.08787", "arxiv:2104.08663", "arxiv:2210.07316", "license:mit", "model-index", "endpoints_compatible", "has_space", "region:us" ]
sentence-similarity
"2023-05-19T10:26:40Z"
--- tags: - mteb - Sentence Transformers - sentence-similarity - sentence-transformers model-index: - name: multilingual-e5-base results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 78.97014925373135 - type: ap value: 43.69351129103008 - type: f1 value: 73.38075030070492 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (de) config: de split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 71.7237687366167 - type: ap value: 82.22089859962671 - type: f1 value: 69.95532758884401 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en-ext) config: en-ext split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 79.65517241379312 - type: ap value: 28.507918657094738 - type: f1 value: 66.84516013726119 - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (ja) config: ja split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 73.32976445396146 - type: ap value: 20.720481637566014 - type: f1 value: 59.78002763416003 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 90.63775 - type: ap value: 87.22277903861716 - type: f1 value: 90.60378636386807 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 44.546 - type: f1 value: 44.05666638370923 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (de) config: de split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 41.828 - type: f1 value: 41.2710255644252 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (es) config: es split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 40.534 - type: f1 value: 39.820743174270326 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (fr) config: fr split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 39.684 - type: f1 value: 39.11052682815307 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (ja) config: ja split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 37.436 - type: f1 value: 37.07082931930871 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 37.226000000000006 - type: f1 value: 36.65372077739185 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 22.831000000000003 - type: map_at_10 value: 36.42 - type: map_at_100 value: 37.699 - type: map_at_1000 value: 37.724000000000004 - type: map_at_3 value: 32.207 - type: map_at_5 value: 34.312 - type: mrr_at_1 value: 23.257 - type: mrr_at_10 value: 36.574 - type: mrr_at_100 value: 37.854 - type: mrr_at_1000 value: 37.878 - type: mrr_at_3 value: 32.385000000000005 - type: mrr_at_5 value: 34.48 - type: ndcg_at_1 value: 22.831000000000003 - type: ndcg_at_10 value: 44.230000000000004 - type: ndcg_at_100 value: 49.974000000000004 - type: ndcg_at_1000 value: 50.522999999999996 - type: ndcg_at_3 value: 35.363 - type: ndcg_at_5 value: 39.164 - type: precision_at_1 value: 22.831000000000003 - type: precision_at_10 value: 6.935 - type: precision_at_100 value: 0.9520000000000001 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 14.841 - type: precision_at_5 value: 10.754 - type: recall_at_1 value: 22.831000000000003 - type: recall_at_10 value: 69.346 - type: recall_at_100 value: 95.235 - type: recall_at_1000 value: 99.36 - type: recall_at_3 value: 44.523 - type: recall_at_5 value: 53.769999999999996 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 40.27789869854063 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 35.41979463347428 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 58.22752045109304 - type: mrr value: 71.51112430198303 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 84.71147646622866 - type: cos_sim_spearman value: 85.059167046486 - type: euclidean_pearson value: 75.88421613600647 - type: euclidean_spearman value: 75.12821787150585 - type: manhattan_pearson value: 75.22005646957604 - type: manhattan_spearman value: 74.42880434453272 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (de-en) config: de-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 99.23799582463465 - type: f1 value: 99.12665274878218 - type: precision value: 99.07098121085595 - type: recall value: 99.23799582463465 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (fr-en) config: fr-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 97.88685890380806 - type: f1 value: 97.59336708489249 - type: precision value: 97.44662117543473 - type: recall value: 97.88685890380806 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (ru-en) config: ru-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 97.47142362313821 - type: f1 value: 97.1989377670015 - type: precision value: 97.06384944001847 - type: recall value: 97.47142362313821 - task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (zh-en) config: zh-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics: - type: accuracy value: 98.4728804634018 - type: f1 value: 98.2973494821836 - type: precision value: 98.2095839915745 - type: recall value: 98.4728804634018 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 82.74025974025975 - type: f1 value: 82.67420447730439 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 35.0380848063507 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 29.45956405670166 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.122 - type: map_at_10 value: 42.03 - type: map_at_100 value: 43.364000000000004 - type: map_at_1000 value: 43.474000000000004 - type: map_at_3 value: 38.804 - type: map_at_5 value: 40.585 - type: mrr_at_1 value: 39.914 - type: mrr_at_10 value: 48.227 - type: mrr_at_100 value: 49.018 - type: mrr_at_1000 value: 49.064 - type: mrr_at_3 value: 45.994 - type: mrr_at_5 value: 47.396 - type: ndcg_at_1 value: 39.914 - type: ndcg_at_10 value: 47.825 - type: ndcg_at_100 value: 52.852 - type: ndcg_at_1000 value: 54.891 - type: ndcg_at_3 value: 43.517 - type: ndcg_at_5 value: 45.493 - type: precision_at_1 value: 39.914 - type: precision_at_10 value: 8.956 - type: precision_at_100 value: 1.388 - type: precision_at_1000 value: 0.182 - type: precision_at_3 value: 20.791999999999998 - type: precision_at_5 value: 14.821000000000002 - type: recall_at_1 value: 32.122 - type: recall_at_10 value: 58.294999999999995 - type: recall_at_100 value: 79.726 - type: recall_at_1000 value: 93.099 - type: recall_at_3 value: 45.017 - type: recall_at_5 value: 51.002 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.677999999999997 - type: map_at_10 value: 38.684000000000005 - type: map_at_100 value: 39.812999999999995 - type: map_at_1000 value: 39.945 - type: map_at_3 value: 35.831 - type: map_at_5 value: 37.446 - type: mrr_at_1 value: 37.771 - type: mrr_at_10 value: 44.936 - type: mrr_at_100 value: 45.583 - type: mrr_at_1000 value: 45.634 - type: mrr_at_3 value: 42.771 - type: mrr_at_5 value: 43.994 - type: ndcg_at_1 value: 37.771 - type: ndcg_at_10 value: 44.059 - type: ndcg_at_100 value: 48.192 - type: ndcg_at_1000 value: 50.375 - type: ndcg_at_3 value: 40.172000000000004 - type: ndcg_at_5 value: 41.899 - type: precision_at_1 value: 37.771 - type: precision_at_10 value: 8.286999999999999 - type: precision_at_100 value: 1.322 - type: precision_at_1000 value: 0.178 - type: precision_at_3 value: 19.406000000000002 - type: precision_at_5 value: 13.745 - type: recall_at_1 value: 29.677999999999997 - type: recall_at_10 value: 53.071 - type: recall_at_100 value: 70.812 - type: recall_at_1000 value: 84.841 - type: recall_at_3 value: 41.016000000000005 - type: recall_at_5 value: 46.22 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 42.675000000000004 - type: map_at_10 value: 53.93599999999999 - type: map_at_100 value: 54.806999999999995 - type: map_at_1000 value: 54.867 - type: map_at_3 value: 50.934000000000005 - type: map_at_5 value: 52.583 - type: mrr_at_1 value: 48.339 - type: mrr_at_10 value: 57.265 - type: mrr_at_100 value: 57.873 - type: mrr_at_1000 value: 57.906 - type: mrr_at_3 value: 55.193000000000005 - type: mrr_at_5 value: 56.303000000000004 - type: ndcg_at_1 value: 48.339 - type: ndcg_at_10 value: 59.19799999999999 - type: ndcg_at_100 value: 62.743 - type: ndcg_at_1000 value: 63.99399999999999 - type: ndcg_at_3 value: 54.367 - type: ndcg_at_5 value: 56.548 - type: precision_at_1 value: 48.339 - type: precision_at_10 value: 9.216000000000001 - type: precision_at_100 value: 1.1809999999999998 - type: precision_at_1000 value: 0.134 - type: precision_at_3 value: 23.72 - type: precision_at_5 value: 16.025 - type: recall_at_1 value: 42.675000000000004 - type: recall_at_10 value: 71.437 - type: recall_at_100 value: 86.803 - type: recall_at_1000 value: 95.581 - type: recall_at_3 value: 58.434 - type: recall_at_5 value: 63.754 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.518 - type: map_at_10 value: 30.648999999999997 - type: map_at_100 value: 31.508999999999997 - type: map_at_1000 value: 31.604 - type: map_at_3 value: 28.247 - type: map_at_5 value: 29.65 - type: mrr_at_1 value: 25.650000000000002 - type: mrr_at_10 value: 32.771 - type: mrr_at_100 value: 33.554 - type: mrr_at_1000 value: 33.629999999999995 - type: mrr_at_3 value: 30.433 - type: mrr_at_5 value: 31.812 - type: ndcg_at_1 value: 25.650000000000002 - type: ndcg_at_10 value: 34.929 - type: ndcg_at_100 value: 39.382 - type: ndcg_at_1000 value: 41.913 - type: ndcg_at_3 value: 30.292 - type: ndcg_at_5 value: 32.629999999999995 - type: precision_at_1 value: 25.650000000000002 - type: precision_at_10 value: 5.311 - type: precision_at_100 value: 0.792 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 12.58 - type: precision_at_5 value: 8.994 - type: recall_at_1 value: 23.518 - type: recall_at_10 value: 46.19 - type: recall_at_100 value: 67.123 - type: recall_at_1000 value: 86.442 - type: recall_at_3 value: 33.678000000000004 - type: recall_at_5 value: 39.244 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 15.891 - type: map_at_10 value: 22.464000000000002 - type: map_at_100 value: 23.483 - type: map_at_1000 value: 23.613 - type: map_at_3 value: 20.080000000000002 - type: map_at_5 value: 21.526 - type: mrr_at_1 value: 20.025000000000002 - type: mrr_at_10 value: 26.712999999999997 - type: mrr_at_100 value: 27.650000000000002 - type: mrr_at_1000 value: 27.737000000000002 - type: mrr_at_3 value: 24.274 - type: mrr_at_5 value: 25.711000000000002 - type: ndcg_at_1 value: 20.025000000000002 - type: ndcg_at_10 value: 27.028999999999996 - type: ndcg_at_100 value: 32.064 - type: ndcg_at_1000 value: 35.188 - type: ndcg_at_3 value: 22.512999999999998 - type: ndcg_at_5 value: 24.89 - type: precision_at_1 value: 20.025000000000002 - type: precision_at_10 value: 4.776 - type: precision_at_100 value: 0.8500000000000001 - type: precision_at_1000 value: 0.125 - type: precision_at_3 value: 10.531 - type: precision_at_5 value: 7.811 - type: recall_at_1 value: 15.891 - type: recall_at_10 value: 37.261 - type: recall_at_100 value: 59.12 - type: recall_at_1000 value: 81.356 - type: recall_at_3 value: 24.741 - type: recall_at_5 value: 30.753999999999998 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.544 - type: map_at_10 value: 36.283 - type: map_at_100 value: 37.467 - type: map_at_1000 value: 37.574000000000005 - type: map_at_3 value: 33.528999999999996 - type: map_at_5 value: 35.028999999999996 - type: mrr_at_1 value: 34.166999999999994 - type: mrr_at_10 value: 41.866 - type: mrr_at_100 value: 42.666 - type: mrr_at_1000 value: 42.716 - type: mrr_at_3 value: 39.541 - type: mrr_at_5 value: 40.768 - type: ndcg_at_1 value: 34.166999999999994 - type: ndcg_at_10 value: 41.577 - type: ndcg_at_100 value: 46.687 - type: ndcg_at_1000 value: 48.967 - type: ndcg_at_3 value: 37.177 - type: ndcg_at_5 value: 39.097 - type: precision_at_1 value: 34.166999999999994 - type: precision_at_10 value: 7.420999999999999 - type: precision_at_100 value: 1.165 - type: precision_at_1000 value: 0.154 - type: precision_at_3 value: 17.291999999999998 - type: precision_at_5 value: 12.166 - type: recall_at_1 value: 27.544 - type: recall_at_10 value: 51.99399999999999 - type: recall_at_100 value: 73.738 - type: recall_at_1000 value: 89.33 - type: recall_at_3 value: 39.179 - type: recall_at_5 value: 44.385999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.661 - type: map_at_10 value: 35.475 - type: map_at_100 value: 36.626999999999995 - type: map_at_1000 value: 36.741 - type: map_at_3 value: 32.818000000000005 - type: map_at_5 value: 34.397 - type: mrr_at_1 value: 32.647999999999996 - type: mrr_at_10 value: 40.784 - type: mrr_at_100 value: 41.602 - type: mrr_at_1000 value: 41.661 - type: mrr_at_3 value: 38.68 - type: mrr_at_5 value: 39.838 - type: ndcg_at_1 value: 32.647999999999996 - type: ndcg_at_10 value: 40.697 - type: ndcg_at_100 value: 45.799 - type: ndcg_at_1000 value: 48.235 - type: ndcg_at_3 value: 36.516 - type: ndcg_at_5 value: 38.515 - type: precision_at_1 value: 32.647999999999996 - type: precision_at_10 value: 7.202999999999999 - type: precision_at_100 value: 1.1360000000000001 - type: precision_at_1000 value: 0.151 - type: precision_at_3 value: 17.314 - type: precision_at_5 value: 12.145999999999999 - type: recall_at_1 value: 26.661 - type: recall_at_10 value: 50.995000000000005 - type: recall_at_100 value: 73.065 - type: recall_at_1000 value: 89.781 - type: recall_at_3 value: 39.073 - type: recall_at_5 value: 44.395 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.946583333333333 - type: map_at_10 value: 33.79725 - type: map_at_100 value: 34.86408333333333 - type: map_at_1000 value: 34.9795 - type: map_at_3 value: 31.259999999999998 - type: map_at_5 value: 32.71541666666666 - type: mrr_at_1 value: 30.863749999999996 - type: mrr_at_10 value: 37.99183333333333 - type: mrr_at_100 value: 38.790499999999994 - type: mrr_at_1000 value: 38.85575000000001 - type: mrr_at_3 value: 35.82083333333333 - type: mrr_at_5 value: 37.07533333333333 - type: ndcg_at_1 value: 30.863749999999996 - type: ndcg_at_10 value: 38.52141666666667 - type: ndcg_at_100 value: 43.17966666666667 - type: ndcg_at_1000 value: 45.64608333333333 - type: ndcg_at_3 value: 34.333000000000006 - type: ndcg_at_5 value: 36.34975 - type: precision_at_1 value: 30.863749999999996 - type: precision_at_10 value: 6.598999999999999 - type: precision_at_100 value: 1.0502500000000001 - type: precision_at_1000 value: 0.14400000000000002 - type: precision_at_3 value: 15.557583333333334 - type: precision_at_5 value: 11.020000000000001 - type: recall_at_1 value: 25.946583333333333 - type: recall_at_10 value: 48.36991666666666 - type: recall_at_100 value: 69.02408333333334 - type: recall_at_1000 value: 86.43858333333331 - type: recall_at_3 value: 36.4965 - type: recall_at_5 value: 41.76258333333334 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.431 - type: map_at_10 value: 28.889 - type: map_at_100 value: 29.642000000000003 - type: map_at_1000 value: 29.742 - type: map_at_3 value: 26.998 - type: map_at_5 value: 28.172000000000004 - type: mrr_at_1 value: 25.307000000000002 - type: mrr_at_10 value: 31.763 - type: mrr_at_100 value: 32.443 - type: mrr_at_1000 value: 32.531 - type: mrr_at_3 value: 29.959000000000003 - type: mrr_at_5 value: 31.063000000000002 - type: ndcg_at_1 value: 25.307000000000002 - type: ndcg_at_10 value: 32.586999999999996 - type: ndcg_at_100 value: 36.5 - type: ndcg_at_1000 value: 39.133 - type: ndcg_at_3 value: 29.25 - type: ndcg_at_5 value: 31.023 - type: precision_at_1 value: 25.307000000000002 - type: precision_at_10 value: 4.954 - type: precision_at_100 value: 0.747 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 12.577 - type: precision_at_5 value: 8.741999999999999 - type: recall_at_1 value: 22.431 - type: recall_at_10 value: 41.134 - type: recall_at_100 value: 59.28600000000001 - type: recall_at_1000 value: 78.857 - type: recall_at_3 value: 31.926 - type: recall_at_5 value: 36.335 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.586 - type: map_at_10 value: 23.304 - type: map_at_100 value: 24.159 - type: map_at_1000 value: 24.281 - type: map_at_3 value: 21.316 - type: map_at_5 value: 22.383 - type: mrr_at_1 value: 21.645 - type: mrr_at_10 value: 27.365000000000002 - type: mrr_at_100 value: 28.108 - type: mrr_at_1000 value: 28.192 - type: mrr_at_3 value: 25.482 - type: mrr_at_5 value: 26.479999999999997 - type: ndcg_at_1 value: 21.645 - type: ndcg_at_10 value: 27.306 - type: ndcg_at_100 value: 31.496000000000002 - type: ndcg_at_1000 value: 34.53 - type: ndcg_at_3 value: 23.73 - type: ndcg_at_5 value: 25.294 - type: precision_at_1 value: 21.645 - type: precision_at_10 value: 4.797 - type: precision_at_100 value: 0.8059999999999999 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 10.850999999999999 - type: precision_at_5 value: 7.736 - type: recall_at_1 value: 17.586 - type: recall_at_10 value: 35.481 - type: recall_at_100 value: 54.534000000000006 - type: recall_at_1000 value: 76.456 - type: recall_at_3 value: 25.335 - type: recall_at_5 value: 29.473 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.095 - type: map_at_10 value: 32.374 - type: map_at_100 value: 33.537 - type: map_at_1000 value: 33.634 - type: map_at_3 value: 30.089 - type: map_at_5 value: 31.433 - type: mrr_at_1 value: 29.198 - type: mrr_at_10 value: 36.01 - type: mrr_at_100 value: 37.022 - type: mrr_at_1000 value: 37.083 - type: mrr_at_3 value: 33.94 - type: mrr_at_5 value: 35.148 - type: ndcg_at_1 value: 29.198 - type: ndcg_at_10 value: 36.729 - type: ndcg_at_100 value: 42.114000000000004 - type: ndcg_at_1000 value: 44.592 - type: ndcg_at_3 value: 32.644 - type: ndcg_at_5 value: 34.652 - type: precision_at_1 value: 29.198 - type: precision_at_10 value: 5.970000000000001 - type: precision_at_100 value: 0.967 - type: precision_at_1000 value: 0.129 - type: precision_at_3 value: 14.396999999999998 - type: precision_at_5 value: 10.093 - type: recall_at_1 value: 25.095 - type: recall_at_10 value: 46.392 - type: recall_at_100 value: 69.706 - type: recall_at_1000 value: 87.738 - type: recall_at_3 value: 35.303000000000004 - type: recall_at_5 value: 40.441 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.857999999999997 - type: map_at_10 value: 34.066 - type: map_at_100 value: 35.671 - type: map_at_1000 value: 35.881 - type: map_at_3 value: 31.304 - type: map_at_5 value: 32.885 - type: mrr_at_1 value: 32.411 - type: mrr_at_10 value: 38.987 - type: mrr_at_100 value: 39.894 - type: mrr_at_1000 value: 39.959 - type: mrr_at_3 value: 36.626999999999995 - type: mrr_at_5 value: 38.011 - type: ndcg_at_1 value: 32.411 - type: ndcg_at_10 value: 39.208 - type: ndcg_at_100 value: 44.626 - type: ndcg_at_1000 value: 47.43 - type: ndcg_at_3 value: 35.091 - type: ndcg_at_5 value: 37.119 - type: precision_at_1 value: 32.411 - type: precision_at_10 value: 7.51 - type: precision_at_100 value: 1.486 - type: precision_at_1000 value: 0.234 - type: precision_at_3 value: 16.14 - type: precision_at_5 value: 11.976 - type: recall_at_1 value: 26.857999999999997 - type: recall_at_10 value: 47.407 - type: recall_at_100 value: 72.236 - type: recall_at_1000 value: 90.77 - type: recall_at_3 value: 35.125 - type: recall_at_5 value: 40.522999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 21.3 - type: map_at_10 value: 27.412999999999997 - type: map_at_100 value: 28.29 - type: map_at_1000 value: 28.398 - type: map_at_3 value: 25.169999999999998 - type: map_at_5 value: 26.496 - type: mrr_at_1 value: 23.29 - type: mrr_at_10 value: 29.215000000000003 - type: mrr_at_100 value: 30.073 - type: mrr_at_1000 value: 30.156 - type: mrr_at_3 value: 26.956000000000003 - type: mrr_at_5 value: 28.38 - type: ndcg_at_1 value: 23.29 - type: ndcg_at_10 value: 31.113000000000003 - type: ndcg_at_100 value: 35.701 - type: ndcg_at_1000 value: 38.505 - type: ndcg_at_3 value: 26.727 - type: ndcg_at_5 value: 29.037000000000003 - type: precision_at_1 value: 23.29 - type: precision_at_10 value: 4.787 - type: precision_at_100 value: 0.763 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 11.091 - type: precision_at_5 value: 7.985 - type: recall_at_1 value: 21.3 - type: recall_at_10 value: 40.782000000000004 - type: recall_at_100 value: 62.13999999999999 - type: recall_at_1000 value: 83.012 - type: recall_at_3 value: 29.131 - type: recall_at_5 value: 34.624 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 9.631 - type: map_at_10 value: 16.634999999999998 - type: map_at_100 value: 18.23 - type: map_at_1000 value: 18.419 - type: map_at_3 value: 13.66 - type: map_at_5 value: 15.173 - type: mrr_at_1 value: 21.368000000000002 - type: mrr_at_10 value: 31.56 - type: mrr_at_100 value: 32.58 - type: mrr_at_1000 value: 32.633 - type: mrr_at_3 value: 28.241 - type: mrr_at_5 value: 30.225 - type: ndcg_at_1 value: 21.368000000000002 - type: ndcg_at_10 value: 23.855999999999998 - type: ndcg_at_100 value: 30.686999999999998 - type: ndcg_at_1000 value: 34.327000000000005 - type: ndcg_at_3 value: 18.781 - type: ndcg_at_5 value: 20.73 - type: precision_at_1 value: 21.368000000000002 - type: precision_at_10 value: 7.564 - type: precision_at_100 value: 1.496 - type: precision_at_1000 value: 0.217 - type: precision_at_3 value: 13.876 - type: precision_at_5 value: 11.062 - type: recall_at_1 value: 9.631 - type: recall_at_10 value: 29.517 - type: recall_at_100 value: 53.452 - type: recall_at_1000 value: 74.115 - type: recall_at_3 value: 17.605999999999998 - type: recall_at_5 value: 22.505 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.885 - type: map_at_10 value: 18.798000000000002 - type: map_at_100 value: 26.316 - type: map_at_1000 value: 27.869 - type: map_at_3 value: 13.719000000000001 - type: map_at_5 value: 15.716 - type: mrr_at_1 value: 66 - type: mrr_at_10 value: 74.263 - type: mrr_at_100 value: 74.519 - type: mrr_at_1000 value: 74.531 - type: mrr_at_3 value: 72.458 - type: mrr_at_5 value: 73.321 - type: ndcg_at_1 value: 53.87499999999999 - type: ndcg_at_10 value: 40.355999999999995 - type: ndcg_at_100 value: 44.366 - type: ndcg_at_1000 value: 51.771 - type: ndcg_at_3 value: 45.195 - type: ndcg_at_5 value: 42.187000000000005 - type: precision_at_1 value: 66 - type: precision_at_10 value: 31.75 - type: precision_at_100 value: 10.11 - type: precision_at_1000 value: 1.9800000000000002 - type: precision_at_3 value: 48.167 - type: precision_at_5 value: 40.050000000000004 - type: recall_at_1 value: 8.885 - type: recall_at_10 value: 24.471999999999998 - type: recall_at_100 value: 49.669000000000004 - type: recall_at_1000 value: 73.383 - type: recall_at_3 value: 14.872 - type: recall_at_5 value: 18.262999999999998 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 45.18 - type: f1 value: 40.26878691789978 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 62.751999999999995 - type: map_at_10 value: 74.131 - type: map_at_100 value: 74.407 - type: map_at_1000 value: 74.423 - type: map_at_3 value: 72.329 - type: map_at_5 value: 73.555 - type: mrr_at_1 value: 67.282 - type: mrr_at_10 value: 78.292 - type: mrr_at_100 value: 78.455 - type: mrr_at_1000 value: 78.458 - type: mrr_at_3 value: 76.755 - type: mrr_at_5 value: 77.839 - type: ndcg_at_1 value: 67.282 - type: ndcg_at_10 value: 79.443 - type: ndcg_at_100 value: 80.529 - type: ndcg_at_1000 value: 80.812 - type: ndcg_at_3 value: 76.281 - type: ndcg_at_5 value: 78.235 - type: precision_at_1 value: 67.282 - type: precision_at_10 value: 10.078 - type: precision_at_100 value: 1.082 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 30.178 - type: precision_at_5 value: 19.232 - type: recall_at_1 value: 62.751999999999995 - type: recall_at_10 value: 91.521 - type: recall_at_100 value: 95.997 - type: recall_at_1000 value: 97.775 - type: recall_at_3 value: 83.131 - type: recall_at_5 value: 87.93299999999999 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 18.861 - type: map_at_10 value: 30.252000000000002 - type: map_at_100 value: 32.082 - type: map_at_1000 value: 32.261 - type: map_at_3 value: 25.909 - type: map_at_5 value: 28.296 - type: mrr_at_1 value: 37.346000000000004 - type: mrr_at_10 value: 45.802 - type: mrr_at_100 value: 46.611999999999995 - type: mrr_at_1000 value: 46.659 - type: mrr_at_3 value: 43.056 - type: mrr_at_5 value: 44.637 - type: ndcg_at_1 value: 37.346000000000004 - type: ndcg_at_10 value: 38.169 - type: ndcg_at_100 value: 44.864 - type: ndcg_at_1000 value: 47.974 - type: ndcg_at_3 value: 33.619 - type: ndcg_at_5 value: 35.317 - type: precision_at_1 value: 37.346000000000004 - type: precision_at_10 value: 10.693999999999999 - type: precision_at_100 value: 1.775 - type: precision_at_1000 value: 0.231 - type: precision_at_3 value: 22.325 - type: precision_at_5 value: 16.852 - type: recall_at_1 value: 18.861 - type: recall_at_10 value: 45.672000000000004 - type: recall_at_100 value: 70.60499999999999 - type: recall_at_1000 value: 89.216 - type: recall_at_3 value: 30.361 - type: recall_at_5 value: 36.998999999999995 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 37.852999999999994 - type: map_at_10 value: 59.961 - type: map_at_100 value: 60.78 - type: map_at_1000 value: 60.843 - type: map_at_3 value: 56.39999999999999 - type: map_at_5 value: 58.646 - type: mrr_at_1 value: 75.70599999999999 - type: mrr_at_10 value: 82.321 - type: mrr_at_100 value: 82.516 - type: mrr_at_1000 value: 82.525 - type: mrr_at_3 value: 81.317 - type: mrr_at_5 value: 81.922 - type: ndcg_at_1 value: 75.70599999999999 - type: ndcg_at_10 value: 68.557 - type: ndcg_at_100 value: 71.485 - type: ndcg_at_1000 value: 72.71600000000001 - type: ndcg_at_3 value: 63.524 - type: ndcg_at_5 value: 66.338 - type: precision_at_1 value: 75.70599999999999 - type: precision_at_10 value: 14.463000000000001 - type: precision_at_100 value: 1.677 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 40.806 - type: precision_at_5 value: 26.709 - type: recall_at_1 value: 37.852999999999994 - type: recall_at_10 value: 72.316 - type: recall_at_100 value: 83.842 - type: recall_at_1000 value: 91.999 - type: recall_at_3 value: 61.209 - type: recall_at_5 value: 66.77199999999999 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 85.46039999999999 - type: ap value: 79.9812521351881 - type: f1 value: 85.31722909702084 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 22.704 - type: map_at_10 value: 35.329 - type: map_at_100 value: 36.494 - type: map_at_1000 value: 36.541000000000004 - type: map_at_3 value: 31.476 - type: map_at_5 value: 33.731 - type: mrr_at_1 value: 23.294999999999998 - type: mrr_at_10 value: 35.859 - type: mrr_at_100 value: 36.968 - type: mrr_at_1000 value: 37.008 - type: mrr_at_3 value: 32.085 - type: mrr_at_5 value: 34.299 - type: ndcg_at_1 value: 23.324 - type: ndcg_at_10 value: 42.274 - type: ndcg_at_100 value: 47.839999999999996 - type: ndcg_at_1000 value: 48.971 - type: ndcg_at_3 value: 34.454 - type: ndcg_at_5 value: 38.464 - type: precision_at_1 value: 23.324 - type: precision_at_10 value: 6.648 - type: precision_at_100 value: 0.9440000000000001 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.674999999999999 - type: precision_at_5 value: 10.850999999999999 - type: recall_at_1 value: 22.704 - type: recall_at_10 value: 63.660000000000004 - type: recall_at_100 value: 89.29899999999999 - type: recall_at_1000 value: 97.88900000000001 - type: recall_at_3 value: 42.441 - type: recall_at_5 value: 52.04 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 93.1326949384405 - type: f1 value: 92.89743579612082 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (de) config: de split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 89.62524654832347 - type: f1 value: 88.65106082263151 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (es) config: es split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 90.59039359573046 - type: f1 value: 90.31532892105662 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (fr) config: fr split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 86.21046038208581 - type: f1 value: 86.41459529813113 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (hi) config: hi split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 87.3180351380423 - type: f1 value: 86.71383078226444 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (th) config: th split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 86.24231464737792 - type: f1 value: 86.31845567592403 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 75.27131782945736 - type: f1 value: 57.52079940417103 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (de) config: de split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 71.2341504649197 - type: f1 value: 51.349951558039244 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (es) config: es split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 71.27418278852569 - type: f1 value: 50.1714985749095 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (fr) config: fr split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 67.68243031631694 - type: f1 value: 50.1066160836192 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (hi) config: hi split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 69.2362854069559 - type: f1 value: 48.821279948766424 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (th) config: th split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 71.71428571428571 - type: f1 value: 53.94611389496195 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (af) config: af split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.97646267652992 - type: f1 value: 57.26797883561521 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (am) config: am split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 53.65501008742435 - type: f1 value: 50.416258382177034 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ar) config: ar split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 57.45796906523201 - type: f1 value: 53.306690547422185 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (az) config: az split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.59246805648957 - type: f1 value: 59.818381969051494 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (bn) config: bn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.126429051782104 - type: f1 value: 58.25993593933026 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (cy) config: cy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 50.057162071284466 - type: f1 value: 46.96095728790911 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (da) config: da split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.64425016812375 - type: f1 value: 62.858291698755764 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (de) config: de split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.08944182918628 - type: f1 value: 62.44639030604241 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (el) config: el split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.68056489576328 - type: f1 value: 61.775326758789504 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 72.11163416274377 - type: f1 value: 69.70789096927015 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (es) config: es split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.40282447881641 - type: f1 value: 66.38492065671895 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fa) config: fa split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.24613315400134 - type: f1 value: 64.3348019501336 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fi) config: fi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.78345662407531 - type: f1 value: 62.21279452354622 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fr) config: fr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.9455279085407 - type: f1 value: 65.48193124964094 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (he) config: he split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.05110961667788 - type: f1 value: 58.097856564684534 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hi) config: hi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.95292535305985 - type: f1 value: 62.09182174767901 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hu) config: hu split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.97310020174848 - type: f1 value: 61.14252567730396 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hy) config: hy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.08069939475453 - type: f1 value: 57.044041742492034 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (id) config: id split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.63752521856085 - type: f1 value: 63.889340907205316 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (is) config: is split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 56.385339609952936 - type: f1 value: 53.449033750088304 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (it) config: it split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.93073301950234 - type: f1 value: 65.9884357824104 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ja) config: ja split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.94418291862812 - type: f1 value: 66.48740222583132 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (jv) config: jv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 54.26025554808339 - type: f1 value: 50.19562815100793 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ka) config: ka split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 48.98789509078682 - type: f1 value: 46.65788438676836 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (km) config: km split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 44.68728984532616 - type: f1 value: 41.642419349541996 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (kn) config: kn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.19300605245461 - type: f1 value: 55.8626492442437 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ko) config: ko split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.33826496301278 - type: f1 value: 63.89499791648792 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (lv) config: lv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.33960995292536 - type: f1 value: 57.15242464180892 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ml) config: ml split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 63.09347679892402 - type: f1 value: 59.64733214063841 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (mn) config: mn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.75924680564896 - type: f1 value: 55.96585692366827 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ms) config: ms split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.48486886348352 - type: f1 value: 59.45143559032946 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (my) config: my split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.56422326832549 - type: f1 value: 54.96368702901926 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nb) config: nb split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.18022864828512 - type: f1 value: 63.05369805040634 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nl) config: nl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.30329522528581 - type: f1 value: 64.06084612020727 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pl) config: pl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.36919973100201 - type: f1 value: 65.12154124788887 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pt) config: pt split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.98117014122394 - type: f1 value: 66.41847559806962 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ro) config: ro split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.53799596503026 - type: f1 value: 62.17067330740817 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ru) config: ru split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.01815736381977 - type: f1 value: 66.24988369607843 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sl) config: sl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 62.34700739744452 - type: f1 value: 59.957933424941636 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sq) config: sq split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.23402824478815 - type: f1 value: 57.98836976018471 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sv) config: sv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 68.54068594485541 - type: f1 value: 65.43849680666855 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sw) config: sw split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 55.998655010087425 - type: f1 value: 52.83737515406804 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ta) config: ta split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 58.71217215870882 - type: f1 value: 55.051794977833026 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (te) config: te split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 59.724277067921996 - type: f1 value: 56.33485571838306 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (th) config: th split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 65.59515803631473 - type: f1 value: 64.96772366193588 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tl) config: tl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 60.860793544048406 - type: f1 value: 58.148845819115394 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tr) config: tr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 67.40753194351043 - type: f1 value: 63.18903778054698 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ur) config: ur split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 61.52320107599194 - type: f1 value: 58.356144563398516 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (vi) config: vi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 66.17014122394083 - type: f1 value: 63.919964062638925 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 69.15601882985878 - type: f1 value: 67.01451905761371 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-TW) config: zh-TW split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 64.65030262273034 - type: f1 value: 64.14420425129063 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (af) config: af split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 65.08742434431743 - type: f1 value: 63.044060042311756 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (am) config: am split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 58.52387357094821 - type: f1 value: 56.82398588814534 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ar) config: ar split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.239408204438476 - type: f1 value: 61.92570286170469 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (az) config: az split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.74915938130463 - type: f1 value: 62.130740689396276 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (bn) config: bn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 65.00336247478144 - type: f1 value: 63.71080635228055 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (cy) config: cy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 52.837928715534645 - type: f1 value: 50.390741680320836 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (da) config: da split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.42098184263618 - type: f1 value: 71.41355113538995 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (de) config: de split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.95359784801613 - type: f1 value: 71.42699340156742 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (el) config: el split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.18157363819772 - type: f1 value: 69.74836113037671 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 77.08137188971082 - type: f1 value: 76.78000685068261 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (es) config: es split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.5030262273033 - type: f1 value: 71.71620130425673 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fa) config: fa split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.24546065904505 - type: f1 value: 69.07638311730359 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fi) config: fi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.12911903160726 - type: f1 value: 68.32651736539815 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fr) config: fr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.89307330195025 - type: f1 value: 71.33986549860187 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (he) config: he split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 67.44451916610626 - type: f1 value: 66.90192664503866 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hi) config: hi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.16274377942166 - type: f1 value: 68.01090953775066 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hu) config: hu split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.75319435104237 - type: f1 value: 70.18035309201403 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hy) config: hy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 63.14391392064559 - type: f1 value: 61.48286540778145 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (id) config: id split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.70275722932078 - type: f1 value: 70.26164779846495 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (is) config: is split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 60.93813046402153 - type: f1 value: 58.8852862116525 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (it) config: it split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.320107599193 - type: f1 value: 72.19836409602924 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ja) config: ja split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 74.65366509751176 - type: f1 value: 74.55188288799579 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (jv) config: jv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 59.694014794889036 - type: f1 value: 58.11353311721067 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ka) config: ka split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 54.37457969065231 - type: f1 value: 52.81306134311697 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (km) config: km split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 48.3086751849361 - type: f1 value: 45.396449765419376 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (kn) config: kn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.151983860121064 - type: f1 value: 60.31762544281696 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ko) config: ko split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.44788164088769 - type: f1 value: 71.68150151736367 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (lv) config: lv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.81439139206455 - type: f1 value: 62.06735559105593 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ml) config: ml split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 68.04303967720242 - type: f1 value: 66.68298851670133 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (mn) config: mn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 61.43913920645595 - type: f1 value: 60.25605977560783 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ms) config: ms split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.90316072629456 - type: f1 value: 65.1325924692381 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (my) config: my split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 61.63752521856086 - type: f1 value: 59.14284778039585 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nb) config: nb split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.63080026899797 - type: f1 value: 70.89771864626877 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nl) config: nl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.10827168796234 - type: f1 value: 71.71954219691159 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pl) config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.59515803631471 - type: f1 value: 70.05040128099003 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pt) config: pt split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.83389374579691 - type: f1 value: 70.84877936562735 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ro) config: ro split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 69.18628110289173 - type: f1 value: 68.97232927921841 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ru) config: ru split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 72.99260255548083 - type: f1 value: 72.85139492157732 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sl) config: sl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 65.26227303295225 - type: f1 value: 65.08833655469431 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sq) config: sq split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 66.48621385339611 - type: f1 value: 64.43483199071298 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sv) config: sv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 73.14391392064559 - type: f1 value: 72.2580822579741 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sw) config: sw split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 59.88567585743107 - type: f1 value: 58.3073765932569 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ta) config: ta split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.38399462004034 - type: f1 value: 60.82139544252606 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (te) config: te split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.58574310692671 - type: f1 value: 60.71443370385374 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (th) config: th split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.61398789509079 - type: f1 value: 70.99761812049401 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tl) config: tl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 62.73705447209146 - type: f1 value: 61.680849331794796 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tr) config: tr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 71.66778749159381 - type: f1 value: 71.17320646080115 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ur) config: ur split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 64.640215198386 - type: f1 value: 63.301805157015444 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (vi) config: vi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.00672494956288 - type: f1 value: 70.26005548582106 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 75.42030934767989 - type: f1 value: 75.2074842882598 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-TW) config: zh-TW split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 70.69266980497646 - type: f1 value: 70.94103167391192 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 28.91697191169135 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 28.434000079573313 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.96683513343383 - type: mrr value: 31.967364078714834 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.5280000000000005 - type: map_at_10 value: 11.793 - type: map_at_100 value: 14.496999999999998 - type: map_at_1000 value: 15.783 - type: map_at_3 value: 8.838 - type: map_at_5 value: 10.07 - type: mrr_at_1 value: 43.653 - type: mrr_at_10 value: 51.531000000000006 - type: mrr_at_100 value: 52.205 - type: mrr_at_1000 value: 52.242999999999995 - type: mrr_at_3 value: 49.431999999999995 - type: mrr_at_5 value: 50.470000000000006 - type: ndcg_at_1 value: 42.415000000000006 - type: ndcg_at_10 value: 32.464999999999996 - type: ndcg_at_100 value: 28.927999999999997 - type: ndcg_at_1000 value: 37.629000000000005 - type: ndcg_at_3 value: 37.845 - type: ndcg_at_5 value: 35.147 - type: precision_at_1 value: 43.653 - type: precision_at_10 value: 23.932000000000002 - type: precision_at_100 value: 7.17 - type: precision_at_1000 value: 1.967 - type: precision_at_3 value: 35.397 - type: precision_at_5 value: 29.907 - type: recall_at_1 value: 5.5280000000000005 - type: recall_at_10 value: 15.568000000000001 - type: recall_at_100 value: 28.54 - type: recall_at_1000 value: 59.864 - type: recall_at_3 value: 9.822000000000001 - type: recall_at_5 value: 11.726 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 37.041000000000004 - type: map_at_10 value: 52.664 - type: map_at_100 value: 53.477 - type: map_at_1000 value: 53.505 - type: map_at_3 value: 48.510999999999996 - type: map_at_5 value: 51.036 - type: mrr_at_1 value: 41.338 - type: mrr_at_10 value: 55.071000000000005 - type: mrr_at_100 value: 55.672 - type: mrr_at_1000 value: 55.689 - type: mrr_at_3 value: 51.82 - type: mrr_at_5 value: 53.852 - type: ndcg_at_1 value: 41.338 - type: ndcg_at_10 value: 60.01800000000001 - type: ndcg_at_100 value: 63.409000000000006 - type: ndcg_at_1000 value: 64.017 - type: ndcg_at_3 value: 52.44799999999999 - type: ndcg_at_5 value: 56.571000000000005 - type: precision_at_1 value: 41.338 - type: precision_at_10 value: 9.531 - type: precision_at_100 value: 1.145 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 23.416 - type: precision_at_5 value: 16.46 - type: recall_at_1 value: 37.041000000000004 - type: recall_at_10 value: 79.76299999999999 - type: recall_at_100 value: 94.39 - type: recall_at_1000 value: 98.851 - type: recall_at_3 value: 60.465 - type: recall_at_5 value: 69.906 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 69.952 - type: map_at_10 value: 83.758 - type: map_at_100 value: 84.406 - type: map_at_1000 value: 84.425 - type: map_at_3 value: 80.839 - type: map_at_5 value: 82.646 - type: mrr_at_1 value: 80.62 - type: mrr_at_10 value: 86.947 - type: mrr_at_100 value: 87.063 - type: mrr_at_1000 value: 87.064 - type: mrr_at_3 value: 85.96000000000001 - type: mrr_at_5 value: 86.619 - type: ndcg_at_1 value: 80.63 - type: ndcg_at_10 value: 87.64800000000001 - type: ndcg_at_100 value: 88.929 - type: ndcg_at_1000 value: 89.054 - type: ndcg_at_3 value: 84.765 - type: ndcg_at_5 value: 86.291 - type: precision_at_1 value: 80.63 - type: precision_at_10 value: 13.314 - type: precision_at_100 value: 1.525 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.1 - type: precision_at_5 value: 24.372 - type: recall_at_1 value: 69.952 - type: recall_at_10 value: 94.955 - type: recall_at_100 value: 99.38 - type: recall_at_1000 value: 99.96000000000001 - type: recall_at_3 value: 86.60600000000001 - type: recall_at_5 value: 90.997 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 42.41329517878427 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 55.171278362748666 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.213 - type: map_at_10 value: 9.895 - type: map_at_100 value: 11.776 - type: map_at_1000 value: 12.084 - type: map_at_3 value: 7.2669999999999995 - type: map_at_5 value: 8.620999999999999 - type: mrr_at_1 value: 20.8 - type: mrr_at_10 value: 31.112000000000002 - type: mrr_at_100 value: 32.274 - type: mrr_at_1000 value: 32.35 - type: mrr_at_3 value: 28.133000000000003 - type: mrr_at_5 value: 29.892999999999997 - type: ndcg_at_1 value: 20.8 - type: ndcg_at_10 value: 17.163999999999998 - type: ndcg_at_100 value: 24.738 - type: ndcg_at_1000 value: 30.316 - type: ndcg_at_3 value: 16.665 - type: ndcg_at_5 value: 14.478 - type: precision_at_1 value: 20.8 - type: precision_at_10 value: 8.74 - type: precision_at_100 value: 1.963 - type: precision_at_1000 value: 0.33 - type: precision_at_3 value: 15.467 - type: precision_at_5 value: 12.6 - type: recall_at_1 value: 4.213 - type: recall_at_10 value: 17.698 - type: recall_at_100 value: 39.838 - type: recall_at_1000 value: 66.893 - type: recall_at_3 value: 9.418 - type: recall_at_5 value: 12.773000000000001 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 82.90453315738294 - type: cos_sim_spearman value: 78.51197850080254 - type: euclidean_pearson value: 80.09647123597748 - type: euclidean_spearman value: 78.63548011514061 - type: manhattan_pearson value: 80.10645285675231 - type: manhattan_spearman value: 78.57861806068901 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 84.2616156846401 - type: cos_sim_spearman value: 76.69713867850156 - type: euclidean_pearson value: 77.97948563800394 - type: euclidean_spearman value: 74.2371211567807 - type: manhattan_pearson value: 77.69697879669705 - type: manhattan_spearman value: 73.86529778022278 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 77.0293269315045 - type: cos_sim_spearman value: 78.02555120584198 - type: euclidean_pearson value: 78.25398100379078 - type: euclidean_spearman value: 78.66963870599464 - type: manhattan_pearson value: 78.14314682167348 - type: manhattan_spearman value: 78.57692322969135 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 79.16989925136942 - type: cos_sim_spearman value: 76.5996225327091 - type: euclidean_pearson value: 77.8319003279786 - type: euclidean_spearman value: 76.42824009468998 - type: manhattan_pearson value: 77.69118862737736 - type: manhattan_spearman value: 76.25568104762812 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.42012286935325 - type: cos_sim_spearman value: 88.15654297884122 - type: euclidean_pearson value: 87.34082819427852 - type: euclidean_spearman value: 88.06333589547084 - type: manhattan_pearson value: 87.25115596784842 - type: manhattan_spearman value: 87.9559927695203 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 82.88222044996712 - type: cos_sim_spearman value: 84.28476589061077 - type: euclidean_pearson value: 83.17399758058309 - type: euclidean_spearman value: 83.85497357244542 - type: manhattan_pearson value: 83.0308397703786 - type: manhattan_spearman value: 83.71554539935046 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ko-ko) config: ko-ko split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 80.20682986257339 - type: cos_sim_spearman value: 79.94567120362092 - type: euclidean_pearson value: 79.43122480368902 - type: euclidean_spearman value: 79.94802077264987 - type: manhattan_pearson value: 79.32653021527081 - type: manhattan_spearman value: 79.80961146709178 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ar-ar) config: ar-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 74.46578144394383 - type: cos_sim_spearman value: 74.52496637472179 - type: euclidean_pearson value: 72.2903807076809 - type: euclidean_spearman value: 73.55549359771645 - type: manhattan_pearson value: 72.09324837709393 - type: manhattan_spearman value: 73.36743103606581 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-ar) config: en-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 71.37272335116 - type: cos_sim_spearman value: 71.26702117766037 - type: euclidean_pearson value: 67.114829954434 - type: euclidean_spearman value: 66.37938893947761 - type: manhattan_pearson value: 66.79688574095246 - type: manhattan_spearman value: 66.17292828079667 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-de) config: en-de split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 80.61016770129092 - type: cos_sim_spearman value: 82.08515426632214 - type: euclidean_pearson value: 80.557340361131 - type: euclidean_spearman value: 80.37585812266175 - type: manhattan_pearson value: 80.6782873404285 - type: manhattan_spearman value: 80.6678073032024 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.00150745350108 - type: cos_sim_spearman value: 87.83441972211425 - type: euclidean_pearson value: 87.94826702308792 - type: euclidean_spearman value: 87.46143974860725 - type: manhattan_pearson value: 87.97560344306105 - type: manhattan_spearman value: 87.5267102829796 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-tr) config: en-tr split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 64.76325252267235 - type: cos_sim_spearman value: 63.32615095463905 - type: euclidean_pearson value: 64.07920669155716 - type: euclidean_spearman value: 61.21409893072176 - type: manhattan_pearson value: 64.26308625680016 - type: manhattan_spearman value: 61.2438185254079 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-en) config: es-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 75.82644463022595 - type: cos_sim_spearman value: 76.50381269945073 - type: euclidean_pearson value: 75.1328548315934 - type: euclidean_spearman value: 75.63761139408453 - type: manhattan_pearson value: 75.18610101241407 - type: manhattan_spearman value: 75.30669266354164 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-es) config: es-es split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 87.49994164686832 - type: cos_sim_spearman value: 86.73743986245549 - type: euclidean_pearson value: 86.8272894387145 - type: euclidean_spearman value: 85.97608491000507 - type: manhattan_pearson value: 86.74960140396779 - type: manhattan_spearman value: 85.79285984190273 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (fr-en) config: fr-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 79.58172210788469 - type: cos_sim_spearman value: 80.17516468334607 - type: euclidean_pearson value: 77.56537843470504 - type: euclidean_spearman value: 77.57264627395521 - type: manhattan_pearson value: 78.09703521695943 - type: manhattan_spearman value: 78.15942760916954 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (it-en) config: it-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 79.7589932931751 - type: cos_sim_spearman value: 80.15210089028162 - type: euclidean_pearson value: 77.54135223516057 - type: euclidean_spearman value: 77.52697996368764 - type: manhattan_pearson value: 77.65734439572518 - type: manhattan_spearman value: 77.77702992016121 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (nl-en) config: nl-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 79.16682365511267 - type: cos_sim_spearman value: 79.25311267628506 - type: euclidean_pearson value: 77.54882036762244 - type: euclidean_spearman value: 77.33212935194827 - type: manhattan_pearson value: 77.98405516064015 - type: manhattan_spearman value: 77.85075717865719 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 59.10473294775917 - type: cos_sim_spearman value: 61.82780474476838 - type: euclidean_pearson value: 45.885111672377256 - type: euclidean_spearman value: 56.88306351932454 - type: manhattan_pearson value: 46.101218127323186 - type: manhattan_spearman value: 56.80953694186333 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de) config: de split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 45.781923079584146 - type: cos_sim_spearman value: 55.95098449691107 - type: euclidean_pearson value: 25.4571031323205 - type: euclidean_spearman value: 49.859978118078935 - type: manhattan_pearson value: 25.624938455041384 - type: manhattan_spearman value: 49.99546185049401 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es) config: es split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 60.00618133997907 - type: cos_sim_spearman value: 66.57896677718321 - type: euclidean_pearson value: 42.60118466388821 - type: euclidean_spearman value: 62.8210759715209 - type: manhattan_pearson value: 42.63446860604094 - type: manhattan_spearman value: 62.73803068925271 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl) config: pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 28.460759121626943 - type: cos_sim_spearman value: 34.13459007469131 - type: euclidean_pearson value: 6.0917739325525195 - type: euclidean_spearman value: 27.9947262664867 - type: manhattan_pearson value: 6.16877864169911 - type: manhattan_spearman value: 28.00664163971514 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (tr) config: tr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 57.42546621771696 - type: cos_sim_spearman value: 63.699663168970474 - type: euclidean_pearson value: 38.12085278789738 - type: euclidean_spearman value: 58.12329140741536 - type: manhattan_pearson value: 37.97364549443335 - type: manhattan_spearman value: 57.81545502318733 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ar) config: ar split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 46.82241380954213 - type: cos_sim_spearman value: 57.86569456006391 - type: euclidean_pearson value: 31.80480070178813 - type: euclidean_spearman value: 52.484000620130104 - type: manhattan_pearson value: 31.952708554646097 - type: manhattan_spearman value: 52.8560972356195 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ru) config: ru split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 52.00447170498087 - type: cos_sim_spearman value: 60.664116225735164 - type: euclidean_pearson value: 33.87382555421702 - type: euclidean_spearman value: 55.74649067458667 - type: manhattan_pearson value: 33.99117246759437 - type: manhattan_spearman value: 55.98749034923899 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 58.06497233105448 - type: cos_sim_spearman value: 65.62968801135676 - type: euclidean_pearson value: 47.482076613243905 - type: euclidean_spearman value: 62.65137791498299 - type: manhattan_pearson value: 47.57052626104093 - type: manhattan_spearman value: 62.436916516613294 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr) config: fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 70.49397298562575 - type: cos_sim_spearman value: 74.79604041187868 - type: euclidean_pearson value: 49.661891561317795 - type: euclidean_spearman value: 70.31535537621006 - type: manhattan_pearson value: 49.553715741850006 - type: manhattan_spearman value: 70.24779344636806 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-en) config: de-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 55.640574515348696 - type: cos_sim_spearman value: 54.927959317689 - type: euclidean_pearson value: 29.00139666967476 - type: euclidean_spearman value: 41.86386566971605 - type: manhattan_pearson value: 29.47411067730344 - type: manhattan_spearman value: 42.337438424952786 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-en) config: es-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 68.14095292259312 - type: cos_sim_spearman value: 73.99017581234789 - type: euclidean_pearson value: 46.46304297872084 - type: euclidean_spearman value: 60.91834114800041 - type: manhattan_pearson value: 47.07072666338692 - type: manhattan_spearman value: 61.70415727977926 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (it) config: it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 73.27184653359575 - type: cos_sim_spearman value: 77.76070252418626 - type: euclidean_pearson value: 62.30586577544778 - type: euclidean_spearman value: 75.14246629110978 - type: manhattan_pearson value: 62.328196884927046 - type: manhattan_spearman value: 75.1282792981433 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl-en) config: pl-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 71.59448528829957 - type: cos_sim_spearman value: 70.37277734222123 - type: euclidean_pearson value: 57.63145565721123 - type: euclidean_spearman value: 66.10113048304427 - type: manhattan_pearson value: 57.18897811586808 - type: manhattan_spearman value: 66.5595511215901 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh-en) config: zh-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 66.37520607720838 - type: cos_sim_spearman value: 69.92282148997948 - type: euclidean_pearson value: 40.55768770125291 - type: euclidean_spearman value: 55.189128944669605 - type: manhattan_pearson value: 41.03566433468883 - type: manhattan_spearman value: 55.61251893174558 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-it) config: es-it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 57.791929533771835 - type: cos_sim_spearman value: 66.45819707662093 - type: euclidean_pearson value: 39.03686018511092 - type: euclidean_spearman value: 56.01282695640428 - type: manhattan_pearson value: 38.91586623619632 - type: manhattan_spearman value: 56.69394943612747 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-fr) config: de-fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 47.82224468473866 - type: cos_sim_spearman value: 59.467307194781164 - type: euclidean_pearson value: 27.428459190256145 - type: euclidean_spearman value: 60.83463107397519 - type: manhattan_pearson value: 27.487391578496638 - type: manhattan_spearman value: 61.281380460246496 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-pl) config: de-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 16.306666792752644 - type: cos_sim_spearman value: 39.35486427252405 - type: euclidean_pearson value: -2.7887154897955435 - type: euclidean_spearman value: 27.1296051831719 - type: manhattan_pearson value: -3.202291270581297 - type: manhattan_spearman value: 26.32895849218158 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr-pl) config: fr-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 59.67006803805076 - type: cos_sim_spearman value: 73.24670207647144 - type: euclidean_pearson value: 46.91884681500483 - type: euclidean_spearman value: 16.903085094570333 - type: manhattan_pearson value: 46.88391675325812 - type: manhattan_spearman value: 28.17180849095055 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 83.79555591223837 - type: cos_sim_spearman value: 85.63658602085185 - type: euclidean_pearson value: 85.22080894037671 - type: euclidean_spearman value: 85.54113580167038 - type: manhattan_pearson value: 85.1639505960118 - type: manhattan_spearman value: 85.43502665436196 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 80.73900991689766 - type: mrr value: 94.81624131133934 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 55.678000000000004 - type: map_at_10 value: 65.135 - type: map_at_100 value: 65.824 - type: map_at_1000 value: 65.852 - type: map_at_3 value: 62.736000000000004 - type: map_at_5 value: 64.411 - type: mrr_at_1 value: 58.333 - type: mrr_at_10 value: 66.5 - type: mrr_at_100 value: 67.053 - type: mrr_at_1000 value: 67.08 - type: mrr_at_3 value: 64.944 - type: mrr_at_5 value: 65.89399999999999 - type: ndcg_at_1 value: 58.333 - type: ndcg_at_10 value: 69.34700000000001 - type: ndcg_at_100 value: 72.32 - type: ndcg_at_1000 value: 73.014 - type: ndcg_at_3 value: 65.578 - type: ndcg_at_5 value: 67.738 - type: precision_at_1 value: 58.333 - type: precision_at_10 value: 9.033 - type: precision_at_100 value: 1.0670000000000002 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 25.444 - type: precision_at_5 value: 16.933 - type: recall_at_1 value: 55.678000000000004 - type: recall_at_10 value: 80.72200000000001 - type: recall_at_100 value: 93.93299999999999 - type: recall_at_1000 value: 99.333 - type: recall_at_3 value: 70.783 - type: recall_at_5 value: 75.978 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.74653465346535 - type: cos_sim_ap value: 93.01476369929063 - type: cos_sim_f1 value: 86.93009118541033 - type: cos_sim_precision value: 88.09034907597535 - type: cos_sim_recall value: 85.8 - type: dot_accuracy value: 99.22970297029703 - type: dot_ap value: 51.58725659485144 - type: dot_f1 value: 53.51351351351352 - type: dot_precision value: 58.235294117647065 - type: dot_recall value: 49.5 - type: euclidean_accuracy value: 99.74356435643564 - type: euclidean_ap value: 92.40332894384368 - type: euclidean_f1 value: 86.97838109602817 - type: euclidean_precision value: 87.46208291203236 - type: euclidean_recall value: 86.5 - type: manhattan_accuracy value: 99.73069306930694 - type: manhattan_ap value: 92.01320815721121 - type: manhattan_f1 value: 86.4135864135864 - type: manhattan_precision value: 86.32734530938124 - type: manhattan_recall value: 86.5 - type: max_accuracy value: 99.74653465346535 - type: max_ap value: 93.01476369929063 - type: max_f1 value: 86.97838109602817 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 55.2660514302523 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 30.4637783572547 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 49.41377758357637 - type: mrr value: 50.138451213818854 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 28.887846011166594 - type: cos_sim_spearman value: 30.10823258355903 - type: dot_pearson value: 12.888049550236385 - type: dot_spearman value: 12.827495903098123 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.21 - type: map_at_10 value: 1.667 - type: map_at_100 value: 9.15 - type: map_at_1000 value: 22.927 - type: map_at_3 value: 0.573 - type: map_at_5 value: 0.915 - type: mrr_at_1 value: 80 - type: mrr_at_10 value: 87.167 - type: mrr_at_100 value: 87.167 - type: mrr_at_1000 value: 87.167 - type: mrr_at_3 value: 85.667 - type: mrr_at_5 value: 87.167 - type: ndcg_at_1 value: 76 - type: ndcg_at_10 value: 69.757 - type: ndcg_at_100 value: 52.402 - type: ndcg_at_1000 value: 47.737 - type: ndcg_at_3 value: 71.866 - type: ndcg_at_5 value: 72.225 - type: precision_at_1 value: 80 - type: precision_at_10 value: 75 - type: precision_at_100 value: 53.959999999999994 - type: precision_at_1000 value: 21.568 - type: precision_at_3 value: 76.667 - type: precision_at_5 value: 78 - type: recall_at_1 value: 0.21 - type: recall_at_10 value: 1.9189999999999998 - type: recall_at_100 value: 12.589 - type: recall_at_1000 value: 45.312000000000005 - type: recall_at_3 value: 0.61 - type: recall_at_5 value: 1.019 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (sqi-eng) config: sqi-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.10000000000001 - type: f1 value: 90.06 - type: precision value: 89.17333333333333 - type: recall value: 92.10000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fry-eng) config: fry-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 56.06936416184971 - type: f1 value: 50.87508028259473 - type: precision value: 48.97398843930635 - type: recall value: 56.06936416184971 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kur-eng) config: kur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 57.3170731707317 - type: f1 value: 52.96080139372822 - type: precision value: 51.67861124382864 - type: recall value: 57.3170731707317 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tur-eng) config: tur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.3 - type: f1 value: 92.67333333333333 - type: precision value: 91.90833333333333 - type: recall value: 94.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (deu-eng) config: deu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.7 - type: f1 value: 97.07333333333332 - type: precision value: 96.79500000000002 - type: recall value: 97.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nld-eng) config: nld-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.69999999999999 - type: f1 value: 93.2 - type: precision value: 92.48333333333333 - type: recall value: 94.69999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ron-eng) config: ron-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.9 - type: f1 value: 91.26666666666667 - type: precision value: 90.59444444444445 - type: recall value: 92.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ang-eng) config: ang-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 34.32835820895522 - type: f1 value: 29.074180380150533 - type: precision value: 28.068207322920596 - type: recall value: 34.32835820895522 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ido-eng) config: ido-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 78.5 - type: f1 value: 74.3945115995116 - type: precision value: 72.82967843459222 - type: recall value: 78.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (jav-eng) config: jav-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 66.34146341463415 - type: f1 value: 61.2469400518181 - type: precision value: 59.63977756660683 - type: recall value: 66.34146341463415 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (isl-eng) config: isl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 80.9 - type: f1 value: 76.90349206349207 - type: precision value: 75.32921568627451 - type: recall value: 80.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (slv-eng) config: slv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 84.93317132442284 - type: f1 value: 81.92519105034295 - type: precision value: 80.71283920615635 - type: recall value: 84.93317132442284 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cym-eng) config: cym-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 71.1304347826087 - type: f1 value: 65.22394755003451 - type: precision value: 62.912422360248435 - type: recall value: 71.1304347826087 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kaz-eng) config: kaz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 79.82608695652173 - type: f1 value: 75.55693581780538 - type: precision value: 73.79420289855072 - type: recall value: 79.82608695652173 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (est-eng) config: est-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 74 - type: f1 value: 70.51022222222223 - type: precision value: 69.29673599347512 - type: recall value: 74 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (heb-eng) config: heb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 78.7 - type: f1 value: 74.14238095238095 - type: precision value: 72.27214285714285 - type: recall value: 78.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gla-eng) config: gla-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 48.97466827503016 - type: f1 value: 43.080330405420874 - type: precision value: 41.36505499593557 - type: recall value: 48.97466827503016 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mar-eng) config: mar-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.60000000000001 - type: f1 value: 86.62333333333333 - type: precision value: 85.225 - type: recall value: 89.60000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lat-eng) config: lat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 45.2 - type: f1 value: 39.5761253006253 - type: precision value: 37.991358436312 - type: recall value: 45.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bel-eng) config: bel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.5 - type: f1 value: 86.70333333333333 - type: precision value: 85.53166666666667 - type: recall value: 89.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pms-eng) config: pms-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 50.095238095238095 - type: f1 value: 44.60650460650461 - type: precision value: 42.774116796477045 - type: recall value: 50.095238095238095 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gle-eng) config: gle-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 63.4 - type: f1 value: 58.35967261904762 - type: precision value: 56.54857142857143 - type: recall value: 63.4 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pes-eng) config: pes-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.2 - type: f1 value: 87.075 - type: precision value: 86.12095238095239 - type: recall value: 89.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nob-eng) config: nob-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96.8 - type: f1 value: 95.90333333333334 - type: precision value: 95.50833333333333 - type: recall value: 96.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bul-eng) config: bul-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.9 - type: f1 value: 88.6288888888889 - type: precision value: 87.61607142857142 - type: recall value: 90.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cbk-eng) config: cbk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 65.2 - type: f1 value: 60.54377630539395 - type: precision value: 58.89434482711381 - type: recall value: 65.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hun-eng) config: hun-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87 - type: f1 value: 84.32412698412699 - type: precision value: 83.25527777777778 - type: recall value: 87 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (uig-eng) config: uig-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 68.7 - type: f1 value: 63.07883541295306 - type: precision value: 61.06117424242426 - type: recall value: 68.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (rus-eng) config: rus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.7 - type: f1 value: 91.78333333333335 - type: precision value: 90.86666666666667 - type: recall value: 93.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (spa-eng) config: spa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.7 - type: f1 value: 96.96666666666667 - type: precision value: 96.61666666666667 - type: recall value: 97.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hye-eng) config: hye-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.27493261455525 - type: f1 value: 85.90745732255168 - type: precision value: 84.91389637616052 - type: recall value: 88.27493261455525 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tel-eng) config: tel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.5982905982906 - type: f1 value: 88.4900284900285 - type: precision value: 87.57122507122507 - type: recall value: 90.5982905982906 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (afr-eng) config: afr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 89.5 - type: f1 value: 86.90769841269842 - type: precision value: 85.80178571428571 - type: recall value: 89.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mon-eng) config: mon-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 82.5 - type: f1 value: 78.36796536796538 - type: precision value: 76.82196969696969 - type: recall value: 82.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (arz-eng) config: arz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 71.48846960167715 - type: f1 value: 66.78771089148448 - type: precision value: 64.98302885095339 - type: recall value: 71.48846960167715 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hrv-eng) config: hrv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.1 - type: f1 value: 92.50333333333333 - type: precision value: 91.77499999999999 - type: recall value: 94.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nov-eng) config: nov-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 71.20622568093385 - type: f1 value: 66.83278891450098 - type: precision value: 65.35065777283677 - type: recall value: 71.20622568093385 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gsw-eng) config: gsw-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 48.717948717948715 - type: f1 value: 43.53146853146853 - type: precision value: 42.04721204721204 - type: recall value: 48.717948717948715 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nds-eng) config: nds-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 58.5 - type: f1 value: 53.8564991863928 - type: precision value: 52.40329436122275 - type: recall value: 58.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ukr-eng) config: ukr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 90.8 - type: f1 value: 88.29 - type: precision value: 87.09166666666667 - type: recall value: 90.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (uzb-eng) config: uzb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 67.28971962616822 - type: f1 value: 62.63425307817832 - type: precision value: 60.98065939771546 - type: recall value: 67.28971962616822 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lit-eng) config: lit-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 78.7 - type: f1 value: 75.5264472455649 - type: precision value: 74.38205086580086 - type: recall value: 78.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ina-eng) config: ina-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.7 - type: f1 value: 86.10809523809525 - type: precision value: 85.07602564102565 - type: recall value: 88.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lfn-eng) config: lfn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 56.99999999999999 - type: f1 value: 52.85487521402737 - type: precision value: 51.53985162713104 - type: recall value: 56.99999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (zsm-eng) config: zsm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94 - type: f1 value: 92.45333333333333 - type: precision value: 91.79166666666667 - type: recall value: 94 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ita-eng) config: ita-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.30000000000001 - type: f1 value: 90.61333333333333 - type: precision value: 89.83333333333331 - type: recall value: 92.30000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cmn-eng) config: cmn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.69999999999999 - type: f1 value: 93.34555555555555 - type: precision value: 92.75416666666668 - type: recall value: 94.69999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lvs-eng) config: lvs-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 80.2 - type: f1 value: 76.6563035113035 - type: precision value: 75.3014652014652 - type: recall value: 80.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (glg-eng) config: glg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 84.7 - type: f1 value: 82.78689263765207 - type: precision value: 82.06705086580087 - type: recall value: 84.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ceb-eng) config: ceb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 50.33333333333333 - type: f1 value: 45.461523661523664 - type: precision value: 43.93545574795575 - type: recall value: 50.33333333333333 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bre-eng) config: bre-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 6.6000000000000005 - type: f1 value: 5.442121400446441 - type: precision value: 5.146630385487529 - type: recall value: 6.6000000000000005 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ben-eng) config: ben-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85 - type: f1 value: 81.04666666666667 - type: precision value: 79.25 - type: recall value: 85 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swg-eng) config: swg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 47.32142857142857 - type: f1 value: 42.333333333333336 - type: precision value: 40.69196428571429 - type: recall value: 47.32142857142857 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (arq-eng) config: arq-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 30.735455543358945 - type: f1 value: 26.73616790022338 - type: precision value: 25.397823220451283 - type: recall value: 30.735455543358945 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kab-eng) config: kab-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 25.1 - type: f1 value: 21.975989896371022 - type: precision value: 21.059885632257203 - type: recall value: 25.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fra-eng) config: fra-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.3 - type: f1 value: 92.75666666666666 - type: precision value: 92.06166666666665 - type: recall value: 94.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (por-eng) config: por-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.1 - type: f1 value: 92.74 - type: precision value: 92.09166666666667 - type: recall value: 94.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tat-eng) config: tat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 71.3 - type: f1 value: 66.922442002442 - type: precision value: 65.38249567099568 - type: recall value: 71.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (oci-eng) config: oci-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 40.300000000000004 - type: f1 value: 35.78682789299971 - type: precision value: 34.66425128716588 - type: recall value: 40.300000000000004 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pol-eng) config: pol-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 96 - type: f1 value: 94.82333333333334 - type: precision value: 94.27833333333334 - type: recall value: 96 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (war-eng) config: war-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 51.1 - type: f1 value: 47.179074753133584 - type: precision value: 46.06461044702424 - type: recall value: 51.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (aze-eng) config: aze-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 87.7 - type: f1 value: 84.71 - type: precision value: 83.46166666666667 - type: recall value: 87.7 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (vie-eng) config: vie-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.8 - type: f1 value: 94.68333333333334 - type: precision value: 94.13333333333334 - type: recall value: 95.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nno-eng) config: nno-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.39999999999999 - type: f1 value: 82.5577380952381 - type: precision value: 81.36833333333334 - type: recall value: 85.39999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cha-eng) config: cha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 21.16788321167883 - type: f1 value: 16.948865627297987 - type: precision value: 15.971932568647897 - type: recall value: 21.16788321167883 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mhr-eng) config: mhr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 6.9 - type: f1 value: 5.515526831658907 - type: precision value: 5.141966366966367 - type: recall value: 6.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dan-eng) config: dan-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.2 - type: f1 value: 91.39666666666668 - type: precision value: 90.58666666666667 - type: recall value: 93.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ell-eng) config: ell-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.2 - type: f1 value: 89.95666666666666 - type: precision value: 88.92833333333333 - type: recall value: 92.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (amh-eng) config: amh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 79.76190476190477 - type: f1 value: 74.93386243386244 - type: precision value: 73.11011904761904 - type: recall value: 79.76190476190477 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pam-eng) config: pam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 8.799999999999999 - type: f1 value: 6.921439712248537 - type: precision value: 6.489885109680683 - type: recall value: 8.799999999999999 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hsb-eng) config: hsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 45.75569358178054 - type: f1 value: 40.34699501312631 - type: precision value: 38.57886764719063 - type: recall value: 45.75569358178054 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (srp-eng) config: srp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.4 - type: f1 value: 89.08333333333333 - type: precision value: 88.01666666666668 - type: recall value: 91.4 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (epo-eng) config: epo-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.60000000000001 - type: f1 value: 92.06690476190477 - type: precision value: 91.45095238095239 - type: recall value: 93.60000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kzj-eng) config: kzj-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 7.5 - type: f1 value: 6.200363129378736 - type: precision value: 5.89115314822466 - type: recall value: 7.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (awa-eng) config: awa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 73.59307359307358 - type: f1 value: 68.38933553219267 - type: precision value: 66.62698412698413 - type: recall value: 73.59307359307358 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fao-eng) config: fao-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 69.8473282442748 - type: f1 value: 64.72373682297346 - type: precision value: 62.82834214131924 - type: recall value: 69.8473282442748 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mal-eng) config: mal-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 97.5254730713246 - type: f1 value: 96.72489082969432 - type: precision value: 96.33672974284326 - type: recall value: 97.5254730713246 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ile-eng) config: ile-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 75.6 - type: f1 value: 72.42746031746033 - type: precision value: 71.14036630036631 - type: recall value: 75.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bos-eng) config: bos-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.24293785310734 - type: f1 value: 88.86064030131826 - type: precision value: 87.73540489642184 - type: recall value: 91.24293785310734 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cor-eng) config: cor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 6.2 - type: f1 value: 4.383083659794954 - type: precision value: 4.027861324289673 - type: recall value: 6.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cat-eng) config: cat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.8 - type: f1 value: 84.09428571428572 - type: precision value: 83.00333333333333 - type: recall value: 86.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (eus-eng) config: eus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 60.699999999999996 - type: f1 value: 56.1584972394755 - type: precision value: 54.713456330903135 - type: recall value: 60.699999999999996 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (yue-eng) config: yue-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 84.2 - type: f1 value: 80.66190476190475 - type: precision value: 79.19690476190476 - type: recall value: 84.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swe-eng) config: swe-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 93.2 - type: f1 value: 91.33 - type: precision value: 90.45 - type: recall value: 93.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dtp-eng) config: dtp-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 6.3 - type: f1 value: 5.126828976748276 - type: precision value: 4.853614328966668 - type: recall value: 6.3 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kat-eng) config: kat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 81.76943699731903 - type: f1 value: 77.82873739308057 - type: precision value: 76.27622452019234 - type: recall value: 81.76943699731903 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (jpn-eng) config: jpn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.30000000000001 - type: f1 value: 90.29666666666665 - type: precision value: 89.40333333333334 - type: recall value: 92.30000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (csb-eng) config: csb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 29.249011857707508 - type: f1 value: 24.561866096392947 - type: precision value: 23.356583740215456 - type: recall value: 29.249011857707508 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (xho-eng) config: xho-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.46478873239437 - type: f1 value: 73.23943661971832 - type: precision value: 71.66666666666667 - type: recall value: 77.46478873239437 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (orv-eng) config: orv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 20.35928143712575 - type: f1 value: 15.997867865075824 - type: precision value: 14.882104658301346 - type: recall value: 20.35928143712575 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ind-eng) config: ind-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 92.2 - type: f1 value: 90.25999999999999 - type: precision value: 89.45333333333335 - type: recall value: 92.2 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tuk-eng) config: tuk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 23.15270935960591 - type: f1 value: 19.65673625772148 - type: precision value: 18.793705293464992 - type: recall value: 23.15270935960591 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (max-eng) config: max-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 59.154929577464785 - type: f1 value: 52.3868463305083 - type: precision value: 50.14938113529662 - type: recall value: 59.154929577464785 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (swh-eng) config: swh-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 70.51282051282051 - type: f1 value: 66.8089133089133 - type: precision value: 65.37645687645687 - type: recall value: 70.51282051282051 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hin-eng) config: hin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 94.6 - type: f1 value: 93 - type: precision value: 92.23333333333333 - type: recall value: 94.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (dsb-eng) config: dsb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 38.62212943632568 - type: f1 value: 34.3278276962583 - type: precision value: 33.07646935732408 - type: recall value: 38.62212943632568 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ber-eng) config: ber-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 28.1 - type: f1 value: 23.579609223054604 - type: precision value: 22.39622774921555 - type: recall value: 28.1 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tam-eng) config: tam-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.27361563517914 - type: f1 value: 85.12486427795874 - type: precision value: 83.71335504885994 - type: recall value: 88.27361563517914 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (slk-eng) config: slk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.6 - type: f1 value: 86.39928571428571 - type: precision value: 85.4947557997558 - type: recall value: 88.6 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tgl-eng) config: tgl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.5 - type: f1 value: 83.77952380952381 - type: precision value: 82.67602564102565 - type: recall value: 86.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ast-eng) config: ast-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 79.52755905511812 - type: f1 value: 75.3055868016498 - type: precision value: 73.81889763779527 - type: recall value: 79.52755905511812 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mkd-eng) config: mkd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 77.9 - type: f1 value: 73.76261904761905 - type: precision value: 72.11670995670995 - type: recall value: 77.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (khm-eng) config: khm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 53.8781163434903 - type: f1 value: 47.25804051288816 - type: precision value: 45.0603482390186 - type: recall value: 53.8781163434903 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ces-eng) config: ces-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 91.10000000000001 - type: f1 value: 88.88 - type: precision value: 87.96333333333334 - type: recall value: 91.10000000000001 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tzl-eng) config: tzl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 38.46153846153847 - type: f1 value: 34.43978243978244 - type: precision value: 33.429487179487175 - type: recall value: 38.46153846153847 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (urd-eng) config: urd-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.9 - type: f1 value: 86.19888888888887 - type: precision value: 85.07440476190476 - type: recall value: 88.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ara-eng) config: ara-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 85.9 - type: f1 value: 82.58857142857143 - type: precision value: 81.15666666666667 - type: recall value: 85.9 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kor-eng) config: kor-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 86.8 - type: f1 value: 83.36999999999999 - type: precision value: 81.86833333333333 - type: recall value: 86.8 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (yid-eng) config: yid-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 68.51415094339622 - type: f1 value: 63.195000099481234 - type: precision value: 61.394033442972116 - type: recall value: 68.51415094339622 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fin-eng) config: fin-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 88.5 - type: f1 value: 86.14603174603175 - type: precision value: 85.1162037037037 - type: recall value: 88.5 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tha-eng) config: tha-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 95.62043795620438 - type: f1 value: 94.40389294403892 - type: precision value: 93.7956204379562 - type: recall value: 95.62043795620438 - task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (wuu-eng) config: wuu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics: - type: accuracy value: 81.8 - type: f1 value: 78.6532178932179 - type: precision value: 77.46348795840176 - type: recall value: 81.8 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.603 - type: map_at_10 value: 8.5 - type: map_at_100 value: 12.985 - type: map_at_1000 value: 14.466999999999999 - type: map_at_3 value: 4.859999999999999 - type: map_at_5 value: 5.817 - type: mrr_at_1 value: 28.571 - type: mrr_at_10 value: 42.331 - type: mrr_at_100 value: 43.592999999999996 - type: mrr_at_1000 value: 43.592999999999996 - type: mrr_at_3 value: 38.435 - type: mrr_at_5 value: 39.966 - type: ndcg_at_1 value: 26.531 - type: ndcg_at_10 value: 21.353 - type: ndcg_at_100 value: 31.087999999999997 - type: ndcg_at_1000 value: 43.163000000000004 - type: ndcg_at_3 value: 22.999 - type: ndcg_at_5 value: 21.451 - type: precision_at_1 value: 28.571 - type: precision_at_10 value: 19.387999999999998 - type: precision_at_100 value: 6.265 - type: precision_at_1000 value: 1.4160000000000001 - type: precision_at_3 value: 24.490000000000002 - type: precision_at_5 value: 21.224 - type: recall_at_1 value: 2.603 - type: recall_at_10 value: 14.474 - type: recall_at_100 value: 40.287 - type: recall_at_1000 value: 76.606 - type: recall_at_3 value: 5.978 - type: recall_at_5 value: 7.819 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 69.7848 - type: ap value: 13.661023167088224 - type: f1 value: 53.61686134460943 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.28183361629882 - type: f1 value: 61.55481034919965 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 35.972128420092396 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.59933241938367 - type: cos_sim_ap value: 72.20760361208136 - type: cos_sim_f1 value: 66.4447731755424 - type: cos_sim_precision value: 62.35539102267469 - type: cos_sim_recall value: 71.10817941952506 - type: dot_accuracy value: 78.98313166835548 - type: dot_ap value: 44.492521645493795 - type: dot_f1 value: 45.814889336016094 - type: dot_precision value: 37.02439024390244 - type: dot_recall value: 60.07915567282321 - type: euclidean_accuracy value: 85.3907134767837 - type: euclidean_ap value: 71.53847289080343 - type: euclidean_f1 value: 65.95952206778834 - type: euclidean_precision value: 61.31006346328196 - type: euclidean_recall value: 71.37203166226914 - type: manhattan_accuracy value: 85.40859510043511 - type: manhattan_ap value: 71.49664104395515 - type: manhattan_f1 value: 65.98569969356485 - type: manhattan_precision value: 63.928748144482924 - type: manhattan_recall value: 68.17941952506597 - type: max_accuracy value: 85.59933241938367 - type: max_ap value: 72.20760361208136 - type: max_f1 value: 66.4447731755424 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.83261536073273 - type: cos_sim_ap value: 85.48178133644264 - type: cos_sim_f1 value: 77.87816307403935 - type: cos_sim_precision value: 75.88953021114926 - type: cos_sim_recall value: 79.97382198952879 - type: dot_accuracy value: 79.76287499514883 - type: dot_ap value: 59.17438838475084 - type: dot_f1 value: 56.34566667855996 - type: dot_precision value: 52.50349092359864 - type: dot_recall value: 60.794579611949494 - type: euclidean_accuracy value: 88.76857996662397 - type: euclidean_ap value: 85.22764834359887 - type: euclidean_f1 value: 77.65379751543554 - type: euclidean_precision value: 75.11152683839401 - type: euclidean_recall value: 80.37419156144134 - type: manhattan_accuracy value: 88.6987231730508 - type: manhattan_ap value: 85.18907981724007 - type: manhattan_f1 value: 77.51967028849757 - type: manhattan_precision value: 75.49992701795358 - type: manhattan_recall value: 79.65044656606098 - type: max_accuracy value: 88.83261536073273 - type: max_ap value: 85.48178133644264 - type: max_f1 value: 77.87816307403935 language: - multilingual - af - am - ar - as - az - be - bg - bn - br - bs - ca - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fr - fy - ga - gd - gl - gu - ha - he - hi - hr - hu - hy - id - is - it - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lo - lt - lv - mg - mk - ml - mn - mr - ms - my - ne - nl - 'no' - om - or - pa - pl - ps - pt - ro - ru - sa - sd - si - sk - sl - so - sq - sr - su - sv - sw - ta - te - th - tl - tr - ug - uk - ur - uz - vi - xh - yi - zh license: mit --- ## Multilingual-E5-base [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 This model has 12 layers and the embedding size is 768. ## Usage Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ", even for non-English texts. # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: 南瓜的家常做法', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右,放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅"] tokenizer = AutoTokenizer.from_pretrained('intfloat/multilingual-e5-base') model = AutoModel.from_pretrained('intfloat/multilingual-e5-base') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Supported Languages This model is initialized from [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) and continually trained on a mixture of multilingual datasets. It supports 100 languages from xlm-roberta, but low-resource languages may see performance degradation. ## Training Details **Initialization**: [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) **First stage**: contrastive pre-training with weak supervision | Dataset | Weak supervision | # of text pairs | |--------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------| | Filtered [mC4](https://huggingface.co/datasets/mc4) | (title, page content) | 1B | | [CC News](https://huggingface.co/datasets/intfloat/multilingual_cc_news) | (title, news content) | 400M | | [NLLB](https://huggingface.co/datasets/allenai/nllb) | translation pairs | 2.4B | | [Wikipedia](https://huggingface.co/datasets/intfloat/wikipedia) | (hierarchical section title, passage) | 150M | | Filtered [Reddit](https://www.reddit.com/) | (comment, response) | 800M | | [S2ORC](https://github.com/allenai/s2orc) | (title, abstract) and citation pairs | 100M | | [Stackexchange](https://stackexchange.com/) | (question, answer) | 50M | | [xP3](https://huggingface.co/datasets/bigscience/xP3) | (input prompt, response) | 80M | | [Miscellaneous unsupervised SBERT data](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | - | 10M | **Second stage**: supervised fine-tuning | Dataset | Language | # of text pairs | |----------------------------------------------------------------------------------------|--------------|-----------------| | [MS MARCO](https://microsoft.github.io/msmarco/) | English | 500k | | [NQ](https://github.com/facebookresearch/DPR) | English | 70k | | [Trivia QA](https://github.com/facebookresearch/DPR) | English | 60k | | [NLI from SimCSE](https://github.com/princeton-nlp/SimCSE) | English | <300k | | [ELI5](https://huggingface.co/datasets/eli5) | English | 500k | | [DuReader Retrieval](https://github.com/baidu/DuReader/tree/master/DuReader-Retrieval) | Chinese | 86k | | [KILT Fever](https://huggingface.co/datasets/kilt_tasks) | English | 70k | | [KILT HotpotQA](https://huggingface.co/datasets/kilt_tasks) | English | 70k | | [SQuAD](https://huggingface.co/datasets/squad) | English | 87k | | [Quora](https://huggingface.co/datasets/quora) | English | 150k | | [Mr. TyDi](https://huggingface.co/datasets/castorini/mr-tydi) | 11 languages | 50k | | [MIRACL](https://huggingface.co/datasets/miracl/miracl) | 16 languages | 40k | For all labeled datasets, we only use its training set for fine-tuning. For other training details, please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf). ## Benchmark Results on [Mr. TyDi](https://arxiv.org/abs/2108.08787) | Model | Avg MRR@10 | | ar | bn | en | fi | id | ja | ko | ru | sw | te | th | |-----------------------|------------|-------|------| --- | --- | --- | --- | --- | --- | --- |------| --- | --- | | BM25 | 33.3 | | 36.7 | 41.3 | 15.1 | 28.8 | 38.2 | 21.7 | 28.1 | 32.9 | 39.6 | 42.4 | 41.7 | | mDPR | 16.7 | | 26.0 | 25.8 | 16.2 | 11.3 | 14.6 | 18.1 | 21.9 | 18.5 | 7.3 | 10.6 | 13.5 | | BM25 + mDPR | 41.7 | | 49.1 | 53.5 | 28.4 | 36.5 | 45.5 | 35.5 | 36.2 | 42.7 | 40.5 | 42.0 | 49.2 | | | | | multilingual-e5-small | 64.4 | | 71.5 | 66.3 | 54.5 | 57.7 | 63.2 | 55.4 | 54.3 | 60.8 | 65.4 | 89.1 | 70.1 | | multilingual-e5-base | 65.9 | | 72.3 | 65.0 | 58.5 | 60.8 | 64.9 | 56.6 | 55.8 | 62.7 | 69.0 | 86.6 | 72.7 | | multilingual-e5-large | **70.5** | | 77.5 | 73.2 | 60.8 | 66.8 | 68.5 | 62.5 | 61.6 | 65.8 | 72.7 | 90.2 | 76.2 | ## MTEB Benchmark Evaluation Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). ## Support for Sentence Transformers Below is an example for usage with sentence_transformers. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/multilingual-e5-base') input_texts = [ 'query: how much protein should a female eat', 'query: 南瓜的家常做法', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 i s 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or traini ng for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: 1.清炒南瓜丝 原料:嫩南瓜半个 调料:葱、盐、白糖、鸡精 做法: 1、南瓜用刀薄薄的削去表面一层皮 ,用勺子刮去瓤 2、擦成细丝(没有擦菜板就用刀慢慢切成细丝) 3、锅烧热放油,入葱花煸出香味 4、入南瓜丝快速翻炒一分钟左右, 放盐、一点白糖和鸡精调味出锅 2.香葱炒南瓜 原料:南瓜1只 调料:香葱、蒜末、橄榄油、盐 做法: 1、将南瓜去皮,切成片 2、油 锅8成热后,将蒜末放入爆香 3、爆香后,将南瓜片放入,翻炒 4、在翻炒的同时,可以不时地往锅里加水,但不要太多 5、放入盐,炒匀 6、南瓜差不多软和绵了之后,就可以关火 7、撒入香葱,即可出锅" ] embeddings = model.encode(input_texts, normalize_embeddings=True) ``` Package requirements `pip install sentence_transformers~=2.2.2` Contributors: [michaelfeil](https://huggingface.co/michaelfeil) ## FAQ **1. Do I need to add the prefix "query: " and "passage: " to input texts?** Yes, this is how the model is trained, otherwise you will see a performance degradation. Here are some rules of thumb: - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. - Use "query: " prefix for symmetric tasks such as semantic similarity, bitext mining, paraphrase retrieval. - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. **2. Why are my reproduced results slightly different from reported in the model card?** Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. **3. Why does the cosine similarity scores distribute around 0.7 to 1.0?** This is a known and expected behavior as we use a low temperature 0.01 for InfoNCE contrastive loss. For text embedding tasks like text retrieval or semantic similarity, what matters is the relative order of the scores instead of the absolute values, so this should not be an issue. ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} } ``` ## Limitations Long texts will be truncated to at most 512 tokens.
[ -0.48805633187294006, -0.5291775465011597, 0.10781790316104889, 0.33076921105384827, -0.2427278757095337, -0.11206606030464172, -0.30793994665145874, -0.44540271162986755, 0.37197521328926086, 0.2307346612215042, -0.5291205048561096, -0.7711780071258545, -0.7521120309829712, 0.3220900595188141, 0.07186485081911087, 1.0819472074508667, -0.14766991138458252, 0.04611926153302193, -0.015813175588846207, -0.3801729679107666, -0.28421637415885925, -0.45943108201026917, -0.6560186147689819, -0.22634272277355194, 0.3397767245769501, 0.4040435552597046, 0.48430123925209045, 0.6472340822219849, 0.45565328001976013, 0.35025179386138916, -0.16471175849437714, 0.3432922959327698, -0.40003296732902527, -0.20480391383171082, 0.15990453958511353, -0.4568939805030823, -0.4746187627315521, -0.0021246783435344696, 0.6033937931060791, 0.5973127484321594, 0.015825435519218445, 0.24023549258708954, 0.22878660261631012, 0.8817296624183655, -0.3741419017314911, 0.2748964726924896, -0.22776709496974945, 0.12124204635620117, -0.26348745822906494, -0.017597153782844543, -0.16286557912826538, -0.0992276668548584, 0.039378758519887924, -0.5575225949287415, -0.014456392265856266, 0.06174871325492859, 1.3104392290115356, 0.18555651605129242, -0.4223302900791168, -0.23220506310462952, -0.11718257516622543, 0.9185649156570435, -0.7673299312591553, 0.5071016550064087, 0.68259596824646, -0.04710617661476135, 0.011993320658802986, -0.686420202255249, -0.5191929936408997, 0.017257260158658028, -0.48346027731895447, 0.3976823389530182, -0.15938159823417664, -0.16064438223838806, 0.29314854741096497, 0.45426416397094727, -0.8702623844146729, 0.07475101947784424, -0.3418072760105133, -0.15402483940124512, 0.7636412978172302, 0.09609494358301163, 0.38658374547958374, -0.5318969488143921, -0.3504367768764496, -0.1813993752002716, -0.42274683713912964, 0.30740538239479065, 0.37144050002098083, 0.2692500948905945, -0.633648693561554, 0.4806402623653412, -0.2852213680744171, 0.625516414642334, 0.1354675590991974, -0.16857647895812988, 0.7373775243759155, -0.7455543875694275, -0.22458258271217346, -0.19584955275058746, 1.2011781930923462, 0.3760579824447632, 0.04473152756690979, 0.09191934764385223, -0.1196296289563179, -0.055105868726968765, -0.23458518087863922, -0.8711426258087158, -0.3140161335468292, 0.46091362833976746, -0.5504783391952515, -0.2597707509994507, 0.03152475878596306, -0.7772464752197266, 0.0890851691365242, -0.20114809274673462, 0.2896193265914917, -0.6681160926818848, -0.32321813702583313, 0.09024980664253235, 0.03696853294968605, 0.21289964020252228, 0.12292280793190002, -0.7906787991523743, 0.23439279198646545, 0.17487956583499908, 0.9658003449440002, -0.14383527636528015, -0.31731295585632324, -0.2663143277168274, 0.010071664117276669, -0.1507866382598877, 0.6228376030921936, -0.23419278860092163, -0.15993961691856384, -0.09359510987997055, 0.3925980031490326, -0.42680320143699646, -0.31965702772140503, 0.647361695766449, -0.2122718244791031, 0.545332670211792, -0.30530086159706116, -0.42932969331741333, -0.0870911255478859, 0.3969862759113312, -0.6547796726226807, 1.410753846168518, 0.2514150142669678, -1.0915437936782837, 0.2632189095020294, -0.6127795577049255, -0.3892577886581421, -0.17193098366260529, -0.2213800698518753, -0.6525346040725708, -0.37324076890945435, 0.5175361037254333, 0.5463377237319946, -0.16673022508621216, 0.127670556306839, -0.0420866496860981, -0.2364640086889267, -0.007190411444753408, -0.16982020437717438, 1.1900416612625122, 0.3102784752845764, -0.640332043170929, -0.02150007337331772, -0.9171045422554016, 0.06449040025472641, 0.2715454697608948, -0.44303184747695923, -0.14383083581924438, -0.22016607224941254, 0.05075949802994728, 0.5255950093269348, 0.4087144732475281, -0.5013378858566284, 0.20709291100502014, -0.6569823026657104, 0.5140236616134644, 0.5518074035644531, -0.10112978518009186, 0.38134559988975525, -0.4432969093322754, 0.43440085649490356, 0.4143926799297333, 0.01949045993387699, -0.24188078939914703, -0.5938266515731812, -0.9361069798469543, -0.38774681091308594, 0.40509033203125, 0.6954449415206909, -0.8124896883964539, 0.6296507120132446, -0.3205859065055847, -0.4482194781303406, -0.7948512434959412, 0.27316999435424805, 0.5570835471153259, 0.4503517150878906, 0.6549727916717529, -0.010902980342507362, -0.6657037138938904, -0.9893925786018372, -0.12925350666046143, 0.020806079730391502, 0.06887366622686386, 0.3473488986492157, 0.7843343615531921, -0.31365203857421875, 0.6283610463142395, -0.5243977904319763, -0.5674842000007629, -0.3884034752845764, -0.05015846714377403, 0.5100670456886292, 0.6469510197639465, 0.679841935634613, -0.885786771774292, -0.8343233466148376, 0.09100794792175293, -0.9274704456329346, 0.0844198539853096, 0.034810539335012436, -0.19184403121471405, 0.5799853801727295, 0.5219390392303467, -0.5910732746124268, 0.30324414372444153, 0.7194908857345581, -0.4203552007675171, 0.4919344484806061, -0.32544341683387756, 0.14277680218219757, -1.4638859033584595, 0.22198821604251862, 0.09753887355327606, -0.11475860327482224, -0.4564858078956604, -0.00213042669929564, 0.0954216942191124, 0.06647760421037674, -0.41352882981300354, 0.6536056399345398, -0.7831937074661255, 0.23482021689414978, 0.14210526645183563, 0.32722705602645874, 0.008286616764962673, 0.6777450442314148, 0.08854857087135315, 0.7460293173789978, 0.5553977489471436, -0.614296019077301, 0.07709336280822754, 0.4272909164428711, -0.4333488345146179, 0.39823633432388306, -0.6493561267852783, -0.1087859719991684, 0.002802502829581499, 0.2631801962852478, -1.091886043548584, -0.2571493685245514, 0.26407864689826965, -0.6071638464927673, 0.43634313344955444, -0.11519593745470047, -0.5490182042121887, -0.633177638053894, -0.6390007138252258, 0.13801729679107666, 0.2672659754753113, -0.415316641330719, 0.46964412927627563, 0.2660212814807892, -0.06726359575986862, -0.858802318572998, -0.9949126243591309, -0.09116281569004059, -0.10943324863910675, -0.8505696058273315, 0.4835076928138733, -0.15968964993953705, 0.1248147115111351, 0.04992258921265602, 0.01444008108228445, 0.1138477548956871, -0.06307516247034073, 0.07233934849500656, 0.206678569316864, -0.15668852627277374, -0.10276885330677032, -0.010359144769608974, -0.07057076692581177, -0.23661154508590698, -0.11221924424171448, 0.6329748630523682, -0.4106700122356415, 0.05485361069440842, -0.5656242370605469, 0.2954961657524109, 0.41612347960472107, -0.27188539505004883, 1.078165888786316, 0.9839532375335693, -0.27151191234588623, 0.09164921194314957, -0.5061790347099304, -0.04975217953324318, -0.4754512906074524, 0.5308026075363159, -0.6020141839981079, -0.8561438918113708, 0.7241451740264893, 0.1573946177959442, 0.10072877258062363, 0.7909131646156311, 0.5114583969116211, -0.16108740866184235, 1.1244359016418457, 0.43412041664123535, -0.20786717534065247, 0.43792417645454407, -0.7411024570465088, -0.02145606465637684, -0.8973031640052795, -0.38233375549316406, -0.49968189001083374, -0.27780917286872864, -0.9818925857543945, -0.4363114833831787, 0.22827282547950745, 0.06156926974654198, -0.35518527030944824, 0.4530177116394043, -0.6022343635559082, 0.14797979593276978, 0.5380784869194031, 0.27116984128952026, 0.06701608747243881, 0.08379055559635162, -0.39071550965309143, -0.21472592651844025, -0.8597843647003174, -0.4304603338241577, 1.121983528137207, 0.4073716402053833, 0.48660850524902344, 0.1518404185771942, 0.7286221385002136, -0.001850458444096148, 0.03418812155723572, -0.5005390048027039, 0.3993985056877136, -0.28840240836143494, -0.5593093633651733, -0.2061334252357483, -0.7018108367919922, -1.0524898767471313, 0.3525086045265198, -0.29541030526161194, -0.7687119841575623, 0.1755876988172531, 0.01916714385151863, -0.26460304856300354, 0.28940537571907043, -0.9231966733932495, 1.0106395483016968, -0.3228062093257904, -0.5082498788833618, 0.17391997575759888, -0.8545597791671753, 0.27154555916786194, 0.11419925093650818, 0.37068411707878113, -0.002745923586189747, -0.12624585628509521, 0.939664363861084, -0.44984644651412964, 0.7398477792739868, -0.14287278056144714, 0.07164324820041656, 0.18845981359481812, -0.1951342672109604, 0.6846157312393188, -0.015317658893764019, -0.11918898671865463, 0.3683891296386719, 0.18015237152576447, -0.5978639125823975, -0.32340678572654724, 0.8663793802261353, -1.0891609191894531, -0.45444726943969727, -0.6728620529174805, -0.4186602830886841, -0.06503951549530029, 0.3829265236854553, 0.561314582824707, 0.18456536531448364, 0.11077013611793518, 0.3774804174900055, 0.6551880836486816, -0.4554516673088074, 0.5506603717803955, 0.44596177339553833, -0.016476452350616455, -0.7301632761955261, 0.9105476140975952, 0.3022341728210449, 0.17605231702327728, 0.4846719205379486, 0.1553730070590973, -0.397516131401062, -0.4667336046695709, -0.5710497498512268, 0.4731811285018921, -0.4433175325393677, -0.3278443515300751, -0.9852073788642883, -0.2531012296676636, -0.7025167942047119, -0.026549391448497772, -0.3415796160697937, -0.40353766083717346, -0.37606868147850037, -0.1444486379623413, 0.3180862367153168, 0.4830529987812042, -0.0282555241137743, 0.18005134165287018, -0.6387332081794739, 0.24207232892513275, -0.10832659155130386, 0.2872686982154846, -0.16712069511413574, -0.7378135323524475, -0.5632399320602417, 0.17150838673114777, -0.362065851688385, -0.7484208345413208, 0.706655740737915, 0.29784509539604187, 0.5989168286323547, 0.37562739849090576, -0.021458975970745087, 0.7118541598320007, -0.33883386850357056, 0.9728692770004272, 0.27126649022102356, -0.7682073712348938, 0.6816741228103638, -0.3376869261264801, 0.47400739789009094, 0.6597388982772827, 0.759953498840332, -0.5138407945632935, -0.34267735481262207, -0.6968944668769836, -1.0434919595718384, 0.9555136561393738, 0.40916016697883606, -0.04422347992658615, 0.026444558054208755, 0.21860963106155396, -0.1775304079055786, 0.16087864339351654, -1.0129764080047607, -0.75058513879776, -0.2871056795120239, -0.5039218068122864, -0.12912653386592865, -0.2219555377960205, -0.033389613032341, -0.5298926830291748, 0.8433172702789307, -0.0943753719329834, 0.46037963032722473, 0.38034775853157043, -0.21773938834667206, 0.06589368730783463, 0.08607663959264755, 0.7185689210891724, 0.4881742298603058, -0.3195233941078186, 0.1392035335302353, 0.3169798254966736, -0.6730802655220032, -0.09420620650053024, 0.23051369190216064, -0.23086920380592346, 0.03763170167803764, 0.43135467171669006, 0.7807263135910034, 0.25618451833724976, -0.4681587815284729, 0.5318593978881836, -0.0841839388012886, -0.3864753246307373, -0.31452691555023193, -0.13003447651863098, 0.23172253370285034, 0.1850007027387619, 0.3592861294746399, -0.18980014324188232, -0.027333581820130348, -0.5572196245193481, 0.21591384708881378, 0.2045671045780182, -0.4030684530735016, -0.2929054796695709, 0.6473016738891602, 0.09871640801429749, 0.09960106015205383, 0.588779866695404, -0.1975705772638321, -0.6700172424316406, 0.6304279565811157, 0.5097688436508179, 0.5865974426269531, -0.3283970057964325, 0.17523695528507233, 0.9583593010902405, 0.5331376194953918, 0.03036288358271122, 0.3575562536716461, 0.1555105745792389, -0.6812840104103088, -0.25136128067970276, -0.8279839754104614, 0.04043129086494446, 0.25883159041404724, -0.5054168105125427, 0.3197341859340668, -0.21729153394699097, -0.16552916169166565, -0.018222404643893242, 0.6150961518287659, -0.7661706209182739, 0.25893768668174744, -0.013015800155699253, 1.0229538679122925, -0.8543573617935181, 0.9068015813827515, 0.8402473330497742, -0.8872640132904053, -0.9292421936988831, -0.22855259478092194, -0.08923973143100739, -0.7169113755226135, 0.7779889702796936, 0.31815704703330994, 0.17133748531341553, -0.029356462880969048, -0.3965561091899872, -0.9680503606796265, 1.317366361618042, 0.22428074479103088, -0.5066711902618408, -0.021748356521129608, 0.26266127824783325, 0.6106824278831482, -0.322465717792511, 0.4993271231651306, 0.5992305278778076, 0.5921803712844849, -0.17575806379318237, -0.9331941604614258, 0.19082221388816833, -0.651107132434845, -0.038873471319675446, 0.015172325074672699, -1.0827865600585938, 1.0447190999984741, -0.15453697741031647, -0.07918389141559601, -0.11271894723176956, 0.7281926870346069, 0.3590189218521118, 0.29277434945106506, 0.3342224359512329, 0.8555593490600586, 0.7500194907188416, -0.19963377714157104, 1.200646162033081, -0.5295528769493103, 0.5311706066131592, 0.9740043878555298, 0.2429247796535492, 0.8102280497550964, 0.4412763714790344, -0.37360361218452454, 0.6821549534797668, 0.9283799529075623, -0.03185354545712471, 0.5114424228668213, -0.15676277875900269, -0.08861608803272247, -0.08163661509752274, 0.01891707442700863, -0.5406465530395508, 0.31815457344055176, 0.2835003435611725, -0.5256760120391846, 0.017340295016765594, 0.12421286106109619, 0.41009634733200073, -0.06444106996059418, -0.17359313368797302, 0.7746652364730835, 0.17313291132450104, -0.5559902787208557, 0.9055544137954712, 0.028942488133907318, 0.9414482116699219, -0.7299920916557312, 0.15856270492076874, -0.40188536047935486, 0.24012666940689087, -0.4659559428691864, -0.8798373341560364, 0.1417275220155716, -0.0862993374466896, -0.24662435054779053, -0.20790785551071167, 0.49613499641418457, -0.6552793979644775, -0.5539392828941345, 0.5009749531745911, 0.5014227628707886, 0.21985407173633575, 0.1027844250202179, -1.1490036249160767, 0.03318822756409645, 0.2684163451194763, -0.595753014087677, 0.4228179454803467, 0.5320091247558594, 0.07686115056276321, 0.6048798561096191, 0.6772624254226685, 0.15552084147930145, 0.05317656695842743, 0.003273423993960023, 0.9917378425598145, -0.7531498670578003, -0.5417309999465942, -0.7761471271514893, 0.5065146088600159, -0.3039298951625824, -0.45054736733436584, 1.0893545150756836, 0.8012171983718872, 0.9894024729728699, 0.057235684245824814, 0.7474399209022522, -0.21390274167060852, 0.47396841645240784, -0.511408805847168, 0.7924795746803284, -0.8600865006446838, -0.033657319843769073, -0.47021177411079407, -0.7550320029258728, -0.3199235498905182, 0.8216055035591125, -0.39806491136550903, 0.19370979070663452, 0.837418794631958, 0.8327624201774597, 0.019259551540017128, -0.23008829355239868, 0.1976688653230667, 0.4492820203304291, 0.19254501163959503, 0.8112950921058655, 0.35785895586013794, -0.9989284873008728, 0.7501353621482849, -0.5015594363212585, -0.14021842181682587, -0.2719874083995819, -0.6212933659553528, -0.9036474823951721, -0.8160077929496765, -0.44840049743652344, -0.4987863600254059, -0.03063991852104664, 1.0241063833236694, 0.6658448576927185, -0.9184160232543945, -0.29643309116363525, -0.01967190019786358, 0.06341399252414703, -0.29956015944480896, -0.2502816915512085, 0.8226544260978699, -0.36622968316078186, -0.9458043575286865, 0.15437051653862, -0.002016738522797823, 0.08382484316825867, -0.05965611711144447, -0.3086070418357849, -0.6952420473098755, -0.12266863882541656, 0.7454427480697632, 0.25183236598968506, -0.5430338978767395, -0.021866675466299057, 0.09698057174682617, -0.37196993827819824, 0.1725473701953888, 0.09207484126091003, -0.41672834753990173, 0.3850899040699005, 0.5116643905639648, 0.4394603669643402, 0.8206977844238281, -0.054150138050317764, 0.21528960764408112, -0.6988504528999329, 0.312319815158844, 0.026836665347218513, 0.458906888961792, 0.3827674686908722, -0.3743078112602234, 0.8150854110717773, 0.3573462665081024, -0.4923379719257355, -0.7651581168174744, -0.25436025857925415, -1.165342926979065, -0.22066880762577057, 1.2612634897232056, -0.32095062732696533, -0.47477132081985474, -0.08092999458312988, -0.2581532597541809, 0.3472982943058014, -0.4624561369419098, 0.5858168005943298, 0.805895984172821, -0.1535647213459015, -0.29081758856773376, -0.7149322628974915, 0.6075458526611328, 0.46037039160728455, -0.8537322878837585, -0.12818709015846252, 0.20055285096168518, 0.4018614888191223, 0.22244739532470703, 0.7549811601638794, -0.1987985372543335, 0.01799681782722473, -0.03888523206114769, 0.11397378146648407, -0.08404536545276642, 0.007972612977027893, -0.1368357539176941, 0.007350626867264509, -0.3539743423461914, -0.17981375753879547 ]
prajjwal1/bert-mini
prajjwal1
"2021-10-27T18:27:38Z"
56,337
13
transformers
[ "transformers", "pytorch", "BERT", "MNLI", "NLI", "transformer", "pre-training", "en", "arxiv:1908.08962", "arxiv:2110.01518", "license:mit", "endpoints_compatible", "region:us" ]
null
"2022-03-02T23:29:05Z"
--- language: - en license: - mit tags: - BERT - MNLI - NLI - transformer - pre-training --- The following model is a Pytorch pre-trained model obtained from converting Tensorflow checkpoint found in the [official Google BERT repository](https://github.com/google-research/bert). This is one of the smaller pre-trained BERT variants, together with [bert-small](https://huggingface.co/prajjwal1/bert-small) and [bert-medium](https://huggingface.co/prajjwal1/bert-medium). They were introduced in the study `Well-Read Students Learn Better: On the Importance of Pre-training Compact Models` ([arxiv](https://arxiv.org/abs/1908.08962)), and ported to HF for the study `Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics` ([arXiv](https://arxiv.org/abs/2110.01518)). These models are supposed to be trained on a downstream task. If you use the model, please consider citing both the papers: ``` @misc{bhargava2021generalization, title={Generalization in NLI: Ways (Not) To Go Beyond Simple Heuristics}, author={Prajjwal Bhargava and Aleksandr Drozd and Anna Rogers}, year={2021}, eprint={2110.01518}, archivePrefix={arXiv}, primaryClass={cs.CL} } @article{DBLP:journals/corr/abs-1908-08962, author = {Iulia Turc and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {Well-Read Students Learn Better: The Impact of Student Initialization on Knowledge Distillation}, journal = {CoRR}, volume = {abs/1908.08962}, year = {2019}, url = {http://arxiv.org/abs/1908.08962}, eprinttype = {arXiv}, eprint = {1908.08962}, timestamp = {Thu, 29 Aug 2019 16:32:34 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1908-08962.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` Config of this model: `prajjwal1/bert-mini` (L=4, H=256) [Model Link](https://huggingface.co/prajjwal1/bert-mini) Other models to check out: - `prajjwal1/bert-tiny` (L=2, H=128) [Model Link](https://huggingface.co/prajjwal1/bert-tiny) - `prajjwal1/bert-small` (L=4, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-small) - `prajjwal1/bert-medium` (L=8, H=512) [Model Link](https://huggingface.co/prajjwal1/bert-medium) Original Implementation and more info can be found in [this Github repository](https://github.com/prajjwal1/generalize_lm_nli). Twitter: [@prajjwal_1](https://twitter.com/prajjwal_1)
[ -0.4240308701992035, -0.5732917189598083, 0.4710931181907654, -0.000631190778221935, -0.17516140639781952, -0.29198673367500305, -0.31438007950782776, -0.44870251417160034, 0.12564940750598907, 0.18460556864738464, -0.7491246461868286, -0.3547092080116272, -0.5242235064506531, -0.14476947486400604, -0.37196221947669983, 1.2734320163726807, 0.07860013842582703, 0.06296704709529877, -0.1679101437330246, -0.2528925836086273, -0.1543445587158203, -0.5758569240570068, -0.5697347521781921, -0.5140586495399475, 0.7616448998451233, -0.045838311314582825, 0.5002444982528687, 0.19623027741909027, 0.6474859118461609, 0.2795080542564392, -0.40688109397888184, -0.09450756758451462, -0.5093567371368408, -0.25159114599227905, 0.052333492785692215, -0.4431381821632385, -0.5947082042694092, 0.10248986631631851, 0.7624080777168274, 0.9478667378425598, -0.13238461315631866, 0.357145220041275, 0.2932962477207184, 0.6224559545516968, -0.5904366970062256, -0.04731765761971474, -0.3193776607513428, -0.2158210426568985, -0.15817943215370178, 0.27521124482154846, -0.5663886666297913, -0.337567001581192, 0.5340898036956787, -0.5465435981750488, 0.5549886226654053, -0.01733161136507988, 1.4159091711044312, 0.1383712887763977, -0.22368445992469788, -0.1292828917503357, -0.6670075058937073, 1.0020544528961182, -0.9853503704071045, 0.5244731903076172, 0.038553763180971146, 0.2731870412826538, -0.020711282268166542, -0.997780978679657, -0.5797442197799683, -0.05879555270075798, -0.4492100477218628, 0.15920498967170715, -0.3887084722518921, 0.16422593593597412, 0.3972305357456207, 0.3862362802028656, -0.6067193746566772, 0.05965448543429375, -0.5778513550758362, -0.2745574116706848, 0.4027266502380371, -0.033276624977588654, -0.04145871475338936, -0.40124276280403137, -0.36033084988594055, -0.4407103657722473, -0.5867450833320618, 0.24648140370845795, 0.5416719913482666, 0.36167293787002563, -0.40674659609794617, 0.41668644547462463, 0.004986472427845001, 0.868078887462616, 0.124066062271595, -0.014676972292363644, 0.44989684224128723, -0.6512796878814697, -0.14564068615436554, -0.21666841208934784, 0.8022395968437195, 0.09497205168008804, 0.12203948199748993, -0.07712983340024948, -0.0992552638053894, -0.42748022079467773, 0.18083326518535614, -1.04599928855896, -0.41039398312568665, 0.1764657199382782, -0.7323418855667114, -0.030488232150673866, 0.18818815052509308, -0.6331923007965088, -0.05628359317779541, -0.34479042887687683, 0.5319082140922546, -0.5174965858459473, -0.288614422082901, -0.14305643737316132, -0.026058422401547432, 0.4365164041519165, 0.4023810923099518, -0.6577345728874207, 0.06918920576572418, 0.47935229539871216, 0.9384398460388184, 0.09049796313047409, -0.2467273771762848, 0.016376664862036705, 0.06786428391933441, -0.19610758125782013, 0.4232940077781677, -0.2255440205335617, -0.17576780915260315, -0.0460059829056263, -0.029823748394846916, -0.1402207911014557, -0.351004034280777, 0.6990880966186523, -0.5366706848144531, 0.36317941546440125, -0.35946786403656006, -0.5584971308708191, -0.2748779356479645, 0.20086124539375305, -0.6373248100280762, 1.0236297845840454, 0.020959744229912758, -0.9763960242271423, 0.5270143747329712, -0.6539395451545715, -0.22286300361156464, -0.19298939406871796, 0.1482362151145935, -0.7199777364730835, -0.023243078961968422, 0.20630031824111938, 0.5332649350166321, -0.19239576160907745, 0.36020058393478394, -0.47287869453430176, -0.3648439049720764, -0.09351709485054016, -0.09193345159292221, 1.2154954671859741, 0.29166314005851746, -0.07590513676404953, 0.21765188872814178, -0.8498688340187073, 0.09701285511255264, 0.16991135478019714, -0.40616536140441895, -0.4914514720439911, -0.11305005103349686, 0.009541834704577923, 0.006123092491179705, 0.37744036316871643, -0.4143010377883911, 0.3456936478614807, -0.3637484610080719, 0.4348517954349518, 0.6401385068893433, 0.06778310984373093, 0.47856849431991577, -0.5321394801139832, 0.08373214304447174, 0.15383939445018768, 0.3242283761501312, 0.027324821799993515, -0.524417519569397, -1.0318344831466675, -0.5240781307220459, 0.5698060393333435, 0.287436306476593, -0.5733791589736938, 0.6246981620788574, -0.28967100381851196, -0.7056954503059387, -0.6158822774887085, 0.2059699147939682, 0.30963876843452454, 0.5030325651168823, 0.45837467908859253, -0.16894038021564484, -0.749533474445343, -0.9084923267364502, -0.22276662290096283, -0.34158414602279663, -0.21499423682689667, 0.3478071689605713, 0.6847673654556274, -0.5516371130943298, 1.0935461521148682, -0.3900728225708008, -0.28980639576911926, -0.34195995330810547, 0.3860305845737457, 0.7341616153717041, 0.8668714165687561, 0.8310725092887878, -0.5499678254127502, -0.41150009632110596, -0.4067215919494629, -0.5780820250511169, 0.1062035858631134, -0.2000277191400528, -0.3000386953353882, 0.1722692996263504, 0.42042189836502075, -0.6028046607971191, 0.4166067838668823, 0.32164815068244934, -0.36661407351493835, 0.4793952405452728, -0.24361450970172882, -0.09249220043420792, -1.1719515323638916, 0.3685973286628723, 0.050221603363752365, -0.06402496248483658, -0.5667297840118408, 0.15092459321022034, 0.007771637756377459, 0.12277352064847946, -0.188178151845932, 0.6710097789764404, -0.5660555362701416, 0.042182791978120804, 0.1153329536318779, -0.17427796125411987, -0.05677241086959839, 0.5015773773193359, -0.007950188592076302, 0.5375426411628723, 0.3171580731868744, -0.46911150217056274, -0.05777323246002197, 0.44665998220443726, -0.48191335797309875, 0.16482651233673096, -1.1441242694854736, 0.1632767766714096, -0.06271209567785263, 0.44137638807296753, -0.9778086543083191, -0.24811464548110962, 0.2798765003681183, -0.4203577935695648, 0.38355180621147156, -0.35616904497146606, -0.735926628112793, -0.45475947856903076, -0.2732604742050171, 0.3626306653022766, 0.7663235664367676, -0.6586800813674927, 0.6952729225158691, -0.10040060430765152, -0.024503156542778015, -0.5114429593086243, -0.7159238457679749, -0.4280316233634949, -0.0172266885638237, -0.7061951160430908, 0.3656180799007416, -0.26856884360313416, -0.04920728877186775, 0.1582660675048828, -0.018286461010575294, -0.27544882893562317, -0.04772770032286644, 0.15550018846988678, 0.595654308795929, -0.3040572702884674, 0.13735398650169373, 0.0763513371348381, 0.23920433223247528, -0.03593452274799347, -0.08059488981962204, 0.6127017736434937, -0.3003297448158264, -0.18556265532970428, -0.6037815809249878, 0.11454346776008606, 0.39667657017707825, -0.04648024961352348, 1.1126788854599, 0.9609262943267822, -0.381073921918869, 0.041393499821424484, -0.6729353666305542, -0.5866016149520874, -0.47611305117607117, 0.2073841691017151, -0.2553689479827881, -0.7770941853523254, 0.6720621585845947, 0.041251346468925476, 0.24984340369701385, 0.7908169031143188, 0.5043806433677673, -0.31827014684677124, 0.7526199817657471, 0.7937642931938171, -0.016899440437555313, 0.8352025151252747, -0.713948130607605, 0.2647913992404938, -0.9540005326271057, -0.20209254324436188, -0.6190500259399414, -0.4274372160434723, -0.6260738968849182, -0.1898665428161621, 0.2823106050491333, 0.36617979407310486, -0.5212572813034058, 0.39921316504478455, -0.5978358387947083, 0.1757083237171173, 0.8927703499794006, 0.3090452551841736, 0.052713509649038315, -0.00481173163279891, -0.41275933384895325, -0.03271955996751785, -0.9815256595611572, -0.35249486565589905, 1.3821316957473755, 0.4287389814853668, 0.6224380135536194, 0.3171709477901459, 1.0741081237792969, 0.032306969165802, 0.3279813230037689, -0.6267836689949036, 0.4551437497138977, -0.056950461119413376, -1.1085306406021118, -0.2645832896232605, -0.6372418999671936, -1.0533668994903564, 0.07405123114585876, -0.3977285325527191, -0.7288490533828735, 0.529229462146759, 0.07894443720579147, -0.6232385039329529, 0.20044966042041779, -0.9678957462310791, 0.7639294862747192, 0.04057519882917404, -0.47935056686401367, -0.1552249789237976, -0.7151362895965576, 0.3598211407661438, 0.024100515991449356, 0.04946158453822136, 0.1521041989326477, 0.25659504532814026, 1.1035540103912354, -0.6255511045455933, 0.9353710412979126, -0.42445245385169983, 0.2534889280796051, 0.5299884676933289, -0.20128102600574493, 0.6283971071243286, 0.09636915475130081, -0.04634946957230568, 0.41634851694107056, 0.15620429813861847, -0.6203705668449402, -0.26279374957084656, 0.5601965188980103, -1.2118573188781738, -0.4859250783920288, -0.6521128416061401, -0.6621607542037964, -0.09397967159748077, 0.44503217935562134, 0.4035399556159973, 0.36033007502555847, 0.07214945554733276, 0.5185758471488953, 0.7699464559555054, -0.14143069088459015, 0.5879534482955933, 0.46521657705307007, -0.11669383198022842, -0.13752803206443787, 0.6212665438652039, 0.12124431878328323, 0.2373056411743164, 0.1496235430240631, 0.18055890500545502, -0.2837144136428833, -0.7978664040565491, -0.07184991240501404, 0.5863317251205444, -0.7030953764915466, -0.005112898536026478, -0.641345202922821, -0.4917677640914917, -0.5856852531433105, -0.26072415709495544, -0.33085209131240845, -0.21061524748802185, -0.506142795085907, 0.05159693956375122, 0.3132965862751007, 0.5389673709869385, -0.25932544469833374, 0.4630773961544037, -0.6670284867286682, 0.04683949425816536, 0.45926499366760254, 0.19451260566711426, 0.14492017030715942, -0.7565972208976746, -0.1811494529247284, 0.028198830783367157, -0.20962215960025787, -0.5388012528419495, 0.2940979599952698, 0.27656909823417664, 0.8309493064880371, 0.4222456216812134, 0.14516490697860718, 0.6829410195350647, -0.3044625222682953, 0.6926540732383728, 0.4609600901603699, -0.5882114171981812, 0.5207212567329407, -0.4123679995536804, 0.28678515553474426, 0.7460750937461853, 0.5268264412879944, -0.06210566684603691, -0.07017915695905685, -0.8309022188186646, -1.1028358936309814, 0.7177711129188538, 0.18755356967449188, 0.1443982571363449, 0.37064996361732483, 0.4336003065109253, 0.1015426516532898, 0.17776034772396088, -0.8823596835136414, -0.3470207452774048, -0.1881949007511139, -0.2953709661960602, -0.17202028632164001, -0.531622588634491, -0.3137389123439789, -0.6822373270988464, 0.8078686594963074, 0.00452179741114378, 0.6467810273170471, 0.33896028995513916, -0.23756805062294006, 0.2072465419769287, 0.07585789263248444, 0.5046314001083374, 0.6882405877113342, -0.7110227942466736, -0.188823401927948, -0.032480284571647644, -0.5432511568069458, -0.22469213604927063, 0.3515687584877014, -0.3190686106681824, 0.17042134702205658, 0.6336266398429871, 0.8583424687385559, 0.25055524706840515, -0.24280667304992676, 0.5335096120834351, 0.05128970369696617, -0.30783507227897644, -0.4058894217014313, 0.012832659296691418, 0.0025242699775844812, 0.42291781306266785, 0.409385085105896, 0.25992220640182495, 0.11740174889564514, -0.4907248616218567, 0.09490414708852768, 0.2536093592643738, -0.2676007151603699, -0.29722368717193604, 0.6835999488830566, 0.28473517298698425, 0.054707180708646774, 0.8112438321113586, -0.30795857310295105, -0.416892409324646, 0.37699416279792786, 0.2627440392971039, 0.7552762031555176, 0.23554709553718567, 0.06914226710796356, 0.9174753427505493, 0.3493886888027191, -0.12344658374786377, 0.08184108138084412, -0.16519825160503387, -0.7109600305557251, -0.28765004873275757, -0.8978186845779419, -0.2529565989971161, 0.12485194951295853, -0.7488377690315247, 0.28952911496162415, -0.5662020444869995, -0.36324480175971985, 0.16888181865215302, 0.23620234429836273, -0.9073866605758667, 0.06310027837753296, 0.017147667706012726, 0.8372212052345276, -0.6888023018836975, 1.0051847696304321, 0.7986302971839905, -0.5911563038825989, -0.8894795775413513, 0.04255224019289017, -0.16106228530406952, -0.634404718875885, 0.728204071521759, -0.14899225533008575, 0.28034141659736633, 0.1374267339706421, -0.5384232401847839, -0.9186499714851379, 1.327300786972046, 0.23134800791740417, -0.8385984897613525, -0.3793173134326935, -0.17162488400936127, 0.5360251069068909, -0.06813330203294754, 0.4223584234714508, 0.34735217690467834, 0.3871389627456665, 0.38767626881599426, -0.7956250309944153, -0.02076365053653717, -0.2175399661064148, 0.013281923718750477, 0.0835517942905426, -0.7828285098075867, 1.2757883071899414, -0.359488844871521, 0.04837475344538689, 0.27965083718299866, 0.6330128312110901, 0.42293789982795715, 0.1724122166633606, 0.484592080116272, 0.7577285170555115, 0.7850258946418762, -0.3479483723640442, 1.102746605873108, -0.2011757791042328, 0.7876186966896057, 1.090172290802002, 0.2671220600605011, 0.7825465798377991, 0.7091098427772522, -0.3894380033016205, 0.6447631120681763, 0.8199943900108337, -0.22633159160614014, 0.6965929865837097, 0.1003611758351326, 0.12364781647920609, -0.30908358097076416, 0.2601468861103058, -0.6288907527923584, 0.10284949839115143, 0.11097772419452667, -0.45612001419067383, -0.23358596861362457, -0.22967424988746643, 0.12620000541210175, -0.38078397512435913, -0.2951714098453522, 0.6048828363418579, 0.03047322668135166, -0.4179951846599579, 0.7801082134246826, -0.24428071081638336, 0.9529089331626892, -0.8048574924468994, 0.1832991987466812, -0.13170599937438965, 0.4000648856163025, -0.10764038562774658, -0.45934855937957764, 0.2594926953315735, -0.017651371657848358, -0.437399685382843, -0.20006708800792694, 0.7907553315162659, -0.17866544425487518, -0.7020404934883118, 0.28895920515060425, 0.4935385584831238, 0.13456347584724426, 0.22054079174995422, -0.8812792897224426, 0.054728079587221146, 0.005254631862044334, -0.5285473465919495, 0.3186018168926239, 0.1653926968574524, 0.17535319924354553, 0.46482405066490173, 0.778735339641571, -0.06582054495811462, 0.35532066226005554, -0.03135140240192413, 0.8212021589279175, -0.3782655596733093, -0.3892345130443573, -0.5638279914855957, 0.6914547085762024, -0.22410275042057037, -0.6251201629638672, 0.6432070732116699, 0.4394589066505432, 1.0494967699050903, -0.11430173367261887, 0.628082811832428, -0.3454210162162781, 0.634367048740387, -0.3975890874862671, 1.046781301498413, -0.8068879842758179, 0.13418635725975037, -0.3165525197982788, -0.9363951086997986, -0.16388139128684998, 0.790541410446167, -0.5509883165359497, 0.4323163628578186, 0.6053242683410645, 0.4825621545314789, 0.002701001474633813, -0.2740175426006317, 0.07654019445180893, 0.42465975880622864, 0.2892180383205414, 0.4310019612312317, 0.5831467509269714, -0.5548660755157471, 0.5377374291419983, -0.41219496726989746, -0.13047979772090912, -0.5265063643455505, -0.676128625869751, -1.1603533029556274, -0.6927918195724487, -0.3895227611064911, -0.41505134105682373, 0.04064466059207916, 0.8124820590019226, 0.9774827361106873, -1.0302190780639648, -0.08365561068058014, -0.1746276468038559, -0.022332223132252693, -0.13331955671310425, -0.2128891497850418, 0.43101850152015686, -0.25662437081336975, -0.7092244029045105, -0.05183616653084755, -0.4246973991394043, 0.27752628922462463, -0.11587605625391006, -0.23591941595077515, -0.5370494723320007, 0.07122937589883804, 0.3610064387321472, 0.2722819745540619, -0.6639152765274048, -0.3903251886367798, -0.047820646315813065, -0.16388656198978424, -0.14515763521194458, 0.5357770919799805, -0.6138997077941895, 0.3184446692466736, 0.545064389705658, 0.4785176217556, 0.7471747398376465, -0.32292163372039795, 0.2123279571533203, -0.8119696378707886, 0.4322253167629242, 0.292165070772171, 0.49776846170425415, 0.16945798695087433, -0.09211722016334534, 0.6354863047599792, 0.37311556935310364, -0.5516383647918701, -1.1205464601516724, -0.05367656797170639, -1.1626774072647095, -0.1786104440689087, 1.0873968601226807, -0.4262371063232422, -0.19145920872688293, 0.3119155466556549, -0.05137018486857414, 0.38255181908607483, -0.38396337628364563, 0.7154890298843384, 0.8567236661911011, -0.00459927087649703, -0.1779567152261734, -0.5470144748687744, 0.3940865099430084, 0.38170889019966125, -0.592922568321228, -0.35852527618408203, 0.21816730499267578, 0.374116450548172, 0.39695870876312256, 0.33126646280288696, 0.09486370533704758, 0.21814437210559845, -0.058252040296792984, 0.28967082500457764, -0.11073330044746399, -0.26383548974990845, -0.09330129623413086, -0.06280087679624557, -0.041118837893009186, -0.14546369016170502 ]
timm/nfnet_l0.ra2_in1k
timm
"2023-03-24T01:15:53Z"
56,234
1
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:2102.06171", "arxiv:2101.08692", "license:apache-2.0", "region:us" ]
image-classification
"2023-03-24T01:15:14Z"
--- tags: - image-classification - timm library_tag: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for nfnet_l0.ra2_in1k A NFNet-Lite (Lightweight NFNet) image classification model. Trained in `timm` by Ross Wightman. Normalization Free Networks are (pre-activation) ResNet-like models without any normalization layers. Instead of Batch Normalization or alternatives, they use Scaled Weight Standardization and specifically placed scalar gains in residual path and at non-linearities based on signal propagation analysis. Lightweight NFNets are `timm` specific variants that reduce the SE and bottleneck ratio from 0.5 -> 0.25 (reducing widths) and use a smaller group size while maintaining the same depth. SiLU activations used instead of GELU. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 35.1 - GMACs: 4.4 - Activations (M): 10.5 - Image size: train = 224 x 224, test = 288 x 288 - **Papers:** - High-Performance Large-Scale Image Recognition Without Normalization: https://arxiv.org/abs/2102.06171 - Characterizing signal propagation to close the performance gap in unnormalized ResNets: https://arxiv.org/abs/2101.08692 - **Original:** https://github.com/huggingface/pytorch-image-models - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('nfnet_l0.ra2_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'nfnet_l0.ra2_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 112, 112]) # torch.Size([1, 256, 56, 56]) # torch.Size([1, 512, 28, 28]) # torch.Size([1, 1536, 14, 14]) # torch.Size([1, 2304, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'nfnet_l0.ra2_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2304, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{brock2021high, author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan}, title={High-Performance Large-Scale Image Recognition Without Normalization}, journal={arXiv preprint arXiv:2102.06171}, year={2021} } ``` ```bibtex @inproceedings{brock2021characterizing, author={Andrew Brock and Soham De and Samuel L. Smith}, title={Characterizing signal propagation to close the performance gap in unnormalized ResNets}, booktitle={9th International Conference on Learning Representations, {ICLR}}, year={2021} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
[ -0.4952356517314911, -0.47406381368637085, -0.12166342884302139, 0.11685098707675934, -0.3511127233505249, -0.3506889045238495, -0.30163973569869995, -0.5331503748893738, 0.30454543232917786, 0.45644068717956543, -0.4127766191959381, -0.6163018941879272, -0.7745619416236877, 0.016232285648584366, -0.15076903998851776, 1.0357366800308228, -0.059643570333719254, -0.09024389833211899, -0.18116173148155212, -0.5797499418258667, -0.11516273766756058, -0.15707536041736603, -0.8462311625480652, -0.5224425196647644, 0.4435846507549286, 0.23853352665901184, 0.643130362033844, 0.6460883021354675, 0.6146265864372253, 0.4426210820674896, -0.16600137948989868, 0.11336085945367813, -0.219983771443367, -0.20482765138149261, 0.4500616490840912, -0.6071570515632629, -0.4359007477760315, 0.2801504135131836, 0.8190357685089111, 0.5306817889213562, 0.1409580409526825, 0.38281190395355225, 0.1010609045624733, 0.634046733379364, -0.22573156654834747, 0.14528261125087738, -0.38365864753723145, 0.1995396912097931, -0.07899583876132965, 0.04022203013300896, -0.30351927876472473, -0.43372219800949097, 0.1762269288301468, -0.5760584473609924, 0.43459707498550415, -0.018747374415397644, 1.3279049396514893, 0.17972466349601746, -0.20653019845485687, -0.000521232548635453, -0.3447236716747284, 0.8269346356391907, -0.8329811096191406, 0.25777962803840637, 0.27692627906799316, 0.3037373721599579, -0.170363649725914, -0.9979738593101501, -0.5234425067901611, -0.23939937353134155, -0.16908952593803406, -0.08752403408288956, -0.29779043793678284, 0.16000065207481384, 0.36301863193511963, 0.3290308117866516, -0.40219631791114807, 0.14975059032440186, -0.5795623660087585, -0.1713326871395111, 0.6090817451477051, -0.11553208529949188, 0.28847450017929077, -0.18242168426513672, -0.529196560382843, -0.33993765711784363, -0.34254884719848633, 0.32619747519493103, 0.33571934700012207, 0.2799498438835144, -0.6810485124588013, 0.3382510542869568, 0.06438188999891281, 0.6483377814292908, 0.07581263035535812, -0.3816662132740021, 0.6437586545944214, 0.0873928964138031, -0.47113898396492004, -0.16033834218978882, 1.130276083946228, 0.3635656237602234, 0.2616419196128845, -0.08339999616146088, -0.2524825930595398, -0.3147938549518585, -0.22405093908309937, -1.1888326406478882, -0.3430621325969696, 0.2487669289112091, -0.7194986939430237, -0.45997604727745056, 0.21540533006191254, -0.6303722858428955, -0.16293196380138397, -0.06482063978910446, 0.6197710037231445, -0.427584707736969, -0.45163610577583313, 0.10260747373104095, -0.20862621068954468, 0.30375245213508606, 0.19544164836406708, -0.569247841835022, 0.24990026652812958, 0.2536809742450714, 1.1534345149993896, 0.15543584525585175, -0.3348865211009979, -0.286742627620697, -0.3875028192996979, -0.32078060507774353, 0.4488735795021057, -0.09720353037118912, -0.07315226644277573, -0.39797964692115784, 0.3764737546443939, -0.11874669045209885, -0.8143567442893982, 0.29547399282455444, -0.3287157118320465, 0.18901219964027405, -0.023167861625552177, -0.2457098811864853, -0.5669497847557068, 0.26256263256073, -0.5709242820739746, 1.285345196723938, 0.33055081963539124, -0.9202719926834106, 0.3336621820926666, -0.6713146567344666, -0.16893450915813446, -0.31462764739990234, -0.03570815548300743, -1.034623622894287, -0.03354509174823761, 0.17993399500846863, 0.7466877698898315, -0.3844452202320099, 0.027803290635347366, -0.5570645332336426, -0.43903541564941406, 0.34656327962875366, -0.08165797591209412, 1.0447158813476562, 0.16669072210788727, -0.5101938843727112, 0.3152022063732147, -0.673478364944458, 0.1239888146519661, 0.5048017501831055, -0.2847626209259033, -0.017130736261606216, -0.632345974445343, 0.25036758184432983, 0.36232972145080566, 0.027645524591207504, -0.6928437352180481, 0.2714647650718689, -0.2965729832649231, 0.535331130027771, 0.5912473797798157, -0.15618638694286346, 0.3535800278186798, -0.4737015664577484, 0.26845023036003113, 0.2888905704021454, 0.31691431999206543, 0.02572047896683216, -0.6252824664115906, -0.7621520161628723, -0.5400366187095642, 0.38341251015663147, 0.2822185456752777, -0.5467656254768372, 0.4075610041618347, -0.2356274276971817, -0.7064158916473389, -0.43057990074157715, 0.16113543510437012, 0.46020880341529846, 0.5976347923278809, 0.375043660402298, -0.4605017900466919, -0.5250435471534729, -0.8741824626922607, 0.0852394700050354, 0.13865922391414642, -0.03658002242445946, 0.35118368268013, 0.6483970284461975, -0.18383841216564178, 0.6867125630378723, -0.35779044032096863, -0.3464745581150055, -0.3095173239707947, 0.13702161610126495, 0.47366711497306824, 0.7769925594329834, 0.8568221926689148, -0.6381236910820007, -0.5058717131614685, -0.1345556527376175, -0.9689987301826477, 0.17838145792484283, -0.011547367088496685, -0.10966714471578598, 0.2755526304244995, 0.19837790727615356, -0.5529349446296692, 0.6018669605255127, 0.27217987179756165, -0.2590762972831726, 0.3932221233844757, -0.2809852659702301, 0.1736871898174286, -1.1148051023483276, 0.161972776055336, 0.4347064793109894, -0.07486376911401749, -0.5760963559150696, 0.017998939380049706, 0.022905176505446434, -0.06332161277532578, -0.41364166140556335, 0.6460554599761963, -0.6693545579910278, -0.2747519612312317, -0.17727121710777283, -0.20658424496650696, 0.08886830508708954, 0.7027440071105957, -0.11232972890138626, 0.43853771686553955, 0.8401798605918884, -0.45529764890670776, 0.401729553937912, 0.26528626680374146, -0.1998259723186493, 0.3416233956813812, -0.7386189103126526, 0.2265186607837677, -0.17036575078964233, 0.2833212614059448, -1.0464410781860352, -0.25040119886398315, 0.3399677872657776, -0.649745523929596, 0.5885586142539978, -0.5740296244621277, -0.492431640625, -0.4375821650028229, -0.47475796937942505, 0.49101653695106506, 0.7408043742179871, -0.7307901978492737, 0.39632242918014526, 0.18805451691150665, 0.4555164873600006, -0.5581896901130676, -0.9296566843986511, -0.23453882336616516, -0.3914450705051422, -0.7807499766349792, 0.30460336804389954, 0.13694235682487488, 0.16125176846981049, 0.12101133167743683, -0.08845993131399155, -0.2278805822134018, -0.054350487887859344, 0.6109279990196228, 0.371902734041214, -0.398946076631546, -0.07038057595491409, -0.34251242876052856, -0.08794506639242172, 0.02973463572561741, -0.3297446370124817, 0.4820672571659088, -0.21124912798404694, -0.07422856986522675, -0.9796069264411926, -0.04937858507037163, 0.519756019115448, -0.21149781346321106, 0.8554532527923584, 1.1487843990325928, -0.5850669741630554, -0.05312848836183548, -0.5092465877532959, -0.3352610766887665, -0.5041506886482239, 0.3686501979827881, -0.25395217537879944, -0.6137425899505615, 0.8118035197257996, -0.018420834094285965, 0.1026180163025856, 0.6411072015762329, 0.17311745882034302, -0.04582330584526062, 0.700456976890564, 0.6506260633468628, 0.11252130568027496, 0.6699236035346985, -0.998307466506958, -0.07183550298213959, -0.8617170453071594, -0.4989665448665619, -0.34334278106689453, -0.745639979839325, -0.6253756284713745, -0.4699955880641937, 0.44430288672447205, 0.2906407415866852, -0.38482019305229187, 0.36984574794769287, -0.8716146349906921, 0.17867371439933777, 0.5848792195320129, 0.4573496878147125, -0.27556121349334717, 0.37595033645629883, -0.1988317221403122, 0.01907729171216488, -0.7252615690231323, -0.2363014817237854, 1.2390503883361816, 0.471927672624588, 0.6340265274047852, -0.1363789439201355, 0.7450529932975769, -0.21715760231018066, 0.37686190009117126, -0.6527575254440308, 0.6124646067619324, -0.18230527639389038, -0.38983631134033203, -0.16460007429122925, -0.5530011653900146, -1.1718347072601318, 0.061626337468624115, -0.4269794821739197, -0.7855052947998047, 0.17970331013202667, 0.14959874749183655, -0.25778794288635254, 0.9008511900901794, -0.7570188641548157, 0.8371673822402954, -0.028763897716999054, -0.3616262972354889, 0.0856320858001709, -0.7055065631866455, 0.3367459774017334, 0.32042986154556274, -0.19435736536979675, -0.19565336406230927, 0.1605176478624344, 1.1267471313476562, -0.435214102268219, 0.8482487797737122, -0.5681031942367554, 0.4842456579208374, 0.5119473934173584, -0.16057264804840088, 0.28339651226997375, -0.08395306766033173, -0.15709130465984344, 0.4094531834125519, 0.0534747838973999, -0.48957571387290955, -0.5844829082489014, 0.5986481308937073, -1.0513570308685303, -0.19729334115982056, -0.29134488105773926, -0.5289465188980103, 0.1583556830883026, 0.16145066916942596, 0.47723448276519775, 0.7424962520599365, 0.3052276074886322, 0.3660930097103119, 0.6461145281791687, -0.4183065593242645, 0.4299943447113037, -0.10470127314329147, -0.18501903116703033, -0.5332274436950684, 0.807843029499054, 0.29361820220947266, 0.1976681649684906, 0.15101003646850586, 0.22632868587970734, -0.3682836592197418, -0.6257041692733765, -0.283974289894104, 0.45929065346717834, -0.6557039618492126, -0.5062735676765442, -0.5912030935287476, -0.5026429891586304, -0.4376758635044098, 0.0016190902097150683, -0.4630673825740814, -0.37664294242858887, -0.3655431866645813, 0.1833334118127823, 0.7208830118179321, 0.6950095295906067, -0.12376085668802261, 0.5812130570411682, -0.5090212821960449, 0.14717306196689606, 0.06679507344961166, 0.5960706472396851, 0.051238104701042175, -0.7986425161361694, -0.23055888712406158, -0.07158759981393814, -0.38889840245246887, -0.7297725677490234, 0.3967878818511963, 0.21744200587272644, 0.4926685094833374, 0.4303033947944641, -0.13282836973667145, 0.6634464859962463, 0.13093797862529755, 0.4401291012763977, 0.4274415373802185, -0.5499947667121887, 0.5304555892944336, -0.009908410720527172, 0.1415960043668747, 0.09181198477745056, 0.35644567012786865, -0.3350108861923218, 0.05757952108979225, -0.8806188106536865, -0.6959481835365295, 0.8468117713928223, 0.11212840676307678, -0.024681568145751953, 0.32711753249168396, 0.8128635287284851, -0.05029933527112007, 0.014575005508959293, -0.7505148649215698, -0.47539791464805603, -0.29835638403892517, -0.18765239417552948, -0.03800292685627937, -0.1145014539361, -0.12417250126600266, -0.6601094603538513, 0.5887218713760376, -0.11423185467720032, 0.834894597530365, 0.3964221775531769, -0.016918431967496872, -0.10591107606887817, -0.3677271008491516, 0.423359215259552, 0.20175796747207642, -0.3674606382846832, 0.0798720270395279, 0.14593175053596497, -0.5320466160774231, 0.1389290690422058, 0.13189473748207092, -0.03603421151638031, 0.05048147216439247, 0.5604739189147949, 0.9757267236709595, 0.05188113451004028, 0.050041407346725464, 0.5509458780288696, -0.05303877219557762, -0.57249516248703, -0.15861131250858307, 0.10920114815235138, -0.03732922673225403, 0.3969307839870453, 0.2622813880443573, 0.37411990761756897, -0.14669112861156464, -0.19088803231716156, 0.26586267352104187, 0.5984131693840027, -0.3013511896133423, -0.45899146795272827, 0.7379397749900818, -0.19670549035072327, -0.08695752918720245, 0.9061327576637268, -0.17793096601963043, -0.30473029613494873, 1.1040550470352173, 0.4747749865055084, 0.9685419201850891, -0.04156193882226944, 0.11472179740667343, 0.8685332536697388, 0.26546573638916016, 0.04998770356178284, 0.21166354417800903, 0.08293215185403824, -0.7676265835762024, 0.027714332565665245, -0.5740119814872742, 0.11804986000061035, 0.42219746112823486, -0.5863254070281982, 0.2592226564884186, -0.9580240845680237, -0.48910319805145264, 0.1493477076292038, 0.3472661077976227, -0.9399098753929138, 0.22695684432983398, -0.038387786597013474, 0.9521774053573608, -0.8689795732498169, 0.8454020023345947, 0.8372064828872681, -0.49704864621162415, -1.1562124490737915, -0.08537421375513077, -0.0016871079569682479, -0.8568741083145142, 0.6208045482635498, 0.5726721882820129, 0.10126027464866638, -0.02749534323811531, -0.6977061033248901, -0.7018160820007324, 1.452099323272705, 0.6014201045036316, 0.016132431104779243, 0.22367222607135773, 0.018311282619833946, 0.25649628043174744, -0.4131149649620056, 0.5255433917045593, 0.16628320515155792, 0.3628080189228058, 0.3953075706958771, -0.7372687458992004, 0.28406137228012085, -0.318756639957428, 0.16486753523349762, 0.2221624106168747, -0.8127614855766296, 0.9864714741706848, -0.5213107466697693, -0.21244147419929504, 0.01838008686900139, 0.6756914258003235, 0.13581080734729767, 0.1938735544681549, 0.5897380113601685, 0.7582754492759705, 0.5614102482795715, -0.2947918176651001, 0.746972918510437, -0.09841741621494293, 0.5786005258560181, 0.587273359298706, 0.36456212401390076, 0.5166271328926086, 0.4288664162158966, -0.21322311460971832, 0.3455422818660736, 0.9493505358695984, -0.3052680492401123, 0.26725009083747864, 0.2519132196903229, -0.04530971869826317, -0.07960152626037598, 0.046857111155986786, -0.46451452374458313, 0.505592405796051, 0.06248927116394043, -0.48961159586906433, -0.3110751509666443, 0.04892433434724808, 0.041655443608760834, -0.2840723395347595, -0.18007633090019226, 0.4660884439945221, 0.006109239999204874, -0.31799405813217163, 0.9484548568725586, 0.23707804083824158, 1.0040584802627563, -0.47979000210762024, 0.003817809047177434, -0.34490495920181274, 0.16606594622135162, -0.5553829073905945, -0.7125809192657471, 0.40134677290916443, -0.2821546196937561, -0.022384902462363243, 0.08382059633731842, 0.6364902853965759, -0.27031993865966797, -0.4289277195930481, 0.34341442584991455, 0.2063603699207306, 0.4822624921798706, 0.08103299140930176, -1.1015150547027588, 0.18228039145469666, 0.00005936546222073957, -0.5687570571899414, 0.4447137415409088, 0.41437551379203796, 0.014476116746664047, 0.776296079158783, 0.7023792266845703, -0.09821892529726028, 0.18226884305477142, -0.17682909965515137, 0.8621878623962402, -0.45836830139160156, -0.2874702215194702, -0.7086398601531982, 0.5518305897712708, -0.058471355587244034, -0.5630878210067749, 0.4974243640899658, 0.6084177494049072, 0.8431941270828247, 0.029095523059368134, 0.3793383836746216, -0.18321533501148224, -0.06338618695735931, -0.346232146024704, 0.74306720495224, -0.7570172548294067, -0.02897859923541546, -0.1611269861459732, -0.70869380235672, -0.49813342094421387, 0.7468317151069641, -0.27843350172042847, 0.4245772063732147, 0.3381292223930359, 1.1280015707015991, -0.39804866909980774, -0.2651033103466034, 0.22043201327323914, 0.10517740249633789, 0.11160438507795334, 0.49694645404815674, 0.33978721499443054, -0.7802925109863281, 0.38242149353027344, -0.6529114842414856, -0.2905784547328949, -0.12296047061681747, -0.7029570937156677, -1.0116897821426392, -0.802589476108551, -0.6158453822135925, -0.6400240659713745, -0.2322932332754135, 0.9932875633239746, 1.1027523279190063, -0.6348203420639038, -0.2552235424518585, 0.06687873601913452, 0.16383425891399384, -0.2763611674308777, -0.22395175695419312, 0.6106964349746704, -0.15116780996322632, -0.6161918640136719, -0.2505441904067993, 0.06171886622905731, 0.40911051630973816, 0.037280671298503876, -0.27829304337501526, -0.18464815616607666, -0.2109868824481964, 0.19477581977844238, 0.36197564005851746, -0.6632710695266724, -0.20341014862060547, -0.27273350954055786, -0.06580944359302521, 0.4810633361339569, 0.41655996441841125, -0.5796217918395996, 0.3174360692501068, 0.388704776763916, 0.4242504835128784, 0.7739627361297607, -0.4182460606098175, -0.10229314118623734, -0.8251410126686096, 0.6215826869010925, -0.1157262846827507, 0.4002208709716797, 0.44533029198646545, -0.35422706604003906, 0.47937658429145813, 0.49269700050354004, -0.43614548444747925, -0.9203398823738098, -0.06363451480865479, -1.0502103567123413, -0.04634365066885948, 0.8616470098495483, -0.44060254096984863, -0.48254621028900146, 0.44502758979797363, 0.04731446132063866, 0.6856985092163086, -0.08495716005563736, 0.4359293282032013, 0.15800781548023224, -0.21749357879161835, -0.6219237446784973, -0.5902149677276611, 0.4901709258556366, 0.11628394573926926, -0.5578399896621704, -0.4405677616596222, -0.03241649642586708, 0.8606754541397095, 0.12508122622966766, 0.61185622215271, -0.1999453753232956, 0.08148644119501114, 0.05561307817697525, 0.45229414105415344, -0.5402547717094421, -0.16617882251739502, -0.46899735927581787, 0.10356462746858597, 0.024053892120718956, -0.644440233707428 ]
gustavomedeiros/labsai
gustavomedeiros
"2023-11-02T20:35:40Z"
55,913
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "base_model:roberta-base", "license:mit", "endpoints_compatible", "region:us" ]
text-classification
"2023-10-13T17:40:24Z"
--- license: mit base_model: roberta-base tags: - generated_from_trainer model-index: - name: labsai results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # labsai This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.6231 | 1.0 | 13521 | 0.6692 | | 0.2591 | 2.0 | 27042 | 0.4578 | | 0.5849 | 3.0 | 40563 | 0.4531 | | 0.1875 | 4.0 | 54084 | 0.4265 | | 0.0596 | 5.0 | 67605 | 0.3869 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1
[ -0.3911396265029907, -0.6459639072418213, 0.2859764099121094, 0.11174171417951584, -0.3370632827281952, -0.46539780497550964, -0.1492461860179901, -0.09708301723003387, 0.03689386695623398, 0.4429186284542084, -0.895483136177063, -0.6848558783531189, -0.7416579127311707, -0.14613433182239532, -0.22089718282222748, 1.523308515548706, 0.19230900704860687, 0.5378656983375549, -0.016833985224366188, -0.15844959020614624, -0.536069393157959, -0.5506737232208252, -0.8986451029777527, -0.7621346116065979, 0.23766067624092102, 0.38986727595329285, 0.710067868232727, 0.8313966393470764, 0.5596302151679993, 0.19810467958450317, -0.35837361216545105, -0.13449335098266602, -0.7894948124885559, -0.5177838802337646, 0.17164580523967743, -0.5544500350952148, -0.80103999376297, -0.03943789750337601, 0.7469276785850525, 0.4185425341129303, -0.19844138622283936, 0.6055516004562378, -0.08926302939653397, 0.6064637899398804, -0.4569704532623291, 0.19824114441871643, -0.5186198949813843, 0.33248838782310486, -0.3239864706993103, -0.5094828605651855, -0.5074896216392517, -0.06241057440638542, 0.009739408269524574, -0.5618799328804016, 0.5778837203979492, 0.031700171530246735, 1.476823091506958, 0.42871490120887756, -0.3930239975452423, 0.23184645175933838, -0.8860192894935608, 0.7879993319511414, -0.7080186605453491, 0.30878186225891113, 0.3726768493652344, 0.5689294934272766, 0.10017982125282288, -0.6324535608291626, -0.4099958837032318, -0.055490124970674515, 0.11235706508159637, 0.2742313742637634, -0.16338394582271576, -0.0607808418571949, 0.7001932263374329, 0.601827085018158, -0.8645626902580261, 0.14462314546108246, -0.6719756126403809, -0.14014017581939697, 0.4570557773113251, 0.5394206643104553, -0.187609001994133, -0.20536692440509796, -0.5769758820533752, -0.3250362277030945, -0.5354297161102295, 0.008963796310126781, 0.6065444350242615, 0.29348278045654297, -0.6105008721351624, 0.5408859252929688, -0.2918477952480316, 1.007252812385559, 0.19959715008735657, -0.19228197634220123, 0.7170570492744446, 0.09794197976589203, -0.57164466381073, -0.2528364360332489, 0.7558220028877258, 0.4809929132461548, 0.16834715008735657, -0.015133833512663841, -0.21421556174755096, -0.18108654022216797, 0.2696595788002014, -0.9658030867576599, -0.4434663653373718, 0.15966038405895233, -0.6492903232574463, -0.6693730354309082, 0.1983066350221634, -0.5156012773513794, 0.14823435246944427, -0.4029542803764343, 0.5187646746635437, -0.5279409885406494, -0.13314972817897797, 0.044940799474716187, -0.268722265958786, 0.4221225082874298, 0.18124577403068542, -0.7553055882453918, 0.5394638776779175, 0.36485010385513306, 0.6401364207267761, 0.11628706008195877, -0.24085724353790283, -0.3824159801006317, 0.08455239236354828, -0.2804183065891266, 0.6026102900505066, 0.014976155944168568, -0.5873538255691528, -0.32951775193214417, 0.2088589370250702, -0.1345108151435852, -0.4855400323867798, 0.9506126642227173, -0.45871540904045105, 0.37456732988357544, 0.06110760197043419, -0.6559696197509766, -0.21864129602909088, 0.4859483540058136, -0.7087056040763855, 1.197053074836731, 0.23311102390289307, -0.7411284446716309, 0.5037621855735779, -0.575511634349823, -0.07851506024599075, -0.0080726258456707, -0.11475975066423416, -0.969044029712677, -0.01631391979753971, -0.03148835897445679, 0.3097079396247864, -0.41179579496383667, 0.33786505460739136, -0.30613231658935547, -0.5047141313552856, 0.11195854842662811, -0.6774120330810547, 1.0561102628707886, 0.13857722282409668, -0.47475191950798035, 0.41865280270576477, -1.5435638427734375, 0.49146968126296997, 0.2581816613674164, -0.4551887810230255, 0.17626462876796722, -0.6040445566177368, 0.6022384762763977, 0.18810150027275085, 0.28585922718048096, -0.5037819147109985, 0.07558786869049072, -0.3407324552536011, 0.27242422103881836, 0.7417401075363159, 0.13765576481819153, 0.12451768666505814, -0.6108375787734985, 0.40418949723243713, 0.08795660734176636, 0.6156476736068726, 0.3637539744377136, -0.6438670754432678, -0.984325110912323, -0.176898792386055, 0.4377944767475128, 0.41862648725509644, -0.2046646773815155, 0.8234558701515198, -0.17346131801605225, -0.8423826098442078, -0.3335699141025543, 0.008841621689498425, 0.6404332518577576, 0.7819883227348328, 0.48287439346313477, -0.22601941227912903, -0.5727307796478271, -1.2682830095291138, 0.21814237534999847, 0.10459917038679123, 0.12543141841888428, 0.28729045391082764, 0.737604022026062, -0.05955463647842407, 0.7251471281051636, -0.6163728833198547, -0.34388604760169983, -0.1869157999753952, 0.2330879420042038, 0.5554893016815186, 0.884334921836853, 0.8125640749931335, -0.5148960947990417, -0.2815353572368622, -0.2523093819618225, -0.85938960313797, 0.38524994254112244, -0.14793479442596436, -0.4354102611541748, 0.07865492254495621, 0.047804273664951324, -0.5230160355567932, 0.7972877025604248, 0.5273478627204895, -0.21540464460849762, 0.7284599542617798, -0.5131876468658447, -0.059797316789627075, -1.200503945350647, 0.3458256125450134, 0.1168133020401001, -0.1293189525604248, -0.3109892010688782, 0.08249189704656601, 0.16168564558029175, -0.3710440695285797, -0.37675973773002625, 0.6182268857955933, -0.28775909543037415, -0.0074042365886271, -0.15573672950267792, -0.28455716371536255, 0.07351285964250565, 0.8185184001922607, 0.18993060290813446, 0.6797882914543152, 0.6566623449325562, -0.5491269826889038, 0.25318121910095215, 0.5481659173965454, -0.18992763757705688, 0.5224214792251587, -1.0075745582580566, 0.20812179148197174, 0.08598948270082474, 0.19033999741077423, -0.6821621060371399, -0.2087738811969757, 0.3665570318698883, -0.6776779294013977, 0.3094162344932556, -0.45987704396247864, -0.30646437406539917, -0.3436501622200012, -0.20475435256958008, 0.3137357234954834, 0.7097381353378296, -0.4594672620296478, 0.4115222096443176, -0.12997877597808838, 0.6219592690467834, -0.5540571808815002, -0.8811202049255371, -0.2602953612804413, -0.3006266951560974, -0.5090648531913757, 0.2610119581222534, -0.14263035356998444, 0.1114736944437027, 0.07497257739305496, 0.07261039316654205, -0.315483421087265, -0.023559261113405228, 0.6174219250679016, 0.48299312591552734, -0.18215668201446533, -0.1665378361940384, -0.2574425935745239, -0.43658754229545593, 0.14501212537288666, -0.06233615055680275, 0.8057841658592224, -0.17663155496120453, -0.28111326694488525, -0.9882394075393677, -0.08107177913188934, 0.5021873116493225, -0.23341216146945953, 1.0423247814178467, 0.7767095565795898, -0.4751538932323456, -0.1439269483089447, -0.41318076848983765, -0.037935029715299606, -0.3995537757873535, 0.4227830171585083, -0.6390702128410339, -0.160647913813591, 0.7752379775047302, 0.08408308029174805, -0.12373152375221252, 1.1098711490631104, 0.5066390633583069, 0.17351607978343964, 1.0812855958938599, 0.32041114568710327, 0.0010252760257571936, 0.3323696553707123, -1.214963436126709, -0.20070450007915497, -1.0767219066619873, -0.39360901713371277, -0.6857321262359619, -0.1857827603816986, -0.6691316366195679, -0.12104824185371399, 0.3892457187175751, 0.0539328008890152, -0.8336496353149414, 0.3066890835762024, -0.4855061173439026, 0.3009849190711975, 0.9091420769691467, 0.5592527389526367, 0.031383614987134933, -0.051021452993154526, 0.003689661156386137, -0.08963429182767868, -0.9002103805541992, -0.42027243971824646, 1.5416501760482788, 0.3070695996284485, 0.7387347221374512, -0.027642173692584038, 0.9832677245140076, 0.05086946859955788, 0.21321988105773926, -0.626437783241272, 0.3744417130947113, 0.08984991908073425, -1.0958998203277588, -0.22901082038879395, -0.4900977611541748, -0.7631570100784302, 0.020617211237549782, -0.4655640125274658, -0.5650308132171631, 0.20361141860485077, 0.2430701106786728, -0.3626162111759186, 0.4217342436313629, -0.3458203673362732, 1.2398871183395386, -0.36186978220939636, -0.4030280113220215, -0.18998585641384125, -0.5305389761924744, 0.3425963819026947, 0.18698231875896454, -0.20493926107883453, 0.12066064774990082, 0.4304623305797577, 0.9044974446296692, -0.764354407787323, 0.6648421883583069, -0.36865735054016113, 0.5299740433692932, 0.2584010362625122, -0.17092262208461761, 0.6590276956558228, 0.21168215572834015, -0.27206718921661377, 0.26169872283935547, -0.09142284095287323, -0.6963306069374084, -0.5292129516601562, 0.8312833905220032, -1.3181602954864502, -0.19142112135887146, -0.7649983167648315, -0.5297528505325317, -0.12143503874540329, 0.26349589228630066, 0.7267794013023376, 0.920006275177002, -0.17069971561431885, 0.3164355754852295, 0.6198230385780334, 0.02787596546113491, 0.14239290356636047, 0.410659521818161, 0.025638623163104057, -0.6849437355995178, 0.8989050388336182, -0.0996088907122612, 0.25770166516304016, -0.06418328732252121, 0.027793562039732933, -0.26106980443000793, -0.7650201916694641, -0.8697851300239563, 0.3161865174770355, -0.79144287109375, -0.3449110984802246, -0.2547082006931305, -0.5087107419967651, -0.29995453357696533, 0.057930950075387955, -0.44428348541259766, -0.39882683753967285, -0.6078646779060364, -0.2078186720609665, 0.44696134328842163, 0.6384702920913696, 0.12551560997962952, 0.6756064891815186, -0.7130427956581116, -0.04260187968611717, -0.0281432643532753, 0.4369337856769562, 0.07442406564950943, -1.0683352947235107, -0.3838387727737427, -0.040171749889850616, -0.4898730516433716, -0.8062438368797302, 0.5510754585266113, 0.15981848537921906, 0.6787179112434387, 0.5356447696685791, -0.20940044522285461, 1.1494848728179932, -0.37829193472862244, 0.8542381525039673, 0.288166880607605, -0.6673359870910645, 0.6522916555404663, -0.3999318778514862, 0.25122708082199097, 0.6979670524597168, 0.4424837529659271, 0.01622125133872032, -0.07243571430444717, -1.4903489351272583, -0.8254019618034363, 0.9478676319122314, 0.3557358384132385, 0.0016497134929522872, 0.136795774102211, 0.4423220455646515, -0.1197589561343193, 0.052490878850221634, -0.9529989957809448, -0.6598802804946899, -0.2353542149066925, -0.1748245358467102, -0.07190445065498352, -0.24546247720718384, -0.5116273164749146, -0.4587564170360565, 1.29500150680542, 0.05704466998577118, 0.2947673499584198, 0.0458122119307518, 0.014386235736310482, -0.33020707964897156, 0.011667086742818356, 0.7153545022010803, 0.8697153329849243, -0.7939611077308655, -0.32915136218070984, 0.2075965255498886, -0.1893075704574585, -0.08120637387037277, 0.21743614971637726, -0.30657583475112915, 0.09922559559345245, 0.4319108724594116, 1.1610186100006104, 0.2958853244781494, -0.313342809677124, 0.4418988525867462, -0.2012881636619568, -0.34486597776412964, -0.7307387590408325, 0.19494248926639557, -0.23939646780490875, 0.1614924520254135, 0.2841776907444, 0.5778918862342834, 0.20654401183128357, -0.3276999890804291, 0.1471937745809555, 0.2931378185749054, -0.4892159700393677, -0.24801427125930786, 0.9617317914962769, 0.044806573539972305, -0.36272749304771423, 0.8665851950645447, -0.17360429465770721, -0.18294566869735718, 1.0112606287002563, 0.6679737567901611, 0.9196711182594299, 0.05095711722970009, -0.03365638107061386, 0.9299170970916748, -0.030197035521268845, -0.07169824838638306, 0.45766571164131165, 0.17657345533370972, -0.4042086601257324, -0.08347035199403763, -0.7731356620788574, -0.35929083824157715, 0.6524234414100647, -1.4463226795196533, 0.4584655165672302, -0.7327629923820496, -0.5495786070823669, 0.25785666704177856, 0.15802974998950958, -1.1454782485961914, 0.7066961526870728, -0.0858524814248085, 1.1792558431625366, -1.058540940284729, 0.9501746892929077, 0.657776415348053, -0.7809755206108093, -1.0970897674560547, -0.20822131633758545, -0.11077090352773666, -1.0120092630386353, 0.9862874150276184, -0.08222051709890366, 0.2147185057401657, 0.17114436626434326, -0.42239734530448914, -0.9624233841896057, 1.218406319618225, 0.11353883892297745, -0.5641988515853882, 0.14771543443202972, -0.011340443976223469, 0.7798858284950256, -0.2024194449186325, 0.6451642513275146, 0.1664014607667923, 0.3041553497314453, 0.191189706325531, -1.020993709564209, -0.13730278611183167, -0.40187081694602966, 0.23213542997837067, 0.10428942739963531, -0.7892529964447021, 1.230085849761963, -0.010938099585473537, 0.34484565258026123, 0.4194096028804779, 0.5815776586532593, 0.35152530670166016, 0.2433961033821106, 0.39734965562820435, 1.1307059526443481, 0.5726521611213684, -0.22302277386188507, 1.2502758502960205, -0.733585000038147, 0.8653034567832947, 1.3337452411651611, 0.1041075810790062, 0.7133554816246033, 0.21814770996570587, -0.3413733243942261, 0.5320218801498413, 0.8960066437721252, -0.4324566721916199, 0.4926040470600128, 0.2459530085325241, 0.01460965909063816, -0.35062891244888306, 0.2583007216453552, -0.7241149544715881, 0.3545926511287689, -0.03737683966755867, -0.6371634006500244, -0.31257128715515137, -0.13278941810131073, 0.004237004555761814, -0.18065203726291656, -0.2371484786272049, 0.6238418817520142, -0.5147599577903748, -0.37818482518196106, 1.0004055500030518, 0.18287262320518494, 0.3164074420928955, -0.6955086588859558, -0.18440519273281097, -0.13357394933700562, 0.487032949924469, -0.3626529574394226, -0.48347318172454834, 0.22043679654598236, 0.04978908970952034, -0.36129266023635864, 0.09666971117258072, 0.31485825777053833, -0.1594856232404709, -0.856096625328064, 0.1644771248102188, 0.37235090136528015, 0.3946196138858795, 0.22850242257118225, -1.0039393901824951, 0.07885801047086716, -0.0723959431052208, -0.4033966362476349, 0.2002825140953064, 0.262768417596817, -0.04890010878443718, 0.5870323181152344, 0.5860633850097656, 0.12072256952524185, 0.12579220533370972, 0.3251507878303528, 1.0655531883239746, -0.6096358299255371, -0.5618211627006531, -0.5587997436523438, 0.5529652237892151, -0.25965040922164917, -1.1165484189987183, 0.7913838624954224, 1.1644654273986816, 0.9677709341049194, -0.29472237825393677, 0.6339708566665649, -0.020978301763534546, 0.4493328332901001, -0.6148092746734619, 0.5477926135063171, -0.5501871109008789, -0.05802104249596596, -0.06481271237134933, -0.8176988959312439, -0.11054068058729172, 0.746782660484314, -0.3918566107749939, 0.21414320170879364, 0.5014499425888062, 0.6828702092170715, -0.030292188748717308, -0.042481858283281326, 0.20707066357135773, 0.058966878801584244, 0.22191816568374634, 0.5549324750900269, 0.3511490821838379, -1.1035521030426025, 0.4830203950405121, -0.6366199254989624, -0.2973080277442932, -0.15057960152626038, -0.5899812579154968, -0.9825921654701233, -0.4101809561252594, -0.45257365703582764, -0.5790939331054688, 0.25109347701072693, 0.9335225820541382, 1.0289969444274902, -0.8729017972946167, -0.4231323003768921, -0.0861288458108902, -0.4446476399898529, -0.24248918890953064, -0.27854588627815247, 0.6121132373809814, -0.24365028738975525, -0.8637398481369019, 0.06253229826688766, -0.3800928294658661, 0.2214825451374054, -0.29008933901786804, -0.4047541618347168, -0.3079220950603485, -0.45129767060279846, -0.0031104024965316057, 0.11833950132131577, -0.5597761273384094, -0.3708132207393646, -0.2349751740694046, -0.006632424890995026, 0.26560288667678833, 0.2835092842578888, -0.6351563334465027, 0.4012430012226105, 0.27551382780075073, 0.19608533382415771, 1.045755386352539, 0.10491149127483368, 0.24177952110767365, -0.8214958906173706, 0.5188573598861694, 0.2538048028945923, 0.4039611220359802, 0.14635761082172394, -0.4442197382450104, 0.6177200675010681, 0.3943081796169281, -0.648746907711029, -0.8375633358955383, -0.15229272842407227, -1.335149884223938, 0.1621321737766266, 1.0333000421524048, -0.08493978530168533, -0.6547037959098816, 0.41685476899147034, -0.15165941417217255, 0.39091822504997253, -0.26657015085220337, 0.659919261932373, 0.6272833347320557, -0.3292727768421173, -0.0061200931668281555, -0.6260125637054443, 0.5600681900978088, 0.3397185504436493, -0.7102797627449036, -0.30884867906570435, 0.5414638519287109, 0.7751814723014832, 0.17506106197834015, 0.49725356698036194, -0.22778747975826263, 0.39811432361602783, 0.19983355700969696, 0.4364287555217743, -0.5291271209716797, -0.36482200026512146, -0.5295013785362244, 0.05700066313147545, 0.21927346289157867, -0.5894309878349304 ]
Salesforce/blip-vqa-capfilt-large
Salesforce
"2023-08-01T14:48:25Z"
55,386
19
transformers
[ "transformers", "pytorch", "tf", "blip", "question-answering", "visual-question-answering", "arxiv:2201.12086", "license:bsd-3-clause", "autotrain_compatible", "has_space", "region:us" ]
visual-question-answering
"2022-12-13T11:37:19Z"
--- pipeline_tag: visual-question-answering tags: - visual-question-answering inference: false languages: - en license: bsd-3-clause --- # BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation Model card for BLIP trained on visual question answering - large architecture (with ViT large backbone). | ![BLIP.gif](https://cdn-uploads.huggingface.co/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif) | |:--:| | <b> Pull figure from BLIP official repo | Image source: https://github.com/salesforce/BLIP </b>| ## TL;DR Authors from the [paper](https://arxiv.org/abs/2201.12086) write in the abstract: *Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.* ## Usage You can use this model for conditional and un-conditional image captioning ### Using the Pytorch model #### Running the model on CPU <details> <summary> Click to expand </summary> ```python import requests from PIL import Image from transformers import BlipProcessor, BlipForQuestionAnswering processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large ") model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large ") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) >>> 1 ``` </details> #### Running the model on GPU ##### In full precision <details> <summary> Click to expand </summary> ```python import requests from PIL import Image from transformers import BlipProcessor, BlipForQuestionAnswering processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-capfilt-large") model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-capfilt-large").to("cuda") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt").to("cuda") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) >>> 1 ``` </details> ##### In half precision (`float16`) <details> <summary> Click to expand </summary> ```python import torch import requests from PIL import Image from transformers import BlipProcessor, BlipForQuestionAnswering processor = BlipProcessor.from_pretrained("ybelkada/blip-vqa-capfilt-large") model = BlipForQuestionAnswering.from_pretrained("ybelkada/blip-vqa-capfilt-large", torch_dtype=torch.float16).to("cuda") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') question = "how many dogs are in the picture?" inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) >>> 1 ``` </details> ## BibTex and citation info ``` @misc{https://doi.org/10.48550/arxiv.2201.12086, doi = {10.48550/ARXIV.2201.12086}, url = {https://arxiv.org/abs/2201.12086}, author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
[ -0.32046377658843994, -0.648945689201355, -0.019482549279928207, 0.46867257356643677, -0.36321941018104553, -0.033227209001779556, -0.45499563217163086, -0.6546004414558411, -0.04609464481472969, 0.2766707241535187, -0.3820740282535553, -0.37288686633110046, -0.4783383011817932, -0.0077233570627868176, -0.1791548728942871, 0.6506562232971191, 0.18796156346797943, 0.11168918758630753, -0.09716341644525528, 0.04291181638836861, -0.21102020144462585, -0.24641944468021393, -0.547944188117981, -0.012564178556203842, 0.04625264182686806, 0.2773934304714203, 0.5048775672912598, 0.49753445386886597, 0.7608921527862549, 0.4407169818878174, -0.14868494868278503, 0.1258070021867752, -0.3127630054950714, -0.3018154501914978, -0.11441831290721893, -0.7808953523635864, -0.18859881162643433, -0.001711067627184093, 0.6634867787361145, 0.6148763298988342, 0.044255755841732025, 0.44048821926116943, 0.03537655249238014, 0.5332450866699219, -0.7560478448867798, 0.3542746603488922, -0.7979632019996643, 0.06655063480138779, -0.06621498614549637, -0.19318443536758423, -0.4190090298652649, -0.06892165541648865, 0.09965324401855469, -0.8894858956336975, 0.589418351650238, 0.14246472716331482, 1.631339192390442, 0.3683559000492096, 0.2564985752105713, -0.19751369953155518, -0.3993832468986511, 0.8853452205657959, -0.6008393168449402, 0.4992452561855316, 0.10990385711193085, 0.3114701211452484, 0.027008013799786568, -0.9089572429656982, -0.8169358372688293, -0.2000620812177658, -0.11160480231046677, 0.41776540875434875, -0.2563275694847107, -0.03193606808781624, 0.42432138323783875, 0.3753301501274109, -0.6667765378952026, -0.0340164452791214, -0.8517234325408936, -0.3057987093925476, 0.5381447076797485, -0.11150003224611282, 0.2004702091217041, -0.3197897970676422, -0.4946690797805786, -0.4674347937107086, -0.4955495595932007, 0.3752644658088684, -0.049856338649988174, 0.1868734359741211, -0.4040302038192749, 0.7161975502967834, -0.07964618504047394, 0.901179850101471, 0.2996285557746887, -0.29354262351989746, 0.6847161054611206, -0.32605913281440735, -0.5106881856918335, -0.15715618431568146, 1.0599355697631836, 0.5895044803619385, 0.3200531005859375, 0.041159212589263916, 0.034615106880664825, 0.03008945658802986, 0.037349242717027664, -0.9952426552772522, -0.35199064016342163, 0.25857025384902954, -0.4158748686313629, -0.1657726913690567, 0.017446815967559814, -1.0164780616760254, -0.1101665124297142, -0.001937743159942329, 0.5647118091583252, -0.5641201138496399, -0.20076222717761993, 0.23395594954490662, -0.36943840980529785, 0.4551013112068176, 0.38604018092155457, -0.832922637462616, -0.07861190289258957, 0.29706570506095886, 0.950522780418396, 0.16829107701778412, -0.6916571855545044, -0.4599015712738037, 0.10671953111886978, -0.3241817355155945, 0.5113810896873474, -0.0973871722817421, -0.09177669882774353, -0.025575576350092888, 0.1748591810464859, -0.08226416260004044, -0.5323745012283325, -0.06837176531553268, -0.32669833302497864, 0.2607881724834442, -0.1519756317138672, -0.28482726216316223, -0.3302312195301056, 0.3025023639202118, -0.3037842810153961, 0.9363445043563843, 0.02128632180392742, -0.8455358743667603, 0.6247979998588562, -0.5519484877586365, -0.2996560037136078, 0.41563910245895386, -0.26766282320022583, -0.5554693341255188, -0.14175280928611755, 0.4632863402366638, 0.45960015058517456, -0.28270381689071655, 0.021578196436166763, -0.22338883578777313, -0.3697778284549713, 0.12521067261695862, -0.32549598813056946, 1.1304776668548584, 0.00943682063370943, -0.6803041100502014, 0.05189332738518715, -0.8051819801330566, -0.06285173445940018, 0.23571838438510895, -0.3219979405403137, 0.028156735002994537, -0.2720857560634613, 0.2215740829706192, 0.16659954190254211, 0.6359665989875793, -0.6553698778152466, 0.010473613627254963, -0.4527840316295624, 0.4493164122104645, 0.5804594159126282, -0.24413642287254333, 0.316571980714798, -0.003392602317035198, 0.3624907433986664, 0.17642073333263397, 0.3643733263015747, -0.3322567939758301, -0.6590142250061035, -1.0473358631134033, -0.4402189254760742, 0.015826426446437836, 0.7191519737243652, -1.0024347305297852, 0.3932402431964874, -0.26530221104621887, -0.5784151554107666, -0.7099686861038208, 0.20277975499629974, 0.7484227418899536, 0.8518682718276978, 0.648171603679657, -0.4036426246166229, -0.5302358865737915, -0.8193494081497192, 0.268777459859848, -0.3151196241378784, -0.0061827050521969795, 0.3090112507343292, 0.6242808103561401, -0.12638087570667267, 0.7655772566795349, -0.5539212822914124, -0.3029230833053589, -0.32073116302490234, 0.12554176151752472, 0.4250038266181946, 0.6560850143432617, 0.7471280694007874, -0.8284276723861694, -0.3844757080078125, 0.09431951493024826, -0.8654009699821472, 0.13428564369678497, -0.14085815846920013, -0.13561111688613892, 0.47061794996261597, 0.5796819925308228, -0.73023521900177, 0.634715735912323, 0.4228767454624176, -0.211912140250206, 0.718151330947876, -0.2829909324645996, -0.017186826094985008, -0.9794339537620544, 0.42825740575790405, 0.18816596269607544, -0.04257861152291298, -0.28304368257522583, 0.15568625926971436, 0.17504745721817017, -0.0756707489490509, -0.7205969095230103, 0.6672313213348389, -0.6254192590713501, -0.2559519112110138, 0.13191671669483185, -0.07091966271400452, 0.05718459561467171, 0.7451541423797607, 0.306482195854187, 0.8584258556365967, 1.0983502864837646, -0.680009663105011, 0.4792134463787079, 0.48875677585601807, -0.46901735663414, 0.35476958751678467, -0.8330270051956177, -0.13360673189163208, -0.06951622664928436, -0.19021235406398773, -1.1584059000015259, -0.09449651837348938, 0.2723661959171295, -0.7375572323799133, 0.3648737668991089, -0.4171638786792755, -0.39522165060043335, -0.7059969902038574, -0.2179369032382965, 0.2650200426578522, 0.5541783571243286, -0.6796578168869019, 0.33359065651893616, 0.1695651262998581, 0.1543741673231125, -0.9394209980964661, -1.1195992231369019, 0.061763543635606766, 0.14966556429862976, -0.6365392208099365, 0.3925175666809082, -0.03247047960758209, 0.14453132450580597, 0.0966002494096756, 0.20830263197422028, -0.03454309329390526, -0.2919932007789612, 0.23957762122154236, 0.5068765878677368, -0.40528836846351624, -0.14881664514541626, -0.40063565969467163, 0.08256519585847855, -0.07818479835987091, -0.24541634321212769, 0.8816118836402893, -0.4618585705757141, -0.0749838650226593, -0.6745797991752625, -0.023891177028417587, 0.6017885804176331, -0.5252637267112732, 0.5298675298690796, 0.8425713777542114, -0.21343839168548584, -0.04986972734332085, -0.5901871919631958, 0.012978028506040573, -0.6035320162773132, 0.6167839765548706, -0.2509208619594574, -0.4302598237991333, 0.5739193558692932, 0.34266993403434753, 0.03934573754668236, 0.2488565742969513, 0.7662064433097839, -0.19921666383743286, 0.5805879235267639, 0.7542910575866699, 0.05747346952557564, 0.7301296591758728, -0.9603532552719116, -0.06375603377819061, -0.7430902123451233, -0.4120658040046692, -0.11575057357549667, -0.15369194746017456, -0.455304890871048, -0.4873714745044708, 0.21707041561603546, 0.2569003403186798, -0.3606245815753937, 0.2554914951324463, -0.6302801370620728, 0.23164677619934082, 0.87101811170578, 0.1978810429573059, -0.15864935517311096, 0.18157263100147247, -0.25075477361679077, 0.05589320883154869, -0.715059757232666, -0.1757722944021225, 1.0930705070495605, 0.22193802893161774, 0.6962273120880127, -0.2827850878238678, 0.4992050230503082, -0.40147584676742554, 0.11991988122463226, -0.7068528532981873, 0.7697698473930359, -0.2605530321598053, -0.6049859523773193, -0.38503366708755493, -0.3195751905441284, -0.9515863060951233, 0.25191643834114075, -0.3271612823009491, -0.8342120051383972, 0.2882436215877533, 0.47221094369888306, -0.2675565183162689, 0.36241063475608826, -0.9014716148376465, 1.03359055519104, -0.4325959384441376, -0.6519902944564819, 0.16482065618038177, -0.7013881206512451, 0.2706051468849182, 0.3373664319515228, -0.08476762473583221, 0.33389633893966675, 0.1478549987077713, 0.7198936939239502, -0.556128740310669, 0.9165541529655457, -0.3882189393043518, 0.4015689492225647, 0.37854355573654175, -0.2580268681049347, -0.04827491194009781, -0.08446653932332993, 0.23033407330513, 0.33209243416786194, -0.022845953702926636, -0.5838280320167542, -0.511163055896759, 0.1352953314781189, -0.7887088656425476, -0.5096985697746277, -0.37721487879753113, -0.5005825161933899, 0.026946136727929115, 0.47434601187705994, 0.7617652416229248, 0.3413894474506378, 0.332347571849823, 0.1385260820388794, 0.3230818510055542, -0.5177253484725952, 0.7934666872024536, 0.26952826976776123, -0.42901790142059326, -0.4855988323688507, 1.0020978450775146, 0.022307533770799637, 0.20743054151535034, 0.3470669388771057, 0.18360644578933716, -0.3674890398979187, -0.6009353995323181, -0.7459220886230469, 0.5211634635925293, -0.5942115783691406, -0.3804783225059509, -0.2924807369709015, -0.32991334795951843, -0.5331466794013977, -0.2676628530025482, -0.49520450830459595, -0.10587526857852936, -0.41653743386268616, 0.20583763718605042, 0.5139994621276855, 0.27847567200660706, -0.11132936924695969, 0.4565330147743225, -0.4865695834159851, 0.45936474204063416, 0.4338505268096924, 0.2842336595058441, -0.011974510736763477, -0.5550859570503235, -0.14763741195201874, 0.152308851480484, -0.2935057580471039, -0.6776984930038452, 0.64100581407547, 0.23688721656799316, 0.43739813566207886, 0.4533649682998657, -0.43001478910446167, 1.156412959098816, -0.4066724181175232, 0.7969319820404053, 0.5717880129814148, -0.9850654006004333, 0.7312361598014832, -0.004133493639528751, 0.1967555582523346, 0.47128817439079285, 0.27519822120666504, -0.29928046464920044, -0.3780086040496826, -0.568802535533905, -0.9192259311676025, 0.6975347995758057, 0.09448537230491638, -0.06020364910364151, 0.2573084235191345, 0.2841375172138214, -0.24334895610809326, 0.3064379096031189, -0.8333762884140015, -0.2469848394393921, -0.6448161602020264, -0.1477692723274231, -0.21865694224834442, 0.10253869742155075, 0.18811210989952087, -0.7145527601242065, 0.4126112163066864, -0.09918466955423355, 0.44268399477005005, 0.4471893310546875, -0.45666372776031494, -0.057132720947265625, -0.3724403977394104, 0.5908119082450867, 0.6412086486816406, -0.30572056770324707, 0.037646036595106125, -0.08987167477607727, -0.9822779297828674, -0.24310386180877686, 0.08355262875556946, -0.3508797585964203, 0.003084247699007392, 0.5349687337875366, 0.982763946056366, -0.040506184101104736, -0.6227627992630005, 0.8218417763710022, 0.08597498387098312, -0.25117093324661255, -0.3324252963066101, 0.03236082196235657, -0.06952454894781113, 0.30649587512016296, 0.6352229118347168, 0.15210361778736115, -0.20463131368160248, -0.5025404095649719, 0.21192817389965057, 0.48354247212409973, -0.09428353607654572, -0.262991338968277, 0.7442830204963684, -0.054538220167160034, -0.20396360754966736, 0.7079076170921326, -0.4205111265182495, -0.6911555528640747, 0.8522933125495911, 0.6943405866622925, 0.45834678411483765, -0.03214951232075691, 0.3102388083934784, 0.6589519381523132, 0.4740551710128784, 0.045540668070316315, 0.5385788083076477, 0.08446569740772247, -0.8824589252471924, -0.4349729120731354, -0.807904064655304, -0.34624698758125305, 0.3450457751750946, -0.5553488731384277, 0.42788416147232056, -0.7257856726646423, 0.022715097293257713, 0.17465336620807648, 0.1612674593925476, -0.8898016810417175, 0.40359440445899963, 0.22336871922016144, 0.8435803651809692, -0.7795794606208801, 0.550178587436676, 0.9167765378952026, -0.9542404413223267, -0.9129101037979126, -0.16053546965122223, -0.3928035795688629, -1.1748439073562622, 0.9148481488227844, 0.3546765148639679, -0.06603258103132248, 0.02578749693930149, -0.9276715517044067, -0.775761067867279, 1.0391958951950073, 0.49880847334861755, -0.46341660618782043, -0.05918315052986145, 0.149552121758461, 0.6171650886535645, -0.11563735455274582, 0.23602862656116486, 0.08263378590345383, 0.4373215436935425, 0.4335308372974396, -0.9923825263977051, -0.006483003962785006, -0.39823806285858154, -0.0895843580365181, -0.1926579773426056, -0.7998722791671753, 1.0587143898010254, -0.44929203391075134, -0.14988034963607788, -0.0636688768863678, 0.769605815410614, 0.4039793908596039, 0.1981295347213745, 0.39295297861099243, 0.6234265565872192, 0.6489619016647339, 0.0833047553896904, 0.8669100403785706, -0.31067827343940735, 0.4871951937675476, 0.7886978387832642, 0.24951408803462982, 0.9044925570487976, 0.6297889947891235, -0.20195803046226501, 0.3006119132041931, 0.5089123845100403, -0.6171687245368958, 0.4261084496974945, 0.12092573940753937, 0.29805392026901245, -0.13767673075199127, 0.2972114086151123, -0.3299013078212738, 0.8129367828369141, 0.4247179627418518, -0.30737239122390747, -0.06371859461069107, 0.09229229390621185, -0.13164393603801727, -0.2141272872686386, -0.5204378366470337, 0.28428569436073303, -0.18419219553470612, -0.6334608197212219, 1.0764888525009155, -0.2655337452888489, 1.1091248989105225, -0.28073740005493164, -0.06253654509782791, -0.15913531184196472, 0.24962688982486725, -0.29612213373184204, -0.9869434833526611, 0.12345115095376968, 0.008483251556754112, 0.010907424613833427, 0.03307801112532616, 0.32906046509742737, -0.45701706409454346, -0.9822383522987366, 0.24450965225696564, 0.26501667499542236, 0.37726718187332153, 0.15930257737636566, -0.9265552163124084, 0.038121022284030914, 0.08056005835533142, -0.2092728614807129, -0.12932221591472626, 0.38660597801208496, 0.11803175508975983, 0.7571408152580261, 0.7395044565200806, 0.4221479594707489, 0.6718377470970154, -0.10866162925958633, 0.8197019100189209, -0.5848813652992249, -0.4020688831806183, -0.6906617283821106, 0.6030116081237793, -0.19053104519844055, -0.6990739107131958, 0.6304978728294373, 0.8663249015808105, 1.095584750175476, -0.2891710102558136, 0.5711418390274048, -0.2611329257488251, 0.15168417990207672, -0.64087975025177, 0.8556110858917236, -0.7746309638023376, -0.13751575350761414, -0.5026637315750122, -0.6507132649421692, -0.5849858522415161, 1.0389920473098755, -0.29265597462654114, -0.016845474019646645, 0.5608306527137756, 1.1626235246658325, -0.302561491727829, -0.5643285512924194, 0.2610878348350525, 0.36339133977890015, 0.23308995366096497, 0.7225711345672607, 0.6225746870040894, -0.5629186034202576, 0.7346845269203186, -0.6253085732460022, -0.24638615548610687, -0.18065133690834045, -0.6623566150665283, -1.0140414237976074, -0.796011209487915, -0.419259637594223, -0.26428645849227905, -0.06075387820601463, 0.4883502721786499, 0.8539983034133911, -0.6865897178649902, -0.3068697154521942, -0.23884376883506775, -0.003918955568224192, -0.18104299902915955, -0.20999370515346527, 0.606498658657074, -0.4912978410720825, -0.8185387849807739, -0.07083437591791153, 0.3026106059551239, 0.21558237075805664, -0.19332408905029297, 0.085176482796669, -0.3028726279735565, -0.38137975335121155, 0.4378190338611603, 0.5530771017074585, -0.6711653470993042, -0.16932810842990875, 0.13563022017478943, -0.09712261706590652, 0.3678039610385895, 0.2573505640029907, -0.6765884757041931, 0.47299903631210327, 0.3722544014453888, 0.38464075326919556, 0.9199244976043701, -0.1961202323436737, 0.10156673938035965, -0.6813273429870605, 0.8322080969810486, 0.11589089035987854, 0.5322962999343872, 0.4979587197303772, -0.26246020197868347, 0.30139708518981934, 0.3958958387374878, -0.21672439575195312, -0.8916028738021851, 0.046318624168634415, -1.3370510339736938, -0.26311153173446655, 1.2073850631713867, -0.2852955460548401, -0.7674292922019958, 0.1206115186214447, -0.24845638871192932, 0.37257441878318787, -0.12807223200798035, 0.6239839792251587, 0.19646956026554108, 0.01829000934958458, -0.5465521812438965, -0.25220829248428345, 0.42709586024284363, 0.3004157841205597, -0.6370441913604736, -0.17393867671489716, 0.3884805738925934, 0.46075439453125, 0.6319994330406189, 0.556904137134552, -0.027080534026026726, 0.5424877405166626, 0.18188798427581787, 0.5783451199531555, -0.23916874825954437, -0.25642433762550354, -0.18391430377960205, 0.054654356092214584, -0.16770604252815247, -0.7216281294822693 ]
lmsys/vicuna-13b-v1.5
lmsys
"2023-08-03T11:06:24Z"
55,269
125
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2307.09288", "arxiv:2306.05685", "license:llama2", "has_space", "text-generation-inference", "region:us" ]
text-generation
"2023-07-29T04:44:46Z"
--- inference: false license: llama2 --- # Vicuna Model Card ## Model Details Vicuna is a chat assistant trained by fine-tuning Llama 2 on user-shared conversations collected from ShareGPT. - **Developed by:** [LMSYS](https://lmsys.org/) - **Model type:** An auto-regressive language model based on the transformer architecture - **License:** Llama 2 Community License Agreement - **Finetuned from model:** [Llama 2](https://arxiv.org/abs/2307.09288) ### Model Sources - **Repository:** https://github.com/lm-sys/FastChat - **Blog:** https://lmsys.org/blog/2023-03-30-vicuna/ - **Paper:** https://arxiv.org/abs/2306.05685 - **Demo:** https://chat.lmsys.org/ ## Uses The primary use of Vicuna is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## How to Get Started with the Model - Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights - APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api ## Training Details Vicuna v1.5 is fine-tuned from Llama 2 with supervised instruction fine-tuning. The training data is around 125K conversations collected from ShareGPT.com. See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf). ## Evaluation ![Evaluation Results](https://github.com/lm-sys/lm-sys.github.io/blob/main/public/images/webdata/vicuna_v1.5_eval.png?raw=true) Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard). ## Difference between different versions of Vicuna See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
[ -0.3023828864097595, -0.9296846985816956, 0.4338702857494354, 0.33541959524154663, -0.618333637714386, -0.19331401586532593, -0.08830239623785019, -0.6467957496643066, 0.28019487857818604, 0.3586077094078064, -0.6411656141281128, -0.6491215229034424, -0.5224280953407288, -0.05725995451211929, -0.1503724604845047, 0.7895075678825378, 0.1862577497959137, 0.12457455694675446, -0.07365623861551285, -0.2343468964099884, -0.9671006202697754, -0.5661278367042542, -1.022763967514038, -0.26211345195770264, 0.5917067527770996, 0.49186667799949646, 0.627534806728363, 0.6392133235931396, 0.4164030849933624, 0.3351278007030487, -0.04043462872505188, 0.4147031307220459, -0.538850724697113, 0.06651129573583603, 0.27147412300109863, -0.9812688827514648, -0.7516467571258545, -0.3024716377258301, 0.48853832483291626, -0.0784565657377243, -0.17216083407402039, 0.2412179708480835, 0.025293821468949318, 0.4461093246936798, -0.34768903255462646, 0.30243340134620667, -0.5890047550201416, -0.19262993335723877, -0.3011750280857086, -0.5993813276290894, -0.21839749813079834, -0.37573307752609253, -0.2180289626121521, -0.4885806143283844, 0.03584642708301544, -0.07892229408025742, 1.176149845123291, 0.6028827428817749, -0.3427361249923706, -0.15790711343288422, -0.7763229608535767, 0.45495378971099854, -0.8876635432243347, 0.37202778458595276, 0.4428617060184479, 0.6468058824539185, -0.2909408211708069, -0.5708167552947998, -0.6378569602966309, -0.242801696062088, 0.06537538766860962, 0.13606677949428558, -0.28072983026504517, 0.14604414999485016, 0.12331010401248932, 0.4936549663543701, -0.4736572802066803, 0.4447714388370514, -0.5741620659828186, 0.12337681651115417, 0.5702311396598816, 0.43628355860710144, 0.17025095224380493, -0.2269613891839981, -0.4195670187473297, -0.34186822175979614, -0.3559490740299225, -0.008198988623917103, 0.4276725947856903, 0.43289583921432495, -0.46013662219047546, 0.5502842664718628, -0.19835694134235382, 0.5395766496658325, -0.132112056016922, -0.2098272442817688, 0.33750098943710327, -0.05269378423690796, -0.5248646140098572, -0.3034781515598297, 1.2110865116119385, 0.4797000586986542, -0.06085623428225517, 0.14795418083667755, 0.024912750348448753, 0.061833228915929794, 0.22230187058448792, -0.8179464936256409, 0.07381830364465714, 0.6737203001976013, -0.31274741888046265, -0.5302500128746033, -0.059891603887081146, -0.4778929054737091, -0.43198883533477783, -0.24347683787345886, 0.3767309784889221, -0.3976612091064453, -0.3928402066230774, 0.15310777723789215, 0.010299360379576683, 0.4521176517009735, 0.3695843815803528, -0.7319567203521729, 0.3575509786605835, 0.7334920763969421, 1.1061073541641235, -0.10667022317647934, -0.40819352865219116, -0.12855839729309082, -0.29750850796699524, -0.31742730736732483, 1.0012105703353882, -0.07367333024740219, -0.3558775782585144, -0.052833229303359985, 0.14821577072143555, -0.017774246633052826, -0.5831274390220642, 0.6456613540649414, -0.2843972146511078, 0.27893269062042236, -0.17201699316501617, -0.5267288684844971, -0.03185878321528435, 0.2603801488876343, -0.669961154460907, 1.2746615409851074, 0.04401693120598793, -0.7373445630073547, 0.1889985203742981, -0.7505285143852234, 0.11494410783052444, 0.11493466049432755, -0.07643842697143555, -0.48735690116882324, -0.08595987409353256, -0.04116366431117058, 0.5475308895111084, -0.6219280958175659, 0.570303738117218, -0.26348206400871277, -0.5173840522766113, 0.2980174720287323, -0.6109102368354797, 1.051455020904541, 0.3025915324687958, -0.39560386538505554, 0.49463531374931335, -0.8170943260192871, -0.17142881453037262, 0.2928510904312134, -0.2079082429409027, -0.28168344497680664, -0.2527933716773987, 0.03472809121012688, 0.09037847816944122, 0.42955660820007324, -0.24086610972881317, 0.35237133502960205, -0.015429070219397545, 0.1987655609846115, 0.7010460495948792, 0.05763203650712967, 0.13912683725357056, -0.4630252718925476, 0.4372422695159912, -0.018534710630774498, 0.8315230011940002, 0.14125661551952362, -0.544390857219696, -1.1697427034378052, -0.45874324440956116, 0.02549239806830883, 0.7060391306877136, -0.642464280128479, 0.650994598865509, -0.3150642216205597, -1.1419135332107544, -0.9728545546531677, 0.18196408450603485, 0.44599196314811707, 0.10519732534885406, 0.31603580713272095, -0.47043943405151367, -0.6609243154525757, -1.067427396774292, -0.07854240387678146, -0.41839247941970825, -0.04317273199558258, 0.44801557064056396, 0.2430465817451477, -0.5930312871932983, 0.8706792593002319, -0.4302312731742859, -0.40472716093063354, -0.06482375413179398, -0.08256135880947113, 0.0648556724190712, 0.43850207328796387, 0.699988603591919, -0.6447086334228516, -0.31417667865753174, -0.08192095905542374, -0.9000903964042664, -0.04369805008172989, -0.08984309434890747, -0.5065469741821289, 0.24171309173107147, 0.4008997678756714, -0.6606218218803406, 0.5549532175064087, 0.757759690284729, -0.5404312610626221, 0.4753812551498413, -0.2813397943973541, 0.1007031798362732, -1.4217309951782227, 0.15677468478679657, 0.00831190962344408, -0.3997495174407959, -0.6121996641159058, 0.0726398378610611, -0.11730670928955078, 0.2601117789745331, -0.6698821187019348, 0.9091960191726685, -0.3662048876285553, 0.05663993954658508, -0.5070648789405823, -0.2211257368326187, -0.05446094274520874, 0.8065186738967896, 0.10431227087974548, 0.7579803466796875, 0.4317024052143097, -0.856924295425415, 0.512645959854126, 0.22207452356815338, -0.1668189913034439, 0.38394108414649963, -0.9454293251037598, 0.3137354254722595, 0.10568313300609589, 0.17958055436611176, -0.9746532440185547, -0.10317324846982956, 0.6701156497001648, -0.5058860778808594, 0.126133531332016, -0.041071631014347076, -0.6168118119239807, -0.19641955196857452, -0.15176652371883392, 0.16176070272922516, 0.4789201319217682, -0.6259777545928955, 0.4085206687450409, 0.46176114678382874, 0.23065419495105743, -0.522132158279419, -0.622279942035675, -0.04091738164424896, -0.4502035677433014, -0.16979560256004333, 0.014266743324697018, -0.3442876636981964, -0.24141687154769897, -0.14427705109119415, 0.16789399087429047, -0.13485059142112732, 0.12893331050872803, 0.49540969729423523, 0.2513010501861572, -0.09426945447921753, 0.14398913085460663, -0.05948670580983162, -0.08996391296386719, -0.1344815492630005, 0.02738185040652752, 1.0353152751922607, -0.4987749755382538, -0.03367897868156433, -0.9465705156326294, -0.05380344018340111, 0.6677762866020203, 0.07257021218538284, 1.2107739448547363, 0.7206893563270569, -0.2327621579170227, 0.17833954095840454, -0.7851660847663879, -0.1974395215511322, -0.4899449646472931, 0.28375715017318726, -0.3798128068447113, -0.7268349528312683, 0.7185035943984985, 0.2629910111427307, 0.3663719594478607, 0.5051872134208679, 0.8237700462341309, 0.11540547758340836, 0.4792686402797699, 0.8725160360336304, -0.053242456167936325, 0.9371742010116577, -0.3783174753189087, -0.16606587171554565, -0.7959395051002502, -0.4403693675994873, -0.6113699078559875, -0.1013762503862381, -0.7659280300140381, -0.7010751366615295, -0.04716125875711441, -0.007768678478896618, -0.3534107208251953, 0.7429801225662231, -0.6246700882911682, 0.1978164166212082, 0.6362782120704651, 0.2732406258583069, 0.28456857800483704, -0.14275822043418884, 0.26428118348121643, 0.15204237401485443, -0.7308618426322937, -0.7331867218017578, 1.0895406007766724, 0.7036827802658081, 0.5230680704116821, 0.1904308944940567, 0.739642858505249, 0.27250388264656067, 0.47965165972709656, -0.9474899172782898, 0.5701746940612793, 0.24875810742378235, -0.7680884599685669, -0.4407760798931122, -0.5812196731567383, -1.1341651678085327, 0.36985093355178833, -0.2214721292257309, -0.6904175281524658, 0.363531231880188, 0.15545091032981873, -0.20244653522968292, 0.3137000799179077, -0.7629702091217041, 0.9498523473739624, -0.4136209189891815, -0.40023836493492126, -0.0335264727473259, -0.4106864333152771, 0.571875810623169, 0.10145268589258194, 0.07096582651138306, -0.20667891204357147, -0.08392391353845596, 0.8028491139411926, -0.5878565907478333, 1.1323753595352173, -0.16549833118915558, -0.2524752914905548, 0.29302412271499634, -0.010453402064740658, 0.1851167231798172, 0.07348203659057617, 0.07978597283363342, 0.4703739583492279, 0.13795237243175507, -0.5213842988014221, -0.641991913318634, 0.655893862247467, -1.209518551826477, -0.4951989948749542, -0.3990727961063385, -0.31650984287261963, 0.012762218713760376, 0.11259967088699341, 0.40833306312561035, 0.268508642911911, -0.2862650156021118, 0.16041184961795807, 0.5531631112098694, -0.322380930185318, 0.06438006460666656, 0.438027948141098, -0.3116118907928467, -0.46044644713401794, 0.6670511960983276, -0.08486466109752655, 0.17632730305194855, 0.4615911543369293, 0.1704002320766449, -0.23900936543941498, -0.1530901938676834, -0.23668918013572693, 0.44432589411735535, -0.585313618183136, -0.2586221396923065, -0.7241366505622864, -0.30978912115097046, -0.31569018959999084, 0.430202454328537, -0.8570815324783325, -0.2633502781391144, -0.45077529549598694, -0.103890061378479, 0.6615628004074097, 0.4862673282623291, 0.21341711282730103, 0.7584969997406006, -0.5495595335960388, 0.3024725914001465, 0.3123816251754761, 0.37616297602653503, 0.009992154315114021, -0.7056282758712769, -0.2669770121574402, 0.08017411082983017, -0.2764996588230133, -0.9268485903739929, 0.5556186437606812, -0.17313185334205627, 0.5936071872711182, 0.5057125687599182, -0.02457926608622074, 0.9356732368469238, -0.14101539552211761, 0.646694004535675, 0.14906233549118042, -0.5608057975769043, 0.555776834487915, -0.2575642764568329, 0.22590363025665283, 0.6950238943099976, 0.31866446137428284, -0.6393271088600159, -0.31198349595069885, -0.9389449954032898, -0.7517898082733154, 0.5271773338317871, 0.26913759112358093, 0.2773994207382202, -0.062147289514541626, 0.5129625201225281, 0.17396953701972961, 0.19648775458335876, -0.7862273454666138, -0.6278748512268066, -0.13150155544281006, -0.1742120385169983, -0.19450150430202484, -0.456741064786911, -0.04917917028069496, -0.3313824534416199, 0.752558708190918, -0.02883375622332096, 0.572862982749939, 0.12203846126794815, 0.08634085208177567, -0.001009624102152884, 0.16015435755252838, 0.7280150055885315, 0.3795778453350067, -0.4434150159358978, -0.2962571978569031, 0.09996204823255539, -0.47404947876930237, -0.04470031335949898, 0.01292976550757885, 0.030215555801987648, 0.16278402507305145, 0.3066308796405792, 1.5172322988510132, 0.14025382697582245, -0.47035980224609375, 0.3147258758544922, -0.7249996662139893, -0.2198413610458374, -0.5918520092964172, 0.31932035088539124, 0.1614760011434555, 0.5029385089874268, 0.1318420022726059, -0.08828684687614441, 0.025284461677074432, -0.7341594696044922, -0.325008749961853, 0.3042023777961731, -0.42657193541526794, -0.225139781832695, 0.6852589249610901, 0.17228013277053833, -0.6859245896339417, 0.41054055094718933, 0.1184559017419815, -0.2862430810928345, 0.5122032761573792, 0.26190003752708435, 0.96189945936203, -0.2845138609409332, 0.17376519739627838, 0.5821277499198914, 0.3059326410293579, -0.15026651322841644, 0.21368558704853058, -0.18741066753864288, -0.6691092252731323, 0.13549038767814636, -0.589845597743988, -0.6130964756011963, 0.4092402160167694, -0.762526273727417, 0.5237241387367249, -0.4241087734699249, -0.4986182153224945, -0.3892066478729248, 0.44776028394699097, -1.011181116104126, 0.006333230994641781, -0.0402371808886528, 0.9646634459495544, -0.9268744587898254, 1.040359616279602, 0.4772445857524872, -0.49022120237350464, -0.9551006555557251, -0.3041243255138397, -0.08999204635620117, -0.8831566572189331, 0.2070324420928955, 0.03163132071495056, -0.019696488976478577, -0.1533794105052948, -0.6255587935447693, -0.6613520979881287, 1.5019937753677368, 0.40876534581184387, -0.8175069689750671, -0.045483872294425964, -0.0005446493159979582, 0.7540528178215027, -0.1803738921880722, 0.5959388613700867, 0.6027026772499084, 0.20603512227535248, 0.19175417721271515, -1.2045127153396606, -0.005354890134185553, -0.5320997834205627, 0.06898482143878937, -0.2642470598220825, -1.1876617670059204, 0.7977107167243958, 0.08269848674535751, -0.06939636915922165, 0.25508353114128113, 0.8560333251953125, 0.6727660298347473, 0.21800453960895538, 0.4562404751777649, 0.28652775287628174, 1.0796147584915161, 0.09618601202964783, 1.1822574138641357, -0.15097439289093018, 0.1599414348602295, 1.1553689241409302, 0.1947101652622223, 1.0019478797912598, 0.5095102190971375, 0.058199938386678696, 0.5209857821464539, 0.8306000828742981, 0.1198735386133194, 0.2986820638179779, -0.07194843888282776, 0.0705331563949585, -0.10343391448259354, 0.05328372120857239, -0.5154312252998352, 0.5365177392959595, 0.30363163352012634, -0.24420706927776337, 0.22679674625396729, -0.15220282971858978, 0.29238131642341614, -0.22644440829753876, -0.01916647143661976, 0.8855761289596558, 0.21484191715717316, -0.6884689927101135, 0.9441096186637878, 0.0675014853477478, 0.9517636895179749, -0.6942669153213501, 0.06007808446884155, -0.6146578192710876, 0.3268806040287018, -0.05513628572225571, -0.28227370977401733, 0.11496923118829727, 0.19239118695259094, 0.1494194120168686, 0.20382502675056458, 0.4580230116844177, -0.30046823620796204, -0.3691515028476715, 0.39429882168769836, 0.505047619342804, 0.6049976944923401, 0.10951777547597885, -0.8127433657646179, 0.5136517882347107, -0.13031041622161865, -0.5266616940498352, 0.21517930924892426, 0.4180377125740051, -0.2108471691608429, 0.9804275631904602, 0.6323537230491638, 0.1356646567583084, -0.023470528423786163, 0.2595464885234833, 0.8838835954666138, -0.5389019846916199, -0.5219005346298218, -0.921099841594696, 0.3921610116958618, -0.09272881597280502, -0.5833575129508972, 0.801311731338501, 0.6610863208770752, 0.5992681980133057, 0.09266553074121475, 0.6018667221069336, 0.08328530937433243, 0.30803418159484863, -0.5268154144287109, 0.6904003024101257, -0.7429744601249695, 0.3504474461078644, -0.23651336133480072, -0.9998810291290283, -0.2568607032299042, 0.6737974882125854, -0.2372978925704956, 0.026079576462507248, 0.5155833959579468, 0.8372303247451782, 0.04715077951550484, -0.2581421136856079, 0.46653512120246887, 0.1915256232023239, 0.566267192363739, 0.48652276396751404, 0.6833646893501282, -0.7560951709747314, 0.5281241536140442, -0.21230563521385193, -0.27043044567108154, -0.541852593421936, -0.5929086208343506, -1.2721511125564575, -0.6717764735221863, -0.21274037659168243, -0.3823235332965851, 0.2311384528875351, 1.030249834060669, 0.6602116823196411, -0.353716641664505, -0.633696973323822, -0.016521776095032692, -0.14241617918014526, -0.20654942095279694, -0.2101270705461502, 0.35117265582084656, -0.014519934542477131, -0.8963214159011841, 0.11968128383159637, -0.1882370114326477, 0.21285156905651093, -0.3836388885974884, -0.3927566707134247, -0.13479280471801758, 0.14595188200473785, 0.32515519857406616, 0.5743865966796875, -0.6565263867378235, -0.03119441121816635, 0.03877129778265953, -0.4677819609642029, 0.23855867981910706, 0.3468407690525055, -0.637134850025177, 0.14502497017383575, 0.3152914047241211, 0.14786802232265472, 0.6724970936775208, 0.02009010687470436, 0.3811643421649933, -0.547065258026123, 0.5777885317802429, -0.02633044682443142, 0.3451416492462158, 0.4281277358531952, -0.4351438283920288, 0.4855128824710846, 0.007154187653213739, -0.3991105854511261, -0.9969045519828796, -0.12279259413480759, -1.1086052656173706, -0.20628729462623596, 1.4395679235458374, 0.18310293555259705, -0.6815162897109985, 0.07817496359348297, -0.5868372917175293, 0.6922844648361206, -0.31600862741470337, 0.8004379272460938, 0.4010900557041168, 0.21207593381404877, -0.5264484882354736, -0.7457950115203857, 0.5090802311897278, 0.08543230593204498, -1.0290123224258423, 0.039150502532720566, 0.27278682589530945, 0.4762079119682312, 0.014767531305551529, 1.2259352207183838, -0.06984776258468628, 0.14269062876701355, 0.04579981788992882, 0.5189158916473389, -0.42160564661026, -0.45230332016944885, -0.25864312052726746, -0.33686405420303345, 0.26201871037483215, -0.46763965487480164 ]
openlm-research/open_llama_13b
openlm-research
"2023-06-16T05:47:29Z"
55,226
441
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:togethercomputer/RedPajama-Data-1T", "license:apache-2.0", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
text-generation
"2023-06-15T10:51:45Z"
--- license: apache-2.0 datasets: - togethercomputer/RedPajama-Data-1T --- # OpenLLaMA: An Open Reproduction of LLaMA In this repo, we present a permissively licensed open source reproduction of Meta AI's [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) large language model. We are releasing 3B, 7B and 13B models trained on 1T tokens. We provide PyTorch and JAX weights of pre-trained OpenLLaMA models, as well as evaluation results and comparison against the original LLaMA models. Please see the [project homepage of OpenLLaMA](https://github.com/openlm-research/open_llama) for more details. ## Weights Release, License and Usage We release the weights in two formats: an EasyLM format to be use with our [EasyLM framework](https://github.com/young-geng/EasyLM), and a PyTorch format to be used with the [Hugging Face transformers](https://huggingface.co/docs/transformers/index) library. Both our training framework EasyLM and the checkpoint weights are licensed permissively under the Apache 2.0 license. ### Loading the Weights with Hugging Face Transformers Preview checkpoints can be directly loaded from Hugging Face Hub. **Please note that it is advised to avoid using the Hugging Face fast tokenizer for now, as we’ve observed that the auto-converted fast tokenizer sometimes gives incorrect tokenizations.** This can be achieved by directly using the `LlamaTokenizer` class, or passing in the `use_fast=False` option for the `AutoTokenizer` class. See the following example for usage. ```python import torch from transformers import LlamaTokenizer, LlamaForCausalLM # model_path = 'openlm-research/open_llama_3b' # model_path = 'openlm-research/open_llama_7b' model_path = 'openlm-research/open_llama_13b' tokenizer = LlamaTokenizer.from_pretrained(model_path) model = LlamaForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map='auto', ) prompt = 'Q: What is the largest animal?\nA:' input_ids = tokenizer(prompt, return_tensors="pt").input_ids generation_output = model.generate( input_ids=input_ids, max_new_tokens=32 ) print(tokenizer.decode(generation_output[0])) ``` For more advanced usage, please follow the [transformers LLaMA documentation](https://huggingface.co/docs/transformers/main/model_doc/llama). ### Evaluating with LM-Eval-Harness The model can be evaluated with [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness). However, due to the aforementioned tokenizer issue, we need to avoid using the fast tokenizer to obtain the correct results. This can be achieved by passing in `use_fast=False` to [this part of lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/blob/4b701e228768052cfae9043dca13e82052ca5eea/lm_eval/models/huggingface.py#LL313C9-L316C10), as shown in the example below: ```python tokenizer = self.AUTO_TOKENIZER_CLASS.from_pretrained( pretrained if tokenizer is None else tokenizer, revision=revision + ("/" + subfolder if subfolder is not None else ""), use_fast=False ) ``` ### Loading the Weights with EasyLM For using the weights in our EasyLM framework, please refer to the [LLaMA documentation of EasyLM](https://github.com/young-geng/EasyLM/blob/main/docs/llama.md). Note that unlike the original LLaMA model, our OpenLLaMA tokenizer and weights are trained completely from scratch so it is no longer needed to obtain the original LLaMA tokenizer and weights. Note that we use BOS (beginning of sentence) token (id=1) during training, so it is best to prepend this token for best performance during few-shot evaluation. ## Dataset and Training We train our models on the [RedPajama](https://www.together.xyz/blog/redpajama) dataset released by [Together](https://www.together.xyz/), which is a reproduction of the LLaMA training dataset containing over 1.2 trillion tokens. We follow the exactly same preprocessing steps and training hyperparameters as the original LLaMA paper, including model architecture, context length, training steps, learning rate schedule, and optimizer. The only difference between our setting and the original one is the dataset used: OpenLLaMA employs the RedPajama dataset rather than the one utilized by the original LLaMA. We train the models on cloud TPU-v4s using [EasyLM](https://github.com/young-geng/EasyLM), a JAX based training pipeline we developed for training and fine-tuning large language models. We employ a combination of normal data parallelism and [fully sharded data parallelism (also know as ZeRO stage 3)](https://engineering.fb.com/2021/07/15/open-source/fsdp/) to balance the training throughput and memory usage. Overall we reach a throughput of over 2200 tokens / second / TPU-v4 chip for our 7B model. ## Evaluation We evaluated OpenLLaMA on a wide range of tasks using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). The LLaMA results are generated by running the original LLaMA model on the same evaluation metrics. We note that our results for the LLaMA model differ slightly from the original LLaMA paper, which we believe is a result of different evaluation protocols. Similar differences have been reported in [this issue of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/issues/443). Additionally, we present the results of GPT-J, a 6B parameter model trained on the [Pile](https://pile.eleuther.ai/) dataset by [EleutherAI](https://www.eleuther.ai/). The original LLaMA model was trained for 1 trillion tokens and GPT-J was trained for 500 billion tokens. We present the results in the table below. OpenLLaMA exhibits comparable performance to the original LLaMA and GPT-J across a majority of tasks, and outperforms them in some tasks. | **Task/Metric** | GPT-J 6B | LLaMA 7B | LLaMA 13B | OpenLLaMA 7B | OpenLLaMA 3B | OpenLLaMA 13B | | ---------------------- | -------- | -------- | --------- | ------------ | ------------ | ------------- | | anli_r1/acc | 0.32 | 0.35 | 0.35 | 0.33 | 0.33 | 0.33 | | anli_r2/acc | 0.34 | 0.34 | 0.36 | 0.36 | 0.32 | 0.33 | | anli_r3/acc | 0.35 | 0.37 | 0.39 | 0.38 | 0.35 | 0.40 | | arc_challenge/acc | 0.34 | 0.39 | 0.44 | 0.37 | 0.34 | 0.41 | | arc_challenge/acc_norm | 0.37 | 0.41 | 0.44 | 0.38 | 0.37 | 0.44 | | arc_easy/acc | 0.67 | 0.68 | 0.75 | 0.72 | 0.69 | 0.75 | | arc_easy/acc_norm | 0.62 | 0.52 | 0.59 | 0.68 | 0.65 | 0.70 | | boolq/acc | 0.66 | 0.75 | 0.71 | 0.71 | 0.68 | 0.75 | | hellaswag/acc | 0.50 | 0.56 | 0.59 | 0.53 | 0.49 | 0.56 | | hellaswag/acc_norm | 0.66 | 0.73 | 0.76 | 0.72 | 0.67 | 0.76 | | openbookqa/acc | 0.29 | 0.29 | 0.31 | 0.30 | 0.27 | 0.31 | | openbookqa/acc_norm | 0.38 | 0.41 | 0.42 | 0.40 | 0.40 | 0.43 | | piqa/acc | 0.75 | 0.78 | 0.79 | 0.76 | 0.75 | 0.77 | | piqa/acc_norm | 0.76 | 0.78 | 0.79 | 0.77 | 0.76 | 0.79 | | record/em | 0.88 | 0.91 | 0.92 | 0.89 | 0.88 | 0.91 | | record/f1 | 0.89 | 0.91 | 0.92 | 0.90 | 0.89 | 0.91 | | rte/acc | 0.54 | 0.56 | 0.69 | 0.60 | 0.58 | 0.64 | | truthfulqa_mc/mc1 | 0.20 | 0.21 | 0.25 | 0.23 | 0.22 | 0.25 | | truthfulqa_mc/mc2 | 0.36 | 0.34 | 0.40 | 0.35 | 0.35 | 0.38 | | wic/acc | 0.50 | 0.50 | 0.50 | 0.51 | 0.48 | 0.47 | | winogrande/acc | 0.64 | 0.68 | 0.70 | 0.67 | 0.62 | 0.70 | | Average | 0.52 | 0.55 | 0.57 | 0.55 | 0.53 | 0.57 | We removed the task CB and WSC from our benchmark, as our model performs suspiciously well on these two tasks. We hypothesize that there could be a benchmark data contamination in the training set. ## Contact We would love to get feedback from the community. If you have any questions, please open an issue or contact us. OpenLLaMA is developed by: [Xinyang Geng](https://young-geng.xyz/)* and [Hao Liu](https://www.haoliu.site/)* from Berkeley AI Research. *Equal Contribution ## Acknowledgment We thank the [Google TPU Research Cloud](https://sites.research.google/trc/about/) program for providing part of the computation resources. We’d like to specially thank Jonathan Caton from TPU Research Cloud for helping us organizing compute resources, Rafi Witten from the Google Cloud team and James Bradbury from the Google JAX team for helping us optimizing our training throughput. We’d also want to thank Charlie Snell, Gautier Izacard, Eric Wallace, Lianmin Zheng and our user community for the discussions and feedback. The OpenLLaMA 13B model is trained in collaboration with [Stability AI](https://stability.ai/), and we thank Stability AI for providing the computation resources. We’d like to especially thank David Ha and Shivanshu Purohit for the coordinating the logistics and providing engineering support. ## Reference If you found OpenLLaMA useful in your research or applications, please cite using the following BibTeX: ``` @software{openlm2023openllama, author = {Geng, Xinyang and Liu, Hao}, title = {OpenLLaMA: An Open Reproduction of LLaMA}, month = May, year = 2023, url = {https://github.com/openlm-research/open_llama} } ``` ``` @software{together2023redpajama, author = {Together Computer}, title = {RedPajama-Data: An Open Source Recipe to Reproduce LLaMA training dataset}, month = April, year = 2023, url = {https://github.com/togethercomputer/RedPajama-Data} } ``` ``` @article{touvron2023llama, title={Llama: Open and efficient foundation language models}, author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and others}, journal={arXiv preprint arXiv:2302.13971}, year={2023} } ```
[ -0.33135512471199036, -0.7350764274597168, 0.24522557854652405, 0.403269499540329, -0.2501850724220276, -0.04070228338241577, -0.3140343427658081, -0.579999566078186, 0.3885793089866638, 0.2666887938976288, -0.4222050607204437, -0.6926272511482239, -0.6722329258918762, 0.08684555441141129, -0.20933812856674194, 1.1764527559280396, -0.3255142867565155, -0.15954171121120453, 0.01785549707710743, -0.34429916739463806, -0.15172570943832397, -0.3594838082790375, -0.7314803004264832, -0.4085734486579895, 0.43403393030166626, 0.21590518951416016, 0.6314190030097961, 0.4957059919834137, 0.5313217639923096, 0.34759521484375, -0.31178584694862366, 0.22522157430648804, -0.5254732370376587, -0.2670172452926636, 0.29221779108047485, -0.5578649044036865, -0.6899657249450684, 0.0557018406689167, 0.539306104183197, 0.3676205575466156, -0.33718428015708923, 0.5718653798103333, -0.03927164152264595, 0.5464236736297607, -0.5528296232223511, 0.32526132464408875, -0.560234010219574, 0.1257818043231964, -0.3181879222393036, -0.06845583766698837, -0.27785202860832214, -0.4027461111545563, -0.09896499663591385, -0.798566997051239, 0.026751210913062096, 0.025006892159581184, 1.2242778539657593, 0.34704333543777466, -0.24619105458259583, -0.24310696125030518, -0.4058687686920166, 0.8455789685249329, -0.8484336137771606, 0.14556200802326202, 0.46231865882873535, 0.16994354128837585, -0.11862657219171524, -0.8225429058074951, -0.7284701466560364, -0.10235787183046341, -0.12181747704744339, 0.13469554483890533, -0.298152893781662, -0.14033742249011993, 0.30265575647354126, 0.6274860501289368, -0.49604952335357666, 0.2454444020986557, -0.5791316628456116, -0.13518385589122772, 0.7936562299728394, 0.2953471541404724, 0.14338922500610352, -0.1453016847372055, -0.5181493163108826, -0.24321475625038147, -0.7282575964927673, 0.389193594455719, 0.232428178191185, 0.3009030520915985, -0.488509863615036, 0.6672143340110779, -0.29116252064704895, 0.5262778997421265, 0.12324806302785873, -0.575555682182312, 0.7324097752571106, -0.4143185615539551, -0.4504339098930359, 0.048185210675001144, 0.9076835513114929, 0.4126952290534973, 0.02221750095486641, 0.1319965273141861, -0.18793803453445435, -0.09881214797496796, -0.09299001842737198, -0.8239627480506897, -0.03771863505244255, 0.26703885197639465, -0.5014199614524841, -0.36786937713623047, 0.03572070226073265, -0.5665416717529297, -0.1362338364124298, -0.14983022212982178, 0.4685059189796448, -0.21735650300979614, -0.25094208121299744, 0.30652713775634766, 0.1336841732263565, 0.4562186300754547, 0.4501018524169922, -0.7601680755615234, 0.221909761428833, 0.49342408776283264, 0.9824361801147461, -0.04939837008714676, -0.3848133981227875, -0.2697302997112274, 0.025314055383205414, -0.275358110666275, 0.5791736841201782, -0.10992734879255295, -0.32620304822921753, -0.1397019773721695, 0.09833193570375443, -0.23931296169757843, -0.48997175693511963, 0.5159001350402832, -0.4372681975364685, 0.24656304717063904, -0.18513040244579315, -0.19053643941879272, -0.3135296106338501, 0.2898479402065277, -0.6114884614944458, 1.3838554620742798, 0.10595829039812088, -0.7585800290107727, 0.32893237471580505, -0.7851358652114868, -0.11701015383005142, -0.2793944478034973, 0.16235291957855225, -0.708148717880249, -0.073860302567482, 0.4478110074996948, 0.41382160782814026, -0.45100098848342896, 0.19253623485565186, -0.23728056252002716, -0.5086619257926941, 0.13985957205295563, -0.23342974483966827, 1.1369874477386475, 0.2876168489456177, -0.4857870042324066, 0.2699895203113556, -0.9465677738189697, -0.05979372188448906, 0.6143109202384949, -0.635500431060791, -0.08614905923604965, -0.29327458143234253, -0.042702220380306244, 0.054716549813747406, 0.46076086163520813, -0.5938443541526794, 0.4293389320373535, -0.341746062040329, 0.521428644657135, 0.9286660552024841, -0.1986549198627472, 0.17410889267921448, -0.477620393037796, 0.4309922754764557, 0.1699565351009369, 0.247010737657547, -0.20730416476726532, -0.6510753631591797, -1.0336511135101318, -0.5799590945243835, 0.14012770354747772, 0.4287838935852051, -0.3010779619216919, 0.4780120253562927, -0.17283912003040314, -0.7337917685508728, -0.7858312726020813, 0.22767314314842224, 0.4162980914115906, 0.45279428362846375, 0.5169671177864075, -0.2933972477912903, -0.5892059803009033, -0.8807485699653625, 0.014633825048804283, -0.29673847556114197, 0.17115002870559692, 0.3134625554084778, 0.7626129984855652, -0.34683915972709656, 0.8836384415626526, -0.5770479440689087, -0.4373323917388916, -0.2034388929605484, -0.07007645815610886, 0.6773245930671692, 0.44150644540786743, 0.7139371037483215, -0.4121638238430023, -0.5402244329452515, 0.05096620321273804, -0.8561975955963135, -0.0746726393699646, -0.019900260493159294, -0.14247407019138336, 0.31388869881629944, 0.15022963285446167, -0.9142996668815613, 0.6668896079063416, 0.5832778811454773, -0.39466702938079834, 0.5655192136764526, -0.1287757158279419, 0.04551250487565994, -0.9990458488464355, 0.25759023427963257, -0.08074837923049927, -0.11860935389995575, -0.4724770784378052, 0.2678069770336151, 0.008455936796963215, 0.05281943082809448, -0.6832507848739624, 0.7175495624542236, -0.41196680068969727, -0.10848231613636017, 0.10230375081300735, 0.019394217059016228, -0.02076951414346695, 0.7319208383560181, -0.14689430594444275, 0.9692180156707764, 0.47875770926475525, -0.4286237061023712, 0.3236599862575531, 0.33104053139686584, -0.5181233286857605, 0.31613805890083313, -0.8133924007415771, 0.2620461881160736, -0.004199695773422718, 0.4769361615180969, -1.035237193107605, -0.18777096271514893, 0.4465144872665405, -0.3159657120704651, 0.18228252232074738, 0.13677488267421722, -0.5318824052810669, -0.6786606311798096, -0.6696168184280396, 0.3857281506061554, 0.5342295169830322, -0.7222272157669067, 0.25158053636550903, 0.144511878490448, 0.13151024281978607, -0.7260708808898926, -0.7211527228355408, -0.11597315222024918, -0.3538799285888672, -0.5880498886108398, 0.3667142391204834, -0.07497541606426239, -0.18176639080047607, -0.11312324553728104, -0.09246403723955154, 0.023969272151589394, 0.19031086564064026, 0.3555932641029358, 0.2888469696044922, -0.34607407450675964, -0.12658919394016266, -0.08885110169649124, -0.05933042988181114, -0.12625031173229218, 0.05406055226922035, 0.7436695098876953, -0.3947939872741699, -0.46217265725135803, -0.7311382293701172, -0.1252862513065338, 0.5170181393623352, -0.25340160727500916, 0.9512397646903992, 0.715029239654541, -0.3031880259513855, 0.2257283329963684, -0.5601004958152771, 0.16337698698043823, -0.49041616916656494, 0.26846522092819214, -0.4421907961368561, -0.8871184587478638, 0.6525774598121643, 0.20064015686511993, 0.2573111653327942, 0.7695254683494568, 0.7961515188217163, 0.06293581426143646, 0.8268701434135437, 0.43874797224998474, -0.2722446918487549, 0.3426281809806824, -0.61529940366745, -0.012757995165884495, -1.0373672246932983, -0.528235137462616, -0.5236361026763916, -0.4208923280239105, -0.37699025869369507, -0.4758603870868683, 0.34524184465408325, 0.34678351879119873, -0.685327410697937, 0.4034731984138489, -0.5451498627662659, 0.28462836146354675, 0.6344516277313232, 0.20147636532783508, 0.4232374131679535, 0.05799505487084389, -0.1646747589111328, 0.07097593694925308, -0.5076107382774353, -0.5366907119750977, 1.4643540382385254, 0.5485543608665466, 0.758355438709259, 0.12864695489406586, 0.8813695907592773, 0.08922047168016434, 0.4821930527687073, -0.5831242203712463, 0.49363330006599426, 0.2918703258037567, -0.6184601783752441, -0.16116788983345032, -0.20920541882514954, -1.0773615837097168, 0.5144531726837158, -0.0950964093208313, -0.9794366359710693, 0.04473923146724701, -0.09055329114198685, -0.38073304295539856, 0.4567781686782837, -0.5083954930305481, 0.7060337066650391, -0.2834435999393463, -0.25127553939819336, -0.12260229140520096, -0.4816347658634186, 0.6337078809738159, -0.18162937462329865, 0.16300049424171448, -0.1844523847103119, -0.23547199368476868, 0.9281657338142395, -0.7348591685295105, 0.8616843819618225, -0.18068119883537292, -0.17671017348766327, 0.5434519648551941, -0.22154125571250916, 0.5369889736175537, -0.028170926496386528, -0.25090885162353516, 0.48267054557800293, -0.13071979582309723, -0.4560922384262085, -0.2563306987285614, 0.7625630497932434, -1.2431583404541016, -0.7777776122093201, -0.5570172071456909, -0.40819910168647766, 0.18477784097194672, 0.16618406772613525, 0.1960604339838028, 0.033195894211530685, 0.04182502627372742, 0.24160057306289673, 0.37925466895103455, -0.4119795262813568, 0.6301063895225525, 0.4623827338218689, -0.4030592739582062, -0.5783315896987915, 0.7603762149810791, 0.029016004875302315, 0.14591829478740692, 0.17598886787891388, 0.23870523273944855, -0.2756611108779907, -0.4840218424797058, -0.5655083656311035, 0.397183358669281, -0.6196204423904419, -0.37508565187454224, -0.6305002570152283, -0.23139989376068115, -0.3848790228366852, -0.10779274255037308, -0.3583570718765259, -0.511372983455658, -0.46493810415267944, -0.16007916629314423, 0.6728367209434509, 0.8732166290283203, 0.03289298340678215, 0.501721203327179, -0.5296483039855957, 0.20730265974998474, 0.2197764664888382, 0.1999996304512024, 0.18168529868125916, -0.7041750550270081, -0.2786302864551544, 0.0005340200732462108, -0.640293538570404, -0.6941437721252441, 0.3964780271053314, 0.1470932960510254, 0.49673327803611755, 0.4411890208721161, -0.12068139761686325, 1.0556854009628296, -0.2850660979747772, 1.0328056812286377, 0.3955877125263214, -0.8962344527244568, 0.6130094528198242, -0.22275856137275696, 0.18386249244213104, 0.4985119700431824, 0.4183083474636078, -0.2839851677417755, -0.30500179529190063, -0.6782935857772827, -0.9744120240211487, 0.9119336605072021, 0.2424902319908142, -0.03180382773280144, 0.102301687002182, 0.27838122844696045, 0.048780303448438644, 0.2080676108598709, -1.1704081296920776, -0.41747140884399414, -0.2227332592010498, -0.20267629623413086, -0.15384887158870697, -0.07426982372999191, -0.20734773576259613, -0.533842146396637, 0.5874250531196594, 0.020783444866538048, 0.4366263747215271, 0.25427594780921936, -0.2628691792488098, -0.1911637783050537, -0.003421404864639044, 0.8093253374099731, 0.6412219405174255, -0.24690338969230652, -0.17269034683704376, 0.4257330298423767, -0.5404163002967834, 0.21288122236728668, -0.020723944529891014, -0.25337696075439453, -0.129442498087883, 0.5253790020942688, 0.9885270595550537, 0.22859643399715424, -0.5501469969749451, 0.5641495585441589, 0.07196379452943802, -0.24690768122673035, -0.34566202759742737, 0.00677134795114398, 0.1705377697944641, 0.332971453666687, 0.4765205383300781, -0.08862674981355667, -0.19200289249420166, -0.5421149134635925, -0.06178536266088486, 0.4624210596084595, -0.004651244264096022, -0.3220858573913574, 0.9188956022262573, 0.07170432060956955, -0.294802725315094, 0.4556189179420471, 0.06954272091388702, -0.494351327419281, 0.8466931581497192, 0.6842855215072632, 0.6887407898902893, -0.21975290775299072, 0.009135929867625237, 0.6210370063781738, 0.3807573616504669, -0.05660900101065636, 0.2582447826862335, -0.0988135039806366, -0.3908906579017639, -0.2502647042274475, -0.9613699913024902, -0.32460784912109375, 0.21311336755752563, -0.5859451293945312, 0.3626929223537445, -0.5908193588256836, -0.20987452566623688, -0.3738246560096741, 0.2700043320655823, -0.9209752678871155, 0.14217592775821686, 0.053521424531936646, 1.0245307683944702, -0.7035297155380249, 0.8070327043533325, 0.642979085445404, -0.6892985701560974, -1.039731502532959, -0.27790969610214233, -0.060951318591833115, -1.2673282623291016, 0.811007559299469, 0.34275418519973755, 0.160758376121521, -0.11136314272880554, -0.4393005073070526, -1.213803768157959, 1.5735846757888794, 0.19342449307441711, -0.526435911655426, 0.04400837421417236, 0.20620910823345184, 0.5095500946044922, -0.2267405390739441, 0.6105074286460876, 0.49725615978240967, 0.589117705821991, -0.05029066652059555, -1.227632999420166, 0.27308759093284607, -0.2975258231163025, -0.037093497812747955, 0.07720019668340683, -1.1146043539047241, 1.2236895561218262, -0.31113201379776, -0.010177421383559704, 0.296379417181015, 0.6921425461769104, 0.5375778675079346, 0.44497907161712646, 0.3954872488975525, 1.0299564599990845, 0.893683910369873, -0.17723514139652252, 1.1322184801101685, -0.17252379655838013, 0.6450436115264893, 0.7958746552467346, -0.16241884231567383, 0.9389652609825134, 0.48878446221351624, -0.6503652334213257, 0.5913121700286865, 0.8744184970855713, 0.04829845204949379, 0.42985743284225464, 0.21790121495723724, -0.14752483367919922, 0.11682111024856567, 0.0696382001042366, -0.7795653343200684, 0.48699039220809937, 0.17334048449993134, -0.3693552315235138, -0.19521774351596832, -0.14184048771858215, 0.21782532334327698, -0.23948173224925995, -0.38355326652526855, 0.5782431364059448, 0.03951351344585419, -0.4702458679676056, 0.9827893972396851, 0.20296654105186462, 1.0120559930801392, -0.5943965911865234, 0.21515920758247375, -0.31455981731414795, 0.20562534034252167, -0.44336363673210144, -0.6305872201919556, 0.12697376310825348, 0.17839035391807556, 0.1342362016439438, -0.1220417395234108, 0.48953041434288025, -0.14012449979782104, -0.4763423204421997, 0.2847479283809662, 0.29633721709251404, 0.26721760630607605, 0.23231786489486694, -0.7773995399475098, 0.35738900303840637, -0.0453864187002182, -0.8382739424705505, 0.4560534656047821, 0.18510784208774567, -0.03703811392188072, 0.6811564564704895, 0.8952900171279907, 0.018068628385663033, 0.2860744297504425, -0.1385672688484192, 1.087705135345459, -0.7394756078720093, -0.33253034949302673, -0.8897677063941956, 0.5353213548660278, 0.006317425519227982, -0.644262433052063, 0.8117600679397583, 0.6947049498558044, 0.8553292751312256, -0.03703882917761803, 0.43261390924453735, -0.10796789824962616, 0.24875733256340027, -0.5825311541557312, 0.7676512002944946, -0.7923473715782166, 0.13850808143615723, -0.23609784245491028, -0.9912469387054443, -0.3380390703678131, 0.8826929330825806, -0.2293328195810318, 0.02958735078573227, 0.5568444728851318, 0.7819973230361938, 0.09858199208974838, -0.11018818616867065, -0.021197332069277763, 0.3200291097164154, 0.3381498456001282, 0.8863202929496765, 0.7798804044723511, -0.7424926161766052, 0.5208483934402466, -0.372656911611557, -0.16997122764587402, -0.4023542106151581, -0.8010807633399963, -0.8422260880470276, -0.3814777135848999, -0.30899330973625183, -0.2909286916255951, -0.12311907112598419, 1.139593243598938, 0.55449378490448, -0.59979647397995, -0.45982059836387634, 0.11320119351148605, 0.13125331699848175, -0.12048648297786713, -0.19724848866462708, 0.5634892582893372, -0.12315098941326141, -0.8691084384918213, 0.3498997986316681, 0.04750104621052742, 0.10683440417051315, -0.30838721990585327, -0.32974129915237427, -0.2648472189903259, -0.00747234420850873, 0.655400276184082, 0.3472204804420471, -0.9779884815216064, -0.2876121699810028, -0.22337716817855835, -0.30681949853897095, 0.2984658181667328, 0.2997014820575714, -0.8142200708389282, 0.1408109813928604, 0.24413548409938812, 0.5181856155395508, 0.8466870188713074, -0.0567379966378212, 0.034494806081056595, -0.436381459236145, 0.4792841672897339, -0.1665494441986084, 0.44806256890296936, 0.15053123235702515, -0.3240538537502289, 0.8266851305961609, 0.31083372235298157, -0.4672078490257263, -1.0685832500457764, -0.23868614435195923, -1.2146618366241455, 0.02753398008644581, 1.1545599699020386, -0.30514395236968994, -0.5169119834899902, 0.33368468284606934, -0.40293389558792114, 0.20717988908290863, -0.45548465847969055, 0.6778917908668518, 0.6494376063346863, -0.12368549406528473, -0.04608829692006111, -0.5780970454216003, 0.19184671342372894, 0.3380056917667389, -0.8046631217002869, -0.32980120182037354, 0.15736031532287598, 0.3529430031776428, 0.238350048661232, 0.9387081265449524, -0.12227008491754532, 0.19402562081813812, -0.10492653399705887, 0.1104905977845192, -0.33297890424728394, -0.096699558198452, -0.339154988527298, 0.17528674006462097, 0.09275664389133453, -0.35123562812805176 ]
huggingface/CodeBERTa-small-v1
huggingface
"2022-06-27T15:48:41Z"
54,816
54
transformers
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "code", "dataset:code_search_net", "arxiv:1909.09436", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
fill-mask
"2022-03-02T23:29:05Z"
--- language: code thumbnail: https://cdn-media.huggingface.co/CodeBERTa/CodeBERTa.png datasets: - code_search_net --- # CodeBERTa CodeBERTa is a RoBERTa-like model trained on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset from GitHub. Supported languages: ```shell "go" "java" "javascript" "php" "python" "ruby" ``` The **tokenizer** is a Byte-level BPE tokenizer trained on the corpus using Hugging Face `tokenizers`. Because it is trained on a corpus of code (vs. natural language), it encodes the corpus efficiently (the sequences are between 33% to 50% shorter, compared to the same corpus tokenized by gpt2/roberta). The (small) **model** is a 6-layer, 84M parameters, RoBERTa-like Transformer model – that’s the same number of layers & heads as DistilBERT – initialized from the default initialization settings and trained from scratch on the full corpus (~2M functions) for 5 epochs. ### Tensorboard for this training ⤵️ [![tb](https://cdn-media.huggingface.co/CodeBERTa/tensorboard.png)](https://tensorboard.dev/experiment/irRI7jXGQlqmlxXS0I07ew/#scalars) ## Quick start: masked language modeling prediction ```python PHP_CODE = """ public static <mask> set(string $key, $value) { if (!in_array($key, self::$allowedKeys)) { throw new \InvalidArgumentException('Invalid key given'); } self::$storedValues[$key] = $value; } """.lstrip() ``` ### Does the model know how to complete simple PHP code? ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="huggingface/CodeBERTa-small-v1", tokenizer="huggingface/CodeBERTa-small-v1" ) fill_mask(PHP_CODE) ## Top 5 predictions: # ' function' # prob 0.9999827146530151 'function' # ' void' # ' def' # ' final' # ``` ### Yes! That was easy 🎉 What about some Python (warning: this is going to be meta) ```python PYTHON_CODE = """ def pipeline( task: str, model: Optional = None, framework: Optional[<mask>] = None, **kwargs ) -> Pipeline: pass """.lstrip() ``` Results: ```python 'framework', 'Framework', ' framework', 'None', 'str' ``` > This program can auto-complete itself! 😱 ### Just for fun, let's try to mask natural language (not code): ```python fill_mask("My name is <mask>.") # {'sequence': '<s> My name is undefined.</s>', 'score': 0.2548016905784607, 'token': 3353} # {'sequence': '<s> My name is required.</s>', 'score': 0.07290805131196976, 'token': 2371} # {'sequence': '<s> My name is null.</s>', 'score': 0.06323737651109695, 'token': 469} # {'sequence': '<s> My name is name.</s>', 'score': 0.021919190883636475, 'token': 652} # {'sequence': '<s> My name is disabled.</s>', 'score': 0.019681859761476517, 'token': 7434} ``` This (kind of) works because code contains comments (which contain natural language). Of course, the most frequent name for a Computer scientist must be undefined 🤓. ## Downstream task: [programming language identification](https://huggingface.co/huggingface/CodeBERTa-language-id) See the model card for **[`huggingface/CodeBERTa-language-id`](https://huggingface.co/huggingface/CodeBERTa-language-id)** 🤯. <br> ## CodeSearchNet citation <details> ```bibtex @article{husain_codesearchnet_2019, title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}}, shorttitle = {{CodeSearchNet} {Challenge}}, url = {http://arxiv.org/abs/1909.09436}, urldate = {2020-03-12}, journal = {arXiv:1909.09436 [cs, stat]}, author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc}, month = sep, year = {2019}, note = {arXiv: 1909.09436}, } ``` </details>
[ -0.39121365547180176, -0.5590264797210693, 0.36301499605178833, 0.27215877175331116, -0.19945688545703888, 0.2410694807767868, -0.44882872700691223, -0.3167518079280853, 0.4249081611633301, 0.3060579299926758, -0.4684598445892334, -0.7780439257621765, -0.7537819743156433, 0.13725462555885315, -0.5152730345726013, 1.1771643161773682, 0.1331452876329422, -0.003607572289183736, 0.09141288697719574, 0.04236441105604172, -0.34429410099983215, -0.619682788848877, -0.5694146156311035, -0.15841156244277954, 0.43018630146980286, -0.03201786056160927, 0.6920623779296875, 0.7923336625099182, 0.4218981862068176, 0.3460201025009155, -0.1710882931947708, -0.011778894811868668, -0.28705692291259766, -0.18865615129470825, 0.04120345413684845, -0.6490069031715393, -0.2579517364501953, -0.13430310785770416, 0.3434446156024933, 0.6372285485267639, 0.04324903339147568, 0.4373316168785095, -0.2056475281715393, 0.5962817072868347, -0.5762413740158081, 0.45235463976860046, -0.7696479558944702, 0.014040025882422924, -0.23663786053657532, -0.06753309816122055, -0.3949694335460663, -0.503250241279602, 0.04628534987568855, -0.3056309223175049, 0.3010907769203186, -0.06165032088756561, 1.107202410697937, 0.3732019066810608, -0.13894377648830414, -0.23610623180866241, -0.5137065052986145, 0.7694665789604187, -0.7930662035942078, 0.09686415642499924, 0.39901190996170044, 0.10048922151327133, -0.18168433010578156, -0.8993495106697083, -0.6466394066810608, 0.012350932694971561, -0.19933120906352997, 0.04156021773815155, -0.3784274160861969, -0.0141978170722723, 0.34613722562789917, 0.26035332679748535, -0.8399837613105774, -0.22158794105052948, -0.6905608773231506, -0.4721883535385132, 0.5645493268966675, -0.029096510261297226, 0.4480822682380676, -0.503248393535614, -0.31151649355888367, -0.1141180619597435, -0.35720720887184143, 0.3160642683506012, 0.32586759328842163, 0.43820396065711975, -0.3902755379676819, 0.40944474935531616, -0.25410908460617065, 0.8377569317817688, -0.0763031616806984, -0.0147536126896739, 0.6526426076889038, -0.23425304889678955, -0.27572232484817505, -0.13068337738513947, 1.1736295223236084, 0.044715531170368195, 0.3932604491710663, -0.1814889758825302, -0.08586113899946213, 0.41323646903038025, 0.007906993851065636, -0.7775024175643921, -0.4723126292228699, 0.40610435605049133, -0.43418920040130615, -0.5267894268035889, 0.36377009749412537, -0.8242595195770264, -0.06692390143871307, -0.22588352859020233, 0.4434076249599457, -0.39546793699264526, -0.13067705929279327, 0.2618091404438019, -0.0714993104338646, 0.18276157975196838, -0.015138381160795689, -0.7443571090698242, 0.23384487628936768, 0.7100980281829834, 0.9604926109313965, -0.049248114228248596, -0.27276378870010376, -0.46953749656677246, -0.5329622626304626, -0.20812369883060455, 0.5137528777122498, -0.5504499077796936, -0.11376399546861649, -0.060936812311410904, 0.24626009166240692, -0.21513475477695465, -0.3491884171962738, 0.4142017066478729, -0.6259761452674866, 0.3235448896884918, 0.14868228137493134, -0.3617376685142517, -0.22166423499584198, -0.0019466973608359694, -0.7126901149749756, 1.0716837644577026, 0.09381647408008575, -0.7036216259002686, 0.10670816898345947, -0.7368208169937134, -0.19717326760292053, -0.004730254877358675, -0.16368353366851807, -0.4466940462589264, -0.26093971729278564, 0.12708039581775665, 0.35143816471099854, -0.2285856157541275, 0.59708571434021, -0.2305174320936203, -0.4230329990386963, 0.4619161784648895, -0.02849828265607357, 1.2378543615341187, 0.41934067010879517, -0.653784990310669, 0.10874978452920914, -0.8942645788192749, 0.21873873472213745, 0.2499319314956665, -0.29163146018981934, 0.04338497668504715, -0.09994380176067352, 0.15190069377422333, 0.3419401943683624, 0.3447626829147339, -0.4344547390937805, 0.27491340041160583, -0.6119637489318848, 0.7280523180961609, 0.6953984498977661, -0.01771613024175167, 0.3392748534679413, -0.16017208993434906, 0.7322055697441101, -0.15964122116565704, 0.21261510252952576, -0.23979730904102325, -0.6982093453407288, -0.8660078644752502, -0.4324355721473694, 0.7235338687896729, 0.6870909929275513, -0.6986348628997803, 0.6093723177909851, -0.3942767083644867, -0.698998749256134, -0.6231086254119873, 0.06498179584741592, 0.6830002665519714, 0.3428235948085785, 0.40949538350105286, -0.4149351119995117, -0.9934784770011902, -0.7671322822570801, -0.2459765076637268, -0.13882020115852356, -0.1026797741651535, 0.20098745822906494, 0.6780440807342529, -0.42891925573349, 1.0689749717712402, -0.8122385740280151, -0.26996350288391113, 0.007826643995940685, 0.16576550900936127, 0.652127742767334, 0.619199275970459, 0.5743205547332764, -0.8573123812675476, -0.5833101272583008, -0.2895219027996063, -0.6308981776237488, -0.04527714475989342, 0.029704876244068146, -0.1703183650970459, 0.25889503955841064, 0.3548717498779297, -0.5429556965827942, 0.45892030000686646, 0.5394992828369141, -0.41582661867141724, 0.3315325379371643, -0.08477484434843063, -0.014214843511581421, -1.0732331275939941, 0.3447972238063812, -0.07859958708286285, -0.12919382750988007, -0.687408447265625, 0.19523471593856812, 0.19005171954631805, -0.21495619416236877, -0.3315492570400238, 0.4029991030693054, -0.4242006242275238, 0.15969911217689514, -0.04224153235554695, 0.2953108251094818, -0.21467801928520203, 0.8849971890449524, 0.05928529426455498, 0.7265838980674744, 0.7609154582023621, -0.4624227285385132, 0.3328001797199249, 0.21247154474258423, -0.30402252078056335, -0.05444379523396492, -0.7432976365089417, 0.3083045184612274, -0.024376599118113518, 0.20830944180488586, -0.9842578768730164, -0.1588401049375534, 0.33896681666374207, -0.9166294932365417, 0.0792737677693367, -0.4408950209617615, -0.5213654041290283, -0.49298080801963806, -0.3972782492637634, 0.4582352042198181, 0.6911211013793945, -0.5166876912117004, 0.4361031949520111, 0.4420689642429352, -0.011158742010593414, -0.6808512210845947, -0.6916751265525818, 0.28146350383758545, -0.17087996006011963, -0.6015656590461731, 0.5510216951370239, -0.4548489451408386, -0.01588173396885395, -0.18292541801929474, 0.12656360864639282, -0.22317859530448914, 0.061892829835414886, 0.2678362727165222, 0.6088525652885437, -0.048085566610097885, 0.0295291468501091, -0.3773191273212433, -0.2765970528125763, 0.20186682045459747, -0.4416522681713104, 0.8459686040878296, -0.28917235136032104, -0.08698077499866486, -0.23291464149951935, -0.03753873333334923, 0.48405200242996216, -0.5212895274162292, 0.6832157373428345, 0.6692997813224792, -0.5845329165458679, -0.03850257024168968, -0.5037394165992737, -0.03512875363230705, -0.44780370593070984, 0.2036834955215454, -0.2725197672843933, -0.8253166079521179, 0.8221719264984131, 0.27977752685546875, -0.2668977677822113, 0.5999266505241394, 0.5616326332092285, 0.41065964102745056, 1.067807674407959, 0.46434110403060913, -0.4006286561489105, 0.43699654936790466, -0.6567539572715759, 0.4611959159374237, -0.6315525770187378, -0.28327563405036926, -0.7367991805076599, -0.10078039765357971, -0.940686821937561, -0.6684339046478271, 0.1924096941947937, 0.011718434281647205, -0.20071130990982056, 0.8709053993225098, -0.9051265716552734, 0.2532937824726105, 0.5992106795310974, 0.14417558908462524, 0.12471608817577362, -0.17448562383651733, -0.1182558611035347, -0.06918934732675552, -0.46548619866371155, -0.40247535705566406, 1.2256463766098022, 0.19649198651313782, 0.6540836095809937, 0.08566680550575256, 0.9864121079444885, 0.2585420608520508, -0.06424310803413391, -0.6431509852409363, 0.5225662589073181, 0.07050307840108871, -0.6235005259513855, -0.15475107729434967, -0.4540683925151825, -1.0552163124084473, 0.16307856142520905, -0.10719191282987595, -0.9636707901954651, 0.23892313241958618, -0.07598698884248734, -0.36167797446250916, 0.09768538922071457, -0.5638203024864197, 0.8637805581092834, -0.08032539486885071, -0.2624173164367676, 0.10828883200883865, -0.851661741733551, 0.3166176974773407, -0.03654109314084053, 0.43750303983688354, 0.0695444643497467, -0.013637270778417587, 0.8893511295318604, -0.47215384244918823, 0.8260496258735657, -0.11983150243759155, -0.026338445022702217, 0.2643478512763977, 0.08212509006261826, 0.512774646282196, 0.1454787403345108, -0.009371754713356495, 0.3539656102657318, 0.13765712082386017, -0.41163119673728943, -0.5886265635490417, 0.8001661896705627, -0.7287429571151733, -0.34589335322380066, -0.5728031992912292, -0.11390255391597748, 0.15065719187259674, 0.5059220790863037, 0.47317594289779663, 0.4517659842967987, 0.09100044518709183, 0.09848690032958984, 0.6533986926078796, -0.1651555448770523, 0.43045881390571594, 0.49149730801582336, -0.27096378803253174, -0.5625684261322021, 1.0830367803573608, 0.053883060812950134, -0.0110225360840559, 0.42254534363746643, 0.06246684864163399, -0.08844058215618134, -0.3769587278366089, -0.31306156516075134, 0.28157928586006165, -0.7594885230064392, -0.5017624497413635, -0.7988764643669128, -0.45753273367881775, -0.43189194798469543, -0.03906318172812462, -0.3303094208240509, -0.4378999173641205, -0.29601338505744934, -0.06939581781625748, 0.39776256680488586, 0.4832949638366699, 0.18348945677280426, -0.15228897333145142, -0.5303860306739807, 0.3022525906562805, 0.14545506238937378, 0.5183338522911072, -0.14978809654712677, -0.5416945815086365, -0.2819870412349701, 0.044295039027929306, -0.0005139725981280208, -0.8041134476661682, 0.554399847984314, 0.02187405899167061, 0.42055147886276245, 0.13987837731838226, 0.14205853641033173, 0.658806562423706, -0.31245341897010803, 0.9388315677642822, 0.09928435832262039, -1.1506425142288208, 0.7151396870613098, -0.18189552426338196, 0.3191646933555603, 0.5224030613899231, 0.2948172390460968, -0.5698683261871338, -0.575206995010376, -0.823968231678009, -0.9780187606811523, 0.7557758092880249, 0.46562597155570984, 0.18287666141986847, -0.19895543158054352, 0.20951895415782928, -0.17345742881298065, 0.19514037668704987, -1.0932948589324951, -0.6290906071662903, -0.2228650450706482, -0.39393794536590576, 0.09386341273784637, -0.0702597126364708, -0.028007885441184044, -0.32112497091293335, 0.742590069770813, -0.2899801731109619, 0.5578636527061462, 0.2589396834373474, -0.2659829556941986, 0.045396510511636734, 0.05871894583106041, 0.7578527927398682, 0.5565072298049927, -0.22619454562664032, 0.11266883462667465, 0.18602821230888367, -0.40823695063591003, -0.18583838641643524, 0.21909558773040771, -0.14299094676971436, 0.165378600358963, 0.48348185420036316, 0.725553035736084, 0.3753286600112915, -0.8081539273262024, 0.6943880915641785, -0.15297067165374756, -0.23346158862113953, -0.6651902794837952, 0.14297372102737427, 0.005379169248044491, 0.16513651609420776, 0.4508483409881592, 0.33992674946784973, 0.24833063781261444, -0.32993045449256897, 0.10931913554668427, 0.3267652094364166, -0.45238614082336426, -0.30980998277664185, 0.7640354633331299, -0.15457667410373688, -0.5388753414154053, 0.1883782148361206, -0.40318381786346436, -0.892047107219696, 0.9083353281021118, 0.38014501333236694, 0.9917376041412354, 0.1947220414876938, 0.06599739193916321, 0.7469106316566467, 0.24020516872406006, -0.02402457594871521, 0.320500910282135, -0.060153864324092865, -0.5040880441665649, -0.16261012852191925, -0.6224096417427063, 0.02936682477593422, 0.04983755201101303, -0.5682064890861511, 0.46976545453071594, -0.5551086068153381, -0.23023726046085358, 0.10635872930288315, 0.10114433616399765, -0.7882850766181946, 0.17733904719352722, 0.17371191084384918, 0.8761798739433289, -0.7027328610420227, 0.9114105105400085, 0.5537294149398804, -0.8057562708854675, -0.8606207370758057, -0.15481242537498474, -0.018395118415355682, -0.8146443963050842, 0.8270842432975769, 0.13366428017616272, -0.1385989636182785, 0.03092770092189312, -0.759408175945282, -1.1760568618774414, 1.2312114238739014, 0.28037917613983154, -0.3018836975097656, -0.12247565388679504, -0.05017995089292526, 0.7302057147026062, -0.3969580829143524, 0.48102250695228577, 0.4676726758480072, 0.4558865427970886, -0.2612975239753723, -0.9790446758270264, 0.29336783289909363, -0.6375139355659485, 0.2826308012008667, 0.11926987022161484, -0.8085249662399292, 0.9406504034996033, -0.21340042352676392, -0.2526850402355194, 0.29571813344955444, 0.5644509792327881, 0.13768644630908966, 0.12735359370708466, 0.39426594972610474, 0.42978817224502563, 0.6903751492500305, -0.24071650207042694, 0.7594931125640869, -0.7389981746673584, 0.9066160321235657, 0.7832945585250854, 0.26924803853034973, 0.7471036314964294, 0.387264609336853, -0.51274573802948, 0.8885371088981628, 0.5278717875480652, -0.3674151599407196, 0.4489201605319977, 0.4640529155731201, -0.07173171639442444, 0.009771031327545643, 0.19673524796962738, -0.3891236484050751, 0.6088458299636841, 0.00414799340069294, -0.5468878746032715, 0.1604028344154358, -0.0825619027018547, 0.34892159700393677, 0.30673566460609436, 0.13764365017414093, 0.7451605796813965, -0.12843340635299683, -0.9156463742256165, 0.944362998008728, 0.19817288219928741, 1.00146484375, -0.5945894718170166, -0.05337294191122055, -0.2017659842967987, 0.11108275502920151, -0.44655320048332214, -0.4219372272491455, -0.03753605857491493, 0.17684514820575714, -0.29729384183883667, -0.011136298067867756, 0.49705302715301514, -0.5287010669708252, -0.5390405654907227, 0.510539710521698, 0.12327362596988678, 0.11492419987916946, 0.07403740286827087, -0.7552098631858826, 0.16873078048229218, 0.18072804808616638, -0.18329504132270813, 0.2386453002691269, 0.16735681891441345, 0.19571338593959808, 0.8219226002693176, 0.706188440322876, 0.09475836157798767, 0.1576446145772934, -0.09934476017951965, 0.9307354092597961, -0.8164328336715698, -0.4555504024028778, -0.8998867869377136, 0.5317867994308472, -0.029929958283901215, -0.31690290570259094, 0.601913332939148, 0.8053615689277649, 0.9005229473114014, -0.24368160963058472, 0.8424017429351807, -0.38657939434051514, 0.4161759912967682, -0.5362828373908997, 0.6863239407539368, -0.4599544405937195, 0.23457975685596466, -0.5322396159172058, -0.7484685182571411, -0.35695409774780273, 0.6360967755317688, -0.14879272878170013, 0.17448852956295013, 0.6496182084083557, 1.089308500289917, 0.11934129148721695, -0.2679463028907776, 0.047390326857566833, 0.03969524800777435, 0.36029288172721863, 0.7731472849845886, 0.28306132555007935, -0.7912545204162598, 0.7697307467460632, -0.5615348815917969, -0.2727929353713989, -0.2515152394771576, -0.7336458563804626, -0.8588953614234924, -0.829086422920227, -0.4253622591495514, -0.5578696131706238, -0.05092613399028778, 1.104000210762024, 0.7201595306396484, -1.0205800533294678, -0.26821836829185486, -0.21743547916412354, 0.1977759152650833, -0.17712949216365814, -0.35827040672302246, 0.4636565148830414, -0.3833414912223816, -0.9552373886108398, 0.26212167739868164, 0.0699610710144043, -0.2413855493068695, -0.18252570927143097, -0.09151092916727066, -0.3449930250644684, -0.07929173856973648, 0.340207576751709, 0.42459455132484436, -0.9289532899856567, -0.29209139943122864, 0.22223976254463196, -0.4053316116333008, 0.0857977345585823, 0.5923189520835876, -1.0098003149032593, 0.6661076545715332, 0.5250454545021057, 0.4130483865737915, 0.54225754737854, -0.20519539713859558, 0.3966158330440521, -0.5525354146957397, 0.194292813539505, 0.09538720548152924, 0.5161553025245667, 0.19937817752361298, -0.48780694603919983, 0.7034609317779541, 0.3598763942718506, -0.515839695930481, -0.8547068238258362, 0.04259664565324783, -1.020876169204712, -0.10908973217010498, 1.054338812828064, -0.18920305371284485, -0.18572963774204254, 0.04047016799449921, -0.32279956340789795, 0.4243183732032776, -0.4413420259952545, 0.8812741041183472, 0.4860650897026062, 0.08352681994438171, -0.027529802173376083, -0.5357070565223694, 0.6143075823783875, 0.3644885718822479, -0.5130231380462646, -0.14734049141407013, 0.09557809680700302, 0.4806123673915863, 0.5562951564788818, 0.6384674906730652, -0.18702124059200287, 0.3049600422382355, -0.2358064204454422, 0.3108496367931366, -0.011294028721749783, -0.05622616410255432, -0.5498853325843811, 0.07412446290254593, 0.031197991222143173, -0.15753772854804993 ]
felflare/bert-restore-punctuation
felflare
"2021-05-24T03:04:47Z"
54,506
52
transformers
[ "transformers", "pytorch", "bert", "token-classification", "punctuation", "en", "dataset:yelp_polarity", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
token-classification
"2022-03-02T23:29:05Z"
--- language: - en tags: - punctuation license: mit datasets: - yelp_polarity metrics: - f1 --- # ✨ bert-restore-punctuation [![forthebadge](https://forthebadge.com/images/badges/gluten-free.svg)]() This a bert-base-uncased model finetuned for punctuation restoration on [Yelp Reviews](https://www.tensorflow.org/datasets/catalog/yelp_polarity_reviews). The model predicts the punctuation and upper-casing of plain, lower-cased text. An example use case can be ASR output. Or other cases when text has lost punctuation. This model is intended for direct use as a punctuation restoration model for the general English language. Alternatively, you can use this for further fine-tuning on domain-specific texts for punctuation restoration tasks. Model restores the following punctuations -- **[! ? . , - : ; ' ]** The model also restores the upper-casing of words. ----------------------------------------------- ## 🚋 Usage **Below is a quick way to get up and running with the model.** 1. First, install the package. ```bash pip install rpunct ``` 2. Sample python code. ```python from rpunct import RestorePuncts # The default language is 'english' rpunct = RestorePuncts() rpunct.punctuate("""in 2018 cornell researchers built a high-powered detector that in combination with an algorithm-driven process called ptychography set a world record by tripling the resolution of a state-of-the-art electron microscope as successful as it was that approach had a weakness it only worked with ultrathin samples that were a few atoms thick anything thicker would cause the electrons to scatter in ways that could not be disentangled now a team again led by david muller the samuel b eckert professor of engineering has bested its own record by a factor of two with an electron microscope pixel array detector empad that incorporates even more sophisticated 3d reconstruction algorithms the resolution is so fine-tuned the only blurring that remains is the thermal jiggling of the atoms themselves""") # Outputs the following: # In 2018, Cornell researchers built a high-powered detector that, in combination with an algorithm-driven process called Ptychography, set a world record by tripling the # resolution of a state-of-the-art electron microscope. As successful as it was, that approach had a weakness. It only worked with ultrathin samples that were a few atoms # thick. Anything thicker would cause the electrons to scatter in ways that could not be disentangled. Now, a team again led by David Muller, the Samuel B. # Eckert Professor of Engineering, has bested its own record by a factor of two with an Electron microscope pixel array detector empad that incorporates even more # sophisticated 3d reconstruction algorithms. The resolution is so fine-tuned the only blurring that remains is the thermal jiggling of the atoms themselves. ``` **This model works on arbitrarily large text in English language and uses GPU if available.** ----------------------------------------------- ## 📡 Training data Here is the number of product reviews we used for finetuning the model: | Language | Number of text samples| | -------- | ----------------- | | English | 560,000 | We found the best convergence around _**3 epochs**_, which is what presented here and available via a download. ----------------------------------------------- ## 🎯 Accuracy The fine-tuned model obtained the following accuracy on 45,990 held-out text samples: | Accuracy | Overall F1 | Eval Support | | -------- | ---------------------- | ------------------- | | 91% | 90% | 45,990 Below is a breakdown of the performance of the model by each label: | label | precision | recall | f1-score | support| | --------- | -------------|-------- | ----------|--------| | **!** | 0.45 | 0.17 | 0.24 | 424 | **!+Upper** | 0.43 | 0.34 | 0.38 | 98 | **'** | 0.60 | 0.27 | 0.37 | 11 | **,** | 0.59 | 0.51 | 0.55 | 1522 | **,+Upper** | 0.52 | 0.50 | 0.51 | 239 | **-** | 0.00 | 0.00 | 0.00 | 18 | **.** | 0.69 | 0.84 | 0.75 | 2488 | **.+Upper** | 0.65 | 0.52 | 0.57 | 274 | **:** | 0.52 | 0.31 | 0.39 | 39 | **:+Upper** | 0.36 | 0.62 | 0.45 | 16 | **;** | 0.00 | 0.00 | 0.00 | 17 | **?** | 0.54 | 0.48 | 0.51 | 46 | **?+Upper** | 0.40 | 0.50 | 0.44 | 4 | **none** | 0.96 | 0.96 | 0.96 |35352 | **Upper** | 0.84 | 0.82 | 0.83 | 5442 ----------------------------------------------- ## ☕ Contact Contact [Daulet Nurmanbetov](daulet.nurmanbetov@gmail.com) for questions, feedback and/or requests for similar models. -----------------------------------------------
[ -0.44516289234161377, -0.8254507780075073, 0.6670615673065186, -0.18159779906272888, -0.26923614740371704, -0.019339317455887794, -0.11053173243999481, -0.3630922734737396, 0.2232927680015564, 0.2908554673194885, -0.20032373070716858, -0.6979418396949768, -0.5463581681251526, 0.17268577218055725, -0.3589021861553192, 0.8977871537208557, 0.06356807798147202, -0.009014785289764404, 0.07604353129863739, 0.041294071823358536, -0.21637506783008575, -0.49658894538879395, -0.5202955007553101, -0.4107580780982971, 0.24168308079242706, 0.14612805843353271, 0.8237139582633972, 0.7131977677345276, 0.6215620040893555, 0.31918802857398987, -0.35732537508010864, 0.1106068342924118, -0.32715415954589844, -0.3915463984012604, 0.06370198726654053, -0.27752694487571716, -0.6157088279724121, -0.05715286731719971, 0.4405387043952942, 0.832951009273529, -0.19063988327980042, -0.06374891847372055, 0.07765208929777145, 0.6398204565048218, -0.4610607922077179, -0.24735303223133087, -0.335549533367157, 0.07893084734678268, 0.013907237909734249, -0.14746558666229248, -0.5510269999504089, -0.30234795808792114, 0.062410689890384674, -0.8936132788658142, 0.3279847204685211, 0.2314784824848175, 1.3898824453353882, 0.012215794995427132, -0.43199723958969116, 0.020360644906759262, -0.7376165986061096, 0.8595889806747437, -0.8197358250617981, 0.45945122838020325, 0.2633475065231323, -0.02428244799375534, -0.18434709310531616, -0.9232214093208313, -0.5960838794708252, -0.10985419154167175, -0.13904988765716553, 0.5029029250144958, -0.5179702043533325, -0.03504185006022453, 0.16490907967090607, 0.5487890243530273, -0.8212271332740784, 0.03336384892463684, -0.4092177152633667, -0.22850750386714935, 0.5195351839065552, 0.19555360078811646, 0.1639370620250702, -0.1745423972606659, -0.6574809551239014, -0.30233585834503174, -0.2118908315896988, 0.14343713223934174, 0.2611117660999298, 0.04553220048546791, 0.0017861532978713512, 0.5372031331062317, -0.3020906150341034, 0.66766756772995, 0.19327810406684875, -0.03483693674206734, 0.45766621828079224, -0.3481421172618866, -0.37852099537849426, 0.07467737793922424, 0.9501742720603943, 0.6739318370819092, 0.08883583545684814, 0.05861538648605347, -0.21740183234214783, 0.16789370775222778, 0.08766957372426987, -0.7302008271217346, -0.6889330148696899, 0.16745296120643616, -0.6634714603424072, -0.27135753631591797, 0.14457745850086212, -0.6043270826339722, 0.016745271161198616, -0.20576927065849304, 0.6098266243934631, -0.6225114464759827, -0.3430904448032379, 0.35421907901763916, -0.2925357520580292, -0.11701516807079315, 0.3253213167190552, -0.7785780429840088, 0.3757181763648987, 0.5351926684379578, 0.9077019095420837, -0.06280559301376343, -0.20803765952587128, 0.12474556267261505, 0.04302893206477165, -0.4886055588722229, 0.9379736185073853, -0.3634532392024994, -0.41167744994163513, -0.3026235103607178, 0.10756947100162506, 0.10832663625478745, -0.3985772728919983, 0.5377097129821777, -0.3979087471961975, 0.36916548013687134, -0.1283389776945114, -0.722583532333374, -0.46801748871803284, 0.42414289712905884, -0.7371878623962402, 1.2150788307189941, 0.023754343390464783, -0.8552703261375427, 0.27679750323295593, -0.32112279534339905, -0.08748520910739899, -0.14508379995822906, 0.2424963265657425, -0.6903552412986755, 0.12846064567565918, 0.32970234751701355, 0.3884755074977875, -0.15630404651165009, 0.31836196780204773, -0.5270127058029175, -0.32091018557548523, 0.1627846509218216, -0.3407944440841675, 1.0719095468521118, 0.13431362807750702, -0.2976952791213989, -0.07871322333812714, -1.0955350399017334, 0.07852955907583237, 0.1685210019350052, -0.4567292630672455, -0.3190633952617645, -0.37483900785446167, 0.026337483897805214, 0.24414288997650146, 0.221726194024086, -0.5835655927658081, 0.20234891772270203, -0.46813029050827026, 0.5654014945030212, 0.8524867296218872, 0.0769597515463829, 0.2376958429813385, -0.6329975724220276, 0.3070896863937378, 0.21253514289855957, 0.09612283110618591, -0.0999654158949852, -0.5192143321037292, -0.6740262508392334, -0.3823336660861969, 0.47598975896835327, 0.5614707469940186, -0.44673070311546326, 0.6184565424919128, -0.20442672073841095, -0.6804591417312622, -0.3300131559371948, -0.12691514194011688, 0.41097018122673035, 0.7531504034996033, 0.44067588448524475, -0.28181129693984985, -0.4073551297187805, -1.1384474039077759, -0.15124168992042542, -0.2124728262424469, 0.025822842493653297, 0.23385542631149292, 0.6803557872772217, 0.018833065405488014, 0.7206113934516907, -0.7380883693695068, -0.25173527002334595, -0.016692236065864563, 0.1258634477853775, 0.6363877654075623, 0.49836450815200806, 0.5207104682922363, -0.5551923513412476, -0.8172136545181274, 0.043530553579330444, -0.730800986289978, 0.06445959210395813, 0.21904267370700836, -0.1879827231168747, 0.4948374927043915, 0.37244775891304016, -0.7239607572555542, 0.4026716351509094, 0.5228173732757568, -0.5697311758995056, 0.8252129554748535, -0.4586928188800812, 0.19449284672737122, -1.2862884998321533, 0.4231826663017273, 0.11504986137151718, -0.24840764701366425, -0.714417040348053, -0.2427782118320465, 0.24932777881622314, -0.04182294011116028, -0.46672695875167847, 0.41853758692741394, -0.6044653654098511, 0.1509028971195221, -0.05449339747428894, 0.06657607853412628, 0.2786724269390106, 0.7057275176048279, 0.01711161807179451, 0.7270123958587646, 0.43328964710235596, -0.44739603996276855, 0.30030617117881775, 0.4275951683521271, -0.4661923050880432, 0.6061139106750488, -0.6164181232452393, 0.007942557334899902, -0.12298746407032013, 0.15061385929584503, -1.1972943544387817, -0.11534720659255981, 0.0666365697979927, -0.50396329164505, 0.17941325902938843, 0.19490429759025574, -0.45397648215293884, -0.5629165172576904, -0.4860835075378418, 0.07060087472200394, 0.46256837248802185, -0.43903353810310364, 0.35336315631866455, 0.19995056092739105, -0.06892284750938416, -0.40650954842567444, -0.6883353590965271, -0.09604763984680176, -0.09050224721431732, -0.6574831008911133, 0.4866507947444916, -0.22251830995082855, -0.3155845105648041, 0.11289160698652267, 0.05537363141775131, -0.08873164653778076, 0.06887384504079819, 0.11639318615198135, 0.4888007938861847, -0.1866016983985901, 0.1445581614971161, -0.09610306471586227, -0.17520387470722198, -0.05530708655714989, -0.23287305235862732, 0.6583784818649292, -0.25383028388023376, -0.053936854004859924, -0.794350266456604, 0.12795820832252502, 0.6143786907196045, 0.024302687495946884, 0.5674710273742676, 0.37302014231681824, -0.5115131139755249, 0.06821923702955246, -0.6119295358657837, -0.3245377540588379, -0.5133770704269409, 0.4143778383731842, -0.4658997654914856, -0.6604150533676147, 0.6665797233581543, 0.14230257272720337, -0.10987759381532669, 0.7774559855461121, 0.44083794951438904, -0.2951849102973938, 1.3508418798446655, 0.6649203896522522, -0.012258301489055157, 0.41626372933387756, -0.5460411310195923, 0.26765426993370056, -0.7627722024917603, -0.39788782596588135, -0.5057421326637268, -0.3325747847557068, -0.47295117378234863, 0.17836397886276245, 0.39933887124061584, 0.18872494995594025, -0.3279849886894226, 0.33938562870025635, -0.9601318836212158, 0.2830739915370941, 0.8408018946647644, 0.41437020897865295, 0.4452897906303406, 0.17706871032714844, -0.3207395374774933, -0.22928783297538757, -0.7360684275627136, -0.5407540798187256, 1.203924298286438, 0.2516201436519623, 0.5725603103637695, -0.001841454766690731, 0.6000956892967224, 0.3020365238189697, 0.10302837193012238, -0.6485961675643921, 0.4247667193412781, -0.17219458520412445, -0.8265517354011536, -0.17958535254001617, -0.23209978640079498, -0.9746579527854919, 0.4303872585296631, -0.2726847529411316, -0.7999588847160339, 0.2884068787097931, 0.16524064540863037, -0.7082417011260986, 0.6949024796485901, -0.6617858409881592, 0.7682270407676697, -0.24267707765102386, -0.5164098143577576, 0.04073133319616318, -0.5677087306976318, 0.39502230286598206, -0.06749672442674637, 0.1998433917760849, -0.09589186310768127, 0.20867422223091125, 0.8991596102714539, -0.5113814473152161, 0.5469180345535278, 0.0025591417215764523, 0.014444789849221706, 0.1873498260974884, 0.28431686758995056, 0.5750366449356079, -0.1192067414522171, -0.07658671587705612, 0.1336236298084259, 0.1595609188079834, -0.3278266191482544, -0.1950089931488037, 0.7217694520950317, -0.8208181858062744, -0.5955894589424133, -0.6288340091705322, -0.5819602012634277, 0.06000231206417084, 0.6220336556434631, 0.4669889211654663, 0.46680381894111633, -0.13782700896263123, 0.2595456540584564, 0.7046871781349182, -0.10786990821361542, 0.6445188522338867, 0.5059511661529541, -0.1303049772977829, -0.7605433464050293, 0.8771487474441528, 0.17383511364459991, 0.11392349004745483, 0.32937511801719666, 0.1878199577331543, -0.23361654579639435, -0.5789105296134949, -0.31980669498443604, 0.3826132118701935, -0.5493197441101074, -0.2773973047733307, -0.7596029043197632, -0.09904590249061584, -0.5537654161453247, -0.3005698621273041, -0.33468806743621826, -0.6609233617782593, -0.6295097470283508, -0.12732917070388794, 0.29293209314346313, 0.7229329347610474, -0.1650281846523285, 0.3833438754081726, -0.7457904815673828, 0.04892487823963165, 0.13528619706630707, 0.34564208984375, -0.07851199805736542, -0.6086158156394958, -0.21905259788036346, 0.07938572764396667, -0.6573306918144226, -0.7997120022773743, 0.7077528238296509, -0.03525351360440254, 0.3917824327945709, 0.40094318985939026, 0.07331617176532745, 0.7133557200431824, -0.3737652599811554, 0.9187559485435486, 0.42357420921325684, -0.9110682010650635, 0.49533551931381226, -0.3778529763221741, 0.3586167097091675, 0.5718876719474792, 0.46219921112060547, -0.3132750391960144, -0.41248035430908203, -0.9734122157096863, -0.9069869518280029, 0.902734100818634, 0.25577646493911743, -0.2736937701702118, 0.11619444936513901, 0.23800337314605713, 0.004884244874119759, 0.18648652732372284, -0.8102517127990723, -0.26655149459838867, -0.21195906400680542, -0.3833133280277252, -0.016052577644586563, -0.22604110836982727, -0.11314494907855988, -0.4238330125808716, 1.0507481098175049, 0.16132599115371704, 0.4435667395591736, 0.4447248578071594, -0.14329694211483002, -0.10401090234518051, 0.05267815291881561, 0.6659572124481201, 0.7952861189842224, -0.5724351406097412, 0.22010689973831177, 0.09076949954032898, -0.5438231825828552, -0.001202476560138166, 0.30736032128334045, -0.36331629753112793, 0.17030173540115356, 0.3088616132736206, 0.6898573040962219, 0.045293789356946945, -0.2953801453113556, 0.3979871869087219, 0.07650653272867203, -0.5451172590255737, -0.3745492994785309, -0.2146902084350586, -0.1149539053440094, 0.2479754239320755, 0.3603171110153198, 0.05596764013171196, 0.25603267550468445, -0.46868863701820374, 0.18646664917469025, 0.5289651155471802, -0.466802179813385, -0.4095253050327301, 0.884414553642273, 0.01766837015748024, -0.3028477430343628, 0.5989699959754944, 0.016264187172055244, -0.6935606002807617, 0.7711213231086731, 0.6297369599342346, 0.693400502204895, -0.193861186504364, 0.16943515837192535, 0.7698740363121033, 0.4226765036582947, -0.2726919949054718, 0.42247867584228516, 0.1613658368587494, -0.556274950504303, 0.09294269233942032, -0.5791001915931702, -0.2960183620452881, 0.27627769112586975, -0.6933982372283936, 0.19905175268650055, -0.5438315868377686, -0.5724680423736572, 0.30739903450012207, 0.3178426921367645, -0.4726821780204773, 0.3575120270252228, -0.01660318486392498, 1.050119400024414, -0.9377349615097046, 0.7940781712532043, 0.6435204744338989, -0.4608593285083771, -0.6124239563941956, -0.29956597089767456, -0.11518637835979462, -0.6346681714057922, 0.47859832644462585, 0.18829257786273956, 0.03556457534432411, 0.2779937982559204, -0.6827428936958313, -1.116543173789978, 1.2604970932006836, 0.1381087750196457, -0.7105101943016052, 0.038534797728061676, 0.022133350372314453, 0.6241897344589233, 0.09615804255008698, 0.4429206848144531, 0.45927414298057556, 0.48682695627212524, -0.2782433032989502, -0.9817689657211304, 0.29008036851882935, -0.45856839418411255, 0.04110950976610184, 0.29761242866516113, -0.9031125903129578, 1.112038493156433, 0.09451883286237717, -0.1186157763004303, 0.28779417276382446, 0.533816397190094, 0.3206096291542053, 0.3121679723262787, 0.451545774936676, 1.0972301959991455, 0.6935806274414062, -0.37034353613853455, 0.8483776450157166, -0.6194265484809875, 0.7257176041603088, 0.7323429584503174, -0.10239879786968231, 0.73995041847229, 0.47957149147987366, -0.3728599548339844, 0.5720406770706177, 0.6139784455299377, -0.3740636110305786, 0.5587455034255981, -0.0883500725030899, 0.05818371847271919, -0.4014875888824463, -0.02630995772778988, -0.467570424079895, 0.10108749568462372, 0.22930645942687988, -0.4676044285297394, -0.07100100070238113, 0.01893485151231289, 0.11497870832681656, 0.026254262775182724, -0.19687743484973907, 0.7019543051719666, 0.01167477760463953, -0.5720320343971252, 0.8108530044555664, 0.006528875324875116, 0.632908046245575, -0.4619408845901489, -0.0341905876994133, -0.18409405648708344, 0.5031790137290955, -0.1621638834476471, -0.8996414542198181, 0.03494177758693695, -0.31950122117996216, -0.2469223141670227, -0.1695462167263031, 0.6621303558349609, -0.23305119574069977, -0.7032864093780518, 0.2833596467971802, 0.15959115326404572, 0.09082456678152084, 0.10558714717626572, -0.6434093713760376, 0.01877284049987793, 0.03889460861682892, -0.59648197889328, -0.13358668982982635, 0.3783104717731476, 0.22373107075691223, 0.5129976272583008, 0.6652396321296692, 0.01512829028069973, 0.05583246797323227, -0.41644883155822754, 0.8688775300979614, -0.8298934102058411, -0.6547185778617859, -0.7742301821708679, 0.6727713346481323, -0.2183266431093216, -0.465526282787323, 0.8840091824531555, 1.046683669090271, 0.9959394335746765, -0.017216961830854416, 0.7410049438476562, 0.10759666562080383, 0.5903396010398865, -0.4953521192073822, 0.7345985174179077, -0.8532265424728394, -0.11582303792238235, -0.31607431173324585, -0.877938985824585, -0.6081988215446472, 0.6989246010780334, -0.1603538691997528, 0.035785384476184845, 0.7871066927909851, 0.8074792623519897, -0.16592755913734436, 0.02856811136007309, 0.3787356913089752, 0.5344551205635071, 0.23290303349494934, 0.6819125413894653, 0.6122274398803711, -0.6766252517700195, 0.7358179092407227, -0.8198440670967102, -0.30322161316871643, -0.40247344970703125, -0.5501736998558044, -0.9452474117279053, -0.5404987931251526, -0.35256826877593994, -0.527894914150238, 0.09388553351163864, 0.6505039930343628, 0.6193534731864929, -0.9013380408287048, -0.17424128949642181, -0.17047972977161407, -0.15951167047023773, -0.39190202951431274, -0.261655330657959, 0.7625672221183777, 0.06865960359573364, -0.8662014007568359, 0.1048990860581398, 0.1665450781583786, 0.38440775871276855, -0.047718148678541183, -0.008509963750839233, -0.4148927927017212, 0.04665641486644745, 0.48987942934036255, 0.1808321475982666, -0.6755790114402771, -0.17121416330337524, 0.1854611337184906, -0.27303630113601685, 0.2868255376815796, 0.2786751091480255, -0.5867661833763123, 0.46074971556663513, 0.6769964098930359, 0.14197362959384918, 0.7689061164855957, -0.00785981584340334, 0.14536914229393005, -0.34424710273742676, 0.05350097641348839, 0.24843169748783112, 0.4694443941116333, 0.1924785077571869, -0.3373715579509735, 0.531705915927887, 0.4802750051021576, -0.6381065845489502, -1.0563149452209473, -0.10391771793365479, -1.203392744064331, -0.5645554065704346, 0.9390040636062622, -0.01452119555324316, -0.4596099555492401, 0.05273039638996124, -0.19371002912521362, 0.3840806782245636, -0.5114441514015198, 1.0293829441070557, 0.9680202603340149, -0.14112305641174316, -0.1223803386092186, -0.41684818267822266, 0.27372923493385315, 0.670731782913208, -0.6065043210983276, -0.21704824268817902, 0.5458939075469971, 0.40019479393959045, 0.4210813045501709, 0.541842520236969, -0.10924515128135681, 0.2761547863483429, 0.004132087342441082, 0.2565547227859497, -0.2780415415763855, -0.4116237163543701, -0.34636449813842773, 0.2749747633934021, -0.19052889943122864, -0.2646070420742035 ]
facebook/mbart-large-cc25
facebook
"2023-03-28T09:36:03Z"
54,458
54
transformers
[ "transformers", "pytorch", "tf", "mbart", "text2text-generation", "translation", "en", "ar", "cs", "de", "et", "fi", "fr", "gu", "hi", "it", "ja", "kk", "ko", "lt", "lv", "my", "ne", "nl", "ro", "ru", "si", "tr", "vi", "zh", "multilingual", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
translation
"2022-03-02T23:29:05Z"
--- tags: - translation language: - en - ar - cs - de - et - fi - fr - gu - hi - it - ja - kk - ko - lt - lv - my - ne - nl - ro - ru - si - tr - vi - zh - multilingual --- #### mbart-large-cc25 Pretrained (not finetuned) multilingual mbart model. Original Languages ``` export langs=ar_AR,cs_CZ,de_DE,en_XX,es_XX,et_EE,fi_FI,fr_XX,gu_IN,hi_IN,it_IT,ja_XX,kk_KZ,ko_KR,lt_LT,lv_LV,my_MM,ne_NP,nl_XX,ro_RO,ru_RU,si_LK,tr_TR,vi_VN,zh_CN ``` Original Code: https://github.com/pytorch/fairseq/tree/master/examples/mbart Docs: https://huggingface.co/transformers/master/model_doc/mbart.html Finetuning Code: examples/seq2seq/finetune.py (as of Aug 20, 2020) Can also be finetuned for summarization.
[ -0.6211232542991638, -0.5345728993415833, 0.021261172369122505, 0.4309653043746948, -0.3228662312030792, -0.037689365446567535, -0.6585581302642822, 0.054405517876148224, 0.12663795053958893, 0.6716820001602173, -0.7549129128456116, -0.5400489568710327, -0.36510583758354187, 0.04392652213573456, -0.2733605206012726, 1.3498897552490234, 0.03618405759334564, 0.26553985476493835, 0.1335645169019699, -0.1079622134566307, -0.22237683832645416, -0.5751628875732422, -0.750401496887207, -0.13708902895450592, 0.30345699191093445, 0.8236308097839355, 0.5127214193344116, -0.03796110674738884, 0.5821383595466614, 0.41224151849746704, -0.2047424465417862, -0.08137273043394089, -0.35260871052742004, -0.23472142219543457, -0.08599063754081726, -0.1259743571281433, -0.8279564380645752, -0.070016048848629, 0.8102896809577942, 0.6113443374633789, -0.22832345962524414, 0.46165865659713745, 0.11510975658893585, 0.6631578803062439, -0.29435381293296814, 0.31815284490585327, -0.4658573567867279, 0.09339066594839096, -0.17778338491916656, 0.12005366384983063, -0.5488136410713196, -0.010366726666688919, -0.17354455590248108, -0.337751567363739, 0.10201820731163025, -0.37275946140289307, 1.1150323152542114, -0.029399584978818893, -0.8253800272941589, 0.1687384992837906, -0.6961557269096375, 0.8715841770172119, -0.7136312127113342, 0.5822259187698364, 0.40900465846061707, 0.8528321385383606, 0.128016859292984, -1.0618449449539185, -0.5724912881851196, -0.405815988779068, -0.015437323600053787, 0.4458729028701782, -0.005530149210244417, 0.009781301021575928, 0.4291236698627472, 0.5591627955436707, -0.41160860657691956, -0.06850403547286987, -0.9581866264343262, -0.279479056596756, 0.8014713525772095, 0.09261448681354523, 0.054240912199020386, -0.06708677858114243, -0.24076853692531586, -0.2618837058544159, -0.5293610692024231, 0.1667957752943039, 0.3067457973957062, 0.2975632846355438, -0.6118036508560181, 0.8050634860992432, -0.3087601363658905, 0.6488068103790283, 0.06587624549865723, -0.04051752761006355, 0.6076062321662903, -0.5147299766540527, -0.2562929391860962, -0.26345521211624146, 1.0897239446640015, 0.2036692053079605, 0.6989518404006958, 0.2348347157239914, -0.09297647327184677, -0.34372660517692566, 0.1128341555595398, -1.064469575881958, -0.5376850366592407, 0.058139998465776443, -0.3746521770954132, 0.08770571649074554, 0.21170784533023834, -0.49199533462524414, 0.25197726488113403, -0.42629677057266235, 0.3537476360797882, -0.6032134890556335, -0.4584740698337555, -0.03952717408537865, 0.15872056782245636, 0.40982723236083984, 0.13483279943466187, -0.9790103435516357, 0.29544058442115784, 0.5494138598442078, 0.5732921957969666, 0.1721951812505722, -0.6055611371994019, -0.3608611524105072, -0.04296710342168808, -0.07574081420898438, 0.47242972254753113, -0.22266480326652527, -0.1788879632949829, -0.1531440168619156, 0.56577068567276, -0.04324207082390785, -0.3673033118247986, 0.8066526651382446, -0.24306833744049072, 0.19531579315662384, -0.08339410275220871, -0.10932907462120056, -0.28116747736930847, 0.33194124698638916, -0.6761792302131653, 0.9673279523849487, 0.3435162603855133, -0.6548047661781311, 0.005208782851696014, -0.7013024091720581, -0.7155373096466064, -0.17267349362373352, -0.14625073969364166, -0.45203959941864014, -0.062357693910598755, 0.32700610160827637, 0.6104085445404053, -0.1154313012957573, 0.5598043203353882, 0.03116939589381218, -0.26555076241493225, 0.2255648672580719, -0.45439013838768005, 1.294277548789978, 0.5678601861000061, -0.11224078387022018, 0.2533155083656311, -1.051687479019165, -0.004894739482551813, 0.05932341516017914, -0.4386983811855316, 0.23712807893753052, -0.3452044427394867, 0.3945232629776001, 0.37151315808296204, 0.37240323424339294, -0.5342365503311157, 0.22411447763442993, -0.32989436388015747, 0.5609570741653442, 0.3805637061595917, -0.15473943948745728, 0.2953345477581024, -0.019456764683127403, 0.7637492418289185, 0.29773470759391785, 0.3072977662086487, -0.3383484184741974, -0.5195387005805969, -1.0241338014602661, -0.5184149146080017, 0.31534844636917114, 0.7969284653663635, -0.5851178169250488, 0.5735691785812378, -0.3445442020893097, -0.8170946836471558, -0.3405751883983612, -0.010528801940381527, 0.222958043217659, 0.17966517806053162, 0.31776028871536255, -0.2319408804178238, -0.7367212176322937, -1.1539403200149536, 0.08559320867061615, 0.15476356446743011, -0.028369931504130363, -0.00551421707496047, 0.506409764289856, -0.5210824608802795, 0.7083635330200195, -0.4085710346698761, -0.15049318969249725, -0.4209707975387573, -0.11932843923568726, 0.530978262424469, 0.6664881706237793, 0.7207795977592468, -0.601330578327179, -0.6347035765647888, 0.1638765186071396, -0.25503969192504883, 0.12388263642787933, 0.07719918340444565, -0.2932610809803009, 0.2524213492870331, 0.8126330971717834, -0.6612691879272461, 0.18819956481456757, 0.8163530230522156, -0.16797344386577606, 0.7088332176208496, -0.2185191810131073, 0.05617300793528557, -1.469612717628479, 0.23284073173999786, -0.40153491497039795, -0.3340904414653778, -0.2344805747270584, 0.1873973309993744, 0.36199748516082764, -0.357342004776001, -0.7453330755233765, 0.5631909966468811, -0.4924563467502594, 0.12911278009414673, 0.015088238753378391, 0.07209496945142746, -0.04460584372282028, 0.5866453647613525, -0.057907555252313614, 0.6177630424499512, 0.6112024188041687, -0.713360607624054, 0.7896566987037659, 0.4087428152561188, -0.27462446689605713, 0.4327642619609833, -0.5770750641822815, -0.27872514724731445, -0.017654303461313248, 0.32605838775634766, -0.8698422312736511, -0.037701625376939774, 0.18276247382164001, -0.5474292039871216, 0.4454759657382965, -0.3913007974624634, -0.3394997715950012, -0.5300350785255432, -0.14813823997974396, 0.5865206718444824, 0.5618236660957336, -0.39217692613601685, 0.3058722913265228, 0.20582449436187744, -0.26208555698394775, -0.75240159034729, -1.0049479007720947, 0.053741455078125, -0.12586969137191772, -0.6175545454025269, 0.014844853430986404, -0.35932064056396484, 0.054644256830215454, -0.3368365168571472, 0.19215956330299377, -0.2740927040576935, 0.05550104379653931, 0.03985371068120003, 0.13597111403942108, -0.5447754263877869, 0.034379635006189346, 0.05606018379330635, -0.29894018173217773, -0.15988722443580627, 0.07207135856151581, 0.7655549049377441, -0.4548397362232208, -0.24470902979373932, -0.41997429728507996, 0.16001920402050018, 0.470874160528183, -0.8260205984115601, 0.8386954665184021, 1.392667531967163, -0.47567376494407654, 0.14223361015319824, -0.3561975061893463, -0.1991901993751526, -0.556039035320282, 0.715487003326416, -0.5147491097450256, -1.0456446409225464, 0.6717259287834167, 0.03743615746498108, -0.034370698034763336, 1.046081781387329, 0.793341338634491, 0.2048787921667099, 0.7709581255912781, 0.604809582233429, -0.059698861092329025, 0.6260538697242737, -0.5812104344367981, 0.26350465416908264, -0.8645966649055481, -0.11336718499660492, -0.6468019485473633, -0.01572340354323387, -0.9503147006034851, -0.17413578927516937, -0.10924942791461945, 0.2666779160499573, -0.7357446551322937, 0.5873677730560303, -0.12930718064308167, 0.5632871985435486, 0.6622388958930969, -0.18944436311721802, 0.20588982105255127, 0.07449570298194885, -0.4077128469944, -0.12409447878599167, -0.6848304271697998, -0.5388121604919434, 1.1466487646102905, 0.27376946806907654, 0.579170823097229, 0.36176303029060364, 0.6354067921638489, -0.43775856494903564, 0.28409522771835327, -0.811867892742157, 0.4988225996494293, -0.3747624158859253, -1.048532485961914, -0.25849300622940063, -0.4868236184120178, -1.0225275754928589, 0.11819756031036377, -0.26021647453308105, -0.8036094307899475, 0.010392374359071255, 0.12223285436630249, -0.1843286007642746, 0.16646870970726013, -0.7672656774520874, 1.3243958950042725, -0.2533344030380249, -0.07477713376283646, -0.20185421407222748, -0.6600643396377563, 0.6430133581161499, -0.23755551874637604, 0.2654893398284912, -0.09367064386606216, 0.42288485169410706, 0.5858088731765747, -0.3793502151966095, 0.6609799861907959, 0.004986749030649662, -0.029774559661746025, 0.35966750979423523, 0.01341378502547741, 0.25484928488731384, 0.19566240906715393, -0.05975017324090004, 0.10570403188467026, 0.24562391638755798, -0.42651045322418213, 0.029470017179846764, 0.7490333914756775, -0.7937520742416382, -0.19798938930034637, -0.4422873854637146, -0.5106903910636902, -0.05963006988167763, 0.4722876250743866, 0.4796927571296692, 0.5709203481674194, -0.5752873420715332, 0.4612075090408325, 0.27596426010131836, -0.6781195998191833, 0.5888286232948303, 0.5714136362075806, -0.4170801639556885, -0.6112642884254456, 0.8774415254592896, 0.03974071145057678, 0.3092591166496277, 0.39718785881996155, 0.2299635261297226, -0.08811783790588379, -0.3602340519428253, -0.35077619552612305, 0.37231531739234924, -0.6629534959793091, -0.28632259368896484, -0.6994646191596985, -0.5342453718185425, -0.7254656553268433, 0.14623691141605377, -0.740504801273346, -0.7631013989448547, -0.11274873465299606, -0.15606096386909485, 0.33793482184410095, 0.5559854507446289, -0.2995187044143677, 0.7039454579353333, -1.1318658590316772, 0.443532794713974, 0.23695388436317444, 0.5088120698928833, -0.03736292943358421, -0.6980293393135071, -0.7970477938652039, 0.390361487865448, -0.69822096824646, -0.5831972360610962, 0.44396835565567017, 0.39352163672447205, 0.7483652830123901, 0.7564213275909424, 0.17853116989135742, 0.6306626200675964, -0.6803630590438843, 0.8000860214233398, 0.1768060177564621, -1.038015365600586, 0.30485695600509644, -0.4267273545265198, 0.4941253066062927, 0.6516978144645691, 0.45476582646369934, -0.7869614958763123, -0.342029869556427, -0.7336915731430054, -1.1762789487838745, 0.8991837501525879, 0.13811510801315308, 0.3852130174636841, -0.03295036777853966, -0.19055384397506714, 0.052590932697057724, 0.3226758539676666, -1.1957437992095947, -0.3674023747444153, -0.3046780526638031, -0.47120726108551025, -0.6462873220443726, -0.36374402046203613, -0.0650511085987091, -0.7848016619682312, 0.9372792840003967, 0.1179434135556221, 0.3734417259693146, -0.06192835047841072, -0.35607296228408813, 0.08180960267782211, 0.23335719108581543, 0.9571706056594849, 0.7542023658752441, -0.41708630323410034, 0.1351432204246521, 0.1801057904958725, -0.7540491223335266, -0.04300951585173607, 0.21570180356502533, 0.3372519314289093, -0.15232308208942413, 0.3243515193462372, 0.8361441493034363, -0.08886123448610306, -0.7101930379867554, 0.6562348008155823, -0.03893860802054405, -0.07026385515928268, -0.8808634281158447, -0.11934182047843933, 0.4068952202796936, 0.35795098543167114, 0.10552256554365158, -0.08961835503578186, 0.0196039117872715, -0.5540808439254761, 0.24821294844150543, 0.39366453886032104, -0.4122536778450012, -0.34375470876693726, 0.5397036075592041, 0.1332901418209076, -0.18496166169643402, 0.9145532250404358, -0.3791143000125885, -0.6573867201805115, 0.7237008213996887, 0.5775601267814636, 0.7483235597610474, -0.5426700711250305, -0.0393923856317997, 0.8376117944717407, 0.8252591490745544, 0.052154991775751114, 0.3597654700279236, 0.024314168840646744, -0.7070249915122986, -0.44720837473869324, -0.6148355007171631, -0.17755433917045593, 0.08541662245988846, -0.6699957251548767, 0.6141715049743652, -0.4119739532470703, -0.047677282243967056, -0.11107059568166733, -0.0065260156989097595, -0.845730721950531, 0.2613164484500885, 0.10990171879529953, 1.0134550333023071, -0.9161356091499329, 1.1854599714279175, 0.8332048654556274, -0.5640380382537842, -0.9114553332328796, -0.284566193819046, -0.41065600514411926, -0.5503204464912415, 0.49657753109931946, 0.25471678376197815, 0.25264987349510193, 0.14848282933235168, -0.5984265208244324, -0.8564782738685608, 1.0820590257644653, 0.5398945808410645, -0.5969048738479614, 0.5539581179618835, 0.15893228352069855, 0.4654388725757599, -0.23406197130680084, 0.434090793132782, 0.48877134919166565, 0.6383852958679199, 0.06173165515065193, -1.133241891860962, -0.3065136671066284, -0.5290606021881104, -0.4774516224861145, 0.19299881160259247, -0.8387290239334106, 1.2344121932983398, -0.2289724349975586, 0.06949197500944138, 0.09813577681779861, 0.6375734806060791, 0.10674165934324265, 0.18833349645137787, 0.11866172403097153, 0.5769993662834167, 0.43871769309043884, -0.1613355129957199, 0.9365090131759644, -0.302560955286026, 0.6295016407966614, 1.2358126640319824, 0.17682424187660217, 0.9448514580726624, 0.23089554905891418, -0.4508344531059265, 0.2535213232040405, 0.7578188180923462, -0.1893949657678604, 0.24379201233386993, 0.23309899866580963, 0.13288092613220215, -0.28305643796920776, 0.35159847140312195, -0.7240382432937622, 0.5502305030822754, 0.33320993185043335, -0.2851797342300415, 0.018282834440469742, 0.07589995861053467, 0.5033628940582275, -0.4601415991783142, -0.3434826731681824, 0.3572564721107483, 0.3544158935546875, -0.5452932715415955, 0.8307497501373291, 0.3683299124240875, 0.7221605777740479, -0.6837626099586487, 0.23891319334506989, -0.40690410137176514, 0.3900437653064728, -0.17613598704338074, -0.5275444984436035, 0.3817918002605438, -0.25354069471359253, 0.06351792067289352, -0.06224329397082329, 0.4276999831199646, -0.7293682098388672, -1.108476996421814, 0.16339947283267975, 0.5216214656829834, 0.27491602301597595, -0.21768724918365479, -0.6123985052108765, -0.3533670902252197, 0.10814563184976578, -0.46243536472320557, -0.010084982961416245, 0.6838417649269104, -0.1440339833498001, 0.6156144142150879, 0.3434672951698303, -0.265308678150177, 0.22228063642978668, 0.14160218834877014, 0.6456742286682129, -0.9472706913948059, -0.5777406692504883, -0.7401415705680847, 0.6978156566619873, 0.22212070226669312, -0.3812920153141022, 0.8180024027824402, 0.8048521876335144, 1.043510913848877, -0.4892473518848419, 0.4594484269618988, 0.166230708360672, 0.19827178120613098, -0.4531465470790863, 1.0814441442489624, -0.5733888149261475, -0.22167691588401794, -0.622575581073761, -1.3127272129058838, -0.3238132894039154, 0.8414899110794067, 0.03668442741036415, 0.41944581270217896, 1.0249689817428589, 0.575937807559967, -0.5447959899902344, -0.21369440853595734, 0.31513431668281555, 0.6235289573669434, 0.12141644209623337, 0.48445242643356323, 0.685683012008667, -0.478716105222702, 0.7125416994094849, -0.4095676839351654, -0.09927048534154892, -0.28355154395103455, -0.8999622464179993, -0.934888482093811, -0.8196793794631958, -0.3899528682231903, -0.15937523543834686, -0.4711446762084961, 0.9753905534744263, 0.7551448345184326, -0.9587886333465576, -0.5819883346557617, 0.26954251527786255, -0.18030716478824615, -0.05104387179017067, -0.16443473100662231, 0.5087361335754395, -0.006813642103224993, -0.6399648785591125, 0.10837404429912567, -0.2505503296852112, 0.2992277145385742, -0.09056419134140015, -0.2970738708972931, -0.3654109537601471, -0.09000886976718903, 0.7601696252822876, 0.1272318959236145, -0.3891795575618744, 0.014618690125644207, -0.2710963785648346, -0.0776979848742485, 0.10912111401557922, 0.5470938086509705, -0.40701836347579956, 0.12062519043684006, 0.393439382314682, 0.23098169267177582, 0.7276913523674011, -0.37269359827041626, 0.5039613842964172, -0.8770508766174316, 0.7798963189125061, -0.11539335548877716, 0.5903055667877197, 0.4068901240825653, 0.1047993153333664, 0.43814560770988464, -0.005010201130062342, -0.5298698544502258, -0.5339688658714294, 0.3528066873550415, -1.4284878969192505, -0.08112246543169022, 1.142008900642395, -0.11099200695753098, -0.14118441939353943, 0.2160012423992157, -0.6266700029373169, 0.6770747900009155, -0.14954063296318054, 0.12285173684358597, 0.7456483244895935, 0.4577406644821167, -0.30988365411758423, -0.8236863017082214, 0.2774914503097534, 0.24409931898117065, -0.7859693169593811, -0.1124727874994278, 0.4337690472602844, 0.31147298216819763, -0.011857908219099045, 0.6316704154014587, -0.2955549657344818, 0.103973388671875, -0.10280199348926544, 0.6355807185173035, -0.1518278568983078, -0.3336610794067383, -0.32356470823287964, -0.44217216968536377, 0.3442317545413971, -0.2831585109233856 ]
EleutherAI/pythia-160m-deduped
EleutherAI
"2023-07-09T16:04:57Z"
54,447
1
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "causal-lm", "pythia", "en", "dataset:EleutherAI/the_pile_deduplicated", "arxiv:2304.01373", "arxiv:2101.00027", "arxiv:2201.07311", "license:apache-2.0", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
text-generation
"2023-02-08T21:50:19Z"
--- language: - en tags: - pytorch - causal-lm - pythia license: apache-2.0 datasets: - EleutherAI/the_pile_deduplicated --- The *Pythia Scaling Suite* is a collection of models developed to facilitate interpretability research [(see paper)](https://arxiv.org/pdf/2304.01373.pdf). It contains two sets of eight models of sizes 70M, 160M, 410M, 1B, 1.4B, 2.8B, 6.9B, and 12B. For each size, there are two models: one trained on the Pile, and one trained on the Pile after the dataset has been globally deduplicated. All 8 model sizes are trained on the exact same data, in the exact same order. We also provide 154 intermediate checkpoints per model, hosted on Hugging Face as branches. The Pythia model suite was designed to promote scientific research on large language models, especially interpretability research. Despite not centering downstream performance as a design goal, we find the models <a href="#evaluations">match or exceed</a> the performance of similar and same-sized models, such as those in the OPT and GPT-Neo suites. <details> <summary style="font-weight:600">Details on previous early release and naming convention.</summary> Previously, we released an early version of the Pythia suite to the public. However, we decided to retrain the model suite to address a few hyperparameter discrepancies. This model card <a href="#changelog">lists the changes</a>; see appendix B in the Pythia paper for further discussion. We found no difference in benchmark performance between the two Pythia versions. The old models are [still available](https://huggingface.co/models?other=pythia_v0), but we suggest the retrained suite if you are just starting to use Pythia.<br> **This is the current release.** Please note that all models in the *Pythia* suite were renamed in January 2023. For clarity, a <a href="#naming-convention-and-parameter-count">table comparing the old and new names</a> is provided in this model card, together with exact parameter counts. </details> <br> # Pythia-160M-deduped ## Model Details - Developed by: [EleutherAI](http://eleuther.ai) - Model type: Transformer-based Language Model - Language: English - Learn more: [Pythia's GitHub repository](https://github.com/EleutherAI/pythia) for training procedure, config files, and details on how to use. [See paper](https://arxiv.org/pdf/2304.01373.pdf) for more evals and implementation details. - Library: [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) - License: Apache 2.0 - Contact: to ask questions about this model, join the [EleutherAI Discord](https://discord.gg/zBGx3azzUn), and post them in `#release-discussion`. Please read the existing *Pythia* documentation before asking about it in the EleutherAI Discord. For general correspondence: [contact@eleuther. ai](mailto:contact@eleuther.ai). <figure> | Pythia model | Non-Embedding Params | Layers | Model Dim | Heads | Batch Size | Learning Rate | Equivalent Models | | -----------: | -------------------: | :----: | :-------: | :---: | :--------: | :-------------------: | :--------------------: | | 70M | 18,915,328 | 6 | 512 | 8 | 2M | 1.0 x 10<sup>-3</sup> | — | | 160M | 85,056,000 | 12 | 768 | 12 | 2M | 6.0 x 10<sup>-4</sup> | GPT-Neo 125M, OPT-125M | | 410M | 302,311,424 | 24 | 1024 | 16 | 2M | 3.0 x 10<sup>-4</sup> | OPT-350M | | 1.0B | 805,736,448 | 16 | 2048 | 8 | 2M | 3.0 x 10<sup>-4</sup> | — | | 1.4B | 1,208,602,624 | 24 | 2048 | 16 | 2M | 2.0 x 10<sup>-4</sup> | GPT-Neo 1.3B, OPT-1.3B | | 2.8B | 2,517,652,480 | 32 | 2560 | 32 | 2M | 1.6 x 10<sup>-4</sup> | GPT-Neo 2.7B, OPT-2.7B | | 6.9B | 6,444,163,072 | 32 | 4096 | 32 | 2M | 1.2 x 10<sup>-4</sup> | OPT-6.7B | | 12B | 11,327,027,200 | 36 | 5120 | 40 | 2M | 1.2 x 10<sup>-4</sup> | — | <figcaption>Engineering details for the <i>Pythia Suite</i>. Deduped and non-deduped models of a given size have the same hyperparameters. “Equivalent” models have <b>exactly</b> the same architecture, and the same number of non-embedding parameters.</figcaption> </figure> ## Uses and Limitations ### Intended Use The primary intended use of Pythia is research on the behavior, functionality, and limitations of large language models. This suite is intended to provide a controlled setting for performing scientific experiments. We also provide 154 checkpoints per model: initial `step0`, 10 log-spaced checkpoints `step{1,2,4...512}`, and 143 evenly-spaced checkpoints from `step1000` to `step143000`. These checkpoints are hosted on Hugging Face as branches. Note that branch `143000` corresponds exactly to the model checkpoint on the `main` branch of each model. You may also further fine-tune and adapt Pythia-160M-deduped for deployment, as long as your use is in accordance with the Apache 2.0 license. Pythia models work with the Hugging Face [Transformers Library](https://huggingface.co/docs/transformers/index). If you decide to use pre-trained Pythia-160M-deduped as a basis for your fine-tuned model, please conduct your own risk and bias assessment. ### Out-of-scope use The Pythia Suite is **not** intended for deployment. It is not a in itself a product and cannot be used for human-facing interactions. For example, the model may generate harmful or offensive text. Please evaluate the risks associated with your particular use case. Pythia models are English-language only, and are not suitable for translation or generating text in other languages. Pythia-160M-deduped has not been fine-tuned for downstream contexts in which language models are commonly deployed, such as writing genre prose, or commercial chatbots. This means Pythia-160M-deduped will **not** respond to a given prompt the way a product like ChatGPT does. This is because, unlike this model, ChatGPT was fine-tuned using methods such as Reinforcement Learning from Human Feedback (RLHF) to better “follow” human instructions. ### Limitations and biases The core functionality of a large language model is to take a string of text and predict the next token. The token used by the model need not produce the most “accurate” text. Never rely on Pythia-160M-deduped to produce factually accurate output. This model was trained on [the Pile](https://pile.eleuther.ai/), a dataset known to contain profanity and texts that are lewd or otherwise offensive. See [Section 6 of the Pile paper](https://arxiv.org/abs/2101.00027) for a discussion of documented biases with regards to gender, religion, and race. Pythia-160M-deduped may produce socially unacceptable or undesirable text, *even if* the prompt itself does not include anything explicitly offensive. If you plan on using text generated through, for example, the Hosted Inference API, we recommend having a human curate the outputs of this language model before presenting it to other people. Please inform your audience that the text was generated by Pythia-160M-deduped. ### Quickstart Pythia models can be loaded and used via the following code, demonstrated here for the third `pythia-70m-deduped` checkpoint: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model = GPTNeoXForCausalLM.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) tokenizer = AutoTokenizer.from_pretrained( "EleutherAI/pythia-70m-deduped", revision="step3000", cache_dir="./pythia-70m-deduped/step3000", ) inputs = tokenizer("Hello, I am", return_tensors="pt") tokens = model.generate(**inputs) tokenizer.decode(tokens[0]) ``` Revision/branch `step143000` corresponds exactly to the model checkpoint on the `main` branch of each model.<br> For more information on how to use all Pythia models, see [documentation on GitHub](https://github.com/EleutherAI/pythia). ## Training ### Training data Pythia-160M-deduped was trained on the Pile **after the dataset has been globally deduplicated**.<br> [The Pile](https://pile.eleuther.ai/) is a 825GiB general-purpose dataset in English. It was created by EleutherAI specifically for training large language models. It contains texts from 22 diverse sources, roughly broken down into five categories: academic writing (e.g. arXiv), internet (e.g. CommonCrawl), prose (e.g. Project Gutenberg), dialogue (e.g. YouTube subtitles), and miscellaneous (e.g. GitHub, Enron Emails). See [the Pile paper](https://arxiv.org/abs/2101.00027) for a breakdown of all data sources, methodology, and a discussion of ethical implications. Consult [the datasheet](https://arxiv.org/abs/2201.07311) for more detailed documentation about the Pile and its component datasets. The Pile can be downloaded from the [official website](https://pile.eleuther.ai/), or from a [community mirror](https://the-eye.eu/public/AI/pile/). ### Training procedure All models were trained on the exact same data, in the exact same order. Each model saw 299,892,736,000 tokens during training, and 143 checkpoints for each model are saved every 2,097,152,000 tokens, spaced evenly throughout training, from `step1000` to `step143000` (which is the same as `main`). In addition, we also provide frequent early checkpoints: `step0` and `step{1,2,4...512}`. This corresponds to training for just under 1 epoch on the Pile for non-deduplicated models, and about 1.5 epochs on the deduplicated Pile. All *Pythia* models trained for 143000 steps at a batch size of 2M (2,097,152 tokens).<br> See [GitHub](https://github.com/EleutherAI/pythia) for more details on training procedure, including [how to reproduce it](https://github.com/EleutherAI/pythia/blob/main/README.md#reproducing-training).<br> Pythia uses the same tokenizer as [GPT-NeoX- 20B](https://huggingface.co/EleutherAI/gpt-neox-20b). ## Evaluations All 16 *Pythia* models were evaluated using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness). You can access the results by model and step at `results/json/*` in the [GitHub repository](https://github.com/EleutherAI/pythia/tree/main/results/json/).<br> Expand the sections below to see plots of evaluation results for all Pythia and Pythia-deduped models compared with OPT and BLOOM. <details> <summary>LAMBADA – OpenAI</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/lambada_openai_v1.png" style="width:auto"/> </details> <details> <summary>Physical Interaction: Question Answering (PIQA)</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/piqa_v1.png" style="width:auto"/> </details> <details> <summary>WinoGrande</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/winogrande_v1.png" style="width:auto"/> </details> <details> <summary>AI2 Reasoning Challenge—Easy Set</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/arc_easy_v1.png" style="width:auto"/> </details> <details> <summary>SciQ</summary> <img src="/EleutherAI/pythia-12b/resolve/main/eval_plots/sciq_v1.png" style="width:auto"/> </details> ## Changelog This section compares differences between previously released [Pythia v0](https://huggingface.co/models?other=pythia_v0) and the current models. See Appendix B of the Pythia paper for further discussion of these changes and the motivation behind them. We found that retraining Pythia had no impact on benchmark performance. - All model sizes are now trained with uniform batch size of 2M tokens. Previously, the models of size 160M, 410M, and 1.4B parameters were trained with batch sizes of 4M tokens. - We added checkpoints at initialization (step 0) and steps {1,2,4,8,16,32,64, 128,256,512} in addition to every 1000 training steps. - Flash Attention was used in the new retrained suite. - We remedied a minor inconsistency that existed in the original suite: all models of size 2.8B parameters or smaller had a learning rate (LR) schedule which decayed to a minimum LR of 10% the starting LR rate, but the 6.9B and 12B models all used an LR schedule which decayed to a minimum LR of 0. In the redone training runs, we rectified this inconsistency: all models now were trained with LR decaying to a minimum of 0.1× their maximum LR. ### Naming convention and parameter count *Pythia* models were renamed in January 2023. It is possible that the old naming convention still persists in some documentation by accident. The current naming convention (70M, 160M, etc.) is based on total parameter count. <figure style="width:32em"> | current Pythia suffix | old suffix | total params | non-embedding params | | --------------------: | ---------: | -------------: | -------------------: | | 70M | 19M | 70,426,624 | 18,915,328 | | 160M | 125M | 162,322,944 | 85,056,000 | | 410M | 350M | 405,334,016 | 302,311,424 | | 1B | 800M | 1,011,781,632 | 805,736,448 | | 1.4B | 1.3B | 1,414,647,808 | 1,208,602,624 | | 2.8B | 2.7B | 2,775,208,960 | 2,517,652,480 | | 6.9B | 6.7B | 6,857,302,016 | 6,444,163,072 | | 12B | 13B | 11,846,072,320 | 11,327,027,200 | </figure>
[ -0.3368757963180542, -0.7978057861328125, 0.3380493223667145, 0.05044787749648094, -0.22997677326202393, -0.1962861716747284, -0.23590748012065887, -0.4294704496860504, 0.19375182688236237, 0.17723457515239716, -0.35060229897499084, -0.2869667112827301, -0.4415156841278076, -0.042889948934316635, -0.4733292758464813, 1.108015775680542, -0.1303052455186844, -0.1409044861793518, 0.13164301216602325, -0.04835781827569008, -0.06921374797821045, -0.5486204624176025, -0.4553932547569275, -0.3813575804233551, 0.6259118318557739, 0.19529317319393158, 0.8667444586753845, 0.5746122002601624, 0.16047891974449158, 0.29673272371292114, -0.37514784932136536, -0.07576523721218109, -0.17117604613304138, -0.0981949046254158, -0.021240346133708954, -0.23206663131713867, -0.7353553771972656, 0.032392196357250214, 0.7152612805366516, 0.6934493184089661, -0.17905347049236298, 0.252546489238739, 0.010714294388890266, 0.34907546639442444, -0.5179830193519592, 0.023192420601844788, -0.35797709226608276, -0.211355060338974, -0.05269588530063629, 0.15913361310958862, -0.387206107378006, -0.31610968708992004, 0.42349860072135925, -0.6264471411705017, 0.2571752667427063, 0.05398222804069519, 1.211653232574463, -0.11521176993846893, -0.4366357922554016, -0.05878778174519539, -0.7483134269714355, 0.7004802823066711, -0.7206222414970398, 0.3440370559692383, 0.29218554496765137, 0.15129852294921875, -0.02181260846555233, -0.9085814356803894, -0.5554773807525635, -0.21408602595329285, -0.12578579783439636, -0.0488903634250164, -0.6424852013587952, 0.024067765101790428, 0.5239273905754089, 0.6369947195053101, -0.8241795897483826, -0.034900132566690445, -0.37038302421569824, -0.3438827097415924, 0.35841456055641174, 0.09240257740020752, 0.4407607614994049, -0.318148672580719, -0.016389306634664536, -0.37586286664009094, -0.6826624274253845, -0.24340079724788666, 0.5434548258781433, 0.07034949958324432, -0.3485238254070282, 0.5048115253448486, -0.3920503556728363, 0.5895385146141052, -0.08297500014305115, 0.2563244700431824, 0.4229404926300049, -0.19923049211502075, -0.5307720303535461, -0.08895080536603928, 0.946677029132843, 0.10593084990978241, 0.21192874014377594, -0.01885100267827511, -0.05848698318004608, 0.04320501908659935, 0.04901144653558731, -1.1548949480056763, -0.7861067056655884, 0.22320304811000824, -0.40793538093566895, -0.4098796844482422, -0.16963616013526917, -0.9300516843795776, -0.1789504587650299, -0.2249782830476761, 0.5860744714736938, -0.5060269832611084, -0.7208871841430664, -0.09884022176265717, 0.016803190112113953, 0.20674829185009003, 0.3684113323688507, -0.9450385570526123, 0.4117777347564697, 0.4460549056529999, 1.0117805004119873, 0.22582466900348663, -0.5554648041725159, -0.19863897562026978, -0.24330489337444305, -0.11564593762159348, 0.33438000082969666, -0.1338866800069809, -0.19944091141223907, -0.13885892927646637, 0.19198137521743774, -0.1284152716398239, -0.3447456359863281, 0.39950495958328247, -0.41132399439811707, 0.25172993540763855, -0.2800535559654236, -0.43650591373443604, -0.3816582262516022, 0.1313917487859726, -0.6374804973602295, 0.8495892882347107, 0.2517276406288147, -0.9654746055603027, 0.23821717500686646, -0.21325795352458954, -0.06386974453926086, -0.021439751610159874, 0.20325370132923126, -0.6725200414657593, 0.017356781288981438, 0.3401021659374237, 0.05117298662662506, -0.4031422734260559, 0.22353869676589966, -0.2388172298669815, -0.4528692066669464, 0.19360917806625366, -0.5819216966629028, 0.9453955292701721, 0.21437786519527435, -0.6630092263221741, 0.26468342542648315, -0.593212366104126, 0.19250747561454773, 0.24772551655769348, -0.399191290140152, 0.040016379207372665, -0.20297306776046753, 0.3718758523464203, 0.2037668377161026, 0.17961032688617706, -0.38584789633750916, 0.3108263909816742, -0.49973204731941223, 0.7615940570831299, 0.746350884437561, -0.0668235570192337, 0.47194191813468933, -0.4102506637573242, 0.47609153389930725, 0.018793199211359024, 0.19822633266448975, -0.039912834763526917, -0.6040619015693665, -0.993363082408905, -0.34177881479263306, 0.38426244258880615, 0.31307390332221985, -0.47074127197265625, 0.45469221472740173, -0.25452184677124023, -0.8641589879989624, -0.16336944699287415, -0.06736746430397034, 0.39753443002700806, 0.3298797011375427, 0.43366381525993347, -0.14640559256076813, -0.534022867679596, -0.882642388343811, -0.2109147161245346, -0.41643330454826355, 0.11529847979545593, 0.18814779818058014, 0.9473240375518799, -0.16605883836746216, 0.5801969766616821, -0.36646121740341187, 0.2469584345817566, -0.3811575472354889, 0.16436630487442017, 0.43919214606285095, 0.6172481179237366, 0.3811613619327545, -0.5582457184791565, -0.3806309401988983, -0.024866916239261627, -0.5602617859840393, 0.10190004110336304, 0.02648928202688694, -0.31793075799942017, 0.31412792205810547, 0.09324481338262558, -0.9969200491905212, 0.4712280035018921, 0.6175693869590759, -0.5486563444137573, 0.7665102481842041, -0.33846724033355713, 0.010620816610753536, -1.0737669467926025, 0.2812008559703827, 0.0971008762717247, -0.22631295025348663, -0.5743274688720703, 0.043130382895469666, 0.19365155696868896, -0.2251189649105072, -0.3943098783493042, 0.6013606786727905, -0.5358603596687317, -0.1567361056804657, -0.2246268391609192, 0.061593834310770035, -0.013648184947669506, 0.6349743008613586, 0.16252721846103668, 0.551520586013794, 0.807096540927887, -0.7912845015525818, 0.43705496191978455, 0.2204929143190384, -0.29561647772789, 0.36633992195129395, -0.9102093577384949, 0.1484401822090149, 0.08418704569339752, 0.4061296582221985, -0.6446850299835205, -0.32827243208885193, 0.5388137102127075, -0.5657132267951965, 0.16313840448856354, -0.42990341782569885, -0.5420257449150085, -0.4286609888076782, -0.16059063374996185, 0.6296210289001465, 0.787263810634613, -0.6026781797409058, 0.6820207238197327, 0.05804421380162239, 0.11593413352966309, -0.3728824555873871, -0.5772271156311035, -0.2214963436126709, -0.5369043946266174, -0.6639459729194641, 0.40869221091270447, 0.17432573437690735, -0.1988150030374527, 0.030375756323337555, 0.01904570311307907, 0.10638293623924255, -0.029798641800880432, 0.32524991035461426, 0.3448137044906616, -0.030465001240372658, 0.043733540922403336, -0.14584362506866455, -0.13735127449035645, -0.008745349012315273, -0.4906007945537567, 0.9952703714370728, -0.2958242893218994, -0.19941844046115875, -0.8199147582054138, -0.013606054708361626, 0.8912059664726257, -0.42706140875816345, 0.891173243522644, 0.6166806817054749, -0.7185350656509399, 0.1509241759777069, -0.3660753071308136, -0.3101944923400879, -0.4433203339576721, 0.6649580001831055, -0.27371761202812195, -0.35019028186798096, 0.620025634765625, 0.29250895977020264, 0.2609444856643677, 0.5807551145553589, 0.7381706833839417, 0.24315138161182404, 1.2282994985580444, 0.44115129113197327, -0.17278322577476501, 0.6515371203422546, -0.5523509383201599, 0.23192179203033447, -1.106550931930542, -0.1785883754491806, -0.5422866344451904, -0.2892504632472992, -0.9418821334838867, -0.3031032085418701, 0.3037438988685608, 0.22436237335205078, -0.7701466679573059, 0.5737595558166504, -0.5622868537902832, 0.04515242576599121, 0.656715452671051, 0.24398784339427948, 0.2026190459728241, 0.2132478952407837, 0.09441041201353073, -0.06308474391698837, -0.6620685458183289, -0.3527531623840332, 1.2405800819396973, 0.4887973964214325, 0.6464651226997375, 0.27929800748825073, 0.7400992512702942, -0.14321160316467285, 0.22407707571983337, -0.7227097153663635, 0.4427034556865692, 0.3359888792037964, -0.7109618186950684, -0.21128900349140167, -0.8041689991950989, -0.9836965203285217, 0.47820767760276794, 0.0938086286187172, -1.0960652828216553, 0.22523869574069977, 0.20036311447620392, -0.3569702208042145, 0.4897639751434326, -0.612876296043396, 1.0113755464553833, -0.2513728737831116, -0.4780227839946747, -0.3753889203071594, -0.2786028981208801, 0.23210762441158295, 0.3858839273452759, 0.11721408367156982, 0.10094776749610901, 0.28492382168769836, 0.9955326914787292, -0.6764670014381409, 0.6550331711769104, -0.14155490696430206, 0.12227246165275574, 0.3665613532066345, 0.3057999312877655, 0.6450071930885315, 0.17658011615276337, 0.12991094589233398, -0.028849082067608833, 0.1649554967880249, -0.5513566136360168, -0.35110369324684143, 0.9431507587432861, -1.1075924634933472, -0.363423228263855, -0.8017063736915588, -0.6065446734428406, 0.10333386063575745, 0.20668144524097443, 0.40373292565345764, 0.6886448264122009, -0.05654725432395935, 0.03824479132890701, 0.6000015735626221, -0.5267807245254517, 0.38324791193008423, 0.250803142786026, -0.46608710289001465, -0.5295262336730957, 0.9975774884223938, 0.0364416167140007, 0.33614569902420044, 0.02331995777785778, 0.23012927174568176, -0.40163132548332214, -0.4417039155960083, -0.610769510269165, 0.5382110476493835, -0.717869758605957, -0.005483996123075485, -0.7307811975479126, -0.03405572474002838, -0.4666593074798584, 0.1252855658531189, -0.4055249094963074, -0.3887917995452881, -0.25185495615005493, -0.017012406140565872, 0.5856303572654724, 0.4694337844848633, 0.09118842333555222, 0.3275107443332672, -0.5551672577857971, -0.007976901717483997, 0.2446775734424591, 0.10911004990339279, 0.11470343172550201, -0.9351212382316589, -0.09256764501333237, 0.1795051246881485, -0.4289425015449524, -1.1251548528671265, 0.514973521232605, -0.05988234281539917, 0.3732095956802368, 0.05523734912276268, -0.2407497614622116, 0.6132474541664124, -0.06571709364652634, 0.6688297390937805, 0.13400636613368988, -1.0497552156448364, 0.5397460460662842, -0.4736902415752411, 0.3174954354763031, 0.3651132881641388, 0.3668147921562195, -0.7476794123649597, -0.07560737431049347, -1.0033283233642578, -1.0896689891815186, 0.757206380367279, 0.45556390285491943, 0.19296500086784363, 0.0856952965259552, 0.394671767950058, -0.4524114429950714, 0.14339248836040497, -1.0380597114562988, -0.24085688591003418, -0.23027636110782623, -0.09669476747512817, 0.15898337960243225, -0.03944280371069908, 0.06117463484406471, -0.5900255441665649, 1.0230082273483276, 0.05656184256076813, 0.32351353764533997, 0.2915470600128174, -0.41647279262542725, -0.0871160477399826, -0.03789777681231499, 0.16002115607261658, 0.7732349038124084, -0.14413607120513916, 0.06515251100063324, 0.20958973467350006, -0.5551227927207947, 0.034376390278339386, 0.16782638430595398, -0.3928394019603729, -0.06866569072008133, 0.173553928732872, 0.8620609641075134, 0.13990414142608643, -0.4352230727672577, 0.23267407715320587, -0.05754568800330162, -0.0853019505739212, -0.2859503924846649, -0.19076889753341675, 0.1907418668270111, 0.19387227296829224, -0.02339160442352295, -0.18741467595100403, -0.005006071180105209, -0.8776472806930542, 0.05358986184000969, 0.24872441589832306, -0.16860677301883698, -0.40215975046157837, 0.5887981653213501, 0.04048154130578041, -0.17821870744228363, 1.162354588508606, -0.2570034861564636, -0.6750832200050354, 0.7960180640220642, 0.4866649806499481, 0.7420502305030823, -0.178255096077919, 0.34381869435310364, 0.9106172919273376, 0.33366844058036804, -0.21095405519008636, 0.1028023511171341, 0.0908655896782875, -0.5194340944290161, -0.12631884217262268, -0.8217580914497375, -0.22423163056373596, 0.28500887751579285, -0.5952466726303101, 0.4713912308216095, -0.6266761422157288, -0.07341372966766357, -0.06478417664766312, 0.21904847025871277, -0.5905634760856628, 0.3238001763820648, 0.17481084167957306, 0.7142168879508972, -0.9190051555633545, 0.8333911299705505, 0.6423824429512024, -0.7588892579078674, -1.1049939393997192, 0.021013854071497917, -0.01330173946917057, -0.45640239119529724, 0.19637681543827057, 0.21526813507080078, 0.19336217641830444, 0.1712663173675537, -0.28614163398742676, -0.8715441823005676, 1.3084821701049805, 0.24886322021484375, -0.6712855100631714, -0.26155176758766174, -0.10085064172744751, 0.5359436869621277, 0.06542535126209259, 0.7071102857589722, 0.7139679193496704, 0.4129585027694702, 0.08506260067224503, -1.0559009313583374, 0.3793017566204071, -0.2983866035938263, -0.08465052396059036, 0.24641911685466766, -0.6851313710212708, 1.3431061506271362, -0.059109825640916824, -0.013910086825489998, 0.42271363735198975, 0.5595647692680359, 0.3760160505771637, -0.1316869556903839, 0.37829113006591797, 0.7923703193664551, 0.8713014721870422, -0.370532363653183, 1.2093074321746826, -0.3164817988872528, 0.7814006209373474, 0.8473713397979736, 0.18246427178382874, 0.5108520984649658, 0.40628331899642944, -0.3747735321521759, 0.5349503755569458, 0.8268647789955139, -0.1026194840669632, 0.16390199959278107, 0.2734059691429138, -0.2837839722633362, -0.2906356751918793, 0.12717412412166595, -0.6110144257545471, 0.22461535036563873, 0.14451204240322113, -0.6047170758247375, -0.21500547230243683, -0.33209308981895447, 0.356140673160553, -0.4114936292171478, -0.24761980772018433, 0.28710201382637024, 0.08607138693332672, -0.6585035920143127, 0.6638092994689941, 0.26465508341789246, 0.5676631331443787, -0.45569902658462524, 0.15462927520275116, -0.15912805497646332, 0.3543289005756378, -0.33941152691841125, -0.43358272314071655, 0.09158911556005478, 0.014174174517393112, 0.06557776778936386, 0.0709330216050148, 0.4471423625946045, -0.16067394614219666, -0.5840839147567749, 0.20550180971622467, 0.4901953935623169, 0.2526892125606537, -0.47537288069725037, -0.6908507347106934, 0.10137780010700226, -0.16422122716903687, -0.5523732304573059, 0.43819817900657654, 0.27178189158439636, -0.11667310446500778, 0.5839641094207764, 0.6140915155410767, 0.04219210892915726, -0.025786561891436577, 0.15876641869544983, 0.9932866096496582, -0.48486319184303284, -0.45781439542770386, -0.9506914019584656, 0.5001828074455261, 0.013194267638027668, -0.662528932094574, 0.8684189319610596, 0.5851840376853943, 0.6964756846427917, 0.24917887151241302, 0.5948952436447144, -0.4558550715446472, 0.0019401019671931863, -0.2842400074005127, 0.6672921180725098, -0.5222787857055664, 0.048722028732299805, -0.5177687406539917, -1.149562120437622, -0.03222152963280678, 0.9451050758361816, -0.5200148224830627, 0.3993464410305023, 0.7724311351776123, 0.8092545866966248, -0.09322118014097214, 0.07091613113880157, 0.04005321115255356, 0.2815468907356262, 0.5387483835220337, 0.9624925851821899, 0.9201032519340515, -0.7110244631767273, 0.5955628156661987, -0.5186794996261597, -0.26540616154670715, -0.16455774009227753, -0.5077980756759644, -0.8491476774215698, -0.46427908539772034, -0.5112122297286987, -0.7464492321014404, -0.06632658839225769, 0.8674852252006531, 0.7324706315994263, -0.6117729544639587, -0.1603650450706482, -0.5364504456520081, 0.04870663583278656, -0.2678013741970062, -0.2422122359275818, 0.42093443870544434, 0.13368134200572968, -0.9829583764076233, -0.03218180686235428, -0.155897319316864, 0.10672596842050552, -0.4212537705898285, -0.2913636863231659, -0.2097606062889099, -0.10863478481769562, 0.07038000226020813, 0.28974780440330505, -0.49086883664131165, -0.2534254491329193, 0.04719752073287964, 0.014289462938904762, -0.01997729204595089, 0.7227856516838074, -0.5967332720756531, 0.11549745500087738, 0.6643838882446289, 0.1180291548371315, 0.8263318538665771, -0.2543352246284485, 0.41136258840560913, -0.25662392377853394, 0.35842233896255493, 0.30055558681488037, 0.6523679494857788, 0.3313492238521576, -0.2434798628091812, 0.1635025292634964, 0.4278373718261719, -0.7482582330703735, -0.8781699538230896, 0.37084606289863586, -0.730106770992279, -0.12379688769578934, 1.2981520891189575, -0.25579559803009033, -0.3763250410556793, 0.06589432060718536, -0.2469010055065155, 0.5382162928581238, -0.26426592469215393, 0.6691697835922241, 0.631123423576355, 0.07557212561368942, -0.17565450072288513, -0.6276379227638245, 0.36226963996887207, 0.6834475994110107, -0.8162169456481934, 0.37912940979003906, 0.6245962381362915, 0.6247873306274414, 0.22911667823791504, 0.5656116604804993, -0.30259132385253906, 0.5993568301200867, 0.0897340476512909, 0.09146532416343689, 0.016735706478357315, -0.4743845760822296, -0.4442025423049927, -0.1498003602027893, 0.2430034875869751, -0.0013404842466115952 ]
bigcode/starcoderbase-1b
bigcode
"2023-09-14T12:49:54Z"
54,416
34
transformers
[ "transformers", "pytorch", "safetensors", "gpt_bigcode", "text-generation", "code", "dataset:bigcode/the-stack-dedup", "arxiv:1911.02150", "arxiv:2205.14135", "arxiv:2207.14255", "arxiv:2305.06161", "license:bigcode-openrail-m", "model-index", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
text-generation
"2023-07-03T13:08:44Z"
--- pipeline_tag: text-generation inference: true widget: - text: 'def print_hello_world():' example_title: Hello world group: Python license: bigcode-openrail-m datasets: - bigcode/the-stack-dedup metrics: - code_eval library_name: transformers tags: - code model-index: - name: StarCoderBase-1B results: - task: type: text-generation dataset: type: openai_humaneval name: HumanEval metrics: - name: pass@1 type: pass@1 value: 15.17 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (C++) metrics: - name: pass@1 type: pass@1 value: 11.68 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Java) metrics: - name: pass@1 type: pass@1 value: 14.2 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (JavaScript) metrics: - name: pass@1 type: pass@1 value: 13.38 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (PHP) metrics: - name: pass@1 type: pass@1 value: 9.94 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Lua) metrics: - name: pass@1 type: pass@1 value: 12.52 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Rust) metrics: - name: pass@1 type: pass@1 value: 10.24 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Swift) metrics: - name: pass@1 type: pass@1 value: 3.92 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (Julia) metrics: - name: pass@1 type: pass@1 value: 11.31 verified: false - task: type: text-generation dataset: type: nuprl/MultiPL-E name: MultiPL-HumanEval (R) metrics: - name: pass@1 type: pass@1 value: 5.37 verified: false extra_gated_prompt: >- ## Model License Agreement Please read the BigCode [OpenRAIL-M license](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) agreement before accepting it. extra_gated_fields: I accept the above license agreement, and will use the Model complying with the set of use restrictions and sharing requirements: checkbox duplicated_from: bigcode-data/starcoderbase-1b --- # StarCoderBase-1B 1B version of [StarCoderBase](https://huggingface.co/bigcode/starcoderbase). ## Table of Contents 1. [Model Summary](##model-summary) 2. [Use](##use) 3. [Limitations](##limitations) 4. [Training](##training) 5. [License](##license) 6. [Citation](##citation) ## Model Summary StarCoderBase-1B is a 1B parameter model trained on 80+ programming languages from [The Stack (v1.2)](https://huggingface.co/datasets/bigcode/the-stack), with opt-out requests excluded. The model uses [Multi Query Attention](https://arxiv.org/abs/1911.02150), [a context window of 8192 tokens](https://arxiv.org/abs/2205.14135), and was trained using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on 1 trillion tokens. - **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM) - **Project Website:** [bigcode-project.org](https://www.bigcode-project.org) - **Paper:** [💫StarCoder: May the source be with you!](https://arxiv.org/abs/2305.06161) - **Point of Contact:** [contact@bigcode-project.org](mailto:contact@bigcode-project.org) - **Languages:** 80+ Programming languages ## Use ### Intended use The model was trained on GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well. However, by using the [Tech Assistant prompt](https://huggingface.co/datasets/bigcode/ta-prompt) you can turn it into a capable technical assistant. **Feel free to share your generations in the Community tab!** ### Generation ```python # pip install -q transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigcode/starcoderbase-1b" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ### Fill-in-the-middle Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output: ```python input_text = "<fim_prefix>def print_hello_world():\n <fim_suffix>\n print('Hello world!')<fim_middle>" inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ### Attribution & Other Requirements The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/starcoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code. # Limitations The model has been trained on source code from 80+ programming languages. The predominant natural language in source code is English although other languages are also present. As such the model is capable of generating code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. See [the paper](https://drive.google.com/file/d/1cN-b9GnWtHzQRoE7M7gAEyivY0kl4BYs/view) for an in-depth discussion of the model limitations. # Training ## Model - **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective - **Pretraining steps:** 500k - **Pretraining tokens:** 1 trillion - **Precision:** bfloat16 ## Hardware - **GPUs:** 128 Tesla A100 - **Training time:** 11 days ## Software - **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM) - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) - **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex) # License The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement). # Citation ``` @article{li2023starcoder, title={StarCoder: may the source be with you!}, author={Raymond Li and Loubna Ben Allal and Yangtian Zi and Niklas Muennighoff and Denis Kocetkov and Chenghao Mou and Marc Marone and Christopher Akiki and Jia Li and Jenny Chim and Qian Liu and Evgenii Zheltonozhskii and Terry Yue Zhuo and Thomas Wang and Olivier Dehaene and Mishig Davaadorj and Joel Lamy-Poirier and João Monteiro and Oleh Shliazhko and Nicolas Gontier and Nicholas Meade and Armel Zebaze and Ming-Ho Yee and Logesh Kumar Umapathi and Jian Zhu and Benjamin Lipkin and Muhtasham Oblokulov and Zhiruo Wang and Rudra Murthy and Jason Stillerman and Siva Sankalp Patel and Dmitry Abulkhanov and Marco Zocca and Manan Dey and Zhihan Zhang and Nour Fahmy and Urvashi Bhattacharyya and Wenhao Yu and Swayam Singh and Sasha Luccioni and Paulo Villegas and Maxim Kunakov and Fedor Zhdanov and Manuel Romero and Tony Lee and Nadav Timor and Jennifer Ding and Claire Schlesinger and Hailey Schoelkopf and Jan Ebert and Tri Dao and Mayank Mishra and Alex Gu and Jennifer Robinson and Carolyn Jane Anderson and Brendan Dolan-Gavitt and Danish Contractor and Siva Reddy and Daniel Fried and Dzmitry Bahdanau and Yacine Jernite and Carlos Muñoz Ferrandis and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries}, year={2023}, eprint={2305.06161}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
[ -0.6182015538215637, -0.5317769050598145, 0.353346586227417, 0.18731090426445007, -0.18112674355506897, -0.2779867947101593, -0.2000451683998108, -0.4098946452140808, 0.10493729263544083, 0.2590411603450775, -0.555957019329071, -0.4052353799343109, -0.8022801876068115, 0.026323143392801285, -0.05553651228547096, 1.0406559705734253, -0.028114600107073784, 0.12534259259700775, -0.0945209413766861, 0.004855873063206673, -0.23980171978473663, -0.669397234916687, -0.3035965859889984, -0.0993889793753624, 0.44758090376853943, 0.2969284951686859, 0.8216980695724487, 0.7150394320487976, 0.5498676300048828, 0.2849985957145691, -0.17138397693634033, -0.022010866552591324, -0.24303051829338074, -0.394195020198822, -0.0014344167429953814, -0.27312228083610535, -0.4533270299434662, -0.062411725521087646, 0.5714743137359619, 0.3444463014602661, 0.19627515971660614, 0.6352967023849487, -0.04136494919657707, 0.6768656373023987, -0.5162546038627625, 0.32997819781303406, -0.3211393356323242, 0.00408099964261055, 0.1915740668773651, 0.07664720714092255, -0.17645597457885742, -0.2962381839752197, -0.3201742172241211, -0.5539345741271973, 0.20314949750900269, 0.176278218626976, 1.1922128200531006, 0.38856765627861023, -0.20295631885528564, -0.2587912678718567, -0.7356559038162231, 0.6505929231643677, -0.6971099376678467, 0.5845613479614258, 0.3194804787635803, 0.3270540237426758, 0.02708936482667923, -0.9322243928909302, -0.7590146064758301, -0.33711937069892883, -0.11373881995677948, 0.10514386743307114, -0.35945412516593933, -0.0944252461194992, 0.5759324431419373, 0.1972886323928833, -0.7864668965339661, 0.18788039684295654, -0.8222542405128479, -0.09450127929449081, 0.5392903089523315, -0.006798626389354467, 0.12412697821855545, -0.6078494787216187, -0.5393168330192566, -0.17455756664276123, -0.5866023302078247, 0.16900956630706787, 0.22349700331687927, -0.014487157575786114, -0.3626341223716736, 0.5096520781517029, 0.005867529660463333, 0.5477587580680847, 0.03481057286262512, 0.15670111775398254, 0.4703477919101715, -0.520219087600708, -0.42222878336906433, -0.1487407237291336, 1.0170120000839233, 0.39569568634033203, 0.10680899769067764, -0.01485121063888073, -0.14206798374652863, -0.11878842115402222, 0.1579236090183258, -1.0575462579727173, -0.23595502972602844, 0.5399256348609924, -0.36974993348121643, -0.09800972044467926, 0.1493968665599823, -0.8300789594650269, 0.07496563345193863, -0.38473811745643616, 0.5477286577224731, -0.22730779647827148, -0.24477487802505493, 0.21699117124080658, 0.005442834924906492, 0.3588044345378876, -0.0699034333229065, -0.8128755688667297, 0.14598022401332855, 0.5707978010177612, 0.8264622688293457, 0.3462897837162018, -0.3964148759841919, -0.3486403524875641, -0.10447397083044052, -0.332711786031723, 0.2804144620895386, -0.21332715451717377, -0.23144274950027466, -0.2275155782699585, 0.1317184567451477, -0.07839936017990112, -0.43256068229675293, 0.30832964181900024, -0.5730352401733398, 0.2311428338289261, -0.2277403473854065, -0.24956679344177246, -0.2133065164089203, 0.1600893884897232, -0.6276050806045532, 0.9861795902252197, 0.3330492377281189, -0.700089156627655, 0.21167725324630737, -0.7717188000679016, -0.03529969975352287, -0.07860245555639267, -0.173805832862854, -0.7301622629165649, -0.11402131617069244, 0.41755473613739014, 0.5145747661590576, -0.46420198678970337, 0.49078983068466187, -0.26043829321861267, -0.4280419647693634, 0.15917769074440002, -0.17678220570087433, 1.01819908618927, 0.4806872606277466, -0.6276003122329712, 0.14805544912815094, -0.5406711101531982, 0.041694872081279755, 0.4392494261264801, -0.15643392503261566, 0.28494060039520264, -0.3731919825077057, 0.202422097325325, 0.575828492641449, 0.3981139361858368, -0.5725269913673401, 0.3170745074748993, -0.2854084372520447, 0.6311904788017273, 0.5652921199798584, -0.07522018998861313, 0.152629092335701, -0.2521101236343384, 0.6177685856819153, 0.19317218661308289, 0.4899480938911438, -0.1298757940530777, -0.4687587320804596, -0.7391838431358337, -0.29262563586235046, 0.4004518985748291, 0.4689567983150482, -0.6927620768547058, 0.8018450140953064, -0.32485830783843994, -0.6177345514297485, -0.3784707188606262, 0.009067083708941936, 0.6336913704872131, 0.185646191239357, 0.48436158895492554, 0.03907947242259979, -0.7356523275375366, -0.8728971481323242, 0.19384150207042694, -0.09534280002117157, 0.043325670063495636, 0.31791001558303833, 0.8754024505615234, -0.3926740884780884, 0.820583164691925, -0.6517838835716248, -0.0938647910952568, -0.2726290822029114, -0.2953418791294098, 0.5394843816757202, 0.7298263311386108, 0.7564014196395874, -0.779110848903656, -0.35671767592430115, -0.03943191096186638, -0.7949727177619934, 0.35888099670410156, 0.09260015934705734, -0.14967653155326843, 0.20512497425079346, 0.7083529233932495, -0.9357976317405701, 0.469135582447052, 0.6015715003013611, -0.41445422172546387, 0.782454252243042, -0.1902923882007599, 0.13614989817142487, -1.3513699769973755, 0.5518673658370972, 0.04520203918218613, 0.04777608439326286, -0.31941986083984375, 0.2707160413265228, 0.19214081764221191, -0.4923391342163086, -0.49852776527404785, 0.5930337309837341, -0.47510987520217896, -0.08265236020088196, -0.04749239236116409, -0.2008908987045288, 0.019714776426553726, 0.8622552752494812, -0.2186892330646515, 0.9176790118217468, 0.7052805423736572, -0.6071730256080627, 0.3396388590335846, 0.41033658385276794, -0.2612829804420471, 0.001734454184770584, -0.965160071849823, 0.13314762711524963, -0.08941072970628738, 0.32732725143432617, -1.1531562805175781, -0.22897660732269287, 0.46020451188087463, -0.8928673267364502, 0.16398140788078308, -0.42932936549186707, -0.6402698159217834, -0.8831580877304077, -0.2215912640094757, 0.3739754855632782, 0.7669392228126526, -0.6714436411857605, 0.308476984500885, 0.19047440588474274, -0.08217024058103561, -0.6115553975105286, -0.6537458300590515, -0.07836268842220306, -0.030289534479379654, -0.6358733773231506, 0.16027671098709106, -0.17713399231433868, 0.1544705331325531, 0.06153946742415428, -0.1284048855304718, -0.16667219996452332, -0.09908667206764221, 0.3766420781612396, 0.4735204875469208, -0.32306259870529175, -0.20708608627319336, -0.21959660947322845, -0.3051592707633972, 0.22155018150806427, -0.6025725603103638, 0.7042707204818726, -0.2115844190120697, -0.2795271575450897, -0.38887670636177063, 0.2338370680809021, 0.8852144479751587, -0.4349365532398224, 0.7526669502258301, 0.7850159406661987, -0.4978647828102112, -0.016922609880566597, -0.5288354158401489, -0.17357437312602997, -0.5416313409805298, 0.6729046106338501, -0.20872806012630463, -0.7399163246154785, 0.49884748458862305, 0.14801809191703796, 0.07578630745410919, 0.602154016494751, 0.4257340133190155, 0.19486546516418457, 0.9077012538909912, 0.5731504559516907, -0.11988126486539841, 0.3701552450656891, -0.7627809643745422, 0.38159823417663574, -0.9277105331420898, -0.34129589796066284, -0.6723256707191467, -0.27987992763519287, -0.46918022632598877, -0.5871020555496216, 0.46251603960990906, 0.2721976935863495, -0.6745933890342712, 0.5370661616325378, -0.7316575050354004, 0.37942177057266235, 0.5757123231887817, 0.055317822843790054, -0.17356495559215546, 0.11723358184099197, -0.1985941082239151, 0.08662843704223633, -0.7937936186790466, -0.4054146707057953, 1.189422607421875, 0.49515724182128906, 0.5042199492454529, 0.08609107881784439, 0.6200726628303528, -0.11664875596761703, -0.013467518612742424, -0.5702537298202515, 0.47403672337532043, -0.07392464578151703, -0.8302481174468994, -0.1667124181985855, -0.5555217266082764, -1.0532011985778809, 0.15736046433448792, -0.009967674501240253, -0.7747400403022766, 0.25428277254104614, 0.15997163951396942, -0.5528950691223145, 0.4421439468860626, -0.8521917462348938, 1.0739245414733887, -0.21857213973999023, -0.4135437607765198, 0.049730490893125534, -0.5969372987747192, 0.3786380887031555, 0.08467935025691986, 0.13258005678653717, 0.2586289942264557, 0.09548718482255936, 0.7779126167297363, -0.5186511874198914, 0.6124995350837708, -0.4034285545349121, 0.18346716463565826, 0.3709772825241089, -0.1426747888326645, 0.5382187366485596, 0.2785622179508209, -0.058841340243816376, 0.45598793029785156, -0.07803495973348618, -0.4666179418563843, -0.40930214524269104, 0.7439944744110107, -1.109864592552185, -0.5160834193229675, -0.4572463631629944, -0.3074829876422882, -0.004151569213718176, 0.32472988963127136, 0.487445592880249, 0.4775141477584839, 0.20496802031993866, 0.3135662078857422, 0.4869740903377533, -0.404863566160202, 0.6376225352287292, 0.25051695108413696, -0.2994600236415863, -0.66309654712677, 0.8698944449424744, 0.20891021192073822, 0.12634974718093872, 0.08815319091081619, 0.10392899811267853, -0.44029057025909424, -0.44902732968330383, -0.6917954683303833, 0.3260348439216614, -0.6345073580741882, -0.3560577630996704, -0.7738597989082336, -0.537199854850769, -0.5348069667816162, -0.22341720759868622, -0.4780592918395996, -0.18578584492206573, -0.17692038416862488, 0.018074532970786095, 0.47257494926452637, 0.5881895422935486, 0.02423904277384281, 0.15712134540081024, -0.7846584320068359, 0.29221728444099426, 0.13756152987480164, 0.4141281545162201, 0.10775628685951233, -0.6192840337753296, -0.4971175491809845, 0.10633143037557602, -0.4695095121860504, -0.4390152096748352, 0.41103994846343994, -0.26588961482048035, 0.5130667686462402, 0.05093410983681679, -0.15068839490413666, 0.6201242804527283, -0.4449314475059509, 1.07656991481781, 0.4851686954498291, -0.8126155138015747, 0.46737760305404663, -0.30453377962112427, 0.49596062302589417, 0.33008360862731934, 0.6451700329780579, -0.2817891240119934, -0.05636544153094292, -0.8683567047119141, -0.9632609486579895, 0.8436392545700073, 0.24591445922851562, -0.004379815887659788, 0.10296095907688141, 0.32484275102615356, -0.19111041724681854, 0.13315631449222565, -0.8139749765396118, -0.3856149911880493, -0.3780151903629303, -0.13038469851016998, -0.25811517238616943, -0.07337325811386108, -0.048423882573843, -0.5581542253494263, 0.5403438806533813, 0.03733000159263611, 0.8215112090110779, 0.2796042859554291, -0.13219624757766724, -0.011615029536187649, 0.03532830998301506, 0.6426981091499329, 0.8307168483734131, -0.1666998267173767, -0.04191847890615463, -0.05297180637717247, -0.7145676016807556, 0.060240939259529114, 0.45784133672714233, -0.09445265680551529, -0.003448787145316601, 0.20083211362361908, 0.9350316524505615, 0.21989287436008453, -0.30352288484573364, 0.6891536712646484, 0.14068692922592163, -0.5612295866012573, -0.4746973216533661, 0.14932850003242493, 0.20377019047737122, 0.3378617465496063, 0.4540819823741913, 0.3111756145954132, -0.08275464922189713, -0.27508509159088135, 0.27952080965042114, 0.1634664386510849, -0.3303872048854828, -0.2897627651691437, 1.0275038480758667, 0.000770058308262378, -0.18558864295482635, 0.595749020576477, -0.28731831908226013, -0.6653452515602112, 1.086594581604004, 0.5008509755134583, 0.8566133379936218, 0.03887328878045082, 0.025064080953598022, 0.9015154242515564, 0.43863987922668457, 0.11819005757570267, 0.24873413145542145, 0.12932048738002777, -0.32228928804397583, -0.4106939435005188, -0.6402191519737244, -0.13025452196598053, 0.2623748183250427, -0.5396484732627869, 0.3162226974964142, -0.7941468954086304, -0.07442005723714828, 0.03878949582576752, 0.25927039980888367, -1.0329493284225464, 0.2557937800884247, 0.19614386558532715, 0.8331261873245239, -0.7241668701171875, 0.7266722917556763, 0.7339240908622742, -0.7506394386291504, -0.974486231803894, 0.06277322769165039, -0.15554431080818176, -0.7746689319610596, 0.7986119389533997, 0.2646365463733673, 0.16717132925987244, 0.21075640618801117, -0.791536808013916, -1.0880759954452515, 1.2131577730178833, 0.24023950099945068, -0.5742748975753784, 0.046456292271614075, 0.07114715129137039, 0.3760848343372345, -0.08544591069221497, 0.49683111906051636, 0.24987418949604034, 0.5782296061515808, 0.06640511751174927, -0.9829533100128174, 0.24123729765415192, -0.4699571430683136, -0.006787329912185669, 0.22566089034080505, -0.922542154788971, 1.0254451036453247, -0.3757703900337219, 0.058571524918079376, -0.05967317521572113, 0.5979952812194824, 0.41835376620292664, 0.22490565478801727, 0.27628305554389954, 0.5041458010673523, 0.4930735230445862, -0.07415051758289337, 1.044732928276062, -0.7719140648841858, 0.6624823808670044, 0.675933301448822, 0.040280237793922424, 0.7249404191970825, 0.34010493755340576, -0.40642812848091125, 0.3150985538959503, 0.4807503819465637, -0.3944556415081024, 0.25644028186798096, 0.19134831428527832, 0.12666887044906616, 0.024067407473921776, 0.3107955753803253, -0.7140488624572754, 0.18356887996196747, 0.26442766189575195, -0.3436097502708435, -0.17042683064937592, 0.0051262215711176395, 0.1594666838645935, -0.3647191822528839, -0.3301636576652527, 0.41927123069763184, 0.022787949070334435, -0.7680113315582275, 1.1926844120025635, 0.05099539831280708, 0.7199652194976807, -0.7115284204483032, 0.0431075394153595, -0.17025749385356903, 0.2568725347518921, -0.34042888879776, -0.6964190006256104, 0.08091489970684052, 0.057415660470724106, -0.3661919832229614, 0.04500599205493927, 0.2564172148704529, -0.1036335900425911, -0.5931193828582764, 0.2699223756790161, 0.07115556299686432, 0.17940200865268707, -0.016310973092913628, -0.8442229628562927, 0.2821204364299774, 0.15503859519958496, -0.46565157175064087, 0.29387417435646057, 0.3217218816280365, 0.18262223899364471, 0.5271097421646118, 0.7340961694717407, -0.16026736795902252, 0.2357017546892166, -0.22870516777038574, 1.0783227682113647, -0.8706116676330566, -0.5263769030570984, -0.7842323184013367, 0.7088912725448608, 0.05944421514868736, -0.8059538006782532, 0.7673648595809937, 0.8260040283203125, 0.7899873852729797, -0.2941245436668396, 0.8150568008422852, -0.34407004714012146, 0.12542667984962463, -0.5882939100265503, 0.6403935551643372, -0.5383000373840332, 0.12062977254390717, -0.29093480110168457, -1.0473463535308838, -0.2456308901309967, 0.559878408908844, -0.34197601675987244, 0.4016793370246887, 0.7812089920043945, 1.0853551626205444, -0.31493687629699707, -0.1033567264676094, 0.2688661217689514, 0.32516610622406006, 0.38173505663871765, 0.8351441621780396, 0.48314031958580017, -0.7700291275978088, 0.6756758093833923, -0.24318601191043854, -0.23406565189361572, -0.4004838764667511, -0.5201634764671326, -0.8035955429077148, -0.6216947436332703, -0.2946401536464691, -0.5675083994865417, 0.0033540339209139347, 1.051985502243042, 0.9327179789543152, -0.6855412721633911, -0.09996229410171509, -0.13000421226024628, -0.1288101226091385, -0.2650863230228424, -0.18377448618412018, 0.6728918552398682, -0.2539234757423401, -0.6278234124183655, 0.0758063867688179, -0.059898994863033295, -0.004702975507825613, -0.38091325759887695, -0.28886908292770386, -0.22247669100761414, -0.13836774230003357, 0.4520202875137329, 0.42856571078300476, -0.6343404650688171, -0.27013325691223145, 0.1384933888912201, -0.3773091435432434, 0.1797640472650528, 0.4612053632736206, -0.47183194756507874, 0.14360596239566803, 0.407418817281723, 0.6354543566703796, 0.6190479397773743, -0.08395371586084366, 0.1531292051076889, -0.5648200511932373, 0.3077518343925476, 0.12209593504667282, 0.35638388991355896, 0.07673325389623642, -0.5052534937858582, 0.45461511611938477, 0.23812875151634216, -0.7923370003700256, -0.6793981790542603, -0.005530019756406546, -1.0202226638793945, -0.41503259539604187, 1.4410320520401, -0.08000294864177704, -0.4009024202823639, 0.05389627441763878, -0.21596944332122803, 0.19620317220687866, -0.21647068858146667, 0.5307082533836365, 0.5049968361854553, 0.1736569106578827, -0.13195383548736572, -0.9224335551261902, 0.3491603434085846, 0.2679500877857208, -0.6082353591918945, 0.07722168415784836, 0.4599384069442749, 0.4558016359806061, 0.3716265559196472, 0.42913341522216797, -0.2974843680858612, 0.5037404894828796, 0.22981831431388855, 0.48990508913993835, -0.5287539958953857, -0.3734782040119171, -0.3766934275627136, 0.08485406637191772, -0.05549624189734459, -0.48335129022598267 ]
fazahmz/nps-tag-classifier
fazahmz
"2022-09-26T12:24:39Z"
54,346
0
transformers
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
"2022-09-26T11:45:12Z"
Entry not found
[ -0.3227650225162506, -0.22568431496620178, 0.862226128578186, 0.43461495637893677, -0.5282987952232361, 0.7012965679168701, 0.7915717363357544, 0.07618638128042221, 0.7746025919914246, 0.2563219666481018, -0.7852817177772522, -0.22573819756507874, -0.9104480743408203, 0.5715669393539429, -0.3992334008216858, 0.5791245698928833, -0.14494505524635315, -0.10751161724328995, 0.28233757615089417, -0.2768954336643219, -0.5409224033355713, -0.36855220794677734, -1.1902776956558228, 0.061491113156080246, 0.5316578149795532, 0.7435142397880554, 0.7584060430526733, 0.3652167320251465, 0.6432578563690186, 0.3932291269302368, -0.23138920962810516, 0.4827055037021637, -0.04171813279390335, 0.00260411505587399, -0.3524433970451355, -0.5516898036003113, -0.28596609830856323, 0.07584730535745621, 1.0961304903030396, 0.966687798500061, -0.284663587808609, 0.05330817773938179, -0.3063621520996094, 0.33088892698287964, -0.49734312295913696, 0.3054099678993225, -0.022506045177578926, 0.16318801045417786, -0.7041513919830322, -0.5535354018211365, 0.012794834561645985, -0.7361212968826294, 0.17926570773124695, -0.690081000328064, 0.8269098401069641, 0.18583157658576965, 1.1533750295639038, 0.14819414913654327, -0.462487131357193, -0.8161764144897461, -0.6538989543914795, 0.5711171627044678, -0.32703715562820435, 0.39680248498916626, 0.7028235197067261, -0.048573412001132965, -0.9820332527160645, -0.6745741367340088, -0.46466192603111267, 0.2923962473869324, 0.35402774810791016, -0.3411678075790405, -0.17522086203098297, -0.3058989644050598, 0.15792037546634674, 0.12811517715454102, -0.4841994643211365, -0.5543919205665588, -0.5475160479545593, -0.3960252106189728, 0.6206658482551575, 0.3482950031757355, 0.2429177463054657, -0.1888415813446045, -0.3228583335876465, 0.0880163162946701, -0.4160851538181305, 0.3402571678161621, 0.6335517168045044, 0.7114017009735107, -0.5811444520950317, 0.560215950012207, -0.04927587881684303, 0.7439703941345215, 0.11445561796426773, -0.27478092908859253, 0.41460567712783813, -0.14724725484848022, 0.055171746760606766, 0.4226345121860504, 0.31524422764778137, 0.2841312289237976, -0.3273695111274719, 0.2032228708267212, -0.3215144872665405, -0.30496224761009216, -0.22332167625427246, -0.29490774869918823, -0.3592180609703064, 0.5492289066314697, -0.3314017057418823, -0.42855486273765564, 1.143175721168518, -0.4200771450996399, -0.7302224040031433, 0.33156412839889526, 0.4065209925174713, -0.0994480773806572, -0.37146568298339844, -0.052260834723711014, -0.8458789587020874, -0.007907390594482422, 0.7491172552108765, -0.7198970913887024, 0.3371737599372864, 0.4728063642978668, 0.7417217493057251, 0.19650575518608093, -0.14034469425678253, -0.42949390411376953, 0.2971969544887543, -0.8659994006156921, 0.6320174336433411, -0.20135220885276794, -1.0051977634429932, 0.11150479316711426, 0.8971705436706543, -0.37896400690078735, -1.2094876766204834, 1.0605159997940063, -0.6887932419776917, 0.16017857193946838, -0.676761269569397, -0.14661237597465515, -0.07118501514196396, -0.005096632521599531, -0.6088156700134277, 0.7567102313041687, 0.587267279624939, -0.4995276927947998, 0.21429483592510223, -0.26029831171035767, -0.39151400327682495, 0.38824859261512756, -0.07935450226068497, -0.21858926117420197, 0.713833212852478, -0.6647079586982727, -0.26932814717292786, 0.2942774295806885, 0.2368936538696289, -0.35706108808517456, -0.7931919097900391, 0.08478113263845444, -0.05786270648241043, 1.550750494003296, -0.03868847340345383, -0.3586106300354004, -0.679383397102356, -1.1506240367889404, -0.07070787996053696, 0.6886883974075317, -0.9194989204406738, -0.27839475870132446, -0.046410128474235535, -0.26169314980506897, 0.08994917571544647, 0.7390589714050293, -1.1194051504135132, 0.2832726836204529, -0.05092663690447807, -0.22794683277606964, 0.8271058797836304, 0.15387225151062012, 0.24758946895599365, 0.14913396537303925, 0.42958706617355347, 0.527725338935852, 0.11115207523107529, 0.683587908744812, -0.34720373153686523, -0.9694353938102722, 0.6154631972312927, 0.25266361236572266, 0.8121447563171387, -0.49945297837257385, 0.2685093879699707, 0.27025535702705383, -0.3409680724143982, -0.5682371854782104, -0.3102838397026062, 0.09025752544403076, 0.14930562674999237, 0.11142510175704956, -0.5721710324287415, -0.6576125025749207, -0.9689140319824219, -0.13590654730796814, -0.4314374029636383, -0.3571570813655853, 0.21006910502910614, 0.5792906284332275, -1.1975523233413696, 0.4128875136375427, -0.7705625891685486, -0.7038741111755371, -0.01065548975020647, -0.19338123500347137, 0.7540656328201294, 0.43240174651145935, 0.5033966898918152, -0.6397148370742798, -0.5661987066268921, -0.22470176219940186, -1.0333747863769531, -0.13280506432056427, 0.24819621443748474, 0.3065737783908844, -0.13423344492912292, -0.2744963765144348, -0.48740333318710327, 0.8100387454032898, 0.14789170026779175, -0.5391897559165955, 0.5220767259597778, -0.3020317256450653, 0.17224803566932678, -0.6369150280952454, -0.06916818022727966, -0.661676287651062, -0.0009071884560398757, -0.3608308732509613, -0.5737438797950745, 0.14772287011146545, 0.07017494738101959, -0.16065457463264465, 0.28808408975601196, -0.909277081489563, -0.0010852962732315063, -0.7442210912704468, 0.379071980714798, 0.06394772231578827, -0.3145078718662262, -0.017517540603876114, 1.0000386238098145, 0.7784460783004761, -0.3848048746585846, 0.721744179725647, 0.4440041184425354, 0.19036155939102173, 0.7630521059036255, -0.18725109100341797, 0.16478213667869568, -0.5245416760444641, -0.12161104381084442, -0.8887597918510437, -1.0982946157455444, 0.7320570349693298, -0.6114250421524048, 0.36542922258377075, -0.4277869760990143, 0.2589159905910492, -0.6919258832931519, -0.03885362669825554, 0.4808599352836609, -0.05936325341463089, -0.6863942742347717, 0.5232570171356201, 0.45317530632019043, -0.2019241601228714, -0.6609031558036804, -0.530157208442688, 0.39365822076797485, 0.6154114007949829, -0.16390392184257507, 0.06878514587879181, 0.14941060543060303, -0.5441926121711731, -0.040802597999572754, -0.38691970705986023, -0.45766758918762207, 0.054224006831645966, 0.13053473830223083, -0.005750799085944891, -0.404820054769516, -0.0868026465177536, -0.35842007398605347, -0.4656120240688324, 0.21876516938209534, 0.3011947274208069, -0.04096309468150139, -0.42599788308143616, -0.3619818687438965, -0.888181209564209, 0.6719610095024109, 0.5370282530784607, 0.05281545966863632, 0.7555549740791321, 0.16819314658641815, -0.8014987707138062, -0.13532210886478424, -0.1760706603527069, 0.2696830928325653, -0.5588056445121765, 0.13849826157093048, -0.013484534807503223, -0.0637492910027504, 0.26297882199287415, 0.25386232137680054, -0.4300556778907776, 0.9276250004768372, -0.2615274488925934, -0.3592521846294403, 0.7960181832313538, 0.5974742770195007, 0.49583131074905396, 0.16503219306468964, -0.044541798532009125, 0.900709331035614, -1.1966516971588135, -0.6563175916671753, -0.7409549355506897, -0.15945707261562347, -0.43510833382606506, -0.032105933874845505, 0.6254412531852722, 0.2900990843772888, -0.1333388388156891, 0.4756395220756531, -0.5243489742279053, 0.3556033670902252, 1.01198410987854, 0.35748639702796936, 0.3435698449611664, -0.7570229172706604, -0.2515777349472046, -0.1402427852153778, -0.9998157620429993, -0.2631377875804901, 0.8871029019355774, 0.22752606868743896, 0.844460666179657, 0.5992541313171387, 0.6784542798995972, 0.1367226243019104, 0.2523828148841858, -0.30590319633483887, 0.3920294940471649, 0.4376082420349121, -1.0401138067245483, -0.42758408188819885, 0.021418681368231773, -0.9703338742256165, -0.14227519929409027, -0.03495011106133461, -0.42617112398147583, 0.7681737542152405, 0.00016589462757110596, -0.4076709747314453, 0.7732734084129333, -0.455583393573761, 0.7562873363494873, -0.4473648965358734, -0.02663906291127205, 0.4699096083641052, -0.7070636749267578, 0.4677430987358093, 0.12878790497779846, 0.6205843091011047, -0.015572631731629372, -0.04078587517142296, 0.7104941606521606, -0.9129160046577454, 0.25438642501831055, -0.6348397135734558, 0.22421300411224365, 0.24246945977210999, 0.51606285572052, 0.5969953536987305, 0.4371243417263031, 0.10119888931512833, -0.23920902609825134, 0.04115807265043259, -0.8241125345230103, -0.210506409406662, 0.697515606880188, -0.7186890840530396, -0.6864197850227356, -1.2355337142944336, 0.14438660442829132, 0.27347055077552795, 0.389305055141449, 0.7959296107292175, 0.571408748626709, 0.1289544403553009, 0.680525004863739, 0.9888588190078735, -0.0688566341996193, 0.9166924357414246, 0.3224477171897888, 0.09175168722867966, -0.21944808959960938, 0.7036820650100708, 0.26627904176712036, -0.24707956612110138, -0.11939732730388641, 0.20913465321063995, -0.11069409549236298, -0.591761589050293, -0.49990686774253845, 0.3701757788658142, -0.6731787919998169, -0.18303893506526947, -0.6243735551834106, -0.6043769717216492, -0.511759340763092, 0.06927360594272614, -0.7147687673568726, 0.23979046940803528, -0.7753565907478333, -0.10574902594089508, 0.04323432594537735, 0.9792009592056274, -0.589311957359314, 0.5805224180221558, -1.1218582391738892, 0.19345788657665253, -0.07949887961149216, 0.7921058535575867, 0.21395787596702576, -0.7344395518302917, -0.3975418508052826, -0.11592631042003632, -0.3729911744594574, -1.3576762676239014, 0.21404948830604553, -0.2454141080379486, 0.23094046115875244, 0.6145404577255249, 0.1397707313299179, 0.5258248448371887, -0.34326282143592834, 0.7029101848602295, -0.057017259299755096, -0.7069286704063416, 0.7934495210647583, -0.5026894807815552, 0.4963534474372864, 0.9765996932983398, 0.5333835482597351, -0.7984007596969604, 0.035741209983825684, -1.041123390197754, -0.6008695363998413, 0.38426393270492554, 0.11928944289684296, -0.03601083159446716, -0.6659559011459351, -0.054019637405872345, -0.16143807768821716, 0.6043745279312134, -1.039069414138794, -0.7858356237411499, 0.2576698362827301, 0.5277302861213684, 0.0816856250166893, -0.5653398633003235, 0.20880667865276337, -0.544416069984436, 1.0657774209976196, 0.45109400153160095, 0.3274499475955963, 0.8406060934066772, 0.46492424607276917, -0.3823164403438568, 0.09252490103244781, 0.7662695050239563, 0.6666232347488403, -0.5239797830581665, -0.2908027470111847, -0.08827541768550873, -0.9143403768539429, 0.05927472561597824, 0.11168918758630753, -0.013455932028591633, 0.9082110524177551, 0.5793083310127258, 0.2539709210395813, 0.4514279365539551, -0.726460337638855, 0.8859451413154602, -0.14954176545143127, -0.12472866475582123, -1.0677239894866943, 0.1948619782924652, -0.23984959721565247, 0.5006402134895325, 1.0061326026916504, 0.5250048041343689, -0.047630298882722855, -0.8143380880355835, -0.01473585981875658, 0.6939172148704529, -0.7091123461723328, -0.17449834942817688, 0.944853663444519, 0.3847099542617798, -1.2953051328659058, 1.106776475906372, -0.5381771326065063, -0.560332179069519, 0.9121301770210266, 0.522956907749176, 1.1221847534179688, -0.44204121828079224, 0.0008676342549733818, 0.2662237286567688, 0.41378432512283325, 0.5423170328140259, 1.0869629383087158, 0.431413471698761, -0.7931063771247864, 0.8826584815979004, -0.24776044487953186, -0.40361151099205017, -0.05347571521997452, -0.42859897017478943, 0.16892178356647491, -0.4406192898750305, -0.10713007301092148, -0.3444187641143799, 0.28543180227279663, -0.7072042226791382, 0.42807620763778687, -0.0838567465543747, 0.8653068542480469, -0.8553727269172668, 0.47207626700401306, 0.635470449924469, -0.3337355852127075, -0.8508191108703613, -0.26198428869247437, -0.11448462307453156, -0.6389466524124146, 0.30214807391166687, -0.4554102420806885, 0.044398851692676544, 0.09623463451862335, -0.649151623249054, -1.1778275966644287, 0.9093633890151978, -0.639612078666687, -0.2784462869167328, 0.20464053750038147, -0.11514760553836823, 0.28811705112457275, -0.2524643540382385, 0.010661216452717781, 0.41876548528671265, 0.748940110206604, 0.2844654619693756, -0.7727053761482239, -0.3694884479045868, 0.0015032943338155746, -0.44474777579307556, 0.7582978010177612, -0.6002101898193359, 1.1840779781341553, -0.5563543438911438, -0.059654366225004196, 0.44384512305259705, 0.24690914154052734, 0.21076197922229767, 0.6629220843315125, 0.1442081481218338, 0.7282265424728394, 1.07012140750885, -0.40835219621658325, 0.8811809420585632, 0.26432839035987854, 0.47430819272994995, 0.7238501906394958, -0.6487724781036377, 0.7513749003410339, 0.31810489296913147, -0.5682924389839172, 0.9228013753890991, 1.2906063795089722, -0.15699204802513123, 0.8079374432563782, 0.05136508867144585, -1.081600546836853, 0.325833261013031, -0.20724765956401825, -0.7530064582824707, 0.3150254189968109, 0.19055864214897156, -0.6920982599258423, -0.5770308971405029, -0.24046507477760315, -0.35662803053855896, -0.11552901566028595, -0.7631728649139404, 0.6720563769340515, -0.016969164833426476, -0.5103683471679688, 0.18857547640800476, 0.2877499461174011, 0.17368432879447937, -0.5235732793807983, -0.02939440682530403, -0.22823619842529297, 0.2660655975341797, -0.5670853853225708, -0.5234526991844177, 0.5724433064460754, -0.32430219650268555, -0.5343255400657654, 0.18147465586662292, 0.763587236404419, -0.16923809051513672, -0.4515409469604492, 0.32472723722457886, 0.6959525346755981, 0.1665852814912796, 0.4250282347202301, -0.23511263728141785, 0.24480605125427246, -0.08044824004173279, -0.06651552021503448, 0.27714768052101135, 0.3449169099330902, 0.22435641288757324, 0.4450142979621887, 0.43285664916038513, -0.01808755099773407, -0.10736498981714249, -0.382819801568985, 0.4124940037727356, -0.9542785882949829, -0.5713282823562622, -0.6307113766670227, 0.2740660607814789, -0.02315417304635048, -1.0836423635482788, 0.4145168364048004, 1.4406683444976807, 1.0359982252120972, -0.4756383001804352, 1.067226529121399, -0.21818485856056213, 0.9594791531562805, 0.41483086347579956, 0.5420440435409546, -0.6030411720275879, 0.03835370019078255, -0.4364396035671234, -1.076962947845459, -0.35716333985328674, 0.4539391100406647, -0.022899555042386055, -0.3429867625236511, 0.872571587562561, 0.5887166261672974, -0.33473607897758484, -0.11728022992610931, 0.048487238585948944, -0.029941488057374954, -0.12433847039937973, 0.5145376324653625, 0.7648399472236633, -0.9344304800033569, -0.10680416971445084, -0.21577754616737366, -0.6382725834846497, -0.5047279000282288, -0.9632009267807007, -0.12959396839141846, -0.16037796437740326, 0.035343267023563385, -0.5662806630134583, 0.00255737011320889, 1.208324909210205, 0.5684957504272461, -1.1113994121551514, -0.5303789377212524, 0.3371853232383728, 0.3920421898365021, -0.1874791383743286, -0.24202413856983185, 0.2984568774700165, 0.15382249653339386, -0.5908876657485962, 0.6875665783882141, 0.8089625239372253, 0.208888977766037, 0.19554761052131653, 0.15893013775348663, -0.8229473829269409, -0.14913435280323029, 0.17440445721149445, 0.9450570344924927, -0.939853310585022, -0.7114843130111694, -0.03168516233563423, -0.27094873785972595, -0.05765746906399727, 0.17102102935314178, -0.4046344757080078, 0.5180677175521851, 0.34591493010520935, 0.49933457374572754, 0.0561608150601387, -0.054746925830841064, 0.5409556031227112, -0.9069057703018188, 0.09425963461399078, 0.4134361147880554, 0.4154115319252014, -0.4000864028930664, -0.5910194516181946, 0.6713420748710632, 1.0073972940444946, -0.6594868898391724, -0.8743268847465515, -0.19846712052822113, -1.0016002655029297, 0.04189709946513176, 0.6762762069702148, 0.5009527802467346, -0.4806513786315918, -0.4174500107765198, -0.5617399215698242, -0.1254672110080719, -0.1369970738887787, 0.7621601819992065, 1.179680585861206, -0.7432094812393188, 0.07975747436285019, -1.038639783859253, 0.6594986915588379, -0.2419457733631134, -0.3457581698894501, -0.48644304275512695, 0.3832802176475525, 0.35236993432044983, 0.440481036901474, 0.614812433719635, 0.1408471167087555, 0.8338426351547241, 0.3126053214073181, -0.1702686995267868, 0.2698982357978821, -0.4559200704097748, -0.028932858258485794, -0.057962555438280106, 0.31015971302986145, -1.0262157917022705 ]
huggingface/CodeBERTa-language-id
huggingface
"2022-09-09T16:42:28Z"
54,210
28
transformers
[ "transformers", "pytorch", "tf", "jax", "rust", "roberta", "text-classification", "code", "dataset:code_search_net", "arxiv:1909.09436", "endpoints_compatible", "region:us" ]
text-classification
"2022-03-02T23:29:05Z"
--- language: code thumbnail: https://cdn-media.huggingface.co/CodeBERTa/CodeBERTa.png datasets: - code_search_net --- # CodeBERTa-language-id: The World’s fanciest programming language identification algo 🤯 To demonstrate the usefulness of our CodeBERTa pretrained model on downstream tasks beyond language modeling, we fine-tune the [`CodeBERTa-small-v1`](https://huggingface.co/huggingface/CodeBERTa-small-v1) checkpoint on the task of classifying a sample of code into the programming language it's written in (*programming language identification*). We add a sequence classification head on top of the model. On the evaluation dataset, we attain an eval accuracy and F1 > 0.999 which is not surprising given that the task of language identification is relatively easy (see an intuition why, below). ## Quick start: using the raw model ```python CODEBERTA_LANGUAGE_ID = "huggingface/CodeBERTa-language-id" tokenizer = RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID) model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID) input_ids = tokenizer.encode(CODE_TO_IDENTIFY) logits = model(input_ids)[0] language_idx = logits.argmax() # index for the resulting label ``` ## Quick start: using Pipelines 💪 ```python from transformers import TextClassificationPipeline pipeline = TextClassificationPipeline( model=RobertaForSequenceClassification.from_pretrained(CODEBERTA_LANGUAGE_ID), tokenizer=RobertaTokenizer.from_pretrained(CODEBERTA_LANGUAGE_ID) ) pipeline(CODE_TO_IDENTIFY) ``` Let's start with something very easy: ```python pipeline(""" def f(x): return x**2 """) # [{'label': 'python', 'score': 0.9999965}] ``` Now let's probe shorter code samples: ```python pipeline("const foo = 'bar'") # [{'label': 'javascript', 'score': 0.9977546}] ``` What if I remove the `const` token from the assignment? ```python pipeline("foo = 'bar'") # [{'label': 'javascript', 'score': 0.7176245}] ``` For some reason, this is still statistically detected as JS code, even though it's also valid Python code. However, if we slightly tweak it: ```python pipeline("foo = u'bar'") # [{'label': 'python', 'score': 0.7638422}] ``` This is now detected as Python (Notice the `u` string modifier). Okay, enough with the JS and Python domination already! Let's try fancier languages: ```python pipeline("echo $FOO") # [{'label': 'php', 'score': 0.9995257}] ``` (Yes, I used the word "fancy" to describe PHP 😅) ```python pipeline("outcome := rand.Intn(6) + 1") # [{'label': 'go', 'score': 0.9936151}] ``` Why is the problem of language identification so easy (with the correct toolkit)? Because code's syntax is rigid, and simple tokens such as `:=` (the assignment operator in Go) are perfect predictors of the underlying language: ```python pipeline(":=") # [{'label': 'go', 'score': 0.9998052}] ``` By the way, because we trained our own custom tokenizer on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset, and it handles streams of bytes in a very generic way, syntactic constructs such `:=` are represented by a single token: ```python self.tokenizer.encode(" :=", add_special_tokens=False) # [521] ``` <br> ## Fine-tuning code <details> ```python import gzip import json import logging import os from pathlib import Path from typing import Dict, List, Tuple import numpy as np import torch from sklearn.metrics import f1_score from tokenizers.implementations.byte_level_bpe import ByteLevelBPETokenizer from tokenizers.processors import BertProcessing from torch.nn.utils.rnn import pad_sequence from torch.utils.data import DataLoader, Dataset from torch.utils.data.dataset import Dataset from torch.utils.tensorboard.writer import SummaryWriter from tqdm import tqdm, trange from transformers import RobertaForSequenceClassification from transformers.data.metrics import acc_and_f1, simple_accuracy logging.basicConfig(level=logging.INFO) CODEBERTA_PRETRAINED = "huggingface/CodeBERTa-small-v1" LANGUAGES = [ "go", "java", "javascript", "php", "python", "ruby", ] FILES_PER_LANGUAGE = 1 EVALUATE = True # Set up tokenizer tokenizer = ByteLevelBPETokenizer("./pretrained/vocab.json", "./pretrained/merges.txt",) tokenizer._tokenizer.post_processor = BertProcessing( ("</s>", tokenizer.token_to_id("</s>")), ("<s>", tokenizer.token_to_id("<s>")), ) tokenizer.enable_truncation(max_length=512) # Set up Tensorboard tb_writer = SummaryWriter() class CodeSearchNetDataset(Dataset): examples: List[Tuple[List[int], int]] def __init__(self, split: str = "train"): """ train | valid | test """ self.examples = [] src_files = [] for language in LANGUAGES: src_files += list( Path("../CodeSearchNet/resources/data/").glob(f"{language}/final/jsonl/{split}/*.jsonl.gz") )[:FILES_PER_LANGUAGE] for src_file in src_files: label = src_file.parents[3].name label_idx = LANGUAGES.index(label) print("🔥", src_file, label) lines = [] fh = gzip.open(src_file, mode="rt", encoding="utf-8") for line in fh: o = json.loads(line) lines.append(o["code"]) examples = [(x.ids, label_idx) for x in tokenizer.encode_batch(lines)] self.examples += examples print("🔥🔥") def __len__(self): return len(self.examples) def __getitem__(self, i): # We’ll pad at the batch level. return self.examples[i] model = RobertaForSequenceClassification.from_pretrained(CODEBERTA_PRETRAINED, num_labels=len(LANGUAGES)) train_dataset = CodeSearchNetDataset(split="train") eval_dataset = CodeSearchNetDataset(split="test") def collate(examples): input_ids = pad_sequence([torch.tensor(x[0]) for x in examples], batch_first=True, padding_value=1) labels = torch.tensor([x[1] for x in examples]) # ^^ uncessary .unsqueeze(-1) return input_ids, labels train_dataloader = DataLoader(train_dataset, batch_size=256, shuffle=True, collate_fn=collate) batch = next(iter(train_dataloader)) model.to("cuda") model.train() for param in model.roberta.parameters(): param.requires_grad = False ## ^^ Only train final layer. print(f"num params:", model.num_parameters()) print(f"num trainable params:", model.num_parameters(only_trainable=True)) def evaluate(): eval_loss = 0.0 nb_eval_steps = 0 preds = np.empty((0), dtype=np.int64) out_label_ids = np.empty((0), dtype=np.int64) model.eval() eval_dataloader = DataLoader(eval_dataset, batch_size=512, collate_fn=collate) for step, (input_ids, labels) in enumerate(tqdm(eval_dataloader, desc="Eval")): with torch.no_grad(): outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda")) loss = outputs[0] logits = outputs[1] eval_loss += loss.mean().item() nb_eval_steps += 1 preds = np.append(preds, logits.argmax(dim=1).detach().cpu().numpy(), axis=0) out_label_ids = np.append(out_label_ids, labels.detach().cpu().numpy(), axis=0) eval_loss = eval_loss / nb_eval_steps acc = simple_accuracy(preds, out_label_ids) f1 = f1_score(y_true=out_label_ids, y_pred=preds, average="macro") print("=== Eval: loss ===", eval_loss) print("=== Eval: acc. ===", acc) print("=== Eval: f1 ===", f1) # print(acc_and_f1(preds, out_label_ids)) tb_writer.add_scalars("eval", {"loss": eval_loss, "acc": acc, "f1": f1}, global_step) ### Training loop global_step = 0 train_iterator = trange(0, 4, desc="Epoch") optimizer = torch.optim.AdamW(model.parameters()) for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration") for step, (input_ids, labels) in enumerate(epoch_iterator): optimizer.zero_grad() outputs = model(input_ids=input_ids.to("cuda"), labels=labels.to("cuda")) loss = outputs[0] loss.backward() tb_writer.add_scalar("training_loss", loss.item(), global_step) optimizer.step() global_step += 1 if EVALUATE and global_step % 50 == 0: evaluate() model.train() evaluate() os.makedirs("./models/CodeBERT-language-id", exist_ok=True) model.save_pretrained("./models/CodeBERT-language-id") ``` </details> <br> ## CodeSearchNet citation <details> ```bibtex @article{husain_codesearchnet_2019, title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}}, shorttitle = {{CodeSearchNet} {Challenge}}, url = {http://arxiv.org/abs/1909.09436}, urldate = {2020-03-12}, journal = {arXiv:1909.09436 [cs, stat]}, author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc}, month = sep, year = {2019}, note = {arXiv: 1909.09436}, } ``` </details>
[ -0.2342505156993866, -0.47444334626197815, 0.24754983186721802, 0.12358662486076355, -0.1757413148880005, 0.17684900760650635, -0.4365960955619812, -0.1307235062122345, 0.1074996143579483, 0.14269579946994781, -0.315243661403656, -0.7241467237472534, -0.518037736415863, -0.15181799232959747, -0.3693622350692749, 1.2573878765106201, -0.14921455085277557, -0.023949269205331802, 0.061804674565792084, -0.16355574131011963, -0.23020610213279724, -0.5332778096199036, -0.7762863636016846, -0.2510344386100769, 0.3854525685310364, 0.17051063477993011, 0.44847410917282104, 0.6470673680305481, 0.4536847174167633, 0.42655491828918457, 0.04416181147098541, 0.03579605743288994, -0.4248828589916229, -0.2467411756515503, 0.1386253535747528, -0.6795564889907837, -0.2402850240468979, -0.018088599666953087, 0.5541538000106812, 0.5024368762969971, 0.13797764480113983, 0.38577795028686523, -0.028188293799757957, 0.6164343357086182, -0.47264185547828674, 0.25284725427627563, -0.4849766492843628, -0.046258389949798584, -0.2462480515241623, -0.23495762050151825, -0.3469593822956085, -0.42123204469680786, 0.013869615271687508, -0.513738751411438, 0.49604520201683044, -0.1673557460308075, 1.188722848892212, 0.180814728140831, -0.15480607748031616, -0.40852436423301697, -0.4983111619949341, 0.8008593916893005, -0.8021379709243774, 0.2122533768415451, 0.1711893379688263, 0.008563941344618797, -0.044519685208797455, -1.0940955877304077, -0.5476040840148926, -0.08408377319574356, -0.07061350345611572, 0.10181951522827148, -0.055290330201387405, -0.01865440607070923, 0.35624316334724426, 0.3571958839893341, -0.7188318967819214, -0.01714853197336197, -0.705152153968811, -0.33872732520103455, 0.6422926783561707, 0.14925634860992432, 0.3622235953807831, -0.16883833706378937, -0.2538315951824188, -0.28570228815078735, -0.3896419405937195, 0.40880969166755676, 0.4580184817314148, 0.29939961433410645, -0.32053688168525696, 0.44879165291786194, -0.17535342276096344, 0.6902096271514893, 0.07530906051397324, -0.15765970945358276, 0.6219117641448975, -0.2564380168914795, -0.36146280169487, -0.003213407238945365, 1.103386640548706, 0.2764401137828827, 0.21380700170993805, -0.11406292766332626, -0.14505726099014282, 0.030690252780914307, -0.03751613199710846, -0.7915765643119812, -0.5738193392753601, 0.41058462858200073, -0.36650994420051575, -0.40540632605552673, 0.09463795274496078, -0.6010295152664185, -0.10879082977771759, -0.03174903243780136, 0.7218641638755798, -0.6022560000419617, -0.09324199706315994, 0.08683730661869049, -0.2647820711135864, 0.27818891406059265, -0.04698500409722328, -0.8975707292556763, -0.02250611037015915, 0.48596811294555664, 0.925155758857727, 0.08978275209665298, -0.4858505129814148, -0.45428362488746643, -0.30259084701538086, -0.33152714371681213, 0.3301241993904114, -0.2329145222902298, -0.15440917015075684, -0.26184409856796265, 0.15364743769168854, -0.38187795877456665, -0.4495273530483246, 0.3466278612613678, -0.5274096727371216, 0.3149019479751587, -0.04684893414378166, -0.42087751626968384, -0.21769072115421295, -0.016477681696414948, -0.4535476267337799, 1.2088561058044434, 0.36904847621917725, -0.8467664122581482, 0.20404022932052612, -0.44980326294898987, -0.3279745280742645, -0.01880779303610325, -0.13359585404396057, -0.6007543206214905, -0.023178227245807648, 0.19599397480487823, 0.4719862639904022, -0.15967486798763275, 0.3323917090892792, -0.062483735382556915, -0.5753105878829956, 0.3430672883987427, -0.36001789569854736, 1.1015952825546265, 0.32716649770736694, -0.5010271072387695, 0.2215745896100998, -0.8256881237030029, 0.34322917461395264, 0.13703277707099915, -0.56903076171875, 0.04248690977692604, -0.20527125895023346, 0.14702108502388, 0.1866893768310547, 0.2629866302013397, -0.29564616084098816, 0.26872214674949646, -0.42642834782600403, 0.6305181384086609, 0.7289850115776062, -0.15695901215076447, 0.28006672859191895, -0.27912506461143494, 0.4587268531322479, 0.032014451920986176, 0.0009255975019186735, -0.09840493649244308, -0.5377925634384155, -0.9245063662528992, -0.3690980076789856, 0.4640047550201416, 0.5118737816810608, -0.7858635783195496, 0.5355406403541565, -0.38895711302757263, -0.7608509659767151, -0.5759753584861755, 0.06935258954763412, 0.42453181743621826, 0.5760000944137573, 0.3688673675060272, -0.2758752703666687, -0.7523511052131653, -0.6206253170967102, -0.09345836937427521, -0.18000903725624084, -0.11834903061389923, 0.08557000011205673, 0.6480815410614014, -0.3093176782131195, 0.737032413482666, -0.5193434357643127, -0.1255412995815277, -0.2881142199039459, 0.09808772802352905, 0.6988878846168518, 0.8689085245132446, 0.5640932321548462, -0.41790953278541565, -0.5533550381660461, -0.030632533133029938, -0.7934911251068115, -0.0070402976125478745, -0.2991243898868561, -0.2860107123851776, 0.27219775319099426, 0.4655570089817047, -0.42434486746788025, 0.37374675273895264, 0.4021269977092743, -0.31582412123680115, 0.5403953194618225, -0.30398592352867126, 0.12339012324810028, -1.0414377450942993, 0.26399901509284973, -0.030503442510962486, 0.04743962734937668, -0.6101495623588562, 0.13394585251808167, 0.12552811205387115, -0.06060786545276642, -0.5576593279838562, 0.43183180689811707, -0.3074287176132202, 0.21530331671237946, 0.14097250998020172, 0.06963666528463364, 0.011990412138402462, 0.7571256160736084, -0.039761945605278015, 0.7174153923988342, 0.8705595135688782, -0.6592493653297424, 0.5057684183120728, 0.020287200808525085, -0.36242151260375977, 0.1327323168516159, -0.6656623482704163, 0.24539393186569214, -0.05835600197315216, 0.03054317831993103, -1.1567316055297852, -0.1412116438150406, 0.3644062280654907, -0.7973954677581787, 0.37745392322540283, -0.4281668961048126, -0.24856607615947723, -0.5121714472770691, -0.46555542945861816, 0.37237486243247986, 0.5759268403053284, -0.6296262741088867, 0.44505512714385986, 0.09940964728593826, 0.24447409808635712, -0.7265992760658264, -0.7331680655479431, -0.17394454777240753, -0.3068688213825226, -0.565281093120575, 0.31446123123168945, -0.15122097730636597, 0.06442703306674957, -0.0815959945321083, -0.193377286195755, -0.1976408064365387, 0.07542812824249268, 0.19200649857521057, 0.4819266200065613, -0.2641340494155884, 0.011241245083510876, -0.2105712890625, -0.12397411465644836, 0.15629073977470398, -0.47784504294395447, 0.791562557220459, -0.40253281593322754, -0.041233837604522705, -0.5110122561454773, -0.05860426276922226, 0.48779746890068054, -0.21244877576828003, 0.8159254193305969, 1.0266828536987305, -0.31086501479148865, -0.11904973536729813, -0.2199137806892395, 0.12131915241479874, -0.5472592115402222, 0.5471588969230652, -0.4390731155872345, -0.49379709362983704, 0.7066434025764465, 0.28346624970436096, -0.0470728874206543, 0.6313435435295105, 0.5707170367240906, -0.06567976623773575, 0.8290590047836304, 0.29736143350601196, -0.20472823083400726, 0.4796430766582489, -1.0369083881378174, 0.2757367789745331, -0.7415308356285095, -0.3217255175113678, -0.6258670687675476, -0.28613752126693726, -0.7401420474052429, -0.45212599635124207, 0.23501302301883698, 0.3393176794052124, -0.39865928888320923, 0.4487500488758087, -0.7796453833580017, 0.35975322127342224, 0.7476481795310974, 0.23344853520393372, -0.1808309108018875, -0.06541497260332108, -0.2024773806333542, -0.01687037944793701, -0.7311562895774841, -0.4514647126197815, 1.3808406591415405, 0.19924136996269226, 0.7882718443870544, -0.18124955892562866, 0.8905373811721802, 0.004985539708286524, 0.13982786238193512, -0.7096173763275146, 0.5369834899902344, -0.015273521654307842, -0.4717221260070801, -0.14118236303329468, -0.48796555399894714, -0.9312036633491516, 0.1099407970905304, 0.017641320824623108, -0.9372813105583191, 0.030727747827768326, 0.0782429426908493, -0.31953561305999756, 0.38789403438568115, -0.9047895669937134, 1.0761727094650269, -0.2767253518104553, -0.5141624212265015, 0.1930190920829773, -0.5637163519859314, 0.2572871744632721, 0.020411435514688492, 0.08407022058963776, 0.09450912475585938, 0.13167575001716614, 1.2175670862197876, -0.5883938074111938, 0.5657746195793152, -0.23609869182109833, 0.07228195667266846, 0.44956174492836, -0.15254047513008118, 0.40117740631103516, 0.07857386022806168, -0.11361082643270493, 0.2844734489917755, 0.1037532165646553, -0.441494882106781, -0.4637531638145447, 0.7925167679786682, -0.9420292377471924, -0.31850820779800415, -0.47962382435798645, -0.4331478476524353, 0.10600105673074722, 0.32389768958091736, 0.6658465266227722, 0.7104242444038391, 0.2694579064846039, 0.1960463970899582, 0.48108401894569397, -0.3814777433872223, 0.699225902557373, 0.112888403236866, -0.14184559881687164, -0.4717458486557007, 1.2395100593566895, 0.11823712289333344, 0.13367240130901337, 0.3321642279624939, 0.10512933135032654, -0.33206766843795776, -0.5494632720947266, -0.5022945404052734, 0.22472776472568512, -0.8365932106971741, -0.26825863122940063, -0.6127154231071472, -0.37436267733573914, -0.5104783773422241, -0.3254201114177704, -0.41662904620170593, -0.37763190269470215, -0.40415534377098083, 0.06111416965723038, 0.391888290643692, 0.3761154115200043, -0.12093508243560791, 0.32019034028053284, -0.6203343868255615, 0.28631699085235596, 0.1453520953655243, 0.37255993485450745, 0.002030489034950733, -0.6597660183906555, -0.4688551127910614, 0.047038815915584564, -0.22038795053958893, -0.6754879951477051, 0.5724111199378967, 0.08128516376018524, 0.4842740297317505, 0.32834309339523315, 0.03175438940525055, 0.7239898443222046, -0.17278362810611725, 0.8725745677947998, 0.10804958641529083, -1.0904194116592407, 0.5022150874137878, -0.09043312072753906, 0.2454020380973816, 0.3995019197463989, 0.4261332154273987, -0.5725864171981812, -0.4154152572154999, -0.6284720301628113, -1.0929181575775146, 0.9746991991996765, 0.2633020877838135, -0.02952335961163044, 0.05630803480744362, 0.20383188128471375, -0.06126008927822113, 0.09846646338701248, -0.8299383521080017, -0.5976082682609558, -0.2923039495944977, -0.42519479990005493, -0.16055944561958313, 0.1704990267753601, -0.018507927656173706, -0.5404540300369263, 0.7952260375022888, -0.05993715673685074, 0.6160145401954651, 0.2694745361804962, -0.28055059909820557, 0.11243202537298203, -0.018271030858159065, 0.49313730001449585, 0.603483259677887, -0.36858898401260376, 0.17815984785556793, 0.0998210534453392, -0.6076455116271973, 0.15216058492660522, 0.043980274349451065, -0.13650977611541748, 0.13347545266151428, 0.4914107620716095, 0.7834339141845703, -0.04585675522685051, -0.5039477348327637, 0.38174116611480713, -0.17185945808887482, -0.17024101316928864, -0.29141029715538025, 0.2409917563199997, 0.10377775132656097, 0.16378258168697357, 0.45516520738601685, 0.2664150297641754, -0.16395846009254456, -0.4053328335285187, 0.10882303863763809, 0.31885191798210144, -0.22688761353492737, -0.3134891986846924, 0.969730794429779, -0.006211880128830671, -0.37583282589912415, 0.7349653840065002, -0.18968895077705383, -0.7050580978393555, 0.9504067897796631, 0.4267953336238861, 0.9433347582817078, 0.16577793657779694, 0.13424624502658844, 0.7057586312294006, 0.35467633605003357, 0.03684940189123154, 0.24244040250778198, -0.08857575058937073, -0.6167837977409363, -0.10001625120639801, -0.5688940286636353, -0.0621497705578804, 0.25306782126426697, -0.5970357656478882, 0.31495553255081177, -0.5316542387008667, -0.10835843533277512, 0.13955603539943695, 0.23871374130249023, -0.9586660265922546, 0.2545511722564697, 0.16104154288768768, 0.6939053535461426, -0.8189786076545715, 0.9435467720031738, 0.535812258720398, -0.6084290742874146, -1.0538321733474731, -0.14371386170387268, -0.2395337074995041, -0.7919655442237854, 0.7113016247749329, 0.3549138605594635, 0.0942092016339302, 0.2438950538635254, -0.6196972727775574, -0.9394357204437256, 1.0305713415145874, 0.29682743549346924, -0.2442440539598465, -0.01145134586840868, 0.009447597898542881, 0.6119033694267273, -0.10604540258646011, 0.5883136987686157, 0.6339157819747925, 0.3693351447582245, -0.222476989030838, -0.7584750652313232, 0.1302976906299591, -0.391589879989624, -0.030658967792987823, 0.0755561888217926, -0.6347777843475342, 1.1291182041168213, -0.43672463297843933, -0.1697302609682083, 0.018081028014421463, 0.5696771144866943, 0.2776980400085449, 0.3066920042037964, 0.19030338525772095, 0.5855583548545837, 0.8321976661682129, -0.3279532790184021, 0.9125211238861084, -0.37651416659355164, 0.7430393695831299, 0.7860033512115479, 0.23752740025520325, 0.582825243473053, 0.4173832833766937, -0.4243868887424469, 0.5102290511131287, 0.692244827747345, -0.16729600727558136, 0.5126664638519287, 0.3721679151058197, -0.15332233905792236, 0.15646612644195557, 0.3525392413139343, -0.5536711812019348, 0.4175117313861847, 0.23656897246837616, -0.4538038969039917, -0.03271174803376198, 0.01290382444858551, 0.17620272934436798, -0.22809723019599915, -0.12800166010856628, 0.39117518067359924, -0.24096234142780304, -0.7027032971382141, 1.2153726816177368, 0.11995436996221542, 0.953150749206543, -0.5732054710388184, 0.20262888073921204, -0.251510888338089, 0.3433433771133423, -0.4129953980445862, -0.6354891657829285, 0.06695550680160522, -0.06642403453588486, -0.08000878244638443, -0.061971936374902725, 0.2796337604522705, -0.5237802267074585, -0.46748387813568115, 0.1858919858932495, 0.17530323565006256, 0.3715943396091461, 0.14566132426261902, -0.692023754119873, 0.28690117597579956, 0.2875775694847107, -0.4211423993110657, 0.23999248445034027, 0.2924247086048126, 0.19679440557956696, 0.6219175457954407, 0.6308703422546387, 0.04429225996136665, 0.45321401953697205, -0.1533445417881012, 0.862822949886322, -0.7019868493080139, -0.2557932138442993, -0.7997791171073914, 0.5413457155227661, 0.08894078433513641, -0.6225484609603882, 0.7259786128997803, 0.8892272710800171, 1.1957097053527832, -0.3306134343147278, 0.8154046535491943, -0.46892592310905457, 0.05354743078351021, -0.5715323686599731, 0.7972021102905273, -0.4389975368976593, 0.2245870977640152, -0.25955483317375183, -0.6335070133209229, -0.15065841376781464, 0.7568414807319641, -0.23288202285766602, 0.11548745632171631, 0.7745777368545532, 1.0384653806686401, 0.036042749881744385, -0.4056345522403717, 0.04851986840367317, 0.06783262640237808, 0.4713693857192993, 0.9671160578727722, 0.49307531118392944, -0.9843229651451111, 0.739415168762207, -0.7004543542861938, -0.049405213445425034, -0.10422269254922867, -0.5888689160346985, -0.8822117447853088, -0.7572194933891296, -0.5333050489425659, -0.6901077032089233, -0.14608977735042572, 0.9427340626716614, 0.640442967414856, -0.8626581430435181, -0.2905389666557312, -0.1578502058982849, 0.27474260330200195, -0.3207114040851593, -0.33033624291419983, 0.6831614971160889, -0.45618879795074463, -1.015799880027771, 0.1935746818780899, -0.12592005729675293, -0.08498366922140121, 0.07749461382627487, -0.2120608687400818, -0.2985309362411499, -0.23250891268253326, 0.2788707911968231, 0.4062700569629669, -0.5136650800704956, -0.19982938468456268, -0.057669200003147125, -0.33007270097732544, 0.2080203890800476, 0.5452263355255127, -0.9253391027450562, 0.570584237575531, 0.6175642013549805, 0.5035262107849121, 0.5833186507225037, -0.23223428428173065, 0.22876045107841492, -0.7600715756416321, 0.28483715653419495, 0.07565291970968246, 0.4000256657600403, 0.1897304505109787, -0.28825509548187256, 0.6249017715454102, 0.4903111457824707, -0.5579499006271362, -0.9404283761978149, -0.32744377851486206, -1.0226870775222778, -0.07441941648721695, 0.969598650932312, -0.31425589323043823, -0.39030590653419495, 0.025975828990340233, -0.3047691881656647, 0.5714832544326782, -0.251747727394104, 0.6886220574378967, 0.43352335691452026, -0.06206652522087097, 0.05606675520539284, -0.4083843231201172, 0.465604305267334, 0.2163737714290619, -0.5537384748458862, -0.1739969551563263, 0.11722816526889801, 0.5678194165229797, 0.27283552289009094, 0.7861162424087524, 0.041242364794015884, 0.28350523114204407, 0.17485295236110687, 0.18957963585853577, -0.2159932553768158, -0.08174335956573486, -0.3882453739643097, 0.1061696782708168, -0.14607977867126465, -0.5781944394111633 ]
dccuchile/bert-base-spanish-wwm-cased
dccuchile
"2022-05-31T15:01:30Z"
53,785
39
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "masked-lm", "es", "arxiv:1904.09077", "arxiv:1906.01502", "arxiv:1812.10464", "arxiv:1901.07291", "arxiv:1904.02099", "arxiv:1906.01569", "arxiv:1908.11828", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
fill-mask
"2022-03-02T23:29:05Z"
--- language: - es tags: - masked-lm --- # BETO: Spanish BERT BETO is a [BERT model](https://github.com/google-research/bert) trained on a [big Spanish corpus](https://github.com/josecannete/spanish-corpora). BETO is of size similar to a BERT-Base and was trained with the Whole Word Masking technique. Below you find Tensorflow and Pytorch checkpoints for the uncased and cased versions, as well as some results for Spanish benchmarks comparing BETO with [Multilingual BERT](https://github.com/google-research/bert/blob/master/multilingual.md) as well as other (not BERT-based) models. ## Download | | | | | |-|:--------:|:-----:|:----:| |BETO uncased|[tensorflow_weights](https://users.dcc.uchile.cl/~jperez/beto/uncased_2M/tensorflow_weights.tar.gz) | [pytorch_weights](https://users.dcc.uchile.cl/~jperez/beto/uncased_2M/pytorch_weights.tar.gz) | [vocab](./config/uncased_2M/vocab.txt), [config](./config/uncased_2M/config.json) | |BETO cased| [tensorflow_weights](https://users.dcc.uchile.cl/~jperez/beto/cased_2M/tensorflow_weights.tar.gz) | [pytorch_weights](https://users.dcc.uchile.cl/~jperez/beto/cased_2M/pytorch_weights.tar.gz) | [vocab](./config/cased_2M/vocab.txt), [config](./config/cased_2M/config.json) | All models use a vocabulary of about 31k BPE subwords constructed using SentencePiece and were trained for 2M steps. ## Benchmarks The following table shows some BETO results in the Spanish version of every task. We compare BETO (cased and uncased) with the Best Multilingual BERT results that we found in the literature (as of October 2019). The table also shows some alternative methods for the same tasks (not necessarily BERT-based methods). References for all methods can be found [here](#references). |Task | BETO-cased | BETO-uncased | Best Multilingual BERT | Other results | |-------|--------------:|--------------:|--------------------------:|-------------------------------:| |[POS](https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1827) | **98.97** | 98.44 | 97.10 [2] | 98.91 [6], 96.71 [3] | |[NER-C](https://www.kaggle.com/nltkdata/conll-corpora) | [**88.43**](https://github.com/gchaperon/beto-benchmarks/blob/master/conll2002/dev_results_beto-cased_conll2002.txt) | 82.67 | 87.38 [2] | 87.18 [3] | |[MLDoc](https://github.com/facebookresearch/MLDoc) | [95.60](https://github.com/gchaperon/beto-benchmarks/blob/master/MLDoc/dev_results_beto-cased_mldoc.txt) | [**96.12**](https://github.com/gchaperon/beto-benchmarks/blob/master/MLDoc/dev_results_beto-uncased_mldoc.txt) | 95.70 [2] | 88.75 [4] | |[PAWS-X](https://github.com/google-research-datasets/paws/tree/master/pawsx) | 89.05 | 89.55 | 90.70 [8] | |[XNLI](https://github.com/facebookresearch/XNLI) | **82.01** | 80.15 | 78.50 [2] | 80.80 [5], 77.80 [1], 73.15 [4]| ## Example of use For further details on how to use BETO you can visit the [🤗Huggingface Transformers library](https://github.com/huggingface/transformers), starting by the [Quickstart section](https://huggingface.co/transformers/quickstart.html). BETO models can be accessed simply as [`'dccuchile/bert-base-spanish-wwm-cased'`](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) and [`'dccuchile/bert-base-spanish-wwm-uncased'`](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) by using the Transformers library. An example on how to download and use the models in this page can be found in [this colab notebook](https://colab.research.google.com/drive/1uRwg4UmPgYIqGYY4gW_Nsw9782GFJbPt). (We will soon add a more detailed step-by-step tutorial in Spanish for newcommers 😉) ## Acknowledgments We thank [Adereso](https://www.adere.so/) for kindly providing support for traininig BETO-uncased, and the [Millennium Institute for Foundational Research on Data](https://imfd.cl/en/) that provided support for training BETO-cased. Also thanks to Google for helping us with the [TensorFlow Research Cloud](https://www.tensorflow.org/tfrc) program. ## Citation [Spanish Pre-Trained BERT Model and Evaluation Data](https://users.dcc.uchile.cl/~jperez/papers/pml4dc2020.pdf) To cite this resource in a publication please use the following: ``` @inproceedings{CaneteCFP2020, title={Spanish Pre-Trained BERT Model and Evaluation Data}, author={Cañete, José and Chaperon, Gabriel and Fuentes, Rodrigo and Ho, Jou-Hui and Kang, Hojin and Pérez, Jorge}, booktitle={PML4DC at ICLR 2020}, year={2020} } ``` ## License Disclaimer The license CC BY 4.0 best describes our intentions for our work. However we are not sure that all the datasets used to train BETO have licenses compatible with CC BY 4.0 (specially for commercial use). Please use at your own discretion and verify that the licenses of the original text resources match your needs. ## References * [1] [Original Multilingual BERT](https://github.com/google-research/bert/blob/master/multilingual.md) * [2] [Multilingual BERT on "Beto, Bentz, Becas: The Surprising Cross-Lingual Effectiveness of BERT"](https://arxiv.org/pdf/1904.09077.pdf) * [3] [Multilingual BERT on "How Multilingual is Multilingual BERT?"](https://arxiv.org/pdf/1906.01502.pdf) * [4] [LASER](https://arxiv.org/abs/1812.10464) * [5] [XLM (MLM+TLM)](https://arxiv.org/pdf/1901.07291.pdf) * [6] [UDPipe on "75 Languages, 1 Model: Parsing Universal Dependencies Universally"](https://arxiv.org/pdf/1904.02099.pdf) * [7] [Multilingual BERT on "Sequence Tagging with Contextual and Non-Contextual Subword Representations: A Multilingual Evaluation"](https://arxiv.org/pdf/1906.01569.pdf) * [8] [Multilingual BERT on "PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification"](https://arxiv.org/abs/1908.11828)
[ -0.41990160942077637, -0.5484124422073364, 0.2040858268737793, 0.46510329842567444, -0.20356686413288116, 0.08439246565103531, -0.5549192428588867, -0.6128088235855103, 0.3938194513320923, 0.12185465544462204, -0.42057621479034424, -0.5960875153541565, -0.572302520275116, 0.058888029307127, -0.10617407411336899, 1.1967397928237915, -0.13057874143123627, 0.4409618675708771, -0.11205045133829117, -0.029312828555703163, -0.1854330450296402, -0.5898481011390686, -0.6299201846122742, -0.35333430767059326, 0.425861120223999, 0.2268935739994049, 0.6955825090408325, 0.2507283389568329, 0.5288432836532593, 0.37986519932746887, -0.1979987472295761, 0.07750291377305984, -0.2778116464614868, -0.18563714623451233, 0.14637543261051178, -0.37233009934425354, -0.4436677396297455, -0.0913860872387886, 0.5136456489562988, 0.5856948494911194, -0.16226299107074738, -0.03111310862004757, -0.11402245610952377, 0.6096175312995911, -0.27400681376457214, 0.35342857241630554, -0.6308637261390686, 0.01974642649292946, -0.06420977413654327, 0.18995951116085052, -0.4249200224876404, -0.41543200612068176, 0.46767565608024597, -0.6325730085372925, 0.5182284116744995, -0.00575838889926672, 1.3187237977981567, 0.14055152237415314, -0.26590240001678467, -0.5946279168128967, -0.4991587698459625, 0.9665492177009583, -0.7231900691986084, 0.6808004379272461, 0.42627692222595215, 0.29023146629333496, -0.23160012066364288, -0.6558977365493774, -0.5001760721206665, -0.4038597345352173, -0.13112802803516388, 0.40584424138069153, -0.18005622923374176, 0.013194309547543526, 0.08687843382358551, 0.4425524175167084, -0.5105347633361816, 0.017226409167051315, -0.4154159128665924, -0.37444502115249634, 0.6253944039344788, -0.44382810592651367, 0.23934875428676605, -0.357317715883255, -0.5138236880302429, -0.614520251750946, -0.5871644616127014, 0.2878625690937042, 0.47468268871307373, 0.32167157530784607, -0.34555384516716003, 0.3963964283466339, 0.23173263669013977, 0.4832589626312256, -0.1808740645647049, -0.15273314714431763, 0.6382917165756226, -0.33197787404060364, -0.19177694618701935, -0.1374662220478058, 1.0795819759368896, 0.03194841742515564, 0.32745325565338135, -0.45577648282051086, -0.03582705929875374, -0.3034617006778717, 0.2785069942474365, -0.7435782551765442, -0.11802606284618378, 0.3856279253959656, -0.4315071403980255, -0.09701406955718994, -0.021831238642334938, -0.7457494735717773, 0.10847104340791702, -0.17550428211688995, 0.47329196333885193, -0.8033515810966492, -0.05460838973522186, 0.1842477172613144, -0.057122793048620224, 0.4059891998767853, 0.16485796868801117, -0.8457226753234863, 0.16043265163898468, 0.4792229235172272, 0.8422905802726746, -0.12200015783309937, -0.3668338656425476, -0.00012613568105734885, -0.22892948985099792, -0.3936030864715576, 0.575506329536438, -0.003424856811761856, -0.28870412707328796, 0.20029015839099884, 0.279864639043808, -0.27593913674354553, -0.3703601658344269, 1.0093902349472046, -0.5071076154708862, 0.6057301759719849, -0.5167241096496582, -0.5230584740638733, -0.2297387570142746, 0.12936809659004211, -0.657514750957489, 1.374495267868042, 0.039682649075984955, -0.7751187682151794, 0.36358803510665894, -0.567203938961029, -0.5716697573661804, -0.2138364315032959, 0.12295942008495331, -0.6264593005180359, -0.06473194062709808, 0.329073041677475, 0.5133907198905945, -0.300896018743515, 0.4896893799304962, -0.2864776849746704, -0.17101389169692993, 0.06244666874408722, -0.11371522396802902, 1.2183356285095215, 0.2924012243747711, -0.4110533595085144, 0.059126757085323334, -0.6895433068275452, -0.06853166967630386, 0.2660789489746094, -0.4501739740371704, -0.19523121416568756, 0.05101969093084335, 0.09177324920892715, 0.2227589190006256, 0.4640935957431793, -0.8182637691497803, 0.010663045570254326, -0.3927907645702362, 0.33701789379119873, 0.5768657922744751, -0.4448893964290619, 0.1546965092420578, -0.4137481153011322, 0.3257664740085602, -0.1902569830417633, 0.37561237812042236, 0.03330785408616066, -0.6386101841926575, -1.0818995237350464, -0.6220211386680603, 0.6413077116012573, 0.7265009880065918, -0.9756631851196289, 0.5347099900245667, -0.4282452464103699, -0.7243872880935669, -0.7833592295646667, -0.04711143299937248, 0.6153079271316528, 0.5539935231208801, 0.5898520350456238, -0.21863551437854767, -0.6669838428497314, -1.0849467515945435, 0.1979532241821289, -0.16968843340873718, -0.25482475757598877, 0.43044036626815796, 0.7242361903190613, -0.1504412591457367, 0.804503321647644, -0.2925887703895569, -0.2507282793521881, -0.10147381573915482, 0.053366001695394516, 0.4470307230949402, 0.4577729403972626, 0.8534935116767883, -0.7204152345657349, -0.5297075510025024, 0.054185885936021805, -0.7776113748550415, 0.1978917121887207, 0.03621270880103111, -0.20029504597187042, 0.36110347509384155, 0.3840189576148987, -0.4791918992996216, -0.009895109571516514, 0.5487473607063293, -0.1674288660287857, 0.5649759769439697, -0.5621470212936401, 0.07432252168655396, -1.2713886499404907, 0.1874191015958786, 0.16355574131011963, -0.10167302191257477, -0.6093771457672119, -0.014393987134099007, 0.10977150499820709, 0.08540356159210205, -0.6505094766616821, 0.5989767909049988, -0.42911702394485474, -0.04043836146593094, 0.2579217553138733, -0.17421399056911469, -0.10588325560092926, 0.748264729976654, 0.23794673383235931, 0.8636702299118042, 0.6320277452468872, -0.43798020482063293, 0.26640599966049194, 0.35534217953681946, -0.48198777437210083, 0.15981246531009674, -1.039323329925537, 0.08133135735988617, -0.027403146028518677, 0.14249897003173828, -0.9906907677650452, -0.0833197683095932, 0.1687999665737152, -0.6183035969734192, 0.5572701096534729, -0.20944929122924805, -0.7122342586517334, -0.5496439933776855, -0.6998539566993713, 0.06339053064584732, 0.5506189465522766, -0.6959394216537476, 0.3260546624660492, 0.3629952371120453, -0.05089093744754791, -0.7481659650802612, -0.6910939812660217, -0.041976653039455414, -0.23378688097000122, -0.7345902323722839, 0.7864828109741211, -0.31145283579826355, 0.08779411017894745, -0.14318080246448517, 0.13827446103096008, -0.1713002473115921, -0.14882102608680725, -0.04389820992946625, 0.5036448240280151, -0.01990164816379547, 0.11379807442426682, 0.02986871637403965, 0.1773221492767334, -0.09274059534072876, -0.011499586515128613, 0.5472730994224548, -0.4257802665233612, 0.016197403892874718, -0.12375989556312561, 0.28371697664260864, 0.5532053709030151, -0.05706634745001793, 0.8501155972480774, 0.8716919422149658, -0.33219000697135925, 0.11251769214868546, -0.5965469479560852, 0.04631970822811127, -0.4498421549797058, 0.2217455953359604, -0.42940962314605713, -0.7828938961029053, 0.8150337338447571, 0.2579193711280823, 0.24101266264915466, 0.5765378475189209, 0.7096531987190247, -0.25145190954208374, 0.7383483648300171, 0.7454332709312439, -0.15700681507587433, 0.690436065196991, -0.49221259355545044, 0.037529218941926956, -0.8004477620124817, -0.4524449408054352, -0.7711125016212463, -0.06651215255260468, -0.9122438430786133, -0.48487696051597595, 0.3388579785823822, 0.12916307151317596, -0.1879435032606125, 0.7494779825210571, -0.44013938307762146, 0.13855287432670593, 0.8906113505363464, 0.23448584973812103, -0.03399756923317909, 0.23942337930202484, -0.48111391067504883, -0.1198311597108841, -0.8897101283073425, -0.4287218451499939, 1.3700183629989624, 0.528785228729248, 0.48032957315444946, 0.0989459976553917, 0.7312353253364563, 0.23297525942325592, 0.2219712734222412, -0.8455889225006104, 0.39262744784355164, -0.3307584524154663, -0.7772567868232727, -0.23460619151592255, -0.419220894575119, -1.201114535331726, 0.42876872420310974, -0.14696736633777618, -0.7288512587547302, 0.4362468123435974, -0.05401618033647537, -0.16227509081363678, 0.20282626152038574, -1.0385254621505737, 0.9477480053901672, -0.42964375019073486, -0.2359754890203476, 0.07885915040969849, -0.6539084315299988, 0.10529948770999908, 0.04989304766058922, 0.2687965929508209, 0.04754988104104996, 0.05666331946849823, 0.9762671589851379, -0.5948074460029602, 0.7372559905052185, -0.07375286519527435, -0.18387946486473083, 0.3509591519832611, -0.27473220229148865, 0.4176611304283142, -0.10802295058965683, -0.16261398792266846, 0.7298575639724731, 0.1549278050661087, -0.5064995288848877, -0.13495220243930817, 0.6066733002662659, -0.971903383731842, -0.13843876123428345, -0.5610873699188232, -0.6605181097984314, -0.3113369643688202, 0.22837474942207336, 0.44068393111228943, 0.13588310778141022, -0.20428453385829926, 0.24542611837387085, 0.7598172426223755, -0.5206124186515808, 0.6427940726280212, 0.5693212747573853, 0.1124027892947197, -0.584270715713501, 0.9102320671081543, 0.044620759785175323, 0.006619432009756565, 0.5628098249435425, 0.17719221115112305, -0.5048187375068665, -0.516530454158783, -0.5603305101394653, 0.46222826838493347, -0.449321448802948, -0.16374272108078003, -0.5724644660949707, -0.05854979529976845, -0.5729898810386658, -0.06687624007463455, -0.5390830636024475, -0.3569183349609375, -0.14810512959957123, 0.019555769860744476, 0.4032917022705078, 0.23801982402801514, -0.18564558029174805, 0.2858533561229706, -0.4681777358055115, 0.22989366948604584, 0.2523764967918396, 0.36090943217277527, -0.06746764481067657, -0.5805396437644958, -0.3697130084037781, 0.1600959599018097, -0.22452357411384583, -0.8117983341217041, 0.4504321813583374, 0.16254152357578278, 0.6858659386634827, 0.21444149315357208, -0.1832514852285385, 0.5969412922859192, -0.6732345223426819, 0.6799343228340149, 0.2716084420681, -0.8607217073440552, 0.5280990600585938, -0.3738792836666107, -0.03034139983355999, 0.6114495992660522, 0.8313270807266235, -0.4888019561767578, -0.15694214403629303, -0.7417209148406982, -1.0212956666946411, 0.9006752371788025, 0.32564860582351685, 0.10052182525396347, -0.05900495499372482, 0.09529906511306763, 0.12097333371639252, 0.3240610957145691, -1.0043927431106567, -0.4388892650604248, -0.25426021218299866, -0.29469823837280273, -0.06829079985618591, -0.36283013224601746, -0.16824239492416382, -0.4756510257720947, 0.9301981329917908, -0.023992124944925308, 0.7279471755027771, 0.423653244972229, -0.18455557525157928, 0.1859072744846344, 0.16243401169776917, 0.5797304511070251, 0.4909423291683197, -0.6715339422225952, -0.14605100452899933, 0.16915906965732574, -0.5716663002967834, -0.2656634449958801, 0.5057858228683472, -0.2554679811000824, 0.36603260040283203, 0.6045635342597961, 0.8987488746643066, 0.2317359298467636, -0.671050488948822, 0.48939451575279236, -0.1624603271484375, -0.37282904982566833, -0.2886829674243927, -0.26219621300697327, 0.035158708691596985, 0.16687847673892975, 0.3844059705734253, -0.2463199496269226, -0.015407350845634937, -0.6068196892738342, 0.08572470396757126, 0.4478769302368164, -0.378663569688797, -0.2905134856700897, 0.5838028192520142, 0.13157600164413452, -0.05044974386692047, 0.4596250057220459, -0.3667128384113312, -0.6651865839958191, 0.7699883580207825, 0.45661047101020813, 0.8249519467353821, -0.11603257060050964, 0.41045013070106506, 0.6309680342674255, 0.5275482535362244, -0.04042274132370949, 0.39857301115989685, -0.14895734190940857, -0.8660867810249329, -0.4369903802871704, -0.7806531190872192, -0.4406938850879669, 0.20933714509010315, -0.5546125769615173, 0.2351004034280777, -0.17365606129169464, -0.08848273754119873, 0.155899316072464, 0.30414825677871704, -0.778361976146698, 0.1973714530467987, 0.05142517760396004, 0.831048846244812, -0.7967227101325989, 1.0124485492706299, 0.8323648571968079, -0.567674994468689, -0.6850225329399109, -0.23071832954883575, -0.3746436834335327, -0.9980353713035583, 0.4405527114868164, -0.10044457018375397, 0.17017722129821777, -0.31505319476127625, -0.28193044662475586, -0.9562695622444153, 1.0173448324203491, 0.4813532829284668, -0.4751282036304474, 0.0486946664750576, 0.18977504968643188, 0.9469960927963257, -0.08131519705057144, 0.6211234331130981, 0.36157646775245667, 0.4005158841609955, 0.2337271124124527, -1.111612319946289, -0.058442141860723495, -0.34945133328437805, 0.12719175219535828, 0.002050988841801882, -0.8905941247940063, 0.8545533418655396, -0.1878967434167862, 0.055423468351364136, -0.12627722322940826, 0.5776091814041138, 0.19623589515686035, 0.13177281618118286, 0.39162296056747437, 0.7060275673866272, 0.7646276354789734, -0.31904077529907227, 1.1655824184417725, -0.38156211376190186, 0.7090628743171692, 0.9656796455383301, 0.09427163749933243, 0.6587896943092346, 0.43174710869789124, -0.6151031255722046, 0.4990047514438629, 0.9480609893798828, -0.13732720911502838, 0.5589714646339417, 0.03923068940639496, -0.04791692644357681, -0.025023045018315315, -0.1175001859664917, -0.566512405872345, 0.41589733958244324, 0.051223669201135635, -0.3167451322078705, -0.1838189959526062, 0.0012215175665915012, 0.48575693368911743, -0.25973525643348694, -0.02755686268210411, 0.4615394175052643, -0.03731587156653404, -0.7413897514343262, 0.9092140197753906, 0.0763707235455513, 0.9947125315666199, -0.7999327778816223, 0.2369101494550705, -0.3896365761756897, 0.070052370429039, -0.07262636721134186, -0.6973648071289062, 0.20696544647216797, 0.16704945266246796, -0.30215007066726685, -0.46467578411102295, 0.5416171550750732, -0.49392032623291016, -0.7426568865776062, 0.591310441493988, 0.5098084211349487, 0.3594406843185425, 0.14872704446315765, -1.056825876235962, -0.019266070798039436, 0.18487690389156342, -0.37214890122413635, 0.21395036578178406, 0.23839089274406433, -0.09179721772670746, 0.6160382032394409, 0.765656054019928, 0.10495913028717041, 0.23996518552303314, 0.25768962502479553, 0.621782124042511, -0.43206173181533813, -0.23968102037906647, -0.5516865253448486, 0.34623852372169495, -0.059208642691373825, -0.40958458185195923, 0.8173016905784607, 0.761861264705658, 1.2561489343643188, -0.27489182353019714, 0.49026206135749817, -0.4274502396583557, 0.5001209378242493, -0.38733822107315063, 0.6711400747299194, -0.7602198123931885, -0.07913664728403091, -0.47780388593673706, -0.7694529294967651, -0.25033631920814514, 0.6588700413703918, -0.3732398450374603, 0.1759786754846573, 0.6570799350738525, 0.6454150676727295, 0.05164995789527893, -0.2822459638118744, 0.03654533624649048, 0.21186771988868713, 0.2927018105983734, 0.6394788026809692, 0.41072288155555725, -0.8042131066322327, 0.7565798759460449, -0.6354260444641113, -0.2073533982038498, -0.16229961812496185, -0.827904462814331, -0.9225286245346069, -0.7213108539581299, -0.32300394773483276, -0.22178873419761658, 0.04441438242793083, 0.7553489208221436, 0.8471429347991943, -1.1278167963027954, -0.47771337628364563, -0.040544070303440094, 0.27020666003227234, -0.2002895027399063, -0.20060384273529053, 0.7197498083114624, -0.3975992798805237, -1.1356450319290161, 0.3347122073173523, -0.15092253684997559, 0.06684309989213943, 0.014663288369774818, -0.15835216641426086, -0.5287410616874695, -0.07582522183656693, 0.7250487208366394, 0.4125533103942871, -0.5881897211074829, -0.19171060621738434, 0.2696530520915985, -0.016337642446160316, 0.19014856219291687, 0.45172515511512756, -0.5363397598266602, 0.5772659182548523, 0.522366464138031, 0.49110111594200134, 0.772124707698822, -0.36624452471733093, 0.23668409883975983, -0.7842984795570374, 0.3175209164619446, 0.21467146277427673, 0.6653334498405457, 0.37941762804985046, -0.15830206871032715, 0.7654052376747131, 0.20974162220954895, -0.3954544961452484, -0.7818236351013184, -0.23049527406692505, -1.2071808576583862, -0.3405993580818176, 1.01116144657135, -0.2391185164451599, -0.24914661049842834, 0.23447458446025848, -0.16428641974925995, 0.5087023973464966, -0.4525788724422455, 0.9134124517440796, 0.9580628275871277, -0.14118589460849762, 0.1303233653306961, -0.6800786852836609, 0.4512518048286438, 0.7382046580314636, -0.8370401263237, -0.4042619466781616, 0.25719931721687317, 0.3003695011138916, 0.36185285449028015, 0.4887886941432953, -0.21023890376091003, 0.05546874552965164, -0.24179524183273315, 0.5704118013381958, 0.034736890345811844, -0.31681859493255615, -0.14824391901493073, -0.1591617465019226, -0.3616083562374115, -0.42151492834091187 ]
Rakib/roberta-base-on-cuad
Rakib
"2023-01-18T12:18:53Z"
53,666
4
transformers
[ "transformers", "pytorch", "roberta", "question-answering", "legal-contract-review", "cuad", "en", "dataset:cuad", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
question-answering
"2022-03-02T23:29:04Z"
--- language: - en license: mit datasets: - cuad pipeline_tag: question-answering tags: - legal-contract-review - roberta - cuad library_name: transformers --- # Model Card for roberta-base-on-cuad # Model Details ## Model Description - **Developed by:** Mohammed Rakib - **Shared by [Optional]:** More information needed - **Model type:** Question Answering - **Language(s) (NLP):** en - **License:** MIT - **Related Models:** - **Parent Model:** RoBERTa - **Resources for more information:** - GitHub Repo: [defactolaw](https://github.com/afra-tech/defactolaw) - Associated Paper: [An Open Source Contractual Language Understanding Application Using Machine Learning](https://aclanthology.org/2022.lateraisse-1.6/) # Uses ## Direct Use This model can be used for the task of Question Answering on Legal Documents. # Training Details Read: [An Open Source Contractual Language Understanding Application Using Machine Learning](https://aclanthology.org/2022.lateraisse-1.6/) for detailed information on training procedure, dataset preprocessing and evaluation. ## Training Data See [CUAD dataset card](https://huggingface.co/datasets/cuad) for more information. ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data See [CUAD dataset card](https://huggingface.co/datasets/cuad) for more information. ### Factors ### Metrics More information needed ## Results More information needed # Model Examination More information needed - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware Used V100/P100 from Google Colab Pro ### Software Python, Transformers # Citation **BibTeX:** ``` @inproceedings{nawar-etal-2022-open, title = "An Open Source Contractual Language Understanding Application Using Machine Learning", author = "Nawar, Afra and Rakib, Mohammed and Hai, Salma Abdul and Haq, Sanaulla", booktitle = "Proceedings of the First Workshop on Language Technology and Resources for a Fair, Inclusive, and Safe Society within the 13th Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.lateraisse-1.6", pages = "42--50", abstract = "Legal field is characterized by its exclusivity and non-transparency. Despite the frequency and relevance of legal dealings, legal documents like contracts remains elusive to non-legal professionals for the copious usage of legal jargon. There has been little advancement in making legal contracts more comprehensible. This paper presents how Machine Learning and NLP can be applied to solve this problem, further considering the challenges of applying ML to the high length of contract documents and training in a low resource environment. The largest open-source contract dataset so far, the Contract Understanding Atticus Dataset (CUAD) is utilized. Various pre-processing experiments and hyperparameter tuning have been carried out and we successfully managed to eclipse SOTA results presented for models in the CUAD dataset trained on RoBERTa-base. Our model, A-type-RoBERTa-base achieved an AUPR score of 46.6{\%} compared to 42.6{\%} on the original RoBERT-base. This model is utilized in our end to end contract understanding application which is able to take a contract and highlight the clauses a user is looking to find along with it{'}s descriptions to aid due diligence before signing. Alongside digital, i.e. searchable, contracts the system is capable of processing scanned, i.e. non-searchable, contracts using tesseract OCR. This application is aimed to not only make contract review a comprehensible process to non-legal professionals, but also to help lawyers and attorneys more efficiently review contracts.", } ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Mohammed Rakib in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("Rakib/roberta-base-on-cuad") model = AutoModelForQuestionAnswering.from_pretrained("Rakib/roberta-base-on-cuad") ``` </details>
[ -0.25848260521888733, -0.8175128102302551, 0.3500250577926636, 0.04083612561225891, -0.3195154368877411, -0.168873593211174, -0.20740751922130585, -0.48639222979545593, -0.12973280251026154, 0.775721549987793, -0.2764907479286194, -0.7226861715316772, -0.6818162202835083, -0.0838518813252449, -0.1655077040195465, 1.030066967010498, 0.0007539397920481861, 0.09180789440870285, -0.3444225490093231, -0.4080975353717804, -0.27978241443634033, -0.565325140953064, -0.6533562541007996, -0.4554348289966583, 0.017436843365430832, 0.30607128143310547, 0.6910988092422485, 0.6825457215309143, 0.33634287118911743, 0.3450572192668915, -0.34362852573394775, 0.022836094722151756, -0.0887017473578453, -0.050343818962574005, -0.08330881595611572, -0.5930934548377991, -0.7298094630241394, 0.2079600989818573, 0.33535635471343994, 0.513283371925354, -0.2852591276168823, 0.2303115427494049, -0.3396227955818176, 0.6038430333137512, -0.44974783062934875, 0.48753657937049866, -0.7177935838699341, 0.1203366070985794, 0.11191460490226746, -0.18756592273712158, -0.5164406299591064, -0.0800994485616684, 0.18025687336921692, -0.7239039540290833, 0.2222830355167389, 0.13902445137500763, 1.3326095342636108, 0.3842576742172241, -0.3577915132045746, -0.5552271604537964, -0.35299763083457947, 0.6465598344802856, -0.7152273654937744, 0.48148831725120544, 0.5438040494918823, 0.21607403457164764, -0.10426768660545349, -0.6937879323959351, -0.5103633999824524, -0.7492329478263855, -0.09005559980869293, 0.3900560140609741, -0.14860470592975616, 0.036031752824783325, 0.409024715423584, 0.19961751997470856, -0.7059593796730042, 0.17835508286952972, -0.4250602126121521, -0.08555297553539276, 0.6162019968032837, 0.05295521020889282, 0.19034039974212646, -0.05315867438912392, -0.22130855917930603, 0.059524621814489365, -0.34582436084747314, 0.3522805869579315, 0.40751853585243225, 0.09622929245233536, -0.5310959219932556, 0.676992654800415, 0.002647229703143239, 0.7786155939102173, 0.1235591247677803, 0.07551293075084686, 0.37370309233665466, -0.08024518191814423, -0.4920692443847656, -0.10084503144025803, 0.7680367231369019, -0.12240473926067352, 0.13336490094661713, -0.3043191730976105, -0.1306765377521515, -0.15264427661895752, 0.21243391931056976, -0.43809375166893005, -0.14249233901500702, 0.47145339846611023, -0.5965874195098877, -0.17361916601657867, 0.2848680317401886, -0.5394597053527832, -0.2961144745349884, -0.632688581943512, -0.1150832399725914, -0.5898798704147339, -0.19162219762802124, 0.3322799801826477, -0.05891265347599983, 0.5517772436141968, 0.16762612760066986, -0.5429506897926331, 0.26528674364089966, 0.6584455966949463, 0.599578857421875, 0.291422039270401, -0.20365236699581146, -0.48819422721862793, -0.07488474994897842, -0.11765769869089127, 0.4296802580356598, -0.29241564869880676, -0.23619139194488525, -0.08645610511302948, -0.10401075333356857, -0.12668517231941223, -0.36145707964897156, 0.6591765284538269, -0.7063865661621094, 0.4259500801563263, 0.5278803110122681, -0.5640110969543457, -0.32243844866752625, 0.6204853057861328, -0.7964431643486023, 0.8430290222167969, 0.34510281682014465, -0.6789962649345398, 0.22548553347587585, -1.0170793533325195, -0.22248157858848572, 0.2581782639026642, -0.20513193309307098, -0.9827072620391846, -0.18012967705726624, 0.06643214076757431, 0.2587724030017853, -0.4349815547466278, 0.28582146763801575, -0.043144356459379196, 0.09314229339361191, 0.3844214975833893, -0.0042460947297513485, 1.285417914390564, 0.5884573459625244, -0.36182230710983276, 0.20227836072444916, -0.8619881868362427, 0.13825125992298126, 0.28046321868896484, -0.4989457428455353, -0.06344793736934662, -0.46274033188819885, 0.08046207576990128, 0.25667881965637207, 0.4269629120826721, -0.4144095778465271, 0.03746675327420235, -0.586379885673523, 0.5169469118118286, 0.47697463631629944, -0.21949030458927155, 0.4658900201320648, -0.373029500246048, 0.7997042536735535, 0.052610523998737335, 0.30023786425590515, 0.2336895614862442, -0.5907070636749268, -0.8091500997543335, -0.21464772522449493, 0.6430988311767578, 0.6600664854049683, -0.5840121507644653, 0.6427236199378967, -0.23004496097564697, -0.7156936526298523, -0.8091566562652588, 0.14653244614601135, 0.7855334281921387, 0.3556842803955078, 0.36522749066352844, -0.058131150901317596, -0.6778729557991028, -0.6092095971107483, -0.2796332836151123, -0.23390527069568634, 0.33153536915779114, 0.4632870554924011, 0.5515389442443848, -0.16708365082740784, 0.8820178508758545, -0.4480246901512146, -0.4842033088207245, -0.42737993597984314, 0.24338793754577637, 0.5175173282623291, 0.44322431087493896, 0.42784032225608826, -1.0574960708618164, -0.5800936818122864, 0.18393509089946747, -0.7110938429832458, 0.12375479191541672, -0.2241397202014923, -0.030418286100029945, 0.6004185676574707, 0.5404370427131653, -0.5571622252464294, 0.30129510164260864, 0.36180081963539124, -0.7749977111816406, 0.589052140712738, -0.7502434253692627, -0.18224582076072693, -1.000634789466858, 0.3204018473625183, 0.018743714317679405, -0.24623827636241913, -0.4851662814617157, 0.4972531497478485, 0.011574274860322475, -0.106827512383461, -0.6957221031188965, 0.46231135725975037, -0.6939048171043396, -0.08357501775026321, -0.06718163937330246, 0.05012661963701248, 0.07596535980701447, 0.6366735100746155, -0.01208675466477871, 0.7320212125778198, 0.4354703426361084, -0.6621228456497192, 0.28069576621055603, 0.6818939447402954, -0.28122448921203613, 0.44888943433761597, -0.49757128953933716, 0.31532347202301025, -0.21662724018096924, -0.06650794297456741, -0.30353814363479614, 0.2770266532897949, 0.4387294352054596, -0.5824909210205078, 0.28350844979286194, -0.5610459446907043, -0.4297192692756653, -0.369857519865036, 0.08391566574573517, 0.14978058636188507, 0.4212547242641449, -0.30841976404190063, 1.0115412473678589, 0.5134156942367554, 0.08779370784759521, -0.712893545627594, -0.7000144720077515, 0.22944875061511993, -0.19455693662166595, -0.5562498569488525, 0.3748398423194885, -0.018205495551228523, -0.19939972460269928, 0.19943994283676147, 0.38301315903663635, -0.49601733684539795, 0.2777937352657318, 0.38979607820510864, 0.3976564407348633, -0.18147516250610352, 0.032948508858680725, -0.2770549952983856, -0.3376036584377289, 0.06144091486930847, -0.35739779472351074, 0.6296868324279785, -0.3299212157726288, 0.00791354663670063, -0.37205615639686584, 0.09270308911800385, 0.5256074666976929, -0.5882765054702759, 0.7508573532104492, 0.4040990471839905, -0.27209797501564026, -0.14206616580486298, -0.5379656553268433, 0.3826420307159424, -0.3906835913658142, 0.21815693378448486, -0.6950454711914062, -0.6763070225715637, 0.4152066707611084, 0.12051364034414291, 0.035171765834093094, 0.7756105065345764, 0.8057808876037598, 0.0801301896572113, 0.4516254961490631, 0.7897695899009705, -0.11335606127977371, 0.46373048424720764, -0.7488429546356201, 0.17646585404872894, -0.5964977741241455, -0.49189406633377075, -0.9555241465568542, 0.26334863901138306, -0.6775209903717041, -0.23775191605091095, 0.04602809622883797, -0.013409754261374474, -0.09434866905212402, 0.8099352717399597, -0.48312216997146606, 0.3332068622112274, 0.7486060857772827, 0.06387770175933838, 0.2053782343864441, -0.20095179975032806, -0.34816423058509827, 0.33964821696281433, -0.6793651580810547, -0.5887008905410767, 1.0455132722854614, 0.4655229151248932, 0.3766156733036041, 0.03655151650309563, 0.664397656917572, 0.2309166043996811, 0.023847559466958046, -0.6321496367454529, 0.5163538455963135, -0.20188702642917633, -0.47616520524024963, -0.43035516142845154, -0.5199548006057739, -1.2968937158584595, 0.03429029881954193, -0.36820074915885925, -0.3270722031593323, 0.11152341216802597, -0.010233813896775246, -0.2971144914627075, 0.0841616690158844, -0.4876116216182709, 0.9788024425506592, -0.33677348494529724, -0.10173892229795456, -0.16502664983272552, -0.5465447306632996, 0.0884987860918045, 0.026823749765753746, 0.3937179148197174, 0.008946960791945457, 0.020938275381922722, 0.7149581909179688, -0.6378921270370483, 0.4294891357421875, -0.31996989250183105, -0.021139752119779587, 0.4782743453979492, -0.13226722180843353, 0.490641325712204, -0.13058453798294067, -0.3724234104156494, 0.15764084458351135, 0.1697292923927307, -0.2862014174461365, -0.44237038493156433, 0.5058838725090027, -0.9368323683738708, -0.10026253759860992, -0.4620952606201172, -0.8373983502388, -0.00915538240224123, 0.26019465923309326, 0.14326849579811096, -0.01715518906712532, 0.0284715723246336, -0.08972856402397156, 0.4682171046733856, -0.3968076705932617, 0.17481499910354614, 0.7342000007629395, 0.194721519947052, -0.47171008586883545, 0.758629560470581, 0.060555435717105865, -0.1532764732837677, 0.20089983940124512, 0.18840226531028748, -0.6415356397628784, -0.7155072093009949, -0.207725390791893, 0.45136502385139465, -0.7071263790130615, -0.17249490320682526, -0.7821500301361084, -0.3281693756580353, -0.6548731923103333, 0.0072579775005578995, -0.007434490602463484, -0.45329251885414124, -0.40456342697143555, -0.09017510712146759, 0.3520210087299347, 0.5009909272193909, 0.2680504322052002, 0.16161325573921204, -0.7600189447402954, 0.4929340183734894, -0.13588382303714752, 0.5300307869911194, -0.34031999111175537, -0.6283292174339294, -0.28576672077178955, -0.03110927902162075, -0.31821146607398987, -0.5547998547554016, 0.49958962202072144, 0.1801864504814148, 0.7225531935691833, 0.045533984899520874, 0.12993274629116058, 0.43636173009872437, -0.23766878247261047, 0.6905747652053833, 0.15948453545570374, -0.8857740759849548, 0.4809287190437317, -0.12042506039142609, 0.13909567892551422, 0.6208905577659607, 0.2939947247505188, -0.333530068397522, -0.5486392974853516, -1.1787724494934082, -0.8250170946121216, 0.8257188200950623, 0.33496221899986267, -0.06264336407184601, 0.2443862408399582, 0.5318348407745361, 0.06328672170639038, 0.14825186133384705, -0.864801824092865, -0.3338524103164673, 0.03654995188117027, -0.3523101806640625, 0.03864414989948273, -0.201346293091774, -0.02829129807651043, -0.047308746725320816, 1.092575192451477, 0.06984173506498337, 0.3131738305091858, 0.16765816509723663, -0.46495428681373596, 0.12538883090019226, 0.43811509013175964, 0.6384086012840271, 0.5462222099304199, -0.25828027725219727, -0.16191446781158447, 0.09356380999088287, -0.4133933186531067, 0.09546173363924026, 0.3612450659275055, -0.3659055829048157, 0.07328595221042633, 0.21006068587303162, 0.7965507507324219, -0.2373763769865036, -0.6833444833755493, 0.5558051466941833, 0.02944224700331688, -0.7801678776741028, -0.7284504771232605, -0.12687747180461884, 0.0414358414709568, 0.2917850911617279, -0.06213178113102913, -0.10711604356765747, -0.018835950642824173, -0.41765308380126953, 0.2563215494155884, 0.399095356464386, -0.41695529222488403, 0.28803715109825134, 0.7081834077835083, 0.03554892912507057, -0.4211912155151367, 0.6637468934059143, -0.28264063596725464, -0.4885304570198059, 0.9332563877105713, 0.4302857220172882, 0.799484372138977, 0.21564069390296936, 0.151133194565773, 0.27532851696014404, 0.12355794757604599, 0.17911364138126373, 0.5425212383270264, -0.018935833126306534, -0.4418964982032776, -0.3069649636745453, -0.37293896079063416, -0.3808734714984894, 0.2910483479499817, -0.5523786544799805, 0.41445672512054443, -0.7470300793647766, -0.11669904738664627, 0.0011135786771774292, 0.28988033533096313, -0.9589205384254456, 0.260233074426651, -0.05505189672112465, 1.0628472566604614, -0.5081337094306946, 1.0161970853805542, 0.7984502911567688, -0.9798255562782288, -0.7034332752227783, -0.36486896872520447, -0.342155396938324, -0.6483221650123596, 0.8602379560470581, -0.03429216146469116, 0.1668625771999359, 0.014445201493799686, -0.36010071635246277, -0.4480895698070526, 1.1107091903686523, 0.4723651707172394, -0.4132409691810608, -0.10861260443925858, 0.43232622742652893, 0.6117690801620483, -0.3055071532726288, 0.4294043481349945, 0.4873787760734558, 0.5433948040008545, 0.03942195326089859, -0.7723305225372314, 0.08413010835647583, -0.3452216684818268, -0.10576466470956802, -0.06325368583202362, -0.37600043416023254, 0.7606483101844788, -0.09445451945066452, -0.05331188812851906, 0.28060972690582275, 0.6026977896690369, 0.2158706933259964, 0.40063416957855225, 0.6320663094520569, 0.7770562767982483, 0.7563503384590149, 0.048002902418375015, 0.8781453371047974, -0.5672333836555481, 0.5759165287017822, 1.2990233898162842, 0.045987676829099655, 0.7149311304092407, 0.41311749815940857, -0.20578065514564514, 0.49503713846206665, 0.343092679977417, -0.46319305896759033, 0.08670686185359955, 0.5581536889076233, 0.20146635174751282, -0.16314388811588287, -0.20237261056900024, -0.215147003531456, 0.437319815158844, 0.07822872698307037, -0.5305954217910767, -0.23266030848026276, 0.03171304240822792, -0.07581143826246262, 0.4529041647911072, -0.1985570639371872, 0.882236659526825, 0.0463380292057991, -0.5514927506446838, 0.5285733342170715, 0.45413196086883545, 0.5049440264701843, -0.5409051775932312, -0.1719822734594345, 0.003080990631133318, 0.1981310248374939, -0.23965655267238617, -0.6469876766204834, 0.29841986298561096, 0.019134312868118286, -0.13325652480125427, -0.31943830847740173, 0.4451131224632263, -0.4863329231739044, -0.504521906375885, 0.38035646080970764, 0.3765988051891327, 0.37761878967285156, 0.038647450506687164, -1.3801887035369873, -0.197453111410141, -0.20689751207828522, 0.008059580810368061, -0.015110836364328861, 0.5009289979934692, -0.07802873104810715, 0.6582615971565247, 0.6920315623283386, 0.26208019256591797, 0.13592733442783356, 0.14803077280521393, 0.7152693867683411, -0.5640713572502136, -0.7945341467857361, -0.5022875070571899, 0.7104663848876953, -0.14171357452869415, -0.3218269646167755, 0.4626612365245819, 0.8029879927635193, 0.8787559270858765, -0.15955936908721924, 0.6772286295890808, -0.06280627101659775, 0.39096009731292725, -0.7922894954681396, 0.8768587708473206, -0.25965508818626404, 0.14241810142993927, -0.04266871511936188, -0.7502065300941467, -0.534906268119812, 0.5670589804649353, -0.3974229097366333, -0.11381230503320694, 0.6206955313682556, 0.7022013068199158, -0.02513503096997738, -0.27210530638694763, 0.45379579067230225, 0.26822182536125183, 0.4370071589946747, 0.5359718203544617, 0.4541677236557007, -0.7234165072441101, 0.8284491300582886, -0.19583041965961456, -0.11499679833650589, -0.24516895413398743, -0.79184889793396, -0.9144132733345032, -0.7244791388511658, -0.59171062707901, -0.6729737520217896, 0.05760608986020088, 1.047267198562622, 0.49737849831581116, -0.784214437007904, -0.3589988946914673, -0.3679639399051666, 0.0117747588083148, -0.22939759492874146, -0.19012276828289032, 0.534943163394928, -0.6440882086753845, -0.5742248892784119, 0.14109212160110474, -0.08775880187749863, 0.22755557298660278, -0.03550804406404495, -0.4740850627422333, -0.533897876739502, -0.049894995987415314, 0.2942168116569519, 0.3866784870624542, -0.7806687951087952, 0.21116644144058228, -0.2612212598323822, -0.37409958243370056, 0.18266849219799042, 0.7886738777160645, -0.48149698972702026, 0.3342246115207672, 0.345594584941864, 0.757977306842804, 0.5829218029975891, -0.1997758001089096, 0.4883662164211273, -0.3325933814048767, 0.23731131851673126, 0.2707518935203552, 0.5905380249023438, 0.073123037815094, -0.6725090742111206, 0.6880296468734741, 0.003881405806168914, -0.3328734338283539, -0.32160672545433044, 0.08929651975631714, -1.1196630001068115, -0.4112655520439148, 0.9876710176467896, -0.4769600033760071, -0.4349542558193207, -0.5122398138046265, -0.4662991464138031, 0.5246732831001282, -0.2617638409137726, 0.6404193043708801, 0.5949806571006775, 0.19869844615459442, -0.2242792844772339, -0.3786540627479553, 0.4248121678829193, 0.3958415687084198, -0.9204103946685791, -0.040460750460624695, 0.4049326479434967, 0.18645502626895905, 0.20656515657901764, 0.5764313340187073, -0.32457107305526733, 0.45561638474464417, -0.11121585965156555, 0.30229413509368896, -0.7737271785736084, -0.1207398772239685, -0.5907958149909973, 0.28821009397506714, 0.29187121987342834, -0.23900464177131653 ]
deepset/deberta-v3-base-injection
deepset
"2023-09-11T12:54:35Z"
53,588
19
transformers
[ "transformers", "pytorch", "safetensors", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-base", "license:mit", "endpoints_compatible", "region:us" ]
text-classification
"2023-05-17T08:59:29Z"
--- license: mit tags: - generated_from_trainer metrics: - accuracy base_model: microsoft/deberta-v3-base model-index: - name: deberta-v3-base-injection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base-injection This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the [promp-injection](https://huggingface.co/datasets/JasperLS/prompt-injections) dataset. It achieves the following results on the evaluation set: - Loss: 0.0673 - Accuracy: 0.9914 ## Model description This model detects prompt injection attempts and classifies them as "INJECTION". Legitimate requests are classified as "LEGIT". The dataset assumes that legitimate requests are either all sorts of questions of key word searches. ## Intended uses & limitations If you are using this model to secure your system and it is overly "trigger-happy" to classify requests as injections, consider collecting legitimate examples and retraining the model with the [promp-injection](https://huggingface.co/datasets/JasperLS/prompt-injections) dataset. ## Training and evaluation data Based in the [promp-injection](https://huggingface.co/datasets/JasperLS/prompt-injections) dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 69 | 0.2353 | 0.9741 | | No log | 2.0 | 138 | 0.0894 | 0.9741 | | No log | 3.0 | 207 | 0.0673 | 0.9914 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
[ -0.2090602070093155, -0.8056644797325134, 0.3667460083961487, 0.2344718873500824, -0.10831207782030106, -0.29112377762794495, 0.39087986946105957, -0.39320558309555054, -0.05411461740732193, 0.40778103470802307, -0.45085036754608154, -0.6716479063034058, -0.6751468181610107, -0.0020889996085315943, -0.38138583302497864, 0.7873948812484741, 0.2039659470319748, 0.28074973821640015, 0.0025587587151676416, 0.2132728546857834, -0.8143836259841919, -0.6992456316947937, -0.9683513045310974, -0.3619227409362793, 0.3513275384902954, 0.29161927103996277, 0.7663690447807312, 0.4982515275478363, 0.5367451310157776, 0.2057391107082367, -0.4019611179828644, -0.011483846232295036, -0.32682499289512634, -0.30660587549209595, -0.12570540606975555, -0.5398738980293274, -0.6043830513954163, -0.012388213537633419, 0.44017910957336426, 0.2921682894229889, -0.05670977383852005, 0.189628466963768, 0.07956647127866745, 0.40540647506713867, -0.8738834857940674, 0.05247442051768303, -0.7144156098365784, 0.31680893898010254, -0.18861162662506104, -0.3722968101501465, -0.6150410771369934, -0.10592343658208847, 0.11272670328617096, -0.3167232573032379, 0.31449615955352783, -0.023314237594604492, 1.1219888925552368, 0.1952209770679474, -0.4847777485847473, -0.008159007877111435, -0.634125292301178, 0.5829750299453735, -0.8138546347618103, 0.1583028882741928, 0.44273585081100464, 0.49548983573913574, -0.3445121645927429, -0.710513710975647, -0.5331252217292786, -0.21194930374622345, -0.11770670861005783, 0.04894943907856941, -0.5153270959854126, 0.17928571999073029, 0.7753957509994507, 0.18765299022197723, -0.8619113564491272, 0.32069826126098633, -0.4887769818305969, -0.27551576495170593, 0.4495202898979187, 0.4001828730106354, 0.07420936971902847, -0.28631871938705444, -0.6789464950561523, 0.03146067634224892, -0.7318601012229919, 0.24283367395401, 0.4237230122089386, 0.3108884394168854, -0.1817854940891266, 0.5670749545097351, -0.22530630230903625, 0.9994598627090454, 0.25587064027786255, -0.013247502967715263, 0.608661413192749, 0.05927140265703201, -0.45138120651245117, -0.0381992869079113, 0.9067679047584534, 0.5025140643119812, 0.174017995595932, 0.19815921783447266, -0.2508072853088379, -0.0485667921602726, 0.3193832039833069, -1.0915361642837524, -0.11170150339603424, 0.47036293148994446, -0.3455573618412018, -0.6822674870491028, 0.07080458849668503, -0.5304819345474243, -0.12866179645061493, -0.33676135540008545, 0.4365086853504181, -0.6916069388389587, -0.10287362337112427, 0.24726474285125732, -0.06170016527175903, 0.21784746646881104, 0.20594242215156555, -0.7676078081130981, 0.2926962375640869, 0.6227903366088867, 0.8139767050743103, -0.19344493746757507, -0.37456539273262024, -0.5506961941719055, 0.045283883810043335, -0.10623176395893097, 0.6725580096244812, -0.2870757579803467, -0.3424111008644104, 0.2161017507314682, 0.40642762184143066, -0.19451674818992615, -0.6943094730377197, 0.43878448009490967, -0.6754025220870972, 0.14428706467151642, -0.13982799649238586, -0.7693276405334473, -0.2176116406917572, 0.34293481707572937, -0.47105106711387634, 0.9939483404159546, 0.17075246572494507, -0.7764551639556885, 0.45945948362350464, -0.5275460481643677, 0.10903305560350418, 0.13422271609306335, -0.08372293412685394, -0.31701013445854187, -0.137629434466362, -0.05575389415025711, 0.47086524963378906, -0.11082833260297775, 0.46013882756233215, -0.28995129466056824, -0.5120819211006165, 0.13404524326324463, -0.5146014094352722, 1.238479495048523, 0.2680869400501251, -0.47825887799263, -0.006027239840477705, -1.0612531900405884, 0.09877625852823257, 0.1893157958984375, 0.0202014222741127, -0.10225927829742432, -0.44791823625564575, 0.022457027807831764, 0.3166809678077698, 0.3390173316001892, -0.434037983417511, 0.35930272936820984, -0.619945228099823, 0.10489099472761154, 0.5519002079963684, 0.37822651863098145, 0.13409560918807983, -0.3178502023220062, 0.6057734489440918, 0.6654245257377625, 0.5525636672973633, 0.06628236919641495, -0.7063558101654053, -0.6607573628425598, -0.2483300268650055, 0.1767490655183792, 0.8998950123786926, -0.5036126971244812, 0.7168984413146973, 0.016323041170835495, -0.8331617116928101, -0.03290218114852905, -0.14148230850696564, 0.4616815447807312, 0.8187976479530334, 0.5731937289237976, -0.13829973340034485, -0.3669021725654602, -1.2401723861694336, -0.03151465952396393, -0.3066712021827698, -0.03835417330265045, 0.0552266463637352, 0.7606818675994873, -0.34501004219055176, 0.9479556083679199, -0.6511776447296143, -0.225067600607872, -0.1016591414809227, 0.12410531938076019, 0.5212237238883972, 0.9233156442642212, 0.9876053929328918, -0.4437500834465027, -0.2892483174800873, -0.46101582050323486, -0.690910279750824, -0.0404207743704319, -0.3624534606933594, -0.23168455064296722, 0.026900913566350937, 0.11524787545204163, -0.537738025188446, 0.7496920824050903, 0.18533439934253693, -0.5108682513237, 0.5705225467681885, -0.24644316732883453, 0.1162542924284935, -1.174250602722168, 0.19274374842643738, 0.04021469131112099, -0.1620812863111496, -0.6505096554756165, 0.022910336032509804, 0.3262753188610077, -0.15192195773124695, -0.8460180163383484, 0.518034040927887, -0.08623511344194412, 0.36465683579444885, -0.28682976961135864, -0.14916522800922394, 0.162288635969162, 0.6277267336845398, 0.1649007648229599, 0.8382448554039001, 0.8079887628555298, -0.650947630405426, 0.441008597612381, 0.49924564361572266, -0.053022660315036774, 0.6885940432548523, -1.0148141384124756, 0.10010477900505066, -0.024431262165308, 0.13173283636569977, -0.8695882558822632, -0.10409583896398544, 0.7432403564453125, -0.4403272271156311, 0.2246938794851303, -0.36301857233047485, -0.3238137662410736, -0.4261432886123657, -0.10652809590101242, 0.15712279081344604, 0.7328301072120667, -0.5052887201309204, 0.29937800765037537, -0.009688949212431908, 0.39269131422042847, -0.817564070224762, -0.8593491911888123, -0.054982174187898636, -0.13426177203655243, -0.590583860874176, 0.4131159484386444, 0.1016467958688736, -0.05810524523258209, -0.39816972613334656, 0.12372759729623795, -0.4473109841346741, 0.08392612636089325, 0.39397209882736206, 0.34101584553718567, 0.05602613836526871, 0.0002407995780231431, 0.07828924059867859, -0.20277421176433563, 0.25725698471069336, 0.07598307728767395, 0.6105057597160339, 0.010269968770444393, -0.6728121042251587, -0.9974120259284973, 0.28796112537384033, 0.4076286852359772, 0.045314181596040726, 0.9584197402000427, 0.5504724383354187, -0.6046780943870544, 0.06280899047851562, -0.5540673732757568, -0.42151939868927, -0.46988558769226074, 0.1100890263915062, -0.5417118668556213, -0.17995697259902954, 0.7141226530075073, 0.11667242646217346, -0.0003008734784089029, 0.8407390713691711, 0.3543897271156311, 0.28801751136779785, 1.2383301258087158, 0.19591304659843445, 0.15629065036773682, 0.4536180794239044, -0.7093836665153503, -0.188521146774292, -0.686854362487793, -0.45926761627197266, -0.5482292175292969, -0.07096938043832779, -0.5186671018600464, -0.012467794120311737, 0.07287271320819855, 0.2550518214702606, -0.642274796962738, 0.6178857684135437, -0.6937658786773682, 0.21698829531669617, 0.7197975516319275, 0.38921064138412476, 0.053951747715473175, -0.07967555522918701, -0.12593719363212585, -0.05031591281294823, -0.7279250025749207, -0.654636561870575, 1.0940686464309692, 0.41677209734916687, 0.7690678834915161, -0.04205803945660591, 0.6190847754478455, 0.3432122766971588, -0.013653508387506008, -0.6430767178535461, 0.5890306830406189, 0.3090646266937256, -0.6728003025054932, 0.2655113935470581, -0.3427826762199402, -1.0928906202316284, 0.10692951083183289, -0.0961524248123169, -0.8298870325088501, 0.5683465003967285, 0.448842853307724, -0.5321129560470581, 0.3621476888656616, -0.7536754012107849, 1.1172595024108887, -0.11755955219268799, -0.40294742584228516, -0.036120712757110596, -0.6437934041023254, 0.14827539026737213, 0.017658855766057968, -0.41840627789497375, -0.01576453074812889, 0.0405891127884388, 0.5631107091903687, -0.5781739950180054, 0.9332268238067627, -0.5210188627243042, -0.0552954338490963, 0.44519227743148804, 0.06742298603057861, 0.7482808828353882, 0.3932937979698181, -0.07543853670358658, 0.42504557967185974, 0.34712550044059753, -0.5356265902519226, -0.5439818501472473, 0.6865076422691345, -0.9011011123657227, -0.5960317254066467, -0.9507321715354919, -0.13542897999286652, -0.12217304110527039, 0.14903831481933594, 0.5725070238113403, 0.8183886408805847, -0.07384661585092545, 0.01893625035881996, 0.6894254684448242, -0.1692611575126648, 0.17103922367095947, 0.599876880645752, -0.14531639218330383, -0.3837515413761139, 0.65461266040802, 0.11970847845077515, 0.27594321966171265, 0.1845773458480835, -0.03499346226453781, -0.32649093866348267, -0.757887601852417, -0.6597363352775574, 0.0963292196393013, -0.6689669489860535, -0.414912611246109, -0.8388190269470215, -0.37993311882019043, -0.6272976994514465, 0.055969301611185074, -0.26345616579055786, -0.39118385314941406, -0.8400862812995911, -0.0952785462141037, 0.5042049884796143, 0.35734814405441284, -0.08023569732904434, 0.7087808847427368, -0.8866897821426392, 0.038364227861166, 0.08675359189510345, 0.12936432659626007, -0.11084974557161331, -0.9917552471160889, -0.12073545902967453, 0.27721503376960754, -0.6399531364440918, -1.3504055738449097, 0.5473280549049377, -0.16141405701637268, 0.5039986371994019, 0.6024125218391418, 0.010648143477737904, 0.7811132073402405, -0.43367260694503784, 1.174872875213623, 0.16637499630451202, -0.786132276058197, 0.8384788632392883, -0.24968260526657104, 0.41296136379241943, 0.642219066619873, 0.6759037971496582, -0.31068676710128784, -0.1972377598285675, -1.0475786924362183, -0.7310022115707397, 0.7199612259864807, 0.29581037163734436, 0.09697085618972778, -0.39185023307800293, 0.5288557410240173, -0.08054500073194504, 0.22338677942752838, -0.5239883661270142, -0.5656087398529053, -0.06648918986320496, -0.006824928801506758, 0.42919784784317017, -0.5926623940467834, -0.144107386469841, -0.43240758776664734, 1.0472723245620728, 0.03929015249013901, 0.3217809498310089, 0.21698574721813202, -0.061999931931495667, 0.2235679030418396, 0.13000066578388214, 0.5554378032684326, 0.8856156468391418, -0.39910265803337097, 0.005725859198719263, 0.4081614315509796, -0.571105420589447, 0.25952401757240295, 0.20621801912784576, -0.25790348649024963, 0.22882509231567383, 0.12840993702411652, 0.8091997504234314, -0.07668785750865936, -0.48768579959869385, 0.6740208268165588, -0.025901399552822113, -0.05059012770652771, -0.7925145626068115, 0.2588592767715454, -0.47749730944633484, 0.15743885934352875, 0.22577449679374695, 0.26366379857063293, 0.40112820267677307, -0.05171613767743111, 0.167589008808136, 0.35048800706863403, -0.6074098348617554, -0.29548510909080505, 0.6550300121307373, 0.1719425767660141, -0.3389325737953186, 0.6535448431968689, -0.20528797805309296, -0.1754125952720642, 0.8000047206878662, 0.6845870614051819, 1.0738898515701294, -0.31060710549354553, 0.10497929155826569, 0.8373911380767822, 0.14690454304218292, -0.017172133550047874, 0.685713529586792, 0.4090091288089752, -0.4156035780906677, -0.14845174551010132, -0.3999003767967224, -0.24059639871120453, 0.4834960103034973, -0.9588191509246826, 0.5906208157539368, -0.34450632333755493, -0.6046525239944458, 0.07045991718769073, -0.13969987630844116, -0.8611710667610168, 0.20713748037815094, -0.04189160466194153, 1.3546820878982544, -0.9513425230979919, 0.5468176007270813, 0.49175751209259033, -0.6709775328636169, -0.6352680325508118, -0.36368271708488464, -0.05014225095510483, -0.8701663613319397, 0.8985479474067688, 0.19291378557682037, 0.13384851813316345, -0.03209354728460312, -0.6185070276260376, -0.6759783625602722, 0.9564076066017151, 0.32127782702445984, -0.7472130656242371, -0.14896142482757568, 0.36778518557548523, 0.45643192529678345, -0.16542530059814453, 0.6705963015556335, 0.2738777697086334, 0.20616872608661652, 0.0831124559044838, -0.8266193270683289, 0.19453096389770508, -0.07768869400024414, 0.23502063751220703, -0.079094797372818, -0.582115650177002, 0.8769828081130981, 0.10797010362148285, 0.12394315004348755, 0.1826644390821457, 0.5794601440429688, 0.24294696748256683, 0.18517309427261353, 0.4909781217575073, 0.6977105140686035, 0.5894470810890198, -0.11710776388645172, 0.9063349366188049, -0.5614065527915955, 0.48413094878196716, 1.1282306909561157, -0.16631366312503815, 0.6031224131584167, 0.5025572180747986, -0.14676764607429504, 0.5891633629798889, 0.848523736000061, -0.35501155257225037, 0.34637656807899475, 0.3050343692302704, -0.22061504423618317, -0.3333297669887543, 0.019768519327044487, -0.7842252850532532, 0.34241366386413574, 0.1572631597518921, -0.7948951721191406, -0.30344080924987793, 0.12075965106487274, 0.1734073907136917, -0.36954647302627563, -0.08378801494836807, 0.7700099349021912, -0.32934626936912537, -0.5846518278121948, 0.9770688414573669, -0.15605413913726807, 0.378115177154541, -0.6846702098846436, -0.24485044181346893, -0.08465399593114853, 0.2795870304107666, -0.1995689570903778, -0.5967593789100647, 0.24960792064666748, 0.031709447503089905, -0.1507142037153244, 0.01284034550189972, 0.6509018540382385, -0.12045019865036011, -0.47931531071662903, 0.0016440286999568343, 0.5499995350837708, 0.31854841113090515, -0.19025012850761414, -1.0731843709945679, -0.07313648611307144, -0.08896660059690475, -0.37653496861457825, 0.14719471335411072, 0.21085868775844574, 0.16277813911437988, 0.6605960726737976, 0.49061185121536255, 0.028501197695732117, -0.16813509166240692, 0.1263653039932251, 0.8803555965423584, -0.5421586036682129, -0.4002099633216858, -1.0250506401062012, 0.5695130228996277, -0.30975183844566345, -0.6568064093589783, 0.7620282173156738, 0.9409645199775696, 0.6436823010444641, -0.18854407966136932, 0.5343068838119507, 0.009685004130005836, 0.3659535348415375, -0.4270314872264862, 0.5537569522857666, -0.48173436522483826, 0.059791743755340576, -0.22677668929100037, -0.7277947664260864, -0.09683629125356674, 0.502501904964447, -0.34241461753845215, 0.022082816809415817, 0.5338227152824402, 1.060894250869751, -0.06691247969865799, 0.04238397628068924, 0.2628174424171448, 0.01881534978747368, 0.42007049918174744, 0.5446749925613403, 0.7994586229324341, -0.835712730884552, 0.4159384071826935, -0.5646023750305176, -0.4408395290374756, -0.2637033760547638, -0.8001032471656799, -1.0960170030593872, -0.35792234539985657, -0.5641782879829407, -0.8274258971214294, 0.15863759815692902, 1.1675349473953247, 0.6663509011268616, -1.0471512079238892, 0.03471361845731735, -0.3053014278411865, -0.20782208442687988, -0.4224761724472046, -0.26350969076156616, 0.331703245639801, -0.4494560658931732, -0.9403978586196899, 0.14639213681221008, -0.2909623384475708, 0.6278426647186279, -0.3008950650691986, 0.2193399965763092, -0.29751986265182495, -0.050587065517902374, 0.30499547719955444, 0.19618581235408783, -0.5168071389198303, -0.3577154278755188, 0.22410522401332855, -0.24391457438468933, 0.11901767551898956, 0.32364600896835327, -0.85699063539505, 0.35333332419395447, 0.6704724431037903, 0.3450225293636322, 0.3891226351261139, -0.23145036399364471, 0.4178754985332489, -0.6863536238670349, 0.41718629002571106, 0.35197269916534424, 0.5625336766242981, -0.07529684156179428, -0.5751292705535889, 0.45197269320487976, 0.43392106890678406, -0.6563665270805359, -0.8673187494277954, 0.20595093071460724, -1.0687031745910645, 0.0525364987552166, 1.3421679735183716, -0.19019079208374023, -0.3508726954460144, -0.09610763192176819, -0.43225011229515076, 0.1581343114376068, -0.5175307393074036, 0.7090895771980286, 0.4926932454109192, -0.1345347762107849, 0.23026590049266815, -0.6175230145454407, 0.6429331302642822, 0.28306320309638977, -0.7587983012199402, -0.15452516078948975, 0.6662432551383972, 0.26182740926742554, 0.2648155093193054, 0.38481396436691284, -0.0840778797864914, 0.33087894320487976, -0.1118280291557312, 0.054612837731838226, -0.29380369186401367, -0.2511333227157593, -0.46879515051841736, 0.14127908647060394, -0.08211056143045425, -0.4950692057609558 ]
sonoisa/sentence-luke-japanese-base-lite
sonoisa
"2023-03-20T01:32:34Z"
53,466
7
sentence-transformers
[ "sentence-transformers", "pytorch", "luke", "sentence-bert", "sentence-luke", "feature-extraction", "sentence-similarity", "ja", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
"2023-03-19T14:44:42Z"
--- language: ja license: apache-2.0 tags: - sentence-transformers - sentence-bert - sentence-luke - feature-extraction - sentence-similarity --- This is a Japanese sentence-LUKE model. 日本語用Sentence-LUKEモデルです。 [日本語Sentence-BERTモデル](https://huggingface.co/sonoisa/sentence-bert-base-ja-mean-tokens-v2)と同一のデータセットと設定で学習しました。 手元の非公開データセットでは、[日本語Sentence-BERTモデル](https://huggingface.co/sonoisa/sentence-bert-base-ja-mean-tokens-v2)と比べて定量的な精度が同等〜0.5pt程度高く、定性的な精度は本モデルの方が高い結果でした。 事前学習済みモデルとして[studio-ousia/luke-japanese-base-lite](https://huggingface.co/studio-ousia/luke-japanese-base-lite)を利用させていただきました。 推論の実行にはSentencePieceが必要です(pip install sentencepiece)。 # 使い方 ```python from transformers import MLukeTokenizer, LukeModel import torch class SentenceLukeJapanese: def __init__(self, model_name_or_path, device=None): self.tokenizer = MLukeTokenizer.from_pretrained(model_name_or_path) self.model = LukeModel.from_pretrained(model_name_or_path) self.model.eval() if device is None: device = "cuda" if torch.cuda.is_available() else "cpu" self.device = torch.device(device) self.model.to(device) def _mean_pooling(self, model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) @torch.no_grad() def encode(self, sentences, batch_size=8): all_embeddings = [] iterator = range(0, len(sentences), batch_size) for batch_idx in iterator: batch = sentences[batch_idx:batch_idx + batch_size] encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest", truncation=True, return_tensors="pt").to(self.device) model_output = self.model(**encoded_input) sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu') all_embeddings.extend(sentence_embeddings) return torch.stack(all_embeddings) MODEL_NAME = "sonoisa/sentence-luke-japanese-base-lite" model = SentenceLukeJapanese(MODEL_NAME) sentences = ["暴走したAI", "暴走した人工知能"] sentence_embeddings = model.encode(sentences, batch_size=8) print("Sentence embeddings:", sentence_embeddings) ```
[ -0.18687033653259277, -1.064941167831421, 0.3399941027164459, 0.21430054306983948, -0.450748473405838, -0.37393367290496826, -0.3787015676498413, -0.14153307676315308, 0.39700230956077576, 0.4639595150947571, -0.6926091909408569, -0.5375327467918396, -0.7692059874534607, -0.028260184451937675, -0.11158867925405502, 0.8622525334358215, -0.3773767054080963, 0.12389728426933289, 0.08884322643280029, -0.05274937301874161, -0.649250328540802, -0.2722233831882477, -0.5998027324676514, -0.3395908772945404, 0.20673488080501556, 0.25840476155281067, 0.4467279016971588, 0.5399954319000244, 0.38148728013038635, 0.4133693277835846, 0.1334093064069748, 0.04294693470001221, -0.3188799023628235, -0.00827186368405819, 0.1342284381389618, -0.6538286805152893, -0.1882040649652481, 0.07796089351177216, 0.6422314047813416, 0.5201012492179871, 0.1338399201631546, 0.20142284035682678, -0.009203867055475712, 0.47422540187835693, -0.5005000829696655, 0.43773892521858215, -0.42991337180137634, 0.0025029282551258802, -0.04681679606437683, -0.1199367344379425, -0.5832642912864685, -0.16774116456508636, -0.17522341012954712, -0.5869793891906738, 0.24842938780784607, -0.13465560972690582, 1.344708800315857, 0.1546657234430313, -0.20252786576747894, -0.29421037435531616, -0.23850898444652557, 0.9442978501319885, -0.9670352935791016, 0.3482440412044525, 0.3408059775829315, -0.053043514490127563, -0.09727424383163452, -0.9210413098335266, -0.6753538846969604, -0.09414778649806976, -0.3121238350868225, 0.27000105381011963, -0.04689527302980423, 0.028907589614391327, 0.33656051754951477, 0.14977505803108215, -0.6873425841331482, -0.10183417052030563, -0.4823746681213379, -0.13023261725902557, 0.6516191363334656, 0.08418701589107513, 0.5045614838600159, -0.5670843124389648, -0.3976670503616333, -0.310776948928833, -0.39889469742774963, 0.22565673291683197, 0.245729461312294, 0.3657379150390625, -0.4502279758453369, 0.82191401720047, -0.1755591779947281, 0.5817590355873108, 0.11089915782213211, -0.2500498294830322, 0.5448559522628784, -0.3277980387210846, -0.36710289120674133, 0.08656026422977448, 1.0991884469985962, 0.54654461145401, 0.4589974880218506, 0.022537587210536003, -0.04004141315817833, 0.2176617681980133, -0.12563900649547577, -0.995547890663147, -0.11054380238056183, 0.22332140803337097, -0.6219486594200134, -0.20827162265777588, 0.2280031442642212, -0.7368807196617126, -0.003209115704521537, 0.15081629157066345, 0.6377148032188416, -0.6019095182418823, -0.1653641313314438, 0.33223676681518555, -0.20124220848083496, 0.09772045165300369, -0.22109562158584595, -1.064127802848816, 0.09101536124944687, 0.3979896008968353, 0.8705407977104187, 0.3542730510234833, -0.5481433868408203, -0.20959551632404327, 0.10149311274290085, -0.16360341012477875, 0.18679453432559967, -0.3873848021030426, -0.5407270193099976, -0.23931719362735748, 0.2153831124305725, -0.6755722165107727, -0.30638760328292847, 0.6241674423217773, -0.2849977910518646, 0.6811726689338684, -0.16547782719135284, -0.881263792514801, -0.2809925973415375, 0.14629124104976654, -0.5013923645019531, 0.8403820991516113, 0.26623088121414185, -1.0006808042526245, 0.2241847962141037, -0.68301922082901, -0.37298884987831116, -0.1331361085176468, -0.24895155429840088, -0.6502376198768616, 0.00108602293767035, 0.5116584300994873, 0.7378143668174744, -0.09174844622612, 0.2569367289543152, -0.17836450040340424, -0.4077226519584656, 0.36682695150375366, -0.3529883623123169, 1.3153681755065918, 0.23819342255592346, -0.5981486439704895, 0.08598265051841736, -0.6288222670555115, 0.015679849311709404, 0.45584410429000854, -0.24805060029029846, -0.1133265420794487, -0.17818062007427216, 0.28484058380126953, 0.1320856511592865, 0.32811129093170166, -0.7945023775100708, 0.16954796016216278, -0.4983323812484741, 0.7367032766342163, 0.7484891414642334, 0.30868780612945557, 0.3184817433357239, -0.4298245310783386, 0.24554188549518585, 0.2564099431037903, 0.02379056252539158, -0.3051831126213074, -0.5666918158531189, -1.131638526916504, -0.33478569984436035, 0.10499505698680878, 0.4580048620700836, -0.8367186188697815, 0.7079642415046692, -0.38809433579444885, -0.5053037405014038, -0.6796475052833557, 0.08139373362064362, 0.3149629831314087, 0.5565490126609802, 0.40092286467552185, -0.12154410779476166, -0.6710084676742554, -0.958258330821991, -0.19901761412620544, -0.2811962068080902, 0.158605694770813, 0.24443651735782623, 0.6056488752365112, -0.2635296881198883, 0.6845373511314392, -0.48583894968032837, -0.25278085470199585, -0.42734602093696594, 0.12493906915187836, 0.6897470355033875, 0.7942768335342407, 0.4804803431034088, -0.6891770362854004, -0.5142434239387512, -0.19183596968650818, -0.9854024052619934, 0.0777139887213707, -0.4655810296535492, -0.22045758366584778, 0.24247801303863525, 0.40376096963882446, -1.037440538406372, 0.362042635679245, 0.19622397422790527, -0.7354534864425659, 0.35985082387924194, -0.12112142145633698, 0.33134904503822327, -1.4777989387512207, 0.07413460314273834, 0.03009624592959881, -0.07217307388782501, -0.5353712439537048, 0.3836889863014221, 0.12440557777881622, 0.14503143727779388, -0.510526716709137, 0.6279342770576477, -0.5848789811134338, 0.22687514126300812, -0.024861712008714676, 0.20340846478939056, 0.13817504048347473, 0.726466953754425, -0.007693315856158733, 0.7405133247375488, 0.591916024684906, -0.5343837738037109, 0.6092475652694702, 0.24659208953380585, -0.3737788796424866, 0.16661305725574493, -0.8026647567749023, -0.20067594945430756, 0.0044201272539794445, 0.09500530362129211, -1.0045472383499146, -0.20546574890613556, 0.43930599093437195, -0.7388181090354919, 0.3298141658306122, 0.14090166985988617, -0.7029792666435242, -0.5918635129928589, -0.40508702397346497, 0.22448697686195374, 0.6396610736846924, -0.49330705404281616, 0.5013586282730103, 0.1333511471748352, 0.0232956912368536, -0.6687852740287781, -1.0469605922698975, -0.09499586373567581, -0.257069855928421, -0.7689713835716248, 0.3155812621116638, -0.035476990044116974, 0.06319762766361237, 0.053145427256822586, 0.14940491318702698, 0.047793470323085785, 0.11264496296644211, 0.08611870557069778, 0.541568398475647, -0.4660108983516693, -0.10087881237268448, 0.015949277207255363, -0.05798887088894844, 0.19814693927764893, 0.027381012216210365, 0.8855300545692444, -0.12654690444469452, -0.3059784173965454, -0.6306730508804321, 0.19815793633460999, 0.415757954120636, -0.0029644500464200974, 0.8928152322769165, 1.0112853050231934, -0.4934428632259369, 0.018251914530992508, -0.5480874180793762, -0.261619508266449, -0.5429496765136719, 0.6980268359184265, -0.6267102956771851, -0.6450947523117065, 0.6180859804153442, 0.49073582887649536, 0.06482214480638504, 0.7319223284721375, 0.8429502248764038, -0.00394787359982729, 1.0255321264266968, 0.4016699492931366, -0.11284221708774567, 0.6206693053245544, -0.7575243711471558, 0.29255566000938416, -0.8540912866592407, -0.20644673705101013, -0.1252979189157486, -0.3045567274093628, -0.7268009185791016, -0.30963581800460815, 0.2678048312664032, 0.12133719027042389, -0.3659542500972748, 0.5543392896652222, -0.6278325319290161, 0.3767137825489044, 0.6411064267158508, 0.36333927512168884, -0.007095491513609886, -0.1287764310836792, -0.22849896550178528, -0.17266950011253357, -0.6171479821205139, -0.531557023525238, 1.0224251747131348, 0.4794555902481079, 0.6488178372383118, 0.0348263718187809, 0.8988198041915894, -0.22110727429389954, -0.025933479890227318, -0.7001562118530273, 0.7424412965774536, -0.11278433352708817, -0.7349909543991089, -0.21116915345191956, -0.45709550380706787, -1.0669561624526978, 0.3317297399044037, -0.08024348318576813, -1.0481406450271606, -0.013510871678590775, -0.4752144515514374, -0.20787553489208221, 0.44556859135627747, -0.9663254022598267, 1.1096911430358887, -0.017735734581947327, -0.37701717019081116, -0.12104038149118423, -0.6023440361022949, 0.4256639778614044, 0.37042534351348877, 0.09613726288080215, -0.17380914092063904, 0.05658075213432312, 1.1621447801589966, -0.3260272145271301, 0.8732466697692871, -0.28485286235809326, 0.318402498960495, 0.4411090910434723, -0.14111913740634918, 0.22762086987495422, 0.12955346703529358, 0.04680003225803375, -0.14367730915546417, 0.0544644296169281, -0.5396173000335693, -0.5032655596733093, 0.8397185802459717, -1.1561284065246582, -0.5859425663948059, -0.3681340217590332, -0.6062024831771851, -0.06928014755249023, 0.4799569249153137, 0.7114070057868958, 0.42948004603385925, -0.045665256679058075, 0.30944162607192993, 0.5135074257850647, -0.20190522074699402, 0.9153022766113281, 0.12797163426876068, -0.2475476711988449, -0.4184836745262146, 0.7884603142738342, 0.21125492453575134, 0.15348564088344574, 0.4230007231235504, 0.13047775626182556, -0.28254765272140503, -0.18308523297309875, -0.6166203022003174, 0.5859986543655396, -0.7356896996498108, -0.10207629203796387, -0.8646370768547058, -0.47891607880592346, -0.6654812097549438, -0.31553009152412415, -0.29714128375053406, -0.3666682839393616, -0.5403130650520325, -0.19911102950572968, 0.392415851354599, 0.35546451807022095, 0.12886551022529602, 0.38272625207901, -0.76615309715271, 0.3922407031059265, 0.13452038168907166, 0.13938187062740326, -0.009618253447115421, -0.6629902124404907, -0.45843079686164856, 0.17034274339675903, -0.42053037881851196, -0.9572176337242126, 0.6095022559165955, -0.02711379900574684, 0.6817126870155334, 0.34795546531677246, -0.04438202455639839, 0.7025688290596008, -0.27811041474342346, 0.9904718995094299, 0.44837042689323425, -1.033643364906311, 0.6011022329330444, -0.2419569194316864, 0.3882890045642853, 0.36813783645629883, 0.18508128821849823, -0.6261307001113892, -0.46169477701187134, -0.8945649266242981, -0.9027230739593506, 0.8114573955535889, 0.2512395679950714, 0.5172193050384521, -0.16755865514278412, 0.194055438041687, -0.058682240545749664, 0.030729515478014946, -1.0704584121704102, -0.5379248857498169, -0.3427732586860657, -0.6472715139389038, -0.18348915874958038, -0.17510312795639038, 0.03993293270468712, -0.33433353900909424, 1.0396132469177246, 0.21851417422294617, 0.64947509765625, 0.28733813762664795, -0.28950035572052, -0.11107882112264633, 0.14222729206085205, 0.552139163017273, 0.33400917053222656, -0.31948015093803406, 0.01879783906042576, 0.1257517784833908, -0.5543858408927917, 0.09648355096578598, 0.15360134840011597, -0.22154350578784943, 0.39006271958351135, 0.6749289631843567, 1.149282455444336, 0.17521697282791138, -0.4592146575450897, 0.7155076265335083, -0.046555690467357635, -0.17829418182373047, -0.2561336159706116, 0.16471482813358307, 0.26542460918426514, 0.18352901935577393, 0.22545677423477173, -0.20090439915657043, -0.011885127052664757, -0.5335379838943481, 0.18489773571491241, 0.25959527492523193, -0.058326803147792816, -0.03915931656956673, 0.8260161280632019, -0.025895586237311363, -0.09905467927455902, 0.6345282196998596, 0.03930225223302841, -0.6032741069793701, 0.8025946021080017, 0.6560876965522766, 1.039072871208191, -0.018044734373688698, 0.12856850028038025, 0.8057332634925842, 0.31608638167381287, 0.06655675172805786, 0.3284582793712616, 0.10633092373609543, -0.8735112547874451, -0.13409030437469482, -0.4703965187072754, 0.03916453942656517, 0.03478080779314041, -0.7631613612174988, 0.45147475600242615, -0.5340254306793213, -0.20766715705394745, 0.04698457941412926, 0.2654648423194885, -0.6124999523162842, 0.29646897315979004, 0.10952217131853104, 0.7454674243927002, -0.990384578704834, 0.9515339136123657, 0.6055074334144592, -0.7868581414222717, -1.0489435195922852, -0.23909784853458405, -0.3838142156600952, -1.0985314846038818, 0.5548399686813354, 0.45839086174964905, 0.1794649213552475, 0.1265433430671692, -0.48857581615448, -0.8781503438949585, 1.1970493793487549, 0.29666683077812195, -0.3458290994167328, -0.13019487261772156, 0.00420513516291976, 0.4301995038986206, -0.4117645025253296, 0.4113007187843323, 0.5337597727775574, 0.4067722260951996, -0.08049469441175461, -0.8042399287223816, 0.265095055103302, -0.5314688086509705, 0.0596984438598156, -0.025368425995111465, -0.8006464242935181, 1.2636301517486572, -0.24742133915424347, -0.23804572224617004, 0.1287776380777359, 0.797639012336731, 0.4701400399208069, 0.12249268591403961, 0.2795400023460388, 0.6798761487007141, 0.49561986327171326, -0.14123520255088806, 1.0113022327423096, -0.3486676514148712, 0.7798711061477661, 0.871583878993988, 0.249091237783432, 0.8824152946472168, 0.5853360295295715, -0.3082805573940277, 0.7244935631752014, 0.7262850999832153, -0.2154809534549713, 0.6732551455497742, -0.03361911326646805, -0.11649186164140701, 0.02953474223613739, 0.07471726089715958, -0.5390847325325012, 0.48991450667381287, 0.2301895022392273, -0.6962425112724304, -0.005678987130522728, 0.13421039283275604, 0.39717811346054077, -0.06427808851003647, -0.23389312624931335, 0.6426218152046204, 0.10697010159492493, -0.6956768035888672, 0.8570518493652344, 0.3322787880897522, 0.98609858751297, -0.49395373463630676, 0.3025839626789093, -0.12208733707666397, 0.3457973897457123, -0.15521544218063354, -0.8239598274230957, 0.15275996923446655, 0.0093053774908185, -0.2195337861776352, -0.09451927244663239, 0.4592112600803375, -0.6213897466659546, -0.8941941261291504, 0.28896501660346985, 0.4303961396217346, 0.1368638128042221, 0.41053181886672974, -0.9497458338737488, 0.12838459014892578, 0.1779821366071701, -0.7076242566108704, 0.04075632989406586, 0.23726342618465424, 0.35846835374832153, 0.5170849561691284, 0.40698865056037903, -0.032585740089416504, 0.32197263836860657, 0.1521652340888977, 0.7962402701377869, -0.6909254789352417, -0.6911293268203735, -1.2343922853469849, 0.5897848010063171, -0.09172216057777405, -0.45783716440200806, 0.8501898050308228, 0.6079913377761841, 0.9680648446083069, -0.20024779438972473, 0.7000998258590698, -0.2428908348083496, 0.32497164607048035, -0.849453330039978, 0.7377179861068726, -0.5648992657661438, -0.031815409660339355, -0.2537851929664612, -0.8950934410095215, -0.19533458352088928, 1.0117076635360718, -0.28157705068588257, 0.3101723790168762, 0.9720484614372253, 0.8651170134544373, -0.051502227783203125, -0.033655185252428055, 0.2232685685157776, 0.36083853244781494, 0.21385496854782104, 0.9512222409248352, 0.38585251569747925, -0.926893413066864, 0.26314377784729004, -0.6746025085449219, 0.07306712865829468, -0.19808164238929749, -0.521967351436615, -1.0308246612548828, -0.7908072471618652, -0.4000767171382904, -0.5879150032997131, -0.22032150626182556, 1.1797622442245483, 0.6757687926292419, -0.9530619382858276, -0.2980181872844696, -0.2184489369392395, 0.05579576641321182, -0.12155715376138687, -0.3501037061214447, 0.5892010927200317, -0.389521062374115, -0.98627108335495, 0.0864478126168251, -0.1677994281053543, 0.11589903384447098, -0.07820674777030945, -0.08304379135370255, -0.4578457474708557, 0.07811543345451355, 0.2985175549983978, -0.11534743756055832, -0.8766994476318359, -0.22314263880252838, 0.009979265742003918, -0.5257546901702881, 0.06667708605527878, 0.4127638638019562, -0.5547757744789124, 0.5558381080627441, 0.5401265025138855, 0.43529877066612244, 0.7929768562316895, -0.3214244544506073, 0.33398687839508057, -0.8483229279518127, 0.38639509677886963, 0.07063932716846466, 0.8785641193389893, 0.37486129999160767, -0.49855101108551025, 0.5865253806114197, 0.5184932351112366, -0.29985103011131287, -0.8323080539703369, -0.08613292872905731, -1.0980321168899536, -0.4067627191543579, 1.2446517944335938, -0.253105491399765, -0.42035621404647827, 0.3848729729652405, -0.32921457290649414, 0.7582021355628967, -0.2246333807706833, 0.639127254486084, 0.8740261793136597, -0.006037179380655289, -0.4096834361553192, -0.45303085446357727, -0.04147583246231079, 0.4810950458049774, -0.5031595826148987, -0.10882079601287842, 0.16185584664344788, 0.4263657033443451, 0.22761328518390656, 0.7037943601608276, 0.01477466057986021, 0.3300055265426636, 0.37319284677505493, 0.20644931495189667, -0.20136508345603943, 0.1333589106798172, -0.2063044160604477, -0.0507410429418087, -0.12536916136741638, -0.6592794060707092 ]
prithivida/grammar_error_correcter_v1
prithivida
"2021-07-04T10:44:31Z"
53,202
30
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
text2text-generation
"2022-03-02T23:29:05Z"
**This model is part of the Gramformer library** please refer to https://github.com/PrithivirajDamodaran/Gramformer/
[ 0.2115885317325592, -0.7586427330970764, 0.32757464051246643, 0.08170659095048904, -0.15957646071910858, 0.06678710132837296, 0.40558061003685, -0.0963754802942276, 0.2483096867799759, 0.8441659212112427, -0.6877135038375854, -0.4477261006832123, -0.4235078692436218, -0.34968090057373047, -0.42196008563041687, 0.8142601847648621, 0.020318062976002693, 0.5218024849891663, -0.44344794750213623, 0.25205954909324646, -0.05714298412203789, -0.16796313226222992, -0.4280991852283478, -0.5332648754119873, 0.4059370160102844, 0.43433958292007446, 0.4387153089046478, 0.22480802237987518, 0.6934183835983276, 0.26233816146850586, -0.5068077445030212, -0.4172053337097168, -0.2532809376716614, 0.047416895627975464, -0.11086124181747437, -0.67188560962677, -1.3332051038742065, 0.009655584581196308, 0.7070944905281067, 0.3697129786014557, -0.2927175760269165, 0.6528356671333313, -0.30127808451652527, 0.8192470073699951, -0.6305097937583923, 0.30549371242523193, 0.03510288894176483, 0.13185900449752808, -0.5258452296257019, 0.24524635076522827, -0.3363596200942993, -0.5737175345420837, -0.292062371969223, -0.4903196394443512, 0.22733262181282043, -0.045471951365470886, 1.1869288682937622, 0.11499430239200592, -0.46802738308906555, 0.07467729598283768, -0.8050656914710999, 0.12833866477012634, -0.6435707807540894, 0.5473195910453796, 0.31321942806243896, 1.0234500169754028, 0.13885998725891113, -1.0295453071594238, -0.32106566429138184, -0.39541250467300415, -0.06144163757562637, 0.22485388815402985, -0.09475443512201309, 0.26325762271881104, 0.30958306789398193, 0.7749284505844116, -0.8738523125648499, -0.515121579170227, -1.2727817296981812, -0.22567078471183777, 0.14974693953990936, 0.03878938406705856, 0.504959762096405, -0.7070578336715698, -0.1741611361503601, 0.12731944024562836, -0.29395756125450134, 0.23989640176296234, 0.3549847900867462, 0.07363171875476837, -0.5133867859840393, 0.9284642934799194, -0.16681300103664398, 0.9945394992828369, 0.14384189248085022, -0.12964989244937897, 0.30146464705467224, 0.03195828199386597, -0.44897425174713135, 0.010660961270332336, 0.39373648166656494, -0.0622277557849884, 0.46007993817329407, 0.10958221554756165, -0.12929755449295044, -0.04929552972316742, 0.5386770367622375, -0.8067184090614319, -0.8950724005699158, 0.05308244749903679, -0.7977430820465088, -0.4094553589820862, 0.38436004519462585, -0.7416890263557434, 0.14708919823169708, -0.1552315056324005, 0.2754513919353485, -0.14166110754013062, -0.7176238298416138, -0.10531327873468399, 0.005539120640605688, -0.11740589141845703, -0.10973181575536728, -0.8475477695465088, 0.6949671506881714, 0.5582565069198608, 0.8257796764373779, 0.533305287361145, -0.1266791820526123, -0.3545460104942322, 0.1902255117893219, 0.175806924700737, 0.9998180270195007, -0.49760493636131287, -0.8244275450706482, 0.06849714368581772, 0.25454309582710266, -0.09706982970237732, -0.3503437936306, 1.3373249769210815, -0.7176133394241333, 0.0840122327208519, 0.4465636610984802, -0.5979171395301819, -0.5486718416213989, 0.3626634180545807, -1.0823777914047241, 0.8668086528778076, 0.3856878876686096, -0.7851511240005493, 0.07287327945232391, -1.1386479139328003, -0.10580795258283615, 0.5665019750595093, 0.027015581727027893, -0.6778419613838196, 0.19955995678901672, -0.19119983911514282, 0.1545570343732834, -0.06434287130832672, 0.6228250861167908, -0.32873404026031494, 0.02611924335360527, 0.07461926341056824, 0.16107814013957977, 0.9348621964454651, 0.5731814503669739, 0.43653520941734314, 0.8431828022003174, -1.437907338142395, 0.06880957633256912, 0.0946682021021843, -0.00953703373670578, -0.4863421618938446, -0.5303078889846802, 0.6656789779663086, -0.010869165882468224, 0.5288767218589783, -0.3640345633029938, 0.5517609715461731, -0.06328888982534409, 0.40464267134666443, 0.5414755940437317, -0.16206738352775574, 0.636867880821228, -0.5877406001091003, 1.0846877098083496, -0.14675530791282654, 0.6605943441390991, 0.06321930885314941, -0.30752766132354736, -0.798507571220398, -0.36506423354148865, 0.5903903245925903, 0.5098993182182312, -0.27265921235084534, 0.4411205053329468, 0.040978141129016876, -1.0982264280319214, -0.13892357051372528, -0.31642448902130127, 0.43039125204086304, 0.33206501603126526, 0.026517493650317192, -0.3430922031402588, -0.8087615966796875, -1.0060850381851196, 0.10873253643512726, -0.4423004388809204, 0.3182997703552246, -0.1303578019142151, 0.7556921243667603, -0.21950650215148926, 1.1523642539978027, -0.7164850234985352, 0.0024704562965780497, -0.3449506461620331, 0.2025177925825119, 0.45152515172958374, 0.676473081111908, 0.7376481294631958, -0.8968656659126282, -0.28383713960647583, -0.6292822957038879, -0.43301883339881897, -0.6340904831886292, 0.39433157444000244, -0.47549930214881897, -0.17230568826198578, 0.28646835684776306, -0.5312418341636658, 0.5745931267738342, 1.0093544721603394, -0.8631864190101624, 0.7755316495895386, -0.10635307431221008, -0.19422222673892975, -1.4540144205093384, 0.2793051600456238, -0.18477405607700348, -0.5980846285820007, -0.4330684244632721, 0.30734002590179443, 0.49830809235572815, -0.148426353931427, -0.3602587878704071, 0.5273561477661133, -0.7290228605270386, -0.10019011795520782, -0.3024609684944153, -0.4976785182952881, 0.15352149307727814, 0.03350355476140976, -0.1980585753917694, 0.6628212332725525, 0.8944510221481323, -0.2866024374961853, 0.5103812217712402, 0.5522162914276123, -0.2778684198856354, 0.3004717230796814, -0.9914416670799255, -0.18065568804740906, -0.08683692663908005, 0.2032119482755661, -0.6992040276527405, -0.45244476199150085, 0.6444298624992371, -0.17595404386520386, 0.32410454750061035, -0.37970757484436035, -0.34011101722717285, -0.49231237173080444, -0.06396860629320145, 0.5105661749839783, 0.5912481546401978, -0.07973650842905045, 0.9349904656410217, 0.5962356925010681, -0.3632037043571472, 0.033549949526786804, -0.6002060770988464, -0.4020644724369049, 0.009643759578466415, -0.634643018245697, 0.011652213521301746, -0.34638530015945435, -0.5536031126976013, 0.13723786175251007, 0.19769354164600372, -0.4470885992050171, -0.1423012763261795, 0.84477698802948, 0.5769797563552856, -0.19506126642227173, 0.083925761282444, 0.00602585356682539, -0.43735286593437195, -0.1256464719772339, -0.24778233468532562, 0.4005509316921234, -0.0731884241104126, -0.49398311972618103, -0.4738542437553406, 0.31273072957992554, 0.6056379675865173, -0.28031766414642334, 0.5574187636375427, 0.5558786988258362, -0.5201902389526367, 0.12723271548748016, -0.5532705783843994, 0.053613465279340744, -0.36743637919425964, 0.2555667459964752, -0.5677633285522461, -0.6004114151000977, 0.4708908796310425, -0.029222426936030388, -0.6821228861808777, 0.773350715637207, 0.570458173751831, 0.625839352607727, 0.43420660495758057, 1.040291666984558, 0.03352482244372368, 0.8021276593208313, -0.3136856257915497, 0.12413576245307922, -0.976372241973877, -0.35948270559310913, -0.6741041541099548, 0.32942208647727966, -0.6229791641235352, -0.17705300450325012, 0.03850187733769417, 0.43940040469169617, -0.6318418979644775, 0.5338481664657593, -0.780584454536438, 0.4366178810596466, 0.7993925213813782, -0.07009264081716537, 0.5631345510482788, -0.293001264333725, -0.22315746545791626, -0.006640767678618431, -0.5495426058769226, -0.6811925768852234, 0.83177649974823, 0.5693881511688232, 0.9988864064216614, 0.24219699203968048, 0.5648937821388245, -0.21551479399204254, 0.3416532874107361, -0.5966127514839172, 0.3989044427871704, -0.12880751490592957, -0.8346475958824158, 0.19234558939933777, -0.03025825507938862, -0.3606564998626709, 0.16355808079242706, -0.17740358412265778, -0.4936923384666443, 0.05560478940606117, -0.09672210365533829, -0.4601571559906006, 0.2506518065929413, -0.5709642767906189, 1.2942519187927246, -0.06965666264295578, 0.2370959222316742, 0.2943378984928131, -0.1407831311225891, 0.6715497970581055, 0.33323413133621216, 0.44992271065711975, -0.0416654497385025, 0.2727547287940979, 0.7137129306793213, -0.3649771213531494, 0.9268311262130737, -0.00615063076838851, 0.07407782971858978, 0.10291588306427002, 0.14527305960655212, 0.39977148175239563, 0.248187854886055, 0.08865902572870255, -0.06641876697540283, -0.16299401223659515, -0.3755151629447937, -0.054618142545223236, 0.7135757207870483, -0.7111660242080688, -0.0531265027821064, -0.6478891372680664, -0.46793973445892334, 0.3815416991710663, 0.4627777636051178, 0.27715441584587097, 0.7719494104385376, -0.3679424226284027, -0.0926179513335228, 0.6647112369537354, 0.44835975766181946, 0.19597609341144562, 0.3996022045612335, -0.9878953099250793, -0.48894697427749634, 0.39399975538253784, 0.16423971951007843, -0.0479486845433712, 0.41646385192871094, 0.41484731435775757, -0.09601804614067078, -0.6524678468704224, -0.4503033459186554, 0.29698407649993896, -0.7835761308670044, -0.015371415764093399, -0.6928487420082092, -0.511711061000824, -0.734898567199707, 0.18752263486385345, -0.26640585064888, -0.5329771041870117, -0.3306785225868225, -0.19397684931755066, 0.6026841998100281, 0.9373825788497925, -0.16708481311798096, 0.598760187625885, -1.1819429397583008, 0.4203474521636963, 0.4350859522819519, 0.6069658994674683, -0.17606371641159058, -0.7873178720474243, -0.31400206685066223, -0.45948871970176697, -0.6109726428985596, -0.5514525175094604, 0.5134789943695068, -0.13712413609027863, 0.6470995545387268, 0.2558993399143219, -0.32998085021972656, 0.5806381702423096, -0.6606200933456421, 0.9328235387802124, 0.2270604521036148, -0.8573334813117981, 0.6903975009918213, -0.39025723934173584, 0.7703276872634888, 0.8580669164657593, 0.3144555985927582, -0.39276784658432007, -0.12597113847732544, -0.8306398391723633, -1.0757077932357788, 0.4170934557914734, 0.2687811851501465, -0.15487664937973022, 0.3865114450454712, 0.15605391561985016, 0.0796537846326828, 0.1419009268283844, -1.1934924125671387, -0.21484309434890747, -0.3718857765197754, -0.1824585497379303, 0.2931818962097168, -0.8607630729675293, -0.09275681525468826, -0.1782323271036148, 0.8654298782348633, 0.43384048342704773, -0.030669061467051506, -0.16961264610290527, -0.1595892757177353, -0.527970552444458, 0.33326610922813416, 0.9505658149719238, 0.9941080808639526, -0.6176183223724365, -0.05701402947306633, -0.5829190015792847, -0.8198985457420349, -0.1910218894481659, 0.4488857686519623, -0.34253600239753723, 0.08641529083251953, 0.3535968065261841, 0.9184548854827881, 0.14405512809753418, 0.035817716270685196, 0.20591415464878082, -0.11925967037677765, -0.16448654234409332, -1.2484813928604126, 0.05213715508580208, 0.1193244531750679, 0.5709396600723267, 0.21751955151557922, 0.4052788317203522, 0.6596863269805908, -0.35395342111587524, 0.031587351113557816, -0.15150563418865204, -0.6187379360198975, -0.39263013005256653, 0.8943891525268555, 0.30839651823043823, -0.728813648223877, 0.21149012446403503, -0.3429412245750427, -0.5659663081169128, 0.3144865334033966, 0.6248278021812439, 1.2915737628936768, -0.3382520079612732, 0.1606808453798294, 0.557168185710907, -0.029423009604215622, -0.14946681261062622, 0.7004547119140625, 0.1139889657497406, -0.086734838783741, -0.2928830683231354, -0.9088519215583801, -0.40590593218803406, 0.001372551079839468, -0.49056369066238403, 0.38861605525016785, -0.2747805118560791, -0.08456901460886002, 0.0345180444419384, -0.35133400559425354, -0.1829071342945099, -0.054179493337869644, 0.39121729135513306, 1.3768441677093506, -0.8146644234657288, 1.1241368055343628, 1.1678777933120728, -1.010541558265686, -0.8364331126213074, -0.022296443581581116, 0.2725919783115387, -0.3350716233253479, 1.129223108291626, 0.1446182131767273, -0.33320462703704834, -0.2712995707988739, -0.5095533132553101, -0.8661507368087769, 1.0873491764068604, 0.00263910461217165, -0.8546960353851318, -0.36206409335136414, -0.38813480734825134, 0.35833093523979187, -0.38109439611434937, 0.5043968558311462, 0.03143417090177536, 0.6855359077453613, 0.07693302631378174, -1.0834696292877197, -0.1650756299495697, -0.7523025870323181, 0.5874931812286377, 0.2789807617664337, -0.4970097839832306, 1.3813775777816772, 0.4546853005886078, 0.15241099894046783, 0.6735886931419373, 0.7642055153846741, 0.25742897391319275, -0.1109624058008194, 0.5121188163757324, 0.5702142715454102, 0.5934492349624634, 0.20134225487709045, 0.8917398452758789, -0.4093911647796631, 0.938812255859375, 1.2214502096176147, -0.10423685610294342, 0.4984871447086334, 0.34888866543769836, -0.12043359875679016, 0.6369568109512329, 0.41980940103530884, -0.21922405064105988, 0.33971261978149414, 0.49441343545913696, -0.11658542603254318, -0.1755315661430359, 0.017085185274481773, -0.5883298516273499, 0.41733384132385254, -0.018399596214294434, -0.5341280102729797, -0.3488661050796509, -0.07425878196954727, 0.018553918227553368, 0.31790289282798767, -0.5928475260734558, 0.5381444096565247, -0.17865177989006042, -0.21357278525829315, 0.3209826350212097, -0.24964182078838348, 0.7272895574569702, -0.9111535549163818, -0.36612632870674133, 0.17272713780403137, 0.3437676727771759, -0.3721766471862793, -0.6743680238723755, 0.5939812064170837, -0.24552151560783386, -0.5736305713653564, -0.16523797810077667, 1.160258412361145, -0.5235641598701477, -1.1197102069854736, 0.2877567708492279, 0.3020946681499481, 0.11390933394432068, -0.047630760818719864, -0.8430467844009399, 0.15714235603809357, -0.20773845911026, -0.33234697580337524, -0.16113363206386566, -0.02041696384549141, -0.20089995861053467, 0.5844042897224426, 0.44090884923934937, 0.3226887285709381, -0.11509846150875092, 0.5409379005432129, 0.7090719938278198, -0.8287500739097595, -0.5582628846168518, -0.5452167987823486, 0.8225799202919006, -0.3869301974773407, -0.3454332947731018, 0.4819890558719635, 0.8863270282745361, 1.0138612985610962, -0.8661902546882629, 0.7307422161102295, -0.20321957767009735, 0.817752480506897, -0.6668856739997864, 1.1853200197219849, -0.21979892253875732, -0.4788428843021393, -0.29574671387672424, -0.9591268301010132, -0.7275128960609436, 0.7955510020256042, -0.418668270111084, -0.2027866095304489, 0.7141232490539551, 0.9847128391265869, -0.3302247226238251, 0.07792939990758896, 0.46702325344085693, 0.18348224461078644, 0.13646772503852844, 0.06623254716396332, 0.6320164203643799, -0.529039740562439, 0.3865216374397278, -0.2308986485004425, -0.43917110562324524, -0.40875354409217834, -0.9951801896095276, -0.939849853515625, -0.7479529976844788, -0.27411308884620667, -0.19301792979240417, 0.07758478075265884, 1.0880171060562134, 0.7836388349533081, -0.9095581769943237, -0.5345342755317688, -0.21533696353435516, -0.04069772735238075, 0.2271614372730255, -0.22868147492408752, 0.3592391610145569, -0.010023380629718304, -1.006154179573059, 0.03514934331178665, 0.02168196812272072, 0.397077739238739, -0.5733921527862549, -0.0025228261947631836, -0.5164929628372192, -0.13414934277534485, 0.2498297095298767, 0.022765295580029488, -0.6982868313789368, -0.02079569548368454, -0.3591945469379425, -0.4240114986896515, 0.2329263985157013, 0.7487516403198242, -0.3627951443195343, 0.4422151446342468, 0.8295611143112183, -0.1371099054813385, 0.4154445230960846, -0.20368801057338715, 0.30859315395355225, -0.17587992548942566, 0.2779495120048523, -0.20444712042808533, 0.7861858606338501, 0.3155079782009125, -0.5229228138923645, 0.6952516436576843, 0.27129337191581726, -0.7389008402824402, -0.4795581102371216, 0.33898454904556274, -1.523848056793213, -0.11495733261108398, 0.8487145304679871, -0.0895286500453949, -0.7972214818000793, 0.268783837556839, -0.8213610649108887, 0.773881196975708, -0.6151944398880005, 0.5648720860481262, 0.685500979423523, 0.18055453896522522, -0.5080209374427795, -0.8651730418205261, 0.24809670448303223, -0.3869464695453644, -0.7203145623207092, -0.26068270206451416, 0.4905741512775421, 0.27623769640922546, 0.6958545446395874, 0.6394018530845642, -0.5167930722236633, 0.1607206165790558, 0.020091447979211807, 0.759732186794281, -0.6623268127441406, -0.42054930329322815, -0.353517085313797, 0.20282898843288422, 0.1268625557422638, -0.32901862263679504 ]
HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-binary
HooshvareLab
"2021-05-18T20:56:29Z"
53,099
4
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "text-classification", "fa", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-classification
"2022-03-02T23:29:04Z"
--- language: fa license: apache-2.0 --- # ParsBERT (v2.0) A Transformer-based Model for Persian Language Understanding We reconstructed the vocabulary and fine-tuned the ParsBERT v1.1 on the new Persian corpora in order to provide some functionalities for using ParsBERT in other scopes! Please follow the [ParsBERT](https://github.com/hooshvare/parsbert) repo for the latest information about previous and current models. ## Persian Sentiment [Digikala, SnappFood, DeepSentiPers] It aims to classify text, such as comments, based on their emotional bias. We tested three well-known datasets for this task: `Digikala` user comments, `SnappFood` user comments, and `DeepSentiPers` in two binary-form and multi-form types. ### DeepSentiPers which is a balanced and augmented version of SentiPers, contains 12,138 user opinions about digital products labeled with five different classes; two positives (i.e., happy and delighted), two negatives (i.e., furious and angry) and one neutral class. Therefore, this dataset can be utilized for both multi-class and binary classification. In the case of binary classification, the neutral class and its corresponding sentences are removed from the dataset. **Binary:** 1. Negative (Furious + Angry) 2. Positive (Happy + Delighted) **Multi** 1. Furious 2. Angry 3. Neutral 4. Happy 5. Delighted | Label | # | |:---------:|:----:| | Furious | 236 | | Angry | 1357 | | Neutral | 2874 | | Happy | 2848 | | Delighted | 2516 | **Download** You can download the dataset from: - [SentiPers](https://github.com/phosseini/sentipers) - [DeepSentiPers](https://github.com/JoyeBright/DeepSentiPers) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | DeepSentiPers | |:------------------------:|:-----------:|:-----------:|:-----:|:-------------:| | SentiPers (Multi Class) | 71.31* | 71.11 | - | 69.33 | | SentiPers (Binary Class) | 92.42* | 92.13 | - | 91.98 | ## How to use :hugs: | Task | Notebook | |---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Sentiment Analysis | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert/blob/master/notebooks/Taaghche_Sentiment_Analysis.ipynb) | ### BibTeX entry and citation info Please cite in publications as the following: ```bibtex @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Questions? Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo.
[ -0.6485862135887146, -0.8676830530166626, 0.24855998158454895, 0.43778181076049805, -0.3590961694717407, 0.1321130394935608, -0.4048665165901184, -0.26447513699531555, 0.19257068634033203, 0.28987547755241394, -0.42898479104042053, -0.5513569712638855, -0.5297107100486755, -0.13766326010227203, -0.24326707422733307, 1.3111786842346191, 0.12268154323101044, 0.20627142488956451, -0.2368808090686798, -0.14101272821426392, -0.46165767312049866, -0.41983914375305176, -0.3268941640853882, -0.3301376700401306, 0.2290821671485901, 0.648466169834137, 0.851970374584198, 0.06714420020580292, 0.8021137118339539, 0.26057183742523193, -0.5243865847587585, -0.2608865797519684, -0.28406864404678345, 0.10102391242980957, -0.13736358284950256, -0.4358230233192444, -0.6958625316619873, -0.12672480940818787, 0.6731083989143372, 0.6198499798774719, -0.21847228705883026, 0.29218193888664246, 0.15469913184642792, 0.9605122208595276, -0.37474074959754944, -0.03724965080618858, -0.15401573479175568, 0.10194119811058044, -0.3610582947731018, 0.22013090550899506, -0.38769927620887756, -0.5800399780273438, -0.10941259562969208, -0.22714261710643768, 0.29939666390419006, 0.11076745390892029, 1.2862348556518555, 0.10841440409421921, -0.32090499997138977, -0.12093288451433182, -0.6473974585533142, 0.9219380617141724, -0.8013157844543457, 0.44761741161346436, -0.0013845957582816482, 0.21804536879062653, -0.0897979587316513, -0.4275267422199249, -0.7374938726425171, 0.025465261191129684, -0.315560519695282, 0.34720519185066223, -0.3988957405090332, -0.24978169798851013, 0.22898395359516144, 0.9054704308509827, -0.6927253007888794, -0.23706009984016418, -0.49174776673316956, -0.03378908336162567, 0.4459620416164398, 0.18243254721164703, 0.1103149801492691, -0.40713024139404297, -0.5661799311637878, -0.42200419306755066, -0.5004768967628479, 0.5198927521705627, 0.08402261883020401, 0.04416383430361748, -0.5100694894790649, 0.549715518951416, -0.34066104888916016, 0.40831422805786133, 0.5615890622138977, 0.1148461326956749, 0.8234004974365234, -0.33327457308769226, -0.06190616264939308, -0.06795163452625275, 1.023734450340271, 0.2402331829071045, 0.086673304438591, 0.09076687693595886, -0.15295715630054474, 0.238243967294693, 0.016864506527781487, -0.9156551361083984, -0.30361729860305786, 0.3422558903694153, -0.5191805362701416, -0.47656962275505066, 0.25117945671081543, -1.2170659303665161, -0.4032398760318756, -0.26690199971199036, 0.13809281587600708, -0.5576857924461365, -0.6377195715904236, 0.09158224612474442, -0.09448964893817902, 0.8168022036552429, 0.294920414686203, -0.5650196671485901, 0.48292276263237, 0.7932374477386475, 0.7141349911689758, 0.08027676492929459, -0.2931102216243744, -0.10605702549219131, -0.31817176938056946, -0.38633498549461365, 1.0553641319274902, -0.43444594740867615, -0.3690437078475952, -0.40105849504470825, -0.02693200670182705, 0.059508148580789566, -0.48284539580345154, 0.7445021271705627, -0.42747074365615845, 0.6839603185653687, -0.4053857922554016, -0.5116139054298401, -0.3130332827568054, 0.15135866403579712, -0.5947575569152832, 1.2024033069610596, 0.18863002955913544, -0.9517315030097961, -0.0163973830640316, -0.7894891500473022, -0.49290287494659424, -0.2452864646911621, 0.10959060490131378, -0.7629751563072205, 0.27221211791038513, 0.2056610882282257, 0.5853173732757568, -0.7421175241470337, 0.4027844965457916, -0.263446182012558, -0.11814334243535995, 0.47538405656814575, -0.08342660218477249, 1.2014037370681763, 0.1543540358543396, -0.6248226761817932, 0.18995395302772522, -0.6773912310600281, 0.02082485519349575, 0.22868560254573822, -0.055563125759363174, -0.23806622624397278, -0.05803554132580757, 0.03875255212187767, 0.4186713397502899, 0.2988201379776001, -0.7365788221359253, -0.14348247647285461, -0.6049339771270752, 0.1250796765089035, 0.8342903852462769, 0.05303968861699104, 0.5398867726325989, -0.4002382457256317, 0.6300723552703857, 0.41430947184562683, 0.33856600522994995, -0.000015700788935646415, -0.31470590829849243, -0.9740652441978455, -0.4181610345840454, 0.44028836488723755, 0.7184768319129944, -0.4166473150253296, 0.5664902925491333, -0.43894317746162415, -0.8885285258293152, -0.5321910977363586, -0.003919396549463272, 0.6509358286857605, 0.6198771595954895, 0.55382239818573, -0.2729106545448303, -0.4424554109573364, -1.0399380922317505, -0.3335311710834503, -0.2647384703159332, 0.3883145749568939, 0.2512361705303192, 0.4754737913608551, -0.1266576200723648, 0.8777629137039185, -0.6415113806724548, -0.20037540793418884, -0.33264222741127014, 0.032217852771282196, 0.5027378797531128, 0.6591718792915344, 0.5623890161514282, -0.8056782484054565, -0.7745240330696106, 0.09282395988702774, -0.715036153793335, 0.011535738594830036, -0.058257464319467545, -0.3825579881668091, 0.39804530143737793, 0.15372705459594727, -0.7596213817596436, 0.1873539835214615, 0.44169187545776367, -0.7426573038101196, 0.604134738445282, 0.47196832299232483, 0.004459133837372065, -1.318336844444275, 0.2430715411901474, 0.05852344259619713, -0.20921389758586884, -0.6999090909957886, -0.015859754756093025, 0.24443994462490082, 0.0016874028369784355, -0.4240952730178833, 0.6502325534820557, -0.43984749913215637, 0.11160492897033691, 0.1090080663561821, -0.13648399710655212, 0.0746600329875946, 0.710389256477356, -0.12619493901729584, 0.7959628701210022, 0.819674551486969, -0.33084195852279663, 0.3657674789428711, 0.6319243311882019, -0.33229634165763855, 0.8170219659805298, -0.903365433216095, -0.040989454835653305, -0.27285775542259216, 0.11723645031452179, -1.0703847408294678, -0.2458166629076004, 0.6012323498725891, -0.7895551323890686, 0.3896785378456116, 0.247792586684227, -0.4150278866291046, -0.3173876404762268, -0.6187964677810669, 0.02228272333741188, 0.8368966579437256, -0.3959786593914032, 0.5675139427185059, 0.48522046208381653, -0.42884206771850586, -0.47029656171798706, -0.533994197845459, -0.13332447409629822, -0.34112727642059326, -0.7277260422706604, 0.2230643928050995, -0.09670431166887283, -0.2998417615890503, 0.20005252957344055, -0.18724100291728973, -0.1116592064499855, -0.005447525065392256, 0.4366722106933594, 0.5787383317947388, -0.28994041681289673, 0.14921455085277557, 0.28819477558135986, -0.047238465398550034, 0.19741138815879822, 0.3770352303981781, 0.7147224545478821, -0.8151916861534119, -0.12310288101434708, -0.3715500235557556, 0.1535644829273224, 0.6313760280609131, -0.5259203314781189, 0.8078935742378235, 0.6522315740585327, -0.08132392168045044, -0.05130641162395477, -0.6744065880775452, -0.012183954939246178, -0.44907355308532715, 0.11932945996522903, -0.37497562170028687, -0.9861423969268799, 0.6523627042770386, -0.11359748989343643, -0.06388688832521439, 0.8464969992637634, 0.7487174272537231, -0.16067516803741455, 0.7862405180931091, 0.37679922580718994, -0.14736247062683105, 0.52588951587677, -0.25762709975242615, 0.204458549618721, -1.1035388708114624, -0.34660983085632324, -0.6208454966545105, -0.24225202202796936, -0.7570255398750305, -0.3372436463832855, 0.4101470112800598, 0.13176153600215912, -0.4391457736492157, 0.3441391885280609, -0.5603466629981995, 0.45076754689216614, 0.48636457324028015, 0.33036816120147705, -0.015025796368718147, 0.040205586701631546, 0.09153612703084946, 0.0326324887573719, -0.5410052537918091, -0.3661929666996002, 0.8727423548698425, 0.4054054021835327, 0.7167413830757141, 0.2503761947154999, 0.8026523590087891, 0.1611071228981018, 0.19990301132202148, -0.6465651988983154, 0.6200787425041199, -0.2041875422000885, -0.8056599497795105, -0.15596634149551392, -0.26498788595199585, -0.7098835706710815, 0.3742503523826599, -0.035248637199401855, -0.3692917823791504, 0.634273886680603, 0.24030502140522003, -0.194383904337883, 0.0658663734793663, -0.6687116026878357, 1.1242924928665161, -0.1059260293841362, -0.5718817710876465, -0.30982571840286255, -0.9612315893173218, 0.4345599412918091, 0.044721439480781555, 0.3737189769744873, -0.3685068190097809, 0.25600534677505493, 0.6953400373458862, -0.47968605160713196, 0.931081235408783, -0.36236873269081116, 0.1191953495144844, 0.3923499584197998, 0.07708370685577393, 0.4473161995410919, -0.08625005930662155, -0.23092125356197357, 0.33226409554481506, -0.04081287607550621, -0.5163516402244568, -0.2961564064025879, 0.7143592834472656, -0.8703426122665405, -0.5899032354354858, -0.9020038843154907, -0.0982174202799797, -0.15193530917167664, 0.24891948699951172, 0.16530832648277283, 0.4003937840461731, -0.3199580907821655, 0.519631028175354, 0.7744014859199524, -0.3499058783054352, 0.2772722840309143, 0.5078337788581848, -0.17297053337097168, -0.5579050183296204, 0.9422804713249207, -0.32292425632476807, 0.0828692689538002, 0.4169144928455353, 0.36676210165023804, -0.26034319400787354, -0.064783476293087, -0.4613628387451172, 0.3651617169380188, -0.6626377105712891, -0.6303452253341675, -0.38727089762687683, -0.09627174586057663, -0.4210191071033478, -0.006179249379783869, -0.3955274522304535, -0.6246298551559448, -0.3911396563053131, -0.06262180954217911, 0.5230310559272766, 0.4870109260082245, -0.2468062788248062, 0.21071869134902954, -0.7747340202331543, 0.27107614278793335, 0.029282724484801292, 0.4513104259967804, -0.15498453378677368, -0.6474746465682983, -0.30589964985847473, 0.002266769064590335, -0.5337321162223816, -1.01432204246521, 0.4871561825275421, 0.24979576468467712, 0.33429181575775146, 0.08648268133401871, 0.14802025258541107, 0.7273280024528503, -0.4660056531429291, 0.766106903553009, 0.29887405037879944, -1.3825552463531494, 0.788715124130249, -0.22907233238220215, 0.11507434397935867, 0.5594884753227234, 0.3818359375, -0.5939567685127258, -0.3679760992527008, -0.7248382568359375, -0.8893240094184875, 0.9101639986038208, 0.17187084257602692, 0.12003745138645172, 0.056675538420677185, 0.16038087010383606, -0.019756101071834564, 0.3241572082042694, -0.8575439453125, -0.3602398633956909, -0.5032391548156738, -0.40977945923805237, -0.03517339006066322, -0.49058017134666443, 0.11736615747213364, -0.4668305814266205, 0.9007144570350647, 0.30255192518234253, 0.49904605746269226, 0.4143596589565277, -0.21364928781986237, -0.2013746201992035, 0.6480353474617004, 0.5377534031867981, 0.32996177673339844, -0.19173017144203186, 0.12104936689138412, 0.15902823209762573, -0.35378989577293396, 0.026757685467600822, 0.1486687958240509, -0.07847821712493896, 0.05830291658639908, 0.2385791838169098, 1.0813308954238892, 0.172236368060112, -0.6151733994483948, 0.7518572807312012, 0.09886984527111053, -0.02074272930622101, -0.6409398317337036, -0.020939745008945465, -0.17218904197216034, 0.3489665389060974, -0.11319927126169205, 0.16506020724773407, 0.31717899441719055, -0.3777824640274048, -0.00015229068230837584, 0.40095052123069763, -0.42701080441474915, -0.6427962779998779, 0.461480975151062, 0.031893290579319, 0.04082420468330383, 0.37780967354774475, -0.3077716827392578, -0.9160446524620056, 0.5695595741271973, 0.4354683458805084, 0.9342225193977356, -0.5179525017738342, 0.30818819999694824, 0.49383383989334106, 0.23831254243850708, -0.1536090075969696, 0.6057365536689758, 0.022266771644353867, -0.6050626039505005, -0.29617780447006226, -0.8403019309043884, -0.4610138237476349, -0.3468017876148224, -0.8272444009780884, 0.29535427689552307, -0.4874180555343628, -0.11935549974441528, 0.20537948608398438, -0.04108252748847008, -0.5966276526451111, 0.12134410440921783, -0.08030625432729721, 0.7764616012573242, -0.8653303384780884, 0.651068389415741, 1.0403697490692139, -0.4369901418685913, -0.8298742771148682, -0.09151432663202286, -0.04721413552761078, -0.49887874722480774, 0.6378321647644043, -0.05610126629471779, -0.022827817127108574, 0.017788805067539215, -0.5470389723777771, -0.8483215570449829, 0.9715265035629272, 0.035688288509845734, -0.5261458158493042, 0.26141422986984253, 0.25482890009880066, 0.7641637325286865, 0.17692159116268158, 0.17565950751304626, 0.4436228573322296, 0.48334258794784546, -0.10256286710500717, -0.8845779895782471, 0.2981715202331543, -0.7128254175186157, 0.08136152476072311, 0.5098103880882263, -1.0487889051437378, 1.3233660459518433, 0.13601741194725037, -0.016177460551261902, -0.06402415037155151, 0.5980991721153259, 0.08105877786874771, 0.1420418620109558, 0.39695990085601807, 0.8171188831329346, 0.5703507661819458, -0.2599446475505829, 1.1467561721801758, -0.4122655689716339, 0.7883835434913635, 1.0773539543151855, -0.20125484466552734, 0.9362561106681824, 0.41127222776412964, -0.521921694278717, 1.0169910192489624, 0.31604963541030884, -0.14856968820095062, 0.4549897313117981, 0.02299903891980648, -0.22658129036426544, -0.2606261968612671, -0.009882019832730293, -0.5324354767799377, 0.34158411622047424, 0.29195210337638855, -0.07940025627613068, 0.004486823920160532, 0.007860620506107807, 0.35729601979255676, -0.07374826073646545, -0.2521491050720215, 0.9305312037467957, -0.03004484809935093, -0.5029069185256958, 0.6504487991333008, -0.021950172260403633, 0.41316717863082886, -0.2074398398399353, 0.15369382500648499, -0.4322218894958496, 0.38202667236328125, -0.35437846183776855, -0.9413458108901978, 0.5006927251815796, 0.23956449329853058, -0.27316442131996155, -0.21923120319843292, 0.950545608997345, -0.17313280701637268, -0.7659933567047119, -0.04866986721754074, 0.6708711385726929, 0.008521507494151592, -0.06539183109998703, -0.784018874168396, 0.18412922322750092, 0.15671010315418243, -0.6711472868919373, 0.06441421806812286, 0.6537659168243408, 0.05205780267715454, 0.27902793884277344, 0.5677490234375, -0.10886213183403015, 0.05757587030529976, -0.2949168086051941, 1.2181507349014282, -1.0105688571929932, -0.3654763996601105, -0.9338645339012146, 0.7780235409736633, -0.18783265352249146, -0.33331647515296936, 0.9923598766326904, 0.815941572189331, 0.789797306060791, -0.19902479648590088, 0.5819488167762756, -0.5135530233383179, 1.0955133438110352, -0.23709583282470703, 0.6013317108154297, -0.6269177198410034, 0.11791660636663437, -0.44975385069847107, -0.8133392333984375, -0.36850491166114807, 0.8775653839111328, -0.46435546875, -0.11460020393133163, 0.6840229630470276, 0.8065177798271179, -0.09323915839195251, 0.10488153249025345, -0.21489578485488892, 0.5798972249031067, 0.1596817970275879, 0.5446945428848267, 0.9260401129722595, -0.6292371153831482, 0.3263394832611084, -0.7176212668418884, -0.21959657967090607, -0.18211248517036438, -0.46661320328712463, -0.9847009778022766, -0.6038503646850586, -0.4279300272464752, -0.5302841663360596, -0.028096096590161324, 1.051895260810852, 0.25951865315437317, -1.1564286947250366, -0.31028908491134644, -0.29121288657188416, 0.19498419761657715, 0.03919876366853714, -0.3577565848827362, 0.5119650959968567, -0.40035152435302734, -0.7261953949928284, -0.05929841473698616, -0.019024712964892387, -0.033212628215551376, 0.04150587320327759, -0.128880113363266, 0.02480119839310646, -0.09117470681667328, 0.7309141159057617, 0.25791510939598083, -0.6295260787010193, -0.06398255378007889, 0.39241039752960205, -0.15845191478729248, 0.3220306932926178, 0.41698771715164185, -0.7720999717712402, 0.10792963951826096, 0.5891515612602234, 0.38970309495925903, 0.3780653476715088, 0.0668553039431572, 0.04739170894026756, -0.558472752571106, 0.11165209859609604, 0.2839471995830536, 0.20124423503875732, 0.35437244176864624, -0.16737404465675354, 0.4984951317310333, 0.234601691365242, -0.5829541683197021, -0.9717301726341248, -0.01710350811481476, -1.3026373386383057, -0.31887146830558777, 1.194973111152649, -0.002277479274198413, -0.31508535146713257, 0.3595235049724579, -0.39373940229415894, 0.36334818601608276, -0.6851577162742615, 0.7108927965164185, 0.6509241461753845, -0.2034970372915268, -0.17830760776996613, -0.16312189400196075, 0.3344956934452057, 0.7990406155586243, -1.01022207736969, 0.0013497378677129745, 0.7260598540306091, 0.18161122500896454, 0.2008180469274521, 0.4960993230342865, -0.2527439594268799, 0.446727454662323, -0.15780141949653625, 0.3427216410636902, 0.15449675917625427, -0.1928568035364151, -0.5838996171951294, 0.01826448366045952, 0.03387531265616417, -0.0908069759607315 ]
HuggingFaceH4/zephyr-7b-alpha
HuggingFaceH4
"2023-11-21T17:28:11Z"
52,709
973
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "generated_from_trainer", "en", "dataset:stingning/ultrachat", "dataset:openbmb/UltraFeedback", "arxiv:2305.18290", "base_model:mistralai/Mistral-7B-v0.1", "license:mit", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
text-generation
"2023-10-09T08:45:10Z"
--- tags: - generated_from_trainer model-index: - name: zephyr-7b-alpha results: [] license: mit datasets: - stingning/ultrachat - openbmb/UltraFeedback language: - en base_model: mistralai/Mistral-7B-v0.1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> <img src="https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/resolve/main/thumbnail.png" alt="Zephyr Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> # Model Card for Zephyr 7B Alpha Zephyr is a series of language models that are trained to act as helpful assistants. Zephyr-7B-α is the first model in the series, and is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) that was trained on on a mix of publicly available, synthetic datasets using [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290). We found that removing the in-built alignment of these datasets boosted performance on [MT Bench](https://huggingface.co/spaces/lmsys/mt-bench) and made the model more helpful. However, this means that model is likely to generate problematic text when prompted to do so. ## Model description - **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets. - **Language(s) (NLP):** Primarily English - **License:** MIT - **Finetuned from model:** [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/huggingface/alignment-handbook - **Demo:** https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat ## Intended uses & limitations The model was initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4. As a result, the model can be used for chat and you can check out our [demo](https://huggingface.co/spaces/HuggingFaceH4/zephyr-chat) to test its capabilities. Here's how you can run the model using the `pipeline()` function from 🤗 Transformers: ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate", }, {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) # <|system|> # You are a friendly chatbot who always responds in the style of a pirate.</s> # <|user|> # How many helicopters can a human eat in one sitting?</s> # <|assistant|> # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food! ``` ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> Zephyr-7B-α has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so). It is also unknown what the size and composition of the corpus was used to train the base model (`mistralai/Mistral-7B-v0.1`), however it is likely to have included a mix of Web data and technical sources like books and code. See the [Falcon 180B model card](https://huggingface.co/tiiuae/falcon-180B#training-data) for an example of this. ## Training and evaluation data Zephyr 7B Alpha achieves the following results on the evaluation set: - Loss: 0.4605 - Rewards/chosen: -0.5053 - Rewards/rejected: -1.8752 - Rewards/accuracies: 0.7812 - Rewards/margins: 1.3699 - Logps/rejected: -327.4286 - Logps/chosen: -297.1040 - Logits/rejected: -2.7153 - Logits/chosen: -2.7447 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 16 - total_train_batch_size: 32 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5602 | 0.05 | 100 | 0.5589 | -0.3359 | -0.8168 | 0.7188 | 0.4809 | -306.2607 | -293.7161 | -2.6554 | -2.6797 | | 0.4852 | 0.1 | 200 | 0.5136 | -0.5310 | -1.4994 | 0.8125 | 0.9684 | -319.9124 | -297.6181 | -2.5762 | -2.5957 | | 0.5212 | 0.15 | 300 | 0.5168 | -0.1686 | -1.1760 | 0.7812 | 1.0074 | -313.4444 | -290.3699 | -2.6865 | -2.7125 | | 0.5496 | 0.21 | 400 | 0.4835 | -0.1617 | -1.7170 | 0.8281 | 1.5552 | -324.2635 | -290.2326 | -2.7947 | -2.8218 | | 0.5209 | 0.26 | 500 | 0.5054 | -0.4778 | -1.6604 | 0.7344 | 1.1826 | -323.1325 | -296.5546 | -2.8388 | -2.8667 | | 0.4617 | 0.31 | 600 | 0.4910 | -0.3738 | -1.5180 | 0.7656 | 1.1442 | -320.2848 | -294.4741 | -2.8234 | -2.8521 | | 0.4452 | 0.36 | 700 | 0.4838 | -0.4591 | -1.6576 | 0.7031 | 1.1986 | -323.0770 | -296.1796 | -2.7401 | -2.7653 | | 0.4674 | 0.41 | 800 | 0.5077 | -0.5692 | -1.8659 | 0.7656 | 1.2967 | -327.2416 | -298.3818 | -2.6740 | -2.6945 | | 0.4656 | 0.46 | 900 | 0.4927 | -0.5279 | -1.6614 | 0.7656 | 1.1335 | -323.1518 | -297.5553 | -2.7817 | -2.8015 | | 0.4102 | 0.52 | 1000 | 0.4772 | -0.5767 | -2.0667 | 0.7656 | 1.4900 | -331.2578 | -298.5311 | -2.7160 | -2.7455 | | 0.4663 | 0.57 | 1100 | 0.4740 | -0.8038 | -2.1018 | 0.7656 | 1.2980 | -331.9604 | -303.0741 | -2.6994 | -2.7257 | | 0.4737 | 0.62 | 1200 | 0.4716 | -0.3783 | -1.7015 | 0.7969 | 1.3232 | -323.9545 | -294.5634 | -2.6842 | -2.7135 | | 0.4259 | 0.67 | 1300 | 0.4866 | -0.6239 | -1.9703 | 0.7812 | 1.3464 | -329.3312 | -299.4761 | -2.7046 | -2.7356 | | 0.4935 | 0.72 | 1400 | 0.4747 | -0.5626 | -1.7600 | 0.7812 | 1.1974 | -325.1243 | -298.2491 | -2.7153 | -2.7444 | | 0.4211 | 0.77 | 1500 | 0.4645 | -0.6099 | -1.9993 | 0.7656 | 1.3894 | -329.9109 | -299.1959 | -2.6944 | -2.7236 | | 0.4931 | 0.83 | 1600 | 0.4684 | -0.6798 | -2.1082 | 0.7656 | 1.4285 | -332.0890 | -300.5934 | -2.7006 | -2.7305 | | 0.5029 | 0.88 | 1700 | 0.4595 | -0.5063 | -1.8951 | 0.7812 | 1.3889 | -327.8267 | -297.1233 | -2.7108 | -2.7403 | | 0.4965 | 0.93 | 1800 | 0.4613 | -0.5561 | -1.9079 | 0.7812 | 1.3518 | -328.0831 | -298.1203 | -2.7226 | -2.7523 | | 0.4337 | 0.98 | 1900 | 0.4608 | -0.5066 | -1.8718 | 0.7656 | 1.3652 | -327.3599 | -297.1296 | -2.7175 | -2.7469 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.14.0
[ -0.5821578502655029, -0.6847996115684509, 0.21536260843276978, 0.06678476929664612, -0.10944782942533493, -0.1067001074552536, -0.07640758156776428, -0.41462165117263794, 0.6330946683883667, 0.3183952569961548, -0.5255382061004639, -0.48130497336387634, -0.5366438031196594, -0.06734804809093475, 0.022827574983239174, 0.8286543488502502, 0.1865566372871399, -0.20375953614711761, 0.11515413224697113, -0.177648663520813, -0.3333469331264496, -0.3737166225910187, -0.6399843096733093, -0.18556071817874908, 0.32975083589553833, 0.4398709237575531, 1.0177252292633057, 0.8570348024368286, 0.4559459090232849, 0.36939045786857605, -0.35641276836395264, 0.04784979671239853, -0.453896164894104, -0.3718612790107727, 0.1593831479549408, -0.5239745378494263, -0.5272687077522278, -0.12746867537498474, 0.6949425339698792, 0.5666895508766174, -0.0728066936135292, 0.2569464445114136, 0.08374815434217453, 0.7930203080177307, -0.3196539878845215, 0.42057690024375916, -0.37234702706336975, -0.05367922782897949, -0.3388962745666504, -0.13385771214962006, -0.05298154801130295, -0.383585125207901, 0.13714756071567535, -0.6566060781478882, 0.2782939374446869, 0.147644504904747, 1.5065340995788574, 0.1306985318660736, -0.2189335823059082, -0.05495205894112587, -0.47211602330207825, 0.6468791961669922, -0.6707294583320618, 0.2877875864505768, 0.2870901823043823, 0.24478980898857117, -0.23180268704891205, -0.6037458181381226, -0.7575032114982605, 0.09468045830726624, -0.24260222911834717, 0.3370022773742676, -0.33143919706344604, -0.15267477929592133, 0.26509222388267517, 0.4334369897842407, -0.5909631848335266, -0.21240004897117615, -0.5840238928794861, -0.3627758026123047, 0.5974002480506897, 0.17031210660934448, 0.3761482238769531, -0.6297557950019836, -0.5445905923843384, -0.35430076718330383, -0.36337989568710327, 0.6807316541671753, 0.4907495379447937, 0.3954063057899475, -0.3171440660953522, 0.561286211013794, -0.16456617414951324, 0.6191417574882507, 0.20872624218463898, -0.15099860727787018, 0.7505455017089844, -0.3591806888580322, -0.27034685015678406, -0.06857653707265854, 0.967474639415741, 0.6862659454345703, -0.05212551727890968, 0.09471873939037323, -0.041673462837934494, 0.24328693747520447, 0.05982881039381027, -0.7621180415153503, -0.20180252194404602, 0.48777061700820923, -0.4177777171134949, -0.4288977384567261, 0.06134604290127754, -0.8346237540245056, 0.08317269384860992, -0.04169230908155441, 0.3636496663093567, -0.41292357444763184, -0.509131669998169, 0.13344627618789673, -0.28781858086586, 0.2355603724718094, 0.17794594168663025, -0.9455593228340149, 0.2290140688419342, 0.35294967889785767, 0.9556419849395752, 0.16121059656143188, -0.1644648313522339, -0.003198367776349187, 0.0702536478638649, -0.41983547806739807, 0.7973857522010803, -0.3471556007862091, -0.38864850997924805, -0.2958420217037201, 0.35061967372894287, -0.21231625974178314, -0.34783047437667847, 0.6708113551139832, -0.3668777644634247, 0.2874125838279724, -0.5053085088729858, -0.4217003285884857, -0.2930435240268707, 0.3213978111743927, -0.6296549439430237, 1.0903282165527344, 0.36789727210998535, -1.049494981765747, 0.3143206834793091, -0.5276346206665039, 0.008561510592699051, -0.0204512570053339, -0.05751490220427513, -0.5635161399841309, -0.35252413153648376, 0.23699021339416504, 0.26213476061820984, -0.39438989758491516, 0.1534712016582489, -0.2574663460254669, -0.2509843111038208, -0.1000213772058487, -0.1131620779633522, 1.151928186416626, 0.3585875630378723, -0.5188086032867432, 0.15758062899112701, -0.7217810153961182, 0.11554358899593353, 0.3165953755378723, -0.29178494215011597, 0.005088991019874811, -0.35033780336380005, 0.14661595225334167, 0.2611832916736603, 0.37849465012550354, -0.6289404630661011, 0.18579573929309845, -0.4920606017112732, 0.4900544583797455, 0.6849108934402466, 0.04056829959154129, 0.4821130931377411, -0.7997804880142212, 0.5636487007141113, 0.39858362078666687, 0.3147285580635071, 0.030512353405356407, -0.6671217083930969, -0.8647491335868835, -0.22062987089157104, 0.04970685392618179, 0.6389161944389343, -0.4778122305870056, 0.6713523268699646, -0.14542558789253235, -0.8052588105201721, -0.5940809845924377, 0.005198834463953972, 0.3026440739631653, 0.8916876912117004, 0.3401338458061218, -0.20824243128299713, -0.513130784034729, -0.946469783782959, 0.04971917346119881, -0.30388256907463074, 0.32192257046699524, 0.5500454902648926, 0.514315128326416, -0.3319990038871765, 1.10498046875, -0.4941859543323517, -0.5254669189453125, -0.29195642471313477, -0.3405597507953644, 0.5242987871170044, 0.5141276121139526, 0.9561408162117004, -0.7935250997543335, -0.636451005935669, 0.03733156621456146, -0.8085000514984131, 0.1450720727443695, -0.04143208637833595, -0.2897849977016449, 0.1439700573682785, 0.05573470890522003, -0.6856303215026855, 0.43643224239349365, 0.5410357713699341, -0.4877445697784424, 0.5444427728652954, -0.2971266806125641, 0.24585121870040894, -1.0987389087677002, 0.2384505718946457, 0.10578534752130508, 0.052492085844278336, -0.4939751625061035, -0.07670633494853973, 0.017836203798651695, -0.10700158029794693, -0.41927817463874817, 0.6736509799957275, -0.4959019124507904, 0.13595984876155853, 0.07969452440738678, 0.021072257310152054, -0.015240979380905628, 0.7071887254714966, 0.05919080227613449, 0.7989777326583862, 0.830797016620636, -0.4358610510826111, 0.2451750487089157, 0.40315476059913635, -0.24151411652565002, 0.3488558232784271, -0.8294719457626343, -0.0686715692281723, -0.313556969165802, 0.2166629582643509, -1.204455018043518, -0.351767361164093, 0.527233898639679, -0.5292618870735168, 0.08126500248908997, -0.23106767237186432, -0.22929419577121735, -0.6621325016021729, -0.42594680190086365, 0.000661418423987925, 0.5868169665336609, -0.3255223035812378, 0.5188102126121521, 0.4253402650356293, 0.09896594285964966, -0.7156689167022705, -0.5338206887245178, -0.14227883517742157, -0.23380573093891144, -0.953920841217041, 0.38474974036216736, -0.09993358701467514, -0.058553311973810196, 0.05498529225587845, 0.03952818736433983, 0.013493363745510578, 0.05528765916824341, 0.4965573251247406, 0.3296046555042267, -0.1741863191127777, -0.2539508044719696, -0.13995124399662018, -0.15319573879241943, -0.05086001753807068, -0.04847720265388489, 0.6020420789718628, -0.45051905512809753, -0.20316527783870697, -0.5966855883598328, 0.019453711807727814, 0.6341869831085205, -0.2705649733543396, 1.0082924365997314, 0.6096832752227783, -0.26644060015678406, 0.26109132170677185, -0.5388505458831787, -0.09227129817008972, -0.4713403582572937, 0.20674248039722443, -0.4442291855812073, -0.7319085597991943, 0.8186728358268738, 0.10538468509912491, 0.2617549002170563, 0.85019850730896, 0.4122072458267212, 0.0530192069709301, 1.0174262523651123, 0.3317508399486542, -0.13758714497089386, 0.4848966896533966, -0.764069676399231, -0.08921544253826141, -0.8697615265846252, -0.5300154089927673, -0.5367376208305359, -0.4407844841480255, -0.5126391649246216, -0.2133103907108307, 0.38420364260673523, 0.19995014369487762, -0.44487813115119934, 0.35102930665016174, -0.7551290988922119, 0.2112627625465393, 0.5360032916069031, 0.3861914873123169, 0.05530129000544548, -0.0952015221118927, -0.2317293882369995, -0.16965582966804504, -0.7105563282966614, -0.6707231998443604, 1.1326987743377686, 0.3498765826225281, 0.4985731542110443, 0.31777000427246094, 0.9167126417160034, 0.07036852091550827, 0.1264595240354538, -0.47911110520362854, 0.31237414479255676, 0.15773433446884155, -0.8087303042411804, -0.23506689071655273, -0.4218323826789856, -1.1869847774505615, 0.4542979300022125, -0.3253891170024872, -0.8842254281044006, 0.39149361848831177, 0.25698164105415344, -0.547598123550415, 0.407121479511261, -0.8486282229423523, 1.0639172792434692, -0.2264421582221985, -0.5606222152709961, 0.09939941018819809, -0.861941397190094, 0.3343999981880188, 0.21568618714809418, 0.36213579773902893, -0.23902131617069244, 0.09588883072137833, 0.8120051026344299, -0.6830701231956482, 0.6447990536689758, -0.41601839661598206, 0.2982534170150757, 0.5255683064460754, -0.10240622609853745, 0.5238166451454163, 0.09072674810886383, -0.28539755940437317, 0.041480112820863724, 0.16032874584197998, -0.5952889323234558, -0.3238075375556946, 0.8352689146995544, -1.2447404861450195, -0.7365106344223022, -0.5843223929405212, -0.3752113878726959, 0.15420331060886383, 0.42060065269470215, 0.4398040473461151, 0.4896160960197449, -0.043164778500795364, 0.1704380363225937, 0.4793636202812195, -0.20900531113147736, 0.3928598165512085, 0.2782389521598816, -0.3086412250995636, -0.6265866160392761, 0.8537040948867798, 0.1853538304567337, 0.2705032229423523, 0.07825417071580887, 0.386785089969635, -0.5209958553314209, -0.3068501055240631, -0.5257532000541687, 0.31034350395202637, -0.4388977587223053, -0.24209758639335632, -0.9477677345275879, -0.17445926368236542, -0.7979975938796997, -0.2762298285961151, -0.3096548318862915, -0.3253118097782135, -0.5143769979476929, -0.09200059622526169, 0.5289037227630615, 0.6328539848327637, 0.02344759739935398, 0.4292137622833252, -0.7615909576416016, 0.17754770815372467, 0.06366858631372452, 0.08663708716630936, 0.13678677380084991, -0.637754499912262, -0.1030566543340683, 0.347729355096817, -0.5197242498397827, -0.9014001488685608, 0.8089901804924011, 0.13704851269721985, 0.5805601477622986, 0.47700053453445435, 0.03094884380698204, 0.9207845330238342, -0.12723790109157562, 0.7986209988594055, 0.2481061816215515, -0.6831487417221069, 0.6381398439407349, -0.3912046551704407, 0.3084659278392792, 0.5114515423774719, 0.5813126564025879, -0.4800242781639099, -0.3653987646102905, -1.116471290588379, -0.876693606376648, 0.763598620891571, 0.3092845380306244, 0.08010849356651306, -0.10748468339443207, 0.389674574136734, -0.3664442300796509, 0.0956675186753273, -0.8290445804595947, -0.6346392631530762, -0.3546809256076813, -0.027509434148669243, -0.038416314870119095, -0.07217897474765778, -0.08960002660751343, -0.4568769633769989, 0.6463246941566467, 0.16147321462631226, 0.357255220413208, 0.40444254875183105, 0.0516466349363327, -0.26742836833000183, 0.16809441149234772, 0.6010015606880188, 0.6132428646087646, -0.5565984845161438, -0.0566866360604763, -0.05132865160703659, -0.4340353310108185, 0.11023492366075516, 0.07338986545801163, -0.27464139461517334, 0.004722632002085447, 0.26153668761253357, 0.6358277797698975, 0.06167863681912422, -0.18033072352409363, 0.5410066843032837, -0.03549236059188843, -0.3424050807952881, -0.4036962687969208, 0.15952958166599274, 0.24754534661769867, 0.3293967843055725, 0.41841667890548706, 0.36654436588287354, 0.013268405571579933, -0.6718044281005859, 0.13322030007839203, 0.4696851372718811, -0.4648995101451874, -0.2636617124080658, 0.9724806547164917, 0.1302197128534317, -0.21254976093769073, 0.522769033908844, -0.1874382048845291, -0.7722746729850769, 0.8214420080184937, 0.5015250444412231, 0.4969627261161804, -0.1273045837879181, 0.19055859744548798, 0.8459526300430298, 0.3399415612220764, -0.08293858915567398, 0.48974406719207764, 0.11438770592212677, -0.7040895819664001, 0.20248301327228546, -0.6735917329788208, -0.14319349825382233, 0.051260583102703094, -0.6145743131637573, 0.44617632031440735, -0.5749529600143433, -0.5903983116149902, 0.09875551611185074, 0.3006673753261566, -0.7487133741378784, 0.17961816489696503, -0.1752421259880066, 0.9356392621994019, -1.0458663702011108, 0.7166781425476074, 0.6688160300254822, -0.7828565835952759, -1.190280795097351, -0.4508969187736511, 0.06727847456932068, -0.8177610039710999, 0.614925742149353, 0.15847188234329224, 0.06988299638032913, 0.040914155542850494, -0.46651726961135864, -1.0182307958602905, 1.2519643306732178, 0.19899466633796692, -0.5995994210243225, -0.018108254298567772, -0.03513094782829285, 0.668435275554657, -0.1012372151017189, 0.6336077451705933, 0.4683573246002197, 0.49920251965522766, 0.24463529884815216, -0.951717734336853, 0.15083172917366028, -0.5658660531044006, 0.07368992269039154, 0.20978179574012756, -1.2131338119506836, 1.1278300285339355, -0.2906871438026428, -0.05670413374900818, -0.09155452996492386, 0.7101826667785645, 0.32093214988708496, -0.009580430574715137, 0.5363898277282715, 0.8385969400405884, 0.767268180847168, -0.18536515533924103, 1.1111093759536743, -0.4810062646865845, 0.6758098602294922, 0.628940761089325, -0.06144006922841072, 0.7606878876686096, 0.4139847457408905, -0.4172618091106415, 0.46641409397125244, 0.7437299489974976, -0.05281836539506912, 0.4735296070575714, -0.07083193212747574, -0.255618691444397, -0.11004672199487686, -0.04554092884063721, -0.7475249171257019, 0.2420818954706192, 0.23983365297317505, -0.3999694287776947, -0.16649985313415527, -0.1988006830215454, 0.17735831439495087, -0.16024231910705566, -0.12891510128974915, 0.6096906065940857, -0.20066173374652863, -0.54339599609375, 0.7128927111625671, -0.14811736345291138, 0.837996244430542, -0.6657071709632874, 0.0268570426851511, -0.19290485978126526, 0.36959967017173767, -0.5572125315666199, -0.9835173487663269, 0.27507421374320984, -0.2706906795501709, -0.1490013748407364, 0.00641010282561183, 0.5382141470909119, -0.3027249872684479, -0.5542179346084595, 0.1937597692012787, 0.24877023696899414, 0.24442686140537262, 0.15691646933555603, -0.9230753779411316, 0.05247427895665169, 0.25238674879074097, -0.500673770904541, 0.359466552734375, 0.43967103958129883, 0.09530104696750641, 0.5443711280822754, 0.8586921095848083, 0.2179265171289444, 0.08917252719402313, -0.2604176700115204, 1.0812873840332031, -0.6975119113922119, -0.5435558557510376, -0.6929243206977844, 0.4181149899959564, -0.1323544979095459, -0.5485501885414124, 0.9472286105155945, 0.7822373509407043, 0.6792862415313721, 0.0022693388164043427, 0.627097487449646, -0.48382502794265747, 0.5181149244308472, -0.15519873797893524, 0.7810153365135193, -0.6393702626228333, 0.10737872868776321, -0.40562713146209717, -0.7652598023414612, -0.22025592625141144, 0.8606247901916504, -0.36598482728004456, 0.11910717189311981, 0.42296308279037476, 1.1286152601242065, 0.09108435362577438, 0.05537258833646774, 0.14449428021907806, 0.0696449801325798, 0.3190409243106842, 0.7329453825950623, 0.5147227048873901, -0.7017474174499512, 0.5930688381195068, -0.8170784115791321, -0.31908145546913147, -0.25997108221054077, -0.6210371255874634, -0.7353339791297913, -0.6387317180633545, -0.3904169201850891, -0.6018874049186707, -0.08459881693124771, 1.0758200883865356, 0.708365261554718, -0.6266415119171143, -0.4399486780166626, 0.06414909660816193, 0.01385005097836256, -0.2149454802274704, -0.2624540328979492, 0.7194489240646362, -0.12383804470300674, -0.6520050764083862, 0.03228749334812164, 0.08075590431690216, 0.34929153323173523, -0.009438997134566307, -0.18952824175357819, -0.23190271854400635, -0.14762459695339203, 0.3862241208553314, 0.4282132685184479, -0.7604854702949524, -0.26789507269859314, 0.20679046213626862, -0.2697756588459015, 0.3692058324813843, 0.20235835015773773, -0.5487368106842041, 0.48009490966796875, 0.49952560663223267, 0.34703677892684937, 0.5625788569450378, 0.16866858303546906, 0.19020718336105347, -0.3574739992618561, 0.30020132660865784, -0.04008089005947113, 0.46204373240470886, 0.1551581621170044, -0.5155773162841797, 0.4924382269382477, 0.44748741388320923, -0.6295188069343567, -0.7043754458427429, -0.31576597690582275, -1.397800326347351, 0.07052668929100037, 1.0764989852905273, -0.16717059910297394, -0.671913206577301, 0.04969222843647003, -0.4617503583431244, 0.19274264574050903, -0.7016658186912537, 0.5818842053413391, 0.6876397132873535, -0.3368617594242096, -0.12040016055107117, -0.5626835227012634, 0.4631540775299072, 0.29260265827178955, -0.7487531304359436, -0.12631262838840485, 0.4553748667240143, 0.4617903232574463, 0.3128446340560913, 0.7921373844146729, -0.13858643174171448, 0.23725929856300354, 0.17854340374469757, 0.16886770725250244, -0.06833916157484055, -0.0269392691552639, -0.16167384386062622, 0.1797349900007248, 0.07041212916374207, -0.33697184920310974 ]
DeepChem/ChemBERTa-10M-MTR
DeepChem
"2022-11-16T23:00:19Z"
52,642
5
transformers
[ "transformers", "pytorch", "roberta", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
"2022-03-02T23:29:04Z"
--- tags: - roberta --- # Model Card for ChemBERTa-10M-MTR # Model Details ## Model Description More information needed - **Developed by:** DeepChem - **Shared by [Optional]:** DeepChem - **Model type:** Token Classification - **Language(s) (NLP):** More information needed - **License:** More information needed - **Parent Model:** [RoBERTa](https://huggingface.co/roberta-base?text=The+goal+of+life+is+%3Cmask%3E.) - **Resources for more information:** More information needed # Uses ## Direct Use More information needed. ## Downstream Use [Optional] More information needed. ## Out-of-Scope Use The model should not be used to intentionally create hostile or alienating environments for people. # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data More information needed ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors More information needed ### Metrics More information needed ## Results More information needed # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed. # Citation **BibTeX:** ```bibtex @book{Ramsundar-et-al-2019, title={Deep Learning for the Life Sciences}, author={Bharath Ramsundar and Peter Eastman and Patrick Walters and Vijay Pande and Karl Leswing and Zhenqin Wu}, publisher={O'Reilly Media}, note={\url{https://www.amazon.com/Deep-Learning-Life-Sciences-Microscopy/dp/1492039837}}, year={2019} } ``` **APA:** More information needed # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] DeepChem in collaboration with Ezi Ozoani and the Hugging Face team # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, RobertaForRegression tokenizer = AutoTokenizer.from_pretrained("DeepChem/ChemBERTa-10M-MTR") model = RobertaForRegression.from_pretrained("DeepChem/ChemBERTa-10M-MTR") ``` </details>
[ -0.2563478350639343, -0.532277524471283, 0.49317365884780884, -0.08489219099283218, -0.35479626059532166, 0.10233128070831299, 0.09187642484903336, -0.35882240533828735, 0.09376595914363861, 0.4929172694683075, -0.6609944105148315, -0.653253436088562, -0.6846722960472107, -0.1411110907793045, -0.2077113837003708, 0.86857670545578, 0.22349776327610016, 0.433658629655838, -0.17076937854290009, 0.0953904539346695, -0.21513202786445618, -0.45530202984809875, -0.8342105150222778, -0.49572286009788513, 0.6065683364868164, 0.11684061586856842, 0.5211958289146423, 0.670482337474823, 0.5796271562576294, 0.36688438057899475, -0.5093619227409363, 0.06036754697561264, -0.23328974843025208, -0.3399692177772522, -0.19917325675487518, -0.2602313756942749, -0.8776751756668091, 0.20856237411499023, 0.5196333527565002, 0.9456347227096558, -0.12367480248212814, 0.32947322726249695, 0.16448645293712616, 0.5229806900024414, -0.4366116523742676, 0.2811235785484314, -0.4556516110897064, 0.2774198353290558, -0.05801491066813469, 0.08085036277770996, -0.2024853229522705, -0.1325395554304123, -0.09699315577745438, -0.4420502781867981, 0.12486622482538223, -0.14639675617218018, 1.01279616355896, 0.18084533512592316, -0.45588335394859314, -0.1981717199087143, -0.5894201993942261, 0.67340087890625, -0.9777023196220398, 0.24386857450008392, 0.20618152618408203, 0.42089346051216125, -0.04188663512468338, -0.9889017939567566, -0.5873921513557434, -0.1559993475675583, -0.09770916402339935, 0.2590039372444153, -0.05884408950805664, 0.1097751036286354, 0.21868197619915009, 0.7183360457420349, -0.38143178820610046, -0.033045727759599686, -0.619777262210846, -0.34705811738967896, 0.5106919407844543, 0.5302911400794983, 0.13280919194221497, -0.274952232837677, -0.43102195858955383, -0.3402499556541443, -0.2229144275188446, 0.06881637871265411, 0.3518049418926239, 0.32275575399398804, -0.33321288228034973, 0.5294243097305298, -0.2075810432434082, 0.31511738896369934, 0.05065019056200981, 0.12539935111999512, 0.46439075469970703, -0.46862006187438965, -0.33847883343696594, 0.014629615470767021, 0.7581883668899536, 0.2004108726978302, -0.13698363304138184, 0.24516932666301727, -0.10294193774461746, -0.0638834610581398, 0.05478285998106003, -1.3304930925369263, -0.3052791953086853, 0.30865541100502014, -0.559276282787323, -0.4401690661907196, 0.2021067887544632, -1.0832871198654175, -0.23851278424263, -0.2412029355764389, 0.35036978125572205, -0.2399461269378662, -0.27735811471939087, 0.2116514891386032, -0.01513099204748869, 0.25673148036003113, 0.1495438814163208, -0.5615975856781006, 0.393244206905365, 0.38750505447387695, 0.9024292826652527, -0.08029209822416306, -0.22282306849956512, -0.2583913207054138, -0.045346204191446304, -0.15290753543376923, 0.6359575390815735, -0.5862740278244019, -0.520966112613678, -0.14520753920078278, 0.4284716248512268, -0.01286873035132885, -0.4490327835083008, 0.5472072958946228, -0.4474036395549774, 0.3358595371246338, -0.24151352047920227, -0.5358142256736755, -0.4578779637813568, 0.05393356457352638, -0.766556441783905, 0.9564182162284851, 0.22810602188110352, -0.6332570314407349, 0.34954261779785156, -1.0074348449707031, -0.23695625364780426, 0.2518305480480194, 0.0609261617064476, -0.6840471625328064, -0.2332480251789093, -0.13526643812656403, 0.5074897408485413, -0.253936767578125, 0.6377588510513306, -0.5039112567901611, 0.08273754268884659, 0.08180709928274155, -0.29716137051582336, 1.2803534269332886, 0.6136399507522583, -0.2689538300037384, 0.29603829979896545, -0.8629221320152283, 0.10043077170848846, 0.12173322588205338, -0.45223718881607056, 0.08669818192720413, -0.24131567776203156, 0.23823796212673187, 0.3263578414916992, 0.3317783772945404, -0.530983030796051, -0.036412786692380905, -0.15059992671012878, 0.7144787907600403, 0.6602699160575867, 0.11966882646083832, 0.21163837611675262, -0.17819476127624512, 0.42656874656677246, 0.3686511218547821, 0.384103924036026, -0.08722446858882904, -0.3476412296295166, -0.89453125, -0.19823195040225983, 0.36408233642578125, 0.5738622546195984, -0.19398808479309082, 0.8782783150672913, -0.11920095235109329, -0.9140048623085022, -0.32796111702919006, 0.16196873784065247, 0.4291475713253021, 0.5127812027931213, 0.5314682722091675, -0.3244246542453766, -0.6013050675392151, -0.972247302532196, -0.18048056960105896, 0.16192010045051575, 0.17760124802589417, 0.35793524980545044, 1.0146288871765137, -0.6279177069664001, 0.7344565391540527, -0.7447531819343567, -0.33703067898750305, -0.1818123608827591, 0.07249616086483002, 0.2526264488697052, 0.7890206575393677, 0.4230620265007019, -0.6836029291152954, -0.3907656669616699, -0.2211233526468277, -0.6312991380691528, 0.15109078586101532, 0.1577434539794922, -0.15923115611076355, 0.1567101925611496, 0.46565765142440796, -0.523216187953949, 0.46498823165893555, 0.4347042739391327, -0.5634245872497559, 0.37404459714889526, -0.24324427545070648, 0.055674899369478226, -1.2850879430770874, 0.5380691885948181, -0.02598140574991703, -0.19053108990192413, -0.6514326333999634, 0.055504996329545975, 0.028583932667970657, -0.24216845631599426, -0.8556469678878784, 0.7938326001167297, -0.2490832805633545, 0.30823373794555664, -0.3310385048389435, -0.4915476441383362, 0.14709070324897766, 0.6526352763175964, 0.12511642277240753, 0.591817319393158, 0.4237455427646637, -0.7307166457176208, 0.18646588921546936, 0.19585783779621124, -0.3657575249671936, 0.3915390968322754, -0.7677130699157715, 0.12142779678106308, 0.10063336044549942, 0.46532776951789856, -0.7468326687812805, -0.27220869064331055, 0.41172701120376587, -0.4759639799594879, 0.33183249831199646, 0.22291061282157898, -0.5316206216812134, -0.37912383675575256, 0.0006755049107596278, 0.4891238212585449, 0.5653395056724548, -0.3742484152317047, 0.775431215763092, 0.345514714717865, 0.14627417922019958, -0.22280575335025787, -0.9081181883811951, -0.0730288028717041, -0.30688053369522095, -0.29245778918266296, 0.5082928538322449, -0.2699303925037384, 0.007919596508145332, 0.0443708673119545, 0.019269514828920364, -0.2519381642341614, 0.09379814565181732, 0.36579516530036926, 0.21255053579807281, 0.06899744272232056, 0.036067284643650055, -0.013896738179028034, -0.37289831042289734, 0.2512555420398712, -0.25399643182754517, 0.6666256785392761, -0.28033775091171265, 0.0684051662683487, -0.5361470580101013, 0.29758507013320923, 0.5538613200187683, -0.1724054515361786, 0.7628561854362488, 0.8420102000236511, -0.6188011765480042, 0.13833852112293243, -0.4300236701965332, -0.27685055136680603, -0.5082909464836121, 0.5461350083351135, -0.16100983321666718, -0.6203312277793884, 0.7926465272903442, -0.164160817861557, -0.3390803635120392, 1.0093194246292114, 0.49291959404945374, 0.020998379215598106, 0.8179792165756226, 0.5922815203666687, -0.04065019264817238, 0.34235435724258423, -0.6487798690795898, -0.032511208206415176, -0.9390003085136414, -0.6481760740280151, -0.6157898306846619, -0.186091348528862, -0.39213013648986816, -0.4073297381401062, 0.028602177277207375, -0.08017301559448242, -0.8438540697097778, 0.4410557746887207, -0.6584592461585999, 0.21453332901000977, 0.5251480937004089, 0.327557772397995, 0.08935661613941193, -0.049213796854019165, -0.3614547550678253, 0.08491005748510361, -0.7124820351600647, -0.5629116296768188, 0.7088991403579712, 0.5405523180961609, 0.6121143102645874, -0.10272542387247086, 0.46783897280693054, 0.20313671231269836, 0.1411726474761963, -0.5550168752670288, 0.6419984102249146, -0.23503215610980988, -1.074704885482788, -0.20420527458190918, -0.39286312460899353, -0.9595744013786316, -0.054778601974248886, -0.05606292933225632, -0.5238921046257019, 0.5679603815078735, 0.1296960860490799, -0.41698360443115234, 0.5738743543624878, -0.33524179458618164, 1.1486159563064575, -0.4054358899593353, -0.3044939339160919, -0.16140450537204742, -0.7954613566398621, 0.28872403502464294, -0.13049709796905518, 0.25568172335624695, -0.13382630050182343, -0.10469881445169449, 0.9065898060798645, -0.6042442917823792, 1.2479417324066162, -0.42530497908592224, 0.023238586261868477, 0.38556358218193054, -0.0701027363538742, 0.46406760811805725, -0.11095156520605087, -0.07969454675912857, 0.46259474754333496, 0.03973762318491936, -0.42004266381263733, -0.11853384971618652, 0.6492504477500916, -0.7935397028923035, -0.3578995168209076, -0.6916214823722839, -0.3992093503475189, 0.27661243081092834, 0.5789549946784973, 0.33165672421455383, 0.14765045046806335, -0.06182124838232994, 0.3386238217353821, 0.6786627173423767, -0.5419526696205139, 0.31882092356681824, 0.522295355796814, -0.1512070596218109, -0.7593144178390503, 0.9855771660804749, 0.21495279669761658, 0.30134710669517517, 0.3091271221637726, 0.34191593527793884, -0.3389139175415039, -0.22654421627521515, -0.05921300873160362, 0.059735026210546494, -0.8013782501220703, -0.27703168988227844, -0.8687424659729004, -0.5555279850959778, -0.3977127969264984, 0.0774536207318306, -0.5154979228973389, -0.1660384237766266, -0.7017368674278259, -0.1950165182352066, 0.4169723689556122, 0.370071142911911, -0.2607719898223877, 0.3274683356285095, -0.6436620950698853, 0.12364167720079422, 0.385601669549942, 0.4923847019672394, 0.17308750748634338, -0.6185950040817261, -0.21795444190502167, 0.20416061580181122, -0.4971141219139099, -0.7827715873718262, 0.46925655007362366, 0.27160632610321045, 0.57254558801651, 0.33495453000068665, 0.01250868197530508, 0.6889573335647583, -0.27925926446914673, 0.9161950349807739, 0.18687210977077484, -1.0079748630523682, 0.5517100095748901, -0.2671080529689789, 0.30117303133010864, 0.7371960878372192, 0.3827587962150574, -0.4322654902935028, -0.01623539999127388, -0.8717080950737, -0.8817409873008728, 0.4765501320362091, 0.14976966381072998, 0.3130521774291992, 0.01897861436009407, 0.47499099373817444, 0.024349866434931755, 0.2175706923007965, -1.050418496131897, -0.42518219351768494, -0.44415754079818726, -0.08713139593601227, -0.08863116800785065, -0.2070656269788742, -0.022720634937286377, -0.7422661781311035, 0.9092231392860413, -0.07792703062295914, 0.42514100670814514, 0.32441526651382446, 0.02988441288471222, -0.04707802087068558, 0.07986637204885483, 0.7639082670211792, 0.24116407334804535, -0.5132558345794678, 0.2046263962984085, 0.34331294894218445, -0.6674067378044128, 0.24234284460544586, 0.2800935208797455, -0.04539240151643753, -0.26982638239860535, 0.24604712426662445, 0.7421929240226746, 0.02215793915092945, -0.42331406474113464, 0.3562951982021332, 0.20926077663898468, -0.5188915133476257, -0.41051793098449707, 0.2148461490869522, 0.27760690450668335, 0.2776501476764679, 0.4097575843334198, 0.15379902720451355, 0.3653581440448761, -0.45878925919532776, 0.08000840246677399, 0.5524134635925293, -0.8056873679161072, -0.1616719663143158, 1.0264272689819336, 0.2906323969364166, -0.3634795546531677, 0.6030563712120056, -0.3140411674976349, -0.5436527132987976, 0.9980047941207886, 0.3455962836742401, 1.066878318786621, -0.21064528822898865, 0.053250622004270554, 0.6753026247024536, 0.20374314486980438, 0.18827079236507416, 0.312727153301239, 0.1062791496515274, -0.5279015898704529, -0.14777229726314545, -0.678623378276825, -0.16157399117946625, 0.531656801700592, -0.5612120628356934, 0.28822973370552063, -0.6124582290649414, -0.2021985799074173, 0.1396235227584839, 0.4753783047199249, -0.8936972618103027, 0.4489671289920807, 0.01901266910135746, 1.0885937213897705, -0.8978826403617859, 0.8992974162101746, 0.5726491212844849, -0.6895983815193176, -0.6918770670890808, -0.4552513659000397, -0.03983084484934807, -0.6354752779006958, 0.7602313756942749, 0.18867500126361847, -0.007469835225492716, 0.13940326869487762, -0.7544196248054504, -0.7182841897010803, 1.4280157089233398, 0.22192613780498505, -0.6031560301780701, 0.22416989505290985, 0.18033184111118317, 0.480085164308548, -0.5831722021102905, 0.28695639967918396, 0.3213355243206024, 0.7859249114990234, 0.15856434404850006, -0.44136419892311096, 0.358364999294281, -0.4410025179386139, 0.010102848522365093, -0.09086327254772186, -0.9900376200675964, 1.0028737783432007, -0.09090237319469452, -0.28217068314552307, 0.17566633224487305, 0.5322135090827942, 0.21071526408195496, 0.4219777584075928, 0.3649672567844391, 0.6017011404037476, 0.6284957528114319, 0.14407753944396973, 0.8512387275695801, -0.4452051520347595, 0.49760642647743225, 1.1211832761764526, -0.15701322257518768, 0.5222801566123962, 0.43138551712036133, -0.3961850106716156, 0.5598844289779663, 1.0164940357208252, -0.5296458005905151, 0.4977595806121826, 0.22876036167144775, -0.031854864209890366, -0.3442416191101074, -0.20733657479286194, -0.6751422882080078, 0.04101051762700081, 0.266254723072052, -0.7945089936256409, -0.08131624013185501, -0.21777667105197906, 0.04497193917632103, -0.20038250088691711, -0.1987999677658081, 0.6026312112808228, 0.17080971598625183, -0.38732433319091797, 0.2767961919307709, 0.028999431058764458, 0.5187651515007019, -0.4870539605617523, -0.17799417674541473, -0.2107027918100357, 0.26302918791770935, -0.27960923314094543, -0.5487858653068542, 0.26501139998435974, -0.3061703145503998, -0.35308408737182617, 0.10273933410644531, 0.6773106455802917, -0.31338438391685486, -0.9237508177757263, 0.40552669763565063, 0.3261536955833435, 0.2600546181201935, 0.07342524081468582, -0.979016900062561, -0.009512437507510185, -0.06014438346028328, -0.28674593567848206, 0.16606099903583527, 0.15191949903964996, 0.2753097712993622, 0.6966471672058105, 0.6478052735328674, -0.10001206398010254, -0.10483968257904053, -0.2407812625169754, 0.9848160147666931, -0.8675599694252014, -0.30751779675483704, -0.8726935982704163, 0.7457550764083862, -0.1890745311975479, -0.38722413778305054, 0.5365223288536072, 0.9777252078056335, 0.7565969228744507, -0.2690059244632721, 0.6595792174339294, 0.05116647854447365, 0.3200940191745758, -0.37234973907470703, 0.8334565758705139, -0.5683780908584595, 0.15918420255184174, -0.2767457962036133, -1.0562975406646729, -0.30919861793518066, 0.6251221895217896, -0.11417771130800247, 0.4723195433616638, 0.7634507417678833, 0.855335533618927, -0.22509093582630157, -0.1453004777431488, 0.11683844029903412, 0.3697766661643982, 0.45793434977531433, 0.43738120794296265, 0.4707689583301544, -0.539685070514679, 0.420259952545166, -0.36227479577064514, -0.005980558227747679, -0.17758487164974213, -1.1135952472686768, -0.9148387908935547, -0.5393949151039124, -0.6396276354789734, -0.38346150517463684, -0.15347109735012054, 0.7213757634162903, 0.930061399936676, -0.851470410823822, -0.2279723584651947, -0.4240497946739197, -0.1963750422000885, -0.28299447894096375, -0.22235073149204254, 0.5037651658058167, -0.2235480397939682, -0.6300841569900513, -0.024528086185455322, 0.01072785910218954, 0.3254427909851074, -0.5663664937019348, -0.3864089846611023, -0.33859390020370483, 0.16942691802978516, 0.3437921702861786, 0.253979355096817, -0.7219300866127014, -0.028932228684425354, -0.09188441187143326, -0.2880825400352478, 0.03694934397935867, 0.49596238136291504, -0.6038485169410706, 0.1938210278749466, 0.3914657235145569, 0.34035351872444153, 0.6295692324638367, -0.325578510761261, 0.2856973707675934, -0.1796044260263443, -0.022616071626544, 0.1946275234222412, 0.3354165852069855, 0.175086110830307, -0.6199042201042175, 0.6213704347610474, 0.32331690192222595, -0.6615673303604126, -0.7666499018669128, 0.025925129652023315, -1.1551669836044312, -0.5509985685348511, 1.0691187381744385, 0.01945115625858307, -0.4115607440471649, 0.18201883137226105, -0.274871289730072, 0.4674707055091858, -0.41733455657958984, 0.4985153377056122, 0.655903160572052, 0.21391069889068604, -0.23874451220035553, -0.44615697860717773, 0.47042316198349, 0.10872765630483627, -1.0217262506484985, -0.08112077414989471, 0.315788209438324, 0.3998977243900299, 0.15545280277729034, 0.2847963273525238, -0.30177757143974304, 0.13925407826900482, 0.09289651364088058, 0.33253422379493713, -0.3055684268474579, -0.230218306183815, -0.4483547806739807, 0.000057777655456447974, -0.1966971904039383, -0.18502548336982727 ]
haor/Evt_V2
haor
"2023-05-10T16:05:06Z"
52,181
56
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "anime", "license:creativeml-openrail-m", "endpoints_compatible", "has_space", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2022-11-20T21:15:04Z"
--- tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - anime - diffusers license: creativeml-openrail-m --- # Evt_V2 Based on animefull-latest, fine-tuned using a training set of 15000 images (7700 flipped). Most of the training set uses [pixiv_AI_crawler](https://github.com/7eu7d7/pixiv_AI_crawler) to filter the pixiv daily ranking, and then mixes some nsfw animation images. ### Examples ![Image](https://0.00000.link/1121/1669040927.jpg) ![Image](https://0.00000.link/1122/1669088826.png) ![Image](https://0.00000.link/1121/1669041182.jpg) ![Image](https://0.00000.link/1121/1668968933.png) ![Image](https://0.00000.link/1121/1668969239.png) ``` best quality, illustration,highly detailed,1girl,upper body,beautiful detailed eyes, medium_breasts, long hair,grey hair, grey eyes, curly hair, bangs,empty eyes,expressionless, ((masterpiece)),twintails,beautiful detailed sky, beautiful detailed water, cinematic lighting, dramatic angle,((back to the viewer)),(an extremely delicate and beautiful),school uniform,black ribbon,light smile, Negative prompt: lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry,artist name,bad feet Steps: 40, Sampler: Euler a, CFG scale: 7, Clip skip: 2 *evt_bs6_ema is the first version of evt ``` ![Image](https://0.00000.link/1121/1669040982.jpg) ![Image](https://0.00000.link/1121/1669040981.jpg) ![Image](https://0.00000.link/1121/1668982508.png) ![Image](https://0.00000.link/1121/1668969770.png) ``` {Masterpiece, Kaname_Madoka, tall and long double tails, well rooted hair, (pink hair), pink eyes, crossed bangs, ojousama, jk, thigh bandages, wrist cuffs, (pink bow: 1.2)}, plain color, sketch, masterpiece, high detail, masterpiece portrait, best quality, ray tracing, {:<, look at the edge} Negative prompt: ((((ugly)))), (((duplicate))), ((morbid)), ((mutilated)),extra fingers, mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((bad proportions))), ((extra limbs)), (((deformed))), (((disfigured))), cloned face, gross proportions, (malformed limbs), ((missing arms)), ((missing legs)), (((extra arms))), (((extra legs))), too many fingers, (((long neck))), (((low quality))), normal quality, blurry, bad feet, text font ui, ((((worst quality)))), anatomical nonsense, (((bad shadow))), unnatural body, liquid body, 3D, 3D game, 3D game scene, 3D character, bad hairs, poorly drawn hairs, fused hairs, big muscles, bad face, extra eyes, furry, pony, mosaic, disappearing calf, disappearing legs, extra digit, fewer digit, fused digit, missing digit, fused feet, poorly drawn eyes, big face, long face, bad eyes, thick lips, obesity, strong girl, beard,Excess legs Steps: 40, Sampler: Euler a, CFG scale: 6,Clip skip: 2 ```
[ -0.6744140982627869, -0.8386536836624146, 0.45786285400390625, 0.12382932007312775, -0.3685779273509979, -0.03160341456532478, 0.4823882281780243, -0.6064256429672241, 0.503451943397522, 0.5129375457763672, -0.7699512839317322, -0.5727710723876953, -0.5733944773674011, 0.275485098361969, -0.2199869006872177, 0.7352474927902222, 0.18183758854866028, 0.16100236773490906, -0.083857960999012, 0.026856940239667892, -0.4225621223449707, -0.04054568335413933, -0.8449576497077942, -0.4907156527042389, 0.24203592538833618, 0.4092574119567871, 0.7863436341285706, 0.7684436440467834, 0.3372037708759308, 0.25157007575035095, 0.013903910294175148, -0.2819855809211731, -0.8599104285240173, -0.17272527515888214, -0.1468556970357895, -0.496807336807251, -0.5721996426582336, -0.06179649755358696, 0.21538302302360535, 0.03007121942937374, 0.3457241654396057, 0.15034103393554688, -0.12478655576705933, 0.7374208569526672, -0.12716145813465118, -0.09442069381475449, 0.022735239937901497, 0.4294174015522003, -0.29459652304649353, 0.016456983983516693, -0.10255222767591476, -0.14634574949741364, -0.03610619530081749, -1.0206162929534912, 0.2908277213573456, 0.045110318809747696, 1.3184375762939453, 0.17020519077777863, -0.3068613111972809, 0.05448238179087639, -0.45236653089523315, 0.5880963206291199, -0.49045529961586, 0.27143386006355286, 0.44375312328338623, 0.17252205312252045, 0.011129380203783512, -0.9574852585792542, -0.5893828272819519, 0.13185055553913116, 0.15561538934707642, 0.5626575946807861, -0.4701501429080963, -0.1410902887582779, 0.49913468956947327, 0.4027453064918518, -0.8728752732276917, 0.24482938647270203, -0.5802382230758667, -0.27308422327041626, 0.7767947316169739, 0.16146676242351532, 0.7228506207466125, -0.025842439383268356, -0.6178073883056641, -0.4449414908885956, -0.9452477693557739, 0.08556005358695984, 0.6258886456489563, -0.4977867901325226, -0.25974881649017334, 0.6452561020851135, 0.04710657149553299, 0.3914293348789215, 0.2611142098903656, -0.08209347724914551, 0.334834486246109, -0.08778225630521774, -0.0192045196890831, -0.01877814531326294, 1.0404695272445679, 0.8241092562675476, -0.017270127311348915, 0.16320616006851196, 0.03554448112845421, -0.04738413915038109, 0.19091671705245972, -1.1337924003601074, -0.42436206340789795, 0.49889644980430603, -0.6936472058296204, -0.37977299094200134, -0.030965914949774742, -1.1704150438308716, -0.3470209538936615, -0.028531789779663086, 0.53117436170578, -1.0078279972076416, -0.337124764919281, -0.12212219089269638, -0.24999351799488068, 0.608674168586731, 0.4255538284778595, -0.5668315887451172, -0.12159151583909988, 0.6074178814888, 0.8947509527206421, 0.1045750305056572, -0.13180610537528992, 0.1439710110425949, -0.10562947392463684, -0.4741077721118927, 0.9357585906982422, -0.5395450592041016, -0.3394303321838379, -0.4448375105857849, 0.4244895577430725, 0.2619512677192688, -0.29372403025627136, 0.7403333187103271, -0.15638668835163116, 0.2503906190395355, -0.10088982433080673, -0.48099568486213684, -0.6003125309944153, -0.06430655717849731, -0.8033608198165894, 0.8422176241874695, 0.23406390845775604, -0.762520968914032, 0.3314366042613983, -0.6554895639419556, -0.2977944612503052, 0.13221107423305511, 0.03515506908297539, -0.49310585856437683, -0.14511196315288544, 0.11482031643390656, 0.2544362545013428, -0.0993538424372673, -0.17035861313343048, -0.3410905599594116, -0.43053415417671204, -0.15241780877113342, -0.20941361784934998, 1.097984790802002, 0.4244137704372406, -0.5445640087127686, -0.1929604858160019, -0.8293734788894653, 0.13926875591278076, 0.7485874891281128, 0.18960781395435333, -0.24476805329322815, -0.15314875543117523, 0.06295233219861984, 0.3090508282184601, 0.3580946624279022, -0.45760470628738403, 0.04448454827070236, -0.37675291299819946, 0.4399626851081848, 0.59543776512146, 0.12538166344165802, 0.026495227590203285, -0.7518377304077148, 0.6554176211357117, -0.050467222929000854, 0.30778196454048157, -0.2434542179107666, -0.8610516786575317, -0.8823694586753845, -0.38449200987815857, 0.0634424239397049, 0.5465785264968872, -0.8603321313858032, 0.6198166012763977, -0.06591366976499557, -1.0246045589447021, -0.7692786455154419, -0.26857897639274597, 0.5218515396118164, 0.08856751769781113, 0.2514926791191101, -0.3634321987628937, -0.40846389532089233, -1.1833744049072266, -0.09727194160223007, -0.021945904940366745, -0.17300131916999817, 0.2663029134273529, 0.5844299793243408, -0.2073473334312439, 0.43915823101997375, -0.24018941819667816, -0.3834320604801178, -0.21888862550258636, 0.1306566298007965, 0.3972807228565216, 0.5607878565788269, 0.8747630715370178, -0.7250921726226807, -0.5366213917732239, -0.15615037083625793, -0.6671271324157715, 0.1224977895617485, 0.015549775213003159, -0.47498902678489685, -0.21914547681808472, 0.08257627487182617, -0.45566442608833313, 0.36871975660324097, 0.18909449875354767, -0.5766197443008423, 0.3941677510738373, -0.3892655372619629, 0.46217018365859985, -1.2646714448928833, 0.10938379168510437, 0.1810920536518097, -0.27629515528678894, -0.5733556151390076, 0.6742238402366638, -0.1803945153951645, -0.024655204266309738, -0.6674178838729858, 0.6142971515655518, -0.49624204635620117, 0.2464963048696518, -0.17526473104953766, -0.00881300587207079, 0.023340001702308655, 0.6373069286346436, 0.11869808286428452, 0.7115084528923035, 0.7683457732200623, -0.36728131771087646, 0.6770480275154114, 0.38253021240234375, -0.25822123885154724, 0.8193539381027222, -0.8759089112281799, 0.5064296126365662, -0.3782210052013397, -0.021345019340515137, -0.8486113548278809, -0.4531879723072052, 0.41345810890197754, -0.6347092986106873, 0.3446159362792969, -0.1751834750175476, -0.5902839303016663, -0.6073101758956909, -0.6790363788604736, 0.24315546452999115, 0.8588063716888428, -0.49608397483825684, 0.4086512327194214, 0.34630274772644043, 0.041796937584877014, -0.3632133901119232, -0.6453863978385925, 0.06478451937437057, -0.24684549868106842, -0.6852792501449585, 0.3934989273548126, 0.057332079857587814, 0.10105865448713303, 0.04909493401646614, 0.10935017466545105, -0.16548733413219452, -0.09620700776576996, 0.2250102013349533, 0.1087084710597992, -0.2753494679927826, -0.4324380159378052, 0.2573929727077484, 0.11877723783254623, -0.022062506526708603, 0.18831764161586761, 0.7698639035224915, -0.30776748061180115, -0.4299173057079315, -0.741254985332489, 0.21309606730937958, 0.9481826424598694, 0.18242648243904114, 0.12394826114177704, 0.9421690702438354, -0.6039699912071228, 0.18421344459056854, -0.3299475610256195, -0.07027146965265274, -0.45660537481307983, 0.6756553053855896, -0.45624595880508423, -0.48572054505348206, 0.7646369934082031, 0.08599076420068741, 0.06319928169250488, 1.1018640995025635, 0.3173826336860657, -0.17125223577022552, 1.4136042594909668, 0.5800621509552002, 0.01786440797150135, 0.43930843472480774, -0.8034584522247314, -0.08074362576007843, -0.8295767307281494, -0.575608491897583, -0.12749093770980835, -0.7034136652946472, -0.7440730929374695, -0.37686508893966675, 0.4346788227558136, 0.21284747123718262, -0.6213809847831726, 0.6044629812240601, -0.7053624391555786, 0.5880810022354126, 0.6424570083618164, 0.6329917311668396, -0.031863316893577576, 0.22929802536964417, 0.04053829237818718, -0.3056026101112366, -0.5368099808692932, -0.4181259870529175, 1.214247703552246, 0.4875134825706482, 0.5808287858963013, 0.29552537202835083, 0.5826405882835388, 0.29867708683013916, 0.07735034078359604, -0.5870595574378967, 0.6204526424407959, -0.41807618737220764, -0.86844402551651, -0.27376359701156616, -0.09824417531490326, -1.0772488117218018, 0.10678408294916153, -0.3333745300769806, -0.8862961530685425, 0.23323073983192444, -0.08262717723846436, -0.44622623920440674, 0.36369433999061584, -0.6539505124092102, 0.8168404698371887, -0.39348942041397095, -0.7820191383361816, -0.18413032591342926, -0.7308157682418823, 0.4634070098400116, 0.0017011243617162108, 0.036700934171676636, -0.05690396949648857, 0.10777229815721512, 0.7476904392242432, -0.6152954697608948, 0.645991861820221, 0.12417799979448318, 0.29422783851623535, 0.5728726983070374, 0.2504989504814148, 0.5601834654808044, 0.2696889638900757, 0.32608762383461, 0.21181949973106384, 0.18881994485855103, -0.42359989881515503, -0.24293449521064758, 0.7052972912788391, -1.0945899486541748, -0.5547632575035095, -0.7109097242355347, 0.1095854863524437, 0.12112871557474136, 0.40911075472831726, 1.030850887298584, 0.512542188167572, -0.15795187652111053, 0.22050659358501434, 0.7764165997505188, -0.459808886051178, 0.21942591667175293, 0.10114991664886475, -0.3281218707561493, -0.6170371770858765, 1.197603702545166, -0.05797326937317848, 0.07289126515388489, 0.2253711223602295, 0.2535485327243805, -0.352579265832901, -0.3116570711135864, -0.6880782842636108, 0.3562021255493164, -0.47331511974334717, -0.22073036432266235, -0.680647611618042, -0.5059177279472351, -0.3842794597148895, -0.08782254904508591, -0.49557480216026306, -0.29857948422431946, -0.7214310169219971, -0.02972465008497238, 0.6338444352149963, 0.6996937990188599, 0.036997001618146896, -0.105101078748703, -0.7518712878227234, 0.36602506041526794, 0.3535199761390686, 0.4139579236507416, -0.07113095372915268, -0.6099982857704163, 0.28606781363487244, 0.03825998306274414, -0.7592794299125671, -1.1004713773727417, 0.5776772499084473, 0.1817684769630432, 0.6740009784698486, 0.8058788776397705, -0.13106447458267212, 0.6587669253349304, -0.4767475128173828, 1.1177526712417603, 0.4811478555202484, -0.4777734875679016, 0.6107827425003052, -0.5516684055328369, 0.20506727695465088, 0.4759484529495239, 0.3756713271141052, -0.5073784589767456, -0.3762468695640564, -0.9108818769454956, -1.008354663848877, 0.8128392100334167, 0.4277377128601074, 0.23673377931118011, 0.0662422627210617, 0.20336408913135529, 0.38799116015434265, 0.034005846828222275, -0.6980810761451721, -0.7476922273635864, -0.7283664345741272, -0.1320355236530304, 0.25378426909446716, -0.2750857472419739, 0.08500325679779053, -0.5874490737915039, 0.8498307466506958, 0.19166547060012817, 0.7773553133010864, 0.32667163014411926, -0.016606997698545456, -0.22900457680225372, -0.1851879060268402, 0.740918755531311, 0.43925172090530396, -0.30500566959381104, -0.19111312925815582, -0.10065340250730515, -0.8759996294975281, 0.18866901099681854, -0.08879170566797256, -0.40116870403289795, 0.16239234805107117, 0.441257506608963, 1.015175223350525, -0.07999854534864426, -0.5398321151733398, 0.6032763719558716, -0.040465593338012695, -0.15179620683193207, -0.546350359916687, 0.1620134860277176, -0.3211003243923187, 0.3456644117832184, 0.34777113795280457, 0.1429239958524704, 0.5136761665344238, -0.6024123430252075, 0.2913428843021393, 0.055569104850292206, -0.44828200340270996, -0.5320677161216736, 0.9200282096862793, 0.1333131492137909, -0.4351975917816162, 0.49065789580345154, -0.547787606716156, -0.5907742977142334, 1.0834304094314575, 0.6140044331550598, 0.9862933158874512, -0.2822814881801605, 0.46478474140167236, 0.9858025908470154, 0.42099568247795105, -0.17660963535308838, 0.4928840398788452, 0.6329218149185181, -0.28715991973876953, -0.09877099096775055, -0.4730909466743469, -0.34572944045066833, 0.7905287742614746, -0.3236820101737976, 0.6958244442939758, -0.6893715858459473, -0.15578487515449524, -0.18299655616283417, -0.13531699776649475, -0.8850236535072327, 0.16197000443935394, 0.1522597074508667, 0.8502828478813171, -0.7504451870918274, 0.5139883756637573, 1.0834767818450928, -0.5519943237304688, -0.6819175481796265, -0.23883037269115448, 0.10543224960565567, -0.8887068629264832, 0.2934480309486389, 0.24806450307369232, 0.3933945298194885, 0.23061084747314453, -0.8225975036621094, -0.9887465834617615, 1.229688048362732, 0.21301047503948212, -0.5760065913200378, 0.12061092257499695, -0.0487956628203392, 0.6758927702903748, -0.20970945060253143, 0.6297428607940674, 0.4286801218986511, 0.5004538297653198, 0.27124619483947754, -0.488043874502182, 0.04897420108318329, -0.7364558577537537, 0.13862404227256775, -0.08085083961486816, -0.9737299084663391, 0.7799268960952759, -0.32258346676826477, -0.35249853134155273, 0.41668593883514404, 0.6118777394294739, 0.3948688507080078, 0.4771750569343567, 0.4300996959209442, 0.8973398804664612, 0.2780180275440216, -0.42848867177963257, 0.9911419749259949, -0.3616752326488495, 0.4553210735321045, 0.6064612865447998, 0.2025415599346161, 0.41774263978004456, 0.13606376945972443, -0.49141404032707214, 0.26281729340553284, 1.2538317441940308, -0.49914032220840454, 0.8805899620056152, 0.06767061352729797, 0.12718245387077332, -0.14665284752845764, 0.08959969133138657, -0.559285044670105, 0.21941334009170532, 0.25160831212997437, -0.27131742238998413, -0.2227039486169815, 0.22616936266422272, 0.045693062245845795, -0.13086603581905365, -0.30269619822502136, 0.7689802050590515, 0.004217784386128187, -0.2470727562904358, 0.4419015347957611, -0.13489116728305817, 0.7131713628768921, -0.34663745760917664, -0.40858811140060425, -0.3040134012699127, -0.0999712198972702, -0.13364040851593018, -1.070172905921936, -0.09958166629076004, -0.07517017424106598, 0.11788057535886765, -0.16782984137535095, 0.5977505445480347, -0.1256960928440094, -0.7202292680740356, 0.13101355731487274, 0.186752587556839, 0.6023097634315491, 0.07694131135940552, -0.9621318578720093, -0.10367312282323837, 0.1276085525751114, -0.3572668731212616, 0.07189811021089554, 0.567952036857605, 0.18917904794216156, 0.5182111263275146, 0.30010202527046204, 0.011528588831424713, 0.030629253014922142, -0.144086092710495, 0.4679873585700989, -0.40707123279571533, -0.44940629601478577, -0.6646565198898315, 0.49214667081832886, -0.23905910551548004, -0.5657803416252136, 0.5529729723930359, 0.7197455167770386, 0.9749093651771545, -0.3956702947616577, 0.7900083065032959, -0.3007994294166565, 0.2135503739118576, -0.607830286026001, 1.0173444747924805, -0.9220771789550781, -0.1953139454126358, -0.44341611862182617, -1.0458017587661743, -0.059251818805933, 0.8584327697753906, 0.022111257538199425, 0.1654626429080963, 0.5836669206619263, 0.41404324769973755, -0.04077327251434326, -0.09385031461715698, 0.34533458948135376, 0.23550134897232056, 0.19666969776153564, 0.8201074004173279, 0.7787408232688904, -0.8208713531494141, 0.2759145498275757, -0.6559819579124451, -0.09041476249694824, -0.5874454975128174, -0.5958883166313171, -0.9672433733940125, -0.6732088327407837, -0.5585060119628906, -0.5591777563095093, -0.06344671547412872, 0.8171974420547485, 0.5845474600791931, -0.8909884095191956, 0.23795655369758606, -0.094054214656353, 0.09395706653594971, -0.3567245602607727, -0.25927984714508057, 0.32391077280044556, 0.5453134179115295, -1.0907552242279053, 0.07393629103899002, 0.1380719691514969, 0.4225618243217468, -0.09733546525239944, -0.07525113224983215, 0.09813474118709564, -0.16924773156642914, 0.44016823172569275, 0.4490125775337219, -0.675731897354126, -0.5268110036849976, 0.1746392697095871, 0.025884848088026047, 0.14218683540821075, 0.35810741782188416, -0.30518510937690735, 0.6175447702407837, 0.7245963215827942, 0.19037026166915894, 0.5757701396942139, -0.14356066286563873, 0.2955431640148163, -0.17067661881446838, -0.030430950224399567, 0.36977237462997437, 0.5616273283958435, 0.19369004666805267, -0.6600008010864258, 0.6835281252861023, 0.5618223547935486, -0.37358197569847107, -0.7188624739646912, 0.1377134770154953, -1.0814436674118042, -0.23716366291046143, 1.1244546175003052, 0.07681354135274887, -0.3846796154975891, 0.11684869974851608, -0.3742627799510956, 0.35990026593208313, -0.4240846037864685, 0.5487995147705078, 0.7150570154190063, -0.17806465923786163, -0.35775768756866455, -0.6193230152130127, 0.3116039037704468, -0.04339127987623215, -0.6228988170623779, -0.5650683641433716, 0.48651477694511414, 0.4936610162258148, 0.4771016538143158, 0.3850208818912506, -0.5792837142944336, 0.4763109087944031, 0.18703848123550415, 0.34786084294319153, -0.24279579520225525, -0.2176458090543747, -0.23217236995697021, -0.03542797267436981, -0.2929399907588959, -0.21413181722164154 ]
tsmatz/xlm-roberta-ner-japanese
tsmatz
"2023-09-12T00:26:01Z"
52,076
10
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "ner", "bert", "ja", "base_model:xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2022-10-24T02:08:37Z"
--- language: - ja license: mit tags: - generated_from_trainer - ner - bert metrics: - f1 widget: - text: 鈴木は4月の陽気の良い日に、鈴をつけて熊本県の阿蘇山に登った - text: 中国では、中国共産党による一党統治が続く base_model: xlm-roberta-base model-index: - name: xlm-roberta-ner-ja results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-ner-japanese (Japanese caption : 日本語の固有表現抽出のモデル) This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) (pre-trained cross-lingual ```RobertaModel```) trained for named entity recognition (NER) token classification. The model is fine-tuned on NER dataset provided by Stockmark Inc, in which data is collected from Japanese Wikipedia articles.<br> See [here](https://github.com/stockmarkteam/ner-wikipedia-dataset) for the license of this dataset. Each token is labeled by : | Label id | Tag | Tag in Widget | Description | |---|---|---|---| | 0 | O | (None) | others or nothing | | 1 | PER | PER | person | | 2 | ORG | ORG | general corporation organization | | 3 | ORG-P | P | political organization | | 4 | ORG-O | O | other organization | | 5 | LOC | LOC | location | | 6 | INS | INS | institution, facility | | 7 | PRD | PRD | product | | 8 | EVT | EVT | event | ## Intended uses ```python from transformers import pipeline model_name = "tsmatz/xlm-roberta-ner-japanese" classifier = pipeline("token-classification", model=model_name) result = classifier("鈴木は4月の陽気の良い日に、鈴をつけて熊本県の阿蘇山に登った") print(result) ``` ## Training procedure You can download the source code for fine-tuning from [here](https://github.com/tsmatz/huggingface-finetune-japanese/blob/master/01-named-entity.ipynb). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 446 | 0.1510 | 0.8457 | | No log | 2.0 | 892 | 0.0626 | 0.9261 | | No log | 3.0 | 1338 | 0.0366 | 0.9580 | | No log | 4.0 | 1784 | 0.0196 | 0.9792 | | No log | 5.0 | 2230 | 0.0173 | 0.9864 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1
[ -0.5416410565376282, -0.584428071975708, 0.2197916954755783, -0.029661936685442924, -0.3354474604129791, -0.14733844995498657, -0.2492968738079071, -0.42135506868362427, 0.21603542566299438, 0.4496811330318451, -0.7368680238723755, -0.770050585269928, -0.8085533380508423, 0.11037751287221909, -0.1580091267824173, 1.2975318431854248, -0.06343243271112442, 0.24609455466270447, 0.05767856538295746, -0.18287204205989838, -0.47693994641304016, -0.6492223739624023, -1.160907506942749, -0.5476915836334229, 0.3411748707294464, 0.3371945917606354, 0.6889591217041016, 0.7347511053085327, 0.45226746797561646, 0.3181631565093994, -0.3351292312145233, 0.13835041224956512, -0.3200453519821167, -0.3618413507938385, 0.18734195828437805, -0.6909497380256653, -0.7504724264144897, -0.10599317401647568, 0.8309174180030823, 0.4693996012210846, -0.01251173485070467, 0.4474228024482727, 0.04597034305334091, 0.4348650872707367, -0.3369770050048828, 0.3897276222705841, -0.6095002889633179, 0.3740029036998749, -0.36780762672424316, -0.2689531445503235, -0.37039268016815186, -0.07751601189374924, -0.1532108187675476, -0.729137122631073, 0.3550526797771454, 0.16916592419147491, 1.4804645776748657, 0.29109320044517517, -0.2926883101463318, 0.03496234118938446, -0.6619061231613159, 0.9006361365318298, -0.8832733631134033, 0.28502732515335083, 0.35945814847946167, 0.24114388227462769, -0.030367964878678322, -0.7652117609977722, -0.6409212946891785, 0.07370160520076752, -0.13261988759040833, 0.22087514400482178, -0.20515425503253937, -0.11317519098520279, 0.7639707326889038, 0.35415011644363403, -0.7147138714790344, 0.3464653193950653, -0.5191263556480408, -0.34542298316955566, 0.5580282807350159, 0.47822141647338867, 0.2648482620716095, -0.3618758022785187, -0.4587130844593048, -0.24680419266223907, -0.4061506688594818, 0.09650429338216782, 0.5564472675323486, 0.4451160132884979, -0.4438171684741974, 0.4344133138656616, -0.16436682641506195, 0.7009781002998352, 0.15063488483428955, -0.29507705569267273, 0.7124811410903931, -0.14138256013393402, -0.32623809576034546, 0.18654286861419678, 1.0654491186141968, 0.45527926087379456, 0.08192594349384308, 0.06953133642673492, -0.2326853722333908, -0.11280681937932968, -0.038957629352808, -1.0252454280853271, -0.02197103388607502, 0.15900219976902008, -0.4886448383331299, -0.36558958888053894, 0.18848340213298798, -0.7189875841140747, 0.31228795647621155, -0.4727809429168701, 0.5415904521942139, -0.48469188809394836, -0.1612878292798996, -0.10476647317409515, -0.11717916280031204, 0.37548312544822693, 0.032788895070552826, -0.8564256429672241, 0.34726524353027344, 0.7147228717803955, 0.7668158411979675, 0.08558410406112671, -0.4233017861843109, -0.42569857835769653, 0.05407452583312988, -0.3213600516319275, 0.6560937762260437, -0.2640305161476135, -0.38527244329452515, -0.41978177428245544, 0.30862072110176086, -0.2533418834209442, -0.6459777355194092, 0.6672697067260742, -0.41758760809898376, 0.47137436270713806, 0.005959011614322662, -0.6962352395057678, -0.22109545767307281, 0.2346867173910141, -0.5404593348503113, 1.209562063217163, 0.07051929831504822, -0.9229276180267334, 0.6548123955726624, -0.675571084022522, -0.09415188431739807, 0.15142421424388885, -0.18491023778915405, -0.9050332307815552, -0.20706519484519958, 0.14540252089500427, 0.408840537071228, -0.1958533376455307, 0.3659304976463318, -0.2804761528968811, -0.36405444145202637, 0.20913012325763702, -0.4111364483833313, 1.0799453258514404, 0.2882142961025238, -0.5013582706451416, 0.0831989049911499, -1.2737972736358643, 0.33509939908981323, 0.2359880656003952, -0.3132425546646118, -0.13393861055374146, -0.36378297209739685, 0.3696087598800659, 0.27697014808654785, 0.2764022648334503, -0.411436527967453, 0.03406120091676712, -0.45532843470573425, 0.42125990986824036, 0.6332393884658813, 0.21880856156349182, 0.19407802820205688, -0.33470237255096436, 0.524323046207428, 0.33723172545433044, 0.2879650294780731, -0.14479254186153412, -0.6015494465827942, -0.967017412185669, -0.09600598365068436, 0.4136599004268646, 0.5023242235183716, -0.3280642628669739, 0.7765451669692993, -0.2666841447353363, -0.7588499188423157, -0.323257714509964, -0.05889614298939705, 0.4489319920539856, 0.7905212044715881, 0.5388396382331848, -0.2544934153556824, -0.7629933953285217, -1.0662646293640137, -0.19448527693748474, -0.07985834777355194, 0.15701213479042053, 0.34955674409866333, 0.7168866395950317, -0.2913334369659424, 0.7546343207359314, -0.5541558265686035, -0.4285941421985626, -0.19677598774433136, 0.2332623451948166, 0.6158379912376404, 0.7721628546714783, 0.6954622864723206, -0.607999324798584, -0.6070830225944519, 0.021619759500026703, -0.7536067962646484, 0.15321262180805206, -0.24485433101654053, -0.2769855558872223, 0.42236486077308655, 0.3799411654472351, -0.48506033420562744, 0.6072375178337097, 0.3580959737300873, -0.3771968483924866, 0.5540677905082703, -0.3750033378601074, -0.05289672687649727, -1.5373406410217285, 0.397276371717453, 0.035003434866666794, -0.1473902314901352, -0.5046706795692444, 0.1072298139333725, 0.19855763018131256, -0.24698950350284576, -0.43886855244636536, 0.637906014919281, -0.4075661599636078, 0.10375270247459412, -0.22985810041427612, -0.1129922941327095, -0.016652198508381844, 0.6796466112136841, 0.3157780170440674, 0.7298845648765564, 0.732805073261261, -0.5962485074996948, 0.17682668566703796, 0.42702388763427734, -0.33668777346611023, 0.6453800797462463, -0.7511341571807861, -0.002253782469779253, -0.01714487187564373, 0.034054022282361984, -0.7056009769439697, -0.17995712161064148, 0.5115798711776733, -0.5663559436798096, 0.5584484338760376, -0.4530032277107239, -0.5984768271446228, -0.35675686597824097, 0.22549757361412048, 0.19545838236808777, 0.7038138508796692, -0.4712711572647095, 0.6037531495094299, 0.17941434681415558, 0.10976409912109375, -0.6810083985328674, -0.9610068798065186, 0.03678257763385773, -0.3615524172782898, -0.4842824339866638, 0.4495806097984314, -0.04907297343015671, 0.08405102789402008, 0.01975155808031559, -0.15626654028892517, -0.32858726382255554, -0.007277738302946091, 0.340847373008728, 0.5041887760162354, -0.2239174246788025, -0.09271250665187836, -0.0673547312617302, -0.5573353171348572, 0.2355547696352005, -0.18727746605873108, 0.7413578033447266, -0.07340879738330841, -0.19173163175582886, -0.9071817398071289, 0.041436757892370224, 0.42545509338378906, -0.19482658803462982, 0.9863626956939697, 0.9979754686355591, -0.4925764203071594, -0.08651670813560486, -0.32648876309394836, -0.1523187905550003, -0.47034281492233276, 0.5133275985717773, -0.3826438784599304, -0.4410404860973358, 0.8893979787826538, 0.057178616523742676, -0.0947735533118248, 0.9832054376602173, 0.36988508701324463, 0.2899848222732544, 1.1748467683792114, 0.23805180191993713, -0.052352216094732285, 0.34381118416786194, -0.891699492931366, 0.1466381996870041, -0.9370601177215576, -0.5220058560371399, -0.6771148443222046, -0.31480976939201355, -0.7973426580429077, -0.17113828659057617, 0.2285321205854416, -0.05095241218805313, -0.57666015625, 0.4721086323261261, -0.6161851286888123, 0.4259507358074188, 0.6303017139434814, 0.21682903170585632, 0.06340616196393967, -0.0785064622759819, -0.397125244140625, -0.22338972985744476, -0.8467304706573486, -0.4322604537010193, 1.2115577459335327, 0.27007338404655457, 0.6224977970123291, -0.16493967175483704, 0.9671944975852966, -0.30448082089424133, 0.07320929318666458, -0.7368137836456299, 0.5118627548217773, -0.02439735271036625, -0.8912625908851624, -0.10535974055528641, -0.6657973527908325, -0.9764621257781982, 0.0839642882347107, -0.3309808075428009, -0.7389990091323853, 0.2673540413379669, 0.053550973534584045, -0.24560296535491943, 0.6728119254112244, -0.5065677165985107, 1.147181749343872, -0.3657670319080353, -0.24821282923221588, -0.10351946949958801, -0.5885099768638611, 0.10824023187160492, -0.2012822926044464, 0.16698962450027466, -0.05541004613041878, -0.03696221485733986, 0.9992669224739075, -0.7275251746177673, 0.7011675834655762, -0.29097670316696167, 0.29814043641090393, 0.06793662160634995, -0.281696081161499, 0.6611508727073669, 0.26405638456344604, -0.13005369901657104, 0.47667014598846436, -0.028139255940914154, -0.4016629159450531, -0.4032078683376312, 0.8621944189071655, -1.1928739547729492, -0.4272148609161377, -0.7461407780647278, -0.390720397233963, 0.08438417315483093, 0.5650262236595154, 0.7343539595603943, 0.7259982824325562, 0.13713432848453522, 0.3039364814758301, 0.6163914203643799, -0.20837214589118958, 0.3989458978176117, 0.44217100739479065, -0.13787876069545746, -0.7292509078979492, 0.9131060838699341, 0.3782200515270233, 0.10656699538230896, 0.3145153820514679, 0.08641251176595688, -0.28432008624076843, -0.6067984700202942, -0.48862573504447937, 0.28962647914886475, -0.7187133431434631, -0.2876061797142029, -0.6405253410339355, -0.4753662347793579, -0.28035062551498413, 0.12600061297416687, -0.45216119289398193, -0.4092581570148468, -0.7235599160194397, -0.07938213646411896, 0.38770586252212524, 0.3827356696128845, 0.08874721825122833, 0.25076714158058167, -0.8690715432167053, 0.14021511375904083, 0.03488853946328163, 0.4982094466686249, 0.13300935924053192, -0.964910626411438, -0.38886451721191406, 0.09951532632112503, -0.4119095802307129, -0.7668501138687134, 0.7411991357803345, 0.1865123063325882, 0.7941517233848572, 0.631364643573761, -0.07235124707221985, 1.1482570171356201, -0.3768032491207123, 0.8244711756706238, 0.289728581905365, -0.8956741690635681, 0.6543323397636414, -0.16694141924381256, 0.35238155722618103, 0.4135211408138275, 0.6089229583740234, -0.5209479331970215, -0.3153296709060669, -1.1901438236236572, -1.0468331575393677, 1.1992112398147583, 0.12161452323198318, 0.18237526714801788, -0.06111523509025574, 0.44114482402801514, 0.0395052433013916, 0.05297423526644707, -0.8059121966362, -0.8489823341369629, -0.2047041952610016, -0.13235071301460266, -0.1953606754541397, -0.11322032660245895, -0.023375939577817917, -0.4624817669391632, 1.1198458671569824, 0.03167328983545303, 0.283706933259964, 0.16089753806591034, 0.028975021094083786, -0.1546649932861328, 0.09747249633073807, 0.5758147239685059, 0.6789095997810364, -0.29057228565216064, -0.20705966651439667, 0.38757506012916565, -0.4700321853160858, -0.03347618132829666, 0.2671964466571808, -0.3863176107406616, 0.2382407784461975, 0.15724056959152222, 1.2872854471206665, 0.3393172025680542, -0.33289384841918945, 0.3036748170852661, -0.14257356524467468, -0.4242129623889923, -0.7790399789810181, 0.18934020400047302, -0.07345778495073318, 0.09667976200580597, 0.4493207633495331, 0.405142605304718, 0.003962601535022259, -0.3542596995830536, 0.056457314640283585, 0.3235110342502594, -0.49372509121894836, -0.24838657677173615, 1.0129852294921875, -0.15717369318008423, -0.3853849172592163, 0.7644731402397156, -0.1454804390668869, -0.4676476716995239, 0.9479246139526367, 0.6207431554794312, 0.9060887694358826, 0.046678327023983, -0.016632085666060448, 1.0338773727416992, 0.13832354545593262, 0.010931679047644138, 0.35816866159439087, 0.15148422122001648, -0.5790030360221863, -0.2503187954425812, -0.6363668441772461, -0.3271949291229248, 0.47062164545059204, -1.0662773847579956, 0.5479200482368469, -0.6008146405220032, -0.6020482778549194, 0.30989524722099304, 0.32678577303886414, -0.9473284482955933, 0.3647635579109192, 0.17048299312591553, 1.0361531972885132, -0.7617657780647278, 0.8274748921394348, 0.7919710874557495, -0.6050229668617249, -1.1708214282989502, -0.21266449987888336, -0.1561431884765625, -0.9230630993843079, 0.9678326845169067, 0.09998742491006851, 0.43518757820129395, 0.15493431687355042, -0.4462062418460846, -1.1304094791412354, 1.227527141571045, 0.10790345072746277, -0.6435713171958923, 0.13709890842437744, 0.2746596038341522, 0.6034612655639648, -0.16465404629707336, 0.5422524809837341, 0.15635192394256592, 0.5567883849143982, 0.03977900370955467, -0.9981067180633545, 0.05898129940032959, -0.4364144504070282, 0.1290195882320404, 0.4105238616466522, -0.9454984664916992, 0.9937922358512878, -0.10682610422372818, -0.06056412681937218, 0.1655685007572174, 0.5091282725334167, 0.4252832233905792, 0.3982716500759125, 0.3053264915943146, 0.9926277995109558, 0.7751798629760742, -0.3423922061920166, 0.853671669960022, -0.7109096646308899, 0.7057615518569946, 1.060572624206543, -0.01998412236571312, 0.788139283657074, 0.476189523935318, -0.35938897728919983, 0.6839450597763062, 0.6958773136138916, -0.5221602916717529, 0.21493969857692719, 0.007855700328946114, 0.04206274077296257, -0.37642040848731995, 0.2132403552532196, -0.6048358678817749, 0.4107714891433716, 0.1859671175479889, -0.698732852935791, -0.1752021312713623, -0.0997423455119133, 0.19234777987003326, -0.21028916537761688, -0.39273908734321594, 0.8571876287460327, -0.11631560325622559, -0.6289768815040588, 0.8060362935066223, 0.01916876994073391, 0.5448664426803589, -0.6999408006668091, 0.008215274661779404, -0.09146907180547714, 0.33233699202537537, -0.4010028541088104, -0.6939945220947266, 0.2627125680446625, 0.0767332911491394, -0.2505043148994446, 0.028312215581536293, 0.3449085056781769, -0.2760426998138428, -0.792206346988678, 0.13852880895137787, 0.19948314130306244, 0.31053048372268677, 0.28333452343940735, -1.0073038339614868, -0.0542701855301857, 0.0632401704788208, -0.28949955105781555, 0.4116954207420349, 0.384086012840271, 0.062487296760082245, 0.6842250823974609, 0.783431351184845, 0.21116288006305695, 0.06542100757360458, 0.08642467856407166, 0.7367298007011414, -0.7500123381614685, -0.6578232049942017, -0.7641246318817139, 0.506096601486206, -0.21377183496952057, -0.7343990802764893, 0.811201810836792, 1.0207183361053467, 1.106949806213379, -0.08976919203996658, 0.7047597765922546, 0.0038878517225384712, 0.48167142271995544, -0.5368018746376038, 0.8279937505722046, -0.6687400937080383, 0.10555713623762131, -0.1822580099105835, -0.87380051612854, -0.33162835240364075, 0.6645631790161133, -0.39040377736091614, 0.27357664704322815, 0.6008511781692505, 0.8304223418235779, -0.05539466440677643, -0.08579368144273758, 0.21564197540283203, 0.28765353560447693, 0.146885484457016, 0.6156558394432068, 0.4648093283176422, -1.0000214576721191, 0.6773818731307983, -0.6317694783210754, 0.03785604611039162, -0.1731705665588379, -0.8188718557357788, -0.9092311263084412, -0.4940296709537506, -0.6652841567993164, -0.33393916487693787, -0.19177445769309998, 1.1138180494308472, 0.8017024993896484, -0.9608941078186035, -0.27495118975639343, -0.20136557519435883, -0.20364560186862946, -0.31968432664871216, -0.29742005467414856, 0.46791982650756836, -0.42153307795524597, -0.9881773591041565, -0.11811673641204834, -0.0777631402015686, 0.2891647219657898, -0.02172802947461605, -0.35612952709198, -0.03230007365345955, -0.3293378949165344, 0.10661035031080246, 0.22769217193126678, -0.6572452187538147, -0.12633389234542847, 0.03506122902035713, -0.03861662745475769, 0.29477658867836, 0.1721886694431305, -0.5868635773658752, 0.415833055973053, 0.3985656201839447, 0.21062570810317993, 0.8018093109130859, -0.22051745653152466, 0.25764670968055725, -0.6958446502685547, 0.41286247968673706, 0.17396733164787292, 0.5714002251625061, 0.12116511911153793, -0.3702625632286072, 0.3460228145122528, 0.476345032453537, -0.6634146571159363, -0.9283974766731262, -0.23924753069877625, -1.1659501791000366, -0.021788666024804115, 1.021622896194458, -0.1332922875881195, -0.4607661962509155, 0.1547096073627472, -0.23707599937915802, 0.46347954869270325, -0.30317410826683044, 0.5342075228691101, 0.616662323474884, 0.03113027662038803, -0.15944939851760864, -0.4219541549682617, 0.4443811774253845, 0.17958316206932068, -0.6972789764404297, -0.24297025799751282, 0.19735105335712433, 0.6474199891090393, 0.16223305463790894, 0.31864050030708313, -0.2668554484844208, 0.29190686345100403, 0.057776905596256256, 0.28351444005966187, -0.2970189154148102, -0.006852084305137396, -0.45490583777427673, -0.032422151416540146, 0.06929931044578552, -0.18265505135059357 ]
tugstugi/bert-large-mongolian-cased
tugstugi
"2021-05-20T08:16:24Z"
52,009
0
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "mongolian", "cased", "mn", "arxiv:1810.04805", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
fill-mask
"2022-03-02T23:29:05Z"
--- language: "mn" tags: - bert - mongolian - cased --- # BERT-LARGE-MONGOLIAN-CASED [Link to Official Mongolian-BERT repo](https://github.com/tugstugi/mongolian-bert) ## Model description This repository contains pre-trained Mongolian [BERT](https://arxiv.org/abs/1810.04805) models trained by [tugstugi](https://github.com/tugstugi), [enod](https://github.com/enod) and [sharavsambuu](https://github.com/sharavsambuu). Special thanks to [nabar](https://github.com/nabar) who provided 5x TPUs. This repository is based on the following open source projects: [google-research/bert](https://github.com/google-research/bert/), [huggingface/pytorch-pretrained-BERT](https://github.com/huggingface/pytorch-pretrained-BERT) and [yoheikikuta/bert-japanese](https://github.com/yoheikikuta/bert-japanese). #### How to use ```python from transformers import pipeline, AutoTokenizer, AutoModelForMaskedLM tokenizer = AutoTokenizer.from_pretrained('tugstugi/bert-large-mongolian-cased', use_fast=False) model = AutoModelForMaskedLM.from_pretrained('tugstugi/bert-large-mongolian-cased') ## declare task ## pipe = pipeline(task="fill-mask", model=model, tokenizer=tokenizer) ## example ## input_ = 'Монгол улсын [MASK] Улаанбаатар хотоос ярьж байна.' output_ = pipe(input_) for i in range(len(output_)): print(output_[i]) ## output ## # {'sequence': 'Монгол улсын нийслэл Улаанбаатар хотоос ярьж байна.', 'score': 0.9779232740402222, 'token': 1176, 'token_str': 'нийслэл'} # {'sequence': 'Монгол улсын Нийслэл Улаанбаатар хотоос ярьж байна.', 'score': 0.015034765936434269, 'token': 4059, 'token_str': 'Нийслэл'} # {'sequence': 'Монгол улсын Ерөнхийлөгч Улаанбаатар хотоос ярьж байна.', 'score': 0.0021413620561361313, 'token': 325, 'token_str': 'Ерөнхийлөгч'} # {'sequence': 'Монгол улсын ерөнхийлөгч Улаанбаатар хотоос ярьж байна.', 'score': 0.0008035294013097882, 'token': 1215, 'token_str': 'ерөнхийлөгч'} # {'sequence': 'Монгол улсын нийслэлийн Улаанбаатар хотоос ярьж байна.', 'score': 0.0006434018723666668, 'token': 356, 'token_str': 'нийслэлийн'} ``` ## Training data Mongolian Wikipedia and the 700 million word Mongolian news data set [[Pretraining Procedure](https://github.com/tugstugi/mongolian-bert#pre-training)] ### BibTeX entry and citation info ```bibtex @misc{mongolian-bert, author = {Tuguldur, Erdene-Ochir and Gunchinish, Sharavsambuu and Bataa, Enkhbold}, title = {BERT Pretrained Models on Mongolian Datasets}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/tugstugi/mongolian-bert/}} } ```
[ -0.4076509475708008, -0.49167561531066895, -0.03266291320323944, 0.28361356258392334, -0.5648750066757202, 0.016987621784210205, -0.31334397196769714, -0.06628158688545227, 0.3676615059375763, 0.11499819904565811, -0.6694372296333313, -0.6864340305328369, -0.6895500421524048, -0.025788381695747375, -0.39132601022720337, 1.2207975387573242, -0.03186546266078949, 0.3663937747478485, 0.24528703093528748, -0.18046078085899353, -0.10965433716773987, -0.6067662835121155, -0.28101810812950134, -0.35549986362457275, 0.5375135540962219, 0.17945244908332825, 0.3285311162471771, 0.4825396239757538, 0.4947245121002197, 0.40842366218566895, -0.04165055975317955, -0.2924863398075104, -0.36647728085517883, -0.10436039417982101, 0.44559958577156067, -0.371246337890625, -0.39560800790786743, -0.1534312218427658, 0.8655397891998291, 0.5933870077133179, -0.27395161986351013, 0.3600217401981354, -0.13283398747444153, 0.6155223846435547, -0.30154821276664734, 0.09426840394735336, -0.4002390205860138, 0.12585441768169403, -0.39801025390625, 0.20159955322742462, -0.19236139953136444, -0.427215039730072, 0.312600702047348, -0.630338728427887, 0.21750709414482117, -0.04764590039849281, 1.4758397340774536, 0.0810089260339737, -0.06144068390130997, -0.15880993008613586, -0.36783790588378906, 0.8794025182723999, -1.1645824909210205, 0.2965717613697052, 0.3758508265018463, 0.1157536506652832, -0.16064153611660004, -0.9279937744140625, -0.697026789188385, -0.09747602790594101, -0.24642524123191833, 0.2546674311161041, -0.06856933236122131, -0.11592165380716324, 0.4876627027988434, 0.3808120787143707, -0.8907278776168823, 0.12902061641216278, -0.5870401859283447, -0.4434787929058075, 0.6376172304153442, -0.13033902645111084, 0.12022171169519424, -0.48072683811187744, -0.2555406987667084, -0.5854950547218323, -0.4199724495410919, 0.29996880888938904, 0.7004610896110535, 0.18001434206962585, -0.3392171561717987, 0.7257275581359863, -0.2631230056285858, 0.7439557313919067, 0.22392131388187408, -0.1154380589723587, 0.7152291536331177, -0.17460854351520538, -0.364533394575119, 0.036911334842443466, 1.0895557403564453, 0.030552681535482407, 0.1440497189760208, 0.1530744880437851, -0.13897062838077545, -0.35515305399894714, -0.018842782825231552, -0.9028171896934509, -0.3298633098602295, 0.20165160298347473, -0.5549664497375488, -0.11310476064682007, 0.33005422353744507, -0.8038050532341003, 0.20198865234851837, -0.22212840616703033, 0.9151824116706848, -0.7754117846488953, -0.2051304131746292, 0.065495565533638, -0.027591664344072342, 0.6738383769989014, -0.1072830930352211, -0.857873797416687, -0.04598880559206009, 0.37117961049079895, 0.8192465901374817, 0.2800622582435608, -0.3591858148574829, -0.2293069213628769, -0.19546015560626984, -0.23846754431724548, 0.5566384792327881, -0.0933900848031044, -0.24822239577770233, 0.07224363833665848, 0.2750758230686188, -0.16408848762512207, -0.3155383765697479, 0.40991663932800293, -0.4337168037891388, 0.4715745747089386, -0.21029067039489746, -0.6002545356750488, -0.1783466637134552, 0.1180923655629158, -0.5427899360656738, 1.0180590152740479, 0.06638868898153305, -0.9172999262809753, 0.5286080837249756, -0.7535291910171509, -0.5701661705970764, -0.029322078451514244, 0.2849966585636139, -0.8399282693862915, -0.22820313274860382, 0.21916529536247253, 0.6008341908454895, -0.002939106896519661, 0.2878963351249695, -0.3314257562160492, -0.36241236329078674, 0.1951787769794464, -0.02576936036348343, 1.1556326150894165, 0.30333784222602844, -0.36193156242370605, 0.2880275845527649, -1.005840539932251, 0.38099443912506104, 0.23983648419380188, -0.5160146951675415, 0.034633856266736984, -0.15280096232891083, -0.10777931660413742, 0.04731462523341179, 0.3809037208557129, -0.486824095249176, 0.2951467037200928, -0.5560157895088196, 0.5281818509101868, 0.9227188229560852, -0.3425968587398529, 0.17134371399879456, -0.378032922744751, 0.347050279378891, 0.05843011289834976, 0.03279414772987366, -0.2383204847574234, -0.357287734746933, -1.0384737253189087, -0.46924126148223877, 0.7639422416687012, 0.6649515628814697, -0.7089917063713074, 1.0977342128753662, -0.2821621596813202, -0.8600456118583679, -0.7003848552703857, -0.1384965032339096, 0.29786917567253113, 0.393167644739151, 0.38697344064712524, -0.44928064942359924, -0.882438063621521, -0.8335424065589905, -0.0490412637591362, -0.2711000442504883, -0.10845697671175003, 0.15933282673358917, 0.8337388634681702, -0.17853520810604095, 0.6561161875724792, -0.4620676040649414, -0.20648235082626343, -0.14986008405685425, 0.41605105996131897, 0.8251773715019226, 0.9076371788978577, 0.49743640422821045, -0.4278034269809723, -0.6452535390853882, -0.05622992664575577, -0.6143370270729065, -0.010695735923945904, -0.03613106533885002, -0.29674068093299866, 0.42852291464805603, 0.1786637157201767, -0.6156513094902039, 0.3699033558368683, 0.4636686146259308, -0.2516005337238312, 0.8711238503456116, -0.2928440272808075, 0.1739659309387207, -1.1990214586257935, 0.5168006420135498, -0.21381232142448425, 0.10214324295520782, -0.639590322971344, -0.1680731177330017, 0.03445370867848396, 0.1072244942188263, -0.4456138014793396, 0.49406686425209045, -0.36904221773147583, -0.13331811130046844, 0.38060057163238525, -0.36908280849456787, -0.3138984143733978, 0.7789931297302246, 0.13612636923789978, 0.5312915444374084, 0.7200869917869568, -0.4368337094783783, 0.4347555339336395, 0.25580915808677673, -0.7423621416091919, 0.08289872854948044, -0.9160169959068298, -0.013682241551578045, 0.08318991214036942, 0.1669512540102005, -1.0104459524154663, -0.5208001136779785, 0.4571913778781891, -0.8392400741577148, 0.5105936527252197, -0.23228836059570312, -0.6514262557029724, -0.7715156078338623, -0.40055516362190247, 0.19978368282318115, 0.869873046875, -0.425041139125824, 0.2997734546661377, 0.04678256809711456, -0.0533558651804924, -0.8919241428375244, -0.7929167151451111, -0.36697331070899963, -0.23580922186374664, -0.7065590023994446, 0.40619659423828125, -0.24578431248664856, 0.27816206216812134, -0.07238655537366867, -0.08600931614637375, -0.3404924273490906, -0.051358819007873535, -0.10655900835990906, 0.45446792244911194, -0.31687477231025696, 0.11108487099409103, -0.14764820039272308, 0.10916709899902344, 0.08686917275190353, -0.3070991039276123, 0.8602155447006226, -0.18425694108009338, -0.3325659930706024, -0.5530107617378235, 0.16210731863975525, 0.43154048919677734, -0.2207719385623932, 0.835053563117981, 1.2791634798049927, -0.3309711217880249, 0.23476004600524902, -0.4233684837818146, -0.18717427551746368, -0.49999701976776123, 0.3809909522533417, -0.2458420991897583, -0.8034635782241821, 0.786033034324646, 0.24439819157123566, 0.038301981985569, 0.6869195699691772, 0.6114266514778137, -0.3375324606895447, 0.9286324977874756, 0.14810431003570557, -0.06946920603513718, 0.5987216234207153, -0.7650715112686157, 0.10046600550413132, -0.7426279783248901, -0.37692227959632874, -0.5248804092407227, -0.27154552936553955, -0.6591193675994873, -0.14640137553215027, 0.228456050157547, 0.11717326939105988, -0.6702923774719238, 0.39130789041519165, -0.5455713272094727, 0.1311509609222412, 0.8693612813949585, 0.17018795013427734, -0.3889995813369751, 0.10266970843076706, -0.5308803915977478, -0.02727353200316429, -0.7935901880264282, -0.2461775243282318, 1.305931806564331, 0.1617286056280136, 0.7624119520187378, 0.09869804233312607, 0.7454211115837097, 0.15023070573806763, 0.11687429249286652, -0.7887546420097351, 0.47797560691833496, -0.1415492594242096, -0.8567149043083191, -0.5314618349075317, -0.30944138765335083, -1.2209899425506592, 0.09204361587762833, -0.30952927470207214, -0.7537427544593811, -0.10913071781396866, 0.0590221993625164, -0.30568698048591614, 0.31224924325942993, -0.8263663649559021, 0.9785878658294678, -0.2387022078037262, -0.24141697585582733, 0.011438196524977684, -1.0346460342407227, 0.43634283542633057, -0.1549483835697174, -0.03352416679263115, 0.011564900167286396, 0.4543438255786896, 1.1210994720458984, -0.788061797618866, 0.8402770161628723, -0.24780786037445068, 0.11651208251714706, 0.36727917194366455, -0.2946966290473938, 0.49084794521331787, -0.09575565159320831, 0.01931384950876236, 0.44919559359550476, 0.025288483127951622, -0.6684669852256775, -0.10724969208240509, 0.5762074589729309, -1.0181549787521362, -0.6185434460639954, -0.772799015045166, -0.36233288049697876, 0.263150691986084, 0.4863218069076538, 0.6446026563644409, 0.5007790923118591, 0.0100021380931139, 0.46925655007362366, 0.5622327923774719, -0.4541771113872528, 0.6239827871322632, 0.4017656445503235, 0.11940260231494904, -0.651695728302002, 0.7975786328315735, 0.25941896438598633, 0.07870621979236603, 0.30758917331695557, 0.18435965478420258, -0.39753660559654236, -0.5841384530067444, -0.4060431122779846, 0.37606683373451233, -0.5548532605171204, -0.27533024549484253, -0.46139904856681824, -0.5084074139595032, -0.7558252215385437, -0.013287465088069439, -0.22692148387432098, -0.34415826201438904, -0.342254638671875, 0.06954410672187805, 0.5385532975196838, 0.4549921751022339, -0.5233741998672485, 0.3201041519641876, -0.8621277809143066, 0.25289931893348694, 0.47687748074531555, 0.40887030959129333, 0.01484435424208641, -0.8178532719612122, -0.5053129196166992, 0.021870184689760208, -0.36724311113357544, -0.7946053147315979, 0.6858887076377869, 0.10009477287530899, 0.772163987159729, 0.45336875319480896, -0.08265241235494614, 0.9475665092468262, -0.5028106570243835, 0.9490524530410767, 0.3672284483909607, -1.1652010679244995, 0.6925103664398193, -0.385781854391098, 0.4437515437602997, 0.21620911359786987, 0.5551431179046631, -0.49775952100753784, -0.1635434329509735, -0.7666297554969788, -1.0256205797195435, 1.1515101194381714, 0.22914710640907288, 0.04879932850599289, 0.15222112834453583, 0.04646195098757744, 0.17873823642730713, 0.21155373752117157, -0.9230592846870422, -0.5805882215499878, -0.637081503868103, -0.33687734603881836, 0.03768708184361458, -0.18732811510562897, -0.07263582199811935, -0.7106565237045288, 1.0000863075256348, 0.08769650012254715, 0.6816468238830566, 0.41204264760017395, -0.2261732667684555, -0.01779109612107277, 0.05345223471522331, 0.7005410194396973, 0.5213680267333984, -0.4244113862514496, -0.3930491805076599, 0.25596317648887634, -0.6838102340698242, 0.07415206730365753, 0.491800457239151, -0.20531168580055237, 0.2219737023115158, 0.6106815934181213, 1.0199991464614868, 0.12106063961982727, -0.4969063699245453, 0.4807080030441284, 0.13180261850357056, -0.5012246966362, -0.5940861105918884, -0.1285506635904312, 0.0037986552342772484, 0.14115586876869202, 0.672372579574585, -0.18938246369361877, -0.09170027822256088, -0.3812806308269501, 0.1929555982351303, 0.3528084456920624, -0.1755414605140686, -0.5094098448753357, 0.5540025234222412, -0.045943211764097214, -0.19758886098861694, 0.6508815884590149, -0.1734444946050644, -0.7361466884613037, 0.8920120000839233, 0.32855674624443054, 0.774178147315979, -0.21751080453395844, 0.14831185340881348, 0.9841839075088501, 0.1714307814836502, -0.109982930123806, 0.38015827536582947, -0.024887852370738983, -0.7093757390975952, -0.48519986867904663, -0.745711624622345, -0.022160790860652924, 0.534278929233551, -0.8091716170310974, 0.4229046106338501, -0.3670937418937683, -0.23800930380821228, 0.1507439762353897, 0.2840704023838043, -0.6582018136978149, 0.22835464775562286, 0.22311054170131683, 0.7038984298706055, -0.6370845437049866, 1.0439649820327759, 0.823701798915863, -0.28651854395866394, -0.885174572467804, -0.19685937464237213, -0.44917744398117065, -0.9843077659606934, 0.9300559163093567, 0.17062829434871674, 0.5037533640861511, 0.12549711763858795, -0.6740448474884033, -1.1601232290267944, 1.2065223455429077, 0.1371094137430191, -0.482826292514801, 0.07943885028362274, -0.1627802699804306, 0.4864812195301056, -0.010581145994365215, 0.27815812826156616, 0.4274059236049652, 0.7153984904289246, 0.27521106600761414, -0.940602719783783, 0.010388861410319805, -0.2953893542289734, -0.24045416712760925, 0.36680665612220764, -0.8188982605934143, 1.0324594974517822, -0.32313889265060425, -0.08500067889690399, 0.4075618088245392, 0.6455293297767639, 0.42105919122695923, 0.040297750383615494, 0.4622025787830353, 0.7918927073478699, 0.65660560131073, -0.4553666114807129, 0.6998218894004822, -0.24886120855808258, 0.6466829180717468, 0.7016526460647583, 0.09708699584007263, 0.6390785574913025, 0.4264829456806183, -0.5554383397102356, 0.8498847484588623, 0.9370332360267639, -0.48159030079841614, 0.8750438690185547, 0.45583978295326233, 0.00216164393350482, -0.19342702627182007, 0.33914610743522644, -0.574662983417511, 0.5072354674339294, 0.3003045320510864, -0.33527764678001404, 0.03909526765346527, -0.25496047735214233, 0.21536464989185333, -0.37958037853240967, -0.14050942659378052, 0.5734457969665527, -0.22096125781536102, -0.7947701215744019, 1.018787145614624, -0.12297625839710236, 0.8950679302215576, -1.042398452758789, 0.12108081579208374, -0.08556540310382843, -0.0011825639521703124, -0.026644984260201454, -0.6764053702354431, 0.043898601084947586, 0.06501728296279907, -0.035189464688301086, -0.04052628576755524, 0.4960651695728302, -0.40970635414123535, -0.6740657687187195, 0.11385920643806458, 0.326473593711853, 0.35560354590415955, 0.49110081791877747, -0.9281442165374756, -0.2557743489742279, 0.2414979785680771, -0.6508925557136536, 0.2056247740983963, 0.5164065957069397, 0.278724730014801, 0.5270652770996094, 1.016532063484192, 0.12507124245166779, 0.2821398973464966, -0.11250167340040207, 0.8835763335227966, -0.7974823713302612, -0.3346005082130432, -0.8616768717765808, 0.7313483953475952, -0.051658932119607925, -0.6053598523139954, 0.5130496621131897, 0.48824259638786316, 1.0472835302352905, -0.36779165267944336, 0.682893693447113, -0.5248966813087463, 0.41461700201034546, -0.6767263412475586, 0.9424178004264832, -0.6626361608505249, -0.2875921130180359, -0.1433197259902954, -0.6453587412834167, -0.3556264340877533, 0.9362395405769348, -0.13304758071899414, 0.14504709839820862, 0.6455125212669373, 0.5669090151786804, 0.266692191362381, -0.40056559443473816, 0.10398794710636139, 0.4972434937953949, 0.17928235232830048, 0.6869794726371765, 0.6097633838653564, -0.6067305207252502, 0.728452742099762, -0.5354120135307312, 0.08588621020317078, -0.34603020548820496, -0.8704244494438171, -1.004564881324768, -0.6852503418922424, -0.2519700229167938, -0.3564320206642151, -0.08492953330278397, 1.0539073944091797, 0.9993284940719604, -1.0194413661956787, -0.2567397356033325, 0.0310624111443758, 0.11437725275754929, -0.2522180378437042, -0.27760395407676697, 0.6602482795715332, -0.27232104539871216, -0.8610401749610901, -0.06959646940231323, -0.28924742341041565, 0.4701850414276123, -0.07264117151498795, -0.26127883791923523, -0.6091620922088623, -0.0691714882850647, 0.35225144028663635, 0.44947579503059387, -0.872111439704895, -0.34395918250083923, 0.14119617640972137, -0.04485534876585007, 0.15208084881305695, 0.2616276741027832, -0.7187663912773132, 0.42639487981796265, 0.6381106972694397, 0.24474067986011505, 0.7398711442947388, -0.2164859175682068, 0.43723607063293457, -0.75523841381073, 0.3543882369995117, 0.05769659951329231, 0.6273256540298462, 0.30114230513572693, -0.1214272528886795, 0.5719252228736877, 0.4588247239589691, -0.6224343180656433, -0.9154305458068848, -0.3080025613307953, -1.0433692932128906, -0.15305083990097046, 1.0146392583847046, -0.49206188321113586, -0.3316734731197357, 0.327711820602417, -0.12032487243413925, 0.7041587233543396, -0.46421003341674805, 0.8659493923187256, 1.0984876155853271, 0.1980070322751999, 0.16709841787815094, -0.32275450229644775, 0.4510502815246582, 0.5192052721977234, -0.6230251789093018, -0.3288179636001587, 0.1076868548989296, 0.305927038192749, 0.30430594086647034, 0.34251487255096436, 0.016561701893806458, 0.28079771995544434, -0.16462087631225586, 0.4414132833480835, 0.12990455329418182, 0.12492893636226654, -0.30523157119750977, -0.34109872579574585, -0.25196415185928345, -0.4851660132408142 ]
microsoft/wavlm-large
microsoft
"2022-02-02T21:21:50Z"
51,712
37
transformers
[ "transformers", "pytorch", "wavlm", "feature-extraction", "speech", "en", "arxiv:1912.07875", "arxiv:2106.06909", "arxiv:2101.00390", "arxiv:2110.13900", "has_space", "region:us" ]
feature-extraction
"2022-03-02T23:29:05Z"
--- language: - en tags: - speech inference: false --- # WavLM-Large [Microsoft's WavLM](https://github.com/microsoft/unilm/tree/master/wavlm) The large model pretrained on 16kHz sampled speech audio. When using the model, make sure that your speech input is also sampled at 16kHz. **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. The model was pre-trained on: - 60,000 hours of [Libri-Light](https://arxiv.org/abs/1912.07875) - 10,000 hours of [GigaSpeech](https://arxiv.org/abs/2106.06909) - 24,000 hours of [VoxPopuli](https://arxiv.org/abs/2101.00390) [Paper: WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing](https://arxiv.org/abs/2110.13900) Authors: Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei **Abstract** *Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. In this paper, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM is built based on the HuBERT framework, with an emphasis on both spoken content modeling and speaker identity preservation. We first equip the Transformer structure with gated relative position bias to improve its capability on recognition tasks. For better speaker discrimination, we propose an utterance mixing training strategy, where additional overlapped utterances are created unsupervisely and incorporated during model training. Lastly, we scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks.* The original model can be found under https://github.com/microsoft/unilm/tree/master/wavlm. # Usage This is an English pre-trained speech model that has to be fine-tuned on a downstream task like speech recognition or audio classification before it can be used in inference. The model was pre-trained in English and should therefore perform well only in English. The model has been shown to work well on the [SUPERB benchmark](https://superbbenchmark.org/). **Note**: The model was pre-trained on phonemes rather than characters. This means that one should make sure that the input text is converted to a sequence of phonemes before fine-tuning. ## Speech Recognition To fine-tune the model for speech recognition, see [the official speech recognition example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/speech-recognition). ## Speech Classification To fine-tune the model for speech classification, see [the official audio classification example](https://github.com/huggingface/transformers/tree/master/examples/pytorch/audio-classification). ## Speaker Verification TODO ## Speaker Diarization TODO # Contribution The model was contributed by [cywang](https://huggingface.co/cywang) and [patrickvonplaten](https://huggingface.co/patrickvonplaten). # License The official license can be found [here](https://github.com/microsoft/UniSpeech/blob/main/LICENSE) ![design](https://raw.githubusercontent.com/patrickvonplaten/scientific_images/master/wavlm.png)
[ -0.31351909041404724, -0.6735005378723145, 0.1321636140346527, 0.17098701000213623, -0.24281641840934753, -0.09575200825929642, -0.2226237952709198, -0.6391234993934631, -0.14131884276866913, 0.38496968150138855, -0.5863390564918518, -0.5390734672546387, -0.4818614721298218, -0.1559244841337204, -0.3634909689426422, 0.8518766760826111, 0.3566902279853821, 0.23458310961723328, -0.05566534399986267, -0.06453386694192886, -0.44111746549606323, -0.7211657166481018, -0.6270148158073425, -0.45426252484321594, 0.3436199426651001, 0.04540769010782242, 0.22279582917690277, 0.4088464677333832, 0.12009682506322861, 0.3148985207080841, -0.3627322018146515, 0.01871502958238125, -0.3984171152114868, -0.0735139548778534, -0.027497423812747, -0.14963266253471375, -0.6793395280838013, 0.1800818294286728, 0.632358729839325, 0.4712585210800171, -0.3916972577571869, 0.5615052580833435, 0.1752517968416214, 0.3079085946083069, -0.34245458245277405, 0.1658243089914322, -0.8214741349220276, -0.028871839866042137, -0.34585103392601013, -0.018131133168935776, -0.28607702255249023, 0.13165242969989777, 0.1858862340450287, -0.4007171094417572, 0.0524626187980175, 0.13192306458950043, 0.7818278670310974, 0.35653969645500183, -0.33979547023773193, -0.04864856228232384, -0.8028517365455627, 0.9988563060760498, -0.9088173508644104, 0.817362904548645, 0.4815102517604828, 0.20121347904205322, 0.0003119709435850382, -0.8556790947914124, -0.5159271359443665, -0.3135765492916107, 0.2991456091403961, 0.2147769331932068, -0.44475021958351135, 0.17565186321735382, 0.43555039167404175, 0.23236122727394104, -0.7129326462745667, 0.3733197748661041, -0.549574613571167, -0.5830798745155334, 0.7958055138587952, -0.11588601022958755, 0.05257434397935867, 0.03293335810303688, -0.3337189257144928, -0.04174397513270378, -0.3990776836872101, 0.29910358786582947, 0.1752922236919403, 0.468038409948349, -0.3466814160346985, 0.3319752812385559, 0.02132991887629032, 0.759049654006958, -0.13509950041770935, -0.3919786214828491, 0.6789655685424805, -0.09724493324756622, -0.30802789330482483, 0.34375518560409546, 0.8671866059303284, -0.10639296472072601, 0.34623411297798157, 0.1094052791595459, -0.3319139778614044, 0.009427214972674847, 0.10456053167581558, -0.6806893944740295, -0.2511410415172577, 0.4406818151473999, -0.4914871156215668, -0.051656585186719894, -0.1788603812456131, -0.09753938764333725, 0.0491972379386425, -0.7239372134208679, 0.6180638670921326, -0.38531625270843506, -0.3737963140010834, -0.021783560514450073, 0.1050771102309227, 0.17325285077095032, 0.21861186623573303, -0.6342569589614868, 0.15370489656925201, 0.5681229829788208, 0.7136144042015076, -0.22080378234386444, -0.3790971636772156, -0.765795886516571, 0.0017788645345717669, -0.12982402741909027, 0.41071051359176636, -0.13906599581241608, -0.36803144216537476, -0.18105466663837433, -0.06547892093658447, 0.151797354221344, -0.48081713914871216, 0.5931262969970703, -0.3669624626636505, 0.21656842529773712, 0.22629398107528687, -0.7817116975784302, -0.032152313739061356, -0.14163747429847717, -0.37671804428100586, 1.0034730434417725, -0.09410714358091354, -0.7446496486663818, 0.12647373974323273, -0.6825175285339355, -0.5790015459060669, 0.07767396420240402, 0.12565769255161285, -0.41114169359207153, -0.05536434426903725, 0.09448081254959106, 0.5099846720695496, -0.11977295577526093, 0.2321258932352066, -0.08747933059930801, -0.298912912607193, 0.10934964567422867, -0.4669521749019623, 1.0302973985671997, 0.47234320640563965, -0.2680221199989319, 0.4321206212043762, -1.0691765546798706, 0.07732494175434113, 0.08463823050260544, -0.37786221504211426, -0.041941892355680466, -0.06389790028333664, 0.4323573708534241, 0.3265223801136017, 0.31976890563964844, -0.7206546664237976, -0.15960457921028137, -0.5224382281303406, 0.6314923763275146, 0.5871264934539795, -0.2750353515148163, 0.2484515756368637, -0.0783471092581749, 0.29317137598991394, -0.06281840801239014, 0.29925933480262756, -0.07668973505496979, -0.4785715937614441, -0.541111409664154, -0.27271217107772827, 0.5051409006118774, 0.7136273384094238, -0.2619001865386963, 0.8055194616317749, -0.11328800767660141, -0.5011258125305176, -0.915137767791748, 0.14756770431995392, 0.4503750205039978, 0.6280786991119385, 0.737970769405365, 0.007216753903776407, -0.8508777022361755, -0.6895561218261719, -0.024684052914381027, -0.14144793152809143, -0.3004261255264282, 0.17276537418365479, 0.25502967834472656, -0.3480716347694397, 0.9541756510734558, -0.23107638955116272, -0.5048468708992004, -0.05553355813026428, 0.04217147454619408, 0.22506500780582428, 0.6622758507728577, 0.17643357813358307, -0.8088595867156982, -0.1334657222032547, -0.2372795194387436, -0.38833001255989075, -0.06763462722301483, 0.2631240785121918, 0.12147144973278046, 0.21682590246200562, 0.6581733226776123, -0.45201575756073, 0.25068724155426025, 0.7124696969985962, -0.048347897827625275, 0.5856150388717651, -0.21440578997135162, -0.386709988117218, -1.0893956422805786, 0.09199061989784241, -0.07005774974822998, -0.46209287643432617, -0.6586889028549194, -0.3696778416633606, 0.016826879233121872, -0.33044832944869995, -0.6665257215499878, 0.4872843325138092, -0.4240005314350128, -0.06034219637513161, -0.28080448508262634, 0.16926826536655426, -0.21747516095638275, 0.47231218218803406, 0.051237937062978745, 0.6850420236587524, 0.734993577003479, -0.6951876878738403, 0.48326370120048523, 0.233872190117836, -0.3775924742221832, 0.3160945475101471, -0.8836463093757629, 0.34522494673728943, 0.010170609690248966, 0.28294795751571655, -0.9925448894500732, 0.1521541178226471, -0.15499307215213776, -0.6422690749168396, 0.5037340521812439, -0.12975825369358063, -0.3062111437320709, -0.6305640339851379, 0.12047186493873596, 0.27309277653694153, 0.9357526898384094, -0.5527949929237366, 0.5951738953590393, 0.6089614629745483, -0.05292290076613426, -0.42949044704437256, -0.7576795816421509, -0.09907457232475281, -0.10422477126121521, -0.520355761051178, 0.514917254447937, -0.2054259330034256, 0.00392549391835928, -0.30099740624427795, -0.13660533726215363, 0.12081241607666016, -0.02966318465769291, 0.38836467266082764, 0.22490952908992767, -0.20861703157424927, 0.28590285778045654, -0.30594053864479065, -0.15847496688365936, -0.028288299217820168, -0.4759390354156494, 0.6933947205543518, -0.10947525501251221, -0.2309909462928772, -0.8291420340538025, 0.2170526683330536, 0.5197400450706482, -0.6118718981742859, 0.20493482053279877, 1.0437352657318115, -0.2991199791431427, -0.16268232464790344, -0.8062819838523865, -0.04353899136185646, -0.4627443850040436, 0.5728406310081482, -0.36500245332717896, -0.9676523208618164, 0.2567415237426758, 0.13831718266010284, 0.15315057337284088, 0.520126461982727, 0.420989453792572, -0.2805183529853821, 1.0547831058502197, 0.45491912961006165, -0.42749571800231934, 0.5826654434204102, -0.22154156863689423, 0.007119541522115469, -0.8914396166801453, -0.27554211020469666, -0.5248062610626221, -0.08524458855390549, -0.4520661234855652, -0.384047269821167, 0.08170977234840393, 0.08405784517526627, -0.2980645000934601, 0.31061622500419617, -0.6826279759407043, -0.008842019364237785, 0.6447424292564392, -0.01886359043419361, 0.028757570311427116, 0.06573963165283203, -0.1290401667356491, 0.010267728008329868, -0.5385411381721497, -0.29537439346313477, 0.9302383065223694, 0.562337338924408, 0.6361240744590759, -0.17816881835460663, 0.7688016891479492, 0.2804231643676758, -0.08170433342456818, -0.7830759882926941, 0.4041273593902588, -0.15202203392982483, -0.4271259903907776, -0.5162691473960876, -0.44696077704429626, -1.0684707164764404, 0.31659504771232605, -0.2884238064289093, -0.7246571183204651, -0.17467446625232697, 0.32120662927627563, -0.23121017217636108, 0.1983530968427658, -0.6633120179176331, 0.7243059277534485, -0.3199901282787323, 0.02273094281554222, -0.24216847121715546, -0.7344360947608948, 0.11969709396362305, -0.026699505746364594, 0.39108583331108093, -0.26504671573638916, 0.31302112340927124, 0.9748415946960449, -0.30814051628112793, 0.5946999788284302, -0.49536362290382385, -0.2371945083141327, 0.27181658148765564, -0.29592445492744446, 0.4230000674724579, -0.35169392824172974, -0.07051508873701096, 0.4079960286617279, 0.2668297588825226, -0.3434266149997711, -0.34584280848503113, 0.45392605662345886, -0.8947831392288208, -0.4430120289325714, -0.08611402660608292, -0.43279457092285156, -0.4135662317276001, 0.15103551745414734, 0.4616532027721405, 0.6791262626647949, -0.14008577167987823, 0.3254212439060211, 0.6013134121894836, -0.121769018471241, 0.47127974033355713, 0.6771923303604126, -0.40299293398857117, -0.3252561688423157, 0.9434053301811218, 0.3641912341117859, 0.12621426582336426, 0.34775063395500183, 0.37162598967552185, -0.5741244554519653, -0.7422853708267212, -0.15410292148590088, 0.09053653478622437, -0.41736090183258057, -0.05238090828061104, -0.7273321747779846, -0.5168638825416565, -0.7203299403190613, 0.3814040422439575, -0.5321490168571472, -0.17547130584716797, -0.5097677707672119, 0.036486003547906876, 0.31972888112068176, 0.5799924731254578, 0.0020158111583441496, 0.17186112701892853, -0.7023114562034607, 0.47056183218955994, 0.4685147702693939, 0.1394672393798828, 0.14432892203330994, -1.011657953262329, -0.19511555135250092, 0.3028290569782257, -0.07321757078170776, -0.5301015377044678, 0.2675749659538269, 0.2441992610692978, 0.7653480172157288, 0.2916560769081116, 0.03764877840876579, 0.6872678995132446, -0.6902632117271423, 0.9129399061203003, 0.33926212787628174, -1.0786705017089844, 0.7746374011039734, -0.16516414284706116, 0.5648905634880066, 0.32657501101493835, 0.24753592908382416, -0.39187854528427124, -0.20979802310466766, -0.6985323429107666, -0.7929556369781494, 0.616161048412323, 0.15968537330627441, 0.19032038748264313, 0.30446240305900574, 0.05380895733833313, -0.13884980976581573, 0.1546337604522705, -0.6988269090652466, -0.4476851224899292, -0.40880286693573, -0.1890123039484024, -0.4066668152809143, -0.2987814247608185, 0.08827921003103256, -0.7659105658531189, 0.8508803844451904, 0.18171697854995728, 0.136496901512146, 0.26949989795684814, -0.2897157371044159, 0.2531173527240753, 0.30019423365592957, 0.671637773513794, 0.5764855146408081, -0.2796822488307953, 0.060831259936094284, 0.3768671751022339, -0.5490032434463501, 0.044222909957170486, 0.33472591638565063, 0.15310925245285034, 0.0576951839029789, 0.4266085624694824, 1.1941876411437988, 0.24242322146892548, -0.5115000009536743, 0.5071922540664673, 0.03705694526433945, -0.3741570711135864, -0.4913219213485718, 0.05325734242796898, 0.23281121253967285, 0.21916785836219788, 0.5552569031715393, -0.0961877703666687, 0.053904999047517776, -0.44979697465896606, 0.201562762260437, 0.42484667897224426, -0.5378317832946777, -0.20106403529644012, 0.761559784412384, 0.2709157168865204, -0.6765821576118469, 0.5056807398796082, -0.16461820900440216, -0.5557021498680115, 0.2686476409435272, 0.7510549426078796, 0.7563965916633606, -0.7121281623840332, -0.13685695827007294, 0.2979995906352997, 0.09022895246744156, 0.10643709450960159, 0.36755895614624023, -0.41969335079193115, -0.5425532460212708, -0.42384085059165955, -0.9596526026725769, -0.15913967788219452, 0.4344555735588074, -0.6267512440681458, 0.13463453948497772, -0.3351024091243744, -0.30564644932746887, 0.2370804399251938, 0.08591673523187637, -0.7697603702545166, 0.39335623383522034, 0.39254483580589294, 0.8587472438812256, -0.5821800827980042, 1.1832696199417114, 0.45295578241348267, -0.2335958480834961, -1.0592323541641235, -0.1600431501865387, -0.0892384871840477, -0.7681792974472046, 0.6128900051116943, 0.12908808887004852, -0.30699899792671204, 0.3445424437522888, -0.6894443035125732, -0.9323518872261047, 0.999770998954773, 0.24465781450271606, -1.0020681619644165, 0.013908185996115208, -0.07983732223510742, 0.5207669734954834, -0.26061660051345825, -0.021037820726633072, 0.40586552023887634, 0.25593429803848267, 0.15668219327926636, -1.3082152605056763, -0.14217688143253326, -0.23277969658374786, -0.022948388010263443, -0.21220025420188904, -0.43052002787590027, 0.8716903924942017, -0.16487468779087067, -0.10587496310472488, -0.09377115219831467, 0.7648378014564514, 0.2409263402223587, 0.2126477062702179, 0.7891603112220764, 0.39025574922561646, 1.0577679872512817, 0.04626505821943283, 0.7294020056724548, -0.24547339975833893, 0.3210107088088989, 1.3794677257537842, -0.24980515241622925, 1.1795704364776611, 0.30119752883911133, -0.5614328384399414, 0.2882387340068817, 0.47228893637657166, -0.19207720458507538, 0.3996470868587494, 0.406152606010437, -0.06934639811515808, -0.2813638746738434, -0.09391016513109207, -0.6807981729507446, 0.7461687922477722, 0.14956802129745483, -0.1670040637254715, 0.16561070084571838, 0.4180574417114258, -0.21397696435451508, -0.2939327359199524, -0.49416661262512207, 0.788510799407959, 0.3406252861022949, -0.2198743224143982, 0.8001289963722229, -0.18116551637649536, 1.0121842622756958, -0.7516615986824036, 0.21922050416469574, 0.30821412801742554, 0.05426345393061638, -0.35007986426353455, -0.5275492072105408, -0.03164516016840935, -0.031661257147789, -0.21150201559066772, -0.19227729737758636, 0.7064950466156006, -0.6378583312034607, -0.4630858898162842, 0.5642033219337463, 0.23657990992069244, 0.3690619170665741, -0.3178645372390747, -0.8059633374214172, 0.23450016975402832, 0.0232830997556448, -0.18320247530937195, 0.21512989699840546, 0.08256684243679047, 0.22816406190395355, 0.525066614151001, 0.9258950352668762, 0.24718478322029114, 0.06827350705862045, 0.4715612232685089, 0.4818263649940491, -0.5605470538139343, -0.786935031414032, -0.6858593821525574, 0.5841208696365356, -0.046113211661577225, -0.2661896049976349, 0.7531788945198059, 0.6214489936828613, 0.8440530896186829, 0.05671682953834534, 0.6367360949516296, 0.3340488374233246, 0.8195194602012634, -0.5908646583557129, 0.7935354113578796, -0.717340886592865, -0.027934417128562927, -0.4224572479724884, -0.9243587851524353, -0.12641629576683044, 0.6324336528778076, -0.07321130484342575, 0.18217365443706512, 0.28842297196388245, 0.6040551066398621, -0.017614269629120827, 0.05467935651540756, 0.6613145470619202, 0.407449334859848, 0.2644402086734772, 0.22394073009490967, 0.822577178478241, -0.3905400335788727, 0.6095724701881409, -0.1720818728208542, -0.12461517751216888, -0.09448495507240295, -0.656011700630188, -0.8536760210990906, -0.8543527126312256, -0.3804927170276642, -0.32143735885620117, -0.05948257818818092, 1.107838749885559, 1.1877143383026123, -0.822799801826477, -0.2565753161907196, 0.09475395828485489, -0.17496486008167267, -0.07409265637397766, -0.1858750283718109, 0.40577030181884766, -0.2366485744714737, -0.5374432802200317, 0.6158548593521118, -0.010863029398024082, 0.35713762044906616, -0.16456450521945953, -0.21916577219963074, -0.18625175952911377, -0.11275403946638107, 0.7502399682998657, 0.30560845136642456, -0.9328417181968689, -0.0945502296090126, -0.2812027335166931, 0.024283919483423233, 0.12316831201314926, 0.5573659539222717, -0.7403515577316284, 0.4310082495212555, 0.2841375470161438, 0.4050058424472809, 0.9050939679145813, -0.009717261418700218, 0.2269788533449173, -0.8077996373176575, 0.2440614253282547, 0.3382093906402588, 0.4674014449119568, 0.4114382266998291, -0.10404583811759949, 0.08916782587766647, 0.12668919563293457, -0.6757251620292664, -0.907015860080719, 0.056434109807014465, -1.193793535232544, -0.26415398716926575, 1.1099467277526855, 0.05723068490624428, -0.13389338552951813, -0.22373366355895996, -0.5058711767196655, 0.6092513799667358, -0.3638404309749603, 0.2944709360599518, 0.5152941346168518, -0.07733267545700073, -0.15795153379440308, -0.4848981201648712, 0.5955590009689331, 0.2786732316017151, -0.5235559940338135, 0.09575219452381134, 0.3311252295970917, 0.5002507567405701, 0.1538769006729126, 0.6964802145957947, 0.049694281071424484, 0.04292972385883331, -0.11451567709445953, 0.37791913747787476, -0.35354843735694885, -0.1736617386341095, -0.5680602192878723, 0.08454552292823792, 0.009712784551084042, -0.49799662828445435 ]
charsiu/g2p_multilingual_byT5_small_100
charsiu
"2022-08-27T17:02:50Z"
51,644
4
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text2text-generation
"2022-08-27T16:24:25Z"
Entry not found
[ -0.3227650225162506, -0.22568431496620178, 0.862226128578186, 0.43461495637893677, -0.5282987952232361, 0.7012965679168701, 0.7915717363357544, 0.07618638128042221, 0.7746025919914246, 0.2563219666481018, -0.7852817177772522, -0.22573819756507874, -0.9104480743408203, 0.5715669393539429, -0.3992334008216858, 0.5791245698928833, -0.14494505524635315, -0.10751161724328995, 0.28233757615089417, -0.2768954336643219, -0.5409224033355713, -0.36855220794677734, -1.1902776956558228, 0.061491113156080246, 0.5316578149795532, 0.7435142397880554, 0.7584060430526733, 0.3652167320251465, 0.6432578563690186, 0.3932291269302368, -0.23138920962810516, 0.4827055037021637, -0.04171813279390335, 0.00260411505587399, -0.3524433970451355, -0.5516898036003113, -0.28596609830856323, 0.07584730535745621, 1.0961304903030396, 0.966687798500061, -0.284663587808609, 0.05330817773938179, -0.3063621520996094, 0.33088892698287964, -0.49734312295913696, 0.3054099678993225, -0.022506045177578926, 0.16318801045417786, -0.7041513919830322, -0.5535354018211365, 0.012794834561645985, -0.7361212968826294, 0.17926570773124695, -0.690081000328064, 0.8269098401069641, 0.18583157658576965, 1.1533750295639038, 0.14819414913654327, -0.462487131357193, -0.8161764144897461, -0.6538989543914795, 0.5711171627044678, -0.32703715562820435, 0.39680248498916626, 0.7028235197067261, -0.048573412001132965, -0.9820332527160645, -0.6745741367340088, -0.46466192603111267, 0.2923962473869324, 0.35402774810791016, -0.3411678075790405, -0.17522086203098297, -0.3058989644050598, 0.15792037546634674, 0.12811517715454102, -0.4841994643211365, -0.5543919205665588, -0.5475160479545593, -0.3960252106189728, 0.6206658482551575, 0.3482950031757355, 0.2429177463054657, -0.1888415813446045, -0.3228583335876465, 0.0880163162946701, -0.4160851538181305, 0.3402571678161621, 0.6335517168045044, 0.7114017009735107, -0.5811444520950317, 0.560215950012207, -0.04927587881684303, 0.7439703941345215, 0.11445561796426773, -0.27478092908859253, 0.41460567712783813, -0.14724725484848022, 0.055171746760606766, 0.4226345121860504, 0.31524422764778137, 0.2841312289237976, -0.3273695111274719, 0.2032228708267212, -0.3215144872665405, -0.30496224761009216, -0.22332167625427246, -0.29490774869918823, -0.3592180609703064, 0.5492289066314697, -0.3314017057418823, -0.42855486273765564, 1.143175721168518, -0.4200771450996399, -0.7302224040031433, 0.33156412839889526, 0.4065209925174713, -0.0994480773806572, -0.37146568298339844, -0.052260834723711014, -0.8458789587020874, -0.007907390594482422, 0.7491172552108765, -0.7198970913887024, 0.3371737599372864, 0.4728063642978668, 0.7417217493057251, 0.19650575518608093, -0.14034469425678253, -0.42949390411376953, 0.2971969544887543, -0.8659994006156921, 0.6320174336433411, -0.20135220885276794, -1.0051977634429932, 0.11150479316711426, 0.8971705436706543, -0.37896400690078735, -1.2094876766204834, 1.0605159997940063, -0.6887932419776917, 0.16017857193946838, -0.676761269569397, -0.14661237597465515, -0.07118501514196396, -0.005096632521599531, -0.6088156700134277, 0.7567102313041687, 0.587267279624939, -0.4995276927947998, 0.21429483592510223, -0.26029831171035767, -0.39151400327682495, 0.38824859261512756, -0.07935450226068497, -0.21858926117420197, 0.713833212852478, -0.6647079586982727, -0.26932814717292786, 0.2942774295806885, 0.2368936538696289, -0.35706108808517456, -0.7931919097900391, 0.08478113263845444, -0.05786270648241043, 1.550750494003296, -0.03868847340345383, -0.3586106300354004, -0.679383397102356, -1.1506240367889404, -0.07070787996053696, 0.6886883974075317, -0.9194989204406738, -0.27839475870132446, -0.046410128474235535, -0.26169314980506897, 0.08994917571544647, 0.7390589714050293, -1.1194051504135132, 0.2832726836204529, -0.05092663690447807, -0.22794683277606964, 0.8271058797836304, 0.15387225151062012, 0.24758946895599365, 0.14913396537303925, 0.42958706617355347, 0.527725338935852, 0.11115207523107529, 0.683587908744812, -0.34720373153686523, -0.9694353938102722, 0.6154631972312927, 0.25266361236572266, 0.8121447563171387, -0.49945297837257385, 0.2685093879699707, 0.27025535702705383, -0.3409680724143982, -0.5682371854782104, -0.3102838397026062, 0.09025752544403076, 0.14930562674999237, 0.11142510175704956, -0.5721710324287415, -0.6576125025749207, -0.9689140319824219, -0.13590654730796814, -0.4314374029636383, -0.3571570813655853, 0.21006910502910614, 0.5792906284332275, -1.1975523233413696, 0.4128875136375427, -0.7705625891685486, -0.7038741111755371, -0.01065548975020647, -0.19338123500347137, 0.7540656328201294, 0.43240174651145935, 0.5033966898918152, -0.6397148370742798, -0.5661987066268921, -0.22470176219940186, -1.0333747863769531, -0.13280506432056427, 0.24819621443748474, 0.3065737783908844, -0.13423344492912292, -0.2744963765144348, -0.48740333318710327, 0.8100387454032898, 0.14789170026779175, -0.5391897559165955, 0.5220767259597778, -0.3020317256450653, 0.17224803566932678, -0.6369150280952454, -0.06916818022727966, -0.661676287651062, -0.0009071884560398757, -0.3608308732509613, -0.5737438797950745, 0.14772287011146545, 0.07017494738101959, -0.16065457463264465, 0.28808408975601196, -0.909277081489563, -0.0010852962732315063, -0.7442210912704468, 0.379071980714798, 0.06394772231578827, -0.3145078718662262, -0.017517540603876114, 1.0000386238098145, 0.7784460783004761, -0.3848048746585846, 0.721744179725647, 0.4440041184425354, 0.19036155939102173, 0.7630521059036255, -0.18725109100341797, 0.16478213667869568, -0.5245416760444641, -0.12161104381084442, -0.8887597918510437, -1.0982946157455444, 0.7320570349693298, -0.6114250421524048, 0.36542922258377075, -0.4277869760990143, 0.2589159905910492, -0.6919258832931519, -0.03885362669825554, 0.4808599352836609, -0.05936325341463089, -0.6863942742347717, 0.5232570171356201, 0.45317530632019043, -0.2019241601228714, -0.6609031558036804, -0.530157208442688, 0.39365822076797485, 0.6154114007949829, -0.16390392184257507, 0.06878514587879181, 0.14941060543060303, -0.5441926121711731, -0.040802597999572754, -0.38691970705986023, -0.45766758918762207, 0.054224006831645966, 0.13053473830223083, -0.005750799085944891, -0.404820054769516, -0.0868026465177536, -0.35842007398605347, -0.4656120240688324, 0.21876516938209534, 0.3011947274208069, -0.04096309468150139, -0.42599788308143616, -0.3619818687438965, -0.888181209564209, 0.6719610095024109, 0.5370282530784607, 0.05281545966863632, 0.7555549740791321, 0.16819314658641815, -0.8014987707138062, -0.13532210886478424, -0.1760706603527069, 0.2696830928325653, -0.5588056445121765, 0.13849826157093048, -0.013484534807503223, -0.0637492910027504, 0.26297882199287415, 0.25386232137680054, -0.4300556778907776, 0.9276250004768372, -0.2615274488925934, -0.3592521846294403, 0.7960181832313538, 0.5974742770195007, 0.49583131074905396, 0.16503219306468964, -0.044541798532009125, 0.900709331035614, -1.1966516971588135, -0.6563175916671753, -0.7409549355506897, -0.15945707261562347, -0.43510833382606506, -0.032105933874845505, 0.6254412531852722, 0.2900990843772888, -0.1333388388156891, 0.4756395220756531, -0.5243489742279053, 0.3556033670902252, 1.01198410987854, 0.35748639702796936, 0.3435698449611664, -0.7570229172706604, -0.2515777349472046, -0.1402427852153778, -0.9998157620429993, -0.2631377875804901, 0.8871029019355774, 0.22752606868743896, 0.844460666179657, 0.5992541313171387, 0.6784542798995972, 0.1367226243019104, 0.2523828148841858, -0.30590319633483887, 0.3920294940471649, 0.4376082420349121, -1.0401138067245483, -0.42758408188819885, 0.021418681368231773, -0.9703338742256165, -0.14227519929409027, -0.03495011106133461, -0.42617112398147583, 0.7681737542152405, 0.00016589462757110596, -0.4076709747314453, 0.7732734084129333, -0.455583393573761, 0.7562873363494873, -0.4473648965358734, -0.02663906291127205, 0.4699096083641052, -0.7070636749267578, 0.4677430987358093, 0.12878790497779846, 0.6205843091011047, -0.015572631731629372, -0.04078587517142296, 0.7104941606521606, -0.9129160046577454, 0.25438642501831055, -0.6348397135734558, 0.22421300411224365, 0.24246945977210999, 0.51606285572052, 0.5969953536987305, 0.4371243417263031, 0.10119888931512833, -0.23920902609825134, 0.04115807265043259, -0.8241125345230103, -0.210506409406662, 0.697515606880188, -0.7186890840530396, -0.6864197850227356, -1.2355337142944336, 0.14438660442829132, 0.27347055077552795, 0.389305055141449, 0.7959296107292175, 0.571408748626709, 0.1289544403553009, 0.680525004863739, 0.9888588190078735, -0.0688566341996193, 0.9166924357414246, 0.3224477171897888, 0.09175168722867966, -0.21944808959960938, 0.7036820650100708, 0.26627904176712036, -0.24707956612110138, -0.11939732730388641, 0.20913465321063995, -0.11069409549236298, -0.591761589050293, -0.49990686774253845, 0.3701757788658142, -0.6731787919998169, -0.18303893506526947, -0.6243735551834106, -0.6043769717216492, -0.511759340763092, 0.06927360594272614, -0.7147687673568726, 0.23979046940803528, -0.7753565907478333, -0.10574902594089508, 0.04323432594537735, 0.9792009592056274, -0.589311957359314, 0.5805224180221558, -1.1218582391738892, 0.19345788657665253, -0.07949887961149216, 0.7921058535575867, 0.21395787596702576, -0.7344395518302917, -0.3975418508052826, -0.11592631042003632, -0.3729911744594574, -1.3576762676239014, 0.21404948830604553, -0.2454141080379486, 0.23094046115875244, 0.6145404577255249, 0.1397707313299179, 0.5258248448371887, -0.34326282143592834, 0.7029101848602295, -0.057017259299755096, -0.7069286704063416, 0.7934495210647583, -0.5026894807815552, 0.4963534474372864, 0.9765996932983398, 0.5333835482597351, -0.7984007596969604, 0.035741209983825684, -1.041123390197754, -0.6008695363998413, 0.38426393270492554, 0.11928944289684296, -0.03601083159446716, -0.6659559011459351, -0.054019637405872345, -0.16143807768821716, 0.6043745279312134, -1.039069414138794, -0.7858356237411499, 0.2576698362827301, 0.5277302861213684, 0.0816856250166893, -0.5653398633003235, 0.20880667865276337, -0.544416069984436, 1.0657774209976196, 0.45109400153160095, 0.3274499475955963, 0.8406060934066772, 0.46492424607276917, -0.3823164403438568, 0.09252490103244781, 0.7662695050239563, 0.6666232347488403, -0.5239797830581665, -0.2908027470111847, -0.08827541768550873, -0.9143403768539429, 0.05927472561597824, 0.11168918758630753, -0.013455932028591633, 0.9082110524177551, 0.5793083310127258, 0.2539709210395813, 0.4514279365539551, -0.726460337638855, 0.8859451413154602, -0.14954176545143127, -0.12472866475582123, -1.0677239894866943, 0.1948619782924652, -0.23984959721565247, 0.5006402134895325, 1.0061326026916504, 0.5250048041343689, -0.047630298882722855, -0.8143380880355835, -0.01473585981875658, 0.6939172148704529, -0.7091123461723328, -0.17449834942817688, 0.944853663444519, 0.3847099542617798, -1.2953051328659058, 1.106776475906372, -0.5381771326065063, -0.560332179069519, 0.9121301770210266, 0.522956907749176, 1.1221847534179688, -0.44204121828079224, 0.0008676342549733818, 0.2662237286567688, 0.41378432512283325, 0.5423170328140259, 1.0869629383087158, 0.431413471698761, -0.7931063771247864, 0.8826584815979004, -0.24776044487953186, -0.40361151099205017, -0.05347571521997452, -0.42859897017478943, 0.16892178356647491, -0.4406192898750305, -0.10713007301092148, -0.3444187641143799, 0.28543180227279663, -0.7072042226791382, 0.42807620763778687, -0.0838567465543747, 0.8653068542480469, -0.8553727269172668, 0.47207626700401306, 0.635470449924469, -0.3337355852127075, -0.8508191108703613, -0.26198428869247437, -0.11448462307453156, -0.6389466524124146, 0.30214807391166687, -0.4554102420806885, 0.044398851692676544, 0.09623463451862335, -0.649151623249054, -1.1778275966644287, 0.9093633890151978, -0.639612078666687, -0.2784462869167328, 0.20464053750038147, -0.11514760553836823, 0.28811705112457275, -0.2524643540382385, 0.010661216452717781, 0.41876548528671265, 0.748940110206604, 0.2844654619693756, -0.7727053761482239, -0.3694884479045868, 0.0015032943338155746, -0.44474777579307556, 0.7582978010177612, -0.6002101898193359, 1.1840779781341553, -0.5563543438911438, -0.059654366225004196, 0.44384512305259705, 0.24690914154052734, 0.21076197922229767, 0.6629220843315125, 0.1442081481218338, 0.7282265424728394, 1.07012140750885, -0.40835219621658325, 0.8811809420585632, 0.26432839035987854, 0.47430819272994995, 0.7238501906394958, -0.6487724781036377, 0.7513749003410339, 0.31810489296913147, -0.5682924389839172, 0.9228013753890991, 1.2906063795089722, -0.15699204802513123, 0.8079374432563782, 0.05136508867144585, -1.081600546836853, 0.325833261013031, -0.20724765956401825, -0.7530064582824707, 0.3150254189968109, 0.19055864214897156, -0.6920982599258423, -0.5770308971405029, -0.24046507477760315, -0.35662803053855896, -0.11552901566028595, -0.7631728649139404, 0.6720563769340515, -0.016969164833426476, -0.5103683471679688, 0.18857547640800476, 0.2877499461174011, 0.17368432879447937, -0.5235732793807983, -0.02939440682530403, -0.22823619842529297, 0.2660655975341797, -0.5670853853225708, -0.5234526991844177, 0.5724433064460754, -0.32430219650268555, -0.5343255400657654, 0.18147465586662292, 0.763587236404419, -0.16923809051513672, -0.4515409469604492, 0.32472723722457886, 0.6959525346755981, 0.1665852814912796, 0.4250282347202301, -0.23511263728141785, 0.24480605125427246, -0.08044824004173279, -0.06651552021503448, 0.27714768052101135, 0.3449169099330902, 0.22435641288757324, 0.4450142979621887, 0.43285664916038513, -0.01808755099773407, -0.10736498981714249, -0.382819801568985, 0.4124940037727356, -0.9542785882949829, -0.5713282823562622, -0.6307113766670227, 0.2740660607814789, -0.02315417304635048, -1.0836423635482788, 0.4145168364048004, 1.4406683444976807, 1.0359982252120972, -0.4756383001804352, 1.067226529121399, -0.21818485856056213, 0.9594791531562805, 0.41483086347579956, 0.5420440435409546, -0.6030411720275879, 0.03835370019078255, -0.4364396035671234, -1.076962947845459, -0.35716333985328674, 0.4539391100406647, -0.022899555042386055, -0.3429867625236511, 0.872571587562561, 0.5887166261672974, -0.33473607897758484, -0.11728022992610931, 0.048487238585948944, -0.029941488057374954, -0.12433847039937973, 0.5145376324653625, 0.7648399472236633, -0.9344304800033569, -0.10680416971445084, -0.21577754616737366, -0.6382725834846497, -0.5047279000282288, -0.9632009267807007, -0.12959396839141846, -0.16037796437740326, 0.035343267023563385, -0.5662806630134583, 0.00255737011320889, 1.208324909210205, 0.5684957504272461, -1.1113994121551514, -0.5303789377212524, 0.3371853232383728, 0.3920421898365021, -0.1874791383743286, -0.24202413856983185, 0.2984568774700165, 0.15382249653339386, -0.5908876657485962, 0.6875665783882141, 0.8089625239372253, 0.208888977766037, 0.19554761052131653, 0.15893013775348663, -0.8229473829269409, -0.14913435280323029, 0.17440445721149445, 0.9450570344924927, -0.939853310585022, -0.7114843130111694, -0.03168516233563423, -0.27094873785972595, -0.05765746906399727, 0.17102102935314178, -0.4046344757080078, 0.5180677175521851, 0.34591493010520935, 0.49933457374572754, 0.0561608150601387, -0.054746925830841064, 0.5409556031227112, -0.9069057703018188, 0.09425963461399078, 0.4134361147880554, 0.4154115319252014, -0.4000864028930664, -0.5910194516181946, 0.6713420748710632, 1.0073972940444946, -0.6594868898391724, -0.8743268847465515, -0.19846712052822113, -1.0016002655029297, 0.04189709946513176, 0.6762762069702148, 0.5009527802467346, -0.4806513786315918, -0.4174500107765198, -0.5617399215698242, -0.1254672110080719, -0.1369970738887787, 0.7621601819992065, 1.179680585861206, -0.7432094812393188, 0.07975747436285019, -1.038639783859253, 0.6594986915588379, -0.2419457733631134, -0.3457581698894501, -0.48644304275512695, 0.3832802176475525, 0.35236993432044983, 0.440481036901474, 0.614812433719635, 0.1408471167087555, 0.8338426351547241, 0.3126053214073181, -0.1702686995267868, 0.2698982357978821, -0.4559200704097748, -0.028932858258485794, -0.057962555438280106, 0.31015971302986145, -1.0262157917022705 ]
BAAI/bge-large-en
BAAI
"2023-10-12T03:35:38Z"
51,619
131
transformers
[ "transformers", "pytorch", "safetensors", "bert", "feature-extraction", "mteb", "sentence-transfomres", "en", "arxiv:2310.07554", "arxiv:2309.07597", "license:mit", "model-index", "endpoints_compatible", "has_space", "region:us" ]
feature-extraction
"2023-08-02T07:11:51Z"
--- tags: - mteb - sentence-transfomres - transformers model-index: - name: bge-large-en results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 76.94029850746269 - type: ap value: 40.00228964744091 - type: f1 value: 70.86088267934595 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 91.93745 - type: ap value: 88.24758534667426 - type: f1 value: 91.91033034217591 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 46.158 - type: f1 value: 45.78935185074774 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 39.972 - type: map_at_10 value: 54.874 - type: map_at_100 value: 55.53399999999999 - type: map_at_1000 value: 55.539 - type: map_at_3 value: 51.031000000000006 - type: map_at_5 value: 53.342999999999996 - type: mrr_at_1 value: 40.541 - type: mrr_at_10 value: 55.096000000000004 - type: mrr_at_100 value: 55.75599999999999 - type: mrr_at_1000 value: 55.761 - type: mrr_at_3 value: 51.221000000000004 - type: mrr_at_5 value: 53.568000000000005 - type: ndcg_at_1 value: 39.972 - type: ndcg_at_10 value: 62.456999999999994 - type: ndcg_at_100 value: 65.262 - type: ndcg_at_1000 value: 65.389 - type: ndcg_at_3 value: 54.673 - type: ndcg_at_5 value: 58.80499999999999 - type: precision_at_1 value: 39.972 - type: precision_at_10 value: 8.634 - type: precision_at_100 value: 0.9860000000000001 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 21.740000000000002 - type: precision_at_5 value: 15.036 - type: recall_at_1 value: 39.972 - type: recall_at_10 value: 86.344 - type: recall_at_100 value: 98.578 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 65.22 - type: recall_at_5 value: 75.178 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 48.94652870403906 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 43.17257160340209 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 63.97867370559182 - type: mrr value: 77.00820032537484 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 80.00986015960616 - type: cos_sim_spearman value: 80.36387933827882 - type: euclidean_pearson value: 80.32305287257296 - type: euclidean_spearman value: 82.0524720308763 - type: manhattan_pearson value: 80.19847473906454 - type: manhattan_spearman value: 81.87957652506985 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 88.00000000000001 - type: f1 value: 87.99039027511853 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 41.36932844640705 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 38.34983239611985 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.257999999999996 - type: map_at_10 value: 42.937 - type: map_at_100 value: 44.406 - type: map_at_1000 value: 44.536 - type: map_at_3 value: 39.22 - type: map_at_5 value: 41.458 - type: mrr_at_1 value: 38.769999999999996 - type: mrr_at_10 value: 48.701 - type: mrr_at_100 value: 49.431000000000004 - type: mrr_at_1000 value: 49.476 - type: mrr_at_3 value: 45.875 - type: mrr_at_5 value: 47.67 - type: ndcg_at_1 value: 38.769999999999996 - type: ndcg_at_10 value: 49.35 - type: ndcg_at_100 value: 54.618 - type: ndcg_at_1000 value: 56.655 - type: ndcg_at_3 value: 43.826 - type: ndcg_at_5 value: 46.72 - type: precision_at_1 value: 38.769999999999996 - type: precision_at_10 value: 9.328 - type: precision_at_100 value: 1.484 - type: precision_at_1000 value: 0.196 - type: precision_at_3 value: 20.649 - type: precision_at_5 value: 15.25 - type: recall_at_1 value: 32.257999999999996 - type: recall_at_10 value: 61.849 - type: recall_at_100 value: 83.70400000000001 - type: recall_at_1000 value: 96.344 - type: recall_at_3 value: 46.037 - type: recall_at_5 value: 53.724000000000004 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.979 - type: map_at_10 value: 43.376999999999995 - type: map_at_100 value: 44.667 - type: map_at_1000 value: 44.794 - type: map_at_3 value: 40.461999999999996 - type: map_at_5 value: 42.138 - type: mrr_at_1 value: 41.146 - type: mrr_at_10 value: 49.575 - type: mrr_at_100 value: 50.187000000000005 - type: mrr_at_1000 value: 50.231 - type: mrr_at_3 value: 47.601 - type: mrr_at_5 value: 48.786 - type: ndcg_at_1 value: 41.146 - type: ndcg_at_10 value: 48.957 - type: ndcg_at_100 value: 53.296 - type: ndcg_at_1000 value: 55.254000000000005 - type: ndcg_at_3 value: 45.235 - type: ndcg_at_5 value: 47.014 - type: precision_at_1 value: 41.146 - type: precision_at_10 value: 9.107999999999999 - type: precision_at_100 value: 1.481 - type: precision_at_1000 value: 0.193 - type: precision_at_3 value: 21.783 - type: precision_at_5 value: 15.274 - type: recall_at_1 value: 32.979 - type: recall_at_10 value: 58.167 - type: recall_at_100 value: 76.374 - type: recall_at_1000 value: 88.836 - type: recall_at_3 value: 46.838 - type: recall_at_5 value: 52.006 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 40.326 - type: map_at_10 value: 53.468 - type: map_at_100 value: 54.454 - type: map_at_1000 value: 54.508 - type: map_at_3 value: 50.12799999999999 - type: map_at_5 value: 51.991 - type: mrr_at_1 value: 46.394999999999996 - type: mrr_at_10 value: 57.016999999999996 - type: mrr_at_100 value: 57.67099999999999 - type: mrr_at_1000 value: 57.699999999999996 - type: mrr_at_3 value: 54.65 - type: mrr_at_5 value: 56.101 - type: ndcg_at_1 value: 46.394999999999996 - type: ndcg_at_10 value: 59.507 - type: ndcg_at_100 value: 63.31099999999999 - type: ndcg_at_1000 value: 64.388 - type: ndcg_at_3 value: 54.04600000000001 - type: ndcg_at_5 value: 56.723 - type: precision_at_1 value: 46.394999999999996 - type: precision_at_10 value: 9.567 - type: precision_at_100 value: 1.234 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 24.117 - type: precision_at_5 value: 16.426 - type: recall_at_1 value: 40.326 - type: recall_at_10 value: 73.763 - type: recall_at_100 value: 89.927 - type: recall_at_1000 value: 97.509 - type: recall_at_3 value: 59.34 - type: recall_at_5 value: 65.915 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.661 - type: map_at_10 value: 35.522 - type: map_at_100 value: 36.619 - type: map_at_1000 value: 36.693999999999996 - type: map_at_3 value: 33.154 - type: map_at_5 value: 34.353 - type: mrr_at_1 value: 28.362 - type: mrr_at_10 value: 37.403999999999996 - type: mrr_at_100 value: 38.374 - type: mrr_at_1000 value: 38.428000000000004 - type: mrr_at_3 value: 35.235 - type: mrr_at_5 value: 36.269 - type: ndcg_at_1 value: 28.362 - type: ndcg_at_10 value: 40.431 - type: ndcg_at_100 value: 45.745999999999995 - type: ndcg_at_1000 value: 47.493 - type: ndcg_at_3 value: 35.733 - type: ndcg_at_5 value: 37.722 - type: precision_at_1 value: 28.362 - type: precision_at_10 value: 6.101999999999999 - type: precision_at_100 value: 0.922 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 15.140999999999998 - type: precision_at_5 value: 10.305 - type: recall_at_1 value: 26.661 - type: recall_at_10 value: 53.675 - type: recall_at_100 value: 77.891 - type: recall_at_1000 value: 90.72 - type: recall_at_3 value: 40.751 - type: recall_at_5 value: 45.517 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 18.886 - type: map_at_10 value: 27.288 - type: map_at_100 value: 28.327999999999996 - type: map_at_1000 value: 28.438999999999997 - type: map_at_3 value: 24.453 - type: map_at_5 value: 25.959 - type: mrr_at_1 value: 23.134 - type: mrr_at_10 value: 32.004 - type: mrr_at_100 value: 32.789 - type: mrr_at_1000 value: 32.857 - type: mrr_at_3 value: 29.084 - type: mrr_at_5 value: 30.614 - type: ndcg_at_1 value: 23.134 - type: ndcg_at_10 value: 32.852 - type: ndcg_at_100 value: 37.972 - type: ndcg_at_1000 value: 40.656 - type: ndcg_at_3 value: 27.435 - type: ndcg_at_5 value: 29.823 - type: precision_at_1 value: 23.134 - type: precision_at_10 value: 6.032 - type: precision_at_100 value: 0.9950000000000001 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 13.017999999999999 - type: precision_at_5 value: 9.501999999999999 - type: recall_at_1 value: 18.886 - type: recall_at_10 value: 45.34 - type: recall_at_100 value: 67.947 - type: recall_at_1000 value: 86.924 - type: recall_at_3 value: 30.535 - type: recall_at_5 value: 36.451 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.994999999999997 - type: map_at_10 value: 40.04 - type: map_at_100 value: 41.435 - type: map_at_1000 value: 41.537 - type: map_at_3 value: 37.091 - type: map_at_5 value: 38.802 - type: mrr_at_1 value: 35.034 - type: mrr_at_10 value: 45.411 - type: mrr_at_100 value: 46.226 - type: mrr_at_1000 value: 46.27 - type: mrr_at_3 value: 43.086 - type: mrr_at_5 value: 44.452999999999996 - type: ndcg_at_1 value: 35.034 - type: ndcg_at_10 value: 46.076 - type: ndcg_at_100 value: 51.483000000000004 - type: ndcg_at_1000 value: 53.433 - type: ndcg_at_3 value: 41.304 - type: ndcg_at_5 value: 43.641999999999996 - type: precision_at_1 value: 35.034 - type: precision_at_10 value: 8.258000000000001 - type: precision_at_100 value: 1.268 - type: precision_at_1000 value: 0.161 - type: precision_at_3 value: 19.57 - type: precision_at_5 value: 13.782 - type: recall_at_1 value: 28.994999999999997 - type: recall_at_10 value: 58.538000000000004 - type: recall_at_100 value: 80.72399999999999 - type: recall_at_1000 value: 93.462 - type: recall_at_3 value: 45.199 - type: recall_at_5 value: 51.237 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.795 - type: map_at_10 value: 34.935 - type: map_at_100 value: 36.306 - type: map_at_1000 value: 36.417 - type: map_at_3 value: 31.831 - type: map_at_5 value: 33.626 - type: mrr_at_1 value: 30.479 - type: mrr_at_10 value: 40.225 - type: mrr_at_100 value: 41.055 - type: mrr_at_1000 value: 41.114 - type: mrr_at_3 value: 37.538 - type: mrr_at_5 value: 39.073 - type: ndcg_at_1 value: 30.479 - type: ndcg_at_10 value: 40.949999999999996 - type: ndcg_at_100 value: 46.525 - type: ndcg_at_1000 value: 48.892 - type: ndcg_at_3 value: 35.79 - type: ndcg_at_5 value: 38.237 - type: precision_at_1 value: 30.479 - type: precision_at_10 value: 7.6259999999999994 - type: precision_at_100 value: 1.203 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 17.199 - type: precision_at_5 value: 12.466000000000001 - type: recall_at_1 value: 24.795 - type: recall_at_10 value: 53.421 - type: recall_at_100 value: 77.189 - type: recall_at_1000 value: 93.407 - type: recall_at_3 value: 39.051 - type: recall_at_5 value: 45.462 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 26.853499999999997 - type: map_at_10 value: 36.20433333333333 - type: map_at_100 value: 37.40391666666667 - type: map_at_1000 value: 37.515 - type: map_at_3 value: 33.39975 - type: map_at_5 value: 34.9665 - type: mrr_at_1 value: 31.62666666666667 - type: mrr_at_10 value: 40.436749999999996 - type: mrr_at_100 value: 41.260333333333335 - type: mrr_at_1000 value: 41.31525 - type: mrr_at_3 value: 38.06733333333332 - type: mrr_at_5 value: 39.41541666666667 - type: ndcg_at_1 value: 31.62666666666667 - type: ndcg_at_10 value: 41.63341666666667 - type: ndcg_at_100 value: 46.704166666666666 - type: ndcg_at_1000 value: 48.88483333333335 - type: ndcg_at_3 value: 36.896 - type: ndcg_at_5 value: 39.11891666666667 - type: precision_at_1 value: 31.62666666666667 - type: precision_at_10 value: 7.241083333333333 - type: precision_at_100 value: 1.1488333333333334 - type: precision_at_1000 value: 0.15250000000000002 - type: precision_at_3 value: 16.908333333333335 - type: precision_at_5 value: 11.942833333333333 - type: recall_at_1 value: 26.853499999999997 - type: recall_at_10 value: 53.461333333333336 - type: recall_at_100 value: 75.63633333333333 - type: recall_at_1000 value: 90.67016666666666 - type: recall_at_3 value: 40.24241666666667 - type: recall_at_5 value: 45.98608333333333 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.241999999999997 - type: map_at_10 value: 31.863999999999997 - type: map_at_100 value: 32.835 - type: map_at_1000 value: 32.928000000000004 - type: map_at_3 value: 29.694 - type: map_at_5 value: 30.978 - type: mrr_at_1 value: 28.374 - type: mrr_at_10 value: 34.814 - type: mrr_at_100 value: 35.596 - type: mrr_at_1000 value: 35.666 - type: mrr_at_3 value: 32.745000000000005 - type: mrr_at_5 value: 34.049 - type: ndcg_at_1 value: 28.374 - type: ndcg_at_10 value: 35.969 - type: ndcg_at_100 value: 40.708 - type: ndcg_at_1000 value: 43.08 - type: ndcg_at_3 value: 31.968999999999998 - type: ndcg_at_5 value: 34.069 - type: precision_at_1 value: 28.374 - type: precision_at_10 value: 5.583 - type: precision_at_100 value: 0.8630000000000001 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 13.547999999999998 - type: precision_at_5 value: 9.447999999999999 - type: recall_at_1 value: 25.241999999999997 - type: recall_at_10 value: 45.711 - type: recall_at_100 value: 67.482 - type: recall_at_1000 value: 85.13300000000001 - type: recall_at_3 value: 34.622 - type: recall_at_5 value: 40.043 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.488999999999997 - type: map_at_10 value: 25.142999999999997 - type: map_at_100 value: 26.244 - type: map_at_1000 value: 26.363999999999997 - type: map_at_3 value: 22.654 - type: map_at_5 value: 24.017 - type: mrr_at_1 value: 21.198 - type: mrr_at_10 value: 28.903000000000002 - type: mrr_at_100 value: 29.860999999999997 - type: mrr_at_1000 value: 29.934 - type: mrr_at_3 value: 26.634999999999998 - type: mrr_at_5 value: 27.903 - type: ndcg_at_1 value: 21.198 - type: ndcg_at_10 value: 29.982999999999997 - type: ndcg_at_100 value: 35.275 - type: ndcg_at_1000 value: 38.074000000000005 - type: ndcg_at_3 value: 25.502999999999997 - type: ndcg_at_5 value: 27.557 - type: precision_at_1 value: 21.198 - type: precision_at_10 value: 5.502 - type: precision_at_100 value: 0.942 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 12.044 - type: precision_at_5 value: 8.782 - type: recall_at_1 value: 17.488999999999997 - type: recall_at_10 value: 40.821000000000005 - type: recall_at_100 value: 64.567 - type: recall_at_1000 value: 84.452 - type: recall_at_3 value: 28.351 - type: recall_at_5 value: 33.645 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.066000000000003 - type: map_at_10 value: 36.134 - type: map_at_100 value: 37.285000000000004 - type: map_at_1000 value: 37.389 - type: map_at_3 value: 33.522999999999996 - type: map_at_5 value: 34.905 - type: mrr_at_1 value: 31.436999999999998 - type: mrr_at_10 value: 40.225 - type: mrr_at_100 value: 41.079 - type: mrr_at_1000 value: 41.138000000000005 - type: mrr_at_3 value: 38.074999999999996 - type: mrr_at_5 value: 39.190000000000005 - type: ndcg_at_1 value: 31.436999999999998 - type: ndcg_at_10 value: 41.494 - type: ndcg_at_100 value: 46.678999999999995 - type: ndcg_at_1000 value: 48.964 - type: ndcg_at_3 value: 36.828 - type: ndcg_at_5 value: 38.789 - type: precision_at_1 value: 31.436999999999998 - type: precision_at_10 value: 6.931 - type: precision_at_100 value: 1.072 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_3 value: 16.729 - type: precision_at_5 value: 11.567 - type: recall_at_1 value: 27.066000000000003 - type: recall_at_10 value: 53.705000000000005 - type: recall_at_100 value: 75.968 - type: recall_at_1000 value: 91.937 - type: recall_at_3 value: 40.865 - type: recall_at_5 value: 45.739999999999995 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.979000000000003 - type: map_at_10 value: 32.799 - type: map_at_100 value: 34.508 - type: map_at_1000 value: 34.719 - type: map_at_3 value: 29.947000000000003 - type: map_at_5 value: 31.584 - type: mrr_at_1 value: 30.237000000000002 - type: mrr_at_10 value: 37.651 - type: mrr_at_100 value: 38.805 - type: mrr_at_1000 value: 38.851 - type: mrr_at_3 value: 35.046 - type: mrr_at_5 value: 36.548 - type: ndcg_at_1 value: 30.237000000000002 - type: ndcg_at_10 value: 38.356 - type: ndcg_at_100 value: 44.906 - type: ndcg_at_1000 value: 47.299 - type: ndcg_at_3 value: 33.717999999999996 - type: ndcg_at_5 value: 35.946 - type: precision_at_1 value: 30.237000000000002 - type: precision_at_10 value: 7.292 - type: precision_at_100 value: 1.496 - type: precision_at_1000 value: 0.23600000000000002 - type: precision_at_3 value: 15.547 - type: precision_at_5 value: 11.344 - type: recall_at_1 value: 24.979000000000003 - type: recall_at_10 value: 48.624 - type: recall_at_100 value: 77.932 - type: recall_at_1000 value: 92.66499999999999 - type: recall_at_3 value: 35.217 - type: recall_at_5 value: 41.394 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.566 - type: map_at_10 value: 30.945 - type: map_at_100 value: 31.759999999999998 - type: map_at_1000 value: 31.855 - type: map_at_3 value: 28.64 - type: map_at_5 value: 29.787000000000003 - type: mrr_at_1 value: 24.954 - type: mrr_at_10 value: 33.311 - type: mrr_at_100 value: 34.050000000000004 - type: mrr_at_1000 value: 34.117999999999995 - type: mrr_at_3 value: 31.238 - type: mrr_at_5 value: 32.329 - type: ndcg_at_1 value: 24.954 - type: ndcg_at_10 value: 35.676 - type: ndcg_at_100 value: 39.931 - type: ndcg_at_1000 value: 42.43 - type: ndcg_at_3 value: 31.365 - type: ndcg_at_5 value: 33.184999999999995 - type: precision_at_1 value: 24.954 - type: precision_at_10 value: 5.564 - type: precision_at_100 value: 0.826 - type: precision_at_1000 value: 0.116 - type: precision_at_3 value: 13.555 - type: precision_at_5 value: 9.168 - type: recall_at_1 value: 22.566 - type: recall_at_10 value: 47.922 - type: recall_at_100 value: 67.931 - type: recall_at_1000 value: 86.653 - type: recall_at_3 value: 36.103 - type: recall_at_5 value: 40.699000000000005 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 16.950000000000003 - type: map_at_10 value: 28.612 - type: map_at_100 value: 30.476999999999997 - type: map_at_1000 value: 30.674 - type: map_at_3 value: 24.262 - type: map_at_5 value: 26.554 - type: mrr_at_1 value: 38.241 - type: mrr_at_10 value: 50.43 - type: mrr_at_100 value: 51.059 - type: mrr_at_1000 value: 51.090999999999994 - type: mrr_at_3 value: 47.514 - type: mrr_at_5 value: 49.246 - type: ndcg_at_1 value: 38.241 - type: ndcg_at_10 value: 38.218 - type: ndcg_at_100 value: 45.003 - type: ndcg_at_1000 value: 48.269 - type: ndcg_at_3 value: 32.568000000000005 - type: ndcg_at_5 value: 34.400999999999996 - type: precision_at_1 value: 38.241 - type: precision_at_10 value: 11.674 - type: precision_at_100 value: 1.913 - type: precision_at_1000 value: 0.252 - type: precision_at_3 value: 24.387 - type: precision_at_5 value: 18.163 - type: recall_at_1 value: 16.950000000000003 - type: recall_at_10 value: 43.769000000000005 - type: recall_at_100 value: 66.875 - type: recall_at_1000 value: 84.92699999999999 - type: recall_at_3 value: 29.353 - type: recall_at_5 value: 35.467 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 9.276 - type: map_at_10 value: 20.848 - type: map_at_100 value: 29.804000000000002 - type: map_at_1000 value: 31.398 - type: map_at_3 value: 14.886 - type: map_at_5 value: 17.516000000000002 - type: mrr_at_1 value: 71 - type: mrr_at_10 value: 78.724 - type: mrr_at_100 value: 78.976 - type: mrr_at_1000 value: 78.986 - type: mrr_at_3 value: 77.333 - type: mrr_at_5 value: 78.021 - type: ndcg_at_1 value: 57.875 - type: ndcg_at_10 value: 43.855 - type: ndcg_at_100 value: 48.99 - type: ndcg_at_1000 value: 56.141 - type: ndcg_at_3 value: 48.914 - type: ndcg_at_5 value: 45.961 - type: precision_at_1 value: 71 - type: precision_at_10 value: 34.575 - type: precision_at_100 value: 11.182 - type: precision_at_1000 value: 2.044 - type: precision_at_3 value: 52.5 - type: precision_at_5 value: 44.2 - type: recall_at_1 value: 9.276 - type: recall_at_10 value: 26.501 - type: recall_at_100 value: 55.72899999999999 - type: recall_at_1000 value: 78.532 - type: recall_at_3 value: 16.365 - type: recall_at_5 value: 20.154 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 52.71 - type: f1 value: 47.74801556489574 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 73.405 - type: map_at_10 value: 82.822 - type: map_at_100 value: 83.042 - type: map_at_1000 value: 83.055 - type: map_at_3 value: 81.65299999999999 - type: map_at_5 value: 82.431 - type: mrr_at_1 value: 79.178 - type: mrr_at_10 value: 87.02 - type: mrr_at_100 value: 87.095 - type: mrr_at_1000 value: 87.09700000000001 - type: mrr_at_3 value: 86.309 - type: mrr_at_5 value: 86.824 - type: ndcg_at_1 value: 79.178 - type: ndcg_at_10 value: 86.72 - type: ndcg_at_100 value: 87.457 - type: ndcg_at_1000 value: 87.691 - type: ndcg_at_3 value: 84.974 - type: ndcg_at_5 value: 86.032 - type: precision_at_1 value: 79.178 - type: precision_at_10 value: 10.548 - type: precision_at_100 value: 1.113 - type: precision_at_1000 value: 0.11499999999999999 - type: precision_at_3 value: 32.848 - type: precision_at_5 value: 20.45 - type: recall_at_1 value: 73.405 - type: recall_at_10 value: 94.39699999999999 - type: recall_at_100 value: 97.219 - type: recall_at_1000 value: 98.675 - type: recall_at_3 value: 89.679 - type: recall_at_5 value: 92.392 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 22.651 - type: map_at_10 value: 36.886 - type: map_at_100 value: 38.811 - type: map_at_1000 value: 38.981 - type: map_at_3 value: 32.538 - type: map_at_5 value: 34.763 - type: mrr_at_1 value: 44.444 - type: mrr_at_10 value: 53.168000000000006 - type: mrr_at_100 value: 53.839000000000006 - type: mrr_at_1000 value: 53.869 - type: mrr_at_3 value: 50.54 - type: mrr_at_5 value: 52.068000000000005 - type: ndcg_at_1 value: 44.444 - type: ndcg_at_10 value: 44.994 - type: ndcg_at_100 value: 51.599 - type: ndcg_at_1000 value: 54.339999999999996 - type: ndcg_at_3 value: 41.372 - type: ndcg_at_5 value: 42.149 - type: precision_at_1 value: 44.444 - type: precision_at_10 value: 12.407 - type: precision_at_100 value: 1.9269999999999998 - type: precision_at_1000 value: 0.242 - type: precision_at_3 value: 27.726 - type: precision_at_5 value: 19.814999999999998 - type: recall_at_1 value: 22.651 - type: recall_at_10 value: 52.075 - type: recall_at_100 value: 76.51400000000001 - type: recall_at_1000 value: 92.852 - type: recall_at_3 value: 37.236000000000004 - type: recall_at_5 value: 43.175999999999995 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 40.777 - type: map_at_10 value: 66.79899999999999 - type: map_at_100 value: 67.65299999999999 - type: map_at_1000 value: 67.706 - type: map_at_3 value: 63.352 - type: map_at_5 value: 65.52900000000001 - type: mrr_at_1 value: 81.553 - type: mrr_at_10 value: 86.983 - type: mrr_at_100 value: 87.132 - type: mrr_at_1000 value: 87.136 - type: mrr_at_3 value: 86.156 - type: mrr_at_5 value: 86.726 - type: ndcg_at_1 value: 81.553 - type: ndcg_at_10 value: 74.64 - type: ndcg_at_100 value: 77.459 - type: ndcg_at_1000 value: 78.43 - type: ndcg_at_3 value: 69.878 - type: ndcg_at_5 value: 72.59400000000001 - type: precision_at_1 value: 81.553 - type: precision_at_10 value: 15.654000000000002 - type: precision_at_100 value: 1.783 - type: precision_at_1000 value: 0.191 - type: precision_at_3 value: 45.199 - type: precision_at_5 value: 29.267 - type: recall_at_1 value: 40.777 - type: recall_at_10 value: 78.271 - type: recall_at_100 value: 89.129 - type: recall_at_1000 value: 95.49 - type: recall_at_3 value: 67.79899999999999 - type: recall_at_5 value: 73.167 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 93.5064 - type: ap value: 90.25495114444111 - type: f1 value: 93.5012434973381 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 23.301 - type: map_at_10 value: 35.657 - type: map_at_100 value: 36.797000000000004 - type: map_at_1000 value: 36.844 - type: map_at_3 value: 31.743 - type: map_at_5 value: 34.003 - type: mrr_at_1 value: 23.854 - type: mrr_at_10 value: 36.242999999999995 - type: mrr_at_100 value: 37.32 - type: mrr_at_1000 value: 37.361 - type: mrr_at_3 value: 32.4 - type: mrr_at_5 value: 34.634 - type: ndcg_at_1 value: 23.868000000000002 - type: ndcg_at_10 value: 42.589 - type: ndcg_at_100 value: 48.031 - type: ndcg_at_1000 value: 49.189 - type: ndcg_at_3 value: 34.649 - type: ndcg_at_5 value: 38.676 - type: precision_at_1 value: 23.868000000000002 - type: precision_at_10 value: 6.6850000000000005 - type: precision_at_100 value: 0.9400000000000001 - type: precision_at_1000 value: 0.104 - type: precision_at_3 value: 14.651 - type: precision_at_5 value: 10.834000000000001 - type: recall_at_1 value: 23.301 - type: recall_at_10 value: 63.88700000000001 - type: recall_at_100 value: 88.947 - type: recall_at_1000 value: 97.783 - type: recall_at_3 value: 42.393 - type: recall_at_5 value: 52.036 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 94.64888280893753 - type: f1 value: 94.41310774203512 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 79.72184222526221 - type: f1 value: 61.522034067350106 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 79.60659045057163 - type: f1 value: 77.268649687049 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 81.83254875588432 - type: f1 value: 81.61520635919082 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 36.31529875009507 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 31.734233714415073 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 30.994501713009452 - type: mrr value: 32.13512850703073 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.603000000000001 - type: map_at_10 value: 13.767999999999999 - type: map_at_100 value: 17.197000000000003 - type: map_at_1000 value: 18.615000000000002 - type: map_at_3 value: 10.567 - type: map_at_5 value: 12.078999999999999 - type: mrr_at_1 value: 44.891999999999996 - type: mrr_at_10 value: 53.75299999999999 - type: mrr_at_100 value: 54.35 - type: mrr_at_1000 value: 54.388000000000005 - type: mrr_at_3 value: 51.495999999999995 - type: mrr_at_5 value: 52.688 - type: ndcg_at_1 value: 43.189 - type: ndcg_at_10 value: 34.567 - type: ndcg_at_100 value: 32.273 - type: ndcg_at_1000 value: 41.321999999999996 - type: ndcg_at_3 value: 40.171 - type: ndcg_at_5 value: 37.502 - type: precision_at_1 value: 44.582 - type: precision_at_10 value: 25.139 - type: precision_at_100 value: 7.739999999999999 - type: precision_at_1000 value: 2.054 - type: precision_at_3 value: 37.152 - type: precision_at_5 value: 31.826999999999998 - type: recall_at_1 value: 6.603000000000001 - type: recall_at_10 value: 17.023 - type: recall_at_100 value: 32.914 - type: recall_at_1000 value: 64.44800000000001 - type: recall_at_3 value: 11.457 - type: recall_at_5 value: 13.816 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 30.026000000000003 - type: map_at_10 value: 45.429 - type: map_at_100 value: 46.45 - type: map_at_1000 value: 46.478 - type: map_at_3 value: 41.147 - type: map_at_5 value: 43.627 - type: mrr_at_1 value: 33.951 - type: mrr_at_10 value: 47.953 - type: mrr_at_100 value: 48.731 - type: mrr_at_1000 value: 48.751 - type: mrr_at_3 value: 44.39 - type: mrr_at_5 value: 46.533 - type: ndcg_at_1 value: 33.951 - type: ndcg_at_10 value: 53.24100000000001 - type: ndcg_at_100 value: 57.599999999999994 - type: ndcg_at_1000 value: 58.270999999999994 - type: ndcg_at_3 value: 45.190999999999995 - type: ndcg_at_5 value: 49.339 - type: precision_at_1 value: 33.951 - type: precision_at_10 value: 8.856 - type: precision_at_100 value: 1.133 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 20.713 - type: precision_at_5 value: 14.838000000000001 - type: recall_at_1 value: 30.026000000000003 - type: recall_at_10 value: 74.512 - type: recall_at_100 value: 93.395 - type: recall_at_1000 value: 98.402 - type: recall_at_3 value: 53.677 - type: recall_at_5 value: 63.198 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 71.41300000000001 - type: map_at_10 value: 85.387 - type: map_at_100 value: 86.027 - type: map_at_1000 value: 86.041 - type: map_at_3 value: 82.543 - type: map_at_5 value: 84.304 - type: mrr_at_1 value: 82.35 - type: mrr_at_10 value: 88.248 - type: mrr_at_100 value: 88.348 - type: mrr_at_1000 value: 88.349 - type: mrr_at_3 value: 87.348 - type: mrr_at_5 value: 87.96300000000001 - type: ndcg_at_1 value: 82.37 - type: ndcg_at_10 value: 88.98 - type: ndcg_at_100 value: 90.16499999999999 - type: ndcg_at_1000 value: 90.239 - type: ndcg_at_3 value: 86.34100000000001 - type: ndcg_at_5 value: 87.761 - type: precision_at_1 value: 82.37 - type: precision_at_10 value: 13.471 - type: precision_at_100 value: 1.534 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.827 - type: precision_at_5 value: 24.773999999999997 - type: recall_at_1 value: 71.41300000000001 - type: recall_at_10 value: 95.748 - type: recall_at_100 value: 99.69200000000001 - type: recall_at_1000 value: 99.98 - type: recall_at_3 value: 87.996 - type: recall_at_5 value: 92.142 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 56.96878497780007 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 65.31371347128074 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 5.287 - type: map_at_10 value: 13.530000000000001 - type: map_at_100 value: 15.891 - type: map_at_1000 value: 16.245 - type: map_at_3 value: 9.612 - type: map_at_5 value: 11.672 - type: mrr_at_1 value: 26 - type: mrr_at_10 value: 37.335 - type: mrr_at_100 value: 38.443 - type: mrr_at_1000 value: 38.486 - type: mrr_at_3 value: 33.783 - type: mrr_at_5 value: 36.028 - type: ndcg_at_1 value: 26 - type: ndcg_at_10 value: 22.215 - type: ndcg_at_100 value: 31.101 - type: ndcg_at_1000 value: 36.809 - type: ndcg_at_3 value: 21.104 - type: ndcg_at_5 value: 18.759999999999998 - type: precision_at_1 value: 26 - type: precision_at_10 value: 11.43 - type: precision_at_100 value: 2.424 - type: precision_at_1000 value: 0.379 - type: precision_at_3 value: 19.7 - type: precision_at_5 value: 16.619999999999997 - type: recall_at_1 value: 5.287 - type: recall_at_10 value: 23.18 - type: recall_at_100 value: 49.208 - type: recall_at_1000 value: 76.85300000000001 - type: recall_at_3 value: 11.991999999999999 - type: recall_at_5 value: 16.85 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 83.87834913790886 - type: cos_sim_spearman value: 81.04583513112122 - type: euclidean_pearson value: 81.20484174558065 - type: euclidean_spearman value: 80.76430832561769 - type: manhattan_pearson value: 81.21416730978615 - type: manhattan_spearman value: 80.7797637394211 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 86.56143998865157 - type: cos_sim_spearman value: 79.75387012744471 - type: euclidean_pearson value: 83.7877519997019 - type: euclidean_spearman value: 79.90489748003296 - type: manhattan_pearson value: 83.7540590666095 - type: manhattan_spearman value: 79.86434577931573 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 83.92102564177941 - type: cos_sim_spearman value: 84.98234585939103 - type: euclidean_pearson value: 84.47729567593696 - type: euclidean_spearman value: 85.09490696194469 - type: manhattan_pearson value: 84.38622951588229 - type: manhattan_spearman value: 85.02507171545574 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 80.1891164763377 - type: cos_sim_spearman value: 80.7997969966883 - type: euclidean_pearson value: 80.48572256162396 - type: euclidean_spearman value: 80.57851903536378 - type: manhattan_pearson value: 80.4324819433651 - type: manhattan_spearman value: 80.5074526239062 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 82.64319975116025 - type: cos_sim_spearman value: 84.88671197763652 - type: euclidean_pearson value: 84.74692193293231 - type: euclidean_spearman value: 85.27151722073653 - type: manhattan_pearson value: 84.72460516785438 - type: manhattan_spearman value: 85.26518899786687 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.24687565822381 - type: cos_sim_spearman value: 85.60418454111263 - type: euclidean_pearson value: 84.85829740169851 - type: euclidean_spearman value: 85.66378014138306 - type: manhattan_pearson value: 84.84672408808835 - type: manhattan_spearman value: 85.63331924364891 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 84.87758895415485 - type: cos_sim_spearman value: 85.8193745617297 - type: euclidean_pearson value: 85.78719118848134 - type: euclidean_spearman value: 84.35797575385688 - type: manhattan_pearson value: 85.97919844815692 - type: manhattan_spearman value: 84.58334745175151 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 67.27076035963599 - type: cos_sim_spearman value: 67.21433656439973 - type: euclidean_pearson value: 68.07434078679324 - type: euclidean_spearman value: 66.0249731719049 - type: manhattan_pearson value: 67.95495198947476 - type: manhattan_spearman value: 65.99893908331886 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 82.22437747056817 - type: cos_sim_spearman value: 85.0995685206174 - type: euclidean_pearson value: 84.08616925603394 - type: euclidean_spearman value: 84.89633925691658 - type: manhattan_pearson value: 84.08332675923133 - type: manhattan_spearman value: 84.8858228112915 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 87.6909022589666 - type: mrr value: 96.43341952165481 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 57.660999999999994 - type: map_at_10 value: 67.625 - type: map_at_100 value: 68.07600000000001 - type: map_at_1000 value: 68.10199999999999 - type: map_at_3 value: 64.50399999999999 - type: map_at_5 value: 66.281 - type: mrr_at_1 value: 61 - type: mrr_at_10 value: 68.953 - type: mrr_at_100 value: 69.327 - type: mrr_at_1000 value: 69.352 - type: mrr_at_3 value: 66.833 - type: mrr_at_5 value: 68.05 - type: ndcg_at_1 value: 61 - type: ndcg_at_10 value: 72.369 - type: ndcg_at_100 value: 74.237 - type: ndcg_at_1000 value: 74.939 - type: ndcg_at_3 value: 67.284 - type: ndcg_at_5 value: 69.72500000000001 - type: precision_at_1 value: 61 - type: precision_at_10 value: 9.733 - type: precision_at_100 value: 1.0670000000000002 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 26.222 - type: precision_at_5 value: 17.4 - type: recall_at_1 value: 57.660999999999994 - type: recall_at_10 value: 85.656 - type: recall_at_100 value: 93.833 - type: recall_at_1000 value: 99.333 - type: recall_at_3 value: 71.961 - type: recall_at_5 value: 78.094 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.86930693069307 - type: cos_sim_ap value: 96.76685487950894 - type: cos_sim_f1 value: 93.44587884806354 - type: cos_sim_precision value: 92.80078895463511 - type: cos_sim_recall value: 94.1 - type: dot_accuracy value: 99.54356435643564 - type: dot_ap value: 81.18659960405607 - type: dot_f1 value: 75.78008915304605 - type: dot_precision value: 75.07360157016683 - type: dot_recall value: 76.5 - type: euclidean_accuracy value: 99.87326732673267 - type: euclidean_ap value: 96.8102411908941 - type: euclidean_f1 value: 93.6127744510978 - type: euclidean_precision value: 93.42629482071713 - type: euclidean_recall value: 93.8 - type: manhattan_accuracy value: 99.87425742574257 - type: manhattan_ap value: 96.82857341435529 - type: manhattan_f1 value: 93.62129583124059 - type: manhattan_precision value: 94.04641775983855 - type: manhattan_recall value: 93.2 - type: max_accuracy value: 99.87425742574257 - type: max_ap value: 96.82857341435529 - type: max_f1 value: 93.62129583124059 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 65.92560972698926 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 34.92797240259008 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 55.244624045597654 - type: mrr value: 56.185303666921314 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.02491987312937 - type: cos_sim_spearman value: 32.055592206679734 - type: dot_pearson value: 24.731627575422557 - type: dot_spearman value: 24.308029077069733 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.231 - type: map_at_10 value: 1.899 - type: map_at_100 value: 9.498 - type: map_at_1000 value: 20.979999999999997 - type: map_at_3 value: 0.652 - type: map_at_5 value: 1.069 - type: mrr_at_1 value: 88 - type: mrr_at_10 value: 93.4 - type: mrr_at_100 value: 93.4 - type: mrr_at_1000 value: 93.4 - type: mrr_at_3 value: 93 - type: mrr_at_5 value: 93.4 - type: ndcg_at_1 value: 86 - type: ndcg_at_10 value: 75.375 - type: ndcg_at_100 value: 52.891999999999996 - type: ndcg_at_1000 value: 44.952999999999996 - type: ndcg_at_3 value: 81.05 - type: ndcg_at_5 value: 80.175 - type: precision_at_1 value: 88 - type: precision_at_10 value: 79 - type: precision_at_100 value: 53.16 - type: precision_at_1000 value: 19.408 - type: precision_at_3 value: 85.333 - type: precision_at_5 value: 84 - type: recall_at_1 value: 0.231 - type: recall_at_10 value: 2.078 - type: recall_at_100 value: 12.601 - type: recall_at_1000 value: 41.296 - type: recall_at_3 value: 0.6779999999999999 - type: recall_at_5 value: 1.1360000000000001 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.782 - type: map_at_10 value: 10.204 - type: map_at_100 value: 16.176 - type: map_at_1000 value: 17.456 - type: map_at_3 value: 5.354 - type: map_at_5 value: 7.503 - type: mrr_at_1 value: 40.816 - type: mrr_at_10 value: 54.010000000000005 - type: mrr_at_100 value: 54.49 - type: mrr_at_1000 value: 54.49 - type: mrr_at_3 value: 48.980000000000004 - type: mrr_at_5 value: 51.735 - type: ndcg_at_1 value: 36.735 - type: ndcg_at_10 value: 26.61 - type: ndcg_at_100 value: 36.967 - type: ndcg_at_1000 value: 47.274 - type: ndcg_at_3 value: 30.363 - type: ndcg_at_5 value: 29.448999999999998 - type: precision_at_1 value: 40.816 - type: precision_at_10 value: 23.878 - type: precision_at_100 value: 7.693999999999999 - type: precision_at_1000 value: 1.4489999999999998 - type: precision_at_3 value: 31.293 - type: precision_at_5 value: 29.796 - type: recall_at_1 value: 2.782 - type: recall_at_10 value: 16.485 - type: recall_at_100 value: 46.924 - type: recall_at_1000 value: 79.365 - type: recall_at_3 value: 6.52 - type: recall_at_5 value: 10.48 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.08300000000001 - type: ap value: 13.91559884590195 - type: f1 value: 53.956838444291364 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 59.34069043576683 - type: f1 value: 59.662041994618406 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 53.70780611078653 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.10734934732073 - type: cos_sim_ap value: 77.58349999516054 - type: cos_sim_f1 value: 70.25391395868965 - type: cos_sim_precision value: 70.06035161374967 - type: cos_sim_recall value: 70.44854881266491 - type: dot_accuracy value: 80.60439887941826 - type: dot_ap value: 54.52935200483575 - type: dot_f1 value: 54.170444242973716 - type: dot_precision value: 47.47715534366309 - type: dot_recall value: 63.06068601583114 - type: euclidean_accuracy value: 87.26828396018358 - type: euclidean_ap value: 78.00158454104036 - type: euclidean_f1 value: 70.70292457670601 - type: euclidean_precision value: 68.79680479281079 - type: euclidean_recall value: 72.71767810026385 - type: manhattan_accuracy value: 87.11330988853788 - type: manhattan_ap value: 77.92527099601855 - type: manhattan_f1 value: 70.76488706365502 - type: manhattan_precision value: 68.89055472263868 - type: manhattan_recall value: 72.74406332453826 - type: max_accuracy value: 87.26828396018358 - type: max_ap value: 78.00158454104036 - type: max_f1 value: 70.76488706365502 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 87.80804905499282 - type: cos_sim_ap value: 83.06187782630936 - type: cos_sim_f1 value: 74.99716435403985 - type: cos_sim_precision value: 73.67951860931579 - type: cos_sim_recall value: 76.36279642747151 - type: dot_accuracy value: 81.83141227151008 - type: dot_ap value: 67.18241090841795 - type: dot_f1 value: 62.216037571751606 - type: dot_precision value: 56.749381227391005 - type: dot_recall value: 68.84816753926701 - type: euclidean_accuracy value: 87.91671517832887 - type: euclidean_ap value: 83.56538942001427 - type: euclidean_f1 value: 75.7327253337256 - type: euclidean_precision value: 72.48856036606828 - type: euclidean_recall value: 79.28087465352634 - type: manhattan_accuracy value: 87.86626304963713 - type: manhattan_ap value: 83.52939841172832 - type: manhattan_f1 value: 75.73635656329888 - type: manhattan_precision value: 72.99150182103836 - type: manhattan_recall value: 78.69571912534647 - type: max_accuracy value: 87.91671517832887 - type: max_ap value: 83.56538942001427 - type: max_f1 value: 75.73635656329888 license: mit language: - en --- **Recommend switching to newest [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5), which has more reasonable similarity distribution and same method of usage.** <h1 align="center">FlagEmbedding</h1> <h4 align="center"> <p> <a href=#model-list>Model List</a> | <a href=#frequently-asked-questions>FAQ</a> | <a href=#usage>Usage</a> | <a href="#evaluation">Evaluation</a> | <a href="#train">Train</a> | <a href="#contact">Contact</a> | <a href="#citation">Citation</a> | <a href="#license">License</a> <p> </h4> More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md) FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search. And it also can be used in vector databases for LLMs. ************* 🌟**Updates**🌟 ************* - 10/12/2023: Release [LLM-Embedder](./FlagEmbedding/llm_embedder/README.md), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Paper](https://arxiv.org/pdf/2310.07554.pdf) :fire: - 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released - 09/15/2023: The [masive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released - 09/12/2023: New models: - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models. - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction. <details> <summary>More</summary> <!-- ### More --> - 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning. - 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard). - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗** - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada: - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset. </details> ## Model List `bge` is short for `BAAI general embedding`. | Model | Language | | Description | query instruction for retrieval [1] | |:-------------------------------|:--------:| :--------:| :--------:|:--------:| | [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | | | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` | [1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages. [2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results. All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI. If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models . ## Frequently asked questions <details> <summary>1. How to fine-tune bge embedding model?</summary> <!-- ### How to fine-tune bge embedding model? --> Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model. Some suggestions: - Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance. - If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity. - If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker. </details> <details> <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary> <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 --> **Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.** Since we finetune the models by contrastive learning with a temperature of 0.01, the similarity distribution of the current BGE model is about in the interval \[0.6, 1\]. So a similarity score greater than 0.5 does not indicate that the two sentences are similar. For downstream tasks, such as passage retrieval or semantic similarity, **what matters is the relative order of the scores, not the absolute value.** If you need to filter similar sentences based on a similarity threshold, please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9). </details> <details> <summary>3. When does the query instruction need to be used</summary> <!-- ### When does the query instruction need to be used --> For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction. No instruction only has a slight degradation in retrieval performance compared with using instruction. So you can generate embedding without instruction in all cases for convenience. For a retrieval task that uses short queries to find long related documents, it is recommended to add instructions for these short queries. **The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.** In all cases, the documents/passages do not need to add the instruction. </details> ## Usage ### Usage for Embedding Model Here are some examples for using `bge` models with [FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers). #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding. ```python from FlagEmbedding import FlagModel sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = FlagModel('BAAI/bge-large-zh-v1.5', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation embeddings_1 = model.encode(sentences_1) embeddings_2 = model.encode(sentences_2) similarity = embeddings_1 @ embeddings_2.T print(similarity) # for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query # corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] q_embeddings = model.encode_queries(queries) p_embeddings = model.encode(passages) scores = q_embeddings @ p_embeddings.T ``` For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. #### Using Sentence-Transformers You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net): ``` pip install -U sentence-transformers ``` ```python from sentence_transformers import SentenceTransformer sentences_1 = ["样例数据-1", "样例数据-2"] sentences_2 = ["样例数据-3", "样例数据-4"] model = SentenceTransformer('BAAI/bge-large-zh-v1.5') embeddings_1 = model.encode(sentences_1, normalize_embeddings=True) embeddings_2 = model.encode(sentences_2, normalize_embeddings=True) similarity = embeddings_1 @ embeddings_2.T print(similarity) ``` For s2p(short query to long passage) retrieval task, each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). But the instruction is not needed for passages. ```python from sentence_transformers import SentenceTransformer queries = ['query_1', 'query_2'] passages = ["样例文档-1", "样例文档-2"] instruction = "为这个句子生成表示以用于检索相关文章:" model = SentenceTransformer('BAAI/bge-large-zh-v1.5') q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True) p_embeddings = model.encode(passages, normalize_embeddings=True) scores = q_embeddings @ p_embeddings.T ``` #### Using Langchain You can use `bge` in langchain like this: ```python from langchain.embeddings import HuggingFaceBgeEmbeddings model_name = "BAAI/bge-large-en-v1.5" model_kwargs = {'device': 'cuda'} encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity model = HuggingFaceBgeEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs, query_instruction="为这个句子生成表示以用于检索相关文章:" ) model.query_instruction = "为这个句子生成表示以用于检索相关文章:" ``` #### Using HuggingFace Transformers With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding. ```python from transformers import AutoTokenizer, AutoModel import torch # Sentences we want sentence embeddings for sentences = ["样例数据-1", "样例数据-2"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5') model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5') model.eval() # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages) # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = model_output[0][:, 0] # normalize embeddings sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1) print("Sentence embeddings:", sentence_embeddings) ``` ### Usage for Reranker Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range. #### Using FlagEmbedding ``` pip install -U FlagEmbedding ``` Get relevance scores (higher scores indicate more relevance): ```python from FlagEmbedding import FlagReranker reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation score = reranker.compute_score(['query', 'passage']) print(score) scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]) print(scores) ``` #### Using Huggingface transformers ```python import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large') model.eval() pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']] with torch.no_grad(): inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512) scores = model(**inputs, return_dict=True).logits.view(-1, ).float() print(scores) ``` ## Evaluation `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!** For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). - **MTEB**: | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) | |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| | [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 | | [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 | | [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 | | [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 | | [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 | | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 | | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 | | [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 | | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 | | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 | | [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 | | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 | | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 | | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 | | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 | | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 | - **C-MTEB**: We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction. | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 | | [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 | | [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 | | [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 | | [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 | | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 | | [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 | | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 | | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 | | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 | | [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 | | [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 | | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 | | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 | | [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 | | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 | - **Reranking**: See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script. | Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:| | text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 | | multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 | | multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 | | multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 | | m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 | | m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 | | bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 | | bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 | | [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 | | [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 | \* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks ## Train ### BAAI Embedding We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning. **You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).** We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain). Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned. More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md). ### BGE Reranker Cross-encoder will perform full-attention over the input pair, which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model. Therefore, it can be used to re-rank the top-k documents returned by embedding model. We train the cross-encoder on a multilingual pair data, The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker). More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker) ## Contact If you have any question or suggestion related to this project, feel free to open an issue or pull request. You also can email Shitao Xiao(stxiao@baai.ac.cn) and Zheng Liu(liuzheng@baai.ac.cn). ## Citation If you find this repository useful, please consider giving a star :star: and citation ``` @misc{bge_embedding, title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, year={2023}, eprint={2309.07597}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ## License FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
[ -0.49490073323249817, -0.898146390914917, 0.39945632219314575, 0.17049559950828552, -0.3940287232398987, -0.27777373790740967, -0.3474131226539612, -0.3016281723976135, 0.3878593444824219, 0.34677228331565857, -0.3507315218448639, -0.8559895753860474, -0.5131081938743591, -0.043619152158498764, -0.0749877318739891, 0.5727484226226807, -0.04180087149143219, 0.1491013467311859, 0.04314129427075386, -0.2670968472957611, -0.4183118939399719, -0.23269231617450714, -0.7249265313148499, -0.29737940430641174, 0.38611671328544617, 0.21835434436798096, 0.5827953815460205, 0.7045239806175232, 0.3349014222621918, 0.27661359310150146, -0.2693379521369934, 0.14118511974811554, -0.5055122375488281, -0.07575362175703049, -0.24866898357868195, -0.32387155294418335, -0.41546669602394104, 0.12055731564760208, 0.6645146608352661, 0.4524571895599365, -0.10216416418552399, 0.10777735710144043, -0.0012336882064118981, 0.7289534211158752, -0.4824080467224121, 0.26771703362464905, -0.557327151298523, 0.03522055223584175, -0.2552514374256134, 0.15497669577598572, -0.5084893107414246, -0.3495451807975769, 0.1763458549976349, -0.6018752455711365, 0.10786466300487518, 0.2827208936214447, 1.3185371160507202, 0.2013879269361496, -0.4394504427909851, -0.14190495014190674, -0.1341584324836731, 0.9934669137001038, -1.043460726737976, 0.7107134461402893, 0.49098503589630127, 0.2805050313472748, -0.08145105093717575, -0.8329145908355713, -0.3631027638912201, -0.16640092432498932, -0.19209600985050201, 0.4240207374095917, -0.03003387339413166, 0.019764967262744904, 0.3596387505531311, 0.6190351247787476, -0.5859135985374451, 0.11071190983057022, -0.10130645334720612, -0.17643412947654724, 0.7805469036102295, -0.1806233525276184, 0.4176355004310608, -0.5286086201667786, -0.27905985713005066, -0.41801315546035767, -0.8393521904945374, 0.033837348222732544, 0.38540247082710266, 0.12144540995359421, -0.3474622964859009, 0.55367112159729, -0.23274587094783783, 0.6126331686973572, 0.08314745873212814, 0.006800787523388863, 0.6088365912437439, -0.36295610666275024, -0.22482378780841827, -0.10301722586154938, 0.9002726674079895, 0.4139443039894104, -0.033285077661275864, 0.06640968471765518, -0.32324472069740295, -0.09213106334209442, -0.08268672972917557, -0.9410887360572815, -0.26151275634765625, 0.19698944687843323, -0.7938010692596436, -0.15666663646697998, 0.21094979345798492, -0.792242169380188, 0.08253837376832962, -0.009839079342782497, 0.5867146849632263, -0.7684066295623779, -0.07255201786756516, 0.3169705271720886, -0.19789256155490875, 0.39537951350212097, 0.001278389012441039, -0.6526169776916504, -0.2307293564081192, 0.5309892296791077, 0.9097166657447815, 0.13677288591861725, -0.09767910838127136, -0.39465513825416565, 0.05050330609083176, -0.16412879526615143, 0.3249610960483551, -0.5052629709243774, -0.2008151412010193, 0.1888984590768814, 0.4074375629425049, -0.10005369782447815, -0.3376120328903198, 0.8957494497299194, -0.5242154002189636, 0.3598422706127167, -0.38242238759994507, -0.8158362507820129, -0.5254069566726685, 0.09434547275304794, -0.8018060922622681, 1.110206127166748, -0.08499044924974442, -0.8848084211349487, 0.128952756524086, -0.6441088318824768, -0.24361160397529602, -0.24420666694641113, 0.006586194969713688, -0.6274871826171875, -0.10049282759428024, 0.37503647804260254, 0.6027184724807739, -0.21725860238075256, 0.048172660171985626, -0.3728291392326355, -0.6097999215126038, -0.0418112687766552, -0.24155493080615997, 1.0881879329681396, 0.29935982823371887, -0.37664559483528137, -0.22879090905189514, -0.45129239559173584, 0.08713679015636444, 0.2780785858631134, -0.2641729712486267, -0.3606517016887665, 0.22669725120067596, 0.22078368067741394, 0.04873741790652275, 0.5477972030639648, -0.7133567929267883, 0.1537221223115921, -0.593073844909668, 0.5848556756973267, 0.5775496363639832, 0.18814735114574432, 0.24040597677230835, -0.5029963850975037, 0.27816784381866455, 0.004559911321848631, -0.035878587514162064, -0.1789979189634323, -0.5626534819602966, -0.5834816098213196, -0.3396773040294647, 0.7175464630126953, 0.6359250545501709, -0.848787784576416, 0.6857985854148865, -0.4684586822986603, -0.6333616971969604, -0.9645116925239563, 0.13526012003421783, 0.5219193696975708, -0.005966676399111748, 0.7123393416404724, -0.1833542436361313, -0.46229949593544006, -0.958646833896637, -0.044565312564373016, 0.08004298806190491, -0.06469958275556564, 0.5406126379966736, 0.5944114923477173, -0.39457830786705017, 0.39857110381126404, -0.7577871084213257, -0.3271140456199646, -0.2381577491760254, -0.0756165161728859, 0.3462948799133301, 0.4839302599430084, 0.7092924118041992, -1.02541983127594, -0.5896564722061157, 0.029820425435900688, -0.7365197539329529, 0.07768761366605759, 0.07335932552814484, -0.2781846225261688, 0.22859705984592438, 0.625006914138794, -0.4171099066734314, 0.22947345674037933, 0.4822452962398529, -0.2400948405265808, 0.2709452509880066, -0.03382870554924011, 0.15117581188678741, -1.3861602544784546, 0.09390673041343689, 0.3227860629558563, -0.13514509797096252, -0.2613367736339569, 0.5296601057052612, 0.15522576868534088, 0.21804730594158173, -0.3237246870994568, 0.6446160078048706, -0.5177525281906128, 0.24128025770187378, 0.09903543442487717, 0.5668253302574158, -0.11619766056537628, 0.5014327764511108, -0.054832011461257935, 0.748079776763916, 0.40103667974472046, -0.3805514872074127, 0.16046719253063202, 0.5333261489868164, -0.4991548955440521, 0.0840771347284317, -0.6770067811012268, -0.08551350980997086, -0.08896263688802719, 0.18800273537635803, -0.8519062995910645, -0.07783107459545135, 0.2779250144958496, -0.5750104188919067, 0.5714738368988037, -0.29877936840057373, -0.506415605545044, -0.3896643817424774, -0.9097381234169006, 0.17045167088508606, 0.6217524409294128, -0.6816452145576477, 0.21442462503910065, 0.26053857803344727, 0.04204630106687546, -0.8070034384727478, -0.8594712018966675, -0.14655685424804688, -0.03197776526212692, -0.5447925925254822, 0.5417536497116089, -0.07815971225500107, 0.26703232526779175, 0.1827913224697113, -0.1027946025133133, 0.1938694268465042, 0.0880863144993782, -0.004591186996549368, 0.21123221516609192, -0.46552807092666626, 0.029294580221176147, 0.27287960052490234, 0.14460080862045288, -0.209600567817688, -0.14381343126296997, 0.44473353028297424, -0.14364369213581085, -0.31043949723243713, -0.1941387951374054, 0.3135550916194916, 0.29443594813346863, -0.393170028924942, 0.6255701184272766, 1.025133728981018, -0.3644864857196808, -0.06231724098324776, -0.6852774024009705, -0.10582146793603897, -0.49425867199897766, 0.48653644323349, -0.3682590126991272, -0.9860042333602905, 0.43489739298820496, -0.060146283358335495, 0.22694163024425507, 0.6731520295143127, 0.3573683798313141, -0.11658907681703568, 1.09149968624115, 0.38768017292022705, -0.33112338185310364, 0.6942077875137329, -0.6603302359580994, 0.2103559821844101, -1.1987768411636353, -0.042207516729831696, -0.37485021352767944, -0.41249993443489075, -1.3233805894851685, -0.4737246036529541, 0.05455712974071503, 0.24434120953083038, -0.393460750579834, 0.4241909980773926, -0.5672252178192139, 0.14861348271369934, 0.48495393991470337, 0.3111197054386139, -0.03901132196187973, 0.17032979428768158, -0.4114474654197693, -0.2431340366601944, -0.6056827902793884, -0.459920197725296, 1.020766258239746, 0.4789271652698517, 0.6374807357788086, 0.3906310200691223, 0.8235853910446167, 0.15778979659080505, 0.0887645035982132, -0.7748141884803772, 0.575031042098999, -0.5518839359283447, -0.5770138502120972, -0.3559296727180481, -0.5399958491325378, -1.1611247062683105, 0.3868708610534668, -0.26736101508140564, -0.8033626675605774, 0.10900097340345383, -0.18977634608745575, -0.0013573402538895607, 0.46269166469573975, -0.7121105790138245, 1.0597364902496338, -0.06095687299966812, -0.3208164870738983, -0.11133044213056564, -0.4466482400894165, 0.3409174382686615, 0.14996659755706787, 0.06790059059858322, 0.10988549888134003, -0.23817859590053558, 0.7265675663948059, -0.19687087833881378, 0.6232542991638184, -0.16748860478401184, 0.1283160001039505, 0.42718836665153503, -0.17242030799388885, 0.5757848620414734, 0.07513789087533951, -0.2089911252260208, 0.29351669549942017, 0.08242994546890259, -0.514342725276947, -0.504562258720398, 0.9334302544593811, -0.7264240384101868, -0.697695791721344, -0.37911897897720337, -0.23468352854251862, 0.16987937688827515, 0.43899357318878174, 0.42416051030158997, 0.26044750213623047, -0.10264068841934204, 0.6613333821296692, 0.9356951117515564, -0.5202473402023315, 0.3821223974227905, 0.31354856491088867, -0.2468959540128708, -0.5890310406684875, 1.1486365795135498, 0.24319206178188324, -0.03979448601603508, 0.6651666164398193, 0.03925327956676483, -0.29079949855804443, -0.5822421908378601, -0.46937263011932373, 0.649117112159729, -0.5848393440246582, -0.20061109960079193, -0.6358491778373718, -0.4461102783679962, -0.4520772397518158, 0.006886526942253113, -0.23657149076461792, -0.23867098987102509, -0.16453595459461212, -0.26703545451164246, 0.27985405921936035, 0.4540713131427765, 0.1140715703368187, 0.08769024908542633, -0.7206706404685974, 0.21445584297180176, -0.09031327813863754, 0.44373035430908203, 0.09478957206010818, -0.6211872100830078, -0.6071504354476929, 0.16428984701633453, -0.48375871777534485, -1.0930769443511963, 0.3359058201313019, 0.08677766472101212, 0.8364351987838745, 0.3378603160381317, -0.056919511407613754, 0.42443761229515076, -0.5281551480293274, 1.0581859350204468, -0.07788320630788803, -0.7728689312934875, 0.4660473167896271, -0.3113905191421509, 0.22053176164627075, 0.5986546874046326, 0.6743280291557312, -0.4931608736515045, -0.25908568501472473, -0.5219101905822754, -0.9843633770942688, 0.503821849822998, 0.17962102591991425, 0.01727789267897606, -0.27409183979034424, 0.33447083830833435, -0.1521906852722168, 0.012263511307537556, -0.8173736333847046, -0.7213758826255798, -0.33921173214912415, -0.3684846758842468, -0.16900193691253662, -0.27621927857398987, 0.22797560691833496, -0.3039614260196686, 1.0402448177337646, -0.016376420855522156, 0.5278598666191101, 0.3527224063873291, -0.3200257420539856, 0.21288590133190155, 0.21153144538402557, 0.29895466566085815, 0.22798727452754974, -0.4066982567310333, -0.14718478918075562, 0.33475685119628906, -0.582800567150116, -0.08029185235500336, 0.33974042534828186, -0.4645456373691559, 0.19816631078720093, 0.3150874376296997, 0.757365882396698, 0.45221763849258423, -0.45503854751586914, 0.5977544188499451, 0.13767682015895844, -0.19716081023216248, -0.2736027240753174, -0.051807161420583725, 0.3105510175228119, 0.2614377439022064, 0.08671621233224869, -0.4252288341522217, 0.2963623106479645, -0.6032178997993469, 0.3016417920589447, 0.4263911545276642, -0.3313036859035492, -0.07809093594551086, 0.6368277668952942, 0.02130420319736004, -0.019952941685914993, 0.5034900903701782, -0.551540195941925, -0.691170334815979, 0.4083213806152344, 0.4023931622505188, 0.8636548519134521, -0.17064116895198822, 0.2215126007795334, 0.9012131690979004, 0.497605562210083, -0.38352033495903015, 0.35573381185531616, 0.11599820107221603, -0.5811619162559509, -0.47543057799339294, -0.545395016670227, -0.05525857210159302, 0.30397579073905945, -0.5640140175819397, 0.37706759572029114, -0.40841931104660034, -0.13178651034832, 0.03726639226078987, 0.4854840934276581, -0.7429697513580322, 0.13541659712791443, 0.05258336290717125, 1.119588851928711, -0.6101677417755127, 0.8188870549201965, 1.0563857555389404, -0.9048084616661072, -0.7731271982192993, 0.08904430270195007, -0.1367906928062439, -0.5958459377288818, 0.3241916000843048, 0.25416478514671326, 0.1807277798652649, 0.05360928177833557, -0.5096852779388428, -0.9456540942192078, 1.6021722555160522, 0.05905849486589432, -0.5899399518966675, -0.05311160534620285, -0.3332417905330658, 0.4969066083431244, -0.3364173173904419, 0.43662625551223755, 0.4167398512363434, 0.6019748449325562, -0.132196843624115, -0.6595085859298706, 0.5525904297828674, -0.29534414410591125, 0.2377052903175354, 0.09142804145812988, -1.0348602533340454, 0.8127204775810242, 0.031099185347557068, -0.31466975808143616, 0.22456148266792297, 0.7087467312812805, 0.28516456484794617, 0.46411165595054626, 0.2759550213813782, 0.9446440935134888, 0.6690265536308289, -0.15870296955108643, 1.135944128036499, -0.23995636403560638, 0.6212586760520935, 0.8774749636650085, 0.14783166348934174, 1.1111446619033813, 0.08965752273797989, -0.214013010263443, 0.6815071702003479, 0.8268677592277527, -0.35383495688438416, 0.5025683045387268, 0.049475353211164474, 0.057456184178590775, -0.3021785318851471, 0.10836564749479294, -0.5533729791641235, 0.27861979603767395, 0.3108814060688019, -0.49831658601760864, 0.028528226539492607, -0.27704325318336487, 0.10832668840885162, 0.08020508289337158, -0.04975574463605881, 0.5819321274757385, 0.3288414776325226, -0.4734880030155182, 0.6562354564666748, 0.23079027235507965, 1.0215367078781128, -0.43441393971443176, -0.11501123756170273, -0.3346152603626251, -0.09487651288509369, -0.21457616984844208, -0.7862460613250732, -0.08818847686052322, -0.24374058842658997, -0.21428771317005157, 0.11629588901996613, 0.5851790904998779, -0.610924482345581, -0.4264640510082245, 0.5773420333862305, 0.5002890825271606, 0.2751549780368805, 0.17354342341423035, -1.1086769104003906, 0.04685928672552109, 0.37201589345932007, -0.5431836843490601, 0.3422161638736725, 0.5118366479873657, -0.0970550999045372, 0.5928606986999512, 0.5716888308525085, 0.07505299150943756, -0.037934597581624985, 0.05042021721601486, 0.5314167737960815, -0.9189241528511047, -0.3124100863933563, -0.6018781065940857, 0.2938665449619293, -0.3428277373313904, -0.02722088061273098, 0.7838603854179382, 0.7407015562057495, 1.1072063446044922, -0.04789352789521217, 0.7858844995498657, -0.11677311360836029, 0.397429883480072, -0.5959606766700745, 0.8853201866149902, -1.0707443952560425, 0.1990242451429367, -0.41283270716667175, -1.0301700830459595, -0.14362096786499023, 0.7417887449264526, -0.33869680762290955, 0.25947919487953186, 0.7033833861351013, 0.9944424033164978, -0.30917614698410034, -0.2079325169324875, 0.31842491030693054, 0.4598351716995239, 0.15877774357795715, 0.8015731573104858, 0.35080569982528687, -0.9615078568458557, 0.6484938859939575, -0.20666268467903137, 0.10411772131919861, -0.5410010814666748, -0.6481627225875854, -0.9609499573707581, -0.7403483390808105, -0.420512318611145, -0.2826592028141022, -0.013903229497373104, 0.9298384189605713, 0.3632986843585968, -0.7468651533126831, -0.043947380036115646, 0.2654689848423004, 0.40764984488487244, -0.2862377166748047, -0.2720995247364044, 0.6718495488166809, -0.08425933867692947, -0.9573888182640076, 0.3104243278503418, -0.08339562267065048, -0.07608501613140106, -0.011178242973983288, -0.2327745258808136, -0.8581867814064026, 0.10568473488092422, 0.616491973400116, 0.26378023624420166, -0.8887971043586731, -0.47525379061698914, 0.06820878386497498, -0.26634687185287476, -0.1687648743391037, 0.15912562608718872, -0.40737444162368774, 0.36208048462867737, 0.6420943140983582, 0.8038782477378845, 0.7112302184104919, -0.06963071972131729, 0.21083809435367584, -0.5916638374328613, -0.05874909460544586, -0.062416043132543564, 0.733715832233429, 0.38325729966163635, -0.30766984820365906, 0.9336715936660767, 0.2078048288822174, -0.436861127614975, -0.7614195942878723, 0.045223306864500046, -1.1033670902252197, -0.3575858771800995, 1.1683337688446045, -0.4086296856403351, -0.26181596517562866, 0.3180008828639984, -0.2227753847837448, 0.5267881155014038, -0.48479148745536804, 0.5212281942367554, 0.8295895457267761, 0.47674575448036194, -0.1610792726278305, -0.850772500038147, 0.3216979205608368, 0.6636096239089966, -0.26973119378089905, -0.34782540798187256, 0.3544285297393799, 0.49598827958106995, 0.22475163638591766, 0.13501589000225067, -0.24367225170135498, 0.3188910186290741, -0.08852461725473404, 0.0016774784307926893, -0.13030938804149628, 0.20568647980690002, -0.19203178584575653, -0.0245050098747015, -0.15807528793811798, -0.2879895865917206 ]
monologg/kobert
monologg
"2023-06-12T12:30:40Z"
51,519
6
transformers
[ "transformers", "pytorch", "jax", "safetensors", "bert", "feature-extraction", "endpoints_compatible", "has_space", "region:us" ]
feature-extraction
"2022-03-02T23:29:05Z"
Entry not found
[ -0.3227650225162506, -0.22568431496620178, 0.862226128578186, 0.43461495637893677, -0.5282987952232361, 0.7012965679168701, 0.7915717363357544, 0.07618638128042221, 0.7746025919914246, 0.2563219666481018, -0.7852817177772522, -0.22573819756507874, -0.9104480743408203, 0.5715669393539429, -0.3992334008216858, 0.5791245698928833, -0.14494505524635315, -0.10751161724328995, 0.28233757615089417, -0.2768954336643219, -0.5409224033355713, -0.36855220794677734, -1.1902776956558228, 0.061491113156080246, 0.5316578149795532, 0.7435142397880554, 0.7584060430526733, 0.3652167320251465, 0.6432578563690186, 0.3932291269302368, -0.23138920962810516, 0.4827055037021637, -0.04171813279390335, 0.00260411505587399, -0.3524433970451355, -0.5516898036003113, -0.28596609830856323, 0.07584730535745621, 1.0961304903030396, 0.966687798500061, -0.284663587808609, 0.05330817773938179, -0.3063621520996094, 0.33088892698287964, -0.49734312295913696, 0.3054099678993225, -0.022506045177578926, 0.16318801045417786, -0.7041513919830322, -0.5535354018211365, 0.012794834561645985, -0.7361212968826294, 0.17926570773124695, -0.690081000328064, 0.8269098401069641, 0.18583157658576965, 1.1533750295639038, 0.14819414913654327, -0.462487131357193, -0.8161764144897461, -0.6538989543914795, 0.5711171627044678, -0.32703715562820435, 0.39680248498916626, 0.7028235197067261, -0.048573412001132965, -0.9820332527160645, -0.6745741367340088, -0.46466192603111267, 0.2923962473869324, 0.35402774810791016, -0.3411678075790405, -0.17522086203098297, -0.3058989644050598, 0.15792037546634674, 0.12811517715454102, -0.4841994643211365, -0.5543919205665588, -0.5475160479545593, -0.3960252106189728, 0.6206658482551575, 0.3482950031757355, 0.2429177463054657, -0.1888415813446045, -0.3228583335876465, 0.0880163162946701, -0.4160851538181305, 0.3402571678161621, 0.6335517168045044, 0.7114017009735107, -0.5811444520950317, 0.560215950012207, -0.04927587881684303, 0.7439703941345215, 0.11445561796426773, -0.27478092908859253, 0.41460567712783813, -0.14724725484848022, 0.055171746760606766, 0.4226345121860504, 0.31524422764778137, 0.2841312289237976, -0.3273695111274719, 0.2032228708267212, -0.3215144872665405, -0.30496224761009216, -0.22332167625427246, -0.29490774869918823, -0.3592180609703064, 0.5492289066314697, -0.3314017057418823, -0.42855486273765564, 1.143175721168518, -0.4200771450996399, -0.7302224040031433, 0.33156412839889526, 0.4065209925174713, -0.0994480773806572, -0.37146568298339844, -0.052260834723711014, -0.8458789587020874, -0.007907390594482422, 0.7491172552108765, -0.7198970913887024, 0.3371737599372864, 0.4728063642978668, 0.7417217493057251, 0.19650575518608093, -0.14034469425678253, -0.42949390411376953, 0.2971969544887543, -0.8659994006156921, 0.6320174336433411, -0.20135220885276794, -1.0051977634429932, 0.11150479316711426, 0.8971705436706543, -0.37896400690078735, -1.2094876766204834, 1.0605159997940063, -0.6887932419776917, 0.16017857193946838, -0.676761269569397, -0.14661237597465515, -0.07118501514196396, -0.005096632521599531, -0.6088156700134277, 0.7567102313041687, 0.587267279624939, -0.4995276927947998, 0.21429483592510223, -0.26029831171035767, -0.39151400327682495, 0.38824859261512756, -0.07935450226068497, -0.21858926117420197, 0.713833212852478, -0.6647079586982727, -0.26932814717292786, 0.2942774295806885, 0.2368936538696289, -0.35706108808517456, -0.7931919097900391, 0.08478113263845444, -0.05786270648241043, 1.550750494003296, -0.03868847340345383, -0.3586106300354004, -0.679383397102356, -1.1506240367889404, -0.07070787996053696, 0.6886883974075317, -0.9194989204406738, -0.27839475870132446, -0.046410128474235535, -0.26169314980506897, 0.08994917571544647, 0.7390589714050293, -1.1194051504135132, 0.2832726836204529, -0.05092663690447807, -0.22794683277606964, 0.8271058797836304, 0.15387225151062012, 0.24758946895599365, 0.14913396537303925, 0.42958706617355347, 0.527725338935852, 0.11115207523107529, 0.683587908744812, -0.34720373153686523, -0.9694353938102722, 0.6154631972312927, 0.25266361236572266, 0.8121447563171387, -0.49945297837257385, 0.2685093879699707, 0.27025535702705383, -0.3409680724143982, -0.5682371854782104, -0.3102838397026062, 0.09025752544403076, 0.14930562674999237, 0.11142510175704956, -0.5721710324287415, -0.6576125025749207, -0.9689140319824219, -0.13590654730796814, -0.4314374029636383, -0.3571570813655853, 0.21006910502910614, 0.5792906284332275, -1.1975523233413696, 0.4128875136375427, -0.7705625891685486, -0.7038741111755371, -0.01065548975020647, -0.19338123500347137, 0.7540656328201294, 0.43240174651145935, 0.5033966898918152, -0.6397148370742798, -0.5661987066268921, -0.22470176219940186, -1.0333747863769531, -0.13280506432056427, 0.24819621443748474, 0.3065737783908844, -0.13423344492912292, -0.2744963765144348, -0.48740333318710327, 0.8100387454032898, 0.14789170026779175, -0.5391897559165955, 0.5220767259597778, -0.3020317256450653, 0.17224803566932678, -0.6369150280952454, -0.06916818022727966, -0.661676287651062, -0.0009071884560398757, -0.3608308732509613, -0.5737438797950745, 0.14772287011146545, 0.07017494738101959, -0.16065457463264465, 0.28808408975601196, -0.909277081489563, -0.0010852962732315063, -0.7442210912704468, 0.379071980714798, 0.06394772231578827, -0.3145078718662262, -0.017517540603876114, 1.0000386238098145, 0.7784460783004761, -0.3848048746585846, 0.721744179725647, 0.4440041184425354, 0.19036155939102173, 0.7630521059036255, -0.18725109100341797, 0.16478213667869568, -0.5245416760444641, -0.12161104381084442, -0.8887597918510437, -1.0982946157455444, 0.7320570349693298, -0.6114250421524048, 0.36542922258377075, -0.4277869760990143, 0.2589159905910492, -0.6919258832931519, -0.03885362669825554, 0.4808599352836609, -0.05936325341463089, -0.6863942742347717, 0.5232570171356201, 0.45317530632019043, -0.2019241601228714, -0.6609031558036804, -0.530157208442688, 0.39365822076797485, 0.6154114007949829, -0.16390392184257507, 0.06878514587879181, 0.14941060543060303, -0.5441926121711731, -0.040802597999572754, -0.38691970705986023, -0.45766758918762207, 0.054224006831645966, 0.13053473830223083, -0.005750799085944891, -0.404820054769516, -0.0868026465177536, -0.35842007398605347, -0.4656120240688324, 0.21876516938209534, 0.3011947274208069, -0.04096309468150139, -0.42599788308143616, -0.3619818687438965, -0.888181209564209, 0.6719610095024109, 0.5370282530784607, 0.05281545966863632, 0.7555549740791321, 0.16819314658641815, -0.8014987707138062, -0.13532210886478424, -0.1760706603527069, 0.2696830928325653, -0.5588056445121765, 0.13849826157093048, -0.013484534807503223, -0.0637492910027504, 0.26297882199287415, 0.25386232137680054, -0.4300556778907776, 0.9276250004768372, -0.2615274488925934, -0.3592521846294403, 0.7960181832313538, 0.5974742770195007, 0.49583131074905396, 0.16503219306468964, -0.044541798532009125, 0.900709331035614, -1.1966516971588135, -0.6563175916671753, -0.7409549355506897, -0.15945707261562347, -0.43510833382606506, -0.032105933874845505, 0.6254412531852722, 0.2900990843772888, -0.1333388388156891, 0.4756395220756531, -0.5243489742279053, 0.3556033670902252, 1.01198410987854, 0.35748639702796936, 0.3435698449611664, -0.7570229172706604, -0.2515777349472046, -0.1402427852153778, -0.9998157620429993, -0.2631377875804901, 0.8871029019355774, 0.22752606868743896, 0.844460666179657, 0.5992541313171387, 0.6784542798995972, 0.1367226243019104, 0.2523828148841858, -0.30590319633483887, 0.3920294940471649, 0.4376082420349121, -1.0401138067245483, -0.42758408188819885, 0.021418681368231773, -0.9703338742256165, -0.14227519929409027, -0.03495011106133461, -0.42617112398147583, 0.7681737542152405, 0.00016589462757110596, -0.4076709747314453, 0.7732734084129333, -0.455583393573761, 0.7562873363494873, -0.4473648965358734, -0.02663906291127205, 0.4699096083641052, -0.7070636749267578, 0.4677430987358093, 0.12878790497779846, 0.6205843091011047, -0.015572631731629372, -0.04078587517142296, 0.7104941606521606, -0.9129160046577454, 0.25438642501831055, -0.6348397135734558, 0.22421300411224365, 0.24246945977210999, 0.51606285572052, 0.5969953536987305, 0.4371243417263031, 0.10119888931512833, -0.23920902609825134, 0.04115807265043259, -0.8241125345230103, -0.210506409406662, 0.697515606880188, -0.7186890840530396, -0.6864197850227356, -1.2355337142944336, 0.14438660442829132, 0.27347055077552795, 0.389305055141449, 0.7959296107292175, 0.571408748626709, 0.1289544403553009, 0.680525004863739, 0.9888588190078735, -0.0688566341996193, 0.9166924357414246, 0.3224477171897888, 0.09175168722867966, -0.21944808959960938, 0.7036820650100708, 0.26627904176712036, -0.24707956612110138, -0.11939732730388641, 0.20913465321063995, -0.11069409549236298, -0.591761589050293, -0.49990686774253845, 0.3701757788658142, -0.6731787919998169, -0.18303893506526947, -0.6243735551834106, -0.6043769717216492, -0.511759340763092, 0.06927360594272614, -0.7147687673568726, 0.23979046940803528, -0.7753565907478333, -0.10574902594089508, 0.04323432594537735, 0.9792009592056274, -0.589311957359314, 0.5805224180221558, -1.1218582391738892, 0.19345788657665253, -0.07949887961149216, 0.7921058535575867, 0.21395787596702576, -0.7344395518302917, -0.3975418508052826, -0.11592631042003632, -0.3729911744594574, -1.3576762676239014, 0.21404948830604553, -0.2454141080379486, 0.23094046115875244, 0.6145404577255249, 0.1397707313299179, 0.5258248448371887, -0.34326282143592834, 0.7029101848602295, -0.057017259299755096, -0.7069286704063416, 0.7934495210647583, -0.5026894807815552, 0.4963534474372864, 0.9765996932983398, 0.5333835482597351, -0.7984007596969604, 0.035741209983825684, -1.041123390197754, -0.6008695363998413, 0.38426393270492554, 0.11928944289684296, -0.03601083159446716, -0.6659559011459351, -0.054019637405872345, -0.16143807768821716, 0.6043745279312134, -1.039069414138794, -0.7858356237411499, 0.2576698362827301, 0.5277302861213684, 0.0816856250166893, -0.5653398633003235, 0.20880667865276337, -0.544416069984436, 1.0657774209976196, 0.45109400153160095, 0.3274499475955963, 0.8406060934066772, 0.46492424607276917, -0.3823164403438568, 0.09252490103244781, 0.7662695050239563, 0.6666232347488403, -0.5239797830581665, -0.2908027470111847, -0.08827541768550873, -0.9143403768539429, 0.05927472561597824, 0.11168918758630753, -0.013455932028591633, 0.9082110524177551, 0.5793083310127258, 0.2539709210395813, 0.4514279365539551, -0.726460337638855, 0.8859451413154602, -0.14954176545143127, -0.12472866475582123, -1.0677239894866943, 0.1948619782924652, -0.23984959721565247, 0.5006402134895325, 1.0061326026916504, 0.5250048041343689, -0.047630298882722855, -0.8143380880355835, -0.01473585981875658, 0.6939172148704529, -0.7091123461723328, -0.17449834942817688, 0.944853663444519, 0.3847099542617798, -1.2953051328659058, 1.106776475906372, -0.5381771326065063, -0.560332179069519, 0.9121301770210266, 0.522956907749176, 1.1221847534179688, -0.44204121828079224, 0.0008676342549733818, 0.2662237286567688, 0.41378432512283325, 0.5423170328140259, 1.0869629383087158, 0.431413471698761, -0.7931063771247864, 0.8826584815979004, -0.24776044487953186, -0.40361151099205017, -0.05347571521997452, -0.42859897017478943, 0.16892178356647491, -0.4406192898750305, -0.10713007301092148, -0.3444187641143799, 0.28543180227279663, -0.7072042226791382, 0.42807620763778687, -0.0838567465543747, 0.8653068542480469, -0.8553727269172668, 0.47207626700401306, 0.635470449924469, -0.3337355852127075, -0.8508191108703613, -0.26198428869247437, -0.11448462307453156, -0.6389466524124146, 0.30214807391166687, -0.4554102420806885, 0.044398851692676544, 0.09623463451862335, -0.649151623249054, -1.1778275966644287, 0.9093633890151978, -0.639612078666687, -0.2784462869167328, 0.20464053750038147, -0.11514760553836823, 0.28811705112457275, -0.2524643540382385, 0.010661216452717781, 0.41876548528671265, 0.748940110206604, 0.2844654619693756, -0.7727053761482239, -0.3694884479045868, 0.0015032943338155746, -0.44474777579307556, 0.7582978010177612, -0.6002101898193359, 1.1840779781341553, -0.5563543438911438, -0.059654366225004196, 0.44384512305259705, 0.24690914154052734, 0.21076197922229767, 0.6629220843315125, 0.1442081481218338, 0.7282265424728394, 1.07012140750885, -0.40835219621658325, 0.8811809420585632, 0.26432839035987854, 0.47430819272994995, 0.7238501906394958, -0.6487724781036377, 0.7513749003410339, 0.31810489296913147, -0.5682924389839172, 0.9228013753890991, 1.2906063795089722, -0.15699204802513123, 0.8079374432563782, 0.05136508867144585, -1.081600546836853, 0.325833261013031, -0.20724765956401825, -0.7530064582824707, 0.3150254189968109, 0.19055864214897156, -0.6920982599258423, -0.5770308971405029, -0.24046507477760315, -0.35662803053855896, -0.11552901566028595, -0.7631728649139404, 0.6720563769340515, -0.016969164833426476, -0.5103683471679688, 0.18857547640800476, 0.2877499461174011, 0.17368432879447937, -0.5235732793807983, -0.02939440682530403, -0.22823619842529297, 0.2660655975341797, -0.5670853853225708, -0.5234526991844177, 0.5724433064460754, -0.32430219650268555, -0.5343255400657654, 0.18147465586662292, 0.763587236404419, -0.16923809051513672, -0.4515409469604492, 0.32472723722457886, 0.6959525346755981, 0.1665852814912796, 0.4250282347202301, -0.23511263728141785, 0.24480605125427246, -0.08044824004173279, -0.06651552021503448, 0.27714768052101135, 0.3449169099330902, 0.22435641288757324, 0.4450142979621887, 0.43285664916038513, -0.01808755099773407, -0.10736498981714249, -0.382819801568985, 0.4124940037727356, -0.9542785882949829, -0.5713282823562622, -0.6307113766670227, 0.2740660607814789, -0.02315417304635048, -1.0836423635482788, 0.4145168364048004, 1.4406683444976807, 1.0359982252120972, -0.4756383001804352, 1.067226529121399, -0.21818485856056213, 0.9594791531562805, 0.41483086347579956, 0.5420440435409546, -0.6030411720275879, 0.03835370019078255, -0.4364396035671234, -1.076962947845459, -0.35716333985328674, 0.4539391100406647, -0.022899555042386055, -0.3429867625236511, 0.872571587562561, 0.5887166261672974, -0.33473607897758484, -0.11728022992610931, 0.048487238585948944, -0.029941488057374954, -0.12433847039937973, 0.5145376324653625, 0.7648399472236633, -0.9344304800033569, -0.10680416971445084, -0.21577754616737366, -0.6382725834846497, -0.5047279000282288, -0.9632009267807007, -0.12959396839141846, -0.16037796437740326, 0.035343267023563385, -0.5662806630134583, 0.00255737011320889, 1.208324909210205, 0.5684957504272461, -1.1113994121551514, -0.5303789377212524, 0.3371853232383728, 0.3920421898365021, -0.1874791383743286, -0.24202413856983185, 0.2984568774700165, 0.15382249653339386, -0.5908876657485962, 0.6875665783882141, 0.8089625239372253, 0.208888977766037, 0.19554761052131653, 0.15893013775348663, -0.8229473829269409, -0.14913435280323029, 0.17440445721149445, 0.9450570344924927, -0.939853310585022, -0.7114843130111694, -0.03168516233563423, -0.27094873785972595, -0.05765746906399727, 0.17102102935314178, -0.4046344757080078, 0.5180677175521851, 0.34591493010520935, 0.49933457374572754, 0.0561608150601387, -0.054746925830841064, 0.5409556031227112, -0.9069057703018188, 0.09425963461399078, 0.4134361147880554, 0.4154115319252014, -0.4000864028930664, -0.5910194516181946, 0.6713420748710632, 1.0073972940444946, -0.6594868898391724, -0.8743268847465515, -0.19846712052822113, -1.0016002655029297, 0.04189709946513176, 0.6762762069702148, 0.5009527802467346, -0.4806513786315918, -0.4174500107765198, -0.5617399215698242, -0.1254672110080719, -0.1369970738887787, 0.7621601819992065, 1.179680585861206, -0.7432094812393188, 0.07975747436285019, -1.038639783859253, 0.6594986915588379, -0.2419457733631134, -0.3457581698894501, -0.48644304275512695, 0.3832802176475525, 0.35236993432044983, 0.440481036901474, 0.614812433719635, 0.1408471167087555, 0.8338426351547241, 0.3126053214073181, -0.1702686995267868, 0.2698982357978821, -0.4559200704097748, -0.028932858258485794, -0.057962555438280106, 0.31015971302986145, -1.0262157917022705 ]
lllyasviel/control_v11p_sd15_canny
lllyasviel
"2023-05-04T18:48:49Z"
51,465
21
diffusers
[ "diffusers", "art", "controlnet", "stable-diffusion", "controlnet-v1-1", "image-to-image", "arxiv:2302.05543", "base_model:runwayml/stable-diffusion-v1-5", "license:openrail", "has_space", "diffusers:ControlNetModel", "region:us" ]
image-to-image
"2023-04-14T19:24:43Z"
--- license: openrail base_model: runwayml/stable-diffusion-v1-5 tags: - art - controlnet - stable-diffusion - controlnet-v1-1 - image-to-image duplicated_from: ControlNet-1-1-preview/control_v11p_sd15_canny --- # Controlnet - v1.1 - *Canny Version* **Controlnet v1.1** is the successor model of [Controlnet v1.0](https://huggingface.co/lllyasviel/sd-controlnet-canny) and was released in [lllyasviel/ControlNet-v1-1](https://huggingface.co/lllyasviel/ControlNet-v1-1) by [Lvmin Zhang](https://huggingface.co/lllyasviel). This checkpoint is a conversion of [the original checkpoint](https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth) into `diffusers` format. It can be used in combination with **Stable Diffusion**, such as [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5). For more details, please also have a look at the [🧨 Diffusers docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/controlnet). ControlNet is a neural network structure to control diffusion models by adding extra conditions. ![img](./sd.png) This checkpoint corresponds to the ControlNet conditioned on **Canny edges**. ## Model Details - **Developed by:** Lvmin Zhang, Maneesh Agrawala - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [The CreativeML OpenRAIL M license](https://huggingface.co/spaces/CompVis/stable-diffusion-license) is an [Open RAIL M license](https://www.licenses.ai/blog/2022/8/18/naming-convention-of-responsible-ai-licenses), adapted from the work that [BigScience](https://bigscience.huggingface.co/) and [the RAIL Initiative](https://www.licenses.ai/) are jointly carrying in the area of responsible AI licensing. See also [the article about the BLOOM Open RAIL license](https://bigscience.huggingface.co/blog/the-bigscience-rail-license) on which our license is based. - **Resources for more information:** [GitHub Repository](https://github.com/lllyasviel/ControlNet), [Paper](https://arxiv.org/abs/2302.05543). - **Cite as:** @misc{zhang2023adding, title={Adding Conditional Control to Text-to-Image Diffusion Models}, author={Lvmin Zhang and Maneesh Agrawala}, year={2023}, eprint={2302.05543}, archivePrefix={arXiv}, primaryClass={cs.CV} } ## Introduction Controlnet was proposed in [*Adding Conditional Control to Text-to-Image Diffusion Models*](https://arxiv.org/abs/2302.05543) by Lvmin Zhang, Maneesh Agrawala. The abstract reads as follows: *We present a neural network structure, ControlNet, to control pretrained large diffusion models to support additional input conditions. The ControlNet learns task-specific conditions in an end-to-end way, and the learning is robust even when the training dataset is small (< 50k). Moreover, training a ControlNet is as fast as fine-tuning a diffusion model, and the model can be trained on a personal devices. Alternatively, if powerful computation clusters are available, the model can scale to large amounts (millions to billions) of data. We report that large diffusion models like Stable Diffusion can be augmented with ControlNets to enable conditional inputs like edge maps, segmentation maps, keypoints, etc. This may enrich the methods to control large diffusion models and further facilitate related applications.* ## Example It is recommended to use the checkpoint with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as the checkpoint has been trained on it. Experimentally, the checkpoint can be used with other diffusion models such as dreamboothed stable diffusion. **Note**: If you want to process an image to create the auxiliary conditioning, external dependencies are required as shown below: 1. Install [opencv](https://opencv.org/): ```sh $ pip install opencv-contrib-python ``` 2. Let's install `diffusers` and related packages: ``` $ pip install diffusers transformers accelerate ``` 3. Run code: ```python import torch import os from huggingface_hub import HfApi from pathlib import Path from diffusers.utils import load_image import numpy as np import cv2 from PIL import Image from diffusers import ( ControlNetModel, StableDiffusionControlNetPipeline, UniPCMultistepScheduler, ) checkpoint = "lllyasviel/control_v11p_sd15_canny" image = load_image( "https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/input.png" ) image = np.array(image) low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) control_image = Image.fromarray(image) control_image.save("./images/control.png") controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() generator = torch.manual_seed(33) image = pipe("a blue paradise bird in the jungle", num_inference_steps=20, generator=generator, image=control_image).images[0] image.save('images/image_out.png') ``` ![bird](./images/input.png) ![bird_canny](./images/control.png) ![bird_canny_out](./images/image_out.png) ## Other released checkpoints v1-1 The authors released 14 different checkpoints, each trained with [Stable Diffusion v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) on a different type of conditioning: | Model Name | Control Image Overview| Condition Image | Control Image Example | Generated Image Example | |---|---|---|---|---| |[lllyasviel/control_v11p_sd15_canny](https://huggingface.co/lllyasviel/control_v11p_sd15_canny)<br/> | *Trained with canny edge detection* | A monochrome image with white edges on a black background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11e_sd15_ip2p](https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p)<br/> | *Trained with pixel to pixel instruction* | No condition .|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_ip2p/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint)<br/> | Trained with image inpainting | No condition.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint/resolve/main/images/output.png"/></a>| |[lllyasviel/control_v11p_sd15_mlsd](https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd)<br/> | Trained with multi-level line segment detection | An image with annotated line segments.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_mlsd/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11f1p_sd15_depth](https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth)<br/> | Trained with depth estimation | An image with depth information, usually represented as a grayscale image.|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1p_sd15_depth/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_normalbae](https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae)<br/> | Trained with surface normal estimation | An image with surface normal information, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_normalbae/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_seg](https://huggingface.co/lllyasviel/control_v11p_sd15_seg)<br/> | Trained with image segmentation | An image with segmented regions, usually represented as a color-coded image.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_seg/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_lineart](https://huggingface.co/lllyasviel/control_v11p_sd15_lineart)<br/> | Trained with line art generation | An image with line art, usually black lines on a white background.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_lineart/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15s2_lineart_anime](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> | Trained with anime line art generation | An image with anime-style line art.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_openpose](https://huggingface.co/lllyasviel/control_v11p_sd15s2_lineart_anime)<br/> | Trained with human pose estimation | An image with human poses, usually represented as a set of keypoints or skeletons.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_openpose/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_scribble](https://huggingface.co/lllyasviel/control_v11p_sd15_scribble)<br/> | Trained with scribble-based image generation | An image with scribbles, usually random or user-drawn strokes.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_scribble/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11p_sd15_softedge](https://huggingface.co/lllyasviel/control_v11p_sd15_softedge)<br/> | Trained with soft edge image generation | An image with soft edges, usually to create a more painterly or artistic effect.|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11p_sd15_softedge/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11e_sd15_shuffle](https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle)<br/> | Trained with image shuffling | An image with shuffled patches or regions.|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/image_out.png"/></a>| |[lllyasviel/control_v11f1e_sd15_tile](https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile)<br/> | Trained with image tiling | A blurry image or part of an image .|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"><img width="64" style="margin:0;padding:0;" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/original.png"/></a>|<a href="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"><img width="64" src="https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile/resolve/main/images/output.png"/></a>| ## Improvements in Canny 1.1: - The training dataset of previous cnet 1.0 has several problems including (1) a small group of greyscale human images are duplicated thousands of times (!!), causing the previous model somewhat likely to generate grayscale human images; (2) some images has low quality, very blurry, or significant JPEG artifacts; (3) a small group of images has wrong paired prompts caused by a mistake in our data processing scripts. The new model fixed all problems of the training dataset and should be more reasonable in many cases. - Because the Canny model is one of the most important (perhaps the most frequently used) ControlNet, we used a fund to train it on a machine with 8 Nvidia A100 80G with batchsize 8×32=256 for 3 days, spending 72×30=2160 USD (8 A100 80G with 30 USD/hour). The model is resumed from Canny 1.0. - Some reasonable data augmentations are applied to training, like random left-right flipping. - Although it is difficult to evaluate a ControlNet, we find Canny 1.1 is a bit more robust and a bit higher visual quality than Canny 1.0. ## More information For more information, please also have a look at the [Diffusers ControlNet Blog Post](https://huggingface.co/blog/controlnet) and have a look at the [official docs](https://github.com/lllyasviel/ControlNet-v1-1-nightly).
[ -0.5445763468742371, -0.5545349717140198, 0.12963706254959106, 0.5888473391532898, -0.2604825496673584, -0.25053104758262634, 0.03732455521821976, -0.5188947319984436, 0.5172424912452698, 0.27529460191726685, -0.7198516130447388, -0.375031054019928, -0.7188656330108643, -0.17559322714805603, -0.15763312578201294, 0.8026049137115479, -0.2857810854911804, 0.025513339787721634, 0.08090698719024658, -0.07735895365476608, -0.10226643085479736, -0.1445990353822708, -1.20614492893219, -0.4288216531276703, 0.4377196729183197, 0.019364459440112114, 0.47042059898376465, 0.5307343602180481, 0.4988281726837158, 0.3645327091217041, -0.3768810033798218, 0.07781722396612167, -0.2770534157752991, -0.19605478644371033, 0.20507729053497314, -0.1518659144639969, -0.6806252598762512, 0.04604743793606758, 0.700110673904419, 0.2747593820095062, 0.009757605381309986, -0.21871137619018555, 0.1571790724992752, 0.6477232575416565, -0.48015666007995605, -0.07965341955423355, -0.16498269140720367, 0.21435467898845673, -0.12474138289690018, 0.08656197786331177, -0.1643117517232895, -0.3031846284866333, 0.07114635407924652, -0.7702109217643738, -0.09117954224348068, -0.16775521636009216, 1.321539044380188, 0.3066801428794861, -0.44660553336143494, -0.0992954820394516, -0.24370403587818146, 0.669835090637207, -0.7631116509437561, 0.08806726336479187, 0.1287580281496048, 0.24653415381908417, -0.22350968420505524, -0.9403331875801086, -0.4939770996570587, -0.16561533510684967, -0.08899092674255371, 0.4822074770927429, -0.325807124376297, 0.059941474348306656, 0.235990971326828, 0.2153988927602768, -0.3491884768009186, 0.2426435798406601, -0.3247789442539215, -0.3827725052833557, 0.6232330203056335, -0.0008496797527186573, 0.568889319896698, 0.028753288090229034, -0.5713695883750916, -0.04718688502907753, -0.3546956777572632, 0.3766080141067505, 0.2259760946035385, -0.10115218162536621, -0.7654621601104736, 0.40941962599754333, -0.052840456366539, 0.6910316348075867, 0.4030076563358307, -0.2301311194896698, 0.4435679316520691, -0.23287691175937653, -0.35021692514419556, -0.2811727225780487, 0.9892139434814453, 0.5062648057937622, 0.1382276713848114, -0.0024546331260353327, -0.12203007191419601, -0.09408573806285858, -0.050614289939403534, -1.1415882110595703, -0.16466112434864044, 0.21277356147766113, -0.5372632741928101, -0.3706511855125427, -0.11904512345790863, -0.6648982763290405, -0.17693668603897095, -0.08858039230108261, 0.3469462990760803, -0.5848942399024963, -0.4820188581943512, 0.1336836814880371, -0.45415639877319336, 0.5471370816230774, 0.6006488800048828, -0.4464930295944214, 0.21091654896736145, 0.1663912832736969, 0.9982186555862427, -0.2539811134338379, -0.11326508969068527, -0.26020029187202454, -0.08885245770215988, -0.3453812599182129, 0.522826075553894, -0.1323707103729248, -0.1381397247314453, -0.10670656710863113, 0.326934814453125, -0.11124337464570999, -0.3483879566192627, 0.4153342545032501, -0.3420526683330536, 0.14451679587364197, -0.05890443176031113, -0.34711405634880066, -0.1442253738641739, 0.25803467631340027, -0.4543427526950836, 0.7192612886428833, 0.2292034775018692, -1.0675379037857056, 0.31916847825050354, -0.49738454818725586, -0.20431429147720337, -0.25598087906837463, 0.1319155991077423, -0.7386414408683777, -0.4309009313583374, 0.040053777396678925, 0.5265094637870789, -0.019719500094652176, -0.11076732724905014, -0.4826478064060211, -0.025093061849474907, 0.14287637174129486, -0.11427668482065201, 1.2384746074676514, 0.14217527210712433, -0.5271357297897339, 0.20489580929279327, -0.7113341093063354, 0.0454229936003685, 0.13833589851856232, -0.2979946434497833, 0.04623285308480263, -0.2719230353832245, 0.12140221893787384, 0.5873264670372009, 0.3223268985748291, -0.6827909350395203, 0.16389110684394836, -0.24862416088581085, 0.466383159160614, 0.6179614663124084, 0.22871866822242737, 0.5646005868911743, -0.5097520351409912, 0.540249764919281, 0.295509934425354, 0.29016631841659546, 0.09099879860877991, -0.513159453868866, -1.0321295261383057, -0.5847024917602539, 0.017267776653170586, 0.6047370433807373, -0.8026408553123474, 0.7512722015380859, 0.11707175523042679, -0.6556100249290466, -0.24922168254852295, 0.042758509516716, 0.483796089887619, 0.4907133877277374, 0.3037129044532776, -0.46681520342826843, -0.3951491415500641, -0.8918722867965698, 0.14434152841567993, 0.20111186802387238, -0.01111871562898159, 0.16529040038585663, 0.6318895220756531, -0.10088207572698593, 0.6384904384613037, -0.23300151526927948, -0.37272605299949646, -0.053651172667741776, -0.132304385304451, 0.28954821825027466, 0.9998787045478821, 0.7650186419487, -0.7563062310218811, -0.6142668724060059, -0.020570892840623856, -0.8677375316619873, -0.026209097355604172, -0.2117440104484558, -0.48318472504615784, 0.1884688436985016, 0.5877904891967773, -0.5980788469314575, 0.7732290625572205, 0.5159436464309692, -0.5265549421310425, 0.6220798492431641, -0.35564368963241577, 0.18461911380290985, -0.9519736766815186, 0.2131119966506958, 0.3349379897117615, -0.31430402398109436, -0.5952528119087219, 0.09789767861366272, 0.14756375551223755, 0.06794870644807816, -0.7138029932975769, 0.6750305891036987, -0.48307329416275024, 0.17339803278446198, -0.2715652585029602, -0.1131214126944542, 0.05110017582774162, 0.6252874732017517, 0.19808301329612732, 0.48313409090042114, 0.9669877886772156, -0.6112421751022339, 0.3509977161884308, 0.41148248314857483, -0.2498120218515396, 0.8319901823997498, -0.8038467168807983, 0.12272798269987106, -0.17115244269371033, 0.563403844833374, -0.9715854525566101, -0.2711327373981476, 0.6418637037277222, -0.5088122487068176, 0.5179243683815002, -0.2712913453578949, -0.23113952577114105, -0.4307669699192047, -0.33107617497444153, 0.1991792768239975, 0.6999296545982361, -0.47807225584983826, 0.33722782135009766, 0.11829622089862823, 0.14856083691120148, -0.5028564929962158, -0.9296865463256836, -0.07989709079265594, -0.36523663997650146, -0.8051871657371521, 0.5020553469657898, -0.18110424280166626, 0.014987913891673088, 0.011708538047969341, 0.05776266008615494, -0.2994876801967621, 0.012915736995637417, 0.3595717251300812, 0.27002713084220886, -0.08931530267000198, -0.18044964969158173, 0.14992323517799377, -0.16552110016345978, -0.0645439550280571, -0.3570312559604645, 0.40259262919425964, 0.05906212329864502, -0.19576847553253174, -0.9575563669204712, 0.24297940731048584, 0.5551267266273499, -0.03905349224805832, 0.8729044198989868, 0.8408640027046204, -0.415313720703125, -0.007345972582697868, -0.33759090304374695, -0.10872473567724228, -0.49620017409324646, -0.028812047094106674, -0.22893737256526947, -0.6916609406471252, 0.6616249084472656, 0.09606891870498657, -0.032562218606472015, 0.6331254243850708, 0.37902766466140747, -0.21245808899402618, 0.8489915132522583, 0.5159881114959717, -0.09713827073574066, 0.7696477770805359, -0.74506014585495, -0.14971590042114258, -0.9893910884857178, -0.29853716492652893, -0.3367703855037689, -0.6137797236442566, -0.34050068259239197, -0.38588619232177734, 0.45777055621147156, 0.4572310745716095, -0.708977997303009, 0.4712511897087097, -0.572465181350708, 0.10854849219322205, 0.3222227692604065, 0.5466573238372803, -0.1327623724937439, -0.13614079356193542, -0.1920957714319229, 0.0962652713060379, -0.6223893761634827, -0.25673040747642517, 0.6184539198875427, 0.49839308857917786, 0.5132936835289001, -0.04428090900182724, 0.5812832117080688, 0.03205670788884163, 0.2790154814720154, -0.5666366219520569, 0.5043456554412842, -0.0360141322016716, -0.5359935164451599, -0.19097551703453064, -0.2912726104259491, -1.0056250095367432, 0.0894397497177124, -0.4700828194618225, -0.7360430955886841, 0.3379806876182556, 0.2692613899707794, -0.11241734772920609, 0.48044687509536743, -0.6508871912956238, 0.74388587474823, -0.021736830472946167, -0.586859941482544, 0.05286799743771553, -0.8206853270530701, 0.2529407739639282, 0.26530590653419495, -0.1705172061920166, 0.03994394466280937, -0.14653252065181732, 0.8385066390037537, -0.7708655595779419, 0.8167110085487366, -0.4921891987323761, -0.012055926024913788, 0.3968258500099182, -0.022479131817817688, 0.5615766644477844, -0.16497215628623962, -0.22876009345054626, 0.0794978067278862, -0.044713228940963745, -0.5867019295692444, -0.3472306430339813, 0.6731716394424438, -0.7083404660224915, -0.18696215748786926, -0.24812668561935425, -0.24963675439357758, 0.22411048412322998, 0.20741117000579834, 0.6557614803314209, 0.36979004740715027, 0.18996022641658783, 0.05908975005149841, 0.619693398475647, -0.3635783791542053, 0.6329203248023987, 0.029248466715216637, -0.09582947939634323, -0.5572214722633362, 0.7254337072372437, 0.03487422689795494, 0.38087156414985657, 0.2394172102212906, 0.14630170166492462, -0.22183363139629364, -0.5212917327880859, -0.4023849070072174, 0.4328654110431671, -0.6086130142211914, -0.42039936780929565, -0.6125429272651672, -0.4548669755458832, -0.431228369474411, -0.4643080234527588, -0.2569536566734314, -0.27704867720603943, -0.7340416312217712, 0.1894339621067047, 0.6104353070259094, 0.4903338849544525, -0.2258794605731964, 0.5586726069450378, -0.2446349859237671, 0.25995486974716187, 0.30761054158210754, 0.35824793577194214, -0.03191651403903961, -0.5982934236526489, 0.03369195759296417, 0.10966528207063675, -0.5137131810188293, -0.750095009803772, 0.5067237019538879, 0.03711390495300293, 0.45905008912086487, 0.5226930975914001, -0.22582948207855225, 0.6653733253479004, -0.26079073548316956, 0.5945857763290405, 0.6253708004951477, -0.7810304164886475, 0.5096273422241211, -0.4223385453224182, 0.27391308546066284, 0.2855307459831238, 0.5158516764640808, -0.4420466423034668, -0.3380897641181946, -0.7007118463516235, -0.6620296835899353, 0.5954370498657227, 0.23818539083003998, -0.108785480260849, 0.31411004066467285, 0.6474758386611938, -0.32424646615982056, 0.14093436300754547, -0.8030034899711609, -0.4392087161540985, -0.29813435673713684, 0.05436604470014572, 0.022364063188433647, 0.07736415416002274, -0.022563153877854347, -0.45389682054519653, 0.8732563853263855, -0.0200972817838192, 0.5861269235610962, 0.5022101402282715, 0.11786919087171555, -0.16400352120399475, -0.2709959149360657, 0.5462815165519714, 0.4442019462585449, -0.10419575870037079, -0.2848570942878723, 0.07691233605146408, -0.34531915187835693, 0.2240467220544815, -0.060840338468551636, -0.34559744596481323, -0.14032134413719177, 0.3590131103992462, 0.8218550682067871, -0.1942291110754013, -0.15880469977855682, 0.7557586431503296, 0.044169895350933075, -0.5624014735221863, -0.3012644350528717, 0.07410741597414017, 0.16886435449123383, 0.4804288446903229, 0.14177122712135315, 0.39582669734954834, 0.05478537082672119, -0.15644972026348114, 0.2566142678260803, 0.5810878276824951, -0.5759991407394409, -0.12720374763011932, 0.7537264227867126, 0.026899490505456924, -0.15178744494915009, 0.3901990056037903, -0.40762820839881897, -0.6890119314193726, 0.9644830226898193, 0.5106070637702942, 0.7088977694511414, -0.08364181965589523, 0.25533658266067505, 0.7250068783760071, 0.16464079916477203, 0.07204540818929672, 0.19395917654037476, 0.08755549043416977, -0.6621765494346619, -0.40600261092185974, -0.41849517822265625, -0.040251363068819046, 0.18562304973602295, -0.4092639088630676, 0.4405984580516815, -0.7829791903495789, -0.2305297702550888, -0.08519522100687027, 0.1082109659910202, -0.6925276517868042, 0.39586135745048523, 0.06385474652051926, 1.2298656702041626, -0.8071922659873962, 0.8299760222434998, 0.5557312369346619, -0.4513232111930847, -0.8690086603164673, -0.05269409716129303, 0.023688554763793945, -0.7694280743598938, 0.6325694918632507, 0.15436352789402008, -0.05131491273641586, 0.07588346302509308, -0.8073844313621521, -0.579862654209137, 1.2935667037963867, 0.24715040624141693, -0.2567891776561737, 0.09202342480421066, -0.5128388404846191, 0.45031988620758057, -0.4271753132343292, 0.48321256041526794, 0.4151526689529419, 0.5186159014701843, 0.429390013217926, -0.765286922454834, 0.18701022863388062, -0.4281793534755707, 0.13428594172000885, 0.13697658479213715, -1.0235459804534912, 0.8688732385635376, -0.03300294280052185, -0.16862784326076508, 0.3230193555355072, 0.713472306728363, 0.23193618655204773, 0.1503175050020218, 0.6255587935447693, 0.7691292762756348, 0.3262907564640045, -0.09473691135644913, 0.9678090810775757, -0.03452109917998314, 0.29118549823760986, 0.6196070909500122, 0.2809617817401886, 0.518194317817688, 0.3690843880176544, -0.09530212730169296, 0.5091535449028015, 0.8596779108047485, 0.04470517113804817, 0.45005011558532715, 0.512867271900177, -0.2645759880542755, -0.14901992678642273, -0.05502902343869209, -0.3371506631374359, 0.08489428460597992, 0.25139015913009644, -0.26015347242355347, -0.23588980734348297, 0.27635884284973145, 0.2431931495666504, -0.16150669753551483, -0.4430794417858124, 0.6546329259872437, -0.11574965715408325, -0.5555140376091003, 0.7495807409286499, -0.0485055148601532, 1.101741909980774, -0.717400312423706, 0.0399860180914402, -0.24626336991786957, 0.05635550618171692, -0.38379743695259094, -0.8073940277099609, 0.1959349811077118, -0.18334588408470154, 0.24850554764270782, -0.37032386660575867, 0.694281280040741, -0.39217713475227356, -0.42346081137657166, 0.5163040161132812, 0.0697394385933876, 0.3965359628200531, 0.16058218479156494, -1.0565062761306763, 0.2355213165283203, 0.11047641932964325, -0.44341450929641724, 0.22125382721424103, 0.33150696754455566, 0.1825188398361206, 0.728919506072998, 0.3205641508102417, 0.37572622299194336, 0.28004732728004456, -0.2516796588897705, 1.0244414806365967, -0.2693995237350464, -0.3194579780101776, -0.5388121604919434, 0.7977827191352844, -0.2987048327922821, -0.44612187147140503, 0.524479866027832, 0.3021104335784912, 0.7392470836639404, -0.08895958214998245, 0.7089533805847168, -0.4072531461715698, 0.19634661078453064, -0.6484583616256714, 0.8129251003265381, -0.8610358238220215, -0.2605684697628021, -0.3290461599826813, -0.6541177034378052, -0.3094940185546875, 0.8261359333992004, -0.151164248585701, 0.1895834356546402, 0.5372054576873779, 0.9962765574455261, -0.2046973556280136, -0.5898681282997131, 0.09121732413768768, 0.09040442109107971, 0.32791221141815186, 0.7391061186790466, 0.6666567921638489, -0.6728238463401794, 0.3308440148830414, -0.5070948004722595, -0.47336849570274353, -0.0852498859167099, -0.9694063663482666, -0.8198959827423096, -0.6931406855583191, -0.6950069665908813, -0.7002192735671997, -0.23102116584777832, 0.7170228362083435, 1.1142404079437256, -0.6600298881530762, -0.17616166174411774, -0.3469545841217041, 0.10637126863002777, -0.18746699392795563, -0.2041601836681366, 0.3545444905757904, -0.08518290519714355, -0.8217787742614746, 0.028021784499287605, 0.2156221866607666, 0.5701943039894104, -0.0929485633969307, -0.4167243540287018, -0.3941363990306854, -0.2488383799791336, 0.24713650345802307, 0.45015543699264526, -0.47020506858825684, -0.20935094356536865, -0.28517603874206543, -0.19514116644859314, 0.13695305585861206, 0.540241003036499, -0.4216628670692444, 0.24158844351768494, 0.5306997895240784, 0.37772634625434875, 0.8247655630111694, -0.15942715108394623, 0.07959353178739548, -0.5251862406730652, 0.5067874193191528, 0.01750064082443714, 0.4159497320652008, 0.11534925550222397, -0.305048406124115, 0.3927902579307556, 0.3447236716747284, -0.7364577651023865, -0.4060377776622772, 0.15887784957885742, -1.3969677686691284, -0.15267901122570038, 0.9851571917533875, -0.3677932918071747, -0.40815645456314087, 0.17378820478916168, -0.4554964005947113, 0.38813653588294983, -0.34640786051750183, 0.21596790850162506, 0.38473668694496155, -0.17184919118881226, -0.36629676818847656, -0.3581942319869995, 0.581520676612854, 0.17642877995967865, -0.7788568139076233, -0.5043538212776184, 0.5160446166992188, 0.39273664355278015, 0.2806532382965088, 0.8817750811576843, -0.11439657211303711, 0.13091649115085602, -0.0399479940533638, 0.20082443952560425, 0.032964762300252914, -0.13087305426597595, -0.5273070931434631, -0.11067617684602737, -0.1978919804096222, -0.4071296155452728 ]
TheBloke/CodeLlama-34B-fp16
TheBloke
"2023-08-25T11:13:52Z"
51,391
5
transformers
[ "transformers", "safetensors", "llama", "text-generation", "llama-2", "codellama", "custom_code", "license:llama2", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-08-24T20:37:55Z"
--- license: llama2 tags: - llama-2 - codellama --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # CodeLlama 34B fp16 - Model creator: [Meta](https://ai.meta.com/llama/) ## Description This is Transformers/HF format fp16 weights for CodeLlama 34B. It is the result of downloading CodeLlama 34B from [Meta](https://ai.meta.com/blog/code-llama-large-language-model-coding/) and converting to HF using `convert_llama_weights_to_hf.py`. Quantisations will be coming shortly. Please note that due to a change in the RoPE Theta value, for correct results you must load these FP16 models with `trust_remote_code=True` Credit to @emozilla for creating the necessary modelling code to achieve this! ## Prompt template: TBC <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card # Code Llama ## **Model Details** **Model Developers** Meta AI **Variations** Code Llama comes in three model sizes, and three variants: 1) Code Llama: our base models designed for general code synthesis and understanding 2) Code Llama - Python: designed specifically for Python 3) Code Llama - Instruct: for instruction following and safer deployment All variants are available in sizes of 7B, 13B and 34B parameters. **Input** Models input text only. **Output** Models output text only. **Model Architecture** Code Llama and its variants are autoregressive language models using optimized transformer architectures. Code Llama 7B and 13B additionally support infilling text generation. All models were fine-tuned with up to 16K tokens, and support up to 100K tokens at inference time. **Model Dates** Code Llama and its variants have been trained between January 2023 and July 2023. **Status** This is a static model trained on an offline dataset. Future versions of Code Llama - Instruct will be released as we improve model safety with community feedback. **Licence** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/). **Research Paper** More information can be found in the paper "[Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)". **Where to send comments** Instructions on how to provide feedback or comments on the model can be found in the model [README](README.md), or by opening an issue in the GitHub repository ([https://github.com/facebookresearch/codellama/](https://github.com/facebookresearch/codellama/)). ## **Intended Use** **Intended Use Cases** Code Llama and its variants is intended for commercial and research use in English and relevant programming languages. The base model Code Llama can be adapted for a variety of code synthesis and understanding tasks, Code Llama - Python is designed specifically to handle the Python programming language, and Code Llama - Instruct is intended to be safer to use for code assistant and generation applications. **Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Code Llama and its variants. ## **Hardware and Software** **Training Factors** We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster. **Carbon Footprint** In aggregate, training all 9 Code Llama models required 400K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 65.3 tCO2eq, 100% of which were offset by Meta’s sustainability program. **Training data** All experiments reported here and the released models have been trained and fine-tuned using the same data as Llama 2 with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) for details). Code Llama - Instruct uses additional instruction fine-tuning data. **Evaluation Results** See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper. ## **Ethical Considerations and Limitations** Code Llama and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Code Llama’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of Code Llama, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-user-guide](https://ai.meta.com/llama/responsible-user-guide).
[ -0.4270212650299072, -0.5205115079879761, 0.20861376821994781, 0.13077779114246368, -0.21013492345809937, 0.14248855412006378, 0.0171479694545269, -0.703265905380249, 0.48905542492866516, 0.23518754541873932, -0.6945789456367493, -0.4080370366573334, -0.42910969257354736, 0.1298385113477707, -0.49975061416625977, 1.0061323642730713, 0.17471924424171448, -0.27547377347946167, -0.07925953716039658, 0.08161453157663345, -0.3972129821777344, -0.3355473279953003, -0.37902161478996277, -0.5121955275535583, 0.4030320644378662, 0.20674490928649902, 0.7525507807731628, 0.5802832245826721, 0.5215935707092285, 0.37143781781196594, -0.23572637140750885, 0.082816943526268, -0.5207319259643555, -0.39587265253067017, 0.05414422228932381, -0.32494398951530457, -0.7611463069915771, -0.13638809323310852, 0.28700193762779236, 0.2940814793109894, -0.1804463416337967, 0.4667511582374573, -0.05124066397547722, 0.5551519989967346, -0.3875768184661865, 0.11735765635967255, -0.5576536655426025, -0.0012031930964440107, -0.011054358445107937, 0.059430740773677826, -0.04870064556598663, -0.30481091141700745, -0.2575920522212982, -0.8703181147575378, -0.10689207166433334, 0.031692806631326675, 1.1405309438705444, 0.3967213034629822, -0.23966023325920105, -0.016596466302871704, -0.6220719814300537, 0.7167495489120483, -0.8848540186882019, 0.2547895610332489, 0.3085065484046936, 0.1199660450220108, -0.023643869906663895, -0.9394782781600952, -0.7725325226783752, -0.1504560112953186, -0.04943379387259483, 0.27275803685188293, -0.5874062776565552, -0.08715415745973587, 0.13793858885765076, 0.4226449728012085, -0.4651162028312683, 0.11448531597852707, -0.5742461085319519, -0.09026918560266495, 0.8436189293861389, 0.054353661835193634, 0.3246493935585022, -0.1283665895462036, -0.3343713581562042, -0.18611061573028564, -0.7741147875785828, 0.15788458287715912, 0.3971634805202484, 0.00782554317265749, -0.8380361795425415, 0.7095777988433838, -0.11664985120296478, 0.41763001680374146, 0.26100730895996094, -0.24486896395683289, 0.40756210684776306, -0.6445227861404419, -0.31615960597991943, -0.18043763935565948, 0.9202390313148499, 0.4676297605037689, 0.015333549119532108, 0.1589585393667221, -0.11652817577123642, 0.08668478578329086, 0.22129522264003754, -0.7653871774673462, -0.15258020162582397, 0.4094665050506592, -0.714599072933197, -0.47830304503440857, -0.08383829146623611, -0.8442608714103699, -0.2614558935165405, -0.07264793664216995, 0.3173784017562866, -0.14600904285907745, -0.5144199132919312, 0.2276081144809723, -0.03506629168987274, 0.40721315145492554, 0.33515873551368713, -0.7152795195579529, 0.06501303613185883, 0.4954119920730591, 0.720919132232666, 0.2647980749607086, -0.25806641578674316, -0.1415911465883255, 0.14893430471420288, -0.2761061191558838, 0.5378311276435852, -0.33384039998054504, -0.5447185039520264, -0.15385845303535461, 0.09019570797681808, 0.12174069136381149, -0.28285422921180725, 0.3255127966403961, -0.328978031873703, -0.058403655886650085, -0.1028464064002037, -0.28548669815063477, -0.32978442311286926, 0.1335873007774353, -0.5904500484466553, 0.8626112937927246, 0.23185011744499207, -0.6393401026725769, 0.031934089958667755, -0.7164623141288757, -0.2507418394088745, 0.008959285914897919, -0.08779153972864151, -0.5310789346694946, -0.0945664569735527, 0.21121308207511902, 0.2748161554336548, -0.4659969210624695, 0.25756290555000305, -0.31543025374412537, -0.3915494978427887, 0.19578023254871368, -0.3580838143825531, 0.9843654632568359, 0.31884244084358215, -0.612777590751648, 0.10940306633710861, -0.823135495185852, -0.2091917246580124, 0.478727251291275, -0.4272119402885437, 0.27945294976234436, -0.013345313258469105, -0.000058598430769052356, 0.033837124705314636, 0.46609246730804443, -0.42931586503982544, 0.32750365138053894, -0.36588504910469055, 0.5361506938934326, 0.8200276494026184, -0.04306928068399429, 0.39520955085754395, -0.6726320385932922, 0.6420945525169373, -0.16955241560935974, 0.38119107484817505, -0.13478435575962067, -0.671286404132843, -0.8900406360626221, -0.3375086784362793, 0.09122913330793381, 0.5310783982276917, -0.5273364782333374, 0.7119573354721069, -0.13831038773059845, -0.8288877010345459, -0.5508698225021362, 0.08784735202789307, 0.34356850385665894, 0.33677834272384644, 0.40448975563049316, -0.171512171626091, -0.7083232998847961, -0.7720131278038025, 0.1517234593629837, -0.389827162027359, -0.04036923125386238, 0.38928961753845215, 0.7665868997573853, -0.45909395813941956, 0.7423508167266846, -0.43290281295776367, -0.3251587748527527, -0.31683260202407837, -0.32095351815223694, 0.49366724491119385, 0.7481195330619812, 0.6752757430076599, -0.7304563522338867, -0.31859293580055237, 0.1621903032064438, -0.7505252957344055, 0.015386885963380337, -0.20581430196762085, -0.1260010451078415, 0.15656623244285583, 0.2647947371006012, -0.8814330101013184, 0.6976267695426941, 0.6840657591819763, -0.3296120762825012, 0.504456639289856, -0.16716048121452332, 0.017752645537257195, -1.0311574935913086, 0.2644633948802948, -0.04013457149267197, 0.031266890466213226, -0.5738162398338318, 0.09276815503835678, -0.25673502683639526, -0.08560401201248169, -0.5484318733215332, 0.5328869223594666, -0.3999987244606018, -0.0019130957080051303, -0.05452454462647438, -0.10727614909410477, 0.047389864921569824, 0.6054249405860901, -0.23132838308811188, 0.7762568593025208, 0.5093100666999817, -0.5238234400749207, 0.3676334023475647, 0.46562257409095764, -0.4061042368412018, 0.22782514989376068, -1.0687676668167114, 0.2187482863664627, 0.07988209277391434, 0.4710824489593506, -1.0003907680511475, -0.18663334846496582, 0.4911114275455475, -0.7346267700195312, 0.20614095032215118, -0.06523929536342621, -0.37075307965278625, -0.5266838073730469, -0.37907713651657104, 0.47862231731414795, 0.7564188838005066, -0.514238178730011, 0.566571831703186, 0.42838054895401, 0.1975374072790146, -0.7291349172592163, -0.7619343400001526, -0.05607125163078308, -0.32936349511146545, -0.6169678568840027, 0.45952072739601135, -0.31218770146369934, -0.2591821253299713, -0.0564059242606163, -0.030446141958236694, 0.03861670941114426, 0.2603684663772583, 0.42393958568573, 0.35302063822746277, -0.15548387169837952, -0.2932845652103424, -0.040729667991399765, -0.01934889517724514, -0.09316457808017731, -0.2011473923921585, 0.7944778203964233, -0.3650466501712799, -0.3514705300331116, -0.8411688208580017, 0.14436139166355133, 0.590239942073822, -0.2620266079902649, 0.6970627903938293, 0.43525922298431396, -0.42840489745140076, 0.0906689390540123, -0.49399495124816895, -0.1345411241054535, -0.5958611369132996, 0.2528834044933319, -0.1338297724723816, -0.7122987508773804, 0.5644485354423523, 0.24244338274002075, 0.2670486271381378, 0.5205957889556885, 0.639366626739502, -0.20708438754081726, 0.8049097061157227, 0.7738701105117798, -0.26493039727211, 0.5302186608314514, -0.8574841022491455, 0.17224504053592682, -0.6785219311714172, -0.45923617482185364, -0.6006354093551636, -0.5129963755607605, -0.6675179600715637, -0.5562708377838135, 0.4041236937046051, 0.038816437125205994, -0.6216101050376892, 0.49381589889526367, -0.6099727749824524, 0.31712430715560913, 0.5146414041519165, 0.16519737243652344, 0.18494771420955658, 0.03088843636214733, 0.10127384215593338, 0.22460968792438507, -0.6753789782524109, -0.48679590225219727, 1.0925542116165161, 0.37457525730133057, 0.6635754704475403, 0.06497541069984436, 0.751465380191803, 0.20561376214027405, 0.23411984741687775, -0.5205349922180176, 0.5392780900001526, 0.05116014555096626, -0.7980154752731323, -0.1901109218597412, -0.16738450527191162, -0.9970969557762146, 0.11184708029031754, -0.24105620384216309, -0.7108443379402161, 0.39567476511001587, -0.00009896705887513235, -0.40775853395462036, 0.5015093088150024, -0.30532801151275635, 0.6237236857414246, -0.23891441524028778, -0.2732013165950775, -0.23629768192768097, -0.7177420854568481, 0.3282317817211151, 0.03419887274503708, 0.3953154385089874, -0.14005394279956818, -0.1661001443862915, 0.6457473635673523, -0.6008144617080688, 1.098912000656128, 0.05090370774269104, -0.24154165387153625, 0.6364256143569946, -0.015156490728259087, 0.49950915575027466, 0.15818089246749878, -0.1959395855665207, 0.602575421333313, -0.16358700394630432, -0.1948910355567932, -0.09158462285995483, 0.5163847804069519, -1.1343994140625, -0.6207596063613892, -0.28087759017944336, -0.44974300265312195, 0.36714357137680054, 0.30181455612182617, 0.4065084159374237, 0.23335407674312592, 0.07004697620868683, 0.47027358412742615, 0.30259668827056885, -0.4605925679206848, 0.6400083899497986, 0.2635709345340729, -0.0714927613735199, -0.5862919092178345, 0.9002138376235962, 0.011173544451594353, 0.16562150418758392, 0.36611032485961914, 0.16343508660793304, -0.20032429695129395, -0.40807798504829407, -0.40268754959106445, 0.5189535021781921, -0.5785929560661316, -0.5495151877403259, -0.4475141167640686, -0.19611723721027374, -0.4033217132091522, -0.3823545575141907, -0.4584103226661682, -0.38921716809272766, -0.7365572452545166, -0.1224006861448288, 0.5791402459144592, 0.7110006213188171, -0.16896536946296692, 0.44439905881881714, -0.605735719203949, 0.31603002548217773, 0.061444371938705444, 0.16280071437358856, 0.11975689977407455, -0.6479771137237549, -0.171765998005867, 0.2232835441827774, -0.566303551197052, -0.6455867886543274, 0.5511422157287598, 0.10605140030384064, 0.5909836888313293, 0.24597479403018951, 0.05517317354679108, 0.7724162340164185, -0.4116798937320709, 1.0671459436416626, 0.49499019980430603, -0.9842042922973633, 0.5795084834098816, -0.4380863308906555, 0.1974177360534668, 0.34567490220069885, 0.42796504497528076, -0.23940132558345795, -0.40648335218429565, -0.79896479845047, -0.7912001013755798, 0.6477397084236145, 0.24982087314128876, 0.233174666762352, 0.1340777724981308, 0.39923790097236633, -0.13475686311721802, 0.2588139474391937, -1.1490468978881836, -0.43617647886276245, -0.3470252454280853, -0.1126994639635086, -0.041488442569971085, 0.017857655882835388, -0.22366534173488617, -0.42365527153015137, 0.7622840404510498, -0.1733473688364029, 0.6168094277381897, 0.19968973100185394, 0.09989043325185776, -0.31480807065963745, 0.0011969443876296282, 0.6814826130867004, 0.8227439522743225, -0.021553639322519302, -0.1854948252439499, 0.19038526713848114, -0.41229453682899475, 0.13908664882183075, -0.04515748843550682, -0.31328046321868896, -0.25848329067230225, 0.4117473065853119, 0.7106251120567322, 0.060923684388399124, -0.5950043797492981, 0.48165977001190186, 0.1314111351966858, -0.37551793456077576, -0.43977227807044983, 0.19218809902668, 0.3172585368156433, 0.5720149278640747, 0.4243342876434326, 0.04652540758252144, -0.0026130671612918377, -0.4010193943977356, 0.0291004478931427, 0.45487120747566223, -0.026055335998535156, -0.4104612171649933, 1.1116387844085693, 0.1771474927663803, -0.48180508613586426, 0.5060455799102783, 0.16753795742988586, -0.4414403438568115, 1.152313470840454, 0.6405573487281799, 0.8069437146186829, -0.061934519559144974, 0.16756881773471832, 0.5488698482513428, 0.5089215636253357, 0.060992028564214706, 0.31238386034965515, 0.02036772482097149, -0.49822190403938293, -0.18512600660324097, -0.6050887107849121, -0.36716341972351074, 0.20199774205684662, -0.5058211088180542, 0.4894724190235138, -0.7437765598297119, -0.11180466413497925, -0.30295947194099426, 0.09523233771324158, -0.5554373264312744, 0.12124582380056381, 0.19880005717277527, 0.9408265352249146, -0.5848793983459473, 0.7921066880226135, 0.5149420499801636, -0.6580065488815308, -0.9315617680549622, -0.13567742705345154, -0.013584102503955364, -0.9176700711250305, 0.47238558530807495, 0.20084331929683685, -0.08605789393186569, 0.17127925157546997, -0.918519139289856, -1.0235795974731445, 1.5284010171890259, 0.3026782274246216, -0.5879824161529541, -0.009239901788532734, 0.10743340104818344, 0.484120637178421, -0.35642799735069275, 0.3916812241077423, 0.49319395422935486, 0.4959568381309509, 0.007385795470327139, -1.0239191055297852, 0.12439418584108353, -0.42841383814811707, 0.0408131405711174, -0.15495111048221588, -1.1818552017211914, 0.8633151054382324, -0.37253275513648987, -0.03374488651752472, 0.3770166337490082, 0.7530699968338013, 0.5531047582626343, 0.31052327156066895, 0.4759390354156494, 0.4201425611972809, 0.6304330825805664, 0.013580309227108955, 1.117940068244934, -0.5944011211395264, 0.4421004056930542, 0.5976099967956543, -0.07908431440591812, 0.7162635326385498, 0.3340998888015747, -0.4905509948730469, 0.5205631256103516, 0.6235451102256775, -0.2531808614730835, 0.402920663356781, 0.1986510455608368, -0.13773106038570404, -0.043492577970027924, -0.21107259392738342, -0.8173128366470337, 0.30802109837532043, 0.2702881693840027, -0.23436419665813446, 0.16324512660503387, -0.15968219935894012, 0.055280763655900955, -0.20170143246650696, -0.22440846264362335, 0.525536835193634, 0.22660402953624725, -0.3757638931274414, 1.097954273223877, -0.06220760568976402, 0.9228086471557617, -0.7462584972381592, -0.07441933453083038, -0.5010281801223755, 0.1881839632987976, -0.4210417866706848, -0.5294939279556274, 0.027832677587866783, 0.08089332282543182, -0.09297078847885132, -0.14228565990924835, 0.5480501651763916, -0.027311602607369423, -0.6015284061431885, 0.4788314402103424, 0.1162160113453865, 0.1774013489484787, 0.37883809208869934, -0.833602249622345, 0.4487355649471283, 0.2372024953365326, -0.4514763057231903, 0.23988494277000427, 0.14535735547542572, 0.22077099978923798, 0.8306187391281128, 0.694595456123352, -0.10686182230710983, 0.1848200112581253, -0.229514479637146, 1.078199863433838, -0.47154635190963745, -0.39867520332336426, -0.821799099445343, 0.7635247111320496, 0.228611558675766, -0.3373466432094574, 0.7074493169784546, 0.45948389172554016, 0.8870078921318054, -0.13576056063175201, 0.7354947328567505, -0.33664655685424805, 0.12286994606256485, -0.30691948533058167, 0.8349851369857788, -0.9817094802856445, 0.3865269720554352, -0.42941102385520935, -0.7874011397361755, -0.22257795929908752, 0.8370916247367859, 0.19472476840019226, 0.17087529599666595, 0.34032732248306274, 0.9183918237686157, 0.1529678851366043, -0.06380021572113037, 0.26086297631263733, 0.32427695393562317, 0.5281549096107483, 0.7700612545013428, 0.8616864681243896, -0.7234873175621033, 0.7852948307991028, -0.5632858872413635, -0.10681894421577454, -0.31808629631996155, -0.8974732160568237, -0.7452681064605713, -0.3968517482280731, -0.3871491849422455, -0.4138970375061035, -0.15425127744674683, 0.9166219830513, 0.6543656587600708, -0.588896632194519, -0.6005371809005737, -0.12402333319187164, 0.23115164041519165, -0.2482580840587616, -0.16234342753887177, 0.22403568029403687, 0.22317290306091309, -0.7808665633201599, 0.5498806834220886, -0.008070996031165123, 0.3103591501712799, -0.19563034176826477, -0.3057881295681, -0.46063658595085144, 0.04380207881331444, 0.370100736618042, 0.42954397201538086, -0.705244779586792, -0.22420866787433624, 0.06428039073944092, 0.05186031386256218, 0.20449133217334747, 0.39228928089141846, -0.6458196043968201, -0.014389286749064922, 0.5090596079826355, 0.5068991780281067, 0.5215386152267456, -0.05082976073026657, 0.23469354212284088, -0.3529563546180725, 0.31315404176712036, 0.09058674424886703, 0.46236056089401245, 0.023007484152913094, -0.5577289462089539, 0.7745856046676636, 0.28295236825942993, -0.6959722638130188, -1.006678819656372, -0.062101174145936966, -1.100374698638916, -0.29766228795051575, 1.1448955535888672, -0.02398739568889141, -0.2900751531124115, 0.15344952046871185, -0.25076723098754883, 0.3456646502017975, -0.38675975799560547, 0.526701807975769, 0.2920239567756653, -0.09455792605876923, -0.1125946044921875, -0.6012865900993347, 0.19647009670734406, 0.2616346776485443, -0.8599001169204712, -0.14088284969329834, 0.5463226437568665, 0.29633620381355286, 0.39680513739585876, 0.7818339467048645, -0.10862129926681519, 0.4069805443286896, 0.08471698313951492, 0.2795858085155487, -0.1274198740720749, -0.3517974019050598, -0.3834008276462555, 0.035323768854141235, -0.22107285261154175, -0.18786923587322235 ]
csarron/mobilebert-uncased-squad-v2
csarron
"2023-07-18T16:52:20Z"
51,188
1
transformers
[ "transformers", "pytorch", "onnx", "safetensors", "mobilebert", "question-answering", "en", "dataset:squad_v2", "arxiv:2004.02984", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
question-answering
"2022-03-02T23:29:05Z"
--- language: en thumbnail: license: mit tags: - question-answering - mobilebert datasets: - squad_v2 metrics: - squad_v2 widget: - text: "Which name is also used to describe the Amazon rainforest in English?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species." - text: "How many square kilometers of rainforest is covered in the basin?" context: "The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain \"Amazonas\" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species." --- ## MobileBERT fine-tuned on SQuAD v2 [MobileBERT](https://arxiv.org/abs/2004.02984) is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks. This model was fine-tuned from the HuggingFace checkpoint `google/mobilebert-uncased` on [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer). ## Details | Dataset | Split | # samples | | -------- | ----- | --------- | | SQuAD2.0 | train | 130k | | SQuAD2.0 | eval | 12.3k | ### Fine-tuning - Python: `3.7.5` - Machine specs: `CPU: Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz` `Memory: 32 GiB` `GPUs: 2 GeForce GTX 1070, each with 8GiB memory` `GPU driver: 418.87.01, CUDA: 10.1` - script: ```shell # after install https://github.com/huggingface/transformers cd examples/question-answering mkdir -p data wget -O data/train-v2.0.json https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json wget -O data/dev-v2.0.json https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json export SQUAD_DIR=`pwd`/data python run_squad.py \ --model_type mobilebert \ --model_name_or_path google/mobilebert-uncased \ --do_train \ --do_eval \ --do_lower_case \ --version_2_with_negative \ --train_file $SQUAD_DIR/train-v2.0.json \ --predict_file $SQUAD_DIR/dev-v2.0.json \ --per_gpu_train_batch_size 16 \ --per_gpu_eval_batch_size 16 \ --learning_rate 4e-5 \ --num_train_epochs 5.0 \ --max_seq_length 320 \ --doc_stride 128 \ --warmup_steps 1400 \ --save_steps 2000 \ --output_dir $SQUAD_DIR/mobilebert-uncased-warmup-squad_v2 2>&1 | tee train-mobilebert-warmup-squad_v2.log ``` It took about 3.5 hours to finish. ### Results **Model size**: `95M` | Metric | # Value | # Original ([Table 5](https://arxiv.org/pdf/2004.02984.pdf))| | ------ | --------- | --------- | | **EM** | **75.2** | **76.2** | | **F1** | **78.8** | **79.2** | Note that the above results didn't involve any hyperparameter search. ## Example Usage ```python from transformers import pipeline qa_pipeline = pipeline( "question-answering", model="csarron/mobilebert-uncased-squad-v2", tokenizer="csarron/mobilebert-uncased-squad-v2" ) predictions = qa_pipeline({ 'context': "The game was played on February 7, 2016 at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California.", 'question': "What day was the game played on?" }) print(predictions) # output: # {'score': 0.71434086561203, 'start': 23, 'end': 39, 'answer': 'February 7, 2016'} ``` > Created by [Qingqing Cao](https://awk.ai/) | [GitHub](https://github.com/csarron) | [Twitter](https://twitter.com/sysnlp) > Made with ❤️ in New York.
[ -0.5149471759796143, -0.6169910430908203, 0.27119314670562744, 0.36783236265182495, -0.1848873645067215, 0.13318119943141937, -0.15952178835868835, -0.3917240798473358, 0.2743058204650879, 0.10676943510770798, -1.0992058515548706, -0.4742765426635742, -0.40728119015693665, -0.08123618364334106, -0.05215690657496452, 1.2212445735931396, -0.12284506857395172, -0.08380008488893509, 0.023963497951626778, -0.4449767768383026, -0.27123817801475525, -0.5066604614257812, -0.774535596370697, -0.361594021320343, 0.381753534078598, 0.29562777280807495, 0.6274702548980713, 0.6675919890403748, 0.603317141532898, 0.3392133116722107, -0.05723307281732559, 0.036791812628507614, -0.6473250389099121, 0.09812778234481812, 0.25023844838142395, -0.38005417585372925, -0.6119775176048279, 0.12614576518535614, 0.4879908263683319, 0.08143932372331619, -0.007108514197170734, 0.5160874128341675, -0.04798537865281105, 0.77613765001297, -0.4771876931190491, 0.13175351917743683, -0.6521660685539246, 0.012278979644179344, 0.14470548927783966, -0.06638015806674957, -0.09405439347028732, -0.12115079909563065, 0.16673807799816132, -0.5363755226135254, 0.559473991394043, -0.19876250624656677, 1.2831512689590454, 0.43006160855293274, -0.15007683634757996, -0.06644828617572784, -0.4481297731399536, 1.0481953620910645, -0.6460740566253662, 0.16405005753040314, 0.25082191824913025, 0.3481314182281494, -0.06344528496265411, -0.5540767312049866, -0.36542952060699463, -0.0304569061845541, 0.006911830045282841, 0.535100519657135, -0.2094394564628601, -0.22405943274497986, 0.2867024540901184, -0.06346280127763748, -0.828886866569519, 0.06982727348804474, -0.7753992676734924, -0.3722185492515564, 1.1386500597000122, 0.3763122260570526, 0.022754088044166565, -0.19647394120693207, -0.6139292120933533, -0.1668284833431244, -0.49173495173454285, 0.5800403356552124, 0.35918423533439636, 0.20188181102275848, -0.40025702118873596, 0.5088735222816467, -0.5660896301269531, 0.38515979051589966, 0.15194423496723175, 0.07827240973711014, 0.5382550954818726, -0.3342766761779785, -0.30031517148017883, 0.055977798998355865, 1.187673807144165, 0.607051432132721, 0.12874925136566162, -0.13907533884048462, -0.2175000160932541, 0.049587566405534744, 0.025878433138132095, -1.2084026336669922, -0.5325037837028503, 0.6955509781837463, -0.33907419443130493, -0.4080367684364319, 0.039532702416181564, -0.6004151105880737, 0.026458172127604485, -0.006455538794398308, 0.47102871537208557, -0.5477381348609924, -0.020649679005146027, -0.14755231142044067, -0.21885251998901367, 0.5451796054840088, 0.23547954857349396, -0.7729814648628235, -0.1382077932357788, 0.3939462900161743, 1.0209227800369263, -0.02595413103699684, -0.3580508232116699, -0.6740115284919739, -0.1918894201517105, -0.17625796794891357, 0.7410008907318115, -0.07052316516637802, -0.3375416100025177, -0.1095583438873291, 0.2962229549884796, -0.31720274686813354, -0.32022321224212646, 0.607474684715271, -0.36550894379615784, 0.15381816029548645, -0.33740970492362976, -0.3200206756591797, -0.02234986051917076, 0.22223708033561707, -0.3426600396633148, 1.300162672996521, 0.29790326952934265, -0.5807462930679321, 0.4297163188457489, -0.5588840246200562, -0.42054829001426697, -0.052288178354501724, 0.21470598876476288, -0.7607396841049194, -0.3269845247268677, 0.342620849609375, 0.7032303214073181, -0.23595190048217773, -0.0191593449562788, -0.5227363705635071, -0.48496687412261963, 0.07819555699825287, 0.16131514310836792, 1.2038885354995728, 0.1768459528684616, -0.5376754999160767, 0.2286921888589859, -0.7304547429084778, 0.6033002138137817, 0.10498857498168945, -0.3297160565853119, 0.279085636138916, 0.009557091630995274, -0.012546561658382416, 0.46746599674224854, 0.3843308985233307, -0.3816661536693573, 0.2368304580450058, -0.23110142350196838, 0.8954764008522034, 0.6373648047447205, -0.34280070662498474, 0.44374799728393555, -0.4662858247756958, 0.47078606486320496, -0.06765120476484299, 0.28721368312835693, 0.08296702057123184, -0.6140927076339722, -0.6193115711212158, -0.4971145987510681, 0.25848498940467834, 0.7297269105911255, -0.38917890191078186, 0.6279658675193787, -0.07630039751529694, -0.9256678223609924, -0.5981456637382507, 0.08166363835334778, 0.35749921202659607, 0.33732590079307556, 0.6128475069999695, 0.07827222347259521, -0.8039409518241882, -1.1410706043243408, -0.05458226427435875, -0.48977023363113403, -0.001440707826986909, 0.453595906496048, 0.8678081631660461, -0.31779029965400696, 0.6689034104347229, -0.5743845701217651, -0.270772248506546, -0.34579578042030334, 0.019762244075536728, 0.3139244616031647, 0.6947348713874817, 0.7752395868301392, -0.4973316490650177, -0.5893752574920654, -0.21603138744831085, -0.9392365217208862, -0.02995598129928112, 0.046844638884067535, -0.2479005753993988, 0.27567213773727417, 0.46281594038009644, -0.9256449937820435, 0.32205238938331604, 0.5087642669677734, -0.36233481764793396, 0.7246391773223877, -0.17984308302402496, 0.21661466360092163, -0.9737005829811096, 0.20864328742027283, 0.07520291209220886, -0.14500658214092255, -0.5172594785690308, 0.1442609280347824, 0.07193005084991455, 0.034699272364377975, -0.5428131818771362, 0.468926340341568, -0.2776031494140625, 0.23492224514484406, 0.018714774399995804, 0.07070495933294296, -0.12397155165672302, 0.6273204684257507, -0.1362084150314331, 1.0789518356323242, 0.4740537106990814, -0.5680632591247559, 0.36096152663230896, 0.2707613706588745, -0.1577051877975464, 0.09565909951925278, -1.104275107383728, 0.06844256073236465, -0.13538797199726105, 0.40335750579833984, -1.1314259767532349, -0.33516064286231995, 0.4701015055179596, -0.76712566614151, -0.028431182727217674, -0.3680068254470825, -0.3648459315299988, -0.4563257098197937, -0.5247740745544434, 0.3526776134967804, 0.6808075904846191, -0.31760308146476746, 0.2449551820755005, 0.4156258702278137, 0.14829987287521362, -0.5407031774520874, -0.39931783080101013, -0.4906320571899414, -0.33555397391319275, -0.9037977457046509, 0.45769616961479187, -0.15966416895389557, -0.016996949911117554, -0.30924585461616516, -0.22348877787590027, -0.393740177154541, 0.07095243781805038, 0.40480050444602966, 0.6187431216239929, -0.2348587065935135, 0.0105914156883955, -0.05886192247271538, 0.10094628483057022, 0.16124558448791504, -0.04492339491844177, 0.7291489839553833, -0.5406516194343567, 0.45132070779800415, -0.5283519625663757, 0.04112928733229637, 0.7091482281684875, -0.2618464529514313, 0.9193523526191711, 1.1809191703796387, 0.002571703866124153, -0.11880726367235184, -0.31644099950790405, -0.24662642180919647, -0.5120586156845093, 0.45169758796691895, -0.3633228838443756, -0.6945778727531433, 0.8566063642501831, 0.35626131296157837, 0.10241837054491043, 1.0437556505203247, 0.5873000025749207, -0.44390758872032166, 1.3211352825164795, 0.23296022415161133, -0.027895614504814148, 0.33330237865448, -0.8962101936340332, -0.2056860774755478, -0.9137404561042786, -0.609828531742096, -0.5696544647216797, -0.5109369158744812, -0.8620911240577698, -0.41618847846984863, 0.32109183073043823, 0.3308303952217102, -0.6515467762947083, 0.722524106502533, -0.742175817489624, 0.2475774586200714, 0.4289519488811493, 0.3774847090244293, -0.3051415979862213, -0.20550213754177094, -0.05565645918250084, -0.004182516131550074, -0.8702293038368225, -0.21093875169754028, 1.1676318645477295, 0.2092057168483734, 0.48275354504585266, 0.07992943376302719, 0.702655017375946, 0.14585909247398376, -0.03944097459316254, -0.8024046421051025, 0.6448395848274231, 0.05974196270108223, -0.9500710964202881, -0.3434981107711792, -0.5091422200202942, -1.0060813426971436, 0.23524287343025208, -0.4363129436969757, -0.9850507378578186, -0.09010570496320724, 0.2209143340587616, -0.5041869282722473, 0.061147745698690414, -0.9598531723022461, 0.9220012426376343, -0.10232214629650116, -0.7044748663902283, -0.05359011888504028, -0.866765022277832, 0.4763689935207367, 0.04592536762356758, -0.10190317779779434, -0.42543476819992065, 0.03428182005882263, 0.9129514098167419, -0.55960613489151, 0.39966773986816406, -0.1880381852388382, 0.27471768856048584, 0.5747902393341064, -0.1051197499036789, 0.6690863370895386, 0.32052457332611084, -0.2681247591972351, 0.23877383768558502, 0.3225155770778656, -0.7551374435424805, -0.45412352681159973, 0.8330674767494202, -1.055151104927063, -0.4865937829017639, -0.5436385273933411, -0.6630143523216248, -0.1042933315038681, 0.11778806149959564, 0.6295139789581299, 0.4060507118701935, 0.005345357581973076, 0.32807838916778564, 0.5185601711273193, -0.20124666392803192, 0.6520429849624634, 0.2623347342014313, -0.0776824802160263, -0.18740175664424896, 0.7557268738746643, -0.008692697621881962, 0.06483639776706696, 0.18963177502155304, 0.08067823201417923, -0.498649924993515, -0.407976359128952, -0.6555807590484619, 0.22259993851184845, -0.17131178081035614, -0.34110572934150696, -0.5379317402839661, -0.43774139881134033, -0.42614883184432983, -0.05391135439276695, -0.5880004167556763, -0.6208732724189758, -0.38969317078590393, 0.26362791657447815, 0.5099968314170837, 0.3613714873790741, 0.06744372099637985, 0.4732949137687683, -0.7786811590194702, 0.11187504231929779, 0.0519876666367054, 0.17806421220302582, -0.28367942571640015, -0.6116406917572021, -0.40904906392097473, 0.33260422945022583, -0.5514020919799805, -0.6602298617362976, 0.41749051213264465, 0.08903443813323975, 0.4275089204311371, 0.22594358026981354, -0.0029601058922708035, 0.8082578778266907, -0.3805423378944397, 0.8540221452713013, 0.2794131338596344, -0.6611067056655884, 0.596373975276947, -0.6593307256698608, 0.41694337129592896, 0.5376461744308472, 0.4209962487220764, 0.1742238998413086, -0.22959353029727936, -0.8585329651832581, -0.9229628443717957, 0.9482654333114624, 0.56868577003479, -0.2290438413619995, 0.33445441722869873, 0.201348677277565, -0.2934209406375885, 0.22500145435333252, -0.31206202507019043, -0.4546290338039398, -0.21244944632053375, -0.024699997156858444, -0.3735942840576172, 0.13566069304943085, -0.046878915280103683, -0.705899715423584, 0.8322020769119263, 0.01909804716706276, 0.6445369720458984, 0.4683665633201599, -0.07929746806621552, 0.06405061483383179, -0.07395156472921371, 0.8395769596099854, 0.6692761182785034, -0.6740639805793762, -0.4348556101322174, 0.35439828038215637, -0.4090728163719177, 0.1421397477388382, 0.21030765771865845, -0.14677539467811584, 0.16243743896484375, 0.3498246967792511, 0.735373854637146, -0.1060837134718895, -0.6261194944381714, 0.3358587324619293, 0.07912838459014893, -0.6281501054763794, -0.3273686468601227, 0.3275848627090454, -0.10684406757354736, 0.5143006443977356, 0.284728467464447, 0.4504147171974182, 0.05625637248158455, -0.639586329460144, 0.22520649433135986, 0.6177648901939392, -0.5968186855316162, -0.43094319105148315, 0.99137943983078, -0.0031946783419698477, -0.22800034284591675, 0.5503677129745483, -0.09145459532737732, -0.8876204490661621, 0.9433164596557617, 0.12081500142812729, 0.729766845703125, 0.012536581605672836, 0.351295530796051, 0.8243270516395569, 0.1815895140171051, -0.2127642035484314, 0.3004506826400757, 0.13255587220191956, -0.5610949993133545, -0.21956147253513336, -0.4478081166744232, 0.06371966749429703, 0.2753775119781494, -0.7339355945587158, 0.23854979872703552, -0.5444966554641724, -0.5316857099533081, 0.24516238272190094, 0.37802109122276306, -1.0507844686508179, 0.4002838134765625, -0.2478337585926056, 0.9289590716362, -0.5981038808822632, 0.7498006820678711, 0.8989464640617371, -0.3917286694049835, -1.023694634437561, -0.08709230273962021, -0.17793913185596466, -0.9823353290557861, 0.7095800042152405, 0.11756560951471329, -0.03537765145301819, 0.0878414660692215, -0.7139003872871399, -0.6520755290985107, 1.1943875551223755, 0.1822424679994583, -0.5219186544418335, -0.013033800758421421, -0.11361172795295715, 0.6353553533554077, -0.2430102825164795, 0.5822708010673523, 0.7379084229469299, 0.3019407391548157, 0.1069907546043396, -0.8260979056358337, 0.049821916967630386, -0.30769023299217224, -0.3232579827308655, 0.3516632616519928, -1.363513469696045, 1.0850821733474731, -0.49034345149993896, 0.2729455828666687, 0.11636942625045776, 0.48903167247772217, 0.4355408847332001, 0.3151664435863495, 0.2752704322338104, 0.6052900552749634, 0.7253960967063904, -0.34316524863243103, 0.8917801976203918, -0.310898095369339, 0.8125358819961548, 0.7535616159439087, 0.11256026476621628, 0.8309944868087769, 0.40805959701538086, -0.40281471610069275, 0.46343234181404114, 0.7517027258872986, -0.30814409255981445, 0.5441973805427551, 0.15680880844593048, -0.13354746997356415, -0.43700775504112244, 0.3103841543197632, -0.5708419680595398, 0.6301531791687012, -0.10704486817121506, -0.42280203104019165, -0.055989351123571396, -0.5783128142356873, 0.07579204440116882, -0.376206636428833, -0.301420122385025, 0.5676491260528564, -0.22451502084732056, -0.9031251668930054, 1.1670515537261963, 0.02121574804186821, 0.5959060788154602, -0.5119784474372864, 0.23874743282794952, -0.22956717014312744, 0.25968703627586365, -0.2375117987394333, -0.8159006834030151, 0.08644867688417435, -0.03228210285305977, -0.35288769006729126, 0.01882021501660347, 0.6134570837020874, -0.2889191806316376, -0.5793495178222656, 0.12231063842773438, 0.5400318503379822, 0.23249252140522003, -0.03896039351820946, -1.058714747428894, 0.17560915648937225, 0.2622525095939636, -0.2376846969127655, 0.37367942929267883, 0.10345117747783661, 0.22349205613136292, 0.8938900828361511, 0.6694052219390869, -0.07832740247249603, 0.1338403820991516, -0.5735633969306946, 0.8082581162452698, -0.5390548706054688, -0.3377941846847534, -1.0058196783065796, 0.7179494500160217, -0.15376126766204834, -0.8388318419456482, 0.6602981686592102, 1.0429394245147705, 0.6583120226860046, -0.13774855434894562, 0.8478614687919617, -0.3346210718154907, 0.2238767445087433, -0.3777402937412262, 0.9313943386077881, -0.8335832357406616, 0.09235908091068268, -0.16861528158187866, -0.8289228081703186, 0.0739399716258049, 0.8495573401451111, -0.18344517052173615, -0.10463984310626984, 0.5213791131973267, 0.8485270142555237, -0.08145564049482346, -0.047916483134031296, -0.05965293571352959, 0.05684659257531166, 0.22102497518062592, 0.7499144673347473, 0.4460510313510895, -1.0309748649597168, 0.9138034582138062, -0.3386397957801819, -0.15556292235851288, -0.3430110514163971, -0.45280709862709045, -1.2651300430297852, -0.6183823347091675, -0.3169190287590027, -0.9021144509315491, 0.35964155197143555, 1.045673131942749, 0.8774100542068481, -0.7709742188453674, -0.24615778028964996, -0.08732657879590988, -0.0384199321269989, -0.26902300119400024, -0.2664434313774109, 0.46245869994163513, -0.384475976228714, -0.7473446130752563, 0.21010810136795044, -0.252149373292923, -0.06362084299325943, 0.2587721347808838, -0.23771585524082184, -0.2705380618572235, -0.2383866012096405, 0.7109397649765015, 0.3736059069633484, -0.49349212646484375, -0.3242214024066925, 0.33260369300842285, -0.13921692967414856, 0.2793739140033722, 0.391558438539505, -0.8981097340583801, 0.16400925815105438, 0.5136499404907227, 0.27881887555122375, 0.8471031188964844, 0.15041756629943848, 0.5716995000839233, -0.4181743860244751, 0.2955310344696045, 0.16750982403755188, 0.25034481287002563, 0.033051151782274246, -0.13642430305480957, 0.6092517375946045, 0.30237266421318054, -0.7137210369110107, -0.897176206111908, -0.13887764513492584, -1.225888967514038, -0.08200129866600037, 1.268855333328247, -0.08453821390867233, -0.13921962678432465, 0.27315837144851685, -0.2511778175830841, 0.5617992877960205, -0.741478443145752, 0.8603914380073547, 0.6251255869865417, -0.2518363296985626, 0.03226041421294212, -0.7823577523231506, 0.7142409682273865, 0.43215760588645935, -0.589012861251831, -0.33142605423927307, 0.15094804763793945, 0.4548899233341217, -0.12238398939371109, 0.3908941447734833, 0.23288366198539734, 0.32850733399391174, 0.013272237963974476, -0.20050203800201416, -0.10339705646038055, -0.14823457598686218, 0.18955585360527039, 0.020212478935718536, -0.5940663814544678, -0.42502737045288086 ]
facebook/mbart-large-50-many-to-one-mmt
facebook
"2023-03-28T09:18:56Z"
51,069
48
transformers
[ "transformers", "pytorch", "tf", "jax", "mbart", "text2text-generation", "mbart-50", "multilingual", "ar", "cs", "de", "en", "es", "et", "fi", "fr", "gu", "hi", "it", "ja", "kk", "ko", "lt", "lv", "my", "ne", "nl", "ro", "ru", "si", "tr", "vi", "zh", "af", "az", "bn", "fa", "he", "hr", "id", "ka", "km", "mk", "ml", "mn", "mr", "pl", "ps", "pt", "sv", "sw", "ta", "te", "th", "tl", "uk", "ur", "xh", "gl", "sl", "arxiv:2008.00401", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
text2text-generation
"2022-03-02T23:29:05Z"
--- language: - multilingual - ar - cs - de - en - es - et - fi - fr - gu - hi - it - ja - kk - ko - lt - lv - my - ne - nl - ro - ru - si - tr - vi - zh - af - az - bn - fa - he - hr - id - ka - km - mk - ml - mn - mr - pl - ps - pt - sv - sw - ta - te - th - tl - uk - ur - xh - gl - sl tags: - mbart-50 --- # mBART-50 many to one multilingual machine translation This model is a fine-tuned checkpoint of [mBART-large-50](https://huggingface.co/facebook/mbart-large-50). `mbart-large-50-many-to-many-mmt` is fine-tuned for multilingual machine translation. It was introduced in [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) paper. The model can translate directly between any pair of 50 languages. ```python from transformers import MBartForConditionalGeneration, MBart50TokenizerFast article_hi = "संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है" article_ar = "الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا." model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt") tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt") # translate Hindi to English tokenizer.src_lang = "hi_IN" encoded_hi = tokenizer(article_hi, return_tensors="pt") generated_tokens = model.generate(**encoded_hi) tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) # => "The head of the UN says there is no military solution in Syria." # translate Arabic to English tokenizer.src_lang = "ar_AR" encoded_ar = tokenizer(article_ar, return_tensors="pt") generated_tokens = model.generate(**encoded_ar) tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) # => "The Secretary-General of the United Nations says there is no military solution in Syria." ``` See the [model hub](https://huggingface.co/models?filter=mbart-50) to look for more fine-tuned versions. ## Languages covered Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI) ## BibTeX entry and citation info ``` @article{tang2020multilingual, title={Multilingual Translation with Extensible Multilingual Pretraining and Finetuning}, author={Yuqing Tang and Chau Tran and Xian Li and Peng-Jen Chen and Naman Goyal and Vishrav Chaudhary and Jiatao Gu and Angela Fan}, year={2020}, eprint={2008.00401}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
[ -0.5965971350669861, -0.4743281602859497, 0.12533524632453918, 0.42251354455947876, -0.3148263990879059, 0.10775751620531082, -0.31433379650115967, -0.27722978591918945, 0.25274619460105896, 0.19939130544662476, -0.58574378490448, -0.6227438449859619, -0.6910079121589661, 0.21981683373451233, -0.14001983404159546, 1.1518582105636597, -0.2981821596622467, 0.3279157280921936, 0.2453552484512329, -0.446259468793869, -0.22535468637943268, -0.49782562255859375, -0.41294047236442566, -0.12883594632148743, 0.24093259871006012, 0.4789852797985077, 0.5173508524894714, 0.39001816511154175, 0.736589252948761, 0.39943110942840576, -0.2585676610469818, 0.13309617340564728, -0.13291727006435394, -0.27506569027900696, -0.22290149331092834, -0.2660961151123047, -0.7772436141967773, -0.142210453748703, 0.8298313021659851, 0.5783807039260864, -0.024444682523608208, 0.495819628238678, 0.029218478128314018, 0.7456235885620117, -0.4365638196468353, 0.00917723122984171, -0.2886083722114563, 0.0873420387506485, -0.29290062189102173, 0.10003694146871567, -0.312168151140213, -0.36622339487075806, -0.14600446820259094, -0.47274231910705566, 0.0379534475505352, -0.07154719531536102, 1.0729633569717407, -0.03379511088132858, -0.6795742511749268, -0.07827139645814896, -0.6220560073852539, 0.9348156452178955, -0.9116243720054626, 0.5435344576835632, 0.42806699872016907, 0.39833635091781616, -0.23757323622703552, -0.6821746826171875, -0.7349372506141663, -0.06362421065568924, -0.07738696783781052, 0.410376638174057, -0.19535090029239655, -0.1549980193376541, 0.23882938921451569, 0.4024830758571625, -0.8397104144096375, -0.21405629813671112, -0.6308749914169312, -0.017959019169211388, 0.46086904406547546, -0.006558746099472046, 0.40844401717185974, -0.45080649852752686, -0.6051090359687805, 0.02614370360970497, -0.5445160865783691, 0.3581830561161041, 0.13286970555782318, 0.3276755213737488, -0.6386523842811584, 0.8673935532569885, -0.36542168259620667, 0.8132078051567078, 0.07498373836278915, -0.27445507049560547, 0.5241279602050781, -0.6753799319267273, -0.20780321955680847, -0.16944922506809235, 1.0834989547729492, 0.3530947268009186, 0.3343736231327057, -0.014922307804226875, 0.021742485463619232, -0.0759502723813057, -0.07707122713327408, -0.8240504860877991, 0.09723995625972748, 0.21034203469753265, -0.5327581167221069, 0.11444855481386185, 0.28313809633255005, -0.8802202939987183, 0.1740221083164215, -0.005462805740535259, 0.3030456304550171, -0.7371562123298645, -0.35642603039741516, 0.010916986502707005, 0.05639428272843361, 0.36861154437065125, 0.176433265209198, -0.8061587810516357, -0.018687987700104713, 0.3891618847846985, 0.9964070916175842, 0.14799456298351288, -0.5737416744232178, -0.2691267132759094, 0.31364706158638, -0.3502550721168518, 0.684482753276825, -0.3959810733795166, -0.4765227735042572, -0.1293419897556305, 0.3480777442455292, -0.1416158378124237, -0.30610817670822144, 0.7263721227645874, -0.12846530973911285, 0.32787561416625977, -0.5378535389900208, -0.14272034168243408, -0.39529865980148315, 0.41768214106559753, -0.6337718367576599, 1.1431872844696045, 0.2809924781322479, -0.7469828128814697, 0.31686726212501526, -0.6932234168052673, -0.533183753490448, -0.04338061064481735, -0.08217652142047882, -0.550092339515686, -0.09588336199522018, 0.3267430067062378, 0.4616536498069763, -0.3924109935760498, 0.38079193234443665, -0.1819598227739334, -0.18480674922466278, 0.0590091273188591, -0.22026200592517853, 1.0922520160675049, 0.5272701978683472, -0.45007801055908203, 0.11157500743865967, -0.7883800864219666, 0.12985093891620636, 0.20173463225364685, -0.5664355754852295, -0.03501315414905548, -0.3647656738758087, 0.07826840132474899, 0.7861810326576233, 0.16482381522655487, -0.7110332250595093, 0.2968892455101013, -0.45087289810180664, 0.3908838927745819, 0.5532732605934143, 0.014275419525802135, 0.36578917503356934, -0.5075557231903076, 0.7017856240272522, 0.2872704565525055, 0.21916386485099792, -0.15111607313156128, -0.6103532314300537, -0.8501296639442444, -0.4878048896789551, 0.1177966445684433, 0.7176362872123718, -0.7937368750572205, 0.3183201849460602, -0.48015135526657104, -0.5996592044830322, -0.7392988204956055, 0.24841520190238953, 0.5971542596817017, 0.2798701226711273, 0.5115610957145691, -0.32027095556259155, -0.5928939580917358, -0.8047435879707336, -0.3009534478187561, -0.20053157210350037, 0.20760458707809448, 0.20565180480480194, 0.7706754207611084, -0.3014657199382782, 0.7125510573387146, -0.15783098340034485, -0.39559274911880493, -0.23709851503372192, -0.02016858197748661, 0.29801228642463684, 0.6862120032310486, 0.679944634437561, -1.0225484371185303, -0.8711031079292297, 0.3987191617488861, -0.7065040469169617, 0.26633426547050476, 0.022126147523522377, -0.2810059189796448, 0.44433096051216125, 0.3308155834674835, -0.6304068565368652, 0.3793693780899048, 0.7938953638076782, -0.43826961517333984, 0.625912070274353, -0.10691950470209122, 0.4478292763233185, -1.635892391204834, 0.3971920311450958, -0.12180929630994797, -0.0847630426287651, -0.6234005689620972, -0.006933663040399551, 0.1679326891899109, -0.06020720303058624, -0.6919397711753845, 0.8385974168777466, -0.599456250667572, 0.3690139055252075, 0.1272730827331543, 0.03482074663043022, -0.10943388193845749, 0.5186602473258972, -0.17009274661540985, 0.7489490509033203, 0.41589051485061646, -0.49009570479393005, 0.4212949275970459, 0.42257463932037354, -0.2543392479419708, 0.8600435256958008, -0.5783792734146118, -0.2274806946516037, -0.13581469655036926, 0.26576822996139526, -1.1107723712921143, -0.24854707717895508, 0.43814775347709656, -0.7646052241325378, 0.2832639217376709, -0.2120051085948944, -0.5099004507064819, -0.6470242738723755, -0.24969875812530518, 0.4546516239643097, 0.21114285290241241, -0.31712034344673157, 0.4762667715549469, 0.08507540076971054, -0.24332153797149658, -0.7659738659858704, -1.191643238067627, 0.1582631915807724, -0.1447923481464386, -0.6751754879951477, 0.19917134940624237, -0.17596200108528137, 0.007660318166017532, 0.22481028735637665, -0.06685023009777069, -0.10113916546106339, -0.06262611597776413, 0.27209967374801636, 0.2862948775291443, -0.40224072337150574, 0.19006885588169098, -0.010862735100090504, -0.019780108705163002, -0.30811458826065063, -0.25532349944114685, 0.6605750918388367, -0.33867818117141724, -0.4003446698188782, -0.4261169135570526, 0.569623589515686, 0.7352822422981262, -0.9206611514091492, 1.1347688436508179, 1.1508804559707642, -0.32499662041664124, 0.28439775109291077, -0.5837957859039307, 0.123942531645298, -0.45157334208488464, 0.5935415029525757, -0.8212930560112, -0.889908492565155, 0.7449086904525757, -0.2307257354259491, 0.006805113051086664, 0.9071985483169556, 0.9825194478034973, 0.21079514920711517, 0.9694002866744995, 0.6613284945487976, -0.15286725759506226, 0.4722750782966614, -0.47261664271354675, 0.11788453906774521, -0.855246365070343, -0.4535955488681793, -0.6161985397338867, -0.09084195643663406, -1.0462003946304321, -0.5269433259963989, 0.24093763530254364, 0.03458007425069809, -0.5091281533241272, 0.36934521794319153, -0.5049905776977539, 0.08358782529830933, 0.6120774745941162, 0.056330062448978424, 0.20386022329330444, 0.05533786118030548, -0.4860149025917053, -0.12224222719669342, -0.7200700640678406, -0.5891918540000916, 1.1299160718917847, 0.11995569616556168, 0.5013532638549805, 0.5992736220359802, 0.7527037262916565, -0.14555346965789795, 0.2307683229446411, -0.5997220873832703, 0.5360957384109497, -0.38361701369285583, -1.0764306783676147, -0.173017680644989, -0.5913699269294739, -1.0430288314819336, 0.19449910521507263, -0.21485640108585358, -0.7078222632408142, 0.3317292332649231, -0.21486270427703857, -0.36978888511657715, 0.3478063941001892, -0.8137308359146118, 1.0219173431396484, -0.3985002338886261, -0.19911833107471466, -0.05741136521100998, -0.8434388637542725, 0.5624808669090271, -0.16951757669448853, 0.3839387595653534, -0.2447478324174881, -0.03618567809462547, 0.8084028363227844, -0.23445245623588562, 0.5452320575714111, 0.006940914783626795, 0.08422824740409851, 0.1839592158794403, -0.10226749628782272, 0.34026893973350525, 0.009355462156236172, -0.19257989525794983, 0.17883114516735077, 0.1557042896747589, -0.7843642830848694, -0.2766713500022888, 0.7344662547111511, -0.9549156427383423, -0.49335938692092896, -0.6687424182891846, -0.6056617498397827, 0.092757448554039, 0.6878842711448669, 0.5081049203872681, 0.09939055889844894, -0.23949013650417328, 0.2504687011241913, 0.2961728572845459, -0.3808790147304535, 0.43629005551338196, 0.509773850440979, -0.24745474755764008, -0.7035182118415833, 0.96670001745224, 0.3045231103897095, 0.41545405983924866, 0.3672018051147461, 0.06458742916584015, -0.0659107193350792, -0.1573912501335144, -0.6361512541770935, 0.5981953144073486, -0.5449202060699463, -0.18773478269577026, -0.7297067642211914, -0.19652000069618225, -0.860773503780365, -0.2114516794681549, -0.47165539860725403, -0.4591104984283447, -0.08602960407733917, 0.12114614993333817, 0.23956535756587982, 0.5946145057678223, -0.09104719758033752, 0.37998539209365845, -0.821617603302002, 0.6080619096755981, -0.007875572890043259, 0.25053244829177856, -0.15854652225971222, -0.6998691558837891, -0.6024633646011353, 0.24420200288295746, -0.48089274764060974, -1.0253956317901611, 0.545487105846405, 0.32771024107933044, 0.6347483992576599, 0.44719401001930237, 0.06754634529352188, 0.8792131543159485, -0.5424203872680664, 0.8072986006736755, 0.38769999146461487, -0.9913047552108765, 0.586257815361023, -0.3784313499927521, 0.7335888147354126, 0.608452320098877, 0.7813539505004883, -0.9121564030647278, -0.43899697065353394, -0.4674070477485657, -1.0500972270965576, 0.7171744108200073, 0.030830224975943565, 0.21192896366119385, 0.06943865865468979, 0.05236193910241127, -0.10464664548635483, 0.18483363091945648, -0.9185063242912292, -0.6487571597099304, -0.30033645033836365, -0.22666223347187042, -0.39089593291282654, -0.3740069270133972, -0.2524038851261139, -0.5328889489173889, 0.8378386497497559, 0.20560769736766815, 0.43090394139289856, 0.23368974030017853, 0.035356584936380386, -0.2800493836402893, 0.5379917621612549, 0.8855836391448975, 0.6980146765708923, -0.18152442574501038, 0.17660076916217804, 0.28927379846572876, -0.6417635679244995, 0.36597052216529846, 0.3163502812385559, 0.014572625048458576, 0.22156786918640137, 0.4472287595272064, 0.7517302632331848, 0.030399678274989128, -0.3381446599960327, 0.4364261031150818, 0.04701128229498863, -0.18072442710399628, -0.3747308850288391, -0.3562385141849518, 0.19852347671985626, 0.42403101921081543, 0.4475448727607727, 0.03588385507464409, -0.16339752078056335, -0.7093627452850342, 0.2375541776418686, 0.536785364151001, -0.2719188630580902, -0.39403921365737915, 0.7276219725608826, 0.07052650302648544, -0.16398033499717712, 0.5524457097053528, -0.42583343386650085, -0.8342918157577515, 0.38893622159957886, 0.5656821131706238, 0.7962835431098938, -0.7851506471633911, 0.29548704624176025, 0.7659472823143005, 0.6755375862121582, -0.07210615277290344, 0.48119837045669556, 0.14732831716537476, -0.43997976183891296, -0.40655773878097534, -0.7789095044136047, -0.12366088479757309, 0.001801594509743154, -0.742999792098999, 0.35082924365997314, -0.1786537617444992, -0.4427684247493744, -0.11576349288225174, 0.2363353818655014, -0.7443550825119019, 0.20167726278305054, -0.11199299991130829, 0.7573887705802917, -0.9839635491371155, 1.185767650604248, 1.1063882112503052, -0.6155717372894287, -0.9030895233154297, -0.06673663854598999, -0.08859546482563019, -0.5793986916542053, 0.6757566928863525, -0.026046931743621826, 0.17753532528877258, 0.09780719876289368, -0.2395201176404953, -1.0026551485061646, 1.0640721321105957, 0.5057733058929443, -0.36955222487449646, 0.09504257887601852, 0.41668960452079773, 0.46963372826576233, -0.09416808187961578, 0.08761633187532425, 0.287667453289032, 0.7878119945526123, 0.14317306876182556, -1.2315247058868408, 0.2076706886291504, -0.5941489338874817, -0.1785769909620285, 0.24842287600040436, -0.9515933394432068, 1.2442327737808228, -0.352056622505188, -0.07288787513971329, 0.13271303474903107, 0.5524060130119324, 0.33951765298843384, 0.31666579842567444, 0.08856377750635147, 0.7022038102149963, 0.5009461641311646, -0.019208446145057678, 0.9222736954689026, -0.407572478055954, 0.5657086372375488, 0.9395613670349121, 0.169002503156662, 0.8981615900993347, 0.6516269445419312, -0.419198215007782, 0.33381223678588867, 0.5640349388122559, -0.07440317422151566, 0.4046516716480255, -0.12667834758758545, -0.28308480978012085, -0.14194536209106445, -0.3062436580657959, -0.6970288157463074, 0.5987774729728699, 0.0253590177744627, -0.4980228543281555, -0.18386155366897583, 0.12748275697231293, 0.5536133050918579, -0.24515758454799652, -0.16351784765720367, 0.5020982623100281, 0.26620718836784363, -0.6709835529327393, 0.9333876967430115, 0.2721480131149292, 0.6566587686538696, -0.708488404750824, 0.09118212014436722, -0.2683621942996979, 0.32901713252067566, -0.2750011384487152, -0.6272000670433044, 0.18784590065479279, 0.10753558576107025, -0.2588600516319275, -0.05488184839487076, 0.3007219135761261, -0.7459728121757507, -1.0368647575378418, 0.2983863949775696, 0.7301994562149048, 0.20463283360004425, 0.05762499198317528, -0.8619228601455688, -0.11497442424297333, 0.19359812140464783, -0.5617493391036987, 0.31331855058670044, 0.6779260635375977, -0.10519029200077057, 0.6549353003501892, 0.6584831476211548, 0.305675208568573, 0.2930750548839569, -0.3468807339668274, 0.8867912292480469, -0.7666754722595215, -0.31151798367500305, -1.080908179283142, 0.5851960778236389, 0.22828581929206848, -0.47226861119270325, 1.3429450988769531, 0.7429633736610413, 1.0049660205841064, -0.05918523669242859, 0.7810763716697693, -0.20637165009975433, 0.39987003803253174, -0.2801768481731415, 0.9216177463531494, -0.9527769088745117, -0.26275521516799927, -0.5266354084014893, -0.8525199294090271, -0.40758904814720154, 0.5876549482345581, -0.392605721950531, 0.42854106426239014, 0.6773577332496643, 0.614357590675354, -0.1254827380180359, -0.5108237862586975, 0.2911164164543152, 0.3621351420879364, 0.2451123148202896, 0.7402454018592834, 0.4053354859352112, -0.45886608958244324, 0.737496018409729, -0.4688912630081177, -0.053318679332733154, -0.24429000914096832, -0.6014094948768616, -0.7913786768913269, -0.7958601713180542, -0.08820850402116776, -0.3971119225025177, -0.010798778384923935, 0.9957780838012695, 0.6310664415359497, -0.9827274680137634, -0.3931080400943756, 0.30008408427238464, 0.027825186029076576, -0.316680371761322, -0.1291036307811737, 0.5812693238258362, 0.026592697948217392, -0.8167943358421326, 0.03964187204837799, 0.07625311613082886, 0.2623874247074127, -0.13367509841918945, -0.3256826400756836, -0.7655114531517029, -0.028730172663927078, 0.6970961689949036, 0.3700184226036072, -0.73623126745224, 0.1151786744594574, 0.05218564346432686, -0.36161744594573975, 0.12135253101587296, 0.22430768609046936, -0.2943862974643707, 0.6046018004417419, 0.44973224401474, 0.32158851623535156, 0.6136349439620972, 0.012270350009202957, 0.2591591477394104, -0.5759133100509644, 0.4634704887866974, 0.06286509335041046, 0.3349834978580475, 0.3877775967121124, -0.10863709449768066, 0.5937290787696838, 0.2934236228466034, -0.5505650043487549, -1.013974666595459, 0.07973267883062363, -1.072905421257019, -0.1906239241361618, 1.3262637853622437, -0.5036096572875977, -0.2861749529838562, -0.011402169242501259, -0.20113517343997955, 0.8041514158248901, -0.33577588200569153, 0.44805750250816345, 0.7867090702056885, 0.1875964105129242, -0.19374659657478333, -0.8909216523170471, 0.207118421792984, 0.5892758369445801, -0.8290612697601318, -0.24168583750724792, 0.06884879618883133, 0.18891072273254395, 0.25094324350357056, 0.6394338607788086, -0.16417907178401947, 0.4090689718723297, -0.17381379008293152, 0.4536321461200714, -0.025620076805353165, -0.13837312161922455, -0.32370421290397644, -0.15233606100082397, 0.11622326821088791, -0.3618870973587036 ]
timm/vit_small_patch14_dinov2.lvd142m
timm
"2023-11-22T17:23:08Z"
50,604
2
timm
[ "timm", "pytorch", "safetensors", "feature-extraction", "arxiv:2304.07193", "arxiv:2010.11929", "license:apache-2.0", "region:us" ]
feature-extraction
"2023-05-09T21:09:24Z"
--- license: apache-2.0 library_name: timm tags: - timm - feature-extraction --- # Model card for vit_small_patch14_dinov2.lvd142m A Vision Transformer (ViT) image feature model. Pretrained on LVD-142M with self-supervised DINOv2 method. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 22.1 - GMACs: 46.8 - Activations (M): 198.8 - Image size: 518 x 518 - **Papers:** - DINOv2: Learning Robust Visual Features without Supervision: https://arxiv.org/abs/2304.07193 - An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: https://arxiv.org/abs/2010.11929v2 - **Original:** https://github.com/facebookresearch/dinov2 - **Pretrain Dataset:** LVD-142M ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('vit_small_patch14_dinov2.lvd142m', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'vit_small_patch14_dinov2.lvd142m', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1370, 384) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @misc{oquab2023dinov2, title={DINOv2: Learning Robust Visual Features without Supervision}, author={Oquab, Maxime and Darcet, Timothée and Moutakanni, Theo and Vo, Huy V. and Szafraniec, Marc and Khalidov, Vasil and Fernandez, Pierre and Haziza, Daniel and Massa, Francisco and El-Nouby, Alaaeldin and Howes, Russell and Huang, Po-Yao and Xu, Hu and Sharma, Vasu and Li, Shang-Wen and Galuba, Wojciech and Rabbat, Mike and Assran, Mido and Ballas, Nicolas and Synnaeve, Gabriel and Misra, Ishan and Jegou, Herve and Mairal, Julien and Labatut, Patrick and Joulin, Armand and Bojanowski, Piotr}, journal={arXiv:2304.07193}, year={2023} } ``` ```bibtex @article{dosovitskiy2020vit, title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale}, author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil}, journal={ICLR}, year={2021} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
[ -0.5101243257522583, -0.4048647880554199, 0.09336858987808228, 0.03715572506189346, -0.48493531346321106, -0.37319594621658325, -0.28030070662498474, -0.4476659297943115, 0.1503733992576599, 0.2590031325817108, -0.47102341055870056, -0.529046356678009, -0.6992762088775635, -0.05184651166200638, -0.045231353491544724, 0.8709246516227722, -0.13360068202018738, -0.04931570589542389, -0.317685067653656, -0.47582384943962097, -0.17083576321601868, -0.14422307908535004, -0.5445972681045532, -0.3568728268146515, 0.4315735399723053, 0.12350086867809296, 0.6143147945404053, 0.8262349367141724, 0.6420338749885559, 0.4277976155281067, -0.15581417083740234, 0.2213408499956131, -0.32981520891189575, -0.1910047084093094, 0.2081841379404068, -0.6587337255477905, -0.43999218940734863, 0.19500161707401276, 0.7436044812202454, 0.29283490777015686, 0.040606167167425156, 0.379050076007843, 0.26801231503486633, 0.4222123324871063, -0.3231683075428009, 0.3237086236476898, -0.4841749370098114, 0.2017410546541214, -0.13104164600372314, 0.04899226129055023, -0.24525941908359528, -0.32853272557258606, 0.17024929821491241, -0.6107537746429443, 0.42629775404930115, -0.06382004916667938, 1.3760368824005127, 0.32727715373039246, -0.1254751831293106, 0.1457565426826477, -0.294150173664093, 0.8953099250793457, -0.539347767829895, 0.33256587386131287, 0.2845841944217682, 0.04997621849179268, 0.02930838242173195, -1.06424880027771, -0.6179215908050537, 0.038877956569194794, -0.2533102035522461, 0.09495074301958084, -0.447950154542923, 0.034297775477170944, 0.3540398180484772, 0.2961729168891907, -0.44544076919555664, 0.21615880727767944, -0.588179886341095, -0.35960710048675537, 0.4473262429237366, -0.10447639971971512, 0.19154667854309082, -0.3977207541465759, -0.6266586780548096, -0.5729277729988098, -0.3843088746070862, 0.41676849126815796, 0.21434286236763, 0.06433141231536865, -0.5427554249763489, 0.5289371609687805, 0.19384188950061798, 0.5526503324508667, 0.15696494281291962, -0.36889389157295227, 0.6292080283164978, -0.2360694855451584, -0.40599194169044495, -0.2960878908634186, 1.2064568996429443, 0.5157910585403442, 0.35501226782798767, 0.17705756425857544, -0.1392749696969986, -0.11275786906480789, -0.14043186604976654, -1.1586867570877075, -0.4780961275100708, 0.14941568672657013, -0.5301320552825928, -0.45369142293930054, 0.21367239952087402, -0.9453696608543396, -0.1972152590751648, -0.05899466946721077, 0.7141367793083191, -0.43191418051719666, -0.3337337076663971, -0.16525301337242126, -0.11836044490337372, 0.49101531505584717, 0.24508030712604523, -0.7234331965446472, 0.15051649510860443, 0.2645932137966156, 1.1006132364273071, -0.02648564986884594, -0.44252485036849976, -0.43253085017204285, -0.3556342124938965, -0.3998962938785553, 0.5817338824272156, -0.03667834401130676, -0.18335072696208954, -0.16828879714012146, 0.3783048689365387, -0.15739576518535614, -0.6504982113838196, 0.28526875376701355, -0.1011861190199852, 0.38776895403862, -0.052116796374320984, -0.06528285890817642, -0.3242473900318146, 0.21064478158950806, -0.42541444301605225, 1.3476181030273438, 0.38143202662467957, -0.9337343573570251, 0.49058371782302856, -0.27089011669158936, -0.09211121499538422, -0.21008704602718353, -0.11844160407781601, -1.2579230070114136, -0.122542604804039, 0.39467310905456543, 0.5938163995742798, -0.22593297064304352, -0.014560994692146778, -0.5542533993721008, -0.28980839252471924, 0.29545849561691284, -0.1830625981092453, 0.960390031337738, 0.03212336078286171, -0.5164576768875122, 0.35228198766708374, -0.6795727610588074, 0.1423788219690323, 0.5034666061401367, -0.3082484304904938, -0.07114402204751968, -0.563550591468811, 0.14432431757450104, 0.3321512043476105, 0.22442540526390076, -0.44185367226600647, 0.3378375470638275, -0.1791892945766449, 0.501387894153595, 0.7789852023124695, -0.22904746234416962, 0.42359626293182373, -0.3131905496120453, 0.33388781547546387, 0.254973828792572, 0.3124786615371704, -0.0637197270989418, -0.6869552135467529, -0.8824054002761841, -0.7168682813644409, 0.33083418011665344, 0.5584307312965393, -0.749247670173645, 0.5984710454940796, -0.24851533770561218, -0.6210793256759644, -0.5341688990592957, 0.3101550042629242, 0.5721800327301025, 0.5561280846595764, 0.5679621696472168, -0.5768761038780212, -0.520545244216919, -0.8952525854110718, 0.0554821603000164, -0.14532580971717834, -0.10457144677639008, 0.4592117369174957, 0.6089877486228943, -0.20838937163352966, 0.7584953904151917, -0.40445131063461304, -0.5024040341377258, -0.2260187715291977, 0.023410478606820107, 0.24360349774360657, 0.6686412692070007, 0.8568370938301086, -0.638119101524353, -0.44022050499916077, -0.24368678033351898, -0.9343101382255554, 0.12987332046031952, 0.0372750498354435, -0.10832216590642929, 0.3604482114315033, 0.26964250206947327, -0.8476210832595825, 0.6628545522689819, 0.2075386792421341, -0.3621894121170044, 0.3115169405937195, -0.3555959165096283, -0.045633796602487564, -1.244088053703308, 0.046067990362644196, 0.4133310914039612, -0.24267476797103882, -0.3853699266910553, -0.11405548453330994, 0.20895259082317352, 0.04946806654334068, -0.477558434009552, 0.5543590784072876, -0.6250141263008118, -0.2161797434091568, 0.07811775803565979, -0.10031183809041977, 0.06635914742946625, 0.7219818234443665, -0.01698077842593193, 0.5094076991081238, 0.9118186831474304, -0.4154377579689026, 0.5665627121925354, 0.43132004141807556, -0.42303094267845154, 0.570921778678894, -0.7405979037284851, 0.077547088265419, -0.008759954944252968, 0.185541033744812, -1.1464874744415283, -0.2817727029323578, 0.47013983130455017, -0.610842764377594, 0.7378049492835999, -0.5459569096565247, -0.4322066307067871, -0.6519172787666321, -0.5876566171646118, 0.4455656111240387, 0.8457609415054321, -0.8033218383789062, 0.4373055696487427, 0.16498038172721863, 0.20013311505317688, -0.627469003200531, -0.9815682768821716, -0.2716969847679138, -0.49664270877838135, -0.6230721473693848, 0.33121469616889954, 0.18730802834033966, 0.13403566181659698, 0.09267400205135345, -0.07705327868461609, 0.020673222839832306, -0.19499586522579193, 0.4433298110961914, 0.48478731513023376, -0.2899342179298401, -0.09881578385829926, -0.30394092202186584, -0.12257994711399078, 0.07328252494335175, -0.29173797369003296, 0.4896453619003296, -0.20661978423595428, -0.11055893450975418, -0.8851006627082825, -0.18450726568698883, 0.6077296733856201, -0.35965922474861145, 0.7482525706291199, 1.2800284624099731, -0.44427865743637085, -0.05406462773680687, -0.3791109025478363, -0.3172290027141571, -0.5256845951080322, 0.6375269889831543, -0.31955504417419434, -0.49398452043533325, 0.8037264943122864, 0.14217759668827057, -0.1851998269557953, 0.7340351939201355, 0.48342522978782654, -0.05689032003283501, 0.8394057154655457, 0.6476572155952454, 0.2847071886062622, 0.7883625030517578, -0.9352996945381165, -0.08063766360282898, -0.9457278251647949, -0.5940234661102295, -0.2177382856607437, -0.46256330609321594, -0.7850877642631531, -0.6760568022727966, 0.41233766078948975, 0.19744233787059784, -0.2119501531124115, 0.4665990173816681, -0.8496119379997253, 0.05238225311040878, 0.8451771140098572, 0.5533971190452576, -0.2770801782608032, 0.3926599621772766, -0.3201529085636139, -0.1858479082584381, -0.7624831795692444, -0.061585456132888794, 1.1561191082000732, 0.5001924633979797, 0.8459743857383728, -0.06923070549964905, 0.6562610864639282, -0.21796245872974396, 0.09605421125888824, -0.8188976645469666, 0.6282301545143127, -0.026950426399707794, -0.3009786605834961, -0.2747229337692261, -0.4287283420562744, -1.0726919174194336, 0.1690506637096405, -0.3557746112346649, -0.8631278276443481, 0.48511025309562683, 0.2518475651741028, -0.3180111348628998, 0.6645447015762329, -0.8205353021621704, 1.0237653255462646, -0.09447671473026276, -0.6322682499885559, 0.11692142486572266, -0.7352938652038574, 0.29487234354019165, 0.1246795654296875, -0.2293505072593689, 0.10168365389108658, 0.11787029355764389, 0.9976145029067993, -0.5740789175033569, 0.9411659836769104, -0.392136812210083, 0.23526950180530548, 0.5730599761009216, -0.19068260490894318, 0.5207825303077698, 0.07627888023853302, 0.23359006643295288, 0.24736832082271576, 0.09112805128097534, -0.39446699619293213, -0.47812163829803467, 0.5784537196159363, -1.131051778793335, -0.46761900186538696, -0.5823887586593628, -0.4108811616897583, 0.19962775707244873, 0.22853654623031616, 0.6876599192619324, 0.5786291360855103, 0.3121810257434845, 0.4426959753036499, 0.8155097961425781, -0.33659079670906067, 0.48253053426742554, -0.08364789187908173, -0.2605023682117462, -0.6911656260490417, 0.97126305103302, 0.3023757040500641, 0.2449556440114975, 0.15724457800388336, 0.19206596910953522, -0.4130265414714813, -0.5111970901489258, -0.3596108555793762, 0.43530264496803284, -0.7420526146888733, -0.47836834192276, -0.5486191511154175, -0.35850608348846436, -0.42184531688690186, 0.13137201964855194, -0.5198432803153992, -0.3456888496875763, -0.5899971723556519, 0.08675351738929749, 0.6818071007728577, 0.5279793739318848, -0.3121635317802429, 0.28523972630500793, -0.36273255944252014, 0.30291426181793213, 0.5811134576797485, 0.45597660541534424, -0.2825469374656677, -0.9711864590644836, -0.1959313303232193, -0.03939243033528328, -0.46648088097572327, -0.6329110264778137, 0.4922877252101898, 0.2747856676578522, 0.49191275238990784, 0.4375598430633545, -0.2059328854084015, 0.7857152819633484, -0.07534563541412354, 0.6313751339912415, 0.41662612557411194, -0.6411973237991333, 0.6463968753814697, -0.14913836121559143, 0.09085119515657425, 0.058760933578014374, 0.24195222556591034, -0.06059715524315834, 0.08013371378183365, -0.9546452164649963, -0.7895423769950867, 0.8827409148216248, 0.19768549501895905, -0.070698082447052, 0.3760644793510437, 0.5771315693855286, -0.18381382524967194, -0.032426491379737854, -0.876421332359314, -0.3699946999549866, -0.5070371031761169, -0.2894122004508972, -0.11391335725784302, -0.24112382531166077, -0.14964237809181213, -0.6968883872032166, 0.5607197880744934, -0.1707145720720291, 0.8173202872276306, 0.4134364426136017, -0.043454401195049286, -0.24851998686790466, -0.3450503349304199, 0.5016729831695557, 0.3313334286212921, -0.3585508167743683, 0.22705568373203278, 0.19534693658351898, -0.6430498361587524, -0.045586418360471725, 0.3470706343650818, -0.08459626138210297, -0.023520685732364655, 0.49111777544021606, 1.0350624322891235, -0.07334531843662262, -0.038945507258176804, 0.6914509534835815, -0.08008849620819092, -0.5081268548965454, -0.2100321501493454, 0.1537080556154251, -0.11921613663434982, 0.4987306296825409, 0.2850695550441742, 0.4594385325908661, -0.2722691297531128, -0.3667275011539459, 0.29199808835983276, 0.6103549599647522, -0.5742638111114502, -0.43295493721961975, 0.8701287508010864, -0.25801610946655273, -0.05054871365427971, 0.7941389679908752, -0.05189628154039383, -0.42841652035713196, 0.973093569278717, 0.4407086670398712, 0.8376035690307617, -0.23266693949699402, 0.07304662466049194, 0.7781901955604553, 0.3249059021472931, -0.12782786786556244, 0.20501017570495605, 0.06335953623056412, -0.7042965292930603, 0.0489397868514061, -0.5794346928596497, 0.03912780061364174, 0.33764928579330444, -0.6874642372131348, 0.47058677673339844, -0.6623407006263733, -0.4153071343898773, 0.12849055230617523, 0.18263986706733704, -0.9823340177536011, 0.23945800960063934, 0.10410494357347488, 0.6806362271308899, -0.8203414678573608, 0.9450976848602295, 0.7965893149375916, -0.6384676098823547, -0.9710889458656311, -0.11124825477600098, 0.062367986887693405, -0.9941976070404053, 0.4980643689632416, 0.44819745421409607, 0.08711203932762146, 0.1781855821609497, -0.7764402031898499, -0.8071052432060242, 1.5782877206802368, 0.4648265242576599, -0.14576305449008942, 0.19426991045475006, -0.06271087378263474, 0.3803587555885315, -0.2546696364879608, 0.33070552349090576, 0.17391780018806458, 0.31270357966423035, 0.3785962760448456, -0.8167971968650818, 0.16862863302230835, -0.30053865909576416, 0.19618937373161316, 0.14592428505420685, -1.0100997686386108, 0.9649633169174194, -0.607302188873291, -0.1324336975812912, 0.2507040202617645, 0.6858446598052979, 0.20492711663246155, 0.11020369082689285, 0.47711116075515747, 0.8421626091003418, 0.5727823972702026, -0.4110317826271057, 0.8691600561141968, -0.06417746841907501, 0.768804132938385, 0.6309939622879028, 0.42828983068466187, 0.630345344543457, 0.5267640948295593, -0.4200420081615448, 0.37320011854171753, 1.0245239734649658, -0.5582138895988464, 0.551418125629425, 0.10246460139751434, 0.05938499793410301, -0.3306421637535095, 0.012078621424734592, -0.49785029888153076, 0.5317466855049133, 0.2252381294965744, -0.6346623301506042, 0.004620254039764404, 0.04312833026051521, 0.01708162948489189, -0.3155258297920227, -0.17977236211299896, 0.5736782550811768, 0.11654528230428696, -0.4716412425041199, 0.9039705991744995, -0.021678278222680092, 0.7784404754638672, -0.42972782254219055, 0.06804180145263672, -0.3185898959636688, 0.4996373951435089, -0.3404177129268646, -0.911346971988678, 0.138759046792984, -0.2431201934814453, -0.07579194009304047, 0.02053522691130638, 0.7099758982658386, -0.4261738657951355, -0.5816543102264404, 0.2313152402639389, 0.30859845876693726, 0.22110404074192047, 0.10558947175741196, -1.0202947854995728, 0.011052554473280907, 0.03157772123813629, -0.650915801525116, 0.389492005109787, 0.5509597659111023, 0.05182253196835518, 0.7193635702133179, 0.5851367712020874, -0.13235792517662048, 0.18044404685497284, -0.2047504335641861, 0.969482958316803, -0.4277278184890747, -0.3227951228618622, -0.8423108458518982, 0.6082508563995361, -0.05794111639261246, -0.5621721148490906, 0.644838273525238, 0.5341883897781372, 0.8411783576011658, -0.017354266718029976, 0.4323750138282776, -0.17639881372451782, 0.002731373766437173, -0.4413815140724182, 0.6654297709465027, -0.6928163170814514, 0.026546815410256386, -0.27997562289237976, -0.9173991084098816, -0.48821499943733215, 0.8985626697540283, -0.2562195956707001, 0.4003697633743286, 0.5467292666435242, 1.0502245426177979, -0.3793553411960602, -0.6685984134674072, 0.19712939858436584, 0.29668667912483215, 0.14347003400325775, 0.46253687143325806, 0.45328637957572937, -0.8089584708213806, 0.7091800570487976, -0.6024741530418396, -0.21939274668693542, -0.17395330965518951, -0.5876776576042175, -1.2387126684188843, -0.8003731369972229, -0.6395351886749268, -0.7866031527519226, -0.1915162056684494, 0.8333899974822998, 0.9730671644210815, -0.6707533001899719, 0.05166449397802353, -0.05773579701781273, 0.16081908345222473, -0.3364115059375763, -0.21866433322429657, 0.7629064917564392, -0.005677037872374058, -0.741851806640625, -0.31644949316978455, 0.058341626077890396, 0.5088629722595215, -0.17187313735485077, -0.2407623827457428, -0.13526999950408936, -0.23816139996051788, 0.2306261658668518, 0.4026157557964325, -0.8673732876777649, -0.2711564898490906, -0.15317052602767944, -0.17079982161521912, 0.5783670544624329, 0.20747247338294983, -0.7381170988082886, 0.5275530219078064, 0.5136942863464355, 0.18530365824699402, 0.8313513398170471, -0.19421300292015076, -0.016315322369337082, -0.7961623072624207, 0.590015172958374, -0.20623449981212616, 0.5243682265281677, 0.5690199732780457, -0.23972029983997345, 0.5039675831794739, 0.7212823033332825, -0.42843472957611084, -0.8888204097747803, -0.05702116712927818, -1.2091795206069946, 0.009286178275942802, 1.0749176740646362, -0.4371451139450073, -0.5234615802764893, 0.43851199746131897, -0.1171373575925827, 0.6567681431770325, -0.08410657197237015, 0.5363697409629822, 0.18484048545360565, 0.08250441402196884, -0.8650558590888977, -0.4139881730079651, 0.6380903720855713, 0.08410148322582245, -0.5610888600349426, -0.39303216338157654, 0.10747525840997696, 0.6684803366661072, 0.3106432855129242, 0.30662277340888977, -0.15244781970977783, 0.2467304766178131, 0.11489279568195343, 0.38472607731819153, -0.31809863448143005, -0.1881340891122818, -0.38911303877830505, -0.04879220202565193, -0.045214343816041946, -0.6122427582740784 ]
biu-nlp/f-coref
biu-nlp
"2022-11-28T11:35:52Z"
50,434
8
transformers
[ "transformers", "pytorch", "roberta", "fast", "coreference-resolution", "en", "dataset:multi_news", "dataset:ontonotes", "arxiv:2209.04280", "arxiv:2205.12644", "arxiv:1907.10529", "arxiv:2101.00434", "arxiv:2109.04127", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
null
"2022-08-19T12:01:10Z"
--- language: - en tags: - fast - coreference-resolution license: mit datasets: - multi_news - ontonotes metrics: - CoNLL task_categories: - coreference-resolution model-index: - name: biu-nlp/f-coref results: - task: type: coreference-resolution name: coreference-resolution dataset: name: ontonotes type: coreference metrics: - name: Avg. F1 type: CoNLL value: 78.5 --- ## F-Coref: Fast, Accurate and Easy to Use Coreference Resolution [F-Coref](https://arxiv.org/abs/2209.04280) allows to process 2.8K OntoNotes documents in 25 seconds on a V100 GPU (compared to 6 minutes for the [LingMess](https://arxiv.org/abs/2205.12644) model, and to 12 minutes of the popular AllenNLP coreference model) with only a modest drop in accuracy. The fast speed is achieved through a combination of distillation of a compact model from the LingMess model, and an efficient batching implementation using a technique we call leftover Please check the [official repository](https://github.com/shon-otmazgin/fastcoref) for more details and updates. #### Experiments | Model | Runtime | Memory | |-----------------------|---------|---------| | [Joshi et al. (2020)](https://arxiv.org/abs/1907.10529) | 12:06 | 27.4 | | [Otmazgin et al. (2022)](https://arxiv.org/abs/2205.12644) | 06:43 | 4.6 | | + Batching | 06:00 | 6.6 | | [Kirstain et al. (2021)](https://arxiv.org/abs/2101.00434) | 04:37 | 4.4 | | [Dobrovolskii (2021)](https://arxiv.org/abs/2109.04127) | 03:49 | 3.5 | | [F-Coref](https://arxiv.org/abs/2209.04280) | 00:45 | 3.3 | | + Batching | 00:35 | 4.5 | | + Leftovers batching | 00:25 | 4.0 | The inference time(Min:Sec) and memory(GiB) for each model on 2.8K documents. Average of 3 runs. Hardware, NVIDIA Tesla V100 SXM2. ### Citation ``` @inproceedings{Otmazgin2022FcorefFA, title={F-coref: Fast, Accurate and Easy to Use Coreference Resolution}, author={Shon Otmazgin and Arie Cattan and Yoav Goldberg}, booktitle={AACL}, year={2022} } ``` [F-coref: Fast, Accurate and Easy to Use Coreference Resolution](https://aclanthology.org/2022.aacl-demo.6) (Otmazgin et al., AACL-IJCNLP 2022)
[ -0.7459103465080261, -0.7919787168502808, 0.6212851405143738, -0.011681660078465939, -0.35662975907325745, -0.24504245817661285, -0.6134512424468994, -0.7435823678970337, -0.14303216338157654, 0.43654027581214905, -0.20001402497291565, -0.45861461758613586, -0.6447664499282837, 0.1669410616159439, -0.2854990065097809, 0.7757034301757812, 0.12770673632621765, -0.025088977068662643, -0.21518617868423462, -0.23003734648227692, 0.2368467152118683, -0.4739193320274353, -0.5252777338027954, -0.619871199131012, 0.03739676624536514, 0.5394500494003296, 0.6693903803825378, 1.0695399045944214, 0.7235763072967529, 0.3049159049987793, -0.3105853199958801, 0.22905033826828003, -0.11616427451372147, -0.01565277948975563, -0.17256005108356476, -0.025366349145770073, -0.5926785469055176, 0.024865979328751564, 0.7431941032409668, 0.546986997127533, 0.1900993436574936, 0.21730321645736694, 0.0432392880320549, 0.762846052646637, -0.5335677862167358, 0.22277875244617462, -0.3307567536830902, -0.2417832612991333, -0.2937537133693695, 0.08102480322122574, -0.4405324161052704, -0.06042305380105972, 0.34899672865867615, -0.7846569418907166, 0.6511455774307251, 0.41913431882858276, 1.16145920753479, 0.024172401055693626, -0.274262398481369, -0.37498000264167786, -0.6371034979820251, 0.977989137172699, -0.8801469802856445, 0.4383845627307892, 0.4260149300098419, 0.10206456482410431, 0.20968341827392578, -0.8340353965759277, -0.5674455761909485, -0.24091963469982147, -0.3751729726791382, -0.15177206695079803, -0.16388724744319916, 0.27500900626182556, 0.7770292162895203, 0.8150700330734253, -0.5145987272262573, -0.02074802666902542, -0.20280613005161285, -0.15472464263439178, 0.5788754224777222, 0.1656937152147293, -0.22756673395633698, -0.519722044467926, -0.3268650472164154, -0.30290523171424866, -0.2256205976009369, 0.1528521627187729, -0.050411470234394073, 0.26501378417015076, 0.17307327687740326, 0.30472061038017273, -0.29156461358070374, 0.7158610820770264, 0.7814939618110657, -0.47897565364837646, 0.18610012531280518, -0.7847853302955627, -0.14441566169261932, 0.0956287831068039, 0.9293909668922424, 0.42665180563926697, -0.10768834501504898, -0.010352260433137417, -0.07553117722272873, -0.23574458062648773, 0.06960372626781464, -1.4018023014068604, -0.09022669494152069, 0.27772775292396545, -0.45734164118766785, 0.04290901869535446, 0.059538841247558594, -0.5985828638076782, -0.23047079145908356, -0.32328298687934875, 0.061208538711071014, -0.8548958897590637, 0.08740485459566116, -0.2079809308052063, -0.16805888712406158, 0.041914574801921844, 0.4172310531139374, -0.7585711479187012, 0.41245129704475403, 0.6087303757667542, 1.0086137056350708, 0.00723040197044611, -0.0334334634244442, -0.47947409749031067, -0.11404985189437866, -0.1646796464920044, 0.9598226547241211, -0.23863059282302856, -0.7044500112533569, -0.5299100279808044, -0.03692265972495079, 0.04519324377179146, -0.6634021401405334, 1.047078251838684, -0.14981812238693237, -0.11814108490943909, -0.5456520915031433, -0.7366612553596497, -0.37801140546798706, 0.329644113779068, -0.6543179750442505, 1.3238321542739868, -0.041929565370082855, -0.9398133158683777, 0.08830485492944717, -0.4997028410434723, -0.290652871131897, -0.16132453083992004, 0.034146811813116074, -0.2109941691160202, -0.030991628766059875, 0.4590130150318146, 0.6592421531677246, -0.8042417168617249, 0.40334203839302063, -0.3146093189716339, -0.1681896597146988, 0.05874280631542206, 0.14203666150569916, 0.8195260763168335, 0.4435811936855316, -0.4895651638507843, 0.1504240334033966, -0.7864229679107666, -0.06906752288341522, -0.04696892946958542, -0.06711587309837341, -0.538508415222168, -0.14972040057182312, 0.128727987408638, 0.15239682793617249, 0.3063083291053772, -0.736533522605896, 0.09416698664426804, -0.383096843957901, 0.5681298971176147, 0.4496780037879944, -0.16712060570716858, 0.5854400396347046, -0.4898722469806671, 0.017849192023277283, 0.23906096816062927, 0.05060121417045593, -0.5927302241325378, -0.5577213168144226, -0.6726551651954651, -0.3429780900478363, 0.2539273202419281, 0.5229722261428833, -0.4347997307777405, 0.5145268440246582, -0.3916327655315399, -0.9980155825614929, -0.1479194015264511, 0.09234660863876343, 0.7162883281707764, 0.8967937231063843, 0.46254998445510864, -0.31718870997428894, -0.5279850363731384, -1.0466679334640503, -0.12829585373401642, -0.42399290204048157, -0.028737567365169525, 0.5877857208251953, 0.7721309065818787, 0.11845430731773376, 0.9994493126869202, -0.6632349491119385, -0.31835007667541504, 0.08921311795711517, 0.27823224663734436, 0.43738916516304016, 0.6484280824661255, 0.828730046749115, -0.7034534811973572, -0.6476958394050598, 0.06362314522266388, -0.5176867246627808, -0.06244194507598877, 0.07614412903785706, -0.16398727893829346, 0.42032933235168457, 0.3694037199020386, -0.5972613096237183, 0.15428422391414642, 0.2540729343891144, -0.560221791267395, 0.7267616987228394, -0.12745501101016998, 0.4792112112045288, -1.1052958965301514, 0.5785480737686157, 0.16521050035953522, -0.3622053265571594, -0.41238850355148315, 0.08089382946491241, 0.2989491820335388, -0.015718447044491768, -0.4467766284942627, 0.8766689896583557, -0.7841509580612183, -0.0010684698354452848, -0.0758603885769844, 0.3008900284767151, 0.16295956075191498, 0.49586358666419983, 0.19610977172851562, 0.7681562900543213, 0.3190537691116333, -0.7336934804916382, 0.1498255878686905, 0.42242276668548584, -0.5388819575309753, 0.7002051472663879, -0.6249639987945557, 0.14616353809833527, 0.2327987253665924, 0.5190689563751221, -0.8887435793876648, -0.07998772710561752, 0.008408241905272007, -0.3834832012653351, 0.28383147716522217, 0.13165733218193054, -0.4452522397041321, -0.4310244023799896, -0.45649847388267517, 0.4444900155067444, 0.34269478917121887, -0.6907468438148499, 0.9570772647857666, 0.18153604865074158, 0.012760154902935028, -0.7825341820716858, -0.7123621702194214, -0.2892536222934723, 0.10184825211763382, -0.9327805638313293, 0.9896703362464905, -0.30198052525520325, -0.3914934992790222, 0.2697865664958954, -0.19709047675132751, -0.06604038178920746, -0.23250499367713928, 0.6794046759605408, 0.18010203540325165, -0.3158741891384125, -0.05572768300771713, -0.07533437013626099, -0.18019363284111023, -0.28487348556518555, -0.22718322277069092, 0.23783402144908905, -0.6194882988929749, 0.03810878470540047, -0.37037792801856995, 0.44231241941452026, 0.6697828769683838, -0.04860962554812431, 0.6052109599113464, 0.618916928768158, -0.5801504254341125, 0.02543305605649948, -0.9179841876029968, -0.32191383838653564, -0.45821502804756165, 0.10435619950294495, -0.3958382308483124, -0.9828712940216064, 0.7483596801757812, 0.19489312171936035, 0.4693650007247925, 0.8821386694908142, 0.52376389503479, 0.2522932291030884, 0.5427782535552979, 0.20354071259498596, 0.23606720566749573, 0.6201401948928833, -0.39688724279403687, 0.2627304196357727, -0.8525450825691223, -0.16677019000053406, -0.9920651316642761, -0.19687430560588837, -0.13122157752513885, -0.7882135510444641, 0.09071991592645645, 0.4838887155056, -0.2515674829483032, 0.46959495544433594, -0.6382575035095215, 0.3159126937389374, 0.7801666259765625, -0.013103044591844082, 0.49112698435783386, -0.22241604328155518, -0.3778300881385803, -0.146837517619133, -0.6036747097969055, -0.5771593451499939, 1.0685476064682007, 0.03285014256834984, 0.505986750125885, -0.1629788726568222, 0.5875700116157532, 0.36575254797935486, 0.5887152552604675, -0.9334790706634521, 0.666530430316925, -0.5081323385238647, -1.0762231349945068, -0.12202494591474533, -0.34638711810112, -0.41935282945632935, 0.15388083457946777, -0.18001523613929749, -0.7133650779724121, 0.4318406581878662, 0.4754270315170288, -0.6992258429527283, 0.664469838142395, -0.6256664395332336, 0.8498641848564148, 0.06220139563083649, -0.41488826274871826, -0.25782763957977295, -0.4913482069969177, 0.5703842043876648, -0.025011446326971054, 0.18424487113952637, -0.3725094199180603, 0.1391361951828003, 1.153664469718933, -0.5252066254615784, 0.6094053387641907, -0.11534441262483597, 0.3681386709213257, 0.680891215801239, -0.17260730266571045, 0.5620983242988586, 0.07089637219905853, -0.40833625197410583, 0.5025568604469299, 0.29187873005867004, -0.33376914262771606, -0.366615891456604, 1.0626591444015503, -0.6609688401222229, -0.5430467128753662, -0.7132284641265869, -0.5907527208328247, -0.007511494215577841, 0.24989253282546997, 0.49105867743492126, 0.4831661283969879, -0.4905591905117035, 0.31398066878318787, 0.660052478313446, 0.11584752053022385, 0.8519192337989807, 0.5178267955780029, -0.14102180302143097, -0.5883550047874451, 0.45096346735954285, 0.5408504009246826, 0.029043639078736305, 0.42686033248901367, 0.12273180484771729, -0.41029104590415955, -0.45112210512161255, -0.5081713199615479, 0.6045964360237122, -0.7063515186309814, -0.43520408868789673, -1.0410101413726807, 0.028145436197519302, -0.7746187448501587, -0.30395758152008057, -0.651454746723175, -0.7782890200614929, -0.5924992561340332, 0.010588549077510834, 0.634875476360321, 0.24132311344146729, -0.26813948154449463, 0.43687453866004944, -1.0259358882904053, 0.06177105754613876, 0.012552358210086823, 0.06702271103858948, 0.08011139184236526, -0.7123133540153503, -0.48485517501831055, -0.270439475774765, -0.4568540155887604, -0.6485821008682251, 0.27157455682754517, 0.5374532341957092, 0.47954875230789185, 0.755687415599823, 0.5430252552032471, 0.7649845480918884, -0.22562552988529205, 1.0110093355178833, 0.10488256067037582, -1.2715498208999634, 0.33027946949005127, -0.03611835464835167, 0.4452231824398041, 0.6123940944671631, 0.4157559275627136, -0.49884170293807983, -0.05464180186390877, -0.7709464430809021, -0.862128496170044, 0.8129743933677673, -0.0947476401925087, -0.45098677277565, -0.055151574313640594, 0.6623804569244385, 0.054099537432193756, -0.14524966478347778, 0.03777990862727165, -0.3404936194419861, -0.07450436800718307, 0.057650309056043625, -0.32380351424217224, -0.4745449721813202, -0.040987562388181686, -0.4402533173561096, 1.059862732887268, -0.3261859118938446, 0.5243178009986877, 0.6979390382766724, -0.15830127894878387, -0.007134988903999329, 0.21938848495483398, 0.8275734186172485, 0.5770378708839417, -0.5245615243911743, 0.4180215895175934, 0.13059866428375244, -0.7226424217224121, 0.053098782896995544, 0.3697535991668701, -0.17372702062129974, 0.26051998138427734, 0.40794453024864197, 0.8954669833183289, 0.30057162046432495, -0.8165831565856934, 0.14997927844524384, 0.029905447736382484, -0.4036439061164856, -0.3663797676563263, 0.025550048798322678, 0.16284315288066864, 0.2983238995075226, 0.5739917159080505, 0.27035361528396606, 0.11769838631153107, -0.2248082011938095, 0.3103054463863373, 0.09233473986387253, -0.3349629342556, -0.41122668981552124, 0.7688261270523071, 0.27930748462677, 0.029215125367045403, 0.7755154371261597, -0.30476415157318115, -0.480550080537796, 0.5981119871139526, 0.23717419803142548, 0.8903384804725647, -0.30871012806892395, -0.021320942789316177, 1.1260719299316406, 0.13316893577575684, -0.5334208607673645, -0.0036550606600940228, -0.20813000202178955, -0.7956397533416748, -0.2207310050725937, -1.0030921697616577, -0.5777726173400879, -0.13602161407470703, -0.7918834090232849, -0.11339346319437027, -0.8686575293540955, -0.7199912667274475, 0.43834754824638367, 0.5222418904304504, -0.6499308347702026, 0.22990214824676514, -0.16605044901371002, 1.2511874437332153, -0.6886768341064453, 0.9929935932159424, 0.802518367767334, -0.20516358315944672, -0.677614152431488, -0.5021296739578247, 0.29286807775497437, -0.2195214033126831, 0.5841662287712097, 0.20812097191810608, -0.05369589477777481, -0.0020719014573842287, -0.21860894560813904, -0.8687718510627747, 1.3425464630126953, 0.33726999163627625, -0.8267590999603271, -0.1967177391052246, -0.3831460475921631, 0.2427523285150528, -0.48488879203796387, 0.3597929775714874, 0.8403974175453186, 0.8351681232452393, 0.07009516656398773, -1.0617589950561523, 0.3310166001319885, -0.451371431350708, -0.07332859188318253, 0.12844109535217285, -0.7199887037277222, 1.1481187343597412, -0.2825528085231781, -0.28095853328704834, 0.13105955719947815, 1.0048764944076538, 0.2425869107246399, 0.38059771060943604, 0.7197914719581604, 0.9357595443725586, 0.7988940477371216, -0.38421595096588135, 1.1241410970687866, -0.6871678233146667, 0.5405873656272888, 1.1446231603622437, -0.09155083447694778, 0.8075518608093262, 0.6351058483123779, -0.11885382235050201, 0.231766015291214, 0.8512395024299622, 0.04510268196463585, 0.18665151298046112, -0.24810890853405, -0.2277156114578247, -0.5205599069595337, -0.3528057634830475, -0.44106876850128174, -0.06918203085660934, 0.3411121964454651, -0.5504307746887207, -0.2474612593650818, -0.04156160727143288, 0.2760776877403259, 0.009229649789631367, -0.23839130997657776, 0.33909931778907776, 0.18592700362205505, -0.87154620885849, 0.5610492825508118, 0.28274425864219666, 0.8878031969070435, -0.4756643772125244, 0.2825501263141632, -0.15476320683956146, 0.5730737447738647, -0.24176661670207977, -0.47998756170272827, 0.5320665836334229, 0.1137600839138031, -0.6502267122268677, -0.3204711675643921, 0.6926957368850708, -0.22385400533676147, -0.5788398385047913, 0.38816195726394653, 0.262724369764328, 0.17236599326133728, -0.26346492767333984, -0.6366236805915833, 0.19825142621994019, -0.14906300604343414, -0.7147229909896851, 0.09442632645368576, 0.11476632952690125, -0.050292301923036575, 0.32140132784843445, 0.6072023510932922, -0.2754431664943695, 0.11267252266407013, -0.67435622215271, 0.7339959144592285, -0.8397651314735413, -0.46776729822158813, -0.612406313419342, 0.18031595647335052, -0.10402471572160721, -0.7870542407035828, 0.7704694271087646, 0.7324357628822327, 0.9225846529006958, 0.025376437231898308, 0.46598249673843384, -0.49467241764068604, 0.6233090162277222, -0.3704680800437927, 0.5113683938980103, -0.575284481048584, -0.054808758199214935, -0.25638893246650696, -0.8480528593063354, -0.3681843876838684, 0.6482641100883484, -0.45214974880218506, 0.017150260508060455, 0.9601483941078186, 0.8142858743667603, -0.08674159646034241, 0.1826895773410797, 0.1867653876543045, 0.30098506808280945, 0.39175406098365784, 0.45381298661231995, 0.0809975415468216, -0.48998892307281494, 0.4080822467803955, -0.8135225772857666, -0.1954408437013626, -0.46572908759117126, -1.051156759262085, -0.802574098110199, -0.8485878109931946, -0.575204074382782, -0.6505722999572754, -0.19401238858699799, 1.190555214881897, 0.8684016466140747, -1.0476222038269043, -0.27046066522598267, 0.3442309498786926, -0.11842043697834015, -0.6925058960914612, -0.16543692350387573, 0.6575837135314941, -0.01187145709991455, -1.0195115804672241, 0.20531673729419708, 0.0751112774014473, -0.2284097522497177, -0.08779167383909225, -0.3338809013366699, -0.4215146005153656, 0.223602756857872, 0.49469858407974243, 0.2998521625995636, -0.9365019798278809, -0.232941672205925, 0.13943549990653992, -0.42055514454841614, 0.1854289472103119, 1.1898174285888672, -0.45141202211380005, 0.45079079270362854, 0.8344681262969971, 0.540411114692688, 0.9900602698326111, 0.17386773228645325, 0.13647454977035522, -0.16923491656780243, 0.32804596424102783, 0.23681053519248962, 0.29531362652778625, 0.33997270464897156, -0.3338426947593689, 0.5204017758369446, 0.6344560980796814, -0.5496389269828796, -0.7701635956764221, -0.0792648047208786, -1.544548511505127, -0.266348272562027, 0.7728940844535828, -0.5616630911827087, -0.6420608162879944, 0.10647460073232651, -0.23535536229610443, 0.33330968022346497, -0.8317427039146423, 0.46962422132492065, 0.9368417263031006, -0.3466472029685974, -0.0582272931933403, -0.34131327271461487, 0.5757433772087097, 0.33706551790237427, -0.4980502426624298, 0.1273059844970703, 0.643449068069458, 0.37567615509033203, 0.729196310043335, 0.8690024614334106, -0.016139881685376167, 0.21913056075572968, 0.25308722257614136, 0.18527545034885406, -0.609807550907135, -0.1589423418045044, -0.07586974650621414, 0.4081833064556122, -0.20333898067474365, 0.15610314905643463 ]
TalTechNLP/voxlingua107-epaca-tdnn
TalTechNLP
"2021-11-04T13:37:27Z"
50,414
25
speechbrain
[ "speechbrain", "audio-classification", "embeddings", "Language", "Identification", "pytorch", "ECAPA-TDNN", "TDNN", "VoxLingua107", "multilingual", "dataset:VoxLingua107", "license:apache-2.0", "has_space", "region:us" ]
audio-classification
"2022-03-02T23:29:05Z"
--- language: multilingual thumbnail: tags: - audio-classification - speechbrain - embeddings - Language - Identification - pytorch - ECAPA-TDNN - TDNN - VoxLingua107 license: "apache-2.0" datasets: - VoxLingua107 metrics: - Accuracy widget: - example_title: English Sample src: https://cdn-media.huggingface.co/speech_samples/LibriSpeech_61-70968-0000.flac --- # VoxLingua107 ECAPA-TDNN Spoken Language Identification Model ## Model description This is a spoken language recognition model trained on the VoxLingua107 dataset using SpeechBrain. The model uses the ECAPA-TDNN architecture that has previously been used for speaker recognition. The model can classify a speech utterance according to the language spoken. It covers 107 different languages ( Abkhazian, Afrikaans, Amharic, Arabic, Assamese, Azerbaijani, Bashkir, Belarusian, Bulgarian, Bengali, Tibetan, Breton, Bosnian, Catalan, Cebuano, Czech, Welsh, Danish, German, Greek, English, Esperanto, Spanish, Estonian, Basque, Persian, Finnish, Faroese, French, Galician, Guarani, Gujarati, Manx, Hausa, Hawaiian, Hindi, Croatian, Haitian, Hungarian, Armenian, Interlingua, Indonesian, Icelandic, Italian, Hebrew, Japanese, Javanese, Georgian, Kazakh, Central Khmer, Kannada, Korean, Latin, Luxembourgish, Lingala, Lao, Lithuanian, Latvian, Malagasy, Maori, Macedonian, Malayalam, Mongolian, Marathi, Malay, Maltese, Burmese, Nepali, Dutch, Norwegian Nynorsk, Norwegian, Occitan, Panjabi, Polish, Pushto, Portuguese, Romanian, Russian, Sanskrit, Scots, Sindhi, Sinhala, Slovak, Slovenian, Shona, Somali, Albanian, Serbian, Sundanese, Swedish, Swahili, Tamil, Telugu, Tajik, Thai, Turkmen, Tagalog, Turkish, Tatar, Ukrainian, Urdu, Uzbek, Vietnamese, Waray, Yiddish, Yoruba, Mandarin Chinese). ## Intended uses & limitations The model has two uses: - use 'as is' for spoken language recognition - use as an utterance-level feature (embedding) extractor, for creating a dedicated language ID model on your own data The model is trained on automatically collected YouTube data. For more information about the dataset, see [here](http://bark.phon.ioc.ee/voxlingua107/). #### How to use ```python import torchaudio from speechbrain.pretrained import EncoderClassifier language_id = EncoderClassifier.from_hparams(source="TalTechNLP/voxlingua107-epaca-tdnn", savedir="tmp") # Download Thai language sample from Omniglot and cvert to suitable form signal = language_id.load_audio("https://omniglot.com/soundfiles/udhr/udhr_th.mp3") prediction = language_id.classify_batch(signal) print(prediction) (tensor([[0.3210, 0.3751, 0.3680, 0.3939, 0.4026, 0.3644, 0.3689, 0.3597, 0.3508, 0.3666, 0.3895, 0.3978, 0.3848, 0.3957, 0.3949, 0.3586, 0.4360, 0.3997, 0.4106, 0.3886, 0.4177, 0.3870, 0.3764, 0.3763, 0.3672, 0.4000, 0.4256, 0.4091, 0.3563, 0.3695, 0.3320, 0.3838, 0.3850, 0.3867, 0.3878, 0.3944, 0.3924, 0.4063, 0.3803, 0.3830, 0.2996, 0.4187, 0.3976, 0.3651, 0.3950, 0.3744, 0.4295, 0.3807, 0.3613, 0.4710, 0.3530, 0.4156, 0.3651, 0.3777, 0.3813, 0.6063, 0.3708, 0.3886, 0.3766, 0.4023, 0.3785, 0.3612, 0.4193, 0.3720, 0.4406, 0.3243, 0.3866, 0.3866, 0.4104, 0.4294, 0.4175, 0.3364, 0.3595, 0.3443, 0.3565, 0.3776, 0.3985, 0.3778, 0.2382, 0.4115, 0.4017, 0.4070, 0.3266, 0.3648, 0.3888, 0.3907, 0.3755, 0.3631, 0.4460, 0.3464, 0.3898, 0.3661, 0.3883, 0.3772, 0.9289, 0.3687, 0.4298, 0.4211, 0.3838, 0.3521, 0.3515, 0.3465, 0.4772, 0.4043, 0.3844, 0.3973, 0.4343]]), tensor([0.9289]), tensor([94]), ['th']) # The scores in the prediction[0] tensor can be interpreted as cosine scores between # the languages and the given utterance (i.e., the larger the better) # The identified language ISO code is given in prediction[3] print(prediction[3]) ['th'] # Alternatively, use the utterance embedding extractor: emb = language_id.encode_batch(signal) print(emb.shape) torch.Size([1, 1, 256]) ``` #### Limitations and bias Since the model is trained on VoxLingua107, it has many limitations and biases, some of which are: - Probably it's accuracy on smaller languages is quite limited - Probably it works worse on female speech than male speech (because YouTube data includes much more male speech) - Based on subjective experiments, it doesn't work well on speech with a foreign accent - Probably it doesn't work well on children's speech and on persons with speech disorders ## Training data The model is trained on [VoxLingua107](http://bark.phon.ioc.ee/voxlingua107/). VoxLingua107 is a speech dataset for training spoken language identification models. The dataset consists of short speech segments automatically extracted from YouTube videos and labeled according the language of the video title and description, with some post-processing steps to filter out false positives. VoxLingua107 contains data for 107 languages. The total amount of speech in the training set is 6628 hours. The average amount of data per language is 62 hours. However, the real amount per language varies a lot. There is also a seperate development set containing 1609 speech segments from 33 languages, validated by at least two volunteers to really contain the given language. ## Training procedure We used [SpeechBrain](https://github.com/speechbrain/speechbrain) to train the model. Training recipe will be published soon. ## Evaluation results Error rate: 7% on the development dataset ### BibTeX entry and citation info ```bibtex @inproceedings{valk2021slt, title={{VoxLingua107}: a Dataset for Spoken Language Recognition}, author={J{\"o}rgen Valk and Tanel Alum{\"a}e}, booktitle={Proc. IEEE SLT Workshop}, year={2021}, } ```
[ -0.4516395032405853, -0.7975134253501892, -0.029722943902015686, 0.08527875691652298, -0.10409921407699585, 0.04206603392958641, -0.43883952498435974, -0.2439468652009964, 0.2648445963859558, 0.313203901052475, -0.30038297176361084, -0.7544811964035034, -0.4489956498146057, 0.060482218861579895, -0.37903979420661926, 0.6147469282150269, 0.34544017910957336, 0.24012571573257446, 0.14031176269054413, -0.14007212221622467, -0.417613685131073, -0.28662848472595215, -0.8908328413963318, -0.2492244839668274, 0.24094288051128387, 0.4743022322654724, 0.4507060647010803, 0.7347162365913391, 0.08691154420375824, 0.4843702018260956, -0.28803789615631104, 0.0004601258842740208, -0.43818768858909607, -0.24724501371383667, 0.2377152442932129, -0.540303111076355, -0.34769803285598755, -0.1348504275083542, 0.6906892657279968, 0.5781373381614685, -0.2363605797290802, 0.33014175295829773, 0.18486015498638153, 0.27804285287857056, -0.1468672901391983, 0.35825517773628235, -0.3330906629562378, 0.036258500069379807, -0.3764873445034027, -0.0930187851190567, -0.2922466993331909, -0.5130141377449036, 0.3125836253166199, -0.5126242637634277, 0.1421194225549698, -0.0052117821760475636, 1.2178033590316772, 0.13244155049324036, -0.04660899564623833, -0.10070612281560898, -0.47465279698371887, 1.0508203506469727, -0.8990811109542847, 0.4131755232810974, 0.744335949420929, 0.24319708347320557, -0.059730131179094315, -0.4138719439506531, -0.78756183385849, -0.027246102690696716, 0.13445213437080383, 0.18886619806289673, -0.33109739422798157, -0.22223630547523499, 0.33375194668769836, 0.39914873242378235, -0.7856704592704773, 0.26849499344825745, -0.9361906051635742, -0.41427403688430786, 0.7577240467071533, -0.07865037024021149, 0.5790369510650635, -0.5847066640853882, -0.14497686922550201, -0.4021793603897095, -0.5342426896095276, 0.2912503778934479, 0.4696856737136841, 0.47926437854766846, -0.6468791961669922, 0.5675488114356995, -0.1892109215259552, 0.8604654669761658, -0.12232325971126556, -0.42924755811691284, 0.7779150009155273, -0.017366433516144753, -0.42674702405929565, 0.4048815369606018, 1.105370044708252, 0.11033400148153305, 0.4333086907863617, 0.22283397614955902, 0.1332971751689911, -0.08894690871238708, -0.14929907023906708, -0.6152526140213013, -0.2288798838853836, 0.4822741448879242, -0.30343660712242126, -0.4228645861148834, 0.03780204430222511, -0.7864261865615845, 0.052692633122205734, -0.2579399049282074, 0.4230543375015259, -0.8370991349220276, -0.5759896039962769, -0.06715752929449081, -0.1174064427614212, 0.5549932718276978, 0.0267425999045372, -0.9207546710968018, 0.02309485338628292, 0.5234646201133728, 1.0624891519546509, 0.12244340777397156, -0.36286547780036926, -0.17351134121418, 0.004160112701356411, -0.34772175550460815, 0.6925141215324402, -0.4170772433280945, -0.29031842947006226, -0.036851666867733, 0.22211767733097076, -0.24717740714550018, -0.5062260627746582, 0.49979323148727417, -0.38095229864120483, 0.46246442198753357, -0.12291262298822403, -0.6081127524375916, -0.5552147626876831, 0.028275785967707634, -0.8083229660987854, 1.2804778814315796, 0.11259536445140839, -0.698688805103302, 0.29598209261894226, -0.5376803874969482, -0.050430040806531906, 0.02706950530409813, -0.16387267410755157, -0.5883539915084839, -0.24198265373706818, 0.34663310647010803, 0.4169018268585205, -0.23878294229507446, 0.2859654426574707, -0.13911953568458557, -0.3590308427810669, 0.2804541289806366, -0.4864234924316406, 1.541707992553711, 0.26842015981674194, -0.5778750777244568, -0.05419774353504181, -1.0993095636367798, 0.2391844093799591, 0.10682301968336105, -0.464587926864624, 0.06067396327853203, -0.2852623164653778, 0.25047099590301514, 0.1565079241991043, 0.028359264135360718, -0.6680062413215637, 0.018708841875195503, -0.599719762802124, 0.577009916305542, 0.8380221128463745, -0.159982830286026, 0.1619444191455841, -0.2492435872554779, 0.6422019004821777, 0.18642184138298035, -0.28597190976142883, -0.028341243043541908, -0.8067502379417419, -0.96138995885849, -0.3428865969181061, 0.6096785068511963, 0.6808730959892273, -0.6649007797241211, 0.5791245102882385, -0.5103527903556824, -0.8301032781600952, -0.7822877764701843, -0.10928474366664886, 0.514004647731781, 0.5234374403953552, 0.2848651707172394, -0.12040466070175171, -0.9057464599609375, -0.9291301965713501, 0.134136363863945, -0.19206279516220093, -0.09924846887588501, 0.2320801466703415, 0.4279603362083435, -0.10155576467514038, 0.8890172243118286, -0.3205747902393341, -0.3749908208847046, -0.40770423412323, 0.02673429250717163, 0.41708168387413025, 0.51472407579422, 0.5396049618721008, -0.7032841444015503, -0.6741739511489868, 0.14887939393520355, -0.8433915376663208, 0.040751323103904724, 0.2406870722770691, 0.25624406337738037, 0.19141963124275208, 0.41077038645744324, -0.19460463523864746, 0.4256727397441864, 0.673876941204071, -0.2845599949359894, 0.5032398700714111, -0.1812472939491272, 0.0989803895354271, -1.3213801383972168, -0.033918172121047974, 0.04945262894034386, -0.20115116238594055, -0.7190134525299072, -0.3993438184261322, -0.1174706444144249, -0.2321782261133194, -0.6538627743721008, 0.5825784206390381, -0.40203171968460083, -0.019627856090664864, 0.030089665204286575, 0.13736996054649353, -0.3546825051307678, 0.8854311108589172, 0.28643274307250977, 0.9140489101409912, 1.0484405755996704, -0.6754952669143677, 0.47224918007850647, 0.2729830741882324, -0.87282395362854, 0.3387724757194519, -0.7679949402809143, 0.17232663929462433, -0.11006129533052444, -0.21153609454631805, -1.0670161247253418, -0.40354123711586, 0.2944909930229187, -0.7539421319961548, 0.30488520860671997, -0.2702442705631256, -0.20282991230487823, -0.4186575412750244, 0.014203826896846294, 0.4960813522338867, 0.47282707691192627, -0.34372174739837646, 0.44957706332206726, 0.640288770198822, -0.2710420489311218, -0.7522367835044861, -0.6769502758979797, 0.05267341062426567, -0.4000653326511383, -0.6281331181526184, 0.33925533294677734, 0.18211698532104492, -0.13218575716018677, -0.08676028251647949, 0.40785297751426697, -0.13498766720294952, -0.2306145876646042, 0.21036836504936218, 0.11261109262704849, -0.3579097390174866, 0.07370979338884354, -0.25140145421028137, -0.19542232155799866, -0.12590345740318298, -0.13434061408042908, 0.9352357983589172, -0.3893657922744751, -0.20791201293468475, -0.7195963263511658, 0.10056303441524506, 0.39896494150161743, -0.30042344331741333, 0.5670741200447083, 0.9640350341796875, -0.4382475018501282, 0.09448359906673431, -0.4969238340854645, 0.08553463220596313, -0.5023577809333801, 0.8491654396057129, -0.5086867809295654, -0.6416663527488708, 0.7738542556762695, 0.2728511691093445, -0.25654205679893494, 0.6047545075416565, 0.7643382549285889, 0.04767610505223274, 0.9751874804496765, 0.41867661476135254, -0.42700430750846863, 0.5678815841674805, -0.788589596748352, -0.00974937155842781, -0.8207406997680664, -0.5265476107597351, -0.6149209141731262, -0.243290513753891, -0.8067168593406677, -0.4433387219905853, 0.2894037663936615, -0.1801571100950241, -0.33353495597839355, 0.556422233581543, -0.597265362739563, 0.35668858885765076, 0.8002082705497742, 0.17903144657611847, -0.06131041795015335, 0.14530663192272186, -0.294850617647171, -0.09170833230018616, -0.7808704972267151, -0.5444783568382263, 1.3252676725387573, 0.40161964297294617, 0.47098278999328613, 0.19869332015514374, 0.6353185772895813, 0.15431609749794006, -0.009106738492846489, -0.7875146865844727, 0.4449164867401123, 0.07634644210338593, -0.6215328574180603, -0.47556445002555847, -0.4442402422428131, -1.235938310623169, 0.20277421176433563, 0.05785210058093071, -1.1222302913665771, 0.525646984577179, -0.12225086987018585, -0.43836915493011475, 0.34766319394111633, -0.8154372572898865, 0.9535542130470276, -0.2814878523349762, -0.15317703783512115, -0.14392432570457458, -0.4260365068912506, 0.1346169114112854, 0.1960182785987854, 0.3151102066040039, -0.18554863333702087, 0.3809804916381836, 1.2820719480514526, -0.43377047777175903, 0.823448657989502, -0.15019068121910095, 0.14937739074230194, 0.5399752855300903, -0.21877530217170715, 0.1630656123161316, -0.07797271758317947, -0.14929650723934174, 0.37666308879852295, 0.1672479659318924, -0.5708194375038147, -0.3243532180786133, 0.7669890522956848, -1.2467997074127197, -0.4431808590888977, -0.6525276303291321, -0.31651976704597473, 0.10858836024999619, 0.3639999032020569, 0.6317399740219116, 0.7820081114768982, -0.2423691749572754, 0.4017886221408844, 0.7880831360816956, -0.46935081481933594, 0.6156110763549805, 0.3241513669490814, -0.277799516916275, -0.7266321778297424, 1.2128288745880127, 0.33135539293289185, 0.13845346868038177, 0.32709449529647827, 0.35952305793762207, -0.5109081864356995, -0.37045860290527344, -0.43167486786842346, 0.3012312948703766, -0.5333511233329773, -0.1480495035648346, -0.5429201126098633, -0.40241357684135437, -0.7233812808990479, 0.16796667873859406, -0.3810984492301941, -0.3975546061992645, -0.2852649986743927, -0.21595898270606995, 0.45627841353416443, 0.7912788987159729, -0.04949568212032318, 0.3114381730556488, -0.45521846413612366, 0.17037709057331085, 0.27239957451820374, 0.2561057209968567, 0.059022970497608185, -0.8744335770606995, -0.38844993710517883, 0.2882433831691742, -0.2657167911529541, -1.039804458618164, 0.8159165978431702, 0.3112572431564331, 0.590839684009552, 0.5797635316848755, -0.3303636908531189, 0.7536742687225342, -0.27514517307281494, 0.8095929026603699, 0.1358046978712082, -0.9250597357749939, 0.572892963886261, -0.34622201323509216, 0.4309041500091553, 0.25629013776779175, 0.39041686058044434, -0.7622976899147034, -0.24457702040672302, -0.7708624005317688, -0.6743727922439575, 1.038892149925232, 0.3163129687309265, -0.020413478836417198, 0.01035815104842186, -0.003723939647898078, -0.13733157515525818, 0.11046064645051956, -0.8867599368095398, -0.6046575903892517, -0.464958131313324, -0.3011954426765442, -0.1816757172346115, -0.20966102182865143, 0.08765916526317596, -0.6374826431274414, 0.8154340982437134, 0.09107865393161774, 0.5656799077987671, 0.1266513615846634, -0.12294003367424011, -0.019879333674907684, 0.11494564265012741, 0.7048541307449341, 0.6432427763938904, -0.34159913659095764, -0.09983349591493607, 0.2791644334793091, -0.7321972250938416, 0.19245891273021698, -0.05311787500977516, -0.1434323489665985, 0.18453949689865112, 0.3807823657989502, 1.0093711614608765, 0.10533425956964493, -0.5393292903900146, 0.37320002913475037, 0.05721782520413399, -0.11088328808546066, -0.8225064873695374, 0.013537493534386158, 0.17526809871196747, 0.08401946723461151, 0.42431527376174927, -0.10720068961381912, -0.08721581846475601, -0.582287609577179, 0.08978636562824249, 0.1600257307291031, -0.5521671772003174, -0.43637821078300476, 0.6636837124824524, -0.03527892380952835, -0.6194486618041992, 0.8346652388572693, -0.21466465294361115, -0.6837301850318909, 0.8381709456443787, 0.4693063199520111, 0.9167686700820923, -0.6946921348571777, 0.24642537534236908, 0.8891876339912415, 0.1569075733423233, 0.2629643380641937, 0.4580356478691101, 0.11967874318361282, -0.8168511986732483, -0.18037639558315277, -0.8709445595741272, -0.09438852965831757, 0.4684053659439087, -0.7226024270057678, 0.6249816417694092, -0.18520301580429077, -0.2007989138364792, 0.20927110314369202, 0.12333929538726807, -0.9021307229995728, 0.3232886791229248, 0.3517313301563263, 0.7952917218208313, -0.9636807441711426, 1.1605863571166992, 0.5790942907333374, -0.6731826663017273, -1.100658655166626, -0.5543314218521118, 0.040195927023887634, -0.9932706952095032, 0.545430600643158, 0.22142821550369263, 0.21469475328922272, 0.21582062542438507, -0.31985628604888916, -1.2174789905548096, 1.1200743913650513, 0.29552125930786133, -0.5166832208633423, 0.05751623213291168, 0.45036762952804565, 0.6174741983413696, -0.2897610664367676, 0.4731197655200958, 0.6667520403862, 0.5226323008537292, -0.002263267757371068, -1.1155791282653809, -0.09430985152721405, -0.44708704948425293, -0.040029603987932205, -0.11072960495948792, -0.6626424193382263, 0.9434910416603088, -0.1477942019701004, -0.08249974250793457, -0.10335547477006912, 0.8386064767837524, 0.3448161780834198, -0.024022921919822693, 0.4485341012477875, 0.8030471205711365, 0.855240523815155, -0.30604609847068787, 0.8640196323394775, -0.142081156373024, 0.6065608263015747, 0.8887619376182556, 0.4523085951805115, 0.9810128211975098, 0.28881609439849854, -0.6366044282913208, 0.5992329120635986, 0.9802470207214355, -0.13664226233959198, 0.4154486060142517, -0.034697551280260086, -0.11456502228975296, -0.08417342603206635, 0.09125755727291107, -0.5816851854324341, 0.9222326874732971, 0.5613839626312256, -0.3876861035823822, 0.03080047480762005, 0.19452686607837677, 0.13570939004421234, -0.22275736927986145, -0.1992122381925583, 0.7383182644844055, 0.08066321164369583, -0.5048068165779114, 1.012448787689209, -0.045856304466724396, 0.5689579248428345, -0.5218330025672913, 0.015890883281826973, 0.0904669314622879, 0.1290178894996643, -0.35748210549354553, -0.8168407678604126, 0.14241859316825867, -0.1402696818113327, 0.0883108600974083, 0.03808404505252838, 0.28490149974823, -0.7388563752174377, -0.6096101999282837, 0.18723814189434052, 0.36094149947166443, 0.43925949931144714, 0.11054888367652893, -0.9075149893760681, 0.0704987496137619, 0.33838626742362976, -0.33469945192337036, 0.11677157878875732, 0.39097854495048523, 0.09808249771595001, 0.6626716256141663, 0.5572153329849243, 0.3212624788284302, 0.35068807005882263, 0.0886366069316864, 0.7323643565177917, -0.7951176166534424, -0.5803032517433167, -0.6991766691207886, 0.4174291491508484, -0.11633025109767914, -0.5069140791893005, 0.8778879642486572, 0.8598918914794922, 0.9828392863273621, -0.13634471595287323, 0.8686742186546326, -0.2948908507823944, 0.6576784253120422, -0.5053090453147888, 0.8476728796958923, -0.47256386280059814, 0.140380397439003, -0.25851547718048096, -1.0044258832931519, -0.16081702709197998, 0.7325183749198914, -0.5972508192062378, 0.24803772568702698, 0.48009103536605835, 0.9720130562782288, -0.06542600691318512, -0.12639915943145752, 0.3571295440196991, 0.40350714325904846, 0.31141889095306396, 0.566055953502655, 0.5921251773834229, -0.6820878982543945, 0.6486358046531677, -0.8015943765640259, -0.10513245314359665, -0.1762138456106186, -0.44988396763801575, -0.8166107535362244, -0.9735142588615417, -0.5069212317466736, -0.45765888690948486, -0.2043953388929367, 0.9365677237510681, 0.7242093682289124, -1.0814626216888428, -0.6710585951805115, 0.007773959543555975, 0.163197860121727, -0.3509330153465271, -0.30997276306152344, 0.8167368173599243, 0.08137902617454529, -1.234579086303711, 0.35260581970214844, -0.06564550846815109, 0.11652152240276337, -0.25376656651496887, -0.08171169459819794, -0.36983218789100647, -0.16700255870819092, 0.2974424660205841, 0.49650582671165466, -0.9700973033905029, -0.3519980311393738, -0.11247777193784714, -0.02598026767373085, 0.35891398787498474, 0.22923243045806885, -0.7588368654251099, 0.7668374180793762, 0.5043041706085205, 0.29938310384750366, 0.6567779779434204, -0.10032029449939728, 0.5105465650558472, -0.6802057027816772, 0.3871684670448303, 0.1366928368806839, 0.5548568367958069, 0.4896959066390991, -0.12239061295986176, 0.3890973627567291, 0.276095986366272, -0.5840048789978027, -0.9079249501228333, -0.19986355304718018, -1.2700918912887573, 0.15227952599525452, 1.321148157119751, -0.057136666029691696, -0.625089704990387, -0.32375168800354004, -0.29922163486480713, 0.49207696318626404, -0.4587559700012207, 0.7095915675163269, 0.696912944316864, -0.008142516016960144, -0.27767568826675415, -0.659031331539154, 0.7067012190818787, 0.2746028006076813, -0.4566027522087097, -0.207538440823555, 0.019804680719971657, 0.5616300702095032, 0.3128760755062103, 0.5030599236488342, -0.11589835584163666, 0.3075089156627655, 0.19775445759296417, 0.16625800728797913, -0.019110005348920822, 0.006267489865422249, -0.41707363724708557, 0.019570957869291306, -0.08070607483386993, -0.43041402101516724 ]
timm/swin_tiny_patch4_window7_224.ms_in1k
timm
"2023-03-18T04:15:09Z"
50,401
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:2103.14030", "license:mit", "region:us" ]
image-classification
"2023-03-18T04:14:56Z"
--- tags: - image-classification - timm library_tag: timm license: mit datasets: - imagenet-1k --- # Model card for swin_tiny_patch4_window7_224.ms_in1k A Swin Transformer image classification model. Pretrained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 28.3 - GMACs: 4.5 - Activations (M): 17.1 - Image size: 224 x 224 - **Papers:** - Swin Transformer: Hierarchical Vision Transformer using Shifted Windows: https://arxiv.org/abs/2103.14030 - **Original:** https://github.com/microsoft/Swin-Transformer - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('swin_tiny_patch4_window7_224.ms_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'swin_tiny_patch4_window7_224.ms_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g. for swin_base_patch4_window7_224 (NHWC output) # torch.Size([1, 56, 56, 128]) # torch.Size([1, 28, 28, 256]) # torch.Size([1, 14, 14, 512]) # torch.Size([1, 7, 7, 1024]) # e.g. for swinv2_cr_small_ns_224 (NCHW output) # torch.Size([1, 96, 56, 56]) # torch.Size([1, 192, 28, 28]) # torch.Size([1, 384, 14, 14]) # torch.Size([1, 768, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'swin_tiny_patch4_window7_224.ms_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, H, W, num_features) tensor for swin / swinv2 # or (batch_size, num_features, H, W) for swinv2_cr output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{liu2021Swin, title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, year={2021} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
[ -0.4322546720504761, -0.4686984717845917, -0.03409412503242493, 0.1257246881723404, -0.2979705035686493, -0.44935739040374756, -0.23503774404525757, -0.49721330404281616, 0.07460730522871017, 0.35756540298461914, -0.613260805606842, -0.6559090614318848, -0.6012469530105591, -0.2081090211868286, -0.10627829283475876, 1.0355039834976196, -0.11631457507610321, -0.09494034200906754, -0.18647556006908417, -0.567516028881073, -0.17220348119735718, -0.13795699179172516, -0.5610798597335815, -0.3537628650665283, 0.362946093082428, 0.16582587361335754, 0.647788405418396, 0.5675624012947083, 0.7733659148216248, 0.4930632412433624, -0.09242243319749832, -0.01685919798910618, -0.18797582387924194, -0.29771214723587036, 0.3783470392227173, -0.6799561381340027, -0.540921151638031, 0.259795606136322, 0.7139943838119507, 0.39807844161987305, 0.09744410961866379, 0.47532764077186584, 0.1359778195619583, 0.44880402088165283, -0.14662088453769684, 0.0776882991194725, -0.5360133051872253, 0.15656083822250366, -0.1273561269044876, 0.06766574829816818, -0.19985264539718628, -0.4087865352630615, 0.2785966694355011, -0.5722293853759766, 0.7009611129760742, 0.11152832955121994, 1.4241275787353516, 0.0965355858206749, -0.07699719071388245, 0.07773458957672119, -0.26465266942977905, 0.9301084280014038, -1.005534291267395, 0.05444345623254776, 0.08788671344518661, 0.1571628898382187, -0.05059226602315903, -0.8974931240081787, -0.5463623404502869, -0.13657914102077484, -0.32407620549201965, -0.05722268298268318, -0.2442712038755417, 0.06672463566064835, 0.41228872537612915, 0.28203895688056946, -0.47537341713905334, 0.16433577239513397, -0.5598105192184448, -0.28083038330078125, 0.6428623199462891, 0.09931150823831558, 0.4276314973831177, -0.3254898190498352, -0.6061578989028931, -0.4909755289554596, -0.3331905007362366, 0.29492777585983276, 0.14012427628040314, 0.25592729449272156, -0.6927340030670166, 0.5043725967407227, 0.3676649034023285, 0.5196231007575989, 0.06163817644119263, -0.5300676226615906, 0.7056571841239929, -0.17947900295257568, -0.40882858633995056, -0.26172152161598206, 1.0008126497268677, 0.4223823845386505, 0.06714895367622375, 0.3076186776161194, -0.24518150091171265, -0.27475547790527344, -0.10082268714904785, -1.118621826171875, -0.3003395199775696, 0.2889951467514038, -0.6704352498054504, -0.5411325693130493, 0.2316635102033615, -0.6586002111434937, -0.09492167085409164, -0.06615667045116425, 0.6047017574310303, -0.4781900942325592, -0.44358035922050476, -0.20691663026809692, -0.3755421042442322, 0.4589482545852661, 0.2933923602104187, -0.5726363062858582, 0.0507630929350853, 0.2631925642490387, 1.1082857847213745, -0.07663562893867493, -0.618511974811554, -0.08572974801063538, -0.2779187858104706, -0.2831912338733673, 0.4056808352470398, -0.0042456407099962234, -0.1374821960926056, -0.20755507051944733, 0.37638312578201294, -0.2142292857170105, -0.6793305277824402, 0.14204160869121552, -0.10908160358667374, 0.25088751316070557, 0.03791780769824982, -0.11893795430660248, -0.31567108631134033, 0.258401095867157, -0.39384907484054565, 1.3650463819503784, 0.48072344064712524, -1.0050886869430542, 0.2933143079280853, -0.506649374961853, -0.2817470133304596, -0.16204409301280975, -0.04874837026000023, -1.0301647186279297, 0.00820195209234953, 0.3155551254749298, 0.6014439463615417, -0.1733628213405609, 0.034499313682317734, -0.5231345295906067, -0.27103930711746216, 0.2945440113544464, -0.1136869341135025, 1.043233871459961, 0.002020689193159342, -0.6104322671890259, 0.3998357951641083, -0.5844679474830627, 0.1146678775548935, 0.5487186908721924, -0.16763737797737122, -0.2384476214647293, -0.6501733660697937, 0.28201964497566223, 0.4116058647632599, 0.2580896317958832, -0.6393672227859497, 0.3018433451652527, -0.26566076278686523, 0.45898815989494324, 0.7657291889190674, -0.0849895104765892, 0.4004788100719452, -0.37562277913093567, 0.2688954770565033, 0.48798635601997375, 0.4430917501449585, -0.04383952170610428, -0.6515031456947327, -0.8777724504470825, -0.4570007026195526, 0.25889208912849426, 0.3957861363887787, -0.6249751448631287, 0.5799155235290527, -0.25469034910202026, -0.7531177997589111, -0.5985621213912964, 0.08789709210395813, 0.32282334566116333, 0.603523313999176, 0.3638375699520111, -0.2806696891784668, -0.6104101538658142, -0.9847813844680786, 0.1397554725408554, -0.04105676710605621, -0.10102539509534836, 0.3613693118095398, 0.8408730030059814, -0.3131943941116333, 0.7494662404060364, -0.4214007258415222, -0.3740585148334503, -0.33909136056900024, 0.2110738754272461, 0.43296071887016296, 0.754673421382904, 0.8460855484008789, -0.5850566625595093, -0.419559121131897, -0.07766832411289215, -0.8839486837387085, 0.06342627108097076, -0.2088090479373932, -0.26807281374931335, 0.38647890090942383, 0.029793471097946167, -0.6591293811798096, 0.7505782246589661, 0.31456923484802246, -0.34737643599510193, 0.588081955909729, -0.3266277313232422, 0.2621883451938629, -1.0538427829742432, 0.10107557475566864, 0.412176251411438, -0.08570016175508499, -0.4711025357246399, -0.004432260524481535, 0.16359113156795502, -0.053410328924655914, -0.5285325646400452, 0.6280478239059448, -0.5676460862159729, -0.26596319675445557, -0.14174044132232666, 0.030851902440190315, 0.0560949444770813, 0.771950900554657, -0.024435415863990784, 0.3588561713695526, 0.8417373895645142, -0.4151351749897003, 0.3060969114303589, 0.4104771614074707, -0.2276117354631424, 0.3801446557044983, -0.7435809373855591, 0.005957361310720444, 0.038931895047426224, 0.21224114298820496, -1.0303986072540283, -0.05715358629822731, 0.12317684292793274, -0.562241792678833, 0.5731110572814941, -0.561005175113678, -0.34146562218666077, -0.6515510082244873, -0.6662853956222534, 0.3758448660373688, 0.8621293902397156, -0.8180304169654846, 0.4755556285381317, 0.23733311891555786, 0.15125475823879242, -0.5748794078826904, -0.9544874429702759, -0.3820534646511078, -0.2916471064090729, -0.8598206043243408, 0.43737488985061646, 0.1634390652179718, 0.013011109083890915, 0.1327497959136963, -0.13539761304855347, 0.04505437612533569, -0.2803676724433899, 0.5784555673599243, 0.7763604521751404, -0.4207924008369446, -0.3027288615703583, -0.224085733294487, -0.04661272466182709, 0.01763591356575489, -0.06769812852144241, 0.42192450165748596, -0.3073314130306244, -0.1693674474954605, -0.6244372725486755, -0.11820916831493378, 0.6041796207427979, -0.040144868195056915, 0.7641416788101196, 1.2613166570663452, -0.4335300922393799, -0.08635108172893524, -0.43542149662971497, -0.35307782888412476, -0.5250195860862732, 0.42530664801597595, -0.3338504135608673, -0.4536382853984833, 0.8449382781982422, 0.06865792721509933, 0.29101958870887756, 0.8164233565330505, 0.27653566002845764, -0.2839886546134949, 0.9609476923942566, 0.580008864402771, 0.08606104552745819, 0.7619180083274841, -0.9904137849807739, -0.10366683453321457, -0.8729894757270813, -0.44223445653915405, -0.35863715410232544, -0.6430142521858215, -0.6178650259971619, -0.5368249416351318, 0.5057981014251709, 0.1801331341266632, -0.3349219262599945, 0.49731674790382385, -0.831336498260498, -0.06583183258771896, 0.6661244630813599, 0.44557008147239685, -0.355575829744339, 0.29845282435417175, -0.29718297719955444, -0.22643330693244934, -0.7323724627494812, -0.12316625565290451, 0.8856751322746277, 0.5568344593048096, 0.8103958368301392, -0.2091526985168457, 0.6602142453193665, -0.122797891497612, 0.27266180515289307, -0.5280731320381165, 0.6881498098373413, -0.00909731537103653, -0.35358956456184387, -0.26018309593200684, -0.38350987434387207, -1.0449649095535278, 0.3258456885814667, -0.40302765369415283, -0.6860017776489258, 0.21066398918628693, 0.111607626080513, -0.04104088246822357, 0.8542160987854004, -0.8189131617546082, 0.9309332370758057, -0.21171881258487701, -0.3543236553668976, -0.008386240340769291, -0.7653723955154419, 0.26365602016448975, 0.3632346987724304, -0.11398711055517197, -0.15685231983661652, 0.12131890654563904, 1.1353216171264648, -0.6956494450569153, 0.9969967007637024, -0.6056817173957825, 0.36379703879356384, 0.4753275513648987, -0.2158963829278946, 0.4537205398082733, -0.20364947617053986, 0.08369006961584091, 0.43514665961265564, 0.10388315469026566, -0.4961072504520416, -0.5975426435470581, 0.6544932126998901, -1.062040090560913, -0.3792814314365387, -0.40957093238830566, -0.48328468203544617, 0.24459806084632874, 0.1247764304280281, 0.5453404188156128, 0.6863059401512146, 0.18286241590976715, 0.19491377472877502, 0.573646068572998, -0.36496469378471375, 0.5622664093971252, 0.014628955163061619, -0.2424221634864807, -0.40646296739578247, 0.7996875643730164, 0.13867498934268951, 0.13238796591758728, 0.08724404126405716, 0.33821743726730347, -0.28066012263298035, -0.5634875893592834, -0.4072641134262085, 0.5058563947677612, -0.6711077690124512, -0.5185829997062683, -0.4849248230457306, -0.5602666139602661, -0.5483355522155762, -0.22270214557647705, -0.43045517802238464, -0.3760372996330261, -0.3123014569282532, 0.19042828679084778, 0.7214769124984741, 0.6486031413078308, -0.0815822035074234, 0.33939501643180847, -0.5912324786186218, 0.1723322719335556, 0.13071799278259277, 0.3194332420825958, -0.06091031804680824, -0.9868532419204712, -0.2353857010602951, -0.02096777781844139, -0.33387765288352966, -0.6404377222061157, 0.5373483896255493, 0.10132582485675812, 0.611650288105011, 0.33952194452285767, -0.0958881750702858, 0.9298933148384094, -0.0642826184630394, 0.7614198923110962, 0.4659465551376343, -0.6444956064224243, 0.8101843595504761, -0.018272772431373596, 0.2613489031791687, 0.034398533403873444, 0.1756354570388794, -0.23660653829574585, -0.2124021202325821, -1.0195101499557495, -0.9124733805656433, 0.9154077172279358, 0.12227458506822586, -0.09386304765939713, 0.44516721367836, 0.4946094751358032, 0.11245328187942505, -0.0765845999121666, -0.7643557190895081, -0.5118383765220642, -0.3828105330467224, -0.2706785500049591, 0.058189474046230316, -0.0419115349650383, -0.18096260726451874, -0.8520296216011047, 0.7179678082466125, -0.11064471304416656, 0.8123866319656372, 0.3318401575088501, -0.24470478296279907, -0.10206840932369232, -0.27499133348464966, 0.47542479634284973, 0.32895293831825256, -0.3148657977581024, 0.021101806312799454, 0.285434752702713, -0.6983889937400818, -0.03616875410079956, 0.04295989125967026, -0.04847950115799904, 0.12063034623861313, 0.6179397106170654, 1.062644362449646, 0.184702068567276, 0.012021034024655819, 0.7133541703224182, 0.025807015597820282, -0.5086054801940918, -0.2073620855808258, 0.14971284568309784, -0.11993347108364105, 0.3743424117565155, 0.4065617620944977, 0.5289469957351685, -0.2434498816728592, -0.2527550160884857, 0.15933655202388763, 0.5473166108131409, -0.2479867935180664, -0.3624059557914734, 0.6459534764289856, -0.09817259758710861, -0.06862840801477432, 0.9159267544746399, 0.16182324290275574, -0.4798060655593872, 1.0682718753814697, 0.6127083897590637, 0.8174475431442261, 0.038636721670627594, 0.07276052981615067, 0.8777321577072144, 0.32906821370124817, 0.08497773110866547, 0.09391719847917557, 0.105522021651268, -0.7304996252059937, 0.23888805508613586, -0.5117163062095642, -0.007880663499236107, 0.29999828338623047, -0.6682700514793396, 0.4050251841545105, -0.5857762098312378, -0.3857342004776001, 0.1308823823928833, 0.36853331327438354, -1.0299057960510254, 0.11734624207019806, 0.011380708776414394, 0.9763376116752625, -0.9111966490745544, 0.9404662847518921, 0.7614741325378418, -0.5413200259208679, -0.9889072775840759, -0.1712917536497116, 0.0029225298203527927, -1.0222049951553345, 0.40780919790267944, 0.43941670656204224, 0.06183663010597229, -0.11888416111469269, -0.8527823686599731, -0.604030191898346, 1.5937167406082153, 0.30389270186424255, -0.19980694353580475, 0.10992641001939774, -0.09467415511608124, 0.31418630480766296, -0.4606696367263794, 0.522057294845581, 0.3739950954914093, 0.496471107006073, 0.2735070586204529, -0.6593616604804993, 0.23761941492557526, -0.3878996670246124, 0.3183445334434509, 0.1228378638625145, -0.6252772212028503, 0.8986928462982178, -0.7164092659950256, -0.14117462933063507, 0.019030345603823662, 0.6876062750816345, 0.3499296307563782, 0.11247465759515762, 0.6284045577049255, 0.6251569986343384, 0.5286505222320557, -0.36767569184303284, 0.8799752593040466, 0.06495535373687744, 0.6402856111526489, 0.5842240452766418, 0.2678574025630951, 0.6637916564941406, 0.4892018437385559, -0.35876908898353577, 0.5540462732315063, 0.9376745223999023, -0.4991142451763153, 0.33444535732269287, 0.04197914898395538, 0.11475309729576111, 0.04003923386335373, 0.29460233449935913, -0.5036999583244324, 0.2760245203971863, 0.21175386011600494, -0.47297152876853943, -0.108683742582798, 0.22942250967025757, -0.10074380040168762, -0.4388580024242401, -0.25619783997535706, 0.4845229387283325, -0.053952984511852264, -0.38432741165161133, 0.7900795936584473, 0.07098369300365448, 1.1803268194198608, -0.6136936545372009, 0.05457937717437744, -0.28015798330307007, 0.2526428699493408, -0.4404340386390686, -0.9308100342750549, 0.1993093341588974, -0.2921176850795746, -0.005157720763236284, 0.04861360788345337, 0.9265966415405273, -0.4481991231441498, -0.48656073212623596, 0.2871721684932709, 0.2600044012069702, 0.4090976417064667, 0.2139328569173813, -1.3051772117614746, 0.15449859201908112, 0.12093469500541687, -0.6854093074798584, 0.42516714334487915, 0.3723030090332031, 0.04651675745844841, 0.6719182133674622, 0.58314448595047, -0.048056382685899734, 0.24845270812511444, -0.00865957885980606, 0.8123093247413635, -0.6408851146697998, -0.34363245964050293, -0.7006038427352905, 0.7424073219299316, -0.2247316539287567, -0.6053912043571472, 0.7371910214424133, 0.5100108981132507, 0.7172079086303711, -0.1707681268453598, 0.5865123867988586, -0.37877315282821655, -0.017526840791106224, -0.24581392109394073, 0.7144296169281006, -0.6653405427932739, -0.012020949274301529, -0.26667776703834534, -0.6582909226417542, -0.27463793754577637, 0.7767019867897034, -0.23440180718898773, 0.3514711260795593, 0.5684046149253845, 1.0853965282440186, -0.2752566635608673, -0.28844326734542847, 0.2683345079421997, 0.19803710281848907, 0.03512033075094223, 0.3829091191291809, 0.39547526836395264, -0.8836818337440491, 0.45068567991256714, -0.7180264592170715, -0.28150540590286255, -0.24354134500026703, -0.5932868123054504, -1.0652251243591309, -0.9031721949577332, -0.6595946550369263, -0.7097795009613037, -0.42777466773986816, 0.8505735993385315, 1.1182323694229126, -0.7857424020767212, -0.05463588237762451, 0.1779535710811615, 0.2464912235736847, -0.4059387147426605, -0.26461127400398254, 0.62252277135849, -0.1464717984199524, -0.6736568212509155, -0.297322541475296, 0.0509231798350811, 0.5083513259887695, -0.12168126553297043, -0.334795743227005, -0.1059693694114685, -0.2210378646850586, 0.3467305600643158, 0.2835673689842224, -0.7431945204734802, -0.24224375188350677, -0.23400713503360748, -0.32383763790130615, 0.47729426622390747, 0.6125221252441406, -0.5173991918563843, 0.13643503189086914, 0.5290522575378418, 0.16999508440494537, 0.9270603656768799, -0.35249385237693787, 0.0036602180916815996, -0.9302120208740234, 0.6049827933311462, -0.12007954716682434, 0.5308967232704163, 0.3706142008304596, -0.32676568627357483, 0.4960491955280304, 0.4917006194591522, -0.4562441408634186, -0.9187965393066406, -0.24869680404663086, -1.1885254383087158, -0.20970912277698517, 0.9335231781005859, -0.34394508600234985, -0.6412418484687805, 0.3185705542564392, -0.1397555023431778, 0.5042394995689392, -0.08913979679346085, 0.34585344791412354, 0.0963740199804306, -0.13791309297084808, -0.6341610550880432, -0.4494999647140503, 0.3973812758922577, 0.03274253383278847, -0.611076295375824, -0.3338746726512909, 0.008424535393714905, 0.8005877733230591, 0.26652517914772034, 0.5255049467086792, -0.2836419939994812, 0.12076075375080109, 0.3078695833683014, 0.5962126851081848, -0.26227861642837524, -0.08055363595485687, -0.4157284200191498, -0.0414617545902729, -0.11360251903533936, -0.597053587436676 ]
google/bert_uncased_L-10_H-768_A-12
google
"2021-05-19T17:24:59Z"
50,155
0
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2022-03-02T23:29:05Z"
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
[ -0.7697781920433044, -0.5091532468795776, 0.34401318430900574, 0.18879811465740204, -0.3408224284648895, -0.24346372485160828, -0.3449631333351135, -0.44848960638046265, 0.6289241909980774, -0.08775269240140915, -0.8770354986190796, -0.4407401382923126, -0.7479373216629028, -0.027604790404438972, -0.026633432134985924, 1.2364765405654907, 0.22399437427520752, -0.013071386143565178, -0.19661924242973328, -0.04343308135867119, -0.23332123458385468, -0.31375381350517273, -0.4198431670665741, -0.2628514766693115, 0.6738466024398804, 0.414607435464859, 0.9279095530509949, 0.6251875758171082, 0.561252772808075, 0.3939608931541443, -0.31006136536598206, 0.059681784361600876, -0.4192902147769928, -0.47119274735450745, 0.22166967391967773, -0.37575480341911316, -0.9300612807273865, 0.2695135474205017, 0.6058545112609863, 0.7874333262443542, -0.05350666493177414, 0.37971019744873047, 0.34952011704444885, 0.7230963706970215, -0.5430741906166077, 0.158802330493927, -0.2808977961540222, -0.09826868027448654, -0.11102310568094254, 0.1908872425556183, -0.28388360142707825, -0.7087674140930176, 0.3576377332210541, -0.8750191926956177, 0.2703467011451721, -0.16867795586585999, 1.3954620361328125, 0.11449603736400604, -0.26032283902168274, -0.3451303243637085, -0.295070081949234, 1.0522621870040894, -0.964433491230011, 0.3736932873725891, 0.39559388160705566, 0.016121473163366318, -0.14211057126522064, -0.7699453234672546, -0.5251075029373169, 0.08179369568824768, -0.4162270128726959, 0.40409114956855774, -0.23897138237953186, -0.03478509932756424, 0.3547423183917999, 0.4183462858200073, -0.6273133754730225, 0.08223363012075424, -0.5612739324569702, -0.26962029933929443, 0.8281201720237732, 0.06925038993358612, 0.2901149392127991, -0.06915497034788132, -0.42265644669532776, -0.3890944719314575, -0.3698103129863739, 0.3681298494338989, 0.3694746792316437, 0.1879875361919403, -0.5353376269340515, 0.46161949634552, 0.07691881060600281, 0.8229666352272034, 0.4925382733345032, -0.4592207372188568, 0.6146975755691528, -0.25329113006591797, -0.30667734146118164, -0.21172067523002625, 0.8303981423377991, 0.3861112892627716, 0.14644718170166016, 0.11921849846839905, -0.12015475332736969, -0.10231771320104599, 0.23602205514907837, -1.0353845357894897, -0.5557631254196167, 0.1131897047162056, -0.7274141907691956, -0.19469286501407623, 0.03372004255652428, -0.6992306709289551, 0.08338512480258942, -0.37248465418815613, 0.6190593242645264, -0.7839727997779846, 0.03433464467525482, 0.145524799823761, -0.1782950609922409, 0.27335551381111145, 0.4595634937286377, -0.9538901448249817, 0.2611525356769562, 0.4031057357788086, 0.5225666165351868, 0.14961396157741547, -0.25269368290901184, 0.11815379559993744, -0.03792038932442665, -0.4370771050453186, 0.6514570116996765, -0.38264554738998413, -0.29951125383377075, -0.19550244510173798, 0.21906352043151855, -0.313070684671402, -0.4024319052696228, 0.7259275913238525, -0.03660164400935173, 0.27474090456962585, -0.5155355334281921, -0.8874097466468811, -0.01659419573843479, 0.2610301077365875, -0.6904414296150208, 1.0469101667404175, 0.09175622463226318, -0.8304675817489624, 0.4072512984275818, -0.4237699508666992, -0.11907033622264862, -0.3683314323425293, -0.04897420480847359, -0.8765071034431458, -0.007366766221821308, 0.33622992038726807, 0.7172285318374634, -0.10357839614152908, -0.17040161788463593, -0.5274167060852051, -0.342279851436615, 0.1470993012189865, 0.07114796340465546, 1.0246201753616333, 0.15072466433048248, -0.2906669080257416, 0.09911541640758514, -0.9403458833694458, 0.36866727471351624, 0.4133802056312561, -0.4069962203502655, -0.03542247787117958, -0.42718786001205444, -0.13092130422592163, 0.3254837989807129, 0.657322883605957, -0.5487422347068787, 0.2595192790031433, -0.2215295284986496, 0.41129055619239807, 0.8840762376785278, -0.06858127564191818, 0.40459761023521423, -0.7825903296470642, 0.2872921824455261, 0.012789247557520866, 0.5036635398864746, 0.0018942290917038918, -0.6527484059333801, -0.9254642128944397, -0.623656690120697, 0.4378402829170227, 0.25301820039749146, -0.35533469915390015, 0.9424949288368225, -0.26058870553970337, -0.9464760422706604, -0.6279747486114502, 0.11676925420761108, 0.5728275775909424, 0.34960687160491943, 0.27324044704437256, -0.23120802640914917, -0.46787595748901367, -1.1523605585098267, -0.06172114610671997, -0.15721946954727173, -0.03455151244997978, 0.5434630513191223, 0.6836004257202148, -0.10772441327571869, 0.812962532043457, -0.6981233358383179, -0.28847774863243103, -0.06034823879599571, -0.055991727858781815, 0.4270414710044861, 0.8346275091171265, 1.0443696975708008, -0.8363505005836487, -0.6828124523162842, -0.3608711063861847, -0.6779787540435791, 0.31204262375831604, -0.1102270632982254, -0.21590517461299896, 0.1321803480386734, 0.28050845861434937, -0.9336708188056946, 0.6243236064910889, 0.5604706406593323, -0.4435669481754303, 0.8606935739517212, -0.524824857711792, -0.037756092846393585, -0.9431630373001099, 0.2325579971075058, 0.09188558906316757, -0.08658143877983093, -0.5118984580039978, -0.0384901762008667, 0.22440935671329498, 0.16605815291404724, -0.4202671945095062, 0.5557547807693481, -0.667469322681427, 0.0037863696925342083, 0.1807613968849182, 0.09667859226465225, 0.101036436855793, 0.7297024130821228, -0.0740603655576706, 0.7475472688674927, 0.5097461342811584, -0.3147963583469391, 0.11611008644104004, 0.5164768695831299, -0.4643315076828003, 0.4350035488605499, -0.835238516330719, 0.08061713725328445, 0.027626778930425644, 0.4120260179042816, -1.1758248805999756, -0.41779065132141113, 0.07376668602228165, -0.8150233626365662, 0.5439755916595459, 0.016989074647426605, -0.5315950512886047, -0.7108951210975647, -0.6796277761459351, 0.1701059192419052, 0.8399853706359863, -0.5769923329353333, 0.36051133275032043, 0.2474784106016159, -0.07229048758745193, -0.5159360766410828, -0.5292489528656006, -0.4614597260951996, -0.2617321014404297, -0.7341054677963257, 0.6068645119667053, -0.4672601819038391, 0.2199544906616211, 0.10514495521783829, -0.1991581916809082, -0.2550506591796875, 0.022623853757977486, 0.2665558159351349, 0.49082210659980774, -0.23679058253765106, 0.055392809212207794, -0.06999420374631882, 0.15571506321430206, 0.013993481174111366, 0.06489457935094833, 0.5090194344520569, -0.46531885862350464, 0.048246074467897415, -0.7650940418243408, 0.09078215062618256, 0.5614281296730042, -0.0800953358411789, 1.0474785566329956, 0.9055407047271729, -0.43185141682624817, 0.05741085857152939, -0.6384073495864868, -0.45250967144966125, -0.5449854731559753, -0.12936045229434967, -0.49986326694488525, -0.9402053356170654, 0.7624486684799194, 0.03804395720362663, 0.21840158104896545, 0.6984111070632935, 0.58986896276474, -0.34055832028388977, 1.0667061805725098, 0.6318634152412415, -0.20921297371387482, 0.4909839332103729, -0.6588461995124817, 0.05963032692670822, -0.8807990550994873, -0.3112812638282776, -0.3321380615234375, -0.5713286995887756, -0.6700060963630676, -0.23832081258296967, 0.39071932435035706, 0.36227869987487793, -0.477192223072052, 0.6358669996261597, -0.6904083490371704, 0.3217061758041382, 0.7670632600784302, 0.5900763869285583, -0.3006514608860016, -0.24108059704303741, -0.3163219690322876, -0.24072284996509552, -0.8184281587600708, -0.2945038676261902, 1.1503798961639404, 0.36238256096839905, 0.5953079462051392, 0.12947548925876617, 0.8798275589942932, 0.07619893550872803, -0.05210034176707268, -0.7416688203811646, 0.6400158405303955, -0.11092156171798706, -1.0785126686096191, -0.4538591504096985, -0.3521188795566559, -1.127261757850647, 0.13680370151996613, -0.5492409467697144, -0.9501494765281677, 0.22717365622520447, 0.26479047536849976, -0.6618233323097229, 0.275825172662735, -0.8406098484992981, 0.9393753409385681, -0.04525575041770935, -0.4761393666267395, -0.03618825599551201, -0.9690922498703003, 0.3745495080947876, -0.002924421802163124, 0.09017422050237656, -0.09527987241744995, 0.17210960388183594, 1.012856364250183, -0.7059779167175293, 0.9891597032546997, -0.17358805239200592, 0.06506727635860443, 0.49887147545814514, -0.11728106439113617, 0.6375909447669983, -0.030834369361400604, 0.12192525714635849, -0.1135864108800888, 0.16692346334457397, -0.7962663173675537, -0.42648744583129883, 0.744841456413269, -1.0361627340316772, -0.5164592266082764, -0.4671834409236908, -0.6561629176139832, -0.313012957572937, 0.3699694573879242, 0.5752363801002502, 0.4954172968864441, 0.08004404604434967, 0.5093563795089722, 0.8781445622444153, -0.17598150670528412, 0.47872474789619446, 0.20009225606918335, 0.1601039320230484, -0.32785120606422424, 0.9381014704704285, 0.20430441200733185, 0.11856643110513687, 0.14504052698612213, 0.2820743918418884, -0.3211841285228729, -0.4623781740665436, -0.12137382477521896, 0.7048101425170898, -0.4492771327495575, -0.16605974733829498, -0.5958268642425537, -0.3042023479938507, -0.7179977893829346, -0.4855130612850189, -0.576457142829895, -0.6133092045783997, -0.5947602391242981, -0.05037766695022583, 0.3393062949180603, 0.6226103901863098, -0.2936333119869232, 0.29222607612609863, -0.8696603178977966, 0.2721731960773468, 0.5415753722190857, 0.33275195956230164, -0.13492748141288757, -0.5623737573623657, -0.25499147176742554, -0.0012606056407094002, -0.453706294298172, -0.6968618035316467, 0.42321598529815674, 0.27383995056152344, 0.7084900140762329, 0.5876415967941284, 0.02819954790174961, 1.0756701231002808, -0.5788625478744507, 0.9372065663337708, 0.663595974445343, -0.823759913444519, 0.5826322436332703, -0.4877707362174988, 0.23155172169208527, 0.5189018249511719, 0.6241964101791382, -0.030835988000035286, -0.10637357831001282, -1.164402723312378, -0.7614551782608032, 0.8144616484642029, 0.35047075152397156, 0.02368413843214512, 0.016710054129362106, 0.4011504650115967, -0.04295497015118599, 0.16004882752895355, -0.609093427658081, -0.6701853275299072, -0.1006433367729187, -0.2701196074485779, -0.14961682260036469, -0.43946966528892517, -0.19856314361095428, -0.6852951049804688, 0.8280342221260071, -0.10023032873868942, 0.6753532290458679, 0.12534713745117188, 0.16568432748317719, 0.06103134900331497, -0.08999467641115189, 0.7028171420097351, 0.7991623878479004, -0.6623218655586243, -0.35168418288230896, 0.12891946732997894, -0.6339622735977173, -0.17688456177711487, 0.264392614364624, -0.00942913256585598, 0.06284046173095703, 0.5350558161735535, 0.7707613110542297, 0.42091476917266846, -0.5257256031036377, 0.7562982439994812, -0.010219985619187355, -0.4478250741958618, -0.5224445462226868, 0.03110821545124054, 0.13463842868804932, 0.4198724925518036, 0.11345832049846649, -0.004951607435941696, 0.15055468678474426, -0.6612477898597717, 0.3210737407207489, 0.4534803628921509, -0.5418699979782104, -0.4615057110786438, 0.6519944071769714, 0.0768761932849884, 0.16551175713539124, 0.48352524638175964, -0.16698028147220612, -0.5665022134780884, 0.7201210260391235, 0.5057118535041809, 0.5122047662734985, -0.28916993737220764, 0.2025853842496872, 0.9104715585708618, 0.2438572347164154, -0.01428185310214758, 0.3594282567501068, 0.06035734713077545, -0.5926898121833801, 0.010847873985767365, -0.6804038882255554, -0.2298690229654312, 0.3162086606025696, -1.0703613758087158, 0.16965657472610474, -0.6539941430091858, -0.5030278563499451, 0.31074291467666626, 0.455496221780777, -0.9146892428398132, 0.5947589874267578, 0.268401175737381, 1.0651464462280273, -0.7314679026603699, 1.0682138204574585, 0.9191661477088928, -0.35416388511657715, -1.0911054611206055, -0.15253323316574097, 0.12095151096582413, -0.9062339663505554, 0.5932012796401978, 0.026445552706718445, 0.3986293375492096, -0.02593763917684555, -0.6371393799781799, -1.092323660850525, 1.3995373249053955, 0.2853735089302063, -0.5697587728500366, -0.2713835537433624, -0.13517175614833832, 0.47530561685562134, -0.14991861581802368, 0.37568846344947815, 0.596319317817688, 0.40651780366897583, 0.16481547057628632, -1.078084945678711, 0.1335548311471939, -0.4536338150501251, 0.03633880615234375, 0.23986504971981049, -1.2047910690307617, 1.3068628311157227, -0.3506123423576355, 0.053007133305072784, 0.193793386220932, 0.6246463656425476, 0.6347135305404663, 0.06532970815896988, 0.567281186580658, 0.9335079789161682, 0.6576080918312073, -0.283325731754303, 1.0887333154678345, -0.2658059000968933, 0.67401123046875, 1.0078518390655518, 0.3630715012550354, 0.7136314511299133, 0.37984204292297363, -0.4407676160335541, 0.4677022695541382, 0.8230388164520264, -0.14837221801280975, 0.6028281450271606, 0.2127828449010849, 0.02671523578464985, -0.5370093584060669, 0.156723752617836, -0.5437248945236206, 0.20918595790863037, 0.5187709331512451, -0.2889440655708313, -0.1320330649614334, -0.21431352198123932, 0.3252827525138855, -0.09005890786647797, -0.25054633617401123, 0.6475417613983154, 0.0000469459846499376, -0.37402787804603577, 0.791662335395813, -0.3089040219783783, 0.7460336089134216, -0.7364146709442139, 0.18759362399578094, -0.1405409574508667, 0.423737496137619, -0.1593865156173706, -0.9050692915916443, 0.03952394053339958, -0.09030020982027054, -0.18481214344501495, -0.0664077028632164, 0.6758240461349487, -0.22439458966255188, -0.6617053151130676, 0.28534290194511414, 0.33880752325057983, 0.22466401755809784, 0.19893525540828705, -1.1870005130767822, 0.19256959855556488, 0.06855496019124985, -0.6329571008682251, 0.44672319293022156, 0.4564618170261383, 0.23621921241283417, 0.6128001809120178, 0.6117689609527588, -0.167636439204216, 0.404947429895401, -0.30035167932510376, 1.164957880973816, -0.47918397188186646, -0.4225281774997711, -0.5962805151939392, 0.6423810124397278, -0.1622304618358612, -0.5065996050834656, 1.0148125886917114, 0.6379625797271729, 0.9393072128295898, -0.26603662967681885, 0.6082547903060913, -0.2569523751735687, 0.7160230875015259, -0.4104382395744324, 0.8223603963851929, -0.9838980436325073, -0.19512398540973663, -0.4112042188644409, -0.8213514089584351, -0.23093529045581818, 0.8077048659324646, -0.28817078471183777, 0.16866178810596466, 0.4430917501449585, 0.46764880418777466, 0.0019065095111727715, -0.19004973769187927, 0.1370210200548172, 0.2590388059616089, 0.22074973583221436, 0.9242613911628723, 0.4458042085170746, -0.7551154494285583, 0.4770895838737488, -0.8420135974884033, -0.22424161434173584, -0.4661310017108917, -0.5876172780990601, -1.2175726890563965, -0.7391831874847412, -0.42972469329833984, -0.2777763605117798, -0.08906827121973038, 1.0337101221084595, 1.0242363214492798, -0.7908274531364441, -0.11892973631620407, 0.2660982608795166, -0.17908808588981628, -0.18557442724704742, -0.1979401856660843, 0.6914989948272705, -0.1835584193468094, -0.9568713307380676, 0.034870315343141556, -0.23314516246318817, 0.42278164625167847, 0.24215485155582428, -0.200813427567482, -0.39133790135383606, 0.24664615094661713, 0.6062119007110596, 0.25807270407676697, -0.6662593483924866, -0.45833620429039, 0.02015072852373123, -0.17156285047531128, -0.021144945174455643, 0.20739281177520752, -0.559431254863739, 0.2454194575548172, 0.45395195484161377, 0.34525826573371887, 0.7250270843505859, 0.04638519883155823, 0.03756793960928917, -0.8181014657020569, 0.2836077809333801, 0.23933418095111847, 0.5257237553596497, 0.08705941587686539, -0.20864754915237427, 0.69753497838974, 0.28857091069221497, -0.7300916910171509, -1.035574197769165, -0.13939930498600006, -1.442996621131897, -0.2970767021179199, 0.8321974277496338, -0.46877530217170715, -0.5194071531295776, 0.5331423878669739, -0.1492050290107727, 0.2720738351345062, -0.4525987505912781, 0.6924436688423157, 0.7218514680862427, -0.23442229628562927, -0.1534985899925232, -0.4600212275981903, 0.6392109394073486, 0.4532071650028229, -0.707482635974884, -0.3531135320663452, 0.41519129276275635, 0.39327773451805115, 0.5196123719215393, 0.49387508630752563, -0.22090207040309906, 0.26153236627578735, 0.08984006941318512, 0.08148951083421707, 0.15984418988227844, -0.3723398447036743, -0.0035199779085814953, -0.17451085150241852, -0.27194419503211975, -0.48429617285728455 ]
google/bert_uncased_L-8_H-768_A-12
google
"2021-05-19T17:36:32Z"
50,093
0
transformers
[ "transformers", "pytorch", "jax", "bert", "arxiv:1908.08962", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
"2022-03-02T23:29:05Z"
--- thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- BERT Miniatures === This is the set of 24 BERT models referenced in [Well-Read Students Learn Better: On the Importance of Pre-training Compact Models](https://arxiv.org/abs/1908.08962) (English only, uncased, trained with WordPiece masking). We have shown that the standard BERT recipe (including model architecture and training objective) is effective on a wide range of model sizes, beyond BERT-Base and BERT-Large. The smaller BERT models are intended for environments with restricted computational resources. They can be fine-tuned in the same manner as the original BERT models. However, they are most effective in the context of knowledge distillation, where the fine-tuning labels are produced by a larger and more accurate teacher. Our goal is to enable research in institutions with fewer computational resources and encourage the community to seek directions of innovation alternative to increasing model capacity. You can download the 24 BERT miniatures either from the [official BERT Github page](https://github.com/google-research/bert/), or via HuggingFace from the links below: | |H=128|H=256|H=512|H=768| |---|:---:|:---:|:---:|:---:| | **L=2** |[**2/128 (BERT-Tiny)**][2_128]|[2/256][2_256]|[2/512][2_512]|[2/768][2_768]| | **L=4** |[4/128][4_128]|[**4/256 (BERT-Mini)**][4_256]|[**4/512 (BERT-Small)**][4_512]|[4/768][4_768]| | **L=6** |[6/128][6_128]|[6/256][6_256]|[6/512][6_512]|[6/768][6_768]| | **L=8** |[8/128][8_128]|[8/256][8_256]|[**8/512 (BERT-Medium)**][8_512]|[8/768][8_768]| | **L=10** |[10/128][10_128]|[10/256][10_256]|[10/512][10_512]|[10/768][10_768]| | **L=12** |[12/128][12_128]|[12/256][12_256]|[12/512][12_512]|[**12/768 (BERT-Base)**][12_768]| Note that the BERT-Base model in this release is included for completeness only; it was re-trained under the same regime as the original model. Here are the corresponding GLUE scores on the test set: |Model|Score|CoLA|SST-2|MRPC|STS-B|QQP|MNLI-m|MNLI-mm|QNLI(v2)|RTE|WNLI|AX| |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:| |BERT-Tiny|64.2|0.0|83.2|81.1/71.1|74.3/73.6|62.2/83.4|70.2|70.3|81.5|57.2|62.3|21.0| |BERT-Mini|65.8|0.0|85.9|81.1/71.8|75.4/73.3|66.4/86.2|74.8|74.3|84.1|57.9|62.3|26.1| |BERT-Small|71.2|27.8|89.7|83.4/76.2|78.8/77.0|68.1/87.0|77.6|77.0|86.4|61.8|62.3|28.6| |BERT-Medium|73.5|38.0|89.6|86.6/81.6|80.4/78.4|69.6/87.9|80.0|79.1|87.7|62.2|62.3|30.5| For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained for 4 epochs: - batch sizes: 8, 16, 32, 64, 128 - learning rates: 3e-4, 1e-4, 5e-5, 3e-5 If you use these models, please cite the following paper: ``` @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} } ``` [2_128]: https://huggingface.co/google/bert_uncased_L-2_H-128_A-2 [2_256]: https://huggingface.co/google/bert_uncased_L-2_H-256_A-4 [2_512]: https://huggingface.co/google/bert_uncased_L-2_H-512_A-8 [2_768]: https://huggingface.co/google/bert_uncased_L-2_H-768_A-12 [4_128]: https://huggingface.co/google/bert_uncased_L-4_H-128_A-2 [4_256]: https://huggingface.co/google/bert_uncased_L-4_H-256_A-4 [4_512]: https://huggingface.co/google/bert_uncased_L-4_H-512_A-8 [4_768]: https://huggingface.co/google/bert_uncased_L-4_H-768_A-12 [6_128]: https://huggingface.co/google/bert_uncased_L-6_H-128_A-2 [6_256]: https://huggingface.co/google/bert_uncased_L-6_H-256_A-4 [6_512]: https://huggingface.co/google/bert_uncased_L-6_H-512_A-8 [6_768]: https://huggingface.co/google/bert_uncased_L-6_H-768_A-12 [8_128]: https://huggingface.co/google/bert_uncased_L-8_H-128_A-2 [8_256]: https://huggingface.co/google/bert_uncased_L-8_H-256_A-4 [8_512]: https://huggingface.co/google/bert_uncased_L-8_H-512_A-8 [8_768]: https://huggingface.co/google/bert_uncased_L-8_H-768_A-12 [10_128]: https://huggingface.co/google/bert_uncased_L-10_H-128_A-2 [10_256]: https://huggingface.co/google/bert_uncased_L-10_H-256_A-4 [10_512]: https://huggingface.co/google/bert_uncased_L-10_H-512_A-8 [10_768]: https://huggingface.co/google/bert_uncased_L-10_H-768_A-12 [12_128]: https://huggingface.co/google/bert_uncased_L-12_H-128_A-2 [12_256]: https://huggingface.co/google/bert_uncased_L-12_H-256_A-4 [12_512]: https://huggingface.co/google/bert_uncased_L-12_H-512_A-8 [12_768]: https://huggingface.co/google/bert_uncased_L-12_H-768_A-12
[ -0.7697781920433044, -0.5091532468795776, 0.34401318430900574, 0.18879811465740204, -0.3408224284648895, -0.24346372485160828, -0.3449631333351135, -0.44848960638046265, 0.6289241909980774, -0.08775269240140915, -0.8770354986190796, -0.4407401382923126, -0.7479373216629028, -0.027604790404438972, -0.026633432134985924, 1.2364765405654907, 0.22399437427520752, -0.013071386143565178, -0.19661924242973328, -0.04343308135867119, -0.23332123458385468, -0.31375381350517273, -0.4198431670665741, -0.2628514766693115, 0.6738466024398804, 0.414607435464859, 0.9279095530509949, 0.6251875758171082, 0.561252772808075, 0.3939608931541443, -0.31006136536598206, 0.059681784361600876, -0.4192902147769928, -0.47119274735450745, 0.22166967391967773, -0.37575480341911316, -0.9300612807273865, 0.2695135474205017, 0.6058545112609863, 0.7874333262443542, -0.05350666493177414, 0.37971019744873047, 0.34952011704444885, 0.7230963706970215, -0.5430741906166077, 0.158802330493927, -0.2808977961540222, -0.09826868027448654, -0.11102310568094254, 0.1908872425556183, -0.28388360142707825, -0.7087674140930176, 0.3576377332210541, -0.8750191926956177, 0.2703467011451721, -0.16867795586585999, 1.3954620361328125, 0.11449603736400604, -0.26032283902168274, -0.3451303243637085, -0.295070081949234, 1.0522621870040894, -0.964433491230011, 0.3736932873725891, 0.39559388160705566, 0.016121473163366318, -0.14211057126522064, -0.7699453234672546, -0.5251075029373169, 0.08179369568824768, -0.4162270128726959, 0.40409114956855774, -0.23897138237953186, -0.03478509932756424, 0.3547423183917999, 0.4183462858200073, -0.6273133754730225, 0.08223363012075424, -0.5612739324569702, -0.26962029933929443, 0.8281201720237732, 0.06925038993358612, 0.2901149392127991, -0.06915497034788132, -0.42265644669532776, -0.3890944719314575, -0.3698103129863739, 0.3681298494338989, 0.3694746792316437, 0.1879875361919403, -0.5353376269340515, 0.46161949634552, 0.07691881060600281, 0.8229666352272034, 0.4925382733345032, -0.4592207372188568, 0.6146975755691528, -0.25329113006591797, -0.30667734146118164, -0.21172067523002625, 0.8303981423377991, 0.3861112892627716, 0.14644718170166016, 0.11921849846839905, -0.12015475332736969, -0.10231771320104599, 0.23602205514907837, -1.0353845357894897, -0.5557631254196167, 0.1131897047162056, -0.7274141907691956, -0.19469286501407623, 0.03372004255652428, -0.6992306709289551, 0.08338512480258942, -0.37248465418815613, 0.6190593242645264, -0.7839727997779846, 0.03433464467525482, 0.145524799823761, -0.1782950609922409, 0.27335551381111145, 0.4595634937286377, -0.9538901448249817, 0.2611525356769562, 0.4031057357788086, 0.5225666165351868, 0.14961396157741547, -0.25269368290901184, 0.11815379559993744, -0.03792038932442665, -0.4370771050453186, 0.6514570116996765, -0.38264554738998413, -0.29951125383377075, -0.19550244510173798, 0.21906352043151855, -0.313070684671402, -0.4024319052696228, 0.7259275913238525, -0.03660164400935173, 0.27474090456962585, -0.5155355334281921, -0.8874097466468811, -0.01659419573843479, 0.2610301077365875, -0.6904414296150208, 1.0469101667404175, 0.09175622463226318, -0.8304675817489624, 0.4072512984275818, -0.4237699508666992, -0.11907033622264862, -0.3683314323425293, -0.04897420480847359, -0.8765071034431458, -0.007366766221821308, 0.33622992038726807, 0.7172285318374634, -0.10357839614152908, -0.17040161788463593, -0.5274167060852051, -0.342279851436615, 0.1470993012189865, 0.07114796340465546, 1.0246201753616333, 0.15072466433048248, -0.2906669080257416, 0.09911541640758514, -0.9403458833694458, 0.36866727471351624, 0.4133802056312561, -0.4069962203502655, -0.03542247787117958, -0.42718786001205444, -0.13092130422592163, 0.3254837989807129, 0.657322883605957, -0.5487422347068787, 0.2595192790031433, -0.2215295284986496, 0.41129055619239807, 0.8840762376785278, -0.06858127564191818, 0.40459761023521423, -0.7825903296470642, 0.2872921824455261, 0.012789247557520866, 0.5036635398864746, 0.0018942290917038918, -0.6527484059333801, -0.9254642128944397, -0.623656690120697, 0.4378402829170227, 0.25301820039749146, -0.35533469915390015, 0.9424949288368225, -0.26058870553970337, -0.9464760422706604, -0.6279747486114502, 0.11676925420761108, 0.5728275775909424, 0.34960687160491943, 0.27324044704437256, -0.23120802640914917, -0.46787595748901367, -1.1523605585098267, -0.06172114610671997, -0.15721946954727173, -0.03455151244997978, 0.5434630513191223, 0.6836004257202148, -0.10772441327571869, 0.812962532043457, -0.6981233358383179, -0.28847774863243103, -0.06034823879599571, -0.055991727858781815, 0.4270414710044861, 0.8346275091171265, 1.0443696975708008, -0.8363505005836487, -0.6828124523162842, -0.3608711063861847, -0.6779787540435791, 0.31204262375831604, -0.1102270632982254, -0.21590517461299896, 0.1321803480386734, 0.28050845861434937, -0.9336708188056946, 0.6243236064910889, 0.5604706406593323, -0.4435669481754303, 0.8606935739517212, -0.524824857711792, -0.037756092846393585, -0.9431630373001099, 0.2325579971075058, 0.09188558906316757, -0.08658143877983093, -0.5118984580039978, -0.0384901762008667, 0.22440935671329498, 0.16605815291404724, -0.4202671945095062, 0.5557547807693481, -0.667469322681427, 0.0037863696925342083, 0.1807613968849182, 0.09667859226465225, 0.101036436855793, 0.7297024130821228, -0.0740603655576706, 0.7475472688674927, 0.5097461342811584, -0.3147963583469391, 0.11611008644104004, 0.5164768695831299, -0.4643315076828003, 0.4350035488605499, -0.835238516330719, 0.08061713725328445, 0.027626778930425644, 0.4120260179042816, -1.1758248805999756, -0.41779065132141113, 0.07376668602228165, -0.8150233626365662, 0.5439755916595459, 0.016989074647426605, -0.5315950512886047, -0.7108951210975647, -0.6796277761459351, 0.1701059192419052, 0.8399853706359863, -0.5769923329353333, 0.36051133275032043, 0.2474784106016159, -0.07229048758745193, -0.5159360766410828, -0.5292489528656006, -0.4614597260951996, -0.2617321014404297, -0.7341054677963257, 0.6068645119667053, -0.4672601819038391, 0.2199544906616211, 0.10514495521783829, -0.1991581916809082, -0.2550506591796875, 0.022623853757977486, 0.2665558159351349, 0.49082210659980774, -0.23679058253765106, 0.055392809212207794, -0.06999420374631882, 0.15571506321430206, 0.013993481174111366, 0.06489457935094833, 0.5090194344520569, -0.46531885862350464, 0.048246074467897415, -0.7650940418243408, 0.09078215062618256, 0.5614281296730042, -0.0800953358411789, 1.0474785566329956, 0.9055407047271729, -0.43185141682624817, 0.05741085857152939, -0.6384073495864868, -0.45250967144966125, -0.5449854731559753, -0.12936045229434967, -0.49986326694488525, -0.9402053356170654, 0.7624486684799194, 0.03804395720362663, 0.21840158104896545, 0.6984111070632935, 0.58986896276474, -0.34055832028388977, 1.0667061805725098, 0.6318634152412415, -0.20921297371387482, 0.4909839332103729, -0.6588461995124817, 0.05963032692670822, -0.8807990550994873, -0.3112812638282776, -0.3321380615234375, -0.5713286995887756, -0.6700060963630676, -0.23832081258296967, 0.39071932435035706, 0.36227869987487793, -0.477192223072052, 0.6358669996261597, -0.6904083490371704, 0.3217061758041382, 0.7670632600784302, 0.5900763869285583, -0.3006514608860016, -0.24108059704303741, -0.3163219690322876, -0.24072284996509552, -0.8184281587600708, -0.2945038676261902, 1.1503798961639404, 0.36238256096839905, 0.5953079462051392, 0.12947548925876617, 0.8798275589942932, 0.07619893550872803, -0.05210034176707268, -0.7416688203811646, 0.6400158405303955, -0.11092156171798706, -1.0785126686096191, -0.4538591504096985, -0.3521188795566559, -1.127261757850647, 0.13680370151996613, -0.5492409467697144, -0.9501494765281677, 0.22717365622520447, 0.26479047536849976, -0.6618233323097229, 0.275825172662735, -0.8406098484992981, 0.9393753409385681, -0.04525575041770935, -0.4761393666267395, -0.03618825599551201, -0.9690922498703003, 0.3745495080947876, -0.002924421802163124, 0.09017422050237656, -0.09527987241744995, 0.17210960388183594, 1.012856364250183, -0.7059779167175293, 0.9891597032546997, -0.17358805239200592, 0.06506727635860443, 0.49887147545814514, -0.11728106439113617, 0.6375909447669983, -0.030834369361400604, 0.12192525714635849, -0.1135864108800888, 0.16692346334457397, -0.7962663173675537, -0.42648744583129883, 0.744841456413269, -1.0361627340316772, -0.5164592266082764, -0.4671834409236908, -0.6561629176139832, -0.313012957572937, 0.3699694573879242, 0.5752363801002502, 0.4954172968864441, 0.08004404604434967, 0.5093563795089722, 0.8781445622444153, -0.17598150670528412, 0.47872474789619446, 0.20009225606918335, 0.1601039320230484, -0.32785120606422424, 0.9381014704704285, 0.20430441200733185, 0.11856643110513687, 0.14504052698612213, 0.2820743918418884, -0.3211841285228729, -0.4623781740665436, -0.12137382477521896, 0.7048101425170898, -0.4492771327495575, -0.16605974733829498, -0.5958268642425537, -0.3042023479938507, -0.7179977893829346, -0.4855130612850189, -0.576457142829895, -0.6133092045783997, -0.5947602391242981, -0.05037766695022583, 0.3393062949180603, 0.6226103901863098, -0.2936333119869232, 0.29222607612609863, -0.8696603178977966, 0.2721731960773468, 0.5415753722190857, 0.33275195956230164, -0.13492748141288757, -0.5623737573623657, -0.25499147176742554, -0.0012606056407094002, -0.453706294298172, -0.6968618035316467, 0.42321598529815674, 0.27383995056152344, 0.7084900140762329, 0.5876415967941284, 0.02819954790174961, 1.0756701231002808, -0.5788625478744507, 0.9372065663337708, 0.663595974445343, -0.823759913444519, 0.5826322436332703, -0.4877707362174988, 0.23155172169208527, 0.5189018249511719, 0.6241964101791382, -0.030835988000035286, -0.10637357831001282, -1.164402723312378, -0.7614551782608032, 0.8144616484642029, 0.35047075152397156, 0.02368413843214512, 0.016710054129362106, 0.4011504650115967, -0.04295497015118599, 0.16004882752895355, -0.609093427658081, -0.6701853275299072, -0.1006433367729187, -0.2701196074485779, -0.14961682260036469, -0.43946966528892517, -0.19856314361095428, -0.6852951049804688, 0.8280342221260071, -0.10023032873868942, 0.6753532290458679, 0.12534713745117188, 0.16568432748317719, 0.06103134900331497, -0.08999467641115189, 0.7028171420097351, 0.7991623878479004, -0.6623218655586243, -0.35168418288230896, 0.12891946732997894, -0.6339622735977173, -0.17688456177711487, 0.264392614364624, -0.00942913256585598, 0.06284046173095703, 0.5350558161735535, 0.7707613110542297, 0.42091476917266846, -0.5257256031036377, 0.7562982439994812, -0.010219985619187355, -0.4478250741958618, -0.5224445462226868, 0.03110821545124054, 0.13463842868804932, 0.4198724925518036, 0.11345832049846649, -0.004951607435941696, 0.15055468678474426, -0.6612477898597717, 0.3210737407207489, 0.4534803628921509, -0.5418699979782104, -0.4615057110786438, 0.6519944071769714, 0.0768761932849884, 0.16551175713539124, 0.48352524638175964, -0.16698028147220612, -0.5665022134780884, 0.7201210260391235, 0.5057118535041809, 0.5122047662734985, -0.28916993737220764, 0.2025853842496872, 0.9104715585708618, 0.2438572347164154, -0.01428185310214758, 0.3594282567501068, 0.06035734713077545, -0.5926898121833801, 0.010847873985767365, -0.6804038882255554, -0.2298690229654312, 0.3162086606025696, -1.0703613758087158, 0.16965657472610474, -0.6539941430091858, -0.5030278563499451, 0.31074291467666626, 0.455496221780777, -0.9146892428398132, 0.5947589874267578, 0.268401175737381, 1.0651464462280273, -0.7314679026603699, 1.0682138204574585, 0.9191661477088928, -0.35416388511657715, -1.0911054611206055, -0.15253323316574097, 0.12095151096582413, -0.9062339663505554, 0.5932012796401978, 0.026445552706718445, 0.3986293375492096, -0.02593763917684555, -0.6371393799781799, -1.092323660850525, 1.3995373249053955, 0.2853735089302063, -0.5697587728500366, -0.2713835537433624, -0.13517175614833832, 0.47530561685562134, -0.14991861581802368, 0.37568846344947815, 0.596319317817688, 0.40651780366897583, 0.16481547057628632, -1.078084945678711, 0.1335548311471939, -0.4536338150501251, 0.03633880615234375, 0.23986504971981049, -1.2047910690307617, 1.3068628311157227, -0.3506123423576355, 0.053007133305072784, 0.193793386220932, 0.6246463656425476, 0.6347135305404663, 0.06532970815896988, 0.567281186580658, 0.9335079789161682, 0.6576080918312073, -0.283325731754303, 1.0887333154678345, -0.2658059000968933, 0.67401123046875, 1.0078518390655518, 0.3630715012550354, 0.7136314511299133, 0.37984204292297363, -0.4407676160335541, 0.4677022695541382, 0.8230388164520264, -0.14837221801280975, 0.6028281450271606, 0.2127828449010849, 0.02671523578464985, -0.5370093584060669, 0.156723752617836, -0.5437248945236206, 0.20918595790863037, 0.5187709331512451, -0.2889440655708313, -0.1320330649614334, -0.21431352198123932, 0.3252827525138855, -0.09005890786647797, -0.25054633617401123, 0.6475417613983154, 0.0000469459846499376, -0.37402787804603577, 0.791662335395813, -0.3089040219783783, 0.7460336089134216, -0.7364146709442139, 0.18759362399578094, -0.1405409574508667, 0.423737496137619, -0.1593865156173706, -0.9050692915916443, 0.03952394053339958, -0.09030020982027054, -0.18481214344501495, -0.0664077028632164, 0.6758240461349487, -0.22439458966255188, -0.6617053151130676, 0.28534290194511414, 0.33880752325057983, 0.22466401755809784, 0.19893525540828705, -1.1870005130767822, 0.19256959855556488, 0.06855496019124985, -0.6329571008682251, 0.44672319293022156, 0.4564618170261383, 0.23621921241283417, 0.6128001809120178, 0.6117689609527588, -0.167636439204216, 0.404947429895401, -0.30035167932510376, 1.164957880973816, -0.47918397188186646, -0.4225281774997711, -0.5962805151939392, 0.6423810124397278, -0.1622304618358612, -0.5065996050834656, 1.0148125886917114, 0.6379625797271729, 0.9393072128295898, -0.26603662967681885, 0.6082547903060913, -0.2569523751735687, 0.7160230875015259, -0.4104382395744324, 0.8223603963851929, -0.9838980436325073, -0.19512398540973663, -0.4112042188644409, -0.8213514089584351, -0.23093529045581818, 0.8077048659324646, -0.28817078471183777, 0.16866178810596466, 0.4430917501449585, 0.46764880418777466, 0.0019065095111727715, -0.19004973769187927, 0.1370210200548172, 0.2590388059616089, 0.22074973583221436, 0.9242613911628723, 0.4458042085170746, -0.7551154494285583, 0.4770895838737488, -0.8420135974884033, -0.22424161434173584, -0.4661310017108917, -0.5876172780990601, -1.2175726890563965, -0.7391831874847412, -0.42972469329833984, -0.2777763605117798, -0.08906827121973038, 1.0337101221084595, 1.0242363214492798, -0.7908274531364441, -0.11892973631620407, 0.2660982608795166, -0.17908808588981628, -0.18557442724704742, -0.1979401856660843, 0.6914989948272705, -0.1835584193468094, -0.9568713307380676, 0.034870315343141556, -0.23314516246318817, 0.42278164625167847, 0.24215485155582428, -0.200813427567482, -0.39133790135383606, 0.24664615094661713, 0.6062119007110596, 0.25807270407676697, -0.6662593483924866, -0.45833620429039, 0.02015072852373123, -0.17156285047531128, -0.021144945174455643, 0.20739281177520752, -0.559431254863739, 0.2454194575548172, 0.45395195484161377, 0.34525826573371887, 0.7250270843505859, 0.04638519883155823, 0.03756793960928917, -0.8181014657020569, 0.2836077809333801, 0.23933418095111847, 0.5257237553596497, 0.08705941587686539, -0.20864754915237427, 0.69753497838974, 0.28857091069221497, -0.7300916910171509, -1.035574197769165, -0.13939930498600006, -1.442996621131897, -0.2970767021179199, 0.8321974277496338, -0.46877530217170715, -0.5194071531295776, 0.5331423878669739, -0.1492050290107727, 0.2720738351345062, -0.4525987505912781, 0.6924436688423157, 0.7218514680862427, -0.23442229628562927, -0.1534985899925232, -0.4600212275981903, 0.6392109394073486, 0.4532071650028229, -0.707482635974884, -0.3531135320663452, 0.41519129276275635, 0.39327773451805115, 0.5196123719215393, 0.49387508630752563, -0.22090207040309906, 0.26153236627578735, 0.08984006941318512, 0.08148951083421707, 0.15984418988227844, -0.3723398447036743, -0.0035199779085814953, -0.17451085150241852, -0.27194419503211975, -0.48429617285728455 ]
mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es
mrm8488
"2023-01-20T12:05:38Z"
50,018
36
transformers
[ "transformers", "pytorch", "jax", "bert", "question-answering", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
question-answering
"2022-03-02T23:29:05Z"
--- language: es thumbnail: https://i.imgur.com/jgBdimh.png license: apache-2.0 --- # BETO (Spanish BERT) + Spanish SQuAD2.0 + distillation using 'bert-base-multilingual-cased' as teacher This model is a fine-tuned on [SQuAD-es-v2.0](https://github.com/ccasimiro88/TranslateAlignRetrieve) and **distilled** version of [BETO](https://github.com/dccuchile/beto) for **Q&A**. Distillation makes the model **smaller, faster, cheaper and lighter** than [bert-base-spanish-wwm-cased-finetuned-spa-squad2-es](https://github.com/huggingface/transformers/blob/master/model_cards/mrm8488/bert-base-spanish-wwm-cased-finetuned-spa-squad2-es/README.md) This model was fine-tuned on the same dataset but using **distillation** during the process as mentioned above (and one more train epoch). The **teacher model** for the distillation was `bert-base-multilingual-cased`. It is the same teacher used for `distilbert-base-multilingual-cased` AKA [**DistilmBERT**](https://github.com/huggingface/transformers/tree/master/examples/distillation) (on average is twice as fast as **mBERT-base**). ## Details of the downstream task (Q&A) - Dataset <details> [SQuAD-es-v2.0](https://github.com/ccasimiro88/TranslateAlignRetrieve) | Dataset | # Q&A | | ----------------------- | ----- | | SQuAD2.0 Train | 130 K | | SQuAD2.0-es-v2.0 | 111 K | | SQuAD2.0 Dev | 12 K | | SQuAD-es-v2.0-small Dev | 69 K | </details> ## Model training The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command: ```bash !export SQUAD_DIR=/path/to/squad-v2_spanish \ && python transformers/examples/distillation/run_squad_w_distillation.py \ --model_type bert \ --model_name_or_path dccuchile/bert-base-spanish-wwm-cased \ --teacher_type bert \ --teacher_name_or_path bert-base-multilingual-cased \ --do_train \ --do_eval \ --do_lower_case \ --train_file $SQUAD_DIR/train-v2.json \ --predict_file $SQUAD_DIR/dev-v2.json \ --per_gpu_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 5.0 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /content/model_output \ --save_steps 5000 \ --threads 4 \ --version_2_with_negative ``` ## Results: TBA ### Model in action Fast usage with **pipelines**: ```python from transformers import * # Important!: By now the QA pipeline is not compatible with fast tokenizer, but they are working on it. So that pass the object to the tokenizer {"use_fast": False} as in the following example: nlp = pipeline( 'question-answering', model='mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es', tokenizer=( 'mrm8488/distill-bert-base-spanish-wwm-cased-finetuned-spa-squad2-es', {"use_fast": False} ) ) nlp( { 'question': '¿Para qué lenguaje está trabajando?', 'context': 'Manuel Romero está colaborando activamente con huggingface/transformers ' + 'para traer el poder de las últimas técnicas de procesamiento de lenguaje natural al idioma español' } ) # Output: {'answer': 'español', 'end': 169, 'score': 0.67530957344621, 'start': 163} ``` Play with this model and ```pipelines``` in a Colab: <a href="https://colab.research.google.com/github/mrm8488/shared_colab_notebooks/blob/master/Using_Spanish_BERT_fine_tuned_for_Q%26A_pipelines.ipynb" target="_parent"><img src="https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Open In Colab" data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg"></a> <details> 1. Set the context and ask some questions: ![Set context and questions](https://media.giphy.com/media/mCIaBpfN0LQcuzkA2F/giphy.gif) 2. Run predictions: ![Run the model](https://media.giphy.com/media/WT453aptcbCP7hxWTZ/giphy.gif) </details> More about ``` Huggingface pipelines```? check this Colab out: <a href="https://colab.research.google.com/github/mrm8488/shared_colab_notebooks/blob/master/Huggingface_pipelines_demo.ipynb" target="_parent"><img src="https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Open In Colab" data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg"></a> > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) > Made with <span style="color: #e25555;">&hearts;</span> in Spain
[ -0.5622115731239319, -0.7101117968559265, 0.2389059066772461, 0.3167167901992798, -0.21614572405815125, 0.3023514747619629, -0.20368215441703796, -0.3641207814216614, 0.30163753032684326, 0.12997515499591827, -0.8819594383239746, -0.44896388053894043, -0.7093566656112671, 0.12955032289028168, -0.14205962419509888, 1.2348697185516357, -0.18806469440460205, 0.1957523375749588, -0.06521020829677582, -0.06620945036411285, -0.43829843401908875, -0.4862138628959656, -0.7261946201324463, -0.3917912244796753, 0.39144814014434814, 0.20063330233097076, 0.5827839374542236, 0.5269068479537964, 0.45283347368240356, 0.4190002381801605, -0.2889033257961273, 0.02874077297747135, -0.3453165888786316, 0.15838946402072906, 0.11520464718341827, -0.485100120306015, -0.5017658472061157, 0.027104519307613373, 0.45121636986732483, 0.3847489058971405, 0.07061045616865158, 0.33132404088974, 0.06860630214214325, 0.5344711542129517, -0.3720996081829071, 0.48726508021354675, -0.5343232750892639, -0.049177903681993484, 0.13892486691474915, 0.09432588517665863, -0.23585262894630432, -0.221636563539505, 0.18187576532363892, -0.43942567706108093, 0.38411226868629456, 0.04620789363980293, 1.3244270086288452, 0.403658926486969, -0.13756237924098969, -0.3407149016857147, -0.5054585933685303, 0.8882631063461304, -0.8375384211540222, 0.19727708399295807, 0.14093241095542908, 0.33499303460121155, -0.17299464344978333, -0.8830034732818604, -0.7130932211875916, 0.06383171677589417, -0.21128979325294495, 0.3550950884819031, -0.12599720060825348, -0.1449267417192459, 0.2803342044353485, 0.3238789737224579, -0.5005806088447571, 0.019053077325224876, -0.6797710061073303, -0.3209465742111206, 0.6696491241455078, 0.07907025516033173, 0.12272967398166656, -0.26052671670913696, -0.5397719144821167, -0.49858760833740234, -0.3978453278541565, 0.3943653702735901, 0.38123032450675964, 0.5624716281890869, -0.39505499601364136, 0.5241056084632874, -0.24089953303337097, 0.37868010997772217, 0.14731143414974213, 0.031210903078317642, 0.48581182956695557, -0.2872551679611206, -0.26989132165908813, -0.06454382091760635, 1.145113468170166, 0.3139839470386505, 0.2971135973930359, -0.11040697246789932, -0.07899894565343857, 0.05857061222195625, -0.06230686604976654, -1.0590105056762695, -0.26413244009017944, 0.5823408365249634, -0.16969795525074005, -0.2627437114715576, 0.022997846826910973, -0.7633392810821533, 0.08036036044359207, -0.10201869159936905, 0.5159759521484375, -0.4611375331878662, -0.19803740084171295, 0.09103605151176453, -0.4262126684188843, 0.3718062937259674, 0.07792124152183533, -0.8517701029777527, -0.08685019612312317, 0.5341395735740662, 0.8658862709999084, 0.11289806663990021, -0.3886891305446625, -0.5014104247093201, -0.19826214015483856, -0.06083261966705322, 0.5911155343055725, -0.1957111358642578, -0.3390335142612457, -0.0803815945982933, 0.3682326674461365, -0.21664169430732727, -0.4284496009349823, 0.4454273581504822, -0.37339890003204346, 0.4960564374923706, -0.5009226202964783, -0.4018804132938385, -0.18025021255016327, 0.21255724132061005, -0.42799052596092224, 1.3308122158050537, 0.19666168093681335, -0.8060246706008911, 0.41615623235702515, -0.6642281413078308, -0.3346894383430481, -0.11196532100439072, 0.2090447098016739, -0.49697908759117126, -0.23968027532100677, 0.34091928601264954, 0.6324732303619385, -0.3062882125377655, 0.268238365650177, -0.378213107585907, -0.2609011232852936, 0.11350192874670029, -0.08497150987386703, 1.2361124753952026, 0.19919368624687195, -0.45739325881004333, 0.11767585575580597, -0.5961464047431946, 0.11889725923538208, 0.13040554523468018, -0.31224530935287476, -0.000895621080417186, -0.13071425259113312, -0.05873812362551689, 0.44620826840400696, 0.3118401765823364, -0.5096601843833923, 0.224016472697258, -0.33576178550720215, 0.6967697143554688, 0.8632510900497437, -0.14352810382843018, 0.3943796455860138, -0.382374107837677, 0.607180655002594, 0.07873992621898651, 0.2106039971113205, 0.010800599120557308, -0.7430698275566101, -1.0714528560638428, -0.614788830280304, 0.3274312913417816, 0.7112398743629456, -0.7718916535377502, 0.5243479013442993, -0.2094123363494873, -0.7022669911384583, -0.6594176888465881, -0.11726231873035431, 0.33987173438072205, 0.7705851197242737, 0.5277513265609741, -0.13162772357463837, -0.7836660742759705, -0.8731859922409058, 0.05118012800812721, -0.505368173122406, -0.16770870983600616, 0.1544630378484726, 0.9721068739891052, -0.11059363186359406, 0.9844370484352112, -0.6085149049758911, -0.1570226550102234, -0.23251952230930328, 0.14003720879554749, 0.5528924465179443, 0.6209349036216736, 0.6658400893211365, -0.587095320224762, -0.6469378471374512, -0.18634723126888275, -0.8018600940704346, 0.12202801555395126, 0.06139547750353813, -0.31499549746513367, 0.081967793405056, 0.34937071800231934, -0.6471374034881592, 0.08646633476018906, 0.5058251023292542, -0.47350165247917175, 0.5456261038780212, -0.14154405891895294, 0.10960978269577026, -1.2597614526748657, 0.1413554549217224, -0.022400330752134323, -0.09787364304065704, -0.5333722829818726, 0.09759971499443054, -0.11410892009735107, 0.009273526258766651, -0.8062383532524109, 0.6784151792526245, -0.3412664234638214, 0.18592947721481323, 0.15122243762016296, -0.1501605212688446, 0.16076788306236267, 0.7111808657646179, 0.06460428982973099, 0.8498268127441406, 0.8350871801376343, -0.5865666270256042, 0.3948938250541687, 0.4607047736644745, -0.24472357332706451, 0.32566776871681213, -0.9531958103179932, 0.1270531862974167, -0.17285215854644775, 0.1847783327102661, -1.144166350364685, -0.1462409645318985, 0.451134592294693, -0.6890777349472046, 0.39923837780952454, -0.3036828339099884, -0.551317036151886, -0.6372029781341553, -0.3642391264438629, -0.05715462192893028, 0.8154430985450745, -0.47791025042533875, 0.4910108149051666, 0.27570411562919617, 0.006016077473759651, -0.7142617106437683, -0.8368507623672485, -0.3395439386367798, -0.557737410068512, -0.829286515712738, 0.3771946430206299, -0.33153221011161804, 0.0012216890463605523, -0.10707931965589523, -0.13567279279232025, -0.42182284593582153, 0.11693251878023148, 0.11094606667757034, 0.6146261096000671, -0.07968856394290924, -0.11649251729249954, 0.060415931046009064, 0.0664246678352356, 0.19784168899059296, 0.04831423610448837, 0.7170001864433289, -0.4221339225769043, 0.13831734657287598, -0.4373769462108612, 0.19330911338329315, 0.8559457659721375, -0.1722393035888672, 0.984670102596283, 0.9375834465026855, -0.1352299600839615, 0.006197202019393444, -0.34523412585258484, -0.43040701746940613, -0.5458694100379944, 0.32481649518013, -0.42893916368484497, -0.7625142931938171, 0.9836533665657043, 0.1400747001171112, 0.170932799577713, 0.711863100528717, 0.7109220623970032, -0.45738711953163147, 1.119258999824524, 0.4006117284297943, -0.05140425264835358, 0.43076592683792114, -0.9084939360618591, 0.17938266694545746, -0.9396411180496216, -0.5297408103942871, -0.7029075622558594, -0.443869024515152, -0.7264383435249329, -0.4863522946834564, 0.4041048288345337, 0.3023659884929657, -0.4831932485103607, 0.6730989813804626, -0.6467412710189819, 0.17089809477329254, 0.6575332880020142, 0.07279279828071594, 0.019347595050930977, -0.10638615489006042, -0.2055824249982834, 0.015334543772041798, -0.9608618021011353, -0.4796938896179199, 1.0506877899169922, 0.4001529812812805, 0.3568783104419708, -0.0961204320192337, 0.8003003001213074, -0.09756673127412796, 0.2895446717739105, -0.8618136048316956, 0.5511311888694763, -0.09423515200614929, -0.9641638398170471, -0.19762249290943146, -0.29794231057167053, -0.8885920643806458, 0.32718196511268616, -0.15401387214660645, -0.6914294958114624, 0.17323945462703705, 0.1249711737036705, -0.29430803656578064, 0.27573075890541077, -1.0037891864776611, 1.0487806797027588, -0.06698496639728546, -0.34897926449775696, 0.23372283577919006, -0.6989365816116333, 0.2882951498031616, 0.14546489715576172, 0.22837817668914795, -0.23582805693149567, 0.11499098688364029, 0.7888662219047546, -0.6786702871322632, 0.766477108001709, -0.26500198245048523, 0.07429813593626022, 0.540224015712738, -0.22741001844406128, 0.5934237241744995, 0.033713843673467636, -0.22113332152366638, 0.3270739018917084, 0.16515858471393585, -0.3746839761734009, -0.480460524559021, 0.5761942863464355, -0.7680385112762451, -0.43900439143180847, -0.620366632938385, -0.558037519454956, -0.08893227577209473, 0.1288822740316391, 0.5006114840507507, 0.0858396366238594, 0.11225924640893936, 0.19681042432785034, 0.43825680017471313, -0.10645546019077301, 0.7255098819732666, 0.4302382469177246, -0.029539594426751137, -0.15204402804374695, 0.6670441627502441, 0.03739536553621292, 0.23161949217319489, 0.21589267253875732, 0.2571808695793152, -0.6128087043762207, -0.37214332818984985, -0.6120354533195496, 0.3394056558609009, -0.5779294967651367, -0.35528433322906494, -0.6050430536270142, -0.2081124633550644, -0.5189130902290344, -0.05123838409781456, -0.5412558913230896, -0.37033528089523315, -0.508229672908783, -0.03708958625793457, 0.7384644746780396, 0.26985716819763184, 0.014585770666599274, 0.30261242389678955, -0.6039042472839355, 0.21094895899295807, 0.35874131321907043, 0.26592394709587097, -0.1812169998884201, -0.6601080894470215, -0.1888025552034378, 0.3232707679271698, -0.31766462326049805, -0.8291914463043213, 0.5820906758308411, 0.11476670950651169, 0.41962727904319763, 0.04168767109513283, 0.15329833328723907, 0.8911536931991577, -0.44269463419914246, 0.8589337468147278, 0.20766833424568176, -0.9375281929969788, 0.6293891072273254, -0.3371938169002533, 0.18358394503593445, 0.5445677638053894, 0.5868911743164062, -0.40128031373023987, -0.5440600514411926, -0.6566687822341919, -1.121233344078064, 0.7811093330383301, 0.3337365686893463, 0.16965357959270477, -0.22055335342884064, 0.08731774240732193, -0.09353449195623398, 0.26966115832328796, -0.6792891025543213, -0.5263153314590454, -0.2561835050582886, -0.0019374722614884377, 0.047329217195510864, 0.1006845235824585, -0.056176792830228806, -0.5798212289810181, 0.9177513718605042, -0.10353708267211914, 0.34831106662750244, 0.32071030139923096, 0.10525780916213989, 0.18878811597824097, 0.14043842256069183, 0.2929975092411041, 0.4047309458255768, -0.5093215703964233, -0.33639633655548096, 0.20627444982528687, -0.4197467863559723, 0.0925920307636261, 0.07199837267398834, -0.23351746797561646, 0.2316383272409439, 0.24513471126556396, 1.0317342281341553, 0.00852667260915041, -0.6608469486236572, 0.36925843358039856, -0.11872366815805435, -0.3328906297683716, -0.32501593232154846, 0.10516106337308884, 0.1292949914932251, 0.43830737471580505, 0.3125002384185791, 0.13839255273342133, -0.09405466169118881, -0.7062452435493469, 0.036215681582689285, 0.47424137592315674, -0.3619171380996704, -0.3294823169708252, 0.8686283826828003, 0.1338193118572235, -0.1955162137746811, 0.6557225584983826, -0.31914055347442627, -0.8032020926475525, 0.8862611055374146, 0.36331772804260254, 0.9079343676567078, 0.027057763189077377, 0.32048240303993225, 0.765837550163269, 0.199500173330307, -0.23723909258842468, 0.41797858476638794, 0.12385529279708862, -0.7207688689231873, -0.4238254725933075, -0.7419049739837646, -0.23681297898292542, 0.17283400893211365, -0.7622628808021545, 0.4847489893436432, -0.42436718940734863, -0.30199500918388367, -0.000040831124351825565, 0.08511750400066376, -0.9766306281089783, 0.2787894308567047, -0.1632300466299057, 0.7849280834197998, -1.0545721054077148, 0.817401111125946, 0.7213544249534607, -0.6557801961898804, -1.0798419713974, -0.2728154957294464, -0.2702016830444336, -0.8319817185401917, 0.748152494430542, 0.07173379510641098, 0.08351614326238632, 0.03690037876367569, -0.3723955452442169, -0.8136084079742432, 1.2358144521713257, 0.40474164485931396, -0.42078161239624023, -0.09596212953329086, 0.031243881210684776, 0.7316263318061829, -0.30356571078300476, 0.554355800151825, 0.6688027381896973, 0.528383195400238, 0.34872767329216003, -0.9925920367240906, 0.025951655581593513, -0.32375368475914, -0.2028665840625763, 0.05222463235259056, -0.9177658557891846, 1.1162456274032593, -0.3183434307575226, -0.07983865588903427, -0.03123021312057972, 0.596577525138855, 0.42375293374061584, 0.14561797678470612, 0.39469286799430847, 0.5326184034347534, 0.7507666349411011, -0.4402424991130829, 1.1487879753112793, -0.35982373356819153, 0.7812644243240356, 0.9925114512443542, 0.053304821252822876, 0.7460720539093018, 0.6541374921798706, -0.47757259011268616, 0.6131100058555603, 0.7258675694465637, -0.24817675352096558, 0.5102152824401855, 0.16535387933254242, -0.07975611835718155, -0.053288962692022324, 0.01740608550608158, -0.5283752083778381, 0.5749105215072632, -0.021736590191721916, -0.31831642985343933, -0.027498213574290276, -0.23795461654663086, 0.37641990184783936, -0.2010185569524765, -0.09316912293434143, 0.4511137306690216, -0.2116948664188385, -0.9054494500160217, 1.0225275754928589, -0.10702205449342728, 0.9384243488311768, -0.6843957901000977, 0.20153814554214478, -0.2879704535007477, 0.116595558822155, -0.09592654556035995, -0.7986288666725159, 0.37482011318206787, 0.20243018865585327, -0.3066864609718323, -0.43800464272499084, 0.23175746202468872, -0.4813162684440613, -0.6983340978622437, 0.24619068205356598, 0.5023369193077087, 0.2967466413974762, 0.04665188491344452, -0.9134185910224915, 0.138480082154274, 0.20563846826553345, -0.3054550290107727, 0.2253522127866745, 0.2573908865451813, 0.22466818988323212, 0.7347734570503235, 0.7064396739006042, 0.0867350623011589, 0.19455473124980927, -0.07064139097929001, 0.9499059915542603, -0.29399004578590393, -0.27611178159713745, -0.8717975616455078, 1.008129358291626, -0.019573118537664413, -0.5368996858596802, 0.740211546421051, 0.7469490766525269, 1.01541006565094, -0.33840882778167725, 0.7344104051589966, -0.4787338078022003, 0.38025960326194763, -0.3486221134662628, 0.7196093797683716, -0.6453253626823425, 0.17191970348358154, -0.2919459939002991, -0.8934193253517151, 0.06029385328292847, 0.7823857069015503, -0.14980244636535645, 0.05591109022498131, 0.7698008418083191, 0.775425374507904, 0.019311603158712387, -0.35241788625717163, -0.1862165480852127, 0.24684996902942657, 0.43219462037086487, 0.6241283416748047, 0.4896569550037384, -0.9440918564796448, 0.6824939846992493, -0.6846912503242493, -0.08004187792539597, 0.07968538254499435, -0.8871533274650574, -1.0138643980026245, -0.7298434972763062, -0.5510316491127014, -0.5590852499008179, -0.149089515209198, 0.8049708008766174, 0.8331052660942078, -0.9200335144996643, -0.2746562659740448, -0.1377384215593338, 0.13746725022792816, -0.2185293436050415, -0.3060067892074585, 0.4327360689640045, -0.3405986726284027, -1.275310754776001, 0.2526695728302002, -0.14816540479660034, 0.21729081869125366, -0.07448123395442963, -0.12534672021865845, -0.35937005281448364, -0.1489800214767456, 0.5235024690628052, 0.2744002044200897, -0.5866506099700928, -0.3861905038356781, 0.29654183983802795, 0.13182954490184784, 0.2261703610420227, 0.36588266491889954, -0.8741590976715088, 0.4609276354312897, 0.6906929016113281, 0.21962513029575348, 0.7838414907455444, -0.21567045152187347, 0.44858086109161377, -0.8172436952590942, 0.4736058712005615, 0.35134056210517883, 0.4607449769973755, 0.2650283873081207, -0.23746907711029053, 0.5738976001739502, 0.28279390931129456, -0.39051660895347595, -0.975995659828186, -0.014428108930587769, -1.0121501684188843, -0.2164037972688675, 1.056301236152649, -0.326648086309433, -0.22550265491008759, 0.1893000453710556, -0.1495378017425537, 0.6857541799545288, -0.553490161895752, 0.8421729207038879, 0.9132731556892395, -0.06213851273059845, 0.14706547558307648, -0.5368731021881104, 0.4310126304626465, 0.4960443675518036, -0.7203549742698669, -0.20174835622310638, 0.17325171828269958, 0.5013146996498108, 0.11310801655054092, 0.32233157753944397, 0.051761236041784286, 0.04869895428419113, -0.18496952950954437, 0.026322409510612488, -0.16667816042900085, -0.1266392469406128, -0.05824348330497742, -0.04074963182210922, -0.3860621750354767, -0.437564492225647 ]
HooshvareLab/bert-fa-base-uncased
HooshvareLab
"2021-05-18T21:02:21Z"
49,758
6
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "fill-mask", "bert-fa", "bert-persian", "persian-lm", "fa", "arxiv:2005.12515", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
fill-mask
"2022-03-02T23:29:04Z"
--- language: fa tags: - bert-fa - bert-persian - persian-lm license: apache-2.0 --- # ParsBERT (v2.0) A Transformer-based Model for Persian Language Understanding We reconstructed the vocabulary and fine-tuned the ParsBERT v1.1 on the new Persian corpora in order to provide some functionalities for using ParsBERT in other scopes! Please follow the [ParsBERT](https://github.com/hooshvare/parsbert) repo for the latest information about previous and current models. ## Introduction ParsBERT is a monolingual language model based on Google’s BERT architecture. This model is pre-trained on large Persian corpora with various writing styles from numerous subjects (e.g., scientific, novels, news) with more than `3.9M` documents, `73M` sentences, and `1.3B` words. Paper presenting ParsBERT: [arXiv:2005.12515](https://arxiv.org/abs/2005.12515) ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?search=bert-fa) to look for fine-tuned versions on a task that interests you. ### How to use #### TensorFlow 2.0 ```python from transformers import AutoConfig, AutoTokenizer, TFAutoModel config = AutoConfig.from_pretrained("HooshvareLab/bert-fa-base-uncased") tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-base-uncased") model = TFAutoModel.from_pretrained("HooshvareLab/bert-fa-base-uncased") text = "ما در هوشواره معتقدیم با انتقال صحیح دانش و آگاهی، همه افراد میتوانند از ابزارهای هوشمند استفاده کنند. شعار ما هوش مصنوعی برای همه است." tokenizer.tokenize(text) >>> ['ما', 'در', 'هوش', '##واره', 'معتقدیم', 'با', 'انتقال', 'صحیح', 'دانش', 'و', 'اگاهی', '،', 'همه', 'افراد', 'میتوانند', 'از', 'ابزارهای', 'هوشمند', 'استفاده', 'کنند', '.', 'شعار', 'ما', 'هوش', 'مصنوعی', 'برای', 'همه', 'است', '.'] ``` #### Pytorch ```python from transformers import AutoConfig, AutoTokenizer, AutoModel config = AutoConfig.from_pretrained("HooshvareLab/bert-fa-base-uncased") tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-base-uncased") model = AutoModel.from_pretrained("HooshvareLab/bert-fa-base-uncased") ``` ## Training ParsBERT trained on a massive amount of public corpora ([Persian Wikidumps](https://dumps.wikimedia.org/fawiki/), [MirasText](https://github.com/miras-tech/MirasText)) and six other manually crawled text data from a various type of websites ([BigBang Page](https://bigbangpage.com/) `scientific`, [Chetor](https://www.chetor.com/) `lifestyle`, [Eligasht](https://www.eligasht.com/Blog/) `itinerary`, [Digikala](https://www.digikala.com/mag/) `digital magazine`, [Ted Talks](https://www.ted.com/talks) `general conversational`, Books `novels, storybooks, short stories from old to the contemporary era`). As a part of ParsBERT methodology, an extensive pre-processing combining POS tagging and WordPiece segmentation was carried out to bring the corpora into a proper format. ## Goals Objective goals during training are as below (after 300k steps). ``` bash ***** Eval results ***** global_step = 300000 loss = 1.4392426 masked_lm_accuracy = 0.6865794 masked_lm_loss = 1.4469004 next_sentence_accuracy = 1.0 next_sentence_loss = 6.534152e-05 ``` ## Derivative models ### Base Config #### ParsBERT v2.0 Model - [HooshvareLab/bert-fa-base-uncased](https://huggingface.co/HooshvareLab/bert-fa-base-uncased) #### ParsBERT v2.0 Sentiment Analysis - [HooshvareLab/bert-fa-base-uncased-sentiment-digikala](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-digikala) - [HooshvareLab/bert-fa-base-uncased-sentiment-snappfood](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-snappfood) - [HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-binary](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-binary) - [HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-multi](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-sentiment-deepsentipers-multi) #### ParsBERT v2.0 Text Classification - [HooshvareLab/bert-fa-base-uncased-clf-digimag](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-clf-digimag) - [HooshvareLab/bert-fa-base-uncased-clf-persiannews](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-clf-persiannews) #### ParsBERT v2.0 NER - [HooshvareLab/bert-fa-base-uncased-ner-peyma](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-ner-peyma) - [HooshvareLab/bert-fa-base-uncased-ner-arman](https://huggingface.co/HooshvareLab/bert-fa-base-uncased-ner-arman) ## Eval results ParsBERT is evaluated on three NLP downstream tasks: Sentiment Analysis (SA), Text Classification, and Named Entity Recognition (NER). For this matter and due to insufficient resources, two large datasets for SA and two for text classification were manually composed, which are available for public use and benchmarking. ParsBERT outperformed all other language models, including multilingual BERT and other hybrid deep learning models for all tasks, improving the state-of-the-art performance in Persian language modeling. ### Sentiment Analysis (SA) Task | Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | DeepSentiPers | |:------------------------:|:-----------:|:-----------:|:-----:|:-------------:| | Digikala User Comments | 81.72 | 81.74* | 80.74 | - | | SnappFood User Comments | 87.98 | 88.12* | 87.87 | - | | SentiPers (Multi Class) | 71.31* | 71.11 | - | 69.33 | | SentiPers (Binary Class) | 92.42* | 92.13 | - | 91.98 | ### Text Classification (TC) Task | Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | |:-----------------:|:-----------:|:-----------:|:-----:| | Digikala Magazine | 93.65* | 93.59 | 90.72 | | Persian News | 97.44* | 97.19 | 95.79 | ### Named Entity Recognition (NER) Task | Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | MorphoBERT | Beheshti-NER | LSTM-CRF | Rule-Based CRF | BiLSTM-CRF | |:-------:|:-----------:|:-----------:|:-----:|:----------:|:------------:|:--------:|:--------------:|:----------:| | PEYMA | 93.40* | 93.10 | 86.64 | - | 90.59 | - | 84.00 | - | | ARMAN | 99.84* | 98.79 | 95.89 | 89.9 | 84.03 | 86.55 | - | 77.45 | ### BibTeX entry and citation info Please cite in publications as the following: ```bibtex @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Questions? Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo.
[ -0.5872995853424072, -0.7802688479423523, 0.21764446794986725, 0.4042510986328125, -0.37747886776924133, 0.13071012496948242, -0.5608332753181458, -0.24910451471805573, 0.18471653759479523, 0.2709241509437561, -0.4243575632572174, -0.6729605793952942, -0.6751961708068848, 0.1745052933692932, -0.2725659906864166, 1.205590844154358, -0.05924728885293007, 0.17717495560646057, 0.01172654703259468, -0.16952350735664368, -0.30776146054267883, -0.5803337097167969, -0.5352758765220642, -0.2012082189321518, 0.2362387627363205, 0.3231419622898102, 0.6513931155204773, 0.24468667805194855, 0.6180596351623535, 0.34077340364456177, -0.3687974214553833, 0.08787712454795837, -0.06505535542964935, -0.0002714218571782112, -0.2195008248090744, -0.3784424364566803, -0.45808103680610657, -0.11705371737480164, 0.8239312767982483, 0.5657356381416321, -0.13522057235240936, 0.26320749521255493, 0.0957425981760025, 0.8325867056846619, -0.368063360452652, -0.06674026697874069, -0.35936009883880615, -0.04560987651348114, -0.4175344705581665, 0.1416863650083542, -0.3776147961616516, -0.40235981345176697, -0.010220741853117943, -0.39904114603996277, 0.23044997453689575, 0.10657116025686264, 1.4607454538345337, 0.13092519342899323, -0.2174171656370163, -0.22971373796463013, -0.5686885714530945, 1.082930088043213, -0.9523122906684875, 0.39178386330604553, 0.24081836640834808, 0.051679279655218124, -0.12950026988983154, -0.489031583070755, -0.8432729244232178, -0.05671136453747749, -0.34712183475494385, 0.18207015097141266, -0.38269123435020447, -0.30500370264053345, 0.3049900531768799, 0.5685751438140869, -0.5961662530899048, -0.1487027257680893, -0.3492773771286011, -0.2076977789402008, 0.5108468532562256, -0.013574184849858284, 0.3685609698295593, -0.561502993106842, -0.6180065274238586, -0.454008549451828, -0.40095263719558716, 0.3473650813102722, 0.26244691014289856, 0.026089612394571304, -0.39943936467170715, 0.523904025554657, -0.30438563227653503, 0.5185865759849548, 0.5808644890785217, -0.1820126473903656, 0.7671226859092712, -0.5130221843719482, -0.07745654135942459, -0.05942033231258392, 1.0747919082641602, 0.08639365434646606, 0.0767354667186737, 0.025057848542928696, -0.03245276212692261, 0.11522255837917328, -0.029660018160939217, -0.6760201454162598, -0.1906469315290451, 0.10712426155805588, -0.5297487378120422, -0.30965402722358704, 0.09626760333776474, -1.1761581897735596, -0.23309825360774994, -0.2509649991989136, 0.3577808141708374, -0.8584739565849304, -0.41900014877319336, 0.10078886151313782, -0.11430151015520096, 0.7028102278709412, 0.30176663398742676, -0.6074448823928833, 0.324419766664505, 0.5717836022377014, 0.7273696064949036, -0.017487797886133194, -0.3137615919113159, 0.0189354345202446, -0.15814222395420074, -0.243865504860878, 0.894831120967865, -0.3066965341567993, -0.1673678457736969, -0.39402663707733154, 0.004450362641364336, -0.20068737864494324, -0.3669319152832031, 0.8114926218986511, -0.3051703870296478, 0.7659571766853333, -0.16305109858512878, -0.5403943657875061, -0.2932940423488617, 0.15401813387870789, -0.5669315457344055, 1.3068084716796875, 0.11391900479793549, -1.0999263525009155, 0.053645409643650055, -0.6219739317893982, -0.3769628703594208, -0.16702508926391602, 0.01883881352841854, -0.6571369171142578, -0.05380285158753395, 0.3904361426830292, 0.5899010300636292, -0.4768125116825104, 0.411560982465744, 0.0788063108921051, -0.03156326711177826, 0.31821587681770325, -0.231275275349617, 0.9853689074516296, 0.2193080633878708, -0.6908930540084839, 0.027549346908926964, -0.8686574697494507, 0.04662847891449928, 0.23007290065288544, -0.2296644151210785, -0.3450676500797272, -0.008766035549342632, 0.05676370859146118, 0.3968515992164612, 0.3856862783432007, -0.7010143995285034, -0.082469142973423, -0.8059763312339783, 0.25354599952697754, 0.6954159736633301, 0.0697009265422821, 0.5243820548057556, -0.41682863235473633, 0.404935747385025, 0.1463945209980011, 0.1080566793680191, 0.014538814313709736, -0.3711930513381958, -1.1918760538101196, -0.3501870334148407, 0.5169154405593872, 0.6498437523841858, -0.7156231999397278, 0.7517764568328857, -0.49365589022636414, -0.9460211396217346, -0.461381733417511, 0.10326919704675674, 0.6459962129592896, 0.49627166986465454, 0.5604450106620789, -0.27569442987442017, -0.6076462864875793, -0.95769202709198, -0.4412415325641632, -0.18645775318145752, 0.3210245370864868, 0.1588025987148285, 0.5309159755706787, -0.22430028021335602, 0.8005656599998474, -0.3957342803478241, -0.3781677484512329, -0.4923185408115387, 0.14693309366703033, 0.5563334226608276, 0.6632245779037476, 0.48529431223869324, -0.7920063734054565, -0.7838472723960876, 0.05154634267091751, -0.60931795835495, 0.05061690881848335, -0.24190056324005127, -0.3663196265697479, 0.6571148633956909, 0.32483386993408203, -0.672032356262207, 0.29582419991493225, 0.4555891752243042, -0.5590544939041138, 0.4586293697357178, 0.08235051482915878, -0.05545811727643013, -1.3625887632369995, 0.2585909366607666, 0.05111593008041382, -0.11178922653198242, -0.689529538154602, -0.049869947135448456, 0.19120775163173676, 0.0976351797580719, -0.4140017330646515, 0.7473987936973572, -0.5433775186538696, 0.38425299525260925, 0.08864860981702805, -0.02406369149684906, -0.02075449377298355, 0.8014603853225708, 0.11761955171823502, 0.8067888021469116, 0.5834202170372009, -0.5104151368141174, 0.14679120481014252, 0.584696888923645, -0.421953022480011, 0.4287213087081909, -0.7228770852088928, -0.0692778155207634, -0.18661832809448242, 0.15193293988704681, -0.8913697600364685, -0.2154991775751114, 0.5846280455589294, -0.7662333846092224, 0.4399513006210327, 0.23456524312496185, -0.5417273044586182, -0.2706807553768158, -0.4852539002895355, 0.14881572127342224, 0.7557166814804077, -0.41251111030578613, 0.6956958174705505, 0.2880711853504181, -0.2553144097328186, -0.6056899428367615, -0.5461465120315552, -0.07104238867759705, -0.25908827781677246, -0.5942314863204956, 0.35582226514816284, 0.06058007478713989, -0.08089479804039001, 0.05108041688799858, -0.1719656139612198, -0.08877692371606827, 0.01717723160982132, 0.2452416867017746, 0.3722834289073944, -0.11092500388622284, 0.12577897310256958, 0.1463133841753006, -0.05836581438779831, 0.009143092669546604, 0.12110327184200287, 0.8494128584861755, -0.5961230993270874, -0.10508956760168076, -0.643990695476532, 0.20575571060180664, 0.40493476390838623, -0.3999412953853607, 0.9398980736732483, 0.929756760597229, -0.18354053795337677, 0.000948966306168586, -0.8162738084793091, 0.17502783238887787, -0.4372868537902832, 0.23743291199207306, -0.2809109389781952, -0.9132798910140991, 0.3631287217140198, -0.1843133568763733, -0.1893949955701828, 1.0859302282333374, 0.7470685243606567, -0.03162461519241333, 0.7883209586143494, 0.4196699857711792, -0.16644532978534698, 0.5033441185951233, -0.4022323191165924, 0.41090476512908936, -0.980390727519989, -0.42960524559020996, -0.5031752586364746, -0.11974502354860306, -0.8088253736495972, -0.5536624193191528, 0.27202025055885315, 0.18102571368217468, -0.32571372389793396, 0.6444498300552368, -0.57997727394104, 0.12913711369037628, 0.6341776847839355, 0.20391692221164703, 0.028498174622654915, 0.15246477723121643, -0.19041231274604797, -0.05076811462640762, -0.5793483257293701, -0.6216455101966858, 0.9878988265991211, 0.47266995906829834, 0.5667270421981812, 0.1269482672214508, 0.8090991973876953, 0.17351624369621277, -0.0662144273519516, -0.537647008895874, 0.7270364761352539, -0.10972589254379272, -0.6350119113922119, -0.28028687834739685, -0.2552138864994049, -0.8314368724822998, 0.2871887981891632, -0.1805296540260315, -0.5141997337341309, 0.5875841379165649, -0.04432813450694084, -0.3237522542476654, 0.23382827639579773, -0.5172120928764343, 0.8867753148078918, -0.30372899770736694, -0.31894010305404663, -0.2744109332561493, -0.9214627742767334, 0.22456154227256775, -0.08615371584892273, 0.36134833097457886, -0.30408841371536255, 0.015045732259750366, 0.9741017818450928, -0.47715306282043457, 0.7729615569114685, -0.059620894491672516, 0.11884207278490067, 0.38589632511138916, -0.08255814015865326, 0.4970739185810089, -0.07203055173158646, -0.14396020770072937, 0.4598642587661743, 0.0776914656162262, -0.5258918404579163, -0.21254441142082214, 0.6572709679603577, -1.012116551399231, -0.5404951572418213, -1.021459937095642, -0.16353094577789307, -0.09304380416870117, 0.2668018937110901, 0.4310759902000427, 0.3310229182243347, -0.23700198531150818, 0.32017114758491516, 0.7463052868843079, -0.5534363985061646, 0.4548649191856384, 0.30875346064567566, 0.06312435865402222, -0.6374021768569946, 0.9540174007415771, -0.25404077768325806, 0.11275162547826767, 0.4810458719730377, 0.16967706382274628, -0.15712133049964905, -0.29597175121307373, -0.42151322960853577, 0.5341636538505554, -0.5813786387443542, -0.4409562647342682, -0.7687548398971558, -0.2757798731327057, -0.6457503437995911, 0.03839175030589104, -0.34124481678009033, -0.5620115399360657, -0.4015926718711853, 0.07678422331809998, 0.44439104199409485, 0.43405190110206604, -0.15720869600772858, 0.2879498600959778, -0.7427182793617249, 0.23709377646446228, -0.010823334567248821, 0.2771490812301636, -0.09418035298585892, -0.674484133720398, -0.3036328852176666, 0.012281172908842564, -0.399394690990448, -0.9790406823158264, 0.7840772271156311, 0.32731762528419495, 0.47020676732063293, 0.20914670825004578, 0.014386489056050777, 0.6391624808311462, -0.5118787884712219, 0.8879625797271729, 0.3114427626132965, -1.2307759523391724, 0.7018048167228699, -0.26994094252586365, 0.1886664181947708, 0.5735389590263367, 0.5450495481491089, -0.675753116607666, -0.3065352141857147, -0.7905896902084351, -0.9910878539085388, 0.9114243388175964, 0.3969413936138153, 0.22970347106456757, -0.07411987334489822, 0.1073465347290039, 0.0403122752904892, 0.29846110939979553, -0.8343623280525208, -0.48509761691093445, -0.34041061997413635, -0.3504406809806824, -0.03585901856422424, -0.4805293679237366, 0.2301073968410492, -0.5652469396591187, 1.034151554107666, 0.3581027686595917, 0.6061707735061646, 0.5018770098686218, -0.31813129782676697, 0.09204363822937012, 0.5549197196960449, 0.5155158638954163, 0.34191223978996277, -0.08955588936805725, 0.0461796335875988, 0.3694642186164856, -0.5199261903762817, -0.003854756709188223, 0.19997645914554596, -0.19299505650997162, 0.28174370527267456, 0.2971707880496979, 1.0792324542999268, 0.23311176896095276, -0.7095775604248047, 0.6892567873001099, 0.04520631954073906, -0.1505686491727829, -0.649029016494751, -0.13303974270820618, -0.15146146714687347, 0.2392362505197525, 0.1678106039762497, 0.12976689636707306, 0.1033887267112732, -0.41256341338157654, -0.00044235322275198996, 0.30915746092796326, -0.12713827192783356, -0.29999586939811707, 0.38625630736351013, -0.058543168008327484, -0.034184787422418594, 0.37519362568855286, -0.37799015641212463, -0.9999462366104126, 0.4665943682193756, 0.3959020674228668, 0.7816727161407471, -0.37612321972846985, 0.3595694601535797, 0.7219076156616211, 0.2177521288394928, -0.18411266803741455, 0.3158188462257385, 0.05889304727315903, -0.6166787147521973, -0.3323848247528076, -1.1300204992294312, -0.19058111310005188, -0.08231310546398163, -0.5906599760055542, 0.308866411447525, -0.5876633524894714, -0.21894344687461853, 0.1565363109111786, 0.15412314236164093, -0.6390340924263, 0.18600749969482422, 0.19696786999702454, 0.7682251334190369, -0.8012736439704895, 0.810748815536499, 1.0026804208755493, -0.5579922795295715, -0.8773691654205322, -0.034601837396621704, -0.24671292304992676, -0.5864607691764832, 0.8005328178405762, 0.03377372398972511, 0.10850638896226883, 0.07166320830583572, -0.4281248450279236, -1.2685176134109497, 0.9781086444854736, -0.120464988052845, -0.45061713457107544, 0.004688461311161518, 0.2160646617412567, 0.7900593876838684, 0.11480940133333206, 0.20166486501693726, 0.42233946919441223, 0.48788610100746155, -0.13274633884429932, -1.0466357469558716, 0.2872577905654907, -0.6114857196807861, 0.23346726596355438, 0.4571925103664398, -0.9111632108688354, 1.2167459726333618, 0.22109775245189667, -0.26549795269966125, 0.23425820469856262, 0.7251386046409607, 0.056636419147253036, 0.05819247290492058, 0.42562931776046753, 0.8595786094665527, 0.5524154901504517, -0.17797483503818512, 1.0200148820877075, -0.353889137506485, 0.6486988663673401, 0.8821694850921631, 0.08519740402698517, 0.9875338673591614, 0.42205941677093506, -0.4405876398086548, 1.071051836013794, 0.4362153112888336, -0.32262203097343445, 0.5399190187454224, -0.0014335683081299067, -0.23274648189544678, -0.34836819767951965, -0.030186166986823082, -0.4330494701862335, 0.4394727349281311, 0.31945228576660156, -0.3287762403488159, -0.1671411246061325, 0.24807612597942352, 0.38253670930862427, 0.17156215012073517, -0.12334658205509186, 0.8814350962638855, -0.019738461822271347, -0.6866108179092407, 0.7027432322502136, 0.28325191140174866, 0.8299084305763245, -0.3748375475406647, 0.1255306601524353, -0.13639958202838898, 0.3695581257343292, -0.20586495101451874, -0.6154513359069824, 0.318962037563324, 0.16960273683071136, -0.2298429310321808, -0.27889811992645264, 0.9843811392784119, -0.2363077849149704, -0.8006970882415771, 0.10427219420671463, 0.5526872277259827, 0.1705988347530365, -0.10017611086368561, -0.877689003944397, -0.04675337299704552, 0.1881314516067505, -0.4624539017677307, 0.22856037318706512, 0.439142644405365, -0.13633477687835693, 0.3585268259048462, 0.7118744254112244, 0.04078470915555954, 0.16598115861415863, -0.341022789478302, 0.9705586433410645, -0.8812754154205322, -0.24091637134552002, -0.9027633666992188, 0.5109738111495972, -0.2865043878555298, -0.36699333786964417, 1.1151516437530518, 0.5856956243515015, 0.9646329283714294, -0.10595688968896866, 0.6354036927223206, -0.4055110514163971, 1.0342971086502075, -0.3490503132343292, 0.6984590888023376, -0.57607501745224, 0.047958891838788986, -0.380348801612854, -0.7461195588111877, -0.2653981149196625, 0.855913519859314, -0.509453296661377, -0.05378205329179764, 0.8464954495429993, 0.6642218828201294, 0.1829187273979187, -0.12383223325014114, -0.1972363144159317, 0.399452805519104, -0.019753534346818924, 0.6132301688194275, 0.8396534323692322, -0.7352350950241089, 0.4478798508644104, -0.7169644236564636, -0.09121740609407425, -0.19985045492649078, -0.5840879082679749, -1.0397027730941772, -0.6736953258514404, -0.43946391344070435, -0.4515375792980194, -0.06103312596678734, 1.0762569904327393, 0.20767951011657715, -1.1009843349456787, -0.20183803141117096, -0.18599313497543335, 0.07174742966890335, -0.029410358518362045, -0.2796381115913391, 0.7198872566223145, -0.40792566537857056, -0.8270808458328247, 0.02008095569908619, -0.05689149722456932, -0.04247806593775749, 0.05979331582784653, 0.011545260436832905, -0.5574340224266052, 0.006718928460031748, 0.5337696075439453, 0.29134461283683777, -0.8454138040542603, 0.03659336641430855, 0.2698209881782532, -0.3486802279949188, 0.17384162545204163, 0.2600519359111786, -0.8534483313560486, 0.045223865658044815, 0.6353116035461426, 0.48047858476638794, 0.3431028127670288, 0.06677708029747009, 0.13446342945098877, -0.5381872057914734, 0.1221865713596344, 0.27050650119781494, 0.2561478912830353, 0.3748650550842285, -0.35899263620376587, 0.5056830644607544, 0.3199440538883209, -0.47519028186798096, -0.8217161297798157, -0.1972701996564865, -1.2554655075073242, -0.2999820113182068, 1.3230464458465576, -0.061747413128614426, -0.35544583201408386, 0.17880746722221375, -0.4478023052215576, 0.5395115613937378, -0.4906070828437805, 0.5311771035194397, 0.7646282315254211, -0.010706271044909954, -0.05276723578572273, -0.2656671702861786, 0.4927524924278259, 0.8430346846580505, -0.7678955793380737, -0.28902173042297363, 0.4263816177845001, 0.34465232491493225, 0.4343779683113098, 0.43518373370170593, -0.13596227765083313, 0.19042626023292542, -0.27184295654296875, 0.3381469249725342, 0.1557295173406601, -0.0034627437125891447, -0.5015999674797058, -0.1144825667142868, -0.07987774163484573, -0.13708725571632385 ]
wajidlinux99/gibberish-text-detector
wajidlinux99
"2023-01-16T12:15:52Z"
49,752
3
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "text", "nlp", "correction", "en", "endpoints_compatible", "region:us" ]
text-classification
"2023-01-16T11:46:09Z"
--- language: - en pipeline_tag: text-classification tags: - text - nlp - correction --- # Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 492513457 - CO2 Emissions (in grams): 5.527544460835904 ## Validation Metrics - Loss: 0.07609463483095169 - Accuracy: 0.9735624586913417 - Macro F1: 0.9736173135739408 - Micro F1: 0.9735624586913417 - Weighted F1: 0.9736173135739408 - Macro Precision: 0.9737771415197378 - Micro Precision: 0.9735624586913417 - Weighted Precision: 0.9737771415197378 - Macro Recall: 0.9735624586913417 - Micro Recall: 0.9735624586913417 - Weighted Recall: 0.9735624586913417 ## Usage You can use CURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "Is this text really worth it?"}' https://api-inference.huggingface.co/models/wajidlinux99/gibberish-text-detector ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("wajidlinux99/gibberish-text-detector", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("wajidlinux99/gibberish-text-detector", use_auth_token=True) inputs = tokenizer("Is this text really worth it?", return_tensors="pt") outputs = model(**inputs) ``` # Original Repository ***madhurjindal/autonlp-Gibberish-Detector-492513457
[ -0.4375399351119995, -0.5672271847724915, 0.20771244168281555, 0.1024775356054306, -0.03225914388895035, -0.011039124801754951, -0.06572819501161575, -0.40970420837402344, -0.00936855562031269, 0.17410370707511902, -0.36915597319602966, -0.4983159005641937, -0.8831946849822998, 0.0489853098988533, -0.5376023650169373, 1.0435303449630737, 0.10594203323125839, -0.09889721125364304, 0.21635915338993073, 0.0033621753100305796, -0.3565145432949066, -0.9499503374099731, -0.8541358709335327, -0.06739969551563263, 0.31568583846092224, 0.1023683175444603, 0.5671240091323853, 0.3278847634792328, 0.5166178345680237, 0.39310917258262634, -0.20292024314403534, 0.005857968237251043, -0.21394570171833038, -0.21034470200538635, -0.033215735107660294, -0.37979328632354736, -0.4735865294933319, 0.19351328909397125, 0.602114737033844, 0.4133794903755188, -0.1575596034526825, 0.3969559967517853, 0.1626577079296112, 0.45800426602363586, -0.7161270976066589, 0.383768230676651, -0.6003491282463074, 0.14114753901958466, 0.11979492753744125, -0.07328109443187714, -0.4185923635959625, 0.042857587337493896, 0.2662971019744873, -0.5488325953483582, 0.2869797348976135, 0.3150320053100586, 1.4925209283828735, 0.4876513183116913, -0.20570342242717743, -0.5351252555847168, -0.25313109159469604, 0.8104760646820068, -1.183817744255066, 0.33797043561935425, 0.314566433429718, 0.09742522984743118, 0.05219784379005432, -0.851331353187561, -0.8368199467658997, -0.06297376751899719, -0.4528820514678955, 0.35080385208129883, -0.13317807018756866, -0.0017555606318637729, 0.282461941242218, 0.6399192810058594, -0.8787226676940918, 0.08874968439340591, -0.24891544878482819, -0.5261292457580566, 0.8550112247467041, 0.22379058599472046, 0.3586867153644562, -0.6039966940879822, -0.47598323225975037, -0.5546161532402039, -0.03393200412392616, 0.21517343819141388, 0.5633283853530884, 0.3463088274002075, -0.3954656720161438, 0.5518088936805725, -0.2652181386947632, 0.648411750793457, 0.06873482465744019, -0.012332736514508724, 0.5280337333679199, -0.4502258896827698, -0.49178194999694824, 0.00006440943252528086, 1.2303470373153687, 0.20490984618663788, 0.10106706619262695, 0.23502571880817413, -0.03704488277435303, 0.06739643961191177, -0.02835829183459282, -0.9994392991065979, -0.4722500741481781, 0.42356348037719727, -0.4350365996360779, -0.5260412693023682, 0.1326499879360199, -0.7871787548065186, 0.2035597264766693, -0.2929244935512543, 0.5616506338119507, -0.375264048576355, -0.6698521971702576, 0.27658456563949585, -0.21913230419158936, 0.3191201984882355, 0.17838168144226074, -1.0393574237823486, -0.029496051371097565, 0.38048601150512695, 1.1511945724487305, -0.0846446231007576, -0.35590916872024536, 0.12717090547084808, -0.05318516865372658, -0.12151794880628586, 0.7968027591705322, -0.24780961871147156, -0.3079884350299835, -0.30808407068252563, 0.2139313668012619, -0.3806300163269043, -0.29943928122520447, 0.6436306238174438, -0.2891763746738434, 0.5816263556480408, 0.09562687575817108, -0.7061669826507568, -0.3377448320388794, 0.3560689091682434, -0.5586384534835815, 1.287476897239685, 0.3398206830024719, -0.8532683849334717, 0.49371206760406494, -0.6907140612602234, -0.19813761115074158, 0.10188672691583633, 0.025569157674908638, -0.8101387619972229, -0.23511303961277008, 0.164261132478714, 0.5689114928245544, 0.033634234219789505, 0.6420019865036011, -0.4011330008506775, -0.22170889377593994, 0.07153262943029404, -0.668886125087738, 1.2451751232147217, 0.45708873867988586, -0.46838751435279846, 0.133175790309906, -1.0008841753005981, 0.270081490278244, 0.10021359473466873, -0.3426859378814697, -0.2683691680431366, -0.5219106674194336, 0.37490150332450867, 0.3143674433231354, 0.17572776973247528, -0.38270142674446106, 0.180733323097229, -0.4337999224662781, 0.5512717962265015, 0.7493664026260376, -0.08146163821220398, 0.2239982634782791, -0.3297865688800812, 0.14817337691783905, 0.09074672311544418, 0.3310365080833435, 0.09007716923952103, -0.6186311841011047, -1.0761905908584595, -0.47519344091415405, 0.3287349343299866, 0.4896850287914276, -0.3806501626968384, 1.0835421085357666, -0.11077255755662918, -0.8394753932952881, -0.467721164226532, -0.14554694294929504, 0.2978030741214752, 0.7106429934501648, 0.5366683602333069, -0.26629531383514404, -0.5234077572822571, -0.8363770246505737, -0.4756673574447632, -0.3750109374523163, 0.06363445520401001, 0.10669276118278503, 0.926335871219635, -0.4252662658691406, 0.968707799911499, -0.6478251218795776, -0.36064019799232483, 0.0988093763589859, 0.5441545844078064, 0.29254788160324097, 0.77720046043396, 0.8041266202926636, -0.6627520322799683, -0.6464145183563232, -0.5536766052246094, -0.8656884431838989, 0.029592305421829224, -0.1289983093738556, -0.2561012804508209, 0.3674619495868683, 0.27645009756088257, -0.5098711252212524, 0.5044172406196594, 0.6429721713066101, -0.666322648525238, 0.6340776085853577, -0.2459803819656372, 0.134783074259758, -1.0028835535049438, 0.3706088960170746, -0.07137639075517654, -0.1776704639196396, -0.4185847043991089, 0.12290561944246292, 0.07581175863742828, -0.20848466455936432, -0.5058167576789856, 0.7683431506156921, -0.30401378870010376, 0.28353947401046753, -0.3156336545944214, -0.2281675934791565, 0.22879599034786224, 0.6762568354606628, 0.21067604422569275, 0.7488123178482056, 0.6652047634124756, -0.8096492290496826, 0.377157598733902, 0.30622488260269165, -0.34722453355789185, 0.2835043966770172, -0.6406669020652771, -0.009243764914572239, 0.16572606563568115, 0.3393116593360901, -1.2946112155914307, -0.3447684347629547, 0.3671799600124359, -0.6762356162071228, 0.3411233425140381, -0.22549083828926086, -0.6591247320175171, -0.4134138226509094, 0.00841216929256916, 0.3961862027645111, 0.3534431457519531, -0.7276973128318787, 0.49707862734794617, 0.25293809175491333, 0.00578644871711731, -0.6444666385650635, -0.9730890989303589, -0.06820356845855713, -0.15599146485328674, -0.5000766515731812, 0.13520070910453796, -0.3466070294380188, 0.20335310697555542, -0.00014231282693799585, 0.005853698123246431, 0.010851368308067322, 0.17710979282855988, 0.08922672271728516, 0.3824364244937897, 0.07755404710769653, 0.05867188051342964, -0.1501607745885849, -0.4344032406806946, 0.30197346210479736, -0.1032220646739006, 0.9074645042419434, -0.5212579369544983, -0.26804324984550476, -0.7176605463027954, -0.0677601769566536, 0.5062964558601379, -0.008631170727312565, 0.7744258642196655, 0.9161530137062073, -0.39154356718063354, 0.019796423614025116, -0.4744180142879486, -0.19995339214801788, -0.5501057505607605, 0.4402497708797455, -0.31577563285827637, -0.6372794508934021, 0.5408620238304138, 0.14653487503528595, -0.08329650014638901, 1.0965906381607056, 0.530978262424469, 0.0017931300681084394, 1.1867228746414185, 0.2685385048389435, -0.1883697658777237, 0.2829040288925171, -0.7257187962532043, 0.27049127221107483, -0.6747531890869141, -0.3877775967121124, -0.5105047821998596, -0.01818927749991417, -0.7277551293373108, 0.016945110633969307, 0.1591055989265442, 0.001391379744745791, -0.6155104637145996, 0.5361584424972534, -1.0468717813491821, 0.04524944722652435, 0.6625150442123413, -0.04429423063993454, 0.2673722803592682, -0.00515388511121273, -0.03224877268075943, 0.07317187637090683, -0.7050926685333252, -0.3971591293811798, 1.031073808670044, 0.5351983904838562, 0.6249668002128601, 0.12656614184379578, 0.5111312866210938, 0.2789817452430725, 0.27212077379226685, -0.7523264288902283, 0.49823084473609924, 0.0015312222531065345, -1.0129045248031616, -0.2451343685388565, -0.6522254347801208, -0.7457370162010193, 0.27018487453460693, -0.3299339711666107, -0.41651931405067444, 0.2238464653491974, 0.2343190312385559, -0.3724568486213684, 0.5921292901039124, -0.8852428197860718, 1.098661184310913, -0.43621933460235596, -0.24787575006484985, 0.04485079646110535, -0.5454491972923279, 0.4252036213874817, 0.06279595196247101, 0.2779819369316101, -0.20515601336956024, 0.1550775021314621, 0.9259915947914124, -0.51546311378479, 0.8704562783241272, -0.3700115382671356, -0.13487163186073303, 0.4152052104473114, -0.2621936798095703, 0.3569726347923279, 0.17240886390209198, -0.026035595685243607, 0.6011925339698792, 0.20255856215953827, -0.3913704752922058, -0.37238356471061707, 0.6681497097015381, -1.0656880140304565, -0.39362001419067383, -1.078118085861206, -0.4574119448661804, 0.198395773768425, 0.4012905955314636, 0.6302964091300964, 0.3818669319152832, 0.2028178721666336, -0.023596089333295822, 0.5181475877761841, -0.347557932138443, 0.7372323870658875, 0.4962180256843567, -0.29472845792770386, -0.6067711114883423, 1.025909662246704, 0.11164038628339767, 0.3142310082912445, 0.2391304224729538, 0.44470369815826416, -0.6281871199607849, -0.3432343602180481, -0.5947527885437012, 0.08074391633272171, -0.7172356843948364, -0.42825764417648315, -0.9344931244850159, -0.6570335626602173, -0.6477015018463135, 0.08683609962463379, -0.5044517517089844, -0.35271701216697693, -0.4126650393009186, -0.052606694400310516, 0.521897554397583, 0.24576109647750854, -0.18506723642349243, 0.5184834003448486, -0.7933796048164368, 0.1868080347776413, 0.2848546802997589, 0.4276926815509796, 0.10957807302474976, -1.0065048933029175, -0.13701148331165314, 0.012187081389129162, -0.24135911464691162, -0.7048041224479675, 0.7769430875778198, 0.09114260226488113, 0.5199456810951233, 0.44733908772468567, 0.13117343187332153, 0.8362388014793396, 0.023389682173728943, 0.8503732681274414, 0.19059070944786072, -1.186750054359436, 0.4256601631641388, -0.06026123836636543, 0.24617402255535126, 0.5709677934646606, 0.45981356501579285, -0.5449241399765015, -0.5437685251235962, -0.982683002948761, -1.1566107273101807, 0.7154787182807922, 0.4252736270427704, -0.043623972684144974, 0.06274791061878204, 0.4701744318008423, -0.1525215059518814, 0.11724700033664703, -1.1331665515899658, -0.5218703746795654, -0.62201327085495, -0.4504295885562897, 0.07144160568714142, -0.058230165392160416, 0.1097181886434555, -0.6567661166191101, 1.0129704475402832, -0.14516745507717133, 0.4308156669139862, 0.43781939148902893, -0.1988886147737503, 0.26129311323165894, 0.21946917474269867, 0.633639395236969, 0.20751211047172546, -0.44094163179397583, 0.19508805871009827, 0.18633414804935455, -0.6490789651870728, 0.2351684421300888, 0.09373698383569717, -0.18354874849319458, 0.05204731598496437, 0.3447021245956421, 0.828111469745636, -0.11676733940839767, -0.3762798309326172, 0.5886141061782837, -0.3052341043949127, -0.30628228187561035, -0.7793821692466736, 0.3663935959339142, -0.17145885527133942, 0.0015176921151578426, 0.43332982063293457, 0.33901527523994446, 0.317827433347702, -0.4912140667438507, 0.12841786444187164, 0.40606212615966797, -0.3041253089904785, -0.07247976213693619, 0.8523299694061279, -0.01683545671403408, -0.1032726839184761, 0.7285131216049194, -0.4065890312194824, -0.6556934714317322, 0.8054757118225098, 0.4377613663673401, 0.8550453782081604, -0.062419164925813675, -0.14008742570877075, 1.1205536127090454, 0.29247552156448364, -0.11552862077951431, 0.2077450305223465, 0.23760654032230377, -0.5906221866607666, -0.28107520937919617, -0.8315140604972839, -0.29886382818222046, 0.4429157078266144, -0.8040122389793396, 0.3399116098880768, -0.48572874069213867, -0.3465759754180908, 0.04367692396044731, 0.16476790606975555, -0.7138826251029968, 0.576920211315155, 0.1641957312822342, 0.7903729677200317, -1.093133568763733, 0.696318507194519, 0.4751260578632355, -0.726007878780365, -1.1281304359436035, -0.24786528944969177, -0.10277941077947617, -0.9158833622932434, 0.7222875356674194, 0.3945918083190918, -0.022018253803253174, 0.2033015936613083, -0.7658101916313171, -1.1278349161148071, 1.1174944639205933, -0.016415124759078026, -0.7943083643913269, -0.08202913403511047, 0.3127761781215668, 0.5314451456069946, -0.03791757673025131, 0.8031612038612366, 0.3689356744289398, 0.6393580436706543, -0.12203692644834518, -0.865907609462738, 0.14957261085510254, -0.44590041041374207, -0.2538970410823822, -0.04027826339006424, -1.1880563497543335, 1.0485378503799438, 0.05230827257037163, -0.22465400397777557, -0.031468406319618225, 0.6595014333724976, 0.3017195761203766, 0.2327466905117035, 0.6987741589546204, 0.9364811182022095, 0.7897372841835022, -0.27674561738967896, 0.8879484534263611, -0.460395485162735, 1.0497170686721802, 0.9887692332267761, 0.08736911416053772, 0.7253118753433228, 0.1330561637878418, -0.27486860752105713, 0.7668413519859314, 0.8388190865516663, -0.4176104664802551, 0.49836498498916626, 0.11363094300031662, -0.08977530896663666, -0.13009363412857056, 0.2746935486793518, -0.5981380343437195, 0.5475789904594421, 0.3381863236427307, -0.3030897378921509, -0.060052163898944855, -0.058037664741277695, 0.14963728189468384, -0.3038604259490967, -0.11260385066270828, 0.7048183083534241, -0.17995548248291016, -0.638175904750824, 0.8676234483718872, -0.08495140820741653, 1.113301396369934, -0.6580505967140198, 0.011438511312007904, 0.06799618154764175, 0.38902929425239563, -0.4474085867404938, -0.7691405415534973, 0.3785635828971863, -0.1456078141927719, -0.1549609750509262, -0.08557313680648804, 0.789952278137207, -0.4679974317550659, -0.6680147051811218, 0.3948332965373993, 0.15826009213924408, 0.21111181378364563, -0.18808095157146454, -1.0349570512771606, -0.09203582257032394, -0.07134616374969482, -0.38813698291778564, 0.2136283963918686, 0.127639040350914, 0.41893598437309265, 0.6746559143066406, 0.9520901441574097, -0.10091684013605118, 0.18729166686534882, -0.09223593771457672, 0.7441609501838684, -0.7388943433761597, -0.547566294670105, -1.0428431034088135, 0.4204472303390503, -0.2397156059741974, -0.5209531188011169, 0.8932997584342957, 1.0449981689453125, 1.0806223154067993, -0.05804524943232536, 1.0145238637924194, -0.2530108392238617, 0.4707047939300537, -0.5500452518463135, 1.034362554550171, -0.6208280920982361, 0.09346331655979156, -0.3314879238605499, -0.5696865320205688, -0.15291161835193634, 1.0702261924743652, -0.11434360593557358, 0.2155647873878479, 0.6934854388237, 0.743224561214447, -0.04373802989721298, 0.08421959728002548, 0.035618722438812256, 0.2096594274044037, 0.47013095021247864, 0.43848392367362976, 0.6995483636856079, -0.9763606190681458, 0.6055402755737305, -0.49884021282196045, -0.20856256783008575, -0.22861625254154205, -0.9336536526679993, -0.9704453945159912, -0.42369088530540466, -0.5469494462013245, -0.6973314881324768, -0.36730268597602844, 0.8780003786087036, 0.8965969681739807, -0.9812757968902588, -0.17073743045330048, -0.4346984624862671, -0.25504058599472046, -0.1329798400402069, -0.4145009219646454, 0.8082190752029419, -0.5031817555427551, -1.013838529586792, -0.10619132220745087, -0.09307140111923218, 0.41765525937080383, -0.41438624262809753, -0.04591244459152222, -0.4106592535972595, -0.1838075965642929, 0.46509408950805664, 0.20375476777553558, -0.6167301535606384, -0.3988708257675171, -0.07593285292387009, -0.319455087184906, 0.15388348698616028, 0.30426380038261414, -0.457398384809494, 0.36501961946487427, 0.6377010345458984, 0.4541272222995758, 0.638299286365509, -0.21450833976268768, 0.14226962625980377, -0.6317989230155945, 0.4256080090999603, 0.1824350506067276, 0.4527612030506134, 0.3013336658477783, -0.4893084764480591, 0.596233069896698, 0.6738558411598206, -0.8442555665969849, -0.8382036089897156, -0.0821840763092041, -1.050982117652893, -0.31845754384994507, 1.1583311557769775, -0.18885287642478943, -0.26433897018432617, -0.25095778703689575, -0.21875298023223877, 0.47941306233406067, -0.45235592126846313, 0.9074428677558899, 0.8464081287384033, -0.098151795566082, -0.0829319879412651, -0.479310542345047, 0.556977391242981, 0.5714428424835205, -1.041732907295227, -0.02666674181818962, 0.11238065361976624, 0.5918078422546387, 0.5663506984710693, 0.5327844619750977, -0.09481843560934067, -0.20086875557899475, 0.16915936768054962, 0.3196394741535187, -0.08407378941774368, -0.22743697464466095, -0.08344737440347672, -0.040136970579624176, -0.23558539152145386, -0.1679058074951172 ]
cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all
cardiffnlp
"2022-09-30T00:31:18Z"
49,723
4
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_multi", "model-index", "endpoints_compatible", "has_space", "region:us" ]
text-classification
"2022-09-29T17:01:29Z"
--- datasets: - cardiffnlp/tweet_topic_multi metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_multi type: cardiffnlp/tweet_topic_multi args: cardiffnlp/tweet_topic_multi split: test_2021 metrics: - name: F1 type: f1 value: 0.7647668393782383 - name: F1 (macro) type: f1_macro value: 0.6187022581213811 - name: Accuracy type: accuracy value: 0.5485407980941036 pipeline_tag: text-classification widget: - text: "I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but man does their experience versus the Blue Jackets this year and last help them a lot versus this Islanders team. Another meat grinder upcoming for the good guys" example_title: "Example 1" - text: "Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US." example_title: "Example 2" --- # cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the [tweet_topic_multi](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi). This model is fine-tuned on `train_all` split and validated on `test_2021` split of tweet_topic. Fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi/blob/main/lm_finetuning.py). It achieves the following results on the test_2021 set: - F1 (micro): 0.7647668393782383 - F1 (macro): 0.6187022581213811 - Accuracy: 0.5485407980941036 ### Usage ```python import math import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer def sigmoid(x): return 1 / (1 + math.exp(-x)) tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all") model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all", problem_type="multi_label_classification") model.eval() class_mapping = model.config.id2label with torch.no_grad(): text = #NewVideo Cray Dollas- Water- Ft. Charlie Rose- (Official Music Video)- {{URL}} via {@YouTube@} #watchandlearn {{USERNAME}} tokens = tokenizer(text, return_tensors='pt') output = model(**tokens) flags = [sigmoid(s) > 0.5 for s in output[0][0].detach().tolist()] topic = [class_mapping[n] for n, i in enumerate(flags) if i] print(topic) ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
[ -0.3843338191509247, -0.575761079788208, 0.09775625169277191, 0.28289228677749634, -0.35032492876052856, 0.10099528729915619, -0.3339969217777252, -0.16206739842891693, 0.4282936155796051, 0.23141156136989594, -0.6884207129478455, -0.706935465335846, -0.7618464231491089, -0.08376666903495789, -0.3895980417728424, 1.0577678680419922, 0.015111845917999744, -0.028567597270011902, 0.2669253349304199, -0.4023049473762512, -0.16416150331497192, -0.3808002471923828, -0.4480077624320984, -0.2717950642108917, 0.3745936155319214, 0.35439687967300415, 0.25235792994499207, 0.5428656339645386, 0.5392541289329529, 0.38459154963493347, -0.033806007355451584, 0.25546795129776, -0.47466087341308594, -0.13607478141784668, 0.014194429852068424, -0.09318539500236511, -0.49344855546951294, 0.23880895972251892, 0.6391180157661438, 0.32337912917137146, 0.13946650922298431, 0.3562915623188019, 0.06073492765426636, 0.3649163544178009, -0.3697197437286377, 0.11863706260919571, -0.7609778046607971, -0.29184770584106445, -0.12411592900753021, -0.33123859763145447, -0.22417369484901428, -0.3191482126712799, 0.1300286501646042, -0.3405705392360687, 0.5401943325996399, -0.12508608400821686, 1.2846620082855225, 0.30259767174720764, -0.3176323175430298, -0.22885923087596893, -0.441751092672348, 0.9004751443862915, -0.8249833583831787, 0.21725472807884216, 0.18378596007823944, -0.004656684584915638, 0.13774465024471283, -0.7783547043800354, -0.417611688375473, -0.08142082393169403, -0.05978008732199669, 0.09364215284585953, 0.02367141842842102, -0.07048796862363815, 0.3005303740501404, 0.2606598138809204, -0.6307787895202637, -0.2029774934053421, -0.6837896704673767, -0.14485539495944977, 0.636398434638977, -0.0746803879737854, 0.16400574147701263, -0.3568577766418457, -0.2957460284233093, -0.03616691753268242, -0.4086250066757202, -0.10028182715177536, 0.2395285815000534, 0.43875330686569214, -0.4452710449695587, 0.6957343220710754, -0.23100896179676056, 0.6471842527389526, 0.22579726576805115, -0.19412605464458466, 0.6660734415054321, -0.36839014291763306, -0.2416543960571289, -0.05188305303454399, 1.0248486995697021, 0.3616310954093933, 0.4073387682437897, -0.11347389221191406, 0.12280303239822388, -0.008756451308727264, -0.15759943425655365, -1.1339205503463745, -0.4460439085960388, 0.35615256428718567, -0.4009262025356293, -0.38319361209869385, 0.16625511646270752, -0.6930710077285767, -0.09917106479406357, -0.15405435860157013, 0.7074723839759827, -0.5857775211334229, -0.44037026166915894, 0.07585962116718292, -0.08796966075897217, 0.00784662738442421, 0.21718262135982513, -0.874466598033905, -0.15700800716876984, 0.49531182646751404, 0.969550371170044, -0.004714710637927055, -0.5817005634307861, -0.2581104338169098, 0.02832917310297489, -0.15354633331298828, 0.597864031791687, -0.333744615316391, -0.05869167670607567, -0.2635127604007721, 0.08421828597784042, -0.46064478158950806, -0.2850342094898224, 0.3960578441619873, -0.22735625505447388, 0.37279680371284485, -0.09174270182847977, -0.5760796070098877, 0.05177922546863556, 0.15619859099388123, -0.42479395866394043, 0.979668378829956, 0.10712248831987381, -0.974984884262085, 0.470846563577652, -0.7073183655738831, -0.2681827247142792, -0.25982558727264404, -0.07584290951490402, -0.5983288884162903, -0.12986016273498535, 0.3142935633659363, 0.46588629484176636, -0.26008883118629456, 0.458047479391098, -0.5049029588699341, -0.3392309248447418, 0.05578725039958954, -0.32410740852355957, 0.9806063175201416, 0.2554890513420105, -0.4475058913230896, 0.5138928890228271, -0.9128361940383911, 0.19042077660560608, 0.04710593447089195, -0.2851330637931824, 0.0610462985932827, -0.3566510081291199, 0.18387609720230103, 0.38038501143455505, 0.15243934094905853, -0.41238436102867126, 0.34990304708480835, -0.24635687470436096, 0.7306245565414429, 0.6447394490242004, 0.023816078901290894, 0.41606083512306213, -0.4698965549468994, 0.17619521915912628, 0.10758159309625626, 0.07486119866371155, -0.017456773668527603, -0.658679723739624, -0.905266284942627, -0.5491155982017517, 0.5134294629096985, 0.3578399419784546, -0.5559864044189453, 0.600479245185852, -0.23789247870445251, -0.7078342437744141, -0.5655978322029114, -0.1917867660522461, 0.168019637465477, 0.3191494643688202, 0.5106645822525024, 0.028083037585020065, -0.6856593489646912, -0.6619453430175781, -0.11551967263221741, -0.16288848221302032, 0.17805670201778412, 0.17730681598186493, 0.7006100416183472, -0.3210815191268921, 0.8890891671180725, -0.378993421792984, -0.08161044865846634, -0.08039522171020508, 0.4668521285057068, 0.5052878260612488, 0.8099806904792786, 0.6740055084228516, -0.8122546672821045, -0.6366105675697327, -0.4204038977622986, -0.6303542256355286, -0.14579841494560242, -0.04313375800848007, -0.325398713350296, 0.1490885466337204, 0.318410187959671, -0.7060111165046692, 0.4559646546840668, 0.2589685320854187, -0.48846685886383057, 0.42959165573120117, -0.030163869261741638, 0.3746131956577301, -1.3383439779281616, 0.1132681742310524, 0.21224603056907654, 0.03973618149757385, -0.5768977999687195, -0.1153315007686615, 0.15630021691322327, 0.0901951938867569, -0.3888286352157593, 0.6818736791610718, -0.36246582865715027, 0.21272942423820496, -0.186432346701622, -0.0675717145204544, -0.1461554318666458, 0.43670615553855896, -0.08211428672075272, 0.7796585559844971, 0.6592614650726318, -0.6599345207214355, 0.4157291054725647, 0.15064223110675812, -0.10916294902563095, 0.18893210589885712, -0.5851553678512573, -0.060483988374471664, 0.06695699691772461, 0.09094933420419693, -1.0604058504104614, -0.2710428833961487, 0.3584148585796356, -0.6729872226715088, 0.3917529582977295, -0.39748361706733704, -0.5184161067008972, -0.5153270363807678, -0.4157414734363556, 0.48170989751815796, 0.36733412742614746, -0.5058354735374451, 0.3991571068763733, 0.3823196291923523, 0.2063596099615097, -0.7048787474632263, -0.5680220723152161, -0.17032824456691742, -0.4660354256629944, -0.7481566667556763, 0.5296329259872437, -0.26147180795669556, -0.02790338173508644, 0.02809302695095539, -0.2045186311006546, -0.10265973955392838, -0.10152389854192734, 0.11446832865476608, 0.2879258990287781, -0.2382042109966278, 0.14549651741981506, -0.35745856165885925, -0.11784829199314117, -0.1948995143175125, -0.4199185073375702, 1.0204344987869263, -0.25629228353500366, -0.26880040764808655, -0.4337273836135864, 0.03482348099350929, 0.6142117381095886, -0.26825419068336487, 0.8577426075935364, 1.1565619707107544, -0.517949640750885, 0.0380832701921463, -0.6678310036659241, -0.26422902941703796, -0.4726811945438385, 0.5439305901527405, -0.5169089436531067, -0.7084531188011169, 0.6831887364387512, 0.06362173706293106, 0.061641111969947815, 1.03367018699646, 0.7280845642089844, 0.05638573691248894, 0.8459425568580627, 0.5739871263504028, -0.0765659287571907, 0.6171846389770508, -0.8516905307769775, 0.19851510226726532, -0.8246219158172607, -0.3257458209991455, -0.6276653409004211, -0.09391837567090988, -1.0420236587524414, -0.4053184390068054, 0.11331000924110413, 0.3600634038448334, -0.6248578429222107, 0.45705780386924744, -0.768120527267456, 0.14870871603488922, 0.762261688709259, 0.1875697374343872, -0.0675387755036354, 0.10623983293771744, -0.00048071969649754465, -0.10967478901147842, -0.6611525416374207, -0.4472963511943817, 1.1925890445709229, 0.2331787347793579, 0.7192363142967224, 0.1056026741862297, 0.9110280871391296, -0.01606525480747223, 0.30843356251716614, -0.5015472173690796, 0.49991822242736816, -0.30556777119636536, -0.7316935658454895, -0.3700926601886749, -0.6357465386390686, -0.7443909645080566, 0.35682737827301025, -0.22175778448581696, -0.9798717498779297, 0.1732664406299591, -0.09360501170158386, -0.21764792501926422, 0.4619499742984772, -0.6283993124961853, 0.8876947164535522, -0.14149022102355957, -0.4729485809803009, -0.04586668685078621, -0.4411327540874481, 0.3066920042037964, 0.0029664093162864447, 0.01967354118824005, -0.490301251411438, 0.16764013469219208, 1.0519323348999023, -0.3292614817619324, 0.6688005924224854, -0.014932815916836262, 0.21027351915836334, 0.31480392813682556, -0.3413301706314087, 0.16560350358486176, 0.30454421043395996, -0.21134431660175323, 0.09185154736042023, -0.06362201273441315, -0.41099515557289124, -0.18154001235961914, 0.875851571559906, -1.0265352725982666, -0.535415530204773, -0.7314236760139465, -0.5775082111358643, -0.0924316793680191, 0.3873318135738373, 0.705858051776886, 0.6466069221496582, 0.045643340796232224, 0.26309505105018616, 0.588572084903717, -0.14296060800552368, 0.6425567865371704, 0.2003108710050583, -0.1461257040500641, -0.5926914811134338, 0.9036568999290466, 0.17640341818332672, 0.14458739757537842, 0.21995842456817627, 0.2195693999528885, -0.34279870986938477, -0.530998170375824, -0.5039604902267456, 0.5201483368873596, -0.6803852319717407, -0.26714906096458435, -0.799946665763855, -0.6649656295776367, -0.7499271035194397, 0.11038562655448914, -0.37740522623062134, -0.649856448173523, -0.6258514523506165, 0.012761938385665417, 0.5251761674880981, 0.5127968192100525, -0.25268733501434326, 0.2805880904197693, -0.5021723508834839, 0.3781946003437042, 0.15585999190807343, 0.2686668336391449, -0.18102312088012695, -0.8941610455513, -0.21229994297027588, 0.10765252262353897, -0.4797997772693634, -0.8756234049797058, 0.5144959688186646, 0.201394185423851, 0.5403337478637695, 0.2869918644428253, 0.09180791676044464, 0.8638824224472046, -0.3149581253528595, 0.6144841909408569, 0.3055632412433624, -0.8686978220939636, 0.5816750526428223, -0.45251014828681946, 0.3047045171260834, 0.4150806963443756, 0.2768166661262512, -0.4273417890071869, -0.520380973815918, -0.9712228775024414, -1.1425566673278809, 0.9867463707923889, 0.42877140641212463, 0.04542304575443268, 0.09518387168645859, 0.20462235808372498, -0.18509362637996674, 0.364159494638443, -0.8306729793548584, -0.597886860370636, -0.3438868224620819, -0.3896079957485199, -0.20289818942546844, -0.33004632592201233, -0.19284634292125702, -0.5532646179199219, 0.9665302634239197, -0.030667638406157494, 0.5427840948104858, -0.005551853682845831, -0.0238217543810606, -0.13072586059570312, 0.1137654259800911, 0.6931275725364685, 0.9150851368904114, -0.7010028958320618, 0.0316515788435936, 0.06111647188663483, -0.41679537296295166, -0.016544390469789505, 0.3636656403541565, -0.08560185134410858, 0.3105793595314026, 0.5233577489852905, 0.8513044118881226, 0.07888180762529373, -0.010262562893331051, 0.3063056766986847, -0.0027859858237206936, -0.3294235169887543, -0.15166495740413666, 0.11493824422359467, 0.1495281308889389, 0.2580353021621704, 0.5673210620880127, 0.29940614104270935, -0.015152879059314728, -0.5320499539375305, 0.401460200548172, 0.24104556441307068, -0.14191052317619324, -0.19557400047779083, 0.7707046866416931, 0.049520522356033325, -0.16559025645256042, 0.473005086183548, -0.1841663271188736, -0.7461255192756653, 0.8690299391746521, 0.4181613028049469, 0.9104282259941101, -0.006283970084041357, 0.1899365931749344, 0.8082953691482544, 0.2686293423175812, -0.08222467452287674, 0.4099918007850647, 0.17958445847034454, -0.6926887035369873, -0.10693736374378204, -0.6517593860626221, -0.03795016184449196, 0.2742422819137573, -0.611142098903656, 0.4816757142543793, -0.31089505553245544, -0.42962852120399475, 0.2796717584133148, 0.29427769780158997, -0.6773394346237183, 0.3479768931865692, -0.10149990767240524, 0.8613595962524414, -0.8936862349510193, 1.0509796142578125, 0.682820737361908, -0.5759706497192383, -0.9225753545761108, 0.26982396841049194, -0.27878719568252563, -0.6554768681526184, 0.6912456154823303, 0.3817604184150696, 0.11182862520217896, 0.10341966897249222, -0.5160749554634094, -1.1736003160476685, 1.1153924465179443, 0.25781407952308655, -0.2714032828807831, 0.0013238153187558055, 0.03761134296655655, 0.4516654312610626, -0.3726811707019806, 0.6300551295280457, 0.33276447653770447, 0.38418814539909363, 0.3999439775943756, -1.0897575616836548, -0.060858190059661865, -0.33667880296707153, -0.18027281761169434, 0.15816675126552582, -0.999335527420044, 1.3327380418777466, -0.22622820734977722, 0.043154217302799225, 0.07774873077869415, 0.6267992854118347, 0.5287871360778809, 0.39455926418304443, 0.25400638580322266, 0.5688028931617737, 0.7648258209228516, -0.49200567603111267, 0.6229323148727417, -0.4380442798137665, 1.0150495767593384, 0.9416185617446899, 0.22155344486236572, 0.5221217274665833, 0.40764009952545166, -0.14170818030834198, 0.11574865877628326, 0.9748316407203674, -0.1783742755651474, 0.9071475863456726, 0.12312706559896469, -0.02113194204866886, -0.1438138335943222, 0.06515815854072571, -0.745974600315094, 0.3199598789215088, 0.2637670338153839, -0.3731212317943573, -0.14005887508392334, -0.11119154095649719, 0.13600903749465942, -0.370193213224411, -0.2801661789417267, 0.5082183480262756, -0.04283859580755234, -0.5502485632896423, 0.8964970707893372, 0.1906653195619583, 1.072230339050293, -0.4178994297981262, 0.18699271976947784, 0.04305969178676605, 0.3347075581550598, -0.28466248512268066, -0.6398953795433044, 0.1765044927597046, -0.009140357375144958, -0.12112598866224289, -0.04157446324825287, 0.593173086643219, -0.6073449850082397, -0.7105493545532227, 0.2710644006729126, 0.35032394528388977, 0.1317015290260315, 0.11339445412158966, -1.0552668571472168, 0.07222862541675568, 0.24876384437084198, -0.4373679757118225, -0.0005743740475736558, 0.5488643646240234, 0.1459251195192337, 0.5775715112686157, 0.47988414764404297, 0.05434068664908409, 0.3064487874507904, 0.19486789405345917, 0.9196715354919434, -0.6114300489425659, -0.3073771297931671, -1.0467607975006104, 0.45877668261528015, -0.2945130169391632, -0.6797258257865906, 0.7780101299285889, 0.7678319811820984, 0.905637800693512, 0.006512691732496023, 0.7488942742347717, -0.3707137405872345, 0.4512782692909241, -0.49676713347435, 0.8201736807823181, -0.7651893496513367, 0.163377583026886, -0.30745089054107666, -0.7180948853492737, -0.2335502654314041, 0.8876886963844299, -0.36650988459587097, 0.46676111221313477, 0.7164769768714905, 0.7580508589744568, -0.2096741497516632, -0.0217890664935112, 0.1008295863866806, 0.1926722377538681, 0.3532794117927551, 0.3909473419189453, 0.584604024887085, -0.7068763971328735, 0.4471847414970398, -0.7136862277984619, -0.1600535660982132, -0.42640361189842224, -0.6163811683654785, -1.1845372915267944, -0.7900010943412781, -0.4904438555240631, -0.7770393490791321, 0.09603489190340042, 1.1043447256088257, 1.0074893236160278, -1.0885251760482788, -0.18477018177509308, 0.011243944987654686, 0.0934576764702797, 0.08207346498966217, -0.2394266128540039, 0.758182942867279, -0.27530527114868164, -0.8693253397941589, -0.07921343296766281, -0.04575265571475029, 0.11556544899940491, 0.051753971725702286, -0.04497484862804413, -0.5040327906608582, -0.12410594522953033, 0.26134753227233887, 0.054225873202085495, -0.6965992450714111, -0.19039376080036163, -0.0794905573129654, -0.393539696931839, 0.20663197338581085, 0.5139927268028259, -0.37252646684646606, 0.11205808818340302, 0.531732976436615, 0.10899689048528671, 0.8906189799308777, -0.10835865885019302, 0.2177809774875641, -0.6326977014541626, 0.38496294617652893, 0.19246208667755127, 0.5130265355110168, 0.34336191415786743, -0.1665230542421341, 0.7243921160697937, 0.483422189950943, -0.48806118965148926, -0.8999345898628235, -0.08084586262702942, -0.9218636155128479, -0.23349402844905853, 1.2765218019485474, 0.05106229707598686, -0.12379059940576553, 0.1937989443540573, -0.10899616777896881, 0.7116557955741882, -0.513578474521637, 0.861565113067627, 0.6111814379692078, 0.00022412942780647427, -0.17495401203632355, -0.5565608739852905, 0.47981518507003784, 0.1840171068906784, -0.6265117526054382, -0.2196338176727295, 0.07514197379350662, 0.649497389793396, 0.2624799907207489, 0.7813359498977661, 0.09125521779060364, 0.17042243480682373, -0.11992627382278442, 0.06902062147855759, -0.12935157120227814, -0.43974366784095764, -0.10697660595178604, 0.09755966067314148, -0.2116599678993225, -0.5261270999908447 ]
openai/whisper-small.en
openai
"2023-09-08T12:56:14Z"
49,677
14
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "whisper", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "arxiv:2212.04356", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
automatic-speech-recognition
"2022-09-26T06:59:49Z"
--- language: - en tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: whisper-small.en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: pipeline_tag: automatic-speech-recognition license: apache-2.0 --- # Whisper Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need for fine-tuning. Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356) by Alec Radford et al. from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper). **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were copied and pasted from the original model card. ## Model details Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision. The models were trained on either English-only data or multilingual data. The English-only models were trained on the task of speech recognition. The multilingual models were trained on both speech recognition and speech translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech translation, the model predicts transcriptions to a *different* language to the audio. Whisper checkpoints come in five configurations of varying model sizes. The smallest four are trained on either English-only or multilingual data. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The checkpoints are summarised in the following table with links to the models on the Hub: | Size | Parameters | English-only | Multilingual | |----------|------------|------------------------------------------------------|-----------------------------------------------------| | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) | | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) | # Usage This checkpoint is an *English-only* model, meaning it can be used for English speech recognition. Multilingual speech recognition or speech translation is possible through use of a multilingual checkpoint. To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor). The `WhisperProcessor` is used to: 1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model) 2. Post-process the model outputs (converting them from tokens to text) ## Transcription ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-small.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small.en") >>> # load dummy dataset and read audio files >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) ['<|startoftranscript|><|notimestamps|> Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.'] ``` The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`. ## Evaluation This code snippet shows how to evaluate Whisper small.en on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr): ```python >>> from datasets import load_dataset >>> from transformers import WhisperForConditionalGeneration, WhisperProcessor >>> import torch >>> from evaluate import load >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-small.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small.en").to("cuda") >>> def map_to_pred(batch): >>> audio = batch["audio"] >>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features >>> batch["reference"] = processor.tokenizer._normalize(batch['text']) >>> >>> with torch.no_grad(): >>> predicted_ids = model.generate(input_features.to("cuda"))[0] >>> transcription = processor.decode(predicted_ids) >>> batch["prediction"] = processor.tokenizer._normalize(transcription) >>> return batch >>> result = librispeech_test_clean.map(map_to_pred) >>> wer = load("wer") >>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"])) 3.053161596922323 ``` ## Long-Form Transcription The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`: ```python >>> import torch >>> from transformers import pipeline >>> from datasets import load_dataset >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> pipe = pipeline( >>> "automatic-speech-recognition", >>> model="openai/whisper-small.en", >>> chunk_length_s=30, >>> device=device, >>> ) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> prediction = pipe(sample.copy(), batch_size=8)["text"] " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel." >>> # we can also return timestamps for the predictions >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"] [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.', 'timestamp': (0.0, 5.44)}] ``` Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm. ## Fine-Tuning The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However, its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step guide to fine-tuning the Whisper model with as little as 5 hours of labelled data. ### Evaluated Use The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research. The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them. In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes. ## Training Data The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages. As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language. ## Performance and Limitations Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level. However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself. Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf). In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages. ## Broader Implications We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications. There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects. ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
[ -0.2894599139690399, -0.6368500590324402, 0.10773731023073196, 0.43817612528800964, -0.059631384909152985, -0.01652604714035988, -0.38669437170028687, -0.6345937848091125, 0.24576398730278015, 0.3206343352794647, -0.8401778936386108, -0.5220988988876343, -0.7278154492378235, -0.15011335909366608, -0.5837175250053406, 1.0248699188232422, 0.16435092687606812, -0.013868170790374279, 0.22523891925811768, -0.06831074506044388, -0.3363424241542816, -0.2608594000339508, -0.7465142607688904, -0.20447711646556854, 0.2123042196035385, 0.17235872149467468, 0.3932121694087982, 0.5576085448265076, 0.14848890900611877, 0.42944133281707764, -0.42875176668167114, -0.07762221992015839, -0.370332807302475, -0.12261010706424713, 0.39712926745414734, -0.4889495372772217, -0.6226164102554321, 0.16632802784442902, 0.7992475032806396, 0.48267027735710144, -0.3567653000354767, 0.4669167995452881, 0.25193464756011963, 0.3212440609931946, -0.27868321537971497, 0.2719026505947113, -0.6824186444282532, -0.12800826132297516, -0.28665685653686523, 0.040052630007267, -0.34490153193473816, -0.3110498785972595, 0.5721538662910461, -0.6084808111190796, 0.40023383498191833, 0.1714489609003067, 1.041669249534607, 0.2584216594696045, -0.04645955190062523, -0.44267037510871887, -0.728655993938446, 1.1382851600646973, -0.9059010744094849, 0.520106315612793, 0.40428996086120605, 0.2695621848106384, 0.036530502140522, -0.962512195110321, -0.7409156560897827, -0.021333985030651093, -0.05585688352584839, 0.29923734068870544, -0.36698970198631287, -0.012528116814792156, 0.25488483905792236, 0.4308609664440155, -0.47872310876846313, 0.04348191246390343, -0.7299730181694031, -0.6862708330154419, 0.643370509147644, 0.012952473945915699, 0.29054537415504456, -0.29296383261680603, -0.23430755734443665, -0.422152042388916, -0.27577337622642517, 0.4636533856391907, 0.38562631607055664, 0.4881928861141205, -0.7418566942214966, 0.3862006962299347, -0.06655988097190857, 0.6201617121696472, 0.21072572469711304, -0.6127061247825623, 0.6144053339958191, -0.16709761321544647, -0.20772592723369598, 0.37967783212661743, 1.0720611810684204, 0.2147706001996994, 0.08398468047380447, 0.11476898938417435, -0.14288510382175446, 0.18120133876800537, -0.10980125516653061, -0.8895079493522644, -0.07539892196655273, 0.4951012134552002, -0.5731924772262573, -0.30560624599456787, -0.25195199251174927, -0.6630656719207764, 0.12647734582424164, -0.1668483018875122, 0.71098792552948, -0.5887577533721924, -0.31228122115135193, 0.22531603276729584, -0.3940138518810272, 0.3078940212726593, 0.03254685550928116, -0.8432646989822388, 0.3706843852996826, 0.4533252716064453, 0.9028892517089844, 0.11178351193666458, -0.6204289793968201, -0.5142803192138672, 0.0934973731637001, 0.13421986997127533, 0.4738999605178833, -0.26434341073036194, -0.5727171301841736, -0.2274310439825058, 0.1025511622428894, -0.3333592116832733, -0.597882091999054, 0.7315964698791504, -0.11747457832098007, 0.48828694224357605, 0.016615621745586395, -0.5268628001213074, -0.19493094086647034, -0.2132960706949234, -0.42458203434944153, 0.9448135495185852, 0.06940752267837524, -0.7301091551780701, 0.16406337916851044, -0.5249291658401489, -0.48579972982406616, -0.29157522320747375, 0.18150825798511505, -0.643885612487793, -0.04817019775509834, 0.44226139783859253, 0.4058570861816406, -0.1960853487253189, 0.026187390089035034, -0.05897119641304016, -0.4247804582118988, 0.3312094807624817, -0.417487770318985, 1.0214323997497559, 0.17242074012756348, -0.44072219729423523, 0.21886013448238373, -0.7874041795730591, 0.13681745529174805, 0.05305179953575134, -0.1521783024072647, 0.1562911421060562, -0.05204085260629654, 0.2910619080066681, 0.04485887289047241, 0.16719219088554382, -0.764747679233551, -0.10728760063648224, -0.6817469000816345, 0.7511687874794006, 0.6553736925125122, -0.07451833784580231, 0.3760070204734802, -0.6122245192527771, 0.3010486662387848, 0.06940750032663345, 0.4412480294704437, -0.1656653732061386, -0.6380075216293335, -1.003401517868042, -0.43879368901252747, 0.4690040647983551, 0.7087922692298889, -0.3516308069229126, 0.5766628384590149, -0.21189656853675842, -0.7723070383071899, -1.3340266942977905, -0.1478128582239151, 0.5821098685264587, 0.5733850002288818, 0.7180764079093933, -0.17160280048847198, -0.7872747778892517, -0.7309512495994568, -0.1556539535522461, -0.3187776207923889, -0.21582822501659393, 0.38767966628074646, 0.33920609951019287, -0.3744826912879944, 0.6997554898262024, -0.5134380459785461, -0.5602184534072876, -0.2589341104030609, 0.06350810825824738, 0.49121540784835815, 0.6590406894683838, 0.2702433466911316, -0.7044993042945862, -0.4466080367565155, -0.2013521045446396, -0.581971287727356, -0.08755036443471909, -0.05654936656355858, 0.07385530322790146, 0.01693972758948803, 0.36586853861808777, -0.7306979298591614, 0.4215238690376282, 0.6716778874397278, -0.175557479262352, 0.7201662063598633, 0.15715162456035614, -0.04980945587158203, -1.1638647317886353, -0.05892040207982063, -0.15287864208221436, -0.10888948291540146, -0.6752362251281738, -0.2725279927253723, -0.11767402291297913, -0.08875381201505661, -0.5409624576568604, 0.645596981048584, -0.34862151741981506, 0.027378397062420845, -0.05476384609937668, 0.12201344966888428, -0.06738806515932083, 0.5179710388183594, 0.18238729238510132, 0.6703423857688904, 0.8442296385765076, -0.5697653293609619, 0.21184353530406952, 0.5723744630813599, -0.3413613736629486, 0.28070300817489624, -1.010414719581604, 0.18261340260505676, 0.14426368474960327, 0.20343592762947083, -0.6973268985748291, -0.11871134489774704, 0.024357397109270096, -0.9881820678710938, 0.45171162486076355, -0.3340163230895996, -0.3573683798313141, -0.5421835780143738, -0.19614428281784058, 0.08137179911136627, 0.9420980215072632, -0.4993777871131897, 0.7249873876571655, 0.4398253560066223, -0.22612716257572174, -0.5474807620048523, -0.5739690065383911, -0.25760290026664734, -0.2481432855129242, -0.799209713935852, 0.4960280954837799, -0.12808972597122192, -0.02425455115735531, -0.18860499560832977, -0.12018235772848129, 0.1300349086523056, -0.2633090615272522, 0.4880274832248688, 0.48589447140693665, -0.13846799731254578, -0.2691008448600769, 0.20546948909759521, -0.26359155774116516, -0.02156493254005909, -0.23449502885341644, 0.7070115208625793, -0.37069353461265564, -0.06358280032873154, -0.8043354153633118, 0.2129286229610443, 0.4955579340457916, -0.34524405002593994, 0.564654529094696, 0.892273485660553, -0.27866682410240173, -0.23797205090522766, -0.700609564781189, -0.26450085639953613, -0.5939570069313049, 0.14685630798339844, -0.37015676498413086, -0.8085485100746155, 0.7177882194519043, 0.17031019926071167, 0.0814531221985817, 0.6601794362068176, 0.5320431590080261, -0.2920808494091034, 0.9529987573623657, 0.4488058090209961, -0.26337647438049316, 0.3092699348926544, -0.7924865484237671, -0.12413504719734192, -1.0731070041656494, -0.3585824966430664, -0.58887779712677, -0.2963210940361023, -0.5177163481712341, -0.372415155172348, 0.5361969470977783, 0.11599460244178772, -0.12740549445152283, 0.45448222756385803, -0.7849663496017456, 0.01839533820748329, 0.662334680557251, 0.033940307796001434, 0.11917595565319061, -0.06172993406653404, -0.13552996516227722, -0.0966479554772377, -0.3872012794017792, -0.34619542956352234, 0.9878769516944885, 0.5410450100898743, 0.5768111348152161, -0.08526059240102768, 0.7696141004562378, -0.031221652403473854, 0.05797665938735008, -0.8007401823997498, 0.49691784381866455, -0.1350395232439041, -0.5909831523895264, -0.40233510732650757, -0.3052873909473419, -0.8473823070526123, 0.15722833573818207, -0.18379490077495575, -0.7146528363227844, 0.13395538926124573, -0.07211484014987946, -0.3566858768463135, 0.25758910179138184, -0.7530362606048584, 0.6156216859817505, 0.13952580094337463, 0.11481692641973495, -0.05897324159741402, -0.7832170724868774, 0.12902380526065826, 0.09134175628423691, 0.15358184278011322, -0.1525929868221283, 0.22029364109039307, 1.1236075162887573, -0.48459190130233765, 0.9302389025688171, -0.35869550704956055, 0.1229739785194397, 0.5398001074790955, -0.20630773901939392, 0.35769590735435486, -0.22711674869060516, -0.16511940956115723, 0.4415114223957062, 0.3257372975349426, -0.2951376140117645, -0.30317965149879456, 0.5127775073051453, -1.1057909727096558, -0.3184938132762909, -0.28264740109443665, -0.3788697123527527, -0.168815478682518, 0.21087343990802765, 0.8323902487754822, 0.6679998636245728, -0.08062618225812912, 0.009591191075742245, 0.47931087017059326, -0.24013292789459229, 0.5581818222999573, 0.6575472354888916, -0.234610915184021, -0.47882115840911865, 0.9721891283988953, 0.2408653199672699, 0.2558957636356354, 0.17750093340873718, 0.4544208347797394, -0.43653351068496704, -0.6836273074150085, -0.5520366430282593, 0.33866167068481445, -0.39173614978790283, -0.18111737072467804, -0.8904826641082764, -0.5417166948318481, -0.6181854009628296, 0.008522477932274342, -0.5007272362709045, -0.2982611656188965, -0.41279444098472595, 0.10096340626478195, 0.6045172810554504, 0.43050768971443176, 0.00007683660078328103, 0.5774379968643188, -0.9430508613586426, 0.43435829877853394, 0.3517104387283325, 0.10576055198907852, 0.048357900232076645, -1.0005658864974976, -0.11289377510547638, 0.20197702944278717, -0.34604698419570923, -0.6229808926582336, 0.48836830258369446, 0.3877958059310913, 0.4282231032848358, 0.24500805139541626, 0.013867538422346115, 0.969789981842041, -0.7194910049438477, 0.8093060851097107, 0.22333180904388428, -1.2591925859451294, 0.7605038285255432, -0.3621969521045685, 0.24428009986877441, 0.450406014919281, 0.33531635999679565, -0.6105455756187439, -0.5310012698173523, -0.7128344178199768, -0.6577985882759094, 0.7264183759689331, 0.3142840266227722, 0.07288116961717606, 0.28772222995758057, 0.21111422777175903, 0.12414635717868805, 0.1362118124961853, -0.47668030858039856, -0.48279836773872375, -0.3913663327693939, -0.2658839523792267, -0.11260591447353363, -0.04352632537484169, -0.010094694793224335, -0.5641654133796692, 0.7921529412269592, -0.014321216382086277, 0.4970124363899231, 0.3984609544277191, 0.057914722710847855, -0.024495622143149376, 0.17454421520233154, 0.3587815463542938, 0.24179942905902863, -0.2652919888496399, -0.37740644812583923, 0.36977750062942505, -0.8748202323913574, 0.02058466710150242, 0.3443981409072876, -0.3028138279914856, 0.11535847932100296, 0.7126312851905823, 1.1084611415863037, 0.19289231300354004, -0.5034146308898926, 0.6965240836143494, -0.10605993866920471, -0.2154233306646347, -0.6508522033691406, 0.03279324248433113, 0.3127351999282837, 0.30955713987350464, 0.3703042268753052, 0.1265367716550827, 0.1683555543422699, -0.5260546207427979, 0.16027545928955078, 0.27010199427604675, -0.5331296920776367, -0.537986695766449, 0.8833730816841125, 0.05928729847073555, -0.40362390875816345, 0.7438034415245056, 0.01969848945736885, -0.6272097826004028, 0.4794052541255951, 0.6704376339912415, 0.9916244745254517, -0.5009117126464844, -0.03875543177127838, 0.4702341854572296, 0.24716097116470337, 0.028978021815419197, 0.4941447973251343, -0.0437595471739769, -0.7286776900291443, -0.4649610221385956, -1.0800505876541138, -0.34422096610069275, 0.0235043503344059, -0.9889706969261169, 0.37374797463417053, -0.3245198130607605, -0.2709997892379761, 0.329852819442749, 0.0950247272849083, -0.7893645763397217, 0.20718538761138916, 0.03684650734066963, 1.0301817655563354, -0.7062075138092041, 1.0601425170898438, 0.17026512324810028, -0.28559499979019165, -1.142591953277588, 0.012794123031198978, 0.0624929703772068, -1.016838550567627, 0.3307091295719147, 0.3283892869949341, -0.21781513094902039, 0.1257535219192505, -0.5203846096992493, -0.7416239976882935, 1.111253023147583, 0.14807270467281342, -0.7123119235038757, -0.2101399302482605, -0.07061303406953812, 0.5439289212226868, -0.22514840960502625, 0.23049557209014893, 0.7693801522254944, 0.46589744091033936, 0.14151744544506073, -1.4924983978271484, -0.13310322165489197, -0.24969252943992615, -0.25667428970336914, 0.03140372782945633, -0.8175478577613831, 0.9444840550422668, -0.4451582431793213, -0.23485544323921204, 0.3393058478832245, 0.8082749247550964, 0.41004759073257446, 0.4306347370147705, 0.6673831939697266, 0.6030541062355042, 0.7833349108695984, -0.19891083240509033, 0.9980922937393188, -0.16652116179466248, 0.24877680838108063, 1.003636121749878, -0.07237239927053452, 1.1491501331329346, 0.2387057989835739, -0.5126841068267822, 0.6927474737167358, 0.35304370522499084, -0.04558230936527252, 0.4962455928325653, -0.0016693153884261847, -0.34076133370399475, 0.16209393739700317, -0.09905438125133514, -0.5330725312232971, 0.8175588846206665, 0.43908700346946716, -0.2279411107301712, 0.4400836229324341, 0.151798814535141, 0.08914933353662491, -0.14200161397457123, -0.2554953396320343, 0.8851840496063232, 0.22298510372638702, -0.40220290422439575, 0.8347497582435608, -0.05721113085746765, 1.104183554649353, -0.8278848528862, 0.20444126427173615, 0.20386238396167755, 0.22890932857990265, -0.2274736762046814, -0.6367272734642029, 0.35139331221580505, -0.2004719376564026, -0.2480180859565735, -0.17287057638168335, 0.5869372487068176, -0.6660422086715698, -0.5675575733184814, 0.5186535716056824, 0.3693385124206543, 0.3182544708251953, -0.11535333096981049, -0.8382057547569275, 0.4503962993621826, 0.20514880120754242, -0.1704370081424713, 0.16236117482185364, 0.13815297186374664, 0.34938350319862366, 0.6915884017944336, 0.8652773499488831, 0.458307147026062, 0.224944069981575, 0.13091804087162018, 0.8267557621002197, -0.6986917853355408, -0.5855721831321716, -0.6511960625648499, 0.5269836187362671, -0.03052721917629242, -0.3986925184726715, 0.8846021294593811, 0.6769543886184692, 0.7341475486755371, 0.05157594755291939, 0.7293866276741028, -0.010561814531683922, 1.058742642402649, -0.5226104855537415, 0.9019835591316223, -0.41270390152931213, 0.06349243223667145, -0.3913011848926544, -0.7129073739051819, 0.14023210108280182, 0.5832988619804382, -0.1080884113907814, -0.010123145766556263, 0.3933872580528259, 0.8948844075202942, -0.005638104397803545, 0.2915424406528473, 0.04155115410685539, 0.5061613321304321, 0.229603111743927, 0.5053961873054504, 0.6595924496650696, -0.8332589268684387, 0.6681005954742432, -0.5916489958763123, -0.23845942318439484, 0.12664812803268433, -0.4662962853908539, -0.880980908870697, -0.8378011584281921, -0.28659239411354065, -0.6071920990943909, -0.2824673056602478, 0.7356168031692505, 0.9167504906654358, -0.8477808237075806, -0.40038925409317017, 0.3650606870651245, -0.08269064128398895, -0.3532468378543854, -0.25736865401268005, 0.6020073890686035, 0.05512562766671181, -0.9488555192947388, 0.6722360253334045, 0.03442169353365898, 0.3385855555534363, -0.23409868776798248, -0.21378232538700104, 0.08824833482503891, -0.002309061586856842, 0.5265966057777405, 0.2472895383834839, -0.8267882466316223, -0.223298117518425, 0.09844022244215012, 0.18085834383964539, -0.009256938472390175, 0.4005061686038971, -0.7538649439811707, 0.41252630949020386, 0.2605806291103363, 0.0941174179315567, 0.966693639755249, -0.3109106421470642, 0.2833835482597351, -0.7149686217308044, 0.45324763655662537, 0.3107421100139618, 0.36369970440864563, 0.37232011556625366, -0.15939249098300934, 0.22466714680194855, 0.24774669110774994, -0.6308803558349609, -1.0050349235534668, -0.07272132486104965, -1.2089776992797852, -0.025469107553362846, 1.0180612802505493, 0.0524618923664093, -0.2936675548553467, -0.07607230544090271, -0.32874202728271484, 0.5245916247367859, -0.5239260792732239, 0.44756025075912476, 0.4247872829437256, 0.021781310439109802, -0.0485319159924984, -0.6047912836074829, 0.6838569641113281, 0.21057668328285217, -0.3761886656284332, -0.09978613257408142, 0.07274516671895981, 0.6135132908821106, 0.3250925838947296, 0.8703933954238892, -0.3030220568180084, 0.15472519397735596, 0.18929578363895416, 0.19299718737602234, -0.02315451018512249, -0.16527463495731354, -0.3533429503440857, -0.07542355358600616, -0.21055135130882263, -0.4272633492946625 ]
timm/regnety_002.pycls_in1k
timm
"2023-03-21T06:36:53Z"
49,620
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:2003.13678", "license:mit", "region:us" ]
image-classification
"2023-03-21T06:36:49Z"
--- tags: - image-classification - timm library_tag: timm license: mit datasets: - imagenet-1k --- # Model card for regnety_002.pycls_in1k A RegNetY-200MF image classification model. Pretrained on ImageNet-1k by paper authors. The `timm` RegNet implementation includes a number of enhancements not present in other implementations, including: * stochastic depth * gradient checkpointing * layer-wise LR decay * configurable output stride (dilation) * configurable activation and norm layers * option for a pre-activation bottleneck block used in RegNetV variant * only known RegNetZ model definitions with pretrained weights ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 3.2 - GMACs: 0.2 - Activations (M): 2.2 - Image size: 224 x 224 - **Papers:** - Designing Network Design Spaces: https://arxiv.org/abs/2003.13678 - **Dataset:** ImageNet-1k - **Original:** https://github.com/facebookresearch/pycls ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('regnety_002.pycls_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'regnety_002.pycls_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 32, 112, 112]) # torch.Size([1, 24, 56, 56]) # torch.Size([1, 56, 28, 28]) # torch.Size([1, 152, 14, 14]) # torch.Size([1, 368, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'regnety_002.pycls_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 368, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). For the comparison summary below, the ra_in1k, ra3_in1k, ch_in1k, sw_*, and lion_* tagged weights are trained in `timm`. |model |img_size|top1 |top5 |param_count|gmacs|macts | |-------------------------|--------|------|------|-----------|-----|------| |[regnety_1280.swag_ft_in1k](https://huggingface.co/timm/regnety_1280.swag_ft_in1k)|384 |88.228|98.684|644.81 |374.99|210.2 | |[regnety_320.swag_ft_in1k](https://huggingface.co/timm/regnety_320.swag_ft_in1k)|384 |86.84 |98.364|145.05 |95.0 |88.87 | |[regnety_160.swag_ft_in1k](https://huggingface.co/timm/regnety_160.swag_ft_in1k)|384 |86.024|98.05 |83.59 |46.87|67.67 | |[regnety_160.sw_in12k_ft_in1k](https://huggingface.co/timm/regnety_160.sw_in12k_ft_in1k)|288 |86.004|97.83 |83.59 |26.37|38.07 | |[regnety_1280.swag_lc_in1k](https://huggingface.co/timm/regnety_1280.swag_lc_in1k)|224 |85.996|97.848|644.81 |127.66|71.58 | |[regnety_160.lion_in12k_ft_in1k](https://huggingface.co/timm/regnety_160.lion_in12k_ft_in1k)|288 |85.982|97.844|83.59 |26.37|38.07 | |[regnety_160.sw_in12k_ft_in1k](https://huggingface.co/timm/regnety_160.sw_in12k_ft_in1k)|224 |85.574|97.666|83.59 |15.96|23.04 | |[regnety_160.lion_in12k_ft_in1k](https://huggingface.co/timm/regnety_160.lion_in12k_ft_in1k)|224 |85.564|97.674|83.59 |15.96|23.04 | |[regnety_120.sw_in12k_ft_in1k](https://huggingface.co/timm/regnety_120.sw_in12k_ft_in1k)|288 |85.398|97.584|51.82 |20.06|35.34 | |[regnety_2560.seer_ft_in1k](https://huggingface.co/timm/regnety_2560.seer_ft_in1k)|384 |85.15 |97.436|1282.6 |747.83|296.49| |[regnetz_e8.ra3_in1k](https://huggingface.co/timm/regnetz_e8.ra3_in1k)|320 |85.036|97.268|57.7 |15.46|63.94 | |[regnety_120.sw_in12k_ft_in1k](https://huggingface.co/timm/regnety_120.sw_in12k_ft_in1k)|224 |84.976|97.416|51.82 |12.14|21.38 | |[regnety_320.swag_lc_in1k](https://huggingface.co/timm/regnety_320.swag_lc_in1k)|224 |84.56 |97.446|145.05 |32.34|30.26 | |[regnetz_040_h.ra3_in1k](https://huggingface.co/timm/regnetz_040_h.ra3_in1k)|320 |84.496|97.004|28.94 |6.43 |37.94 | |[regnetz_e8.ra3_in1k](https://huggingface.co/timm/regnetz_e8.ra3_in1k)|256 |84.436|97.02 |57.7 |9.91 |40.94 | |[regnety_1280.seer_ft_in1k](https://huggingface.co/timm/regnety_1280.seer_ft_in1k)|384 |84.432|97.092|644.81 |374.99|210.2 | |[regnetz_040.ra3_in1k](https://huggingface.co/timm/regnetz_040.ra3_in1k)|320 |84.246|96.93 |27.12 |6.35 |37.78 | |[regnetz_d8.ra3_in1k](https://huggingface.co/timm/regnetz_d8.ra3_in1k)|320 |84.054|96.992|23.37 |6.19 |37.08 | |[regnetz_d8_evos.ch_in1k](https://huggingface.co/timm/regnetz_d8_evos.ch_in1k)|320 |84.038|96.992|23.46 |7.03 |38.92 | |[regnetz_d32.ra3_in1k](https://huggingface.co/timm/regnetz_d32.ra3_in1k)|320 |84.022|96.866|27.58 |9.33 |37.08 | |[regnety_080.ra3_in1k](https://huggingface.co/timm/regnety_080.ra3_in1k)|288 |83.932|96.888|39.18 |13.22|29.69 | |[regnety_640.seer_ft_in1k](https://huggingface.co/timm/regnety_640.seer_ft_in1k)|384 |83.912|96.924|281.38 |188.47|124.83| |[regnety_160.swag_lc_in1k](https://huggingface.co/timm/regnety_160.swag_lc_in1k)|224 |83.778|97.286|83.59 |15.96|23.04 | |[regnetz_040_h.ra3_in1k](https://huggingface.co/timm/regnetz_040_h.ra3_in1k)|256 |83.776|96.704|28.94 |4.12 |24.29 | |[regnetv_064.ra3_in1k](https://huggingface.co/timm/regnetv_064.ra3_in1k)|288 |83.72 |96.75 |30.58 |10.55|27.11 | |[regnety_064.ra3_in1k](https://huggingface.co/timm/regnety_064.ra3_in1k)|288 |83.718|96.724|30.58 |10.56|27.11 | |[regnety_160.deit_in1k](https://huggingface.co/timm/regnety_160.deit_in1k)|288 |83.69 |96.778|83.59 |26.37|38.07 | |[regnetz_040.ra3_in1k](https://huggingface.co/timm/regnetz_040.ra3_in1k)|256 |83.62 |96.704|27.12 |4.06 |24.19 | |[regnetz_d8.ra3_in1k](https://huggingface.co/timm/regnetz_d8.ra3_in1k)|256 |83.438|96.776|23.37 |3.97 |23.74 | |[regnetz_d32.ra3_in1k](https://huggingface.co/timm/regnetz_d32.ra3_in1k)|256 |83.424|96.632|27.58 |5.98 |23.74 | |[regnetz_d8_evos.ch_in1k](https://huggingface.co/timm/regnetz_d8_evos.ch_in1k)|256 |83.36 |96.636|23.46 |4.5 |24.92 | |[regnety_320.seer_ft_in1k](https://huggingface.co/timm/regnety_320.seer_ft_in1k)|384 |83.35 |96.71 |145.05 |95.0 |88.87 | |[regnetv_040.ra3_in1k](https://huggingface.co/timm/regnetv_040.ra3_in1k)|288 |83.204|96.66 |20.64 |6.6 |20.3 | |[regnety_320.tv2_in1k](https://huggingface.co/timm/regnety_320.tv2_in1k)|224 |83.162|96.42 |145.05 |32.34|30.26 | |[regnety_080.ra3_in1k](https://huggingface.co/timm/regnety_080.ra3_in1k)|224 |83.16 |96.486|39.18 |8.0 |17.97 | |[regnetv_064.ra3_in1k](https://huggingface.co/timm/regnetv_064.ra3_in1k)|224 |83.108|96.458|30.58 |6.39 |16.41 | |[regnety_040.ra3_in1k](https://huggingface.co/timm/regnety_040.ra3_in1k)|288 |83.044|96.5 |20.65 |6.61 |20.3 | |[regnety_064.ra3_in1k](https://huggingface.co/timm/regnety_064.ra3_in1k)|224 |83.02 |96.292|30.58 |6.39 |16.41 | |[regnety_160.deit_in1k](https://huggingface.co/timm/regnety_160.deit_in1k)|224 |82.974|96.502|83.59 |15.96|23.04 | |[regnetx_320.tv2_in1k](https://huggingface.co/timm/regnetx_320.tv2_in1k)|224 |82.816|96.208|107.81 |31.81|36.3 | |[regnety_032.ra_in1k](https://huggingface.co/timm/regnety_032.ra_in1k)|288 |82.742|96.418|19.44 |5.29 |18.61 | |[regnety_160.tv2_in1k](https://huggingface.co/timm/regnety_160.tv2_in1k)|224 |82.634|96.22 |83.59 |15.96|23.04 | |[regnetz_c16_evos.ch_in1k](https://huggingface.co/timm/regnetz_c16_evos.ch_in1k)|320 |82.634|96.472|13.49 |3.86 |25.88 | |[regnety_080_tv.tv2_in1k](https://huggingface.co/timm/regnety_080_tv.tv2_in1k)|224 |82.592|96.246|39.38 |8.51 |19.73 | |[regnetx_160.tv2_in1k](https://huggingface.co/timm/regnetx_160.tv2_in1k)|224 |82.564|96.052|54.28 |15.99|25.52 | |[regnetz_c16.ra3_in1k](https://huggingface.co/timm/regnetz_c16.ra3_in1k)|320 |82.51 |96.358|13.46 |3.92 |25.88 | |[regnetv_040.ra3_in1k](https://huggingface.co/timm/regnetv_040.ra3_in1k)|224 |82.44 |96.198|20.64 |4.0 |12.29 | |[regnety_040.ra3_in1k](https://huggingface.co/timm/regnety_040.ra3_in1k)|224 |82.304|96.078|20.65 |4.0 |12.29 | |[regnetz_c16.ra3_in1k](https://huggingface.co/timm/regnetz_c16.ra3_in1k)|256 |82.16 |96.048|13.46 |2.51 |16.57 | |[regnetz_c16_evos.ch_in1k](https://huggingface.co/timm/regnetz_c16_evos.ch_in1k)|256 |81.936|96.15 |13.49 |2.48 |16.57 | |[regnety_032.ra_in1k](https://huggingface.co/timm/regnety_032.ra_in1k)|224 |81.924|95.988|19.44 |3.2 |11.26 | |[regnety_032.tv2_in1k](https://huggingface.co/timm/regnety_032.tv2_in1k)|224 |81.77 |95.842|19.44 |3.2 |11.26 | |[regnetx_080.tv2_in1k](https://huggingface.co/timm/regnetx_080.tv2_in1k)|224 |81.552|95.544|39.57 |8.02 |14.06 | |[regnetx_032.tv2_in1k](https://huggingface.co/timm/regnetx_032.tv2_in1k)|224 |80.924|95.27 |15.3 |3.2 |11.37 | |[regnety_320.pycls_in1k](https://huggingface.co/timm/regnety_320.pycls_in1k)|224 |80.804|95.246|145.05 |32.34|30.26 | |[regnetz_b16.ra3_in1k](https://huggingface.co/timm/regnetz_b16.ra3_in1k)|288 |80.712|95.47 |9.72 |2.39 |16.43 | |[regnety_016.tv2_in1k](https://huggingface.co/timm/regnety_016.tv2_in1k)|224 |80.66 |95.334|11.2 |1.63 |8.04 | |[regnety_120.pycls_in1k](https://huggingface.co/timm/regnety_120.pycls_in1k)|224 |80.37 |95.12 |51.82 |12.14|21.38 | |[regnety_160.pycls_in1k](https://huggingface.co/timm/regnety_160.pycls_in1k)|224 |80.288|94.964|83.59 |15.96|23.04 | |[regnetx_320.pycls_in1k](https://huggingface.co/timm/regnetx_320.pycls_in1k)|224 |80.246|95.01 |107.81 |31.81|36.3 | |[regnety_080.pycls_in1k](https://huggingface.co/timm/regnety_080.pycls_in1k)|224 |79.882|94.834|39.18 |8.0 |17.97 | |[regnetz_b16.ra3_in1k](https://huggingface.co/timm/regnetz_b16.ra3_in1k)|224 |79.872|94.974|9.72 |1.45 |9.95 | |[regnetx_160.pycls_in1k](https://huggingface.co/timm/regnetx_160.pycls_in1k)|224 |79.862|94.828|54.28 |15.99|25.52 | |[regnety_064.pycls_in1k](https://huggingface.co/timm/regnety_064.pycls_in1k)|224 |79.716|94.772|30.58 |6.39 |16.41 | |[regnetx_120.pycls_in1k](https://huggingface.co/timm/regnetx_120.pycls_in1k)|224 |79.592|94.738|46.11 |12.13|21.37 | |[regnetx_016.tv2_in1k](https://huggingface.co/timm/regnetx_016.tv2_in1k)|224 |79.44 |94.772|9.19 |1.62 |7.93 | |[regnety_040.pycls_in1k](https://huggingface.co/timm/regnety_040.pycls_in1k)|224 |79.23 |94.654|20.65 |4.0 |12.29 | |[regnetx_080.pycls_in1k](https://huggingface.co/timm/regnetx_080.pycls_in1k)|224 |79.198|94.55 |39.57 |8.02 |14.06 | |[regnetx_064.pycls_in1k](https://huggingface.co/timm/regnetx_064.pycls_in1k)|224 |79.064|94.454|26.21 |6.49 |16.37 | |[regnety_032.pycls_in1k](https://huggingface.co/timm/regnety_032.pycls_in1k)|224 |78.884|94.412|19.44 |3.2 |11.26 | |[regnety_008_tv.tv2_in1k](https://huggingface.co/timm/regnety_008_tv.tv2_in1k)|224 |78.654|94.388|6.43 |0.84 |5.42 | |[regnetx_040.pycls_in1k](https://huggingface.co/timm/regnetx_040.pycls_in1k)|224 |78.482|94.24 |22.12 |3.99 |12.2 | |[regnetx_032.pycls_in1k](https://huggingface.co/timm/regnetx_032.pycls_in1k)|224 |78.178|94.08 |15.3 |3.2 |11.37 | |[regnety_016.pycls_in1k](https://huggingface.co/timm/regnety_016.pycls_in1k)|224 |77.862|93.73 |11.2 |1.63 |8.04 | |[regnetx_008.tv2_in1k](https://huggingface.co/timm/regnetx_008.tv2_in1k)|224 |77.302|93.672|7.26 |0.81 |5.15 | |[regnetx_016.pycls_in1k](https://huggingface.co/timm/regnetx_016.pycls_in1k)|224 |76.908|93.418|9.19 |1.62 |7.93 | |[regnety_008.pycls_in1k](https://huggingface.co/timm/regnety_008.pycls_in1k)|224 |76.296|93.05 |6.26 |0.81 |5.25 | |[regnety_004.tv2_in1k](https://huggingface.co/timm/regnety_004.tv2_in1k)|224 |75.592|92.712|4.34 |0.41 |3.89 | |[regnety_006.pycls_in1k](https://huggingface.co/timm/regnety_006.pycls_in1k)|224 |75.244|92.518|6.06 |0.61 |4.33 | |[regnetx_008.pycls_in1k](https://huggingface.co/timm/regnetx_008.pycls_in1k)|224 |75.042|92.342|7.26 |0.81 |5.15 | |[regnetx_004_tv.tv2_in1k](https://huggingface.co/timm/regnetx_004_tv.tv2_in1k)|224 |74.57 |92.184|5.5 |0.42 |3.17 | |[regnety_004.pycls_in1k](https://huggingface.co/timm/regnety_004.pycls_in1k)|224 |74.018|91.764|4.34 |0.41 |3.89 | |[regnetx_006.pycls_in1k](https://huggingface.co/timm/regnetx_006.pycls_in1k)|224 |73.862|91.67 |6.2 |0.61 |3.98 | |[regnetx_004.pycls_in1k](https://huggingface.co/timm/regnetx_004.pycls_in1k)|224 |72.38 |90.832|5.16 |0.4 |3.14 | |[regnety_002.pycls_in1k](https://huggingface.co/timm/regnety_002.pycls_in1k)|224 |70.282|89.534|3.16 |0.2 |2.17 | |[regnetx_002.pycls_in1k](https://huggingface.co/timm/regnetx_002.pycls_in1k)|224 |68.752|88.556|2.68 |0.2 |2.16 | ## Citation ```bibtex @InProceedings{Radosavovic2020, title = {Designing Network Design Spaces}, author = {Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Doll{'a}r}, booktitle = {CVPR}, year = {2020} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
[ -0.8260119557380676, -0.23322345316410065, -0.16326342523097992, 0.5109550952911377, -0.4476477801799774, -0.10295117646455765, -0.18023210763931274, -0.5389160513877869, 1.0344358682632446, 0.08467540889978409, -0.7106832265853882, -0.5168036818504333, -0.6603595018386841, 0.04213994741439819, 0.2614585757255554, 0.8725780844688416, -0.06013229489326477, -0.20122447609901428, 0.3080693483352661, -0.3113073408603668, -0.14559856057167053, -0.31441009044647217, -0.7063450813293457, -0.3630692660808563, 0.3855759799480438, 0.14697961509227753, 0.827247679233551, 0.5644325613975525, 0.5583988428115845, 0.5544087886810303, -0.2407054752111435, 0.29132992029190063, -0.045110587030649185, -0.15834654867649078, 0.6479348540306091, -0.42101162672042847, -0.8934762477874756, 0.07513629645109177, 0.7224345207214355, 0.5017383694648743, 0.021097788587212563, 0.38463929295539856, 0.326869398355484, 0.767516553401947, -0.055296991020441055, 0.003364918055012822, -0.13316255807876587, 0.2315799593925476, -0.26821988821029663, 0.07145050913095474, -0.09435790032148361, -0.7160680294036865, 0.11257865279912949, -0.7390505075454712, -0.05687093734741211, -0.05582990497350693, 1.5807374715805054, -0.1435534507036209, 0.014712066389620304, -0.0465073324739933, 0.08905476331710815, 0.8644429445266724, -0.914956271648407, 0.22178006172180176, 0.4322545826435089, -0.12837538123130798, -0.3177768588066101, -0.6875489354133606, -0.5759674906730652, -0.009756521321833134, -0.4126645624637604, 0.3206543028354645, -0.3758293092250824, -0.152855783700943, 0.3824499547481537, 0.475910484790802, -0.4348665773868561, -0.18662779033184052, -0.2832186818122864, -0.1120443344116211, 0.8244286179542542, 0.08926719427108765, 0.7356035113334656, -0.29316839575767517, -0.619655966758728, -0.15031744539737701, -0.19501088559627533, 0.4594758152961731, 0.24970637261867523, 0.191533163189888, -0.8588538765907288, 0.39190176129341125, -0.035517964512109756, 0.49013713002204895, 0.4236951768398285, -0.37029963731765747, 0.9634217023849487, -0.22241072356700897, -0.4681089222431183, -0.4664585590362549, 1.0743680000305176, 0.6492088437080383, 0.35000649094581604, 0.08842600136995316, -0.19350364804267883, -0.3753894567489624, -0.4011458456516266, -0.9687279462814331, -0.20282992720603943, 0.16354289650917053, -0.6833028793334961, -0.2770058214664459, 0.3496992886066437, -0.725324809551239, -0.0008461975958198309, -0.10731672495603561, 0.2399730235338211, -0.662841260433197, -0.4683873653411865, 0.11638743430376053, -0.3512347340583801, 0.4415152072906494, 0.3260599374771118, -0.34452691674232483, 0.18945439159870148, 0.10085883736610413, 0.9016029834747314, 0.25211119651794434, -0.07004443556070328, -0.13717101514339447, -0.054237429052591324, -0.511006772518158, 0.305062860250473, 0.01490843202918768, -0.06906314939260483, -0.28698089718818665, 0.3081071674823761, -0.3003331124782562, -0.28111371397972107, 0.49966147541999817, 0.27159324288368225, 0.020530827343463898, -0.37423932552337646, -0.0801420509815216, -0.2567870616912842, 0.3328595459461212, -0.5298662185668945, 1.1915613412857056, 0.4593588709831238, -1.1682194471359253, 0.4300491213798523, -0.5019510388374329, 0.010313502512872219, -0.2453540563583374, 0.18383556604385376, -0.868706464767456, -0.0504387803375721, 0.13883502781391144, 0.753580629825592, -0.1788339912891388, -0.2963131070137024, -0.4150097370147705, 0.05617281049489975, 0.484347939491272, 0.2897029519081116, 1.0569169521331787, 0.37476977705955505, -0.3583432734012604, -0.09099006652832031, -0.7798406481742859, 0.364847332239151, 0.4678694009780884, -0.2516312599182129, -0.08652154356241226, -0.7903289794921875, 0.06432008743286133, 0.7001540660858154, 0.3029666841030121, -0.646542489528656, 0.3546457886695862, -0.2519594430923462, 0.3258054554462433, 0.5801399946212769, -0.12312333285808563, 0.2201358824968338, -0.7653630375862122, 0.5841613411903381, 0.018399758264422417, 0.33457136154174805, 0.05525369569659233, -0.4968796372413635, -0.6916791796684265, -0.7648504972457886, 0.26060715317726135, 0.4518689513206482, -0.5108360052108765, 0.8345971703529358, 0.1508263498544693, -0.7165391445159912, -0.5746508240699768, 0.2591618597507477, 0.5824003219604492, 0.2771855890750885, 0.08353519439697266, -0.4186268746852875, -0.7166084051132202, -0.931147038936615, -0.25828588008880615, -0.06278552114963531, -0.0020242538303136826, 0.604256272315979, 0.6055400371551514, -0.07912667095661163, 0.6468465924263, -0.4612867534160614, -0.36126258969306946, -0.32871004939079285, -0.051317088305950165, 0.4755500853061676, 0.8929347395896912, 1.1804763078689575, -0.6499924659729004, -0.8698323369026184, 0.038478054106235504, -1.0497426986694336, -0.044751495122909546, -0.09972876310348511, -0.29376646876335144, 0.3716348707675934, 0.2159840166568756, -0.896207332611084, 0.7817791104316711, 0.37514546513557434, -0.6068398356437683, 0.48661407828330994, -0.3861980438232422, 0.3956200182437897, -0.9768654704093933, 0.23413509130477905, 0.23415866494178772, -0.12004256248474121, -0.6977388262748718, 0.09026489406824112, -0.14242789149284363, 0.2577998638153076, -0.5269594788551331, 0.8019161224365234, -0.651816189289093, 0.04258318617939949, 0.1391284167766571, 0.010767275467514992, -0.021739160642027855, 0.45400166511535645, -0.031046152114868164, 0.5769884586334229, 0.7044627666473389, -0.08622393012046814, 0.3598780035972595, 0.3966642916202545, -0.11726488173007965, 0.536315381526947, -0.6237595677375793, 0.07790309935808182, 0.03872070834040642, 0.5548951029777527, -1.1412923336029053, -0.4064885973930359, 0.6982491612434387, -0.9078815579414368, 0.6369367241859436, -0.23822996020317078, -0.42497164011001587, -0.6573804616928101, -0.894521951675415, 0.2463461011648178, 0.6914286017417908, -0.5791290998458862, 0.3543175160884857, 0.3473162353038788, 0.10039935261011124, -0.7438243627548218, -0.7837306261062622, 0.012320431880652905, -0.3875296711921692, -0.8611531853675842, 0.3887326717376709, 0.19959573447704315, -0.17554952204227448, -0.013189845718443394, -0.05682043358683586, -0.16534161567687988, -0.07915912568569183, 0.5920570492744446, 0.43584445118904114, -0.3827248811721802, -0.30608832836151123, -0.49130308628082275, -0.09441810846328735, -0.007323248311877251, -0.15288858115673065, 0.5267351865768433, -0.5423929691314697, 0.23566550016403198, -1.2851754426956177, 0.020355211570858955, 0.5315549373626709, -0.01859917864203453, 1.0350184440612793, 0.8941446542739868, -0.3955995738506317, 0.004700142424553633, -0.35982024669647217, -0.13672931492328644, -0.5144094228744507, -0.3267906904220581, -0.630011796951294, -0.6182225942611694, 0.8899136185646057, 0.1393088847398758, -0.03228190541267395, 0.8476728200912476, 0.2884805500507355, -0.18034887313842773, 0.9587094783782959, 0.4106122553348541, -0.06054139882326126, 0.7531908750534058, -0.7827593088150024, 0.048879895359277725, -0.6976128220558167, -0.6641749143600464, -0.2932184636592865, -0.5344048142433167, -0.5503342747688293, -0.38284823298454285, 0.24578820168972015, 0.5971202850341797, -0.34533387422561646, 0.6156220436096191, -0.725713312625885, -0.03563341125845909, 0.3620681166648865, 0.41943058371543884, -0.3031691908836365, -0.06464345753192902, -0.20193730294704437, -0.18103064596652985, -0.6841269135475159, -0.24717977643013, 0.8326389193534851, 0.5650259852409363, 0.5934025645256042, 0.07446612417697906, 0.6384055018424988, 0.0790272131562233, 0.2700747549533844, -0.3752165734767914, 0.608847439289093, 0.09911230206489563, -0.6153449416160583, -0.328735888004303, -0.23959290981292725, -1.0430420637130737, 0.23035363852977753, -0.47290509939193726, -0.8589640855789185, -0.001853904570452869, 0.15075698494911194, -0.29156583547592163, 0.7113850712776184, -0.5663748979568481, 0.6014239192008972, 0.04321068525314331, -0.497671902179718, 0.010586017742753029, -0.9100441336631775, 0.23737822473049164, 0.2975323796272278, -0.01781579665839672, -0.14071543514728546, 0.00782526284456253, 0.8633648753166199, -0.7949610352516174, 0.5597994327545166, -0.40685856342315674, 0.14348043501377106, 0.6226137280464172, -0.053870491683483124, 0.31060996651649475, -0.023157166317105293, -0.19538447260856628, 0.01069562416523695, 0.05484947934746742, -0.6949673295021057, -0.2265978902578354, 0.5638975501060486, -0.73057621717453, -0.3560484051704407, -0.7285693883895874, -0.3550547659397125, 0.17352786660194397, 0.008361643180251122, 0.5056719779968262, 0.6038792729377747, 0.03229520469903946, 0.19336992502212524, 0.5299153327941895, -0.4339989721775055, 0.5163000822067261, -0.20388007164001465, -0.00554438354447484, -0.3953738808631897, 0.7523956894874573, -0.051563821732997894, 0.060018301010131836, 0.07190210372209549, 0.1109265610575676, -0.2696993052959442, -0.3309206962585449, -0.28784263134002686, 0.6254483461380005, -0.38074448704719543, -0.4313928484916687, -0.5706604719161987, -0.37672534584999084, -0.5303424000740051, -0.4047197103500366, -0.4234177768230438, -0.5148099660873413, -0.289842426776886, 0.047033730894327164, 0.784816563129425, 0.8253089785575867, -0.5692576766014099, 0.33623284101486206, -0.5136917233467102, 0.24047155678272247, 0.09346155822277069, 0.39211902022361755, -0.20608866214752197, -0.7207849621772766, 0.043877873569726944, -0.15264791250228882, -0.09015081822872162, -0.8082627058029175, 0.8175913095474243, 0.01919332519173622, 0.41636985540390015, 0.549155592918396, -0.15210671722888947, 0.8085005283355713, -0.01692524552345276, 0.5004282593727112, 0.7092452645301819, -0.787490725517273, 0.4873046875, -0.42914000153541565, 0.03839942440390587, 0.2609367072582245, 0.18451623618602753, -0.3436753451824188, -0.4216688871383667, -0.7762424349784851, -0.6259545087814331, 0.8824801445007324, 0.2508324980735779, -0.029555408284068108, 0.012340102344751358, 0.680980384349823, -0.16847655177116394, 0.007117767818272114, -0.5292930006980896, -0.9445741772651672, -0.28469225764274597, -0.13758407533168793, -0.0012176771415397525, -0.0685885101556778, -0.09185461699962616, -0.709659218788147, 0.6033512949943542, 0.006176830269396305, 0.5224756598472595, 0.3132113814353943, -0.03771134838461876, 0.019130606204271317, -0.354230135679245, 0.7639870047569275, 0.625734806060791, -0.2845044434070587, -0.3837750256061554, 0.2815392017364502, -0.6092867851257324, 0.05999142304062843, 0.07148382067680359, 0.007846664637327194, 0.16924236714839935, 0.23717772960662842, 0.5101483464241028, 0.10660801082849503, -0.16252385079860687, 0.6304095387458801, -0.17836183309555054, -0.6531055569648743, -0.3626645505428314, -0.0704701840877533, 0.16894547641277313, 0.46914616227149963, 0.2939995229244232, 0.1269536316394806, -0.33706313371658325, -0.40448108315467834, 0.488919734954834, 0.7841740846633911, -0.5742046236991882, -0.3714562654495239, 0.7128517627716064, -0.10983293503522873, -0.08328927308320999, 0.35466861724853516, -0.04500474035739899, -0.6979682445526123, 1.0902938842773438, 0.31420454382896423, 0.6391398906707764, -0.43758276104927063, 0.13984712958335876, 0.9310336112976074, 0.10586971789598465, 0.030873503535985947, 0.40035495162010193, 0.37144577503204346, -0.5979451537132263, 0.07716276496648788, -0.6398281455039978, 0.28509870171546936, 0.4458741545677185, -0.577580451965332, 0.10215546190738678, -0.7741698026657104, -0.4274747669696808, 0.18889069557189941, 0.4380403757095337, -0.7365832924842834, 0.39061108231544495, -0.00022780393192078918, 1.1893056631088257, -0.8287357091903687, 1.0339548587799072, 0.9546419382095337, -0.601273238658905, -1.0144927501678467, -0.08904198557138443, 0.18346835672855377, -1.0081965923309326, 0.840215802192688, 0.035748861730098724, 0.0029016146436333656, -0.243941068649292, -0.6201587319374084, -0.6583486199378967, 1.4207454919815063, 0.13834036886692047, -0.034255530685186386, 0.30163291096687317, -0.33853745460510254, 0.4318658411502838, -0.3447570502758026, 0.5050106644630432, 0.36209362745285034, 0.5481524467468262, 0.15748095512390137, -0.9093777537345886, 0.38453155755996704, -0.479605495929718, -0.10164716094732285, 0.2543853223323822, -1.3454673290252686, 1.1379269361495972, -0.2924483120441437, -0.002106199273839593, 0.19947485625743866, 0.6703079342842102, 0.3936881422996521, -0.05517089366912842, 0.4222199022769928, 0.8144820332527161, 0.40854331851005554, -0.3184897005558014, 1.0357692241668701, -0.26093870401382446, 0.5641859173774719, 0.1716618537902832, 0.6104764342308044, 0.3863333761692047, 0.31346020102500916, -0.4134088456630707, 0.22562086582183838, 0.8374525904655457, -0.06446188688278198, 0.1875588446855545, 0.46616506576538086, -0.3658740818500519, -0.32168638706207275, -0.15402138233184814, -0.6050623059272766, 0.3365890085697174, 0.2146809697151184, -0.2986067533493042, -0.0704813227057457, -0.22103102505207062, 0.2765945494174957, 0.0708002895116806, -0.29544970393180847, 0.46051570773124695, 0.07871770113706589, -0.38789620995521545, 0.5865049362182617, 0.059337079524993896, 1.0793983936309814, -0.4475618004798889, 0.05297982320189476, -0.39951249957084656, 0.4015553295612335, -0.24348242580890656, -1.0352797508239746, 0.20966950058937073, -0.1419035643339157, 0.03071022406220436, -0.25627201795578003, 0.8302208185195923, -0.1797177940607071, -0.3721114695072174, 0.3565477430820465, 0.33447739481925964, 0.44402483105659485, 0.23022280633449554, -1.337804913520813, 0.1989361196756363, 0.15348385274410248, -0.7506879568099976, 0.44151967763900757, 0.44409728050231934, 0.24525271356105804, 0.8262525200843811, 0.43442535400390625, 0.32819777727127075, 0.2014261931180954, -0.3266984820365906, 0.822228193283081, -0.6232335567474365, -0.3624332547187805, -0.7732495069503784, 0.4670531451702118, -0.21998044848442078, -0.6735005974769592, 0.811909019947052, 0.5365356802940369, 0.554084837436676, -0.032207880169153214, 0.679212212562561, -0.529245913028717, 0.4466021656990051, -0.31734535098075867, 0.8618364334106445, -0.8436599373817444, -0.24905040860176086, -0.30433645844459534, -0.4424906373023987, -0.45901957154273987, 0.9358060956001282, 0.03840174525976181, 0.16570372879505157, 0.20493720471858978, 0.7656263709068298, 0.19822527468204498, -0.27650946378707886, -0.11956898123025894, 0.1148274764418602, -0.09465330839157104, 0.8227878212928772, 0.7364363670349121, -0.745220422744751, 0.17286424338817596, -0.5487635135650635, -0.24339193105697632, -0.42070308327674866, -0.7716988921165466, -1.2354555130004883, -0.723524272441864, -0.4098860025405884, -0.7432178854942322, -0.1897968053817749, 1.2020063400268555, 0.8615899682044983, -0.6581040024757385, -0.20071344077587128, 0.31763213872909546, 0.18432986736297607, -0.1955709606409073, -0.254972904920578, 0.5409697890281677, 0.07899194210767746, -0.8576006889343262, -0.37948253750801086, 0.19822673499584198, 0.4736959636211395, 0.47669273614883423, -0.3965758979320526, -0.31374818086624146, 0.014680604450404644, 0.36817535758018494, 0.7567287683486938, -0.8715498447418213, -0.34623950719833374, -0.09505105018615723, -0.4503181278705597, 0.3769863545894623, 0.32274025678634644, -0.462381511926651, -0.09416577965021133, 0.7872759103775024, 0.2105070948600769, 0.6409541368484497, 0.1194818988442421, 0.17970488965511322, -0.48127779364585876, 0.515119731426239, -0.08093509823083878, 0.3240340054035187, 0.12511500716209412, -0.23149339854717255, 0.7975913286209106, 0.4180331230163574, -0.34980884194374084, -1.0155396461486816, -0.26173245906829834, -1.4195122718811035, -0.2544325590133667, 0.6839790344238281, -0.26982995867729187, -0.3966579735279083, 0.341975599527359, -0.2808304727077484, 0.4609830677509308, -0.26132267713546753, 0.3258243203163147, 0.31307438015937805, -0.3741719424724579, -0.24672020971775055, -0.6882103085517883, 0.7886870503425598, 0.3176209330558777, -0.5656653046607971, -0.41578608751296997, 0.033069413155317307, 0.40447288751602173, 0.246834859251976, 0.839834451675415, -0.3009874224662781, 0.15543046593666077, 0.007213309407234192, 0.3007621169090271, -0.07449837774038315, 0.07537802308797836, -0.30519476532936096, -0.058630842715501785, -0.2282227873802185, -0.6702033877372742 ]
digit82/kobart-summarization
digit82
"2022-03-01T13:48:13Z"
49,541
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
text2text-generation
"2022-03-02T23:29:05Z"
Entry not found
[ -0.3227650225162506, -0.22568431496620178, 0.862226128578186, 0.43461495637893677, -0.5282987952232361, 0.7012965679168701, 0.7915717363357544, 0.07618638128042221, 0.7746025919914246, 0.2563219666481018, -0.7852817177772522, -0.22573819756507874, -0.9104480743408203, 0.5715669393539429, -0.3992334008216858, 0.5791245698928833, -0.14494505524635315, -0.10751161724328995, 0.28233757615089417, -0.2768954336643219, -0.5409224033355713, -0.36855220794677734, -1.1902776956558228, 0.061491113156080246, 0.5316578149795532, 0.7435142397880554, 0.7584060430526733, 0.3652167320251465, 0.6432578563690186, 0.3932291269302368, -0.23138920962810516, 0.4827055037021637, -0.04171813279390335, 0.00260411505587399, -0.3524433970451355, -0.5516898036003113, -0.28596609830856323, 0.07584730535745621, 1.0961304903030396, 0.966687798500061, -0.284663587808609, 0.05330817773938179, -0.3063621520996094, 0.33088892698287964, -0.49734312295913696, 0.3054099678993225, -0.022506045177578926, 0.16318801045417786, -0.7041513919830322, -0.5535354018211365, 0.012794834561645985, -0.7361212968826294, 0.17926570773124695, -0.690081000328064, 0.8269098401069641, 0.18583157658576965, 1.1533750295639038, 0.14819414913654327, -0.462487131357193, -0.8161764144897461, -0.6538989543914795, 0.5711171627044678, -0.32703715562820435, 0.39680248498916626, 0.7028235197067261, -0.048573412001132965, -0.9820332527160645, -0.6745741367340088, -0.46466192603111267, 0.2923962473869324, 0.35402774810791016, -0.3411678075790405, -0.17522086203098297, -0.3058989644050598, 0.15792037546634674, 0.12811517715454102, -0.4841994643211365, -0.5543919205665588, -0.5475160479545593, -0.3960252106189728, 0.6206658482551575, 0.3482950031757355, 0.2429177463054657, -0.1888415813446045, -0.3228583335876465, 0.0880163162946701, -0.4160851538181305, 0.3402571678161621, 0.6335517168045044, 0.7114017009735107, -0.5811444520950317, 0.560215950012207, -0.04927587881684303, 0.7439703941345215, 0.11445561796426773, -0.27478092908859253, 0.41460567712783813, -0.14724725484848022, 0.055171746760606766, 0.4226345121860504, 0.31524422764778137, 0.2841312289237976, -0.3273695111274719, 0.2032228708267212, -0.3215144872665405, -0.30496224761009216, -0.22332167625427246, -0.29490774869918823, -0.3592180609703064, 0.5492289066314697, -0.3314017057418823, -0.42855486273765564, 1.143175721168518, -0.4200771450996399, -0.7302224040031433, 0.33156412839889526, 0.4065209925174713, -0.0994480773806572, -0.37146568298339844, -0.052260834723711014, -0.8458789587020874, -0.007907390594482422, 0.7491172552108765, -0.7198970913887024, 0.3371737599372864, 0.4728063642978668, 0.7417217493057251, 0.19650575518608093, -0.14034469425678253, -0.42949390411376953, 0.2971969544887543, -0.8659994006156921, 0.6320174336433411, -0.20135220885276794, -1.0051977634429932, 0.11150479316711426, 0.8971705436706543, -0.37896400690078735, -1.2094876766204834, 1.0605159997940063, -0.6887932419776917, 0.16017857193946838, -0.676761269569397, -0.14661237597465515, -0.07118501514196396, -0.005096632521599531, -0.6088156700134277, 0.7567102313041687, 0.587267279624939, -0.4995276927947998, 0.21429483592510223, -0.26029831171035767, -0.39151400327682495, 0.38824859261512756, -0.07935450226068497, -0.21858926117420197, 0.713833212852478, -0.6647079586982727, -0.26932814717292786, 0.2942774295806885, 0.2368936538696289, -0.35706108808517456, -0.7931919097900391, 0.08478113263845444, -0.05786270648241043, 1.550750494003296, -0.03868847340345383, -0.3586106300354004, -0.679383397102356, -1.1506240367889404, -0.07070787996053696, 0.6886883974075317, -0.9194989204406738, -0.27839475870132446, -0.046410128474235535, -0.26169314980506897, 0.08994917571544647, 0.7390589714050293, -1.1194051504135132, 0.2832726836204529, -0.05092663690447807, -0.22794683277606964, 0.8271058797836304, 0.15387225151062012, 0.24758946895599365, 0.14913396537303925, 0.42958706617355347, 0.527725338935852, 0.11115207523107529, 0.683587908744812, -0.34720373153686523, -0.9694353938102722, 0.6154631972312927, 0.25266361236572266, 0.8121447563171387, -0.49945297837257385, 0.2685093879699707, 0.27025535702705383, -0.3409680724143982, -0.5682371854782104, -0.3102838397026062, 0.09025752544403076, 0.14930562674999237, 0.11142510175704956, -0.5721710324287415, -0.6576125025749207, -0.9689140319824219, -0.13590654730796814, -0.4314374029636383, -0.3571570813655853, 0.21006910502910614, 0.5792906284332275, -1.1975523233413696, 0.4128875136375427, -0.7705625891685486, -0.7038741111755371, -0.01065548975020647, -0.19338123500347137, 0.7540656328201294, 0.43240174651145935, 0.5033966898918152, -0.6397148370742798, -0.5661987066268921, -0.22470176219940186, -1.0333747863769531, -0.13280506432056427, 0.24819621443748474, 0.3065737783908844, -0.13423344492912292, -0.2744963765144348, -0.48740333318710327, 0.8100387454032898, 0.14789170026779175, -0.5391897559165955, 0.5220767259597778, -0.3020317256450653, 0.17224803566932678, -0.6369150280952454, -0.06916818022727966, -0.661676287651062, -0.0009071884560398757, -0.3608308732509613, -0.5737438797950745, 0.14772287011146545, 0.07017494738101959, -0.16065457463264465, 0.28808408975601196, -0.909277081489563, -0.0010852962732315063, -0.7442210912704468, 0.379071980714798, 0.06394772231578827, -0.3145078718662262, -0.017517540603876114, 1.0000386238098145, 0.7784460783004761, -0.3848048746585846, 0.721744179725647, 0.4440041184425354, 0.19036155939102173, 0.7630521059036255, -0.18725109100341797, 0.16478213667869568, -0.5245416760444641, -0.12161104381084442, -0.8887597918510437, -1.0982946157455444, 0.7320570349693298, -0.6114250421524048, 0.36542922258377075, -0.4277869760990143, 0.2589159905910492, -0.6919258832931519, -0.03885362669825554, 0.4808599352836609, -0.05936325341463089, -0.6863942742347717, 0.5232570171356201, 0.45317530632019043, -0.2019241601228714, -0.6609031558036804, -0.530157208442688, 0.39365822076797485, 0.6154114007949829, -0.16390392184257507, 0.06878514587879181, 0.14941060543060303, -0.5441926121711731, -0.040802597999572754, -0.38691970705986023, -0.45766758918762207, 0.054224006831645966, 0.13053473830223083, -0.005750799085944891, -0.404820054769516, -0.0868026465177536, -0.35842007398605347, -0.4656120240688324, 0.21876516938209534, 0.3011947274208069, -0.04096309468150139, -0.42599788308143616, -0.3619818687438965, -0.888181209564209, 0.6719610095024109, 0.5370282530784607, 0.05281545966863632, 0.7555549740791321, 0.16819314658641815, -0.8014987707138062, -0.13532210886478424, -0.1760706603527069, 0.2696830928325653, -0.5588056445121765, 0.13849826157093048, -0.013484534807503223, -0.0637492910027504, 0.26297882199287415, 0.25386232137680054, -0.4300556778907776, 0.9276250004768372, -0.2615274488925934, -0.3592521846294403, 0.7960181832313538, 0.5974742770195007, 0.49583131074905396, 0.16503219306468964, -0.044541798532009125, 0.900709331035614, -1.1966516971588135, -0.6563175916671753, -0.7409549355506897, -0.15945707261562347, -0.43510833382606506, -0.032105933874845505, 0.6254412531852722, 0.2900990843772888, -0.1333388388156891, 0.4756395220756531, -0.5243489742279053, 0.3556033670902252, 1.01198410987854, 0.35748639702796936, 0.3435698449611664, -0.7570229172706604, -0.2515777349472046, -0.1402427852153778, -0.9998157620429993, -0.2631377875804901, 0.8871029019355774, 0.22752606868743896, 0.844460666179657, 0.5992541313171387, 0.6784542798995972, 0.1367226243019104, 0.2523828148841858, -0.30590319633483887, 0.3920294940471649, 0.4376082420349121, -1.0401138067245483, -0.42758408188819885, 0.021418681368231773, -0.9703338742256165, -0.14227519929409027, -0.03495011106133461, -0.42617112398147583, 0.7681737542152405, 0.00016589462757110596, -0.4076709747314453, 0.7732734084129333, -0.455583393573761, 0.7562873363494873, -0.4473648965358734, -0.02663906291127205, 0.4699096083641052, -0.7070636749267578, 0.4677430987358093, 0.12878790497779846, 0.6205843091011047, -0.015572631731629372, -0.04078587517142296, 0.7104941606521606, -0.9129160046577454, 0.25438642501831055, -0.6348397135734558, 0.22421300411224365, 0.24246945977210999, 0.51606285572052, 0.5969953536987305, 0.4371243417263031, 0.10119888931512833, -0.23920902609825134, 0.04115807265043259, -0.8241125345230103, -0.210506409406662, 0.697515606880188, -0.7186890840530396, -0.6864197850227356, -1.2355337142944336, 0.14438660442829132, 0.27347055077552795, 0.389305055141449, 0.7959296107292175, 0.571408748626709, 0.1289544403553009, 0.680525004863739, 0.9888588190078735, -0.0688566341996193, 0.9166924357414246, 0.3224477171897888, 0.09175168722867966, -0.21944808959960938, 0.7036820650100708, 0.26627904176712036, -0.24707956612110138, -0.11939732730388641, 0.20913465321063995, -0.11069409549236298, -0.591761589050293, -0.49990686774253845, 0.3701757788658142, -0.6731787919998169, -0.18303893506526947, -0.6243735551834106, -0.6043769717216492, -0.511759340763092, 0.06927360594272614, -0.7147687673568726, 0.23979046940803528, -0.7753565907478333, -0.10574902594089508, 0.04323432594537735, 0.9792009592056274, -0.589311957359314, 0.5805224180221558, -1.1218582391738892, 0.19345788657665253, -0.07949887961149216, 0.7921058535575867, 0.21395787596702576, -0.7344395518302917, -0.3975418508052826, -0.11592631042003632, -0.3729911744594574, -1.3576762676239014, 0.21404948830604553, -0.2454141080379486, 0.23094046115875244, 0.6145404577255249, 0.1397707313299179, 0.5258248448371887, -0.34326282143592834, 0.7029101848602295, -0.057017259299755096, -0.7069286704063416, 0.7934495210647583, -0.5026894807815552, 0.4963534474372864, 0.9765996932983398, 0.5333835482597351, -0.7984007596969604, 0.035741209983825684, -1.041123390197754, -0.6008695363998413, 0.38426393270492554, 0.11928944289684296, -0.03601083159446716, -0.6659559011459351, -0.054019637405872345, -0.16143807768821716, 0.6043745279312134, -1.039069414138794, -0.7858356237411499, 0.2576698362827301, 0.5277302861213684, 0.0816856250166893, -0.5653398633003235, 0.20880667865276337, -0.544416069984436, 1.0657774209976196, 0.45109400153160095, 0.3274499475955963, 0.8406060934066772, 0.46492424607276917, -0.3823164403438568, 0.09252490103244781, 0.7662695050239563, 0.6666232347488403, -0.5239797830581665, -0.2908027470111847, -0.08827541768550873, -0.9143403768539429, 0.05927472561597824, 0.11168918758630753, -0.013455932028591633, 0.9082110524177551, 0.5793083310127258, 0.2539709210395813, 0.4514279365539551, -0.726460337638855, 0.8859451413154602, -0.14954176545143127, -0.12472866475582123, -1.0677239894866943, 0.1948619782924652, -0.23984959721565247, 0.5006402134895325, 1.0061326026916504, 0.5250048041343689, -0.047630298882722855, -0.8143380880355835, -0.01473585981875658, 0.6939172148704529, -0.7091123461723328, -0.17449834942817688, 0.944853663444519, 0.3847099542617798, -1.2953051328659058, 1.106776475906372, -0.5381771326065063, -0.560332179069519, 0.9121301770210266, 0.522956907749176, 1.1221847534179688, -0.44204121828079224, 0.0008676342549733818, 0.2662237286567688, 0.41378432512283325, 0.5423170328140259, 1.0869629383087158, 0.431413471698761, -0.7931063771247864, 0.8826584815979004, -0.24776044487953186, -0.40361151099205017, -0.05347571521997452, -0.42859897017478943, 0.16892178356647491, -0.4406192898750305, -0.10713007301092148, -0.3444187641143799, 0.28543180227279663, -0.7072042226791382, 0.42807620763778687, -0.0838567465543747, 0.8653068542480469, -0.8553727269172668, 0.47207626700401306, 0.635470449924469, -0.3337355852127075, -0.8508191108703613, -0.26198428869247437, -0.11448462307453156, -0.6389466524124146, 0.30214807391166687, -0.4554102420806885, 0.044398851692676544, 0.09623463451862335, -0.649151623249054, -1.1778275966644287, 0.9093633890151978, -0.639612078666687, -0.2784462869167328, 0.20464053750038147, -0.11514760553836823, 0.28811705112457275, -0.2524643540382385, 0.010661216452717781, 0.41876548528671265, 0.748940110206604, 0.2844654619693756, -0.7727053761482239, -0.3694884479045868, 0.0015032943338155746, -0.44474777579307556, 0.7582978010177612, -0.6002101898193359, 1.1840779781341553, -0.5563543438911438, -0.059654366225004196, 0.44384512305259705, 0.24690914154052734, 0.21076197922229767, 0.6629220843315125, 0.1442081481218338, 0.7282265424728394, 1.07012140750885, -0.40835219621658325, 0.8811809420585632, 0.26432839035987854, 0.47430819272994995, 0.7238501906394958, -0.6487724781036377, 0.7513749003410339, 0.31810489296913147, -0.5682924389839172, 0.9228013753890991, 1.2906063795089722, -0.15699204802513123, 0.8079374432563782, 0.05136508867144585, -1.081600546836853, 0.325833261013031, -0.20724765956401825, -0.7530064582824707, 0.3150254189968109, 0.19055864214897156, -0.6920982599258423, -0.5770308971405029, -0.24046507477760315, -0.35662803053855896, -0.11552901566028595, -0.7631728649139404, 0.6720563769340515, -0.016969164833426476, -0.5103683471679688, 0.18857547640800476, 0.2877499461174011, 0.17368432879447937, -0.5235732793807983, -0.02939440682530403, -0.22823619842529297, 0.2660655975341797, -0.5670853853225708, -0.5234526991844177, 0.5724433064460754, -0.32430219650268555, -0.5343255400657654, 0.18147465586662292, 0.763587236404419, -0.16923809051513672, -0.4515409469604492, 0.32472723722457886, 0.6959525346755981, 0.1665852814912796, 0.4250282347202301, -0.23511263728141785, 0.24480605125427246, -0.08044824004173279, -0.06651552021503448, 0.27714768052101135, 0.3449169099330902, 0.22435641288757324, 0.4450142979621887, 0.43285664916038513, -0.01808755099773407, -0.10736498981714249, -0.382819801568985, 0.4124940037727356, -0.9542785882949829, -0.5713282823562622, -0.6307113766670227, 0.2740660607814789, -0.02315417304635048, -1.0836423635482788, 0.4145168364048004, 1.4406683444976807, 1.0359982252120972, -0.4756383001804352, 1.067226529121399, -0.21818485856056213, 0.9594791531562805, 0.41483086347579956, 0.5420440435409546, -0.6030411720275879, 0.03835370019078255, -0.4364396035671234, -1.076962947845459, -0.35716333985328674, 0.4539391100406647, -0.022899555042386055, -0.3429867625236511, 0.872571587562561, 0.5887166261672974, -0.33473607897758484, -0.11728022992610931, 0.048487238585948944, -0.029941488057374954, -0.12433847039937973, 0.5145376324653625, 0.7648399472236633, -0.9344304800033569, -0.10680416971445084, -0.21577754616737366, -0.6382725834846497, -0.5047279000282288, -0.9632009267807007, -0.12959396839141846, -0.16037796437740326, 0.035343267023563385, -0.5662806630134583, 0.00255737011320889, 1.208324909210205, 0.5684957504272461, -1.1113994121551514, -0.5303789377212524, 0.3371853232383728, 0.3920421898365021, -0.1874791383743286, -0.24202413856983185, 0.2984568774700165, 0.15382249653339386, -0.5908876657485962, 0.6875665783882141, 0.8089625239372253, 0.208888977766037, 0.19554761052131653, 0.15893013775348663, -0.8229473829269409, -0.14913435280323029, 0.17440445721149445, 0.9450570344924927, -0.939853310585022, -0.7114843130111694, -0.03168516233563423, -0.27094873785972595, -0.05765746906399727, 0.17102102935314178, -0.4046344757080078, 0.5180677175521851, 0.34591493010520935, 0.49933457374572754, 0.0561608150601387, -0.054746925830841064, 0.5409556031227112, -0.9069057703018188, 0.09425963461399078, 0.4134361147880554, 0.4154115319252014, -0.4000864028930664, -0.5910194516181946, 0.6713420748710632, 1.0073972940444946, -0.6594868898391724, -0.8743268847465515, -0.19846712052822113, -1.0016002655029297, 0.04189709946513176, 0.6762762069702148, 0.5009527802467346, -0.4806513786315918, -0.4174500107765198, -0.5617399215698242, -0.1254672110080719, -0.1369970738887787, 0.7621601819992065, 1.179680585861206, -0.7432094812393188, 0.07975747436285019, -1.038639783859253, 0.6594986915588379, -0.2419457733631134, -0.3457581698894501, -0.48644304275512695, 0.3832802176475525, 0.35236993432044983, 0.440481036901474, 0.614812433719635, 0.1408471167087555, 0.8338426351547241, 0.3126053214073181, -0.1702686995267868, 0.2698982357978821, -0.4559200704097748, -0.028932858258485794, -0.057962555438280106, 0.31015971302986145, -1.0262157917022705 ]
albert-base-v1
null
"2023-04-06T13:42:57Z"
49,481
3
transformers
[ "transformers", "pytorch", "tf", "safetensors", "albert", "fill-mask", "exbert", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1909.11942", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
fill-mask
"2022-03-02T23:29:04Z"
--- tags: - exbert language: en license: apache-2.0 datasets: - bookcorpus - wikipedia --- # ALBERT Base v1 Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1909.11942) and first released in [this repository](https://github.com/google-research/albert). This model, as all ALBERT models, is uncased: it does not make a difference between english and English. Disclaimer: The team releasing ALBERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description ALBERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Sentence Ordering Prediction (SOP): ALBERT uses a pretraining loss based on predicting the ordering of two consecutive segments of text. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the ALBERT model as inputs. ALBERT is particular in that it shares its layers across its Transformer. Therefore, all layers have the same weights. Using repeating layers results in a small memory footprint, however, the computational cost remains similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same number of (repeating) layers. This is the first version of the base model. Version 2 is different from version 1 due to different dropout rates, additional training data, and longer training. It has better results in nearly all downstream tasks. This model has the following configuration: - 12 repeating layers - 128 embedding dimension - 768 hidden dimension - 12 attention heads - 11M parameters ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=albert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='albert-base-v1') >>> unmasker("Hello I'm a [MASK] model.") [ { "sequence":"[CLS] hello i'm a modeling model.[SEP]", "score":0.05816134437918663, "token":12807, "token_str":"▁modeling" }, { "sequence":"[CLS] hello i'm a modelling model.[SEP]", "score":0.03748830780386925, "token":23089, "token_str":"▁modelling" }, { "sequence":"[CLS] hello i'm a model model.[SEP]", "score":0.033725276589393616, "token":1061, "token_str":"▁model" }, { "sequence":"[CLS] hello i'm a runway model.[SEP]", "score":0.017313428223133087, "token":8014, "token_str":"▁runway" }, { "sequence":"[CLS] hello i'm a lingerie model.[SEP]", "score":0.014405295252799988, "token":29104, "token_str":"▁lingerie" } ] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import AlbertTokenizer, AlbertModel tokenizer = AlbertTokenizer.from_pretrained('albert-base-v1') model = AlbertModel.from_pretrained("albert-base-v1") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import AlbertTokenizer, TFAlbertModel tokenizer = AlbertTokenizer.from_pretrained('albert-base-v1') model = TFAlbertModel.from_pretrained("albert-base-v1") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='albert-base-v1') >>> unmasker("The man worked as a [MASK].") [ { "sequence":"[CLS] the man worked as a chauffeur.[SEP]", "score":0.029577180743217468, "token":28744, "token_str":"▁chauffeur" }, { "sequence":"[CLS] the man worked as a janitor.[SEP]", "score":0.028865724802017212, "token":29477, "token_str":"▁janitor" }, { "sequence":"[CLS] the man worked as a shoemaker.[SEP]", "score":0.02581118606030941, "token":29024, "token_str":"▁shoemaker" }, { "sequence":"[CLS] the man worked as a blacksmith.[SEP]", "score":0.01849772222340107, "token":21238, "token_str":"▁blacksmith" }, { "sequence":"[CLS] the man worked as a lawyer.[SEP]", "score":0.01820771023631096, "token":3672, "token_str":"▁lawyer" } ] >>> unmasker("The woman worked as a [MASK].") [ { "sequence":"[CLS] the woman worked as a receptionist.[SEP]", "score":0.04604868218302727, "token":25331, "token_str":"▁receptionist" }, { "sequence":"[CLS] the woman worked as a janitor.[SEP]", "score":0.028220869600772858, "token":29477, "token_str":"▁janitor" }, { "sequence":"[CLS] the woman worked as a paramedic.[SEP]", "score":0.0261906236410141, "token":23386, "token_str":"▁paramedic" }, { "sequence":"[CLS] the woman worked as a chauffeur.[SEP]", "score":0.024797942489385605, "token":28744, "token_str":"▁chauffeur" }, { "sequence":"[CLS] the woman worked as a waitress.[SEP]", "score":0.024124596267938614, "token":13678, "token_str":"▁waitress" } ] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The ALBERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` ### Training The ALBERT procedure follows the BERT setup. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ## Evaluation results When fine-tuned on downstream tasks, the ALBERT models achieve the following results: | | Average | SQuAD1.1 | SQuAD2.0 | MNLI | SST-2 | RACE | |----------------|----------|----------|----------|----------|----------|----------| |V2 | |ALBERT-base |82.3 |90.2/83.2 |82.1/79.3 |84.6 |92.9 |66.8 | |ALBERT-large |85.7 |91.8/85.2 |84.9/81.8 |86.5 |94.9 |75.2 | |ALBERT-xlarge |87.9 |92.9/86.4 |87.9/84.1 |87.9 |95.4 |80.7 | |ALBERT-xxlarge |90.9 |94.6/89.1 |89.8/86.9 |90.6 |96.8 |86.8 | |V1 | |ALBERT-base |80.1 |89.3/82.3 | 80.0/77.1|81.6 |90.3 | 64.0 | |ALBERT-large |82.4 |90.6/83.9 | 82.3/79.4|83.5 |91.7 | 68.5 | |ALBERT-xlarge |85.5 |92.5/86.1 | 86.1/83.1|86.4 |92.4 | 74.8 | |ALBERT-xxlarge |91.0 |94.8/89.3 | 90.2/87.4|90.8 |96.9 | 86.5 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1909-11942, author = {Zhenzhong Lan and Mingda Chen and Sebastian Goodman and Kevin Gimpel and Piyush Sharma and Radu Soricut}, title = {{ALBERT:} {A} Lite {BERT} for Self-supervised Learning of Language Representations}, journal = {CoRR}, volume = {abs/1909.11942}, year = {2019}, url = {http://arxiv.org/abs/1909.11942}, archivePrefix = {arXiv}, eprint = {1909.11942}, timestamp = {Fri, 27 Sep 2019 13:04:21 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1909-11942.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=albert-base-v1"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
[ -0.11885979026556015, -0.5177712440490723, 0.18747583031654358, 0.34949755668640137, -0.4790651202201843, 0.0175903532654047, 0.09881633520126343, -0.1499534398317337, 0.34213533997535706, 0.6211057305335999, -0.5332085490226746, -0.5011419653892517, -0.822292685508728, 0.12430904805660248, -0.5007407069206238, 1.1843448877334595, 0.073014035820961, 0.3505838215351105, -0.010827764868736267, 0.12163238972425461, -0.3719004988670349, -0.6471960544586182, -0.804277777671814, -0.29386529326438904, 0.4609818756580353, 0.3385002613067627, 0.6035723686218262, 0.7095992565155029, 0.5467574000358582, 0.4016098976135254, -0.011123974807560444, -0.1978231966495514, -0.32637110352516174, 0.03865460678935051, -0.03332154452800751, -0.6580947041511536, -0.47815340757369995, 0.09545190632343292, 0.6387161612510681, 0.8454114198684692, -0.04990379512310028, 0.3304847180843353, -0.10774590075016022, 0.5818281173706055, -0.36139383912086487, 0.2825719714164734, -0.3845285177230835, 0.09953872114419937, -0.26603826880455017, 0.0754322037100792, -0.3107284605503082, -0.1347372978925705, 0.11993566155433655, -0.6512821316719055, 0.22336477041244507, 0.33805641531944275, 1.144999623298645, 0.10117197781801224, -0.18599450588226318, -0.14433874189853668, -0.5466189980506897, 0.8545446991920471, -0.678470253944397, 0.19806131720542908, 0.5288366079330444, 0.26522156596183777, -0.019036388024687767, -0.9941794872283936, -0.3246006369590759, -0.08590991795063019, -0.2383771687746048, -0.018686214461922646, -0.027304092422127724, -0.11908065527677536, 0.4384496212005615, 0.4272279739379883, -0.46333569288253784, -0.011208674870431423, -0.7486454248428345, -0.31209248304367065, 0.6683245897293091, 0.24441292881965637, 0.26608747243881226, -0.2795657515525818, -0.34222710132598877, -0.3164849877357483, -0.3770475387573242, 0.09955708682537079, 0.5218721032142639, 0.3654394745826721, -0.2463681548833847, 0.6871768236160278, -0.37922579050064087, 0.4918021261692047, -0.02701818197965622, -0.020657647401094437, 0.48687294125556946, -0.06506902724504471, -0.45884719491004944, 0.01919788494706154, 1.0963499546051025, 0.24090956151485443, 0.3624676764011383, -0.09147389978170395, -0.4312601387500763, -0.042809005826711655, 0.2726955711841583, -0.7265422940254211, -0.3450312912464142, 0.14844894409179688, -0.4838830530643463, -0.4335273802280426, 0.5052773356437683, -0.6526511907577515, -0.04364209994673729, -0.07942363619804382, 0.4919675588607788, -0.2919232249259949, -0.2157612442970276, 0.2038968801498413, -0.40910664200782776, 0.11148572713136673, 0.0988750159740448, -0.9499088525772095, 0.2297898828983307, 0.5952741503715515, 0.8558923602104187, 0.3585204482078552, -0.20966601371765137, -0.3836608827114105, -0.14307236671447754, -0.36990249156951904, 0.4846382439136505, -0.3225879967212677, -0.5296586155891418, 0.038083143532276154, 0.21719330549240112, -0.03279127925634384, -0.38135653734207153, 0.6111876964569092, -0.6068776249885559, 0.5110532641410828, -0.03459383547306061, -0.4215482175350189, -0.20199093222618103, 0.05654767155647278, -0.7603846192359924, 1.0895602703094482, 0.41358622908592224, -0.6936770677566528, 0.29664310812950134, -0.9199073314666748, -0.5437720417976379, 0.24640150368213654, 0.09714869409799576, -0.4888820946216583, 0.12362204492092133, 0.13989166915416718, 0.38795632123947144, -0.11807556450366974, 0.1995982676744461, -0.1903824359178543, -0.41930562257766724, 0.3264530897140503, -0.19742289185523987, 1.1003482341766357, 0.22841010987758636, -0.2437855750322342, 0.0602533333003521, -0.8741699457168579, -0.04829803481698036, 0.28694722056388855, -0.3076801002025604, -0.24444016814231873, -0.2703514099121094, 0.30578142404556274, 0.11740989983081818, 0.4115971624851227, -0.5428103804588318, 0.26550787687301636, -0.6038224697113037, 0.48298412561416626, 0.7578347325325012, -0.06779997795820236, 0.41083279252052307, -0.4319494068622589, 0.6012333035469055, 0.05217990279197693, -0.08697319775819778, -0.2890240550041199, -0.6004185676574707, -0.8811327815055847, -0.31244218349456787, 0.52752685546875, 0.753251314163208, -0.4640286862850189, 0.6382896304130554, -0.1340542584657669, -0.6307618021965027, -0.6693600416183472, -0.045652441680431366, 0.40906327962875366, 0.429315447807312, 0.3332369327545166, -0.42741814255714417, -0.8777192234992981, -0.866035521030426, -0.30094265937805176, -0.19962270557880402, -0.3245106339454651, -0.024092402309179306, 0.7944104671478271, -0.30534371733665466, 0.7660388350486755, -0.68013995885849, -0.36912232637405396, -0.12315461784601212, 0.32935217022895813, 0.5166679620742798, 0.7959409356117249, 0.36810484528541565, -0.624794602394104, -0.4558376371860504, -0.28440001606941223, -0.7597582340240479, -0.014734877273440361, -0.06120506301522255, -0.25621297955513, -0.023386327549815178, 0.47935327887535095, -0.7565922141075134, 0.546442449092865, 0.2131030261516571, -0.5234407186508179, 0.6621139645576477, -0.24141819775104523, 0.08132807165384293, -1.2018240690231323, 0.17642667889595032, -0.08549153804779053, -0.31569477915763855, -0.7475606203079224, -0.0267160814255476, -0.1291775107383728, -0.0022711853962391615, -0.6110527515411377, 0.5689330697059631, -0.5170958638191223, 0.060991935431957245, -0.05072914808988571, -0.15001001954078674, 0.1692349761724472, 0.43467918038368225, -0.015891660004854202, 0.5757085084915161, 0.6863380670547485, -0.6152689456939697, 0.5587885975837708, 0.47907665371894836, -0.6356368064880371, 0.25415632128715515, -0.861405074596405, 0.2684824764728546, -0.0451430007815361, -0.09753675013780594, -1.0523120164871216, -0.31151100993156433, 0.38422995805740356, -0.5280027389526367, 0.36188793182373047, -0.056513600051403046, -0.684873104095459, -0.49231189489364624, -0.2080070823431015, 0.5201420187950134, 0.5261337757110596, -0.2273762822151184, 0.44034555554389954, 0.33180293440818787, -0.1346285045146942, -0.6527404189109802, -0.7520357370376587, 0.09456489235162735, -0.2594057321548462, -0.5366120934486389, 0.33120599389076233, -0.013695120811462402, -0.2652706205844879, -0.26709479093551636, 0.07643565535545349, -0.05661588907241821, 0.09588920325040817, 0.28455331921577454, 0.49537476897239685, -0.29267290234565735, -0.2673565149307251, -0.10586179047822952, -0.19713279604911804, 0.3236357867717743, -0.0366644449532032, 0.7231349349021912, -0.035660602152347565, -0.13632440567016602, -0.44770878553390503, 0.44484153389930725, 0.6463242173194885, -0.07408403605222702, 0.820965588092804, 0.7740609645843506, -0.5752068161964417, 0.08000855892896652, -0.26623138785362244, -0.1815715730190277, -0.5358319282531738, 0.619015634059906, -0.5683999061584473, -0.8418964743614197, 0.7457645535469055, 0.2810724079608917, -0.17323802411556244, 0.7076168060302734, 0.610961377620697, -0.1622137874364853, 1.1953767538070679, 0.4642176032066345, -0.09785490483045578, 0.48758664727211, -0.24616877734661102, 0.32546326518058777, -0.8799329996109009, -0.484577476978302, -0.4807162284851074, -0.19350779056549072, -0.45632490515708923, -0.08222799003124237, 0.2049880176782608, 0.401790589094162, -0.5317515134811401, 0.6696577668190002, -0.6282260417938232, 0.3882331848144531, 0.917750358581543, 0.18142729997634888, -0.1204877570271492, -0.24914461374282837, -0.07536032795906067, 0.02847100794315338, -0.42936772108078003, -0.5335202217102051, 1.0474183559417725, 0.5886638760566711, 0.7438647747039795, 0.06584781408309937, 0.6353315114974976, 0.24011696875095367, 0.19291247427463531, -0.5474907755851746, 0.6020147800445557, -0.09756497293710709, -0.9016688466072083, -0.3362134099006653, -0.16794273257255554, -1.0230118036270142, 0.16695407032966614, -0.27243971824645996, -0.9448252320289612, -0.11914577335119247, -0.14014115929603577, -0.4041011333465576, 0.11903130263090134, -0.7007448077201843, 1.1286827325820923, -0.32757246494293213, -0.1373404860496521, 0.20629730820655823, -0.8802559971809387, 0.2921384274959564, 0.07958556711673737, 0.18277713656425476, -0.14851398766040802, 0.1814000904560089, 1.1676071882247925, -0.4581533670425415, 0.8259960412979126, -0.14299386739730835, 0.22315163910388947, 0.0459621399641037, 0.07438841462135315, 0.32105907797813416, 0.12369827181100845, 0.12115300446748734, 0.4226871430873871, 0.10473332554101944, -0.4443930387496948, -0.2521589696407318, 0.4397941529750824, -0.8614189028739929, -0.5653294920921326, -0.6183130145072937, -0.5499339699745178, 0.22495350241661072, 0.47385674715042114, 0.63027423620224, 0.502776563167572, -0.20594985783100128, 0.18335987627506256, 0.3803686499595642, -0.18346534669399261, 0.6401143074035645, 0.4005381762981415, -0.3563012480735779, -0.5528524518013, 0.6319946646690369, 0.028255628421902657, 0.004775870591402054, 0.5815048813819885, 0.1029493510723114, -0.5457724928855896, -0.23617523908615112, -0.45785248279571533, 0.20217061042785645, -0.6625968813896179, -0.34510669112205505, -0.6471624970436096, -0.3912688195705414, -0.6938924789428711, -0.10077250003814697, -0.23903249204158783, -0.3523577153682709, -0.7102623581886292, -0.185898557305336, 0.3159220218658447, 0.6833545565605164, -0.07462350279092789, 0.6234241127967834, -0.8140056133270264, 0.24990899860858917, 0.2307092249393463, 0.4360019862651825, -0.291981965303421, -0.7940904498100281, -0.5196009278297424, 0.029888929799199104, -0.18643207848072052, -0.8331570625305176, 0.6994051337242126, 0.10367953032255173, 0.44415268301963806, 0.650016725063324, -0.07484287768602371, 0.6222167611122131, -0.6016896963119507, 0.937748372554779, 0.27824148535728455, -1.0663172006607056, 0.5887314677238464, -0.3140575885772705, 0.24522128701210022, 0.41778358817100525, 0.2792111039161682, -0.526411235332489, -0.3793819844722748, -0.822588324546814, -0.9869370460510254, 0.9382626414299011, 0.26422929763793945, 0.29949256777763367, 0.01705927774310112, 0.21686193346977234, 0.10054363310337067, 0.44449037313461304, -0.8948438763618469, -0.679901659488678, -0.4663912355899811, -0.29239946603775024, -0.12198908627033234, -0.2775813341140747, -0.11727631837129593, -0.4965403378009796, 0.7808970808982849, 0.24461305141448975, 0.5417465567588806, 0.009266805835068226, -0.12260618805885315, -0.06610839813947678, 0.17812678217887878, 0.7992806434631348, 0.5185453295707703, -0.5049149990081787, 0.04140708968043327, 0.02349928580224514, -0.562555730342865, 0.06949394196271896, 0.14480578899383545, -0.0436231754720211, 0.2466624528169632, 0.5688254833221436, 1.0177721977233887, 0.1551433652639389, -0.5046857595443726, 0.5636045336723328, 0.11889320611953735, -0.24862004816532135, -0.615241527557373, 0.17932109534740448, -0.10776747763156891, 0.09961003065109253, 0.4760545492172241, 0.19842641055583954, 0.14329294860363007, -0.4513664245605469, 0.36918899416923523, 0.38752827048301697, -0.48350584506988525, -0.28643059730529785, 1.010520339012146, 0.009433671832084656, -0.8608354926109314, 0.7427366375923157, -0.20688800513744354, -0.6827363967895508, 0.6921262741088867, 0.6819038987159729, 0.9399058818817139, -0.2641006112098694, 0.1643892526626587, 0.5892248153686523, 0.3294028341770172, -0.3356471359729767, 0.20870889723300934, 0.28175777196884155, -0.8492273092269897, -0.3207281827926636, -0.7913938164710999, -0.24570026993751526, 0.2528042197227478, -0.8651127219200134, 0.3830755650997162, -0.502800703048706, -0.1330430656671524, 0.1411423534154892, -0.09136557579040527, -0.7819782495498657, 0.5208542346954346, 0.10586557537317276, 0.994356095790863, -1.022787094116211, 0.8808714747428894, 0.799152135848999, -0.7078916430473328, -0.8764846324920654, -0.4494256377220154, -0.32501232624053955, -1.1014243364334106, 0.7183478474617004, 0.4324072003364563, 0.3130711019039154, 0.062059368938207626, -0.6544288396835327, -0.7744061350822449, 0.9151595234870911, 0.1937573254108429, -0.5049686431884766, -0.18014220893383026, 0.21003274619579315, 0.5066289901733398, -0.6114732623100281, 0.6260492205619812, 0.5643669962882996, 0.4012804925441742, -0.06733185052871704, -0.7739227414131165, 0.013412099331617355, -0.48703956604003906, 0.05914318561553955, 0.09132426977157593, -0.42996683716773987, 1.1199495792388916, -0.06546495854854584, -0.036976512521505356, 0.21364732086658478, 0.6645221710205078, 0.06742235273122787, 0.22927705943584442, 0.4722277820110321, 0.6611952185630798, 0.6300141215324402, -0.2856079041957855, 0.8695378303527832, -0.2276102751493454, 0.5998957753181458, 0.8063635230064392, 0.049435246735811234, 0.6879805326461792, 0.42006364464759827, -0.3402247130870819, 0.9812107086181641, 0.7978104948997498, -0.27149271965026855, 0.7795794606208801, 0.12609276175498962, -0.10944909602403641, -0.0765773355960846, 0.12353107333183289, -0.25758564472198486, 0.4776197075843811, 0.20284534990787506, -0.565196692943573, 0.05239863693714142, 0.006654893048107624, 0.1963152289390564, -0.20026159286499023, -0.49696701765060425, 0.7002297043800354, 0.22970886528491974, -0.6984373331069946, 0.34727582335472107, 0.21922756731510162, 0.6081600189208984, -0.5496024489402771, -0.012705199420452118, -0.07350988686084747, 0.20205801725387573, -0.13339780271053314, -0.8160583972930908, 0.21999743580818176, -0.15134014189243317, -0.42022112011909485, -0.3319586515426636, 0.59365314245224, -0.5020554065704346, -0.7180504202842712, -0.02135760523378849, 0.28168001770973206, 0.33752351999282837, -0.1779179871082306, -0.8147775530815125, -0.1614016592502594, 0.02582625299692154, -0.32314836978912354, 0.22347530722618103, 0.3183964788913727, 0.16214656829833984, 0.5611060261726379, 0.7327679991722107, -0.09942064434289932, 0.008483462035655975, 0.05092373117804527, 0.7190893292427063, -0.927679181098938, -0.8304780125617981, -1.072716236114502, 0.7895223498344421, -0.09961292147636414, -0.5724531412124634, 0.6775966882705688, 0.800670325756073, 0.8546291589736938, -0.4125968813896179, 0.6019451022148132, -0.15216705203056335, 0.5984941124916077, -0.3609689176082611, 0.7905665636062622, -0.423361599445343, 0.08196979761123657, -0.35905593633651733, -0.8335896134376526, -0.3561074435710907, 0.9071221351623535, -0.1044096052646637, 0.09358280897140503, 0.7168434262275696, 0.8080071806907654, 0.05599899962544441, -0.13093149662017822, 0.2766839563846588, 0.08170594274997711, 0.08316205441951752, 0.40234071016311646, 0.6289969086647034, -0.8283881545066833, 0.3919925391674042, -0.29280781745910645, -0.06888479739427567, -0.3654100000858307, -0.7757236361503601, -1.0678191184997559, -0.6055159568786621, -0.3416142165660858, -0.7152761816978455, -0.2736031413078308, 0.944087564945221, 0.7517812848091125, -1.0228712558746338, -0.26833441853523254, -0.10969977080821991, 0.09533391147851944, -0.1921473890542984, -0.28875985741615295, 0.41089320182800293, -0.10350269824266434, -0.8606603741645813, 0.2256854623556137, 0.04848019778728485, 0.07286456227302551, -0.22221793234348297, -0.07719117403030396, -0.2849433720111847, -0.018889794126152992, 0.3471980690956116, 0.139064222574234, -0.6612022519111633, -0.4482370615005493, 0.09908977150917053, -0.3040938079357147, 0.2026258260011673, 0.5192956328392029, -0.5388674736022949, 0.3681878447532654, 0.4013442099094391, 0.28470170497894287, 0.648798406124115, 0.1032763198018074, 0.6099874377250671, -0.9919666647911072, 0.27893882989883423, 0.2666052281856537, 0.535573422908783, 0.45467713475227356, -0.4185299277305603, 0.4329729676246643, 0.5113436579704285, -0.5602060556411743, -0.9232307076454163, -0.006308968644589186, -0.9966804385185242, -0.08184240013360977, 0.9842175841331482, -0.12666922807693481, -0.3610785901546478, -0.08586125075817108, -0.358701229095459, 0.4922914206981659, -0.3847455680370331, 0.6987125873565674, 0.7937818169593811, 0.0956849753856659, -0.260648638010025, -0.3907976746559143, 0.4219498336315155, 0.39449310302734375, -0.4289378523826599, -0.46707671880722046, 0.02170972339808941, 0.4503301978111267, 0.33419713377952576, 0.6564281582832336, 0.00017671241948846728, 0.14991801977157593, 0.2766980528831482, 0.2697555720806122, -0.0939304530620575, -0.1603921353816986, -0.2517373859882355, 0.1517115980386734, -0.10808197408914566, -0.6981194019317627 ]
tomh/toxigen_roberta
tomh
"2022-05-01T19:42:09Z"
49,387
3
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "en", "arxiv:2203.09509", "endpoints_compatible", "region:us" ]
text-classification
"2022-05-01T13:19:41Z"
--- language: - en tags: - text-classification --- Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, Ece Kamar. This model comes from the paper [ToxiGen: A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate Speech Detection](https://arxiv.org/abs/2203.09509) and can be used to detect implicit hate speech. Please visit the [Github Repository](https://github.com/microsoft/TOXIGEN) for the training dataset and further details. ```bibtex @inproceedings{hartvigsen2022toxigen, title = "{T}oxi{G}en: A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate Speech Detection", author = "Hartvigsen, Thomas and Gabriel, Saadia and Palangi, Hamid and Sap, Maarten and Ray, Dipankar and Kamar, Ece", booktitle = "Proceedings of the 60th Annual Meeting of the Association of Computational Linguistics", year = "2022" } ```
[ -0.1589903086423874, -0.8089854121208191, 0.42106011509895325, -0.013495055958628654, 0.12272237241268158, -0.2965545356273651, -0.3149189054965973, -0.5152105689048767, -0.3798019587993622, 0.31166979670524597, -0.6240896582603455, -0.8281320929527283, -0.9064756631851196, -0.10887596756219864, -0.5987511277198792, 1.1449719667434692, 0.20859961211681366, 0.36085692048072815, 0.03422071784734726, -0.22338679432868958, 0.10444039851427078, -0.45617324113845825, -0.8089213967323303, -0.09233932197093964, 0.5865809917449951, 0.09250377863645554, 0.5169841051101685, 0.8152354955673218, -0.050698403269052505, 0.27458709478378296, -0.07609303295612335, -0.2419298142194748, -0.8430423140525818, 0.09315367043018341, -0.1918938010931015, -0.19460882246494293, -0.2899543344974518, 0.0751567855477333, 0.7508766055107117, 0.35506317019462585, -0.005235485732555389, 0.2109460085630417, 0.031417686492204666, 0.1971714347600937, -0.5379738807678223, -0.16518336534500122, -0.9190552234649658, -0.012544717639684677, -0.37422969937324524, 0.18669648468494415, -0.632405698299408, -0.27739042043685913, 0.017768513411283493, -0.39844009280204773, 0.3821207284927368, 0.00460411049425602, 0.6350263357162476, 0.2618460953235626, -0.5220627188682556, -0.40803179144859314, -0.6308087706565857, 0.879267156124115, -0.7256677746772766, 0.5093452334403992, 0.22955146431922913, 0.031555913388729095, -0.2153622806072235, -0.38810452818870544, -0.8069737553596497, -0.3062208294868469, 0.08823785930871964, -0.04273458942770958, -0.6233575940132141, 0.08463864028453827, 0.49855202436447144, 0.022978078573942184, -0.695506751537323, 0.2852320075035095, -0.44964316487312317, -0.36782267689704895, 0.8894559741020203, 0.022655317559838295, 0.15489917993545532, 0.06875117123126984, -0.5364981889724731, -0.14599677920341492, -0.4219987988471985, -0.07694990932941437, 0.6396223902702332, 0.40346401929855347, -0.40603870153427124, 0.44261613488197327, 0.09395908564329147, 0.6244606375694275, -0.17361029982566833, -0.1990429013967514, 0.5369201302528381, -0.007321412209421396, 0.011272603645920753, 0.14603902399539948, 1.0298835039138794, 0.2527080774307251, 0.5713838338851929, -0.35964134335517883, -0.14625348150730133, 0.306520938873291, 0.22963213920593262, -1.0216484069824219, -0.07232238352298737, 0.17495793104171753, -0.4113118648529053, -0.44922226667404175, -0.26509997248649597, -1.0777488946914673, -0.597308874130249, -0.2890828847885132, 0.36219722032546997, -0.26840853691101074, -0.3266671597957611, -0.3423958420753479, -0.15848591923713684, 0.134002685546875, 0.06294632703065872, -0.3822484612464905, 0.21046403050422668, 0.44391289353370667, 0.6053856015205383, -0.40266308188438416, -0.28225618600845337, -0.5191671848297119, 0.22303056716918945, -0.12369951605796814, 0.4834345877170563, -0.7279300093650818, -0.4686625301837921, 0.32353973388671875, -0.10830830782651901, -0.013960327953100204, -0.4461929500102997, 0.9338636994361877, -0.5132421255111694, 0.32252728939056396, -0.03777488321065903, -0.593603789806366, -0.353720486164093, 0.3010951280593872, -0.41373810172080994, 0.9500394463539124, 0.12453577667474747, -0.764595091342926, 0.15385575592517853, -0.704226016998291, -0.317512184381485, -0.1787862926721573, -0.1411682367324829, -0.9537110924720764, -0.05674228444695473, -0.0672827735543251, 0.228175088763237, -0.4395638108253479, 0.16404558718204498, -0.9240762591362, 0.06069963052868843, 0.17236150801181793, -0.3402865529060364, 1.126065731048584, 0.31383150815963745, -0.500573456287384, 0.18064945936203003, -1.1361925601959229, -0.10944681614637375, 0.4395391345024109, -0.19821305572986603, -0.33789268136024475, 0.026946332305669785, 0.30900266766548157, 0.3981025218963623, 0.03607457876205444, -0.9828314781188965, -0.07325893640518188, -0.07099160552024841, 0.3072717487812042, 0.9792694449424744, -0.1884491741657257, 0.03915968909859657, -0.11223121732473373, 0.37880465388298035, 0.06408321112394333, 0.04977531358599663, 0.31409719586372375, -0.3911448121070862, -0.5452927947044373, -0.37707796692848206, 0.07834665477275848, 0.6299946904182434, -0.5298601984977722, 0.47270792722702026, -0.2605074644088745, -0.5808480978012085, -0.150710791349411, -0.18538354337215424, 0.6514780521392822, 0.8119362592697144, 0.5305715203285217, 0.14969798922538757, -0.7779774069786072, -0.957033097743988, -0.24335551261901855, -0.20563681423664093, 0.06409616768360138, 0.49206072092056274, 0.855239748954773, -0.26448962092399597, 1.0390377044677734, -0.5325391888618469, -0.12376508116722107, 0.1980270892381668, 0.15483851730823517, -0.2051975280046463, 0.3667079210281372, 0.7685957551002502, -0.727981686592102, -0.6756381988525391, -0.39298099279403687, -0.6468983888626099, -0.4531135857105255, 0.3585832118988037, -0.28238314390182495, 0.16195158660411835, 0.6046010851860046, -0.04535194858908653, 0.5135020613670349, 0.6285795569419861, -0.6232090592384338, 0.6058644652366638, 0.35792458057403564, 0.0700031965970993, -1.4279428720474243, 0.051711488515138626, 0.19348463416099548, -0.16378267109394073, -1.0662943124771118, -0.3504638075828552, -0.15675552189350128, -0.11399509757757187, -0.6339080333709717, 0.5792349576950073, -0.1184384673833847, 0.07843338698148727, -0.2179199457168579, 0.05216612666845322, -0.5300871133804321, 0.8056315183639526, 0.05207967385649681, 1.0411187410354614, 0.7732073068618774, -0.729714035987854, 0.24835999310016632, 0.4688258767127991, -0.09705004096031189, 0.7548208236694336, -0.9292014837265015, 0.28561171889305115, -0.13088305294513702, 0.12047082930803299, -1.1086398363113403, -0.028036320582032204, 0.40661999583244324, -0.6953622698783875, 0.11279282718896866, -0.28331106901168823, -0.5189089179039001, -0.18183794617652893, -0.2703043520450592, 0.795087993144989, 0.41201722621917725, -0.6999936103820801, 0.661335289478302, 0.7289900779724121, 0.08840838819742203, -0.5458680391311646, -0.5237959623336792, -0.18312060832977295, -0.4942856431007385, -0.7163021564483643, 0.33794981241226196, -0.2149529904127121, -0.24734929203987122, -0.10517846047878265, 0.4144705832004547, -0.08845934271812439, -0.0015208947006613016, 0.4656527042388916, 0.1703263223171234, -0.14965654909610748, 0.1713029444217682, -0.15515899658203125, 0.1851654052734375, 0.4364014267921448, -0.351713627576828, 0.6432191133499146, 0.10120987892150879, -0.06318803131580353, -0.3741523027420044, 0.5059590339660645, 0.6271234154701233, -0.06749947369098663, 0.8916796445846558, 0.7098004221916199, -0.37810268998146057, -0.2699710428714752, -0.3001171350479126, 0.034588925540447235, -0.43044742941856384, 0.5640321373939514, -0.16231472790241241, -0.865345299243927, 0.6376582980155945, 0.1272100955247879, -0.06882799416780472, 0.7739357352256775, 0.7450725436210632, 0.3012255132198334, 1.1791810989379883, 0.40793555974960327, -0.2772343158721924, 0.6682547926902771, -0.20034259557724, -0.11493168026208878, -0.6879673600196838, -0.2752845585346222, -0.9736565351486206, -0.15196825563907623, -0.6781356930732727, -0.21282729506492615, 0.45698869228363037, -0.27170589566230774, -0.8387148380279541, 0.2343079000711441, -0.2935789227485657, 0.32587528228759766, 0.38770538568496704, 0.18211516737937927, -0.13226309418678284, 0.38662365078926086, -0.14340092241764069, -0.026720508933067322, -0.4111986458301544, -0.23750990629196167, 1.2955458164215088, 0.37206605076789856, 0.28977513313293457, 0.3682941794395447, 0.45636990666389465, 0.5116029381752014, 0.3555186688899994, -0.5663045048713684, 0.6677722930908203, -0.3363090455532074, -0.8818814158439636, -0.2552448809146881, -0.5309735536575317, -1.0618607997894287, 0.08591028302907944, -0.2649471163749695, -0.9087738990783691, 0.19706284999847412, 0.0642506331205368, -0.1463635414838791, 0.45392537117004395, -0.5310988426208496, 0.8356859087944031, -0.01115046814084053, -0.4596550464630127, -0.19833293557167053, -0.4096828103065491, 0.24663738906383514, -0.005603327881544828, 0.13189515471458435, -0.07368846982717514, 0.06656526029109955, 1.1569396257400513, -0.13968504965305328, 0.9665907025337219, -0.4247806668281555, -0.41157302260398865, 0.3379042148590088, -0.16447532176971436, 0.652332067489624, -0.20134976506233215, -0.4150572717189789, 0.5514209270477295, -0.6916991472244263, -0.4379182755947113, -0.18557795882225037, 0.5492441654205322, -1.0472431182861328, -0.375787615776062, -0.4859573543071747, -0.5836642980575562, -0.18758028745651245, 0.2396467626094818, 0.5617571473121643, 0.49580106139183044, -0.43548908829689026, 0.17931009829044342, 0.7961265444755554, -0.28379371762275696, 0.3993329107761383, 0.6770545840263367, -0.003761139465495944, -0.7150853872299194, 0.7823992371559143, 0.09485237300395966, 0.2522127032279968, 0.11243447661399841, 0.0950203388929367, -0.3356454372406006, -0.7452061176300049, -0.2552635967731476, 0.4681242108345032, -0.49917641282081604, -0.047260865569114685, -0.8330606818199158, -0.3621469736099243, -0.641001284122467, 0.1404583901166916, -0.19542068243026733, -0.17396430671215057, -0.42043498158454895, 0.06752792745828629, 0.38178694248199463, 0.6032654643058777, -0.09638473391532898, 0.4921937584877014, -0.41958847641944885, 0.4153020679950714, 0.3061368465423584, 0.1889602541923523, 0.039967987686395645, -1.1755802631378174, -0.17573553323745728, 0.23828110098838806, -0.35010379552841187, -0.9526074528694153, 0.4979590177536011, 0.19392704963684082, 0.6811012625694275, 0.34135866165161133, 0.257798969745636, 0.43802765011787415, -0.5066765546798706, 0.8853520750999451, 0.09552709013223648, -0.8776692748069763, 0.6341150403022766, -0.627666711807251, -0.07431036233901978, 0.3677702844142914, 0.6877108216285706, -0.35455286502838135, -0.3382718563079834, -0.7672611474990845, -0.6867399215698242, 1.027618169784546, 0.3184801936149597, -0.023402616381645203, 0.24012942612171173, 0.051778294146060944, 0.07212048768997192, 0.2242751568555832, -1.130159854888916, -0.6325971484184265, -0.11879077553749084, -0.36363309621810913, -0.23320649564266205, -0.5382898449897766, -0.43037378787994385, -0.30926239490509033, 1.0707452297210693, 0.11149090528488159, 0.6899755597114563, -0.18568237125873566, -0.1345403790473938, 0.006113771814852953, 0.25369593501091003, 0.912104070186615, 0.2171117067337036, -0.018430419266223907, -0.01843038760125637, 0.16227740049362183, -0.5303510427474976, -0.09141019731760025, 0.24458244442939758, -0.25937262177467346, -0.10797178000211716, 0.4023321568965912, 1.270851492881775, -0.4667509198188782, -0.4251948297023773, 0.6125920414924622, 0.02911185845732689, -0.7077343463897705, -0.6246311664581299, 0.10316900163888931, -0.3383049964904785, 0.29986101388931274, 0.24420911073684692, 0.06759542971849442, 0.27335232496261597, -0.3183547556400299, 0.30218932032585144, 0.5510027408599854, -0.5553419589996338, -0.40928414463996887, 0.6964036822319031, 0.09953943639993668, -0.4022488296031952, 0.6429588198661804, -0.350589781999588, -0.9060823917388916, 0.38871705532073975, 0.6163665652275085, 1.1701722145080566, -0.26758554577827454, 0.10736998915672302, 0.6834911704063416, 0.1133834719657898, 0.30226314067840576, 0.0979391410946846, -0.050534866750240326, -0.9171329736709595, 0.08794432878494263, -0.6250090003013611, -0.0718902125954628, 0.6829603314399719, -0.4590603709220886, 0.16451328992843628, -0.21988438069820404, 0.08794228732585907, 0.2550593316555023, -0.24237491190433502, -0.3318009376525879, 0.26505210995674133, 0.5278765559196472, 0.61649090051651, -1.1574468612670898, 0.9125338792800903, 0.46822887659072876, -0.19794034957885742, -0.5864035487174988, 0.17256419360637665, 0.17976102232933044, -0.9071094393730164, 0.47818678617477417, 0.04735708609223366, -0.3186841905117035, 0.0354231521487236, -0.9291911721229553, -0.8452834486961365, 0.714536190032959, 0.49391013383865356, -0.3675638437271118, 0.19889770448207855, 0.37701958417892456, 0.6774569749832153, -0.46072903275489807, 0.09083635360002518, 0.47488638758659363, 0.3606286942958832, 0.171341210603714, -0.5216546654701233, -0.2011786699295044, -0.5957996249198914, 0.11296053975820541, -0.009960705414414406, -0.6115115880966187, 0.9977326989173889, 0.02905762381851673, -0.22999143600463867, -0.16559891402721405, 0.8482989072799683, 0.25649261474609375, 0.4419649839401245, 0.7976409792900085, 0.7582674026489258, 0.6117441058158875, -0.10944227129220963, 0.6980905532836914, -0.3272855579853058, 0.24100255966186523, 1.288489580154419, -0.03463596850633621, 0.7173518538475037, 0.12184180319309235, -0.24343536794185638, 0.48569783568382263, 0.4278307557106018, -0.24715198576450348, 0.551712155342102, 0.3026834726333618, -0.44539040327072144, -0.13080328702926636, -0.31425103545188904, -0.5797409415245056, 0.395574688911438, 0.4795202910900116, -0.6848035454750061, -0.27627402544021606, 0.26371079683303833, 0.27894487977027893, 0.2782750129699707, -0.40192317962646484, 0.7367174625396729, -0.38174763321876526, -0.4781476557254791, 1.1162700653076172, -0.032975900918245316, 0.8417649865150452, -0.450374573469162, 0.15156225860118866, 0.18138274550437927, 0.30143076181411743, -0.16913673281669617, -0.7513575553894043, 0.2170761376619339, 0.4685665965080261, -0.4778149724006653, -0.19501787424087524, 0.41992488503456116, -0.7489715218544006, -0.37135908007621765, 0.5937432646751404, -0.11538094282150269, 0.22885501384735107, -0.024792302399873734, -0.8741891980171204, 0.10814204066991806, 0.35752081871032715, -0.23870733380317688, 0.24309426546096802, 0.4071941673755646, 0.010038396343588829, 0.47349488735198975, 0.5703795552253723, -0.01827916130423546, 0.37004294991493225, 0.14248661696910858, 0.8099040985107422, -0.32748809456825256, -0.5916532874107361, -0.8928866386413574, 0.48056840896606445, -0.3145830035209656, -0.5218170881271362, 0.8331887722015381, 0.8507217168807983, 1.0472854375839233, -0.13832926750183105, 1.0887200832366943, -0.10655354708433151, 0.8647357225418091, -0.3333556354045868, 0.5777941346168518, -0.6339278817176819, -0.10125890374183655, -0.31296372413635254, -0.8648785948753357, -0.06779728084802628, 0.4948124885559082, -0.504978597164154, 0.20244169235229492, 0.5940536260604858, 1.245478630065918, 0.09376616775989532, -0.029948590323328972, 0.3939129114151001, 0.6952537894248962, 0.48031505942344666, 0.46109622716903687, 0.5673048496246338, -0.5594764947891235, 0.6849469542503357, -0.09028651565313339, -0.13250844180583954, -0.08436431735754013, -0.7062135934829712, -0.934490442276001, -0.7201789021492004, -0.5812265872955322, -0.8183838129043579, 0.10608041286468506, 0.9740716814994812, 0.6070087552070618, -1.1759190559387207, -0.37311938405036926, -0.16845309734344482, -0.09572478383779526, 0.024187419563531876, -0.13116933405399323, 0.31406912207603455, 0.03566291555762291, -0.9478246569633484, 0.3569071888923645, -0.25667524337768555, 0.28640225529670715, 0.1312786042690277, -0.309765487909317, -0.3722635805606842, 0.1846553087234497, 0.4708355963230133, 0.32906606793403625, -0.5283540487289429, -0.23819933831691742, -0.3344959020614624, -0.3379034399986267, 0.1047835499048233, 0.4671727120876312, -0.4046248197555542, 0.1397896409034729, 0.3112633228302002, 0.4770410358905792, 0.372616708278656, -0.10493133962154388, 0.3544538617134094, -0.8263089656829834, 0.39469486474990845, 0.12203864008188248, 0.22209739685058594, 0.12224892526865005, -0.3203895092010498, 0.5066407322883606, 0.478254497051239, -0.4632813334465027, -1.0548347234725952, 0.3981589376926422, -1.0770677328109741, -0.1857846975326538, 1.623054027557373, -0.049449387937784195, -0.35041189193725586, -0.13872185349464417, -0.1809016466140747, 0.6618874073028564, -0.8286107182502747, 0.6467434167861938, 0.5042694807052612, 0.267750084400177, 0.025003883987665176, -0.09626739472150803, 0.6460044384002686, 0.03155256807804108, -0.8245428800582886, 0.24722595512866974, 0.5688567757606506, 0.24206838011741638, 0.33624765276908875, 0.281817227602005, -0.06203293055295944, 0.15251892805099487, 0.03685680404305458, 0.3111124038696289, -0.17145493626594543, -0.26061272621154785, -0.450129896402359, 0.5500776171684265, -0.34603431820869446, -0.34882983565330505 ]
intfloat/e5-large-unsupervised
intfloat
"2023-07-27T05:02:57Z"
49,369
0
sentence-transformers
[ "sentence-transformers", "pytorch", "safetensors", "bert", "Sentence Transformers", "sentence-similarity", "en", "arxiv:2212.03533", "arxiv:2104.08663", "arxiv:2210.07316", "license:mit", "endpoints_compatible", "region:us" ]
sentence-similarity
"2023-01-31T03:03:36Z"
--- tags: - Sentence Transformers - sentence-similarity - sentence-transformers language: - en license: mit --- # E5-large-unsupervised **This model is similar to [e5-large](https://huggingface.co/intfloat/e5-large) but without supervised fine-tuning.** [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf). Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022 This model has 24 layers and the embedding size is 1024. ## Usage Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset. ```python import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # Each input text should start with "query: " or "passage: ". # For tasks other than retrieval, you can simply use the "query: " prefix. input_texts = ['query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."] tokenizer = AutoTokenizer.from_pretrained('intfloat/e5-large-unsupervised') model = AutoModel.from_pretrained('intfloat/e5-large-unsupervised') # Tokenize the input texts batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt') outputs = model(**batch_dict) embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) * 100 print(scores.tolist()) ``` ## Training Details Please refer to our paper at [https://arxiv.org/pdf/2212.03533.pdf](https://arxiv.org/pdf/2212.03533.pdf). ## Benchmark Evaluation Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB benchmark](https://arxiv.org/abs/2210.07316). ## Support for Sentence Transformers Below is an example for usage with sentence_transformers. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('intfloat/e5-large-unsupervised') input_texts = [ 'query: how much protein should a female eat', 'query: summit define', "passage: As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", "passage: Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." ] embeddings = model.encode(input_texts, normalize_embeddings=True) ``` Package requirements `pip install sentence_transformers~=2.2.2` Contributors: [michaelfeil](https://huggingface.co/michaelfeil) ## FAQ **1. Do I need to add the prefix "query: " and "passage: " to input texts?** Yes, this is how the model is trained, otherwise you will see a performance degradation. Here are some rules of thumb: - Use "query: " and "passage: " correspondingly for asymmetric tasks such as passage retrieval in open QA, ad-hoc information retrieval. - Use "query: " prefix for symmetric tasks such as semantic similarity, paraphrase retrieval. - Use "query: " prefix if you want to use embeddings as features, such as linear probing classification, clustering. **2. Why are my reproduced results slightly different from reported in the model card?** Different versions of `transformers` and `pytorch` could cause negligible but non-zero performance differences. ## Citation If you find our paper or models helpful, please consider cite as follows: ``` @article{wang2022text, title={Text Embeddings by Weakly-Supervised Contrastive Pre-training}, author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Jiao, Binxing and Yang, Linjun and Jiang, Daxin and Majumder, Rangan and Wei, Furu}, journal={arXiv preprint arXiv:2212.03533}, year={2022} } ``` ## Limitations This model only works for English texts. Long texts will be truncated to at most 512 tokens.
[ -0.13710272312164307, -0.677585780620575, 0.19711314141750336, 0.19493918120861053, -0.24203014373779297, -0.3883894979953766, -0.02961689420044422, -0.3968212306499481, 0.0947260931134224, 0.35587164759635925, -0.5237017869949341, -0.6183288097381592, -0.9821370244026184, 0.3068459630012512, -0.40043917298316956, 0.9225087761878967, 0.05645781755447388, 0.0684128925204277, -0.35038265585899353, -0.03603076934814453, -0.22013114392757416, -0.5280935168266296, -0.3123909533023834, -0.3308185636997223, 0.2842974066734314, 0.20692668855190277, 0.5362582206726074, 0.5491887927055359, 0.6428965330123901, 0.34700897336006165, -0.16044801473617554, 0.2367684543132782, -0.5127374529838562, -0.18344271183013916, -0.0067002479918301105, -0.5123658180236816, -0.4076927900314331, 0.19090522825717926, 0.5630237460136414, 0.8720989227294922, 0.12273411452770233, 0.2762130796909332, 0.3628450632095337, 0.5706170201301575, -0.5845587253570557, 0.19580097496509552, -0.41931700706481934, 0.14922961592674255, 0.10962934046983719, 0.010118942707777023, -0.3902755677700043, 0.25179678201675415, 0.3120686709880829, -0.5931923985481262, 0.2866705358028412, 0.13025407493114471, 1.2095402479171753, 0.3190099000930786, -0.521599292755127, -0.1630994826555252, -0.15204362571239471, 0.9375814199447632, -0.68523770570755, 0.45926958322525024, 0.6507294178009033, -0.2536162734031677, -0.184868723154068, -0.9463115334510803, -0.40184396505355835, -0.18229956924915314, -0.2222609966993332, 0.16280360519886017, -0.2883302867412567, -0.017715273424983025, 0.4558703601360321, 0.4338935911655426, -0.7868940234184265, -0.02498944103717804, -0.3854701817035675, -0.06717105209827423, 0.5345932841300964, 0.09974479675292969, 0.2904447913169861, -0.4479115903377533, -0.20595386624336243, -0.23446239531040192, -0.5263075828552246, 0.07960116118192673, 0.1741473525762558, 0.35527196526527405, -0.34908047318458557, 0.5745764374732971, -0.33918243646621704, 0.6431993246078491, 0.25775402784347534, 0.1299230456352234, 0.647938072681427, -0.49337583780288696, -0.2920292615890503, -0.27886661887168884, 0.9601480960845947, 0.5215853452682495, 0.17966769635677338, -0.1187785342335701, -0.0972345843911171, -0.10137810558080673, 0.10256042331457138, -1.0804919004440308, -0.5342812538146973, 0.2359650731086731, -0.6322376728057861, -0.18549548089504242, 0.13104933500289917, -0.5378884673118591, -0.06964205205440521, -0.25367262959480286, 0.8618862628936768, -0.5127710700035095, 0.08948205411434174, 0.26632142066955566, -0.21647799015045166, 0.09260697662830353, 0.11746075004339218, -0.8388302326202393, 0.2506694495677948, 0.10352016985416412, 0.8870618939399719, -0.06453227996826172, -0.41111189126968384, -0.5209335684776306, -0.027748137712478638, 0.00015545490896329284, 0.5217703580856323, -0.38309532403945923, -0.2661822438240051, 0.032764580100774765, 0.4813419282436371, -0.4922091066837311, -0.47559478878974915, 0.5862954258918762, -0.2996145486831665, 0.3866633474826813, -0.22806209325790405, -0.5693267583847046, -0.09857591986656189, 0.24856598675251007, -0.4322893023490906, 0.9787372946739197, 0.07459788024425507, -0.9060350656509399, 0.162614643573761, -0.5014177560806274, -0.40232938528060913, -0.11493837833404541, -0.06296732276678085, -0.47465500235557556, -0.08914618194103241, 0.569076657295227, 0.42439359426498413, -0.13869372010231018, 0.04274725541472435, -0.0949859619140625, -0.4624033570289612, 0.2247365117073059, -0.16073383390903473, 0.850740373134613, 0.06127484515309334, -0.476121187210083, -0.09632501006126404, -0.756538450717926, 0.06782926619052887, 0.15211284160614014, -0.443393349647522, -0.06952304393053055, 0.08822887390851974, 0.015971295535564423, 0.27234771847724915, 0.37965086102485657, -0.5289549827575684, 0.23309747874736786, -0.48390647768974304, 0.8056084513664246, 0.5168684720993042, 0.061090629547834396, 0.41002652049064636, -0.36531051993370056, 0.09000000357627869, 0.40211358666419983, 0.10585523396730423, -0.0582655631005764, -0.45490196347236633, -0.8023985624313354, -0.15763042867183685, 0.5948119759559631, 0.43341025710105896, -0.4714997410774231, 0.6005178689956665, -0.3206990957260132, -0.2915804088115692, -0.6656944751739502, 0.07082067430019379, 0.1957540512084961, 0.328654944896698, 0.774273693561554, -0.08648133277893066, -0.6587581038475037, -1.0194354057312012, -0.3111083209514618, 0.23214030265808105, -0.29408201575279236, 0.18024614453315735, 0.8998740911483765, -0.3797995150089264, 0.551093339920044, -0.6636385917663574, -0.5574462413787842, -0.20326533913612366, 0.1399328112602234, 0.39083510637283325, 0.7243393659591675, 0.33540576696395874, -0.8152763247489929, -0.4232310652732849, -0.47683146595954895, -0.8657407760620117, 0.06598697602748871, 0.12277189642190933, -0.14261187613010406, -0.05744238197803497, 0.4879452884197235, -0.6674054265022278, 0.3403448164463043, 0.49469900131225586, -0.4327276647090912, 0.25370439887046814, -0.3863050937652588, 0.10700902342796326, -0.9907361268997192, 0.04045778885483742, 0.1803823709487915, -0.20527811348438263, -0.3630448281764984, 0.18317683041095734, 0.05684921145439148, -0.15992309153079987, -0.4112266004085541, 0.23180824518203735, -0.6138852834701538, 0.17620119452476501, -0.1557583510875702, 0.27249449491500854, 0.2931675612926483, 0.5196021795272827, -0.10422283411026001, 0.5574172139167786, 0.6018540263175964, -0.8133888840675354, 0.015624712221324444, 0.6635039448738098, -0.39325186610221863, 0.2919822335243225, -0.8995423316955566, 0.05204739049077034, -0.05478902906179428, 0.29380595684051514, -0.8881658911705017, -0.24433667957782745, 0.1772397756576538, -0.6585053205490112, 0.27182477712631226, -0.030581627041101456, -0.5346510410308838, -0.3425048291683197, -0.4752509593963623, 0.1985466033220291, 0.505226194858551, -0.3806915581226349, 0.5012238025665283, 0.27082306146621704, 0.05914527177810669, -0.49671638011932373, -1.012195348739624, -0.10453420877456665, -0.02820122055709362, -0.658490777015686, 0.6864944696426392, -0.14148400723934174, 0.25339967012405396, 0.02972625568509102, -0.11282671242952347, 0.18617777526378632, -0.16587130725383759, 0.2479018270969391, 0.01682264544069767, 0.05846738815307617, 0.049840789288282394, -0.14156286418437958, -0.0204960685223341, 0.02646351046860218, -0.28896987438201904, 0.5289713740348816, -0.2953740358352661, 0.09835810959339142, -0.6032401919364929, 0.5043447613716125, 0.27945923805236816, -0.30580055713653564, 1.0569592714309692, 0.7937350869178772, -0.36969053745269775, 0.05659187212586403, -0.30824214220046997, -0.3589530289173126, -0.4551127851009369, 0.5803671479225159, -0.5288653373718262, -0.5703052878379822, 0.43018192052841187, 0.06347835063934326, -0.028398461639881134, 0.8943274617195129, 0.3154343366622925, -0.2766518294811249, 1.361236810684204, 0.740930438041687, 0.1623976230621338, 0.37393856048583984, -0.6945127248764038, 0.05456995964050293, -0.9658727645874023, -0.3565995693206787, -0.5776488184928894, -0.4729193449020386, -0.8225484490394592, -0.37854453921318054, 0.37105950713157654, 0.19215533137321472, -0.5086555480957031, 0.28826579451560974, -0.5941129326820374, 0.10766541957855225, 0.5783019065856934, 0.48330432176589966, 0.12765096127986908, 0.1582130491733551, -0.1964123249053955, -0.34061717987060547, -0.931495189666748, -0.32137399911880493, 1.0244395732879639, 0.2604813277721405, 0.6910689473152161, -0.08325670659542084, 0.5422623157501221, 0.1358228176832199, -0.14301423728466034, -0.6399800181388855, 0.5081890821456909, -0.4075145423412323, -0.3132813572883606, -0.17263482511043549, -0.6521813869476318, -1.0768945217132568, 0.4210476875305176, -0.46028608083724976, -0.6775004267692566, 0.2030179649591446, -0.1564042866230011, -0.2799353301525116, 0.14391766488552094, -0.8727666139602661, 1.016901969909668, 0.04126238077878952, -0.2531779706478119, 0.023431595414876938, -0.6621665954589844, -0.1717970073223114, 0.2867104411125183, 0.13336405158042908, 0.043591152876615524, -0.02490522339940071, 1.0429762601852417, -0.2900947332382202, 0.9201803207397461, -0.061416901648044586, 0.41202035546302795, 0.09616532176733017, -0.20717133581638336, 0.5475566387176514, -0.1977388709783554, -0.007168878801167011, 0.27383923530578613, 0.08470845222473145, -0.5659288167953491, -0.3451574444770813, 0.768481433391571, -1.2029517889022827, -0.521981954574585, -0.5262789130210876, -0.4948277771472931, 0.07300066947937012, 0.19570784270763397, 0.6226260662078857, 0.49379050731658936, 0.14404986798763275, 0.5788276791572571, 0.5334742665290833, -0.3611779808998108, 0.3843177258968353, 0.3373686671257019, 0.085918128490448, -0.4262663722038269, 0.6402426958084106, 0.4265393018722534, 0.1385650634765625, 0.6214792132377625, 0.21688908338546753, -0.3309606909751892, -0.5329115986824036, -0.20583993196487427, 0.42093130946159363, -0.6390976905822754, -0.1822187751531601, -1.0923094749450684, -0.3425300121307373, -0.6058645248413086, 0.038862958550453186, -0.2680428922176361, -0.3592773675918579, -0.35059410333633423, -0.05293403938412666, 0.16877785325050354, 0.4148038327693939, -0.08940129727125168, 0.31337422132492065, -0.640309751033783, 0.2794632315635681, 0.0687125027179718, 0.04790424928069115, -0.13303598761558533, -0.9332757592201233, -0.3776197135448456, 0.19231735169887543, -0.6246116161346436, -0.8366875648498535, 0.4582653343677521, 0.40782105922698975, 0.5794169902801514, 0.16385602951049805, 0.12825776636600494, 0.6137290000915527, -0.3760700821876526, 0.9410783052444458, 0.15006054937839508, -0.8960010409355164, 0.6110265851020813, -0.13638173043727875, 0.6482487320899963, 0.4554699659347534, 0.705802857875824, -0.33854758739471436, -0.3609064519405365, -0.8072178363800049, -1.069437861442566, 0.5961899757385254, 0.4012736678123474, 0.1783311367034912, -0.0490892231464386, 0.2705462872982025, -0.09131328761577606, 0.26904696226119995, -1.0915167331695557, -0.30376136302948, -0.35639387369155884, -0.23848101496696472, -0.240192249417305, -0.1697002649307251, -0.015698205679655075, -0.5900654792785645, 0.8129854798316956, -0.05308603122830391, 0.6116952896118164, 0.5449975728988647, -0.455880343914032, 0.057427577674388885, 0.03160683810710907, 0.31090977787971497, 0.6113749146461487, -0.39694955945014954, 0.27766451239585876, 0.31083589792251587, -0.6248921751976013, -0.20690451562404633, 0.21344876289367676, -0.25114405155181885, 0.027783140540122986, 0.484453022480011, 0.7462007999420166, 0.30717507004737854, -0.3549605906009674, 0.6021915078163147, 0.036171816289424896, -0.3861350119113922, -0.11947862058877945, -0.07182271033525467, 0.1941567063331604, 0.21918518841266632, 0.47609981894493103, -0.09957277029752731, 0.13555969297885895, -0.5857757925987244, 0.07799462229013443, 0.03555895388126373, -0.3849055767059326, -0.29053550958633423, 0.7199512720108032, 0.26009297370910645, -0.07121388614177704, 1.0125244855880737, -0.0916600376367569, -0.5158984065055847, 0.461129754781723, 0.6855946779251099, 0.6267536878585815, -0.10856331139802933, 0.18533912301063538, 0.8232223391532898, 0.42471396923065186, 0.019696254283189774, 0.13888303935527802, 0.2099778950214386, -0.6638292670249939, -0.3221835196018219, -0.8957717418670654, 0.002823262009769678, 0.3358342945575714, -0.45820990204811096, 0.19500717520713806, -0.04156177490949631, -0.259808212518692, 0.09414257854223251, 0.4489523768424988, -0.8845797777175903, 0.2718895375728607, -0.13351638615131378, 0.6841092705726624, -0.8955609798431396, 0.5082607865333557, 0.8145660758018494, -0.8060788512229919, -0.7377566695213318, -0.01069587655365467, -0.3845287263393402, -0.5895990133285522, 0.6761818528175354, 0.513754665851593, 0.1763969510793686, 0.10221165418624878, -0.5392820239067078, -0.670825719833374, 1.0729552507400513, 0.1505645513534546, -0.4963911175727844, -0.27384260296821594, 0.3197873830795288, 0.40810340642929077, -0.47679972648620605, 0.5011463165283203, 0.3396759033203125, 0.3282738924026489, -0.051692135632038116, -0.7245107293128967, 0.19075535237789154, -0.32244935631752014, -0.12806913256645203, -0.11141620576381683, -0.673750102519989, 1.1456682682037354, -0.26031553745269775, -0.026750978082418442, 0.01468187291175127, 0.6185992956161499, 0.059692416340112686, 0.016292843967676163, 0.4220949113368988, 0.6072238087654114, 0.6501067876815796, -0.020106041803956032, 1.1369733810424805, -0.31684887409210205, 0.5439856052398682, 0.7642652988433838, 0.32022345066070557, 0.8179153800010681, 0.4237311780452728, -0.29796159267425537, 0.5988700985908508, 0.8557025194168091, -0.1664699763059616, 0.6749243140220642, 0.10191299766302109, 0.13475963473320007, -0.3397778570652008, 0.033227842301130295, -0.5643709301948547, 0.4050077497959137, 0.17036323249340057, -0.6523039937019348, -0.20077967643737793, 0.08970677107572556, 0.05274989828467369, -0.16551457345485687, -0.2761520445346832, 0.48576101660728455, 0.45731499791145325, -0.49199753999710083, 0.951747477054596, 0.13350465893745422, 0.688880443572998, -0.6454761028289795, 0.2052808701992035, -0.19843773543834686, 0.40597105026245117, -0.3165396451950073, -0.587273895740509, 0.10261868685483932, -0.0868850126862526, -0.2747901678085327, -0.11408518254756927, 0.53156578540802, -0.5765249133110046, -0.5068591833114624, 0.27837279438972473, 0.5377694964408875, 0.2669694423675537, -0.3294162452220917, -0.9568575620651245, -0.021514512598514557, 0.0721484124660492, -0.3892575800418854, 0.44902968406677246, 0.2483159750699997, 0.2076072245836258, 0.557766318321228, 0.5122835040092468, -0.11569895595312119, -0.0639505609869957, 0.1777280569076538, 0.7919577956199646, -0.6137121319770813, -0.5891910791397095, -0.7976961731910706, 0.3716805875301361, -0.2559521198272705, -0.33623215556144714, 0.8126479387283325, 0.6690375804901123, 0.7414398193359375, -0.1818065196275711, 0.44800299406051636, 0.005999736022204161, 0.1522264927625656, -0.5399613380432129, 0.643436849117279, -0.7022314667701721, -0.10154026746749878, -0.22356224060058594, -0.9993454217910767, -0.18253736197948456, 0.8580290079116821, -0.4294097125530243, 0.1206953153014183, 0.9035545587539673, 0.731560468673706, -0.24089589715003967, -0.08976259082555771, 0.2220696657896042, 0.5722042322158813, 0.2775403559207916, 0.7855398654937744, 0.5266624689102173, -0.9874005913734436, 0.6860477924346924, -0.124085433781147, -0.2313990294933319, -0.17599481344223022, -0.7438842058181763, -0.9023784399032593, -0.6777889132499695, -0.5549197196960449, -0.33368992805480957, 0.09907235950231552, 0.9298827648162842, 0.7445595860481262, -0.5724616646766663, -0.09867744892835617, 0.001423447742126882, -0.22579246759414673, -0.32825082540512085, -0.22641552984714508, 0.5906839370727539, -0.3616335988044739, -0.9070080518722534, 0.22611813247203827, -0.1723579317331314, 0.10775565356016159, 0.05356454849243164, 0.023794226348400116, -0.5908939838409424, -0.032460279762744904, 0.7089253067970276, -0.10261468589305878, -0.36712953448295593, -0.3915984630584717, -0.007216355763375759, -0.25266483426094055, 0.1531132012605667, 0.13415324687957764, -0.6115296483039856, 0.24908766150474548, 0.5512833595275879, 0.4157642126083374, 0.9918470978736877, -0.016369646415114403, 0.4261676073074341, -0.6938413977622986, 0.14702095091342926, 0.0913548693060875, 0.3600791394710541, 0.5232599973678589, -0.277407169342041, 0.46197736263275146, 0.3727867901325226, -0.6195036768913269, -0.6015787124633789, -0.11862251907587051, -0.9351534843444824, -0.24728481471538544, 1.0287060737609863, -0.18202221393585205, -0.30346840620040894, 0.15869757533073425, -0.03228980675339699, 0.3724266290664673, -0.27109283208847046, 0.7439542412757874, 0.807368814945221, -0.12730984389781952, -0.05320866033434868, -0.7716419696807861, 0.4998033046722412, 0.48347973823547363, -0.5321183204650879, -0.2924209535121918, 0.10514159500598907, 0.47401219606399536, 0.13550861179828644, 0.44881871342658997, -0.13349539041519165, -0.022904304787516594, 0.24598467350006104, -0.03556935489177704, -0.09072645753622055, -0.14787782728672028, -0.09381096810102463, 0.17367839813232422, -0.27775058150291443, -0.3305429518222809 ]
Rostlab/prot_t5_xl_half_uniref50-enc
Rostlab
"2023-01-31T21:04:38Z"
49,155
12
transformers
[ "transformers", "pytorch", "t5", "protein language model", "dataset:UniRef50", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
"2022-05-20T09:58:28Z"
--- tags: - protein language model datasets: - UniRef50 --- # Encoder only ProtT5-XL-UniRef50, half-precision model An encoder-only, half-precision version of the [ProtT5-XL-UniRef50](https://huggingface.co/Rostlab/prot_t5_xl_uniref50) model. The original model and it's pretraining were introduced in [this paper](https://doi.org/10.1101/2020.07.12.199554) and first released in [this repository](https://github.com/agemagician/ProtTrans). This model is trained on uppercase amino acids: it only works with capital letter amino acids. ## Model description ProtT5-XL-UniRef50 is based on the `t5-3b` model and was pretrained on a large corpus of protein sequences in a self-supervised fashion. This means it was pretrained on the raw protein sequences only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those protein sequences. One important difference between this T5 model and the original T5 version is the denoising objective. The original T5-3B model was pretrained using a span denoising objective, while this model was pretrained with a Bart-like MLM denoising objective. The masking probability is consistent with the original T5 training by randomly masking 15% of the amino acids in the input. This model only contains the encoder portion of the original ProtT5-XL-UniRef50 model using half precision (float16). As such, this model can efficiently be used to create protein/ amino acid representations. When used for training downstream networks/ feature extraction, these embeddings produced the same performance (established empirically by comparing on several downstream tasks). ## Intended uses & limitations This version of the original ProtT5-XL-UniRef50 is mostly meant for conveniently creating amino-acid or protein embeddings with a low GPU-memory footprint without any measurable performance-decrease in our experiments. This model is fully usable on 8 GB of video RAM. ### How to use An extensive, interactive example on how to use this model for common tasks can be found [on Google Colab](https://colab.research.google.com/drive/1TUj-ayG3WO52n5N50S7KH9vtt6zRkdmj?usp=sharing#scrollTo=ET2v51slC5ui) Here is how to use this model to extract the features of a given protein sequence in PyTorch: ```python sequence_examples = ["PRTEINO", "SEQWENCE"] # this will replace all rare/ambiguous amino acids by X and introduce white-space between all amino acids sequence_examples = [" ".join(list(re.sub(r"[UZOB]", "X", sequence))) for sequence in sequence_examples] # tokenize sequences and pad up to the longest sequence in the batch ids = tokenizer.batch_encode_plus(sequence_examples, add_special_tokens=True, padding="longest") input_ids = torch.tensor(ids['input_ids']).to(device) attention_mask = torch.tensor(ids['attention_mask']).to(device) # generate embeddings with torch.no_grad(): embedding_repr = model(input_ids=input_ids,attention_mask=attention_mask) # extract embeddings for the first ([0,:]) sequence in the batch while removing padded & special tokens ([0,:7]) emb_0 = embedding_repr.last_hidden_state[0,:7] # shape (7 x 1024) print(f"Shape of per-residue embedding of first sequences: {emb_0.shape}") # do the same for the second ([1,:]) sequence in the batch while taking into account different sequence lengths ([1,:8]) emb_1 = embedding_repr.last_hidden_state[1,:8] # shape (8 x 1024) # if you want to derive a single representation (per-protein embedding) for the whole protein emb_0_per_protein = emb_0.mean(dim=0) # shape (1024) print(f"Shape of per-protein embedding of first sequences: {emb_0_per_protein.shape}") ``` **NOTE**: Please make sure to explicitly set the model to `float16` (`T5EncoderModel.from_pretrained('Rostlab/prot_t5_xl_half_uniref50-enc', torch_dtype=torch.float16)`) otherwise, the generated embeddings will be full precision. **NOTE**: Currently (06/2022) half-precision models cannot be used on CPU. If you want to use the encoder only version on CPU, you need to cast it to its full-precision version (`model=model.float()`). ### BibTeX entry and citation info ```bibtex @article {Elnaggar2020.07.12.199554, author = {Elnaggar, Ahmed and Heinzinger, Michael and Dallago, Christian and Rehawi, Ghalia and Wang, Yu and Jones, Llion and Gibbs, Tom and Feher, Tamas and Angerer, Christoph and Steinegger, Martin and BHOWMIK, DEBSINDHU and Rost, Burkhard}, title = {ProtTrans: Towards Cracking the Language of Life{\textquoteright}s Code Through Self-Supervised Deep Learning and High Performance Computing}, elocation-id = {2020.07.12.199554}, year = {2020}, doi = {10.1101/2020.07.12.199554}, publisher = {Cold Spring Harbor Laboratory}, abstract = {Computational biology and bioinformatics provide vast data gold-mines from protein sequences, ideal for Language Models (LMs) taken from Natural Language Processing (NLP). These LMs reach for new prediction frontiers at low inference costs. Here, we trained two auto-regressive language models (Transformer-XL, XLNet) and two auto-encoder models (Bert, Albert) on data from UniRef and BFD containing up to 393 billion amino acids (words) from 2.1 billion protein sequences (22- and 112 times the entire English Wikipedia). The LMs were trained on the Summit supercomputer at Oak Ridge National Laboratory (ORNL), using 936 nodes (total 5616 GPUs) and one TPU Pod (V3-512 or V3-1024). We validated the advantage of up-scaling LMs to larger models supported by bigger data by predicting secondary structure (3-states: Q3=76-84, 8 states: Q8=65-73), sub-cellular localization for 10 cellular compartments (Q10=74) and whether a protein is membrane-bound or water-soluble (Q2=89). Dimensionality reduction revealed that the LM-embeddings from unlabeled data (only protein sequences) captured important biophysical properties governing protein shape. This implied learning some of the grammar of the language of life realized in protein sequences. The successful up-scaling of protein LMs through HPC to larger data sets slightly reduced the gap between models trained on evolutionary information and LMs. Availability ProtTrans: \&lt;a href="https://github.com/agemagician/ProtTrans"\&gt;https://github.com/agemagician/ProtTrans\&lt;/a\&gt;Competing Interest StatementThe authors have declared no competing interest.}, URL = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554}, eprint = {https://www.biorxiv.org/content/early/2020/07/21/2020.07.12.199554.full.pdf}, journal = {bioRxiv} } ```
[ -0.21251915395259857, -0.5425873398780823, 0.1988847255706787, -0.1516418755054474, -0.2113611251115799, 0.02294165827333927, 0.017257802188396454, -0.31900548934936523, 0.3154645264148712, 0.28470176458358765, -0.3833869397640228, -0.5023563504219055, -0.6745897531509399, 0.32196950912475586, -0.27736005187034607, 0.736797034740448, 0.1392855942249298, 0.12458571791648865, -0.06827618926763535, -0.06075536459684372, 0.1461583375930786, -0.4686359167098999, -0.27371156215667725, -0.4431782066822052, 0.4096335470676422, 0.18983212113380432, 0.45471370220184326, 0.7981846332550049, 0.4948417544364929, 0.25074532628059387, -0.13339237868785858, 0.11141173541545868, -0.43725115060806274, -0.2450253963470459, 0.1741628497838974, -0.37006694078445435, -0.6025556325912476, -0.018572593107819557, 0.5879843831062317, 0.6477206945419312, 0.04111475124955177, 0.2685956656932831, 0.08606121689081192, 0.6366429924964905, -0.5239938497543335, 0.21442441642284393, -0.2715499699115753, 0.22899919748306274, -0.18307361006736755, 0.05882202461361885, -0.4626566767692566, -0.2090924233198166, 0.16150492429733276, -0.47250059247016907, 0.28801313042640686, 0.08883952349424362, 0.9738882780075073, 0.20343244075775146, -0.18317089974880219, -0.061661455780267715, -0.4330485165119171, 0.6053970456123352, -0.935562252998352, 0.5850144028663635, 0.2251128852367401, -0.0009269924485124648, -0.44520172476768494, -1.0465407371520996, -0.5373719334602356, -0.1762736737728119, -0.05212252959609032, 0.1441807597875595, -0.12385226786136627, 0.250505656003952, 0.263662725687027, 0.4436260163784027, -0.8506624698638916, -0.1413351148366928, -0.6260449290275574, -0.1217619925737381, 0.6070955395698547, -0.33089929819107056, 0.2907257080078125, -0.37606504559516907, -0.12405179440975189, -0.37994781136512756, -0.6309465765953064, 0.034181736409664154, 0.20441700518131256, 0.08083929121494293, -0.08268816024065018, 0.5363032817840576, 0.018883148208260536, 0.5179259777069092, 0.04920182004570961, 0.09435677528381348, 0.4542495012283325, 0.06646425276994705, -0.4876398742198944, 0.10204852372407913, 1.073012351989746, 0.052730198949575424, 0.37870141863822937, -0.13654597103595734, 0.1239432692527771, -0.29950401186943054, 0.11851192265748978, -0.8081032633781433, -0.5646313428878784, 0.5904202461242676, -0.4965863823890686, -0.11820680648088455, 0.28861624002456665, -0.7246789336204529, -0.21286530792713165, 0.036922868341207504, 0.7747649550437927, -0.6285784244537354, -0.020968642085790634, 0.35320475697517395, -0.18117158114910126, 0.14644268155097961, -0.13118571043014526, -0.7004125118255615, 0.11160388588905334, 0.12407124787569046, 0.8659669160842896, -0.08147495985031128, -0.19507050514221191, -0.26054367423057556, 0.15273472666740417, 0.017978766933083534, 0.47347816824913025, -0.41678285598754883, -0.2104848027229309, -0.28619661927223206, 0.2604466676712036, -0.009624933823943138, -0.5378101468086243, 0.3449534475803375, -0.47112786769866943, -0.042937520891427994, -0.13897192478179932, -0.710930347442627, -0.3696734309196472, -0.1763714700937271, -0.7096005082130432, 0.9115482568740845, 0.15373605489730835, -0.7711025476455688, 0.0990610271692276, -0.6974273324012756, -0.2052881270647049, 0.09158528596162796, -0.09082292765378952, -0.6364042162895203, -0.004761707037687302, 0.3109508454799652, 0.3358858823776245, -0.16057127714157104, 0.24603192508220673, -0.4968470633029938, -0.22465729713439941, 0.3803974688053131, -0.017682135105133057, 0.7508731484413147, 0.2676829695701599, -0.4227471947669983, -0.010315891355276108, -0.7173264622688293, 0.3077661991119385, 0.1773037612438202, -0.3102753162384033, 0.2794514000415802, -0.1840367317199707, -0.1868152618408203, 0.17102132737636566, 0.12909956276416779, -0.5957619547843933, 0.4081577956676483, -0.4426855444908142, 0.7550398707389832, 0.563461184501648, 0.035486362874507904, 0.3843272924423218, -0.1703679859638214, 0.2612503468990326, 0.09885591268539429, 0.22932767868041992, 0.02461632341146469, -0.4985864460468292, -0.7043951749801636, -0.3728342056274414, 0.58477783203125, 0.3938460648059845, -0.36344683170318604, 0.4757816791534424, -0.30933815240859985, -0.4846467077732086, -0.7102702856063843, 0.0531969889998436, 0.37908774614334106, 0.13542534410953522, 0.7632282376289368, -0.34322628378868103, -0.8420735597610474, -0.8391970992088318, -0.1454547643661499, 0.0811213031411171, -0.20224027335643768, 0.02587036043405533, 0.6804206371307373, -0.14260508120059967, 0.8896879553794861, -0.3988332450389862, -0.20968663692474365, -0.40447378158569336, -0.0051202233880758286, 0.39708057045936584, 0.6609482765197754, 0.18996521830558777, -0.590695321559906, -0.5463233590126038, -0.2015339732170105, -0.8719874620437622, 0.09711308777332306, 0.16413621604442596, 0.017995018512010574, 0.08619488030672073, 0.2642824649810791, -0.6839203238487244, 0.4697994589805603, 0.3642687201499939, -0.12336885184049606, 0.36054423451423645, -0.40349334478378296, -0.10616568475961685, -1.0380381345748901, 0.29926928877830505, 0.051776960492134094, -0.2551945745944977, -0.7836527228355408, -0.151777982711792, 0.1039600595831871, 0.008077061735093594, -0.5734825730323792, 0.48232558369636536, -0.6672313213348389, -0.1767486035823822, -0.057781729847192764, -0.1427614390850067, 0.14007610082626343, 0.5847419500350952, 0.04585655778646469, 0.5315050482749939, 0.36382120847702026, -0.5370928049087524, 0.036950018256902695, 0.3551737070083618, -0.20598095655441284, -0.2868676483631134, -0.912144660949707, 0.20301593840122223, -0.11263688653707504, 0.3386150896549225, -0.6815065741539001, -0.1635543704032898, 0.340802937746048, -0.6965352892875671, 0.4453730881214142, -0.1885271519422531, -0.29607245326042175, -0.48591089248657227, -0.4208010137081146, 0.22544434666633606, 0.7309068441390991, -0.2526876628398895, 0.5295237898826599, 0.37796470522880554, 0.13059857487678528, -0.6140015721321106, -0.802675724029541, -0.2736813724040985, -0.03511956334114075, -0.5024084448814392, 0.5882813334465027, 0.07209484279155731, 0.11955094337463379, -0.1110515370965004, -0.3041969835758209, 0.2583869695663452, -0.3150477707386017, 0.33246487379074097, 0.04023928567767143, 0.030863376334309578, -0.06300795823335648, -0.10765015333890915, -0.12847153842449188, -0.1552659273147583, -0.6623669862747192, 0.6856160163879395, -0.21801181137561798, -0.08081220090389252, -0.5426802635192871, 0.26567667722702026, 0.5048428773880005, -0.293253093957901, 0.7665125727653503, 0.7385237812995911, -0.5244673490524292, 0.0028637927025556564, -0.41303911805152893, -0.43398118019104004, -0.48369765281677246, 0.5157298445701599, -0.29211708903312683, -0.5776276588439941, 0.5280789732933044, 0.06691115349531174, -0.08292039483785629, 0.5460665822029114, 0.3550906181335449, -0.27601295709609985, 0.838634192943573, 0.6937388181686401, 0.3269948363304138, 0.358508825302124, -0.907893180847168, 0.39642423391342163, -0.9121647477149963, -0.4644373059272766, -0.3546539545059204, -0.46637675166130066, -0.5867392420768738, -0.4949258863925934, 0.500813364982605, 0.42409321665763855, -0.4068933129310608, 0.49541518092155457, -0.48582857847213745, 0.281011700630188, 0.6946516036987305, 0.45612263679504395, -0.03661550208926201, 0.3070787787437439, -0.29866456985473633, -0.03882980719208717, -0.9013461470603943, -0.5577632188796997, 1.2260544300079346, 0.4579348564147949, 0.612037718296051, 0.016700200736522675, 0.682376503944397, 0.3374125361442566, 0.09828279912471771, -0.539604902267456, 0.3650065064430237, -0.4759310483932495, -0.4179326295852661, -0.21107032895088196, -0.34720367193222046, -0.8652530908584595, -0.014343125745654106, -0.18402519822120667, -0.839584469795227, 0.5517617464065552, 0.1598973572254181, -0.5230376124382019, 0.42576080560684204, -0.7215913534164429, 1.0053375959396362, -0.0675482228398323, -0.3672754764556885, 0.15179719030857086, -0.8362307548522949, -0.027821816504001617, 0.13505390286445618, 0.16688036918640137, 0.08010617643594742, 0.2632235884666443, 1.0909677743911743, -0.5323246121406555, 0.8988314270973206, -0.19653980433940887, 0.18125402927398682, 0.3527417778968811, 0.1264440268278122, 0.4560554623603821, 0.02672484703361988, -0.07801318168640137, 0.32602158188819885, 0.1984887570142746, -0.5272771120071411, -0.3263707756996155, 0.3363927900791168, -0.9933802485466003, -0.3604259192943573, -0.37032607197761536, -0.3665889501571655, 0.10090649127960205, 0.28070735931396484, 0.6441711187362671, 0.43824899196624756, 0.23712125420570374, 0.3409976363182068, 0.779546856880188, -0.32725095748901367, 0.5341429114341736, 0.2145441621541977, -0.10884881764650345, -0.6257204413414001, 0.668419361114502, 0.31043243408203125, 0.24269786477088928, 0.5004165768623352, 0.1033608540892601, -0.4974387586116791, -0.5678583979606628, -0.2837294340133667, 0.3894461691379547, -0.6472351551055908, -0.32725366950035095, -0.9647499918937683, -0.3269456624984741, -0.5853812098503113, -0.027510229498147964, -0.5993531942367554, -0.44151952862739563, -0.25910207629203796, -0.11077579855918884, 0.30768540501594543, 0.555773138999939, -0.3021194636821747, 0.1751064658164978, -0.8935713171958923, 0.1822386085987091, 0.11500042676925659, -0.03372016176581383, -0.1962186098098755, -0.8251164555549622, -0.288542240858078, 0.28490570187568665, -0.4216754734516144, -1.0559135675430298, 0.6613478064537048, 0.5813964605331421, 0.5803253650665283, 0.1223602369427681, 0.07218459248542786, 0.4630275368690491, -0.21487179398536682, 0.7632565498352051, 0.011692363768815994, -0.8082928657531738, 0.5136260390281677, 0.012625153176486492, 0.3425610363483429, 0.2613423466682434, 0.6605989933013916, -0.2741573452949524, -0.23865343630313873, -0.7916505336761475, -0.9584612250328064, 0.6408376097679138, 0.33050477504730225, -0.23701179027557373, -0.03187338262796402, 0.6123183965682983, 0.1194639578461647, 0.08086498826742172, -0.9020968675613403, -0.3708912134170532, -0.4133314788341522, -0.47419673204421997, 0.01432860642671585, -0.24066507816314697, 0.027200760319828987, -0.40717121958732605, 0.7380345463752747, -0.20470818877220154, 0.7493399977684021, 0.5769535303115845, -0.4785953164100647, -0.03522242605686188, 0.06736572086811066, 0.3894300162792206, 0.5320693850517273, -0.6060876250267029, 0.26015084981918335, 0.08536963909864426, -0.7585782408714294, 0.01977822184562683, 0.21922603249549866, -0.1940571665763855, -0.09473947435617447, 0.4983576238155365, 0.7014861702919006, -0.0016416326398029923, -0.4371671974658966, 0.23506028950214386, 0.1744254231452942, -0.16423602402210236, -0.09486658126115799, -0.05529693886637688, 0.16318954527378082, 0.41210314631462097, 0.59287428855896, -0.20649732649326324, 0.01731274463236332, -0.4338225722312927, 0.39963698387145996, 0.13707508146762848, -0.24941757321357727, -0.5377436876296997, 0.6951883435249329, -0.07662362605333328, -0.14762064814567566, 0.7440862655639648, -0.30037763714790344, -0.5802330374717712, 0.6057277917861938, 0.6732373833656311, 0.8821977376937866, -0.1420353800058365, 0.21522031724452972, 0.701775312423706, 0.16944950819015503, -0.11052095144987106, 0.31257233023643494, 0.19862580299377441, -0.6974346041679382, -0.21872952580451965, -1.063485026359558, -0.06008760631084442, 0.15107640624046326, -0.4330471158027649, 0.18920055031776428, -0.44644927978515625, -0.20818807184696198, 0.07486875355243683, 0.2764773964881897, -0.6049813032150269, 0.14128436148166656, 0.13314643502235413, 0.8439726233482361, -0.7761507034301758, 1.1103605031967163, 0.7977159023284912, -0.6479261517524719, -0.6552327871322632, -0.16098734736442566, -0.13807711005210876, -0.6195334792137146, 0.684299111366272, 0.3415883779525757, 0.11669133603572845, 0.32763680815696716, -0.5231407880783081, -0.9095474481582642, 1.240859866142273, 0.452323853969574, -0.7120599150657654, -0.26035550236701965, 0.24834777414798737, 0.5147442817687988, -0.35515809059143066, 0.4083695709705353, 0.5606880784034729, 0.2929973304271698, 0.01204536110162735, -0.7306224703788757, 0.13511104881763458, -0.2997297942638397, -0.06792578846216202, 0.03985213115811348, -0.5926681756973267, 0.9292367696762085, -0.32517847418785095, -0.21299345791339874, -0.1891394406557083, 0.7876534461975098, 0.2816598415374756, -0.1327207237482071, -0.01782604493200779, 0.5911281704902649, 0.6870781183242798, -0.09419997036457062, 0.8959028124809265, -0.359508752822876, 0.6454418301582336, 0.8267845511436462, 0.10026340186595917, 0.7611070275306702, 0.5483068823814392, -0.5410559773445129, 0.3732050359249115, 0.73092120885849, -0.07548197358846664, 0.5881859064102173, 0.21644459664821625, 0.07646326720714569, -0.2485606074333191, 0.06465131044387817, -0.540124773979187, 0.2150709331035614, 0.36492836475372314, -0.4261045753955841, -0.019743438810110092, 0.019902214407920837, 0.011292722076177597, -0.31596943736076355, 0.009530625306069851, 0.5200589895248413, 0.2694419026374817, -0.20059461891651154, 0.8855319023132324, 0.0586380660533905, 0.6623288989067078, -0.5923303365707397, 0.047686610370874405, -0.41248583793640137, 0.3101332485675812, -0.2207898050546646, -0.5924838781356812, 0.24290597438812256, -0.14338576793670654, -0.1530405730009079, 0.05586882308125496, 0.5028403401374817, -0.4459126889705658, -0.4108143746852875, 0.31469637155532837, 0.2369714230298996, 0.323720782995224, -0.10100816935300827, -0.7712765336036682, 0.13167032599449158, 0.08949442952871323, -0.47716861963272095, 0.24708129465579987, 0.1127067357301712, 0.13283763825893402, 0.7014533281326294, 0.4895181655883789, -0.06848025321960449, 0.19477124512195587, -0.2312684953212738, 0.7214562296867371, -0.7409927248954773, -0.19754944741725922, -0.8503678441047668, 0.5873668193817139, 0.048606377094984055, -0.11952301114797592, 0.3942306339740753, 0.6166932582855225, 0.9154691100120544, -0.34231680631637573, 0.5928478240966797, -0.3993889093399048, 0.11384934186935425, -0.4541894197463989, 0.6689879894256592, -0.5296399593353271, 0.11348415911197662, -0.030787814408540726, -0.9177519679069519, -0.4265100359916687, 0.754313051700592, -0.20084932446479797, 0.2486889362335205, 0.7977100610733032, 0.8793452978134155, -0.05097676068544388, -0.061473242938518524, 0.16549938917160034, 0.4548664391040802, 0.5320044755935669, 0.735877513885498, 0.11482398211956024, -0.8774933218955994, 0.48182862997055054, -0.43274739384651184, -0.11195888370275497, -0.2672492563724518, -0.798275887966156, -0.7616376876831055, -0.524924635887146, -0.3925119936466217, -0.4723619222640991, 0.3071426451206207, 1.1171903610229492, 0.7858020067214966, -0.9761752486228943, -0.18139125406742096, -0.12386228889226913, -0.3009166121482849, -0.16838745772838593, -0.18082678318023682, 0.7139849662780762, -0.05191410332918167, -0.6311221122741699, 0.33980849385261536, 0.1805201768875122, 0.32554274797439575, -0.09487423300743103, -0.2452012449502945, -0.6268166899681091, -0.08532728999853134, 0.41413411498069763, 0.5896481871604919, -0.6461862921714783, -0.26674050092697144, 0.12844890356063843, -0.052664805203676224, 0.27116647362709045, 0.3436627984046936, -0.7216249704360962, 0.37278035283088684, 0.5726522207260132, 0.4307485520839691, 0.7191956043243408, -0.21623528003692627, 0.6114004254341125, -0.6501599550247192, 0.0790286511182785, 0.08865821361541748, 0.3157632052898407, 0.364793986082077, -0.31270670890808105, 0.4539307951927185, 0.4604049623012543, -0.48276856541633606, -0.7369834780693054, 0.025314191356301308, -0.8565663695335388, -0.25529423356056213, 1.0259052515029907, -0.2087809294462204, -0.561773419380188, 0.15922540426254272, 0.08423897624015808, 0.7503576874732971, -0.24528007209300995, 0.6909650564193726, 0.37579697370529175, -0.17724910378456116, -0.2923148572444916, -0.515874445438385, 0.7426259517669678, 0.41334161162376404, -0.5207009315490723, -0.06462811678647995, -0.03584238141775131, 0.46943119168281555, 0.10739071667194366, 0.36541548371315, -0.3741115927696228, 0.16065840423107147, 0.011946465820074081, 0.5137555599212646, -0.37804344296455383, -0.38666480779647827, -0.27003470063209534, 0.2391999363899231, -0.11683139204978943, -0.16879701614379883 ]
google/bigbird-roberta-base
google
"2021-06-02T14:30:54Z"
49,025
38
transformers
[ "transformers", "pytorch", "jax", "big_bird", "pretraining", "en", "dataset:bookcorpus", "dataset:wikipedia", "dataset:cc_news", "arxiv:2007.14062", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
"2022-03-02T23:29:05Z"
--- language: en license: apache-2.0 datasets: - bookcorpus - wikipedia - cc_news --- # BigBird base model BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle. It is a pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this [paper](https://arxiv.org/abs/2007.14062) and first released in this [repository](https://github.com/google-research/bigbird). Disclaimer: The team releasing BigBird did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BigBird relies on **block sparse attention** instead of normal attention (i.e. BERT's attention) and can handle sequences up to a length of 4096 at a much lower compute cost compared to BERT. It has achieved SOTA on various tasks involving very long sequences such as long documents summarization, question-answering with long contexts. ## How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BigBirdModel # by default its in `block_sparse` mode with num_random_blocks=3, block_size=64 model = BigBirdModel.from_pretrained("google/bigbird-roberta-base") # you can change `attention_type` to full attention like this: model = BigBirdModel.from_pretrained("google/bigbird-roberta-base", attention_type="original_full") # you can change `block_size` & `num_random_blocks` like this: model = BigBirdModel.from_pretrained("google/bigbird-roberta-base", block_size=16, num_random_blocks=2) text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ## Training Data This model is pre-trained on four publicly available datasets: **Books**, **CC-News**, **Stories** and **Wikipedia**. It used same sentencepiece vocabulary as RoBERTa (which is in turn borrowed from GPT2). ## Training Procedure Document longer than 4096 were split into multiple documents and documents that were much smaller than 4096 were joined. Following the original BERT training, 15% of tokens were masked and model is trained to predict the mask. Model is warm started from RoBERTa’s checkpoint. ## BibTeX entry and citation info ```tex @misc{zaheer2021big, title={Big Bird: Transformers for Longer Sequences}, author={Manzil Zaheer and Guru Guruganesh and Avinava Dubey and Joshua Ainslie and Chris Alberti and Santiago Ontanon and Philip Pham and Anirudh Ravula and Qifan Wang and Li Yang and Amr Ahmed}, year={2021}, eprint={2007.14062}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
[ -0.4193580448627472, -0.7386176586151123, 0.12988810241222382, 0.27830496430397034, -0.10898318886756897, -0.2617841958999634, -0.44928839802742004, -0.5690698027610779, 0.2541244328022003, 0.336890310049057, -0.6961830258369446, -0.22331297397613525, -0.8389838337898254, 0.14846327900886536, -0.4769476354122162, 1.222228765487671, 0.34715408086776733, -0.25615671277046204, 0.08088349550962448, 0.31102871894836426, -0.16767843067646027, -0.5272045731544495, -0.3749934434890747, -0.32412296533584595, 0.6135323643684387, 0.03803377225995064, 0.7850029468536377, 0.6003977656364441, 0.7543750405311584, 0.2994701862335205, -0.42958328127861023, -0.10605809092521667, -0.5706170201301575, -0.13766862452030182, -0.17492163181304932, -0.35631227493286133, -0.36992499232292175, 0.12105350196361542, 0.8112103343009949, 0.5365992784500122, 0.18307068943977356, 0.3969208300113678, 0.06793626397848129, 0.6078640222549438, -0.5578103065490723, 0.4135560691356659, -0.5625439286231995, 0.23639920353889465, -0.16708087921142578, 0.02575092203915119, -0.47086721658706665, 0.053161174058914185, 0.3031386733055115, -0.40444692969322205, 0.42165449261665344, 0.043280407786369324, 1.2279289960861206, 0.24174517393112183, -0.40237897634506226, -0.19417865574359894, -0.9343685507774353, 1.0462291240692139, -0.6834824085235596, 0.3538888096809387, 0.41303497552871704, 0.39022281765937805, -0.22515375912189484, -0.9858114719390869, -0.7590792179107666, -0.16195467114448547, -0.18406856060028076, 0.17431055009365082, -0.24482090771198273, 0.0065155974589288235, 0.5080592632293701, 0.5326370000839233, -0.8038797974586487, -0.0813581570982933, -0.689121663570404, -0.13955365121364594, 0.45255202054977417, -0.2086949348449707, -0.11654244363307953, -0.306645005941391, -0.28723952174186707, -0.36570584774017334, -0.5760172605514526, 0.16760121285915375, 0.3317989408969879, 0.3718685209751129, -0.18708576261997223, 0.4316352903842926, 0.15395669639110565, 0.9562323093414307, 0.372870534658432, -0.039663661271333694, 0.47945764660835266, -0.017958372831344604, -0.5064319372177124, -0.0779958963394165, 0.7982703447341919, 0.022837063297629356, 0.24914506077766418, -0.06636494398117065, -0.008955982513725758, -0.3591228425502777, 0.3060021698474884, -0.9946594834327698, -0.12337509542703629, 0.2990633249282837, -0.4511864185333252, -0.26565021276474, 0.22997483611106873, -0.55037522315979, -0.023456014692783356, -0.21842573583126068, 0.5616161823272705, -0.4169517159461975, -0.3812127709388733, 0.14359675347805023, -0.05423431470990181, 0.5115019679069519, -0.006967771332710981, -0.9945160150527954, 0.06948121637105942, 0.833943247795105, 0.9457487463951111, 0.3467676341533661, -0.5282931327819824, -0.39734935760498047, -0.013586332090198994, -0.21124714612960815, 0.39856627583503723, -0.49594324827194214, -0.03100338578224182, 0.14042870700359344, 0.4369167685508728, -0.13046850264072418, -0.3424489200115204, 0.344046413898468, -0.7010929584503174, 0.5858519673347473, -0.032528892159461975, -0.2991129755973816, -0.400921106338501, 0.31839531660079956, -0.8471153974533081, 0.9537369608879089, 0.2871004343032837, -0.8123955726623535, 0.21289832890033722, -0.7381398677825928, -0.5380950570106506, -0.12511029839515686, 0.25747182965278625, -0.781184196472168, -0.11659251898527145, 0.25673094391822815, 0.6509411931037903, -0.35256168246269226, 0.2559563219547272, -0.2694377899169922, -0.6358185410499573, 0.28368398547172546, -0.1259562075138092, 0.9505866765975952, 0.17888031899929047, -0.5968758463859558, 0.22172771394252777, -0.5827165842056274, -0.19476938247680664, 0.13788066804409027, -0.20981262624263763, 0.0767541229724884, -0.24361011385917664, 0.26773926615715027, 0.35608020424842834, 0.11534204334020615, -0.423774391412735, 0.3094906210899353, -0.7432956099510193, 0.6866282820701599, 0.6280604600906372, -0.2602997422218323, 0.2542509138584137, -0.4474409520626068, 0.4291818141937256, 0.03751857206225395, 0.36961111426353455, -0.34024468064308167, -0.5056251287460327, -0.8353581428527832, -0.4923129975795746, 0.524696946144104, 0.17933091521263123, -0.34527236223220825, 0.8618806600570679, -0.4495163857936859, -0.3848000466823578, -0.62773197889328, 0.20720714330673218, 0.448626846075058, 0.14832334220409393, 0.44807055592536926, -0.11862343549728394, -0.8295663595199585, -0.8716416954994202, 0.25130927562713623, 0.01724584773182869, -0.04011215642094612, 0.05072494596242905, 0.7817291617393494, -0.3509491980075836, 0.9400999546051025, -0.3220328688621521, -0.48538675904273987, -0.4417458772659302, -0.02421293780207634, 0.7045631408691406, 0.5845528841018677, 0.5799258947372437, -0.8521256446838379, -0.5406261682510376, -0.3043085038661957, -0.6077213287353516, 0.4827860891819, -0.004404175560921431, -0.19249415397644043, 0.29587164521217346, 0.41163888573646545, -1.06454598903656, 0.40783900022506714, 0.7464035749435425, -0.053524743765592575, 0.39007556438446045, 0.044585276395082474, -0.2709513306617737, -1.2866982221603394, 0.45910951495170593, 0.0468142107129097, -0.14031639695167542, -0.48817721009254456, 0.3269263207912445, 0.13217392563819885, -0.2437475472688675, -0.4419676959514618, 0.5980345606803894, -0.6852408051490784, -0.1304199993610382, -0.3121654689311981, -0.2922515571117401, -0.015268201939761639, 0.6670721769332886, 0.11983370035886765, 0.6809280514717102, 0.5634074807167053, -0.34033721685409546, 0.5211399793624878, 0.48853325843811035, -0.27657264471054077, 0.125307098031044, -0.87100750207901, 0.20913411676883698, -0.22638413310050964, 0.5660974979400635, -1.0732976198196411, -0.2809980809688568, 0.26751279830932617, -0.5655001997947693, 0.6279697418212891, -0.37029266357421875, -0.5230987071990967, -1.0779504776000977, -0.35793212056159973, 0.21754342317581177, 0.8532552719116211, -0.5684722661972046, 0.46141713857650757, -0.062241081148386, -0.08224256336688995, -0.7864093780517578, -0.7649814486503601, 0.1811387985944748, 0.026817260310053825, -0.7637746334075928, 0.31493067741394043, -0.1503921002149582, 0.15830068290233612, -0.009108679369091988, 0.09774243831634521, -0.020683251321315765, -0.10699020326137543, 0.4256129860877991, 0.17876414954662323, -0.4647512435913086, 0.2663843333721161, -0.2891564965248108, -0.09671179950237274, -0.046706363558769226, -0.4774329960346222, 0.7393916249275208, -0.139623761177063, -0.186158686876297, -0.46411624550819397, 0.24393880367279053, 0.6770116090774536, -0.4030996859073639, 0.8941400647163391, 0.9716809988021851, -0.30432838201522827, -0.049417540431022644, -0.712317943572998, -0.41085085272789, -0.4925628900527954, 0.4816461503505707, -0.36450251936912537, -0.7700283527374268, 0.36245521903038025, 0.43697893619537354, 0.056043170392513275, 0.6197680234909058, 0.6211380958557129, 0.02439395897090435, 0.7963536381721497, 0.8481909036636353, -0.22970366477966309, 0.5911935567855835, -0.6309118866920471, 0.07526338845491409, -0.96706622838974, -0.014435959048569202, -0.38729795813560486, -0.427604615688324, -0.2953115999698639, -0.429695725440979, 0.09716586768627167, -0.025221187621355057, -0.5372453927993774, 0.30673447251319885, -0.7351865768432617, 0.3886789083480835, 0.8383412957191467, 0.25852885842323303, -0.09000453352928162, 0.127007856965065, 0.3195714056491852, 0.10902582854032516, -0.5273930430412292, -0.23625610768795013, 1.463159203529358, 0.486502081155777, 0.6225518584251404, 0.18754293024539948, 0.5151885151863098, 0.11672502756118774, 0.3424344062805176, -0.8127946257591248, 0.33159011602401733, 0.02515171468257904, -1.0238069295883179, -0.4591648578643799, -0.24821509420871735, -1.2277783155441284, 0.17103247344493866, -0.21967650949954987, -0.5922773480415344, -0.09106341004371643, 0.09905768185853958, -0.4001745879650116, 0.17034976184368134, -0.5783634185791016, 0.9449382424354553, 0.04112083837389946, -0.30597326159477234, 0.061499085277318954, -0.8563934564590454, 0.5362173318862915, -0.24420426785945892, -0.15636081993579865, 0.32684439420700073, 0.3949851989746094, 0.8552118539810181, -0.4341231882572174, 1.0306763648986816, -0.059563834220170975, 0.08295140415430069, 0.23208191990852356, -0.26488226652145386, 0.6830562949180603, -0.296743780374527, -0.128841370344162, 0.2585056722164154, -0.21473878622055054, -0.6640065312385559, -0.46316295862197876, 0.5997219681739807, -1.1419223546981812, -0.7283629775047302, -0.7467333674430847, -0.5046727657318115, -0.05340387672185898, 0.3029347360134125, 0.31771165132522583, 0.3572043478488922, 0.12353329360485077, 0.6949357986450195, 0.5502520203590393, -0.19839522242546082, 0.5920459032058716, 0.5299453139305115, -0.28147026896476746, -0.2106345295906067, 0.5888923406600952, 0.08415563404560089, 0.04321439191699028, 0.5079213380813599, 0.30554118752479553, -0.39987972378730774, -0.5797828435897827, -0.16254845261573792, 0.5083922743797302, -0.5163139700889587, -0.19004373252391815, -0.833835244178772, -0.753604531288147, -0.7415075302124023, 0.02343333698809147, -0.1467406302690506, -0.09390461444854736, -0.2958156168460846, -0.015688234940171242, 0.3550092279911041, 0.655720591545105, -0.003629782935604453, 0.5428382754325867, -0.7427663207054138, 0.10108157247304916, 0.555702805519104, 0.17090217769145966, 0.1907535046339035, -0.9812685251235962, -0.4254138469696045, 0.15795032680034637, -0.4689205586910248, -0.5400080680847168, 0.46428051590919495, 0.3093545734882355, 0.3979633152484894, 0.32661956548690796, 0.041611310094594955, 0.6570358872413635, -0.4156213104724884, 0.7869771718978882, 0.34317517280578613, -0.804950475692749, 0.4849725663661957, -0.38530102372169495, 0.42316362261772156, 0.03237031400203705, 0.5086410045623779, -0.4191018044948578, -0.3535803556442261, -0.7863253355026245, -0.8603848218917847, 0.9100329279899597, 0.3703994154930115, 0.24237880110740662, 0.13491173088550568, 0.13844537734985352, -0.07683178037405014, 0.28917962312698364, -0.9880520105361938, -0.008283555507659912, -0.5858908891677856, -0.38376086950302124, -0.5784769058227539, -0.46059611439704895, -0.25291916728019714, -0.3207688629627228, 0.6961176991462708, -0.021992098540067673, 0.6031802296638489, 0.12141168862581253, -0.45218417048454285, -0.21869605779647827, -0.020381448790431023, 0.864863932132721, 0.687050998210907, -0.6628115773200989, 0.04610075801610947, -0.2637711763381958, -0.7168765068054199, -0.09344787895679474, 0.3440656065940857, 0.05276498943567276, 0.03935101255774498, 0.7492854595184326, 0.9169667363166809, 0.22208702564239502, -0.3544919490814209, 0.9411106705665588, 0.26902666687965393, -0.32052791118621826, -0.6369984745979309, -0.07257939130067825, 0.10717207938432693, 0.36035841703414917, 0.602310299873352, -0.13485771417617798, -0.16640383005142212, -0.6045702695846558, 0.1613113135099411, 0.3128367066383362, -0.3442927598953247, -0.4563717544078827, 0.6009824872016907, 0.2803395986557007, -0.3260158896446228, 0.6545950770378113, 0.03256470337510109, -0.5311742424964905, 0.8656551241874695, 0.7990661263465881, 0.8938660025596619, -0.16563911736011505, 0.07815346121788025, 0.43525490164756775, 0.46194642782211304, -0.0825551226735115, -0.09297139197587967, 0.08019812405109406, -0.3913619816303253, -0.6760018467903137, -0.8353433609008789, -0.18015936017036438, 0.602959156036377, -0.5596500039100647, 0.17528924345970154, -0.7425309419631958, -0.1944323182106018, 0.26756948232650757, 0.260083943605423, -0.8109400272369385, 0.1960286796092987, 0.2094811201095581, 0.9081102013587952, -0.7945960760116577, 0.8211851119995117, 0.6464897990226746, -0.6459014415740967, -0.8527191281318665, 0.15522876381874084, -0.05248730629682541, -0.9990122318267822, 1.2505085468292236, 0.509384274482727, 0.33189657330513, 0.16577036678791046, -0.5002268552780151, -1.041960597038269, 0.9239646792411804, 0.09791472554206848, -0.7813722491264343, -0.1955176591873169, 0.056195635348558426, 0.5383607745170593, -0.16349519789218903, 0.6244751811027527, 0.13195496797561646, 0.6041896939277649, 0.3915140926837921, -1.0269807577133179, 0.14056450128555298, -0.36342325806617737, 0.1530824601650238, 0.11437668651342392, -0.8625664710998535, 1.226441740989685, -0.07669858634471893, 0.05694441869854927, 0.2223244309425354, 0.6292396187782288, -0.19161249697208405, -0.02628079429268837, 0.336955726146698, 0.46598950028419495, 0.5164355635643005, -0.07283104956150055, 0.9790594577789307, -0.5261951684951782, 0.727657675743103, 0.8144104480743408, -0.15132568776607513, 0.8242603540420532, 0.38505473732948303, -0.300894558429718, 0.4428429901599884, 0.5845262408256531, -0.35548070073127747, 0.4552084803581238, 0.21354401111602783, 0.10910168290138245, -0.1894850730895996, 0.4448586404323578, -0.7755916118621826, 0.5167603492736816, 0.10566487163305283, -0.6083273887634277, -0.08029470592737198, 0.2303343117237091, 0.08196614682674408, -0.3445795178413391, -0.19937928020954132, 0.6098426580429077, -0.10290094465017319, -0.6874624490737915, 1.0697051286697388, -0.1038542166352272, 0.8223185539245605, -0.8052896857261658, 0.10898198187351227, -0.16193386912345886, 0.4447196125984192, -0.19773109257221222, -0.6160833835601807, 0.16095522046089172, -0.1513885259628296, -0.6120138764381409, -0.057863350957632065, 0.40367555618286133, -0.43276867270469666, -0.7127003073692322, 0.08062431961297989, 0.027723347768187523, 0.12021391093730927, -0.3888819217681885, -0.8253055214881897, 0.27036547660827637, -0.045141078531742096, -0.5866543650627136, 0.35734549164772034, 0.22391949594020844, 0.2541569173336029, 0.6143137812614441, 0.957120954990387, -0.03291700780391693, 0.11704710125923157, -0.2479107528924942, 0.8325101733207703, -0.9178053736686707, -0.5631090998649597, -0.7853811979293823, 0.4530019462108612, -0.17476405203342438, -0.27732449769973755, 0.6917519569396973, 0.5412075519561768, 0.5328540205955505, -0.37182560563087463, 0.7712885737419128, -0.08027832955121994, 0.6210605502128601, -0.506138265132904, 0.756596565246582, -0.5519851446151733, -0.1644430309534073, -0.3309382200241089, -1.2292375564575195, -0.3453983664512634, 0.8499501943588257, -0.4354274272918701, 0.24731777608394623, 0.8037184476852417, 0.8375057578086853, -0.34234121441841125, -0.1870107799768448, 0.3156335949897766, 0.5258520245552063, 0.5116236209869385, 0.8053883910179138, 0.6907497644424438, -0.5951778888702393, 0.7596302628517151, -0.047732409089803696, -0.23738469183444977, -0.7806578278541565, -0.7687464952468872, -1.293771505355835, -0.6392098665237427, -0.14485928416252136, -0.591516375541687, 0.2520252764225006, 1.0180695056915283, 1.1013728380203247, -0.6616120338439941, -0.023187480866909027, 0.09298506379127502, -0.06554127484560013, -0.2554982006549835, -0.2503680884838104, 0.7144167423248291, -0.3366386592388153, -0.8054071664810181, 0.011739525012671947, 0.03884505853056908, 0.24083924293518066, -0.4258790612220764, -0.06134200096130371, -0.29678523540496826, -0.044351812452077866, 0.6717362403869629, 0.5788218379020691, -0.7330860495567322, -0.39396870136260986, -0.048948585987091064, -0.30464816093444824, -0.04447323456406593, 0.4144619405269623, -0.6163541674613953, 0.25614675879478455, 0.09530636668205261, 0.6143457293510437, 0.9259777069091797, -0.25361281633377075, 0.38887447118759155, -0.7852360606193542, 0.6982920169830322, 0.24603627622127533, 0.24472679197788239, 0.3422945737838745, -0.28907036781311035, 0.3625318706035614, 0.32506129145622253, -0.5230491161346436, -0.9591994881629944, 0.18629318475723267, -1.1831086874008179, -0.3182418942451477, 1.3671537637710571, -0.2623429596424103, -0.6395419239997864, 0.12791691720485687, -0.19669999182224274, 0.17241080105304718, -0.1889064460992813, 0.8354141712188721, 0.6716827154159546, 0.4739024341106415, -0.336263507604599, -0.21989649534225464, 0.40035539865493774, 0.2417193353176117, -0.3844900131225586, -0.1495053470134735, 0.24944473803043365, 0.46834537386894226, 0.36592787504196167, 0.38511839509010315, 0.1048298180103302, 0.26573145389556885, -0.04791780933737755, 0.2751680016517639, -0.5224820375442505, -0.34960052371025085, -0.17715707421302795, 0.22244596481323242, -0.1244971975684166, -0.28783148527145386 ]
huggyllama/llama-13b
huggyllama
"2023-04-07T15:50:53Z"
48,757
122
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "license:other", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
text-generation
"2023-04-03T23:37:51Z"
--- license: other --- This contains the weights for the LLaMA-13b model. This model is under a non-commercial license (see the LICENSE file). You should only use this repository if you have been granted access to the model by filling out [this form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform?usp=send_form) but either lost your copy of the weights or got some trouble converting them to the Transformers format.
[ -0.07940316200256348, -0.19894567131996155, 0.47482168674468994, 0.8656169772148132, -0.6312251687049866, -0.06534022837877274, 0.3368067145347595, -0.3452475368976593, 0.49980390071868896, 0.7645269632339478, -0.8845853209495544, -0.34406155347824097, -0.9834666848182678, 0.24975545704364777, -0.6025925874710083, 1.0710899829864502, -0.09613045305013657, 0.32411929965019226, -0.28557005524635315, -0.05972810462117195, -0.1195194348692894, -0.22563542425632477, -0.1563543975353241, -0.7415774464607239, 0.7086290717124939, 0.4111544191837311, 0.6130210161209106, 0.46942615509033203, 0.8682297468185425, 0.258353590965271, -0.3538288474082947, -0.4321741759777069, -0.6013587117195129, -0.34532007575035095, 0.0371444933116436, -0.639397382736206, -0.9502747654914856, 0.31792178750038147, 0.6932759284973145, 0.6294832229614258, -0.7854264378547668, 0.512645959854126, -0.2496090978384018, 0.5743086338043213, -0.439221054315567, 0.37333112955093384, -0.46379274129867554, -0.05189332738518715, -0.31406426429748535, -0.17432424426078796, -0.4472440183162689, -0.36952081322669983, -0.3366405665874481, -0.9524176120758057, -0.07610121369361877, 0.18424971401691437, 1.3327871561050415, 0.5615079402923584, -0.6404321193695068, -0.3445662260055542, -0.34257370233535767, 0.8449539542198181, -0.8212541937828064, 0.16828396916389465, 0.5133488178253174, 0.6261212825775146, -0.1920817494392395, -0.9171227216720581, -0.21941272914409637, -0.4862382709980011, 0.05328862741589546, 0.12796366214752197, -0.5053501129150391, 0.0274191927164793, 0.22841161489486694, 0.7741672992706299, -0.35691675543785095, 0.09228537976741791, -1.1532738208770752, -0.12914611399173737, 1.090207576751709, 0.16813167929649353, 0.49912378191947937, -0.4579487442970276, -1.0073647499084473, -0.4147031605243683, -0.7986509203910828, -0.10608106106519699, 0.8313643336296082, 0.20776094496250153, -0.9185078740119934, 1.4299339056015015, 0.055469244718551636, 0.4397578835487366, 0.24656814336776733, -0.2361709475517273, 0.7029141187667847, 0.2192087471485138, -0.47168296575546265, -0.002682540100067854, 0.4822850823402405, 0.5978020429611206, 0.19946296513080597, -0.1963546723127365, -0.2009706050157547, -0.08817314356565475, 0.49777519702911377, -0.9039479494094849, -0.025823362171649933, -0.15492838621139526, -0.8752558827400208, -0.4199068248271942, 0.06951865553855896, -0.3622699975967407, -0.5842713117599487, -0.34647583961486816, 0.5567883253097534, 0.04404856637120247, -0.41198602318763733, 0.580048143863678, -0.23158062994480133, 0.4298948049545288, 0.1934596747159958, -0.6714334487915039, 0.5925962924957275, 0.023158706724643707, 0.5903691649436951, 0.2539660632610321, -0.1769854724407196, -0.02816706895828247, 0.2807351350784302, -0.1952228844165802, 0.7273514270782471, -0.18718667328357697, -0.9968201518058777, -0.2502971291542053, 0.6368577480316162, -0.07070139050483704, -0.7268795371055603, 0.586936891078949, -0.89844810962677, -0.1111472025513649, -0.2262740135192871, -0.5043500661849976, -0.5529149174690247, -0.15055710077285767, -1.1001642942428589, 1.1558144092559814, 0.3798215687274933, -0.748425304889679, 0.29769977927207947, -0.49674808979034424, -0.12175003439188004, 0.2762008309364319, 0.06323990225791931, -0.5283618569374084, 0.3997616767883301, -0.19241344928741455, 0.353696346282959, -0.3845970034599304, 0.40928199887275696, -0.4811093509197235, -0.3905978798866272, 0.07570751756429672, 0.01280725933611393, 1.3729300498962402, 0.29694345593452454, 0.025825567543506622, 0.08930769562721252, -1.275610327720642, -0.612980842590332, 0.5635868906974792, -0.8086438775062561, -0.05979594960808754, -0.377326637506485, 0.22406090795993805, 0.028385426849126816, 0.7415823936462402, -0.7428141236305237, 0.5360020399093628, 0.1761997640132904, 0.09895975142717361, 1.008084774017334, -0.009570292197167873, 0.6446284055709839, -0.43980371952056885, 0.9393024444580078, -0.11451075971126556, 0.363334983587265, 0.6018493175506592, -0.7200073599815369, -0.5803096294403076, -0.24231089651584625, -0.02404887229204178, 0.37982314825057983, -0.43369680643081665, 0.43778520822525024, -0.08343182504177094, -1.129004955291748, -0.4129579961299896, 0.06337448209524155, 0.16088305413722992, 0.4785877764225006, 0.275543212890625, -0.18091407418251038, -0.6377438306808472, -1.3641300201416016, 0.3786514699459076, -0.20707696676254272, -0.33397865295410156, 0.6185821890830994, 1.0916589498519897, -0.3266250789165497, 0.44489961862564087, -0.6520006656646729, -0.4634554088115692, -0.35678809881210327, 0.011764510534703732, 0.24131934344768524, 0.36304008960723877, 1.0960495471954346, -0.5472021102905273, 0.010895679704844952, -0.36746644973754883, -0.9617858529090881, -0.6049169301986694, -0.08920232951641083, -0.22904783487319946, -0.13433510065078735, 0.0420234352350235, -0.6446463465690613, 0.5629823207855225, 1.142840027809143, -0.38848891854286194, 0.5277433395385742, -0.3373672664165497, -0.3125758767127991, -1.1586387157440186, 0.3872964680194855, 0.15469332039356232, -0.13464103639125824, 0.12504149973392487, 0.4524819552898407, 0.13703851401805878, -0.004254639148712158, -0.6665939688682556, 0.5064453482627869, -0.3117848038673401, -0.3177594244480133, -0.1608116626739502, -0.1481000781059265, 0.03154530003666878, 0.24152596294879913, -0.26782888174057007, 1.0413235425949097, 0.37924590706825256, -0.5370107293128967, 0.49887120723724365, 0.5990719199180603, -0.49636638164520264, 0.3393224775791168, -0.918621301651001, -0.08544968068599701, -0.3071872293949127, 0.4551048278808594, -0.48254668712615967, -0.37457045912742615, 0.4776555299758911, -0.3487702012062073, 0.12570659816265106, -0.09508971869945526, -0.2399320900440216, -0.21905586123466492, -0.2995389401912689, 0.27875253558158875, 0.36751237511634827, -0.5416669845581055, 1.0010240077972412, 0.5101252198219299, 0.18797805905342102, -0.6956906914710999, -1.3624017238616943, -0.3214881718158722, -0.3666735291481018, -0.5146983861923218, 0.5785287022590637, -0.07226834446191788, -0.28317105770111084, 0.30901649594306946, -0.22946378588676453, -0.2414199709892273, 0.1273786574602127, 0.5013953447341919, 0.4033132493495941, -0.02455555461347103, -0.28237247467041016, 0.14870068430900574, -0.16882023215293884, 0.1561255156993866, 0.24597617983818054, 0.6503298878669739, 0.04192551225423813, -0.12953265011310577, -0.7231890559196472, -0.05068092793226242, 0.4607597589492798, 0.1281205266714096, 1.0174317359924316, 0.20690838992595673, -0.5686201453208923, 0.023761935532093048, -0.4593590497970581, -0.013428997248411179, -0.5168587565422058, 0.20202046632766724, -0.19083935022354126, -0.4551566541194916, 0.7429729104042053, 0.13754957914352417, -0.18483559787273407, 0.9148166179656982, 0.875626802444458, 0.061826832592487335, 0.5204188227653503, 1.0216901302337646, -0.09918747842311859, 0.3904919922351837, -0.6392131447792053, -0.119352787733078, -1.2441245317459106, -1.088912010192871, -0.7239363193511963, -0.7913181781768799, -0.2576792240142822, -0.1518661379814148, 0.0467863604426384, 0.15512855350971222, -0.8627195954322815, 0.9399620890617371, -0.39422792196273804, 0.19208954274654388, 0.7479014992713928, 0.4182083308696747, 0.5825842618942261, 0.06314357370138168, -0.13459521532058716, -0.013685954734683037, -0.21394933760166168, -0.6164223551750183, 1.2680530548095703, 0.10776463150978088, 1.4492344856262207, 0.2583479881286621, 0.7440097332000732, 0.3223493993282318, 0.33932533860206604, -0.8083099126815796, 0.6140869855880737, 0.14264553785324097, -1.0789339542388916, 0.13700591027736664, -0.5344063639640808, -1.0147490501403809, 0.10572267323732376, -0.019896479323506355, -0.8227708339691162, 0.32524552941322327, -0.2217404842376709, 0.07129126787185669, 0.4688739776611328, -0.7510402202606201, 0.6105781197547913, -0.09620633721351624, 0.34194135665893555, -0.5233566761016846, -0.37995612621307373, 0.700857400894165, 0.0021771565079689026, 0.18960189819335938, -0.22891323268413544, -0.20496024191379547, 0.9218136668205261, -0.6082242727279663, 1.1016936302185059, -0.4405974745750427, -0.2995578348636627, 0.526940643787384, -0.000577070633880794, 0.4464968144893646, 0.23897920548915863, -0.13560913503170013, 0.2595643997192383, -0.14547300338745117, -0.19847813248634338, -0.09765548259019852, 0.5599943995475769, -1.4144121408462524, -0.4233260154724121, -0.5568780899047852, -0.6026802659034729, 0.5831175446510315, 0.13889047503471375, 0.15811514854431152, -0.08882084488868713, 0.380016952753067, 0.7178535461425781, 0.3046552836894989, -0.4891566038131714, 0.26216766238212585, 0.6192381978034973, -0.28110653162002563, -0.34222978353500366, 0.5328658223152161, 0.10175560414791107, 0.202626034617424, 0.29444244503974915, 0.4082319438457489, -0.4578680396080017, -0.31589987874031067, -0.48197829723358154, 0.4713848829269409, -0.8430037498474121, -0.556318998336792, -0.386222779750824, -0.29506242275238037, -0.16504345834255219, -0.18217185139656067, -0.2216092199087143, -0.8788744807243347, -0.5739254355430603, -0.4032290279865265, 0.7508091330528259, 1.069236159324646, -0.39212965965270996, 1.10432767868042, -0.7507669925689697, 0.33960390090942383, 0.25937122106552124, 0.2856009304523468, 0.22473590075969696, -0.9326195120811462, -0.04862042888998985, -0.4061439335346222, -0.7554987668991089, -0.8523566722869873, 0.3138384222984314, -0.08663395792245865, 0.5431199669837952, 0.25646793842315674, -0.1780446618795395, 0.634998083114624, -0.32998597621917725, 1.0945286750793457, 0.32398107647895813, -0.852146565914154, 0.17256933450698853, -0.2178603708744049, -0.13066428899765015, 0.3100694417953491, 0.5734344124794006, -0.26698732376098633, 0.16815298795700073, -0.7771649360656738, -0.8422544002532959, 0.900364339351654, 0.2361462414264679, 0.15764355659484863, 0.4280551075935364, 0.21007101237773895, 0.03129032999277115, 0.3584097623825073, -1.324324607849121, -0.2839764356613159, -0.32317256927490234, -0.23982752859592438, 0.5766314268112183, -0.3225443363189697, -0.3537512719631195, -0.12222790718078613, 0.9570159912109375, 0.32511579990386963, 0.06008734926581383, -0.12000502645969391, -0.2789665460586548, -0.4517790973186493, -0.08180888742208481, 0.5201029181480408, 0.5107879042625427, -0.6401293873786926, -0.3571389615535736, 0.22285395860671997, -1.023009181022644, 0.21818998456001282, 0.37865349650382996, -0.09614326059818268, -0.4846709668636322, 0.3211231529712677, 0.4798927307128906, 0.5127570033073425, -0.5340225696563721, 0.6621891856193542, 0.015973247587680817, -0.5257815718650818, -0.41033047437667847, -0.37480971217155457, 0.34515416622161865, 0.5681770443916321, 0.4463467597961426, 0.0058211213909089565, 0.22744804620742798, -0.22071538865566254, -0.08759263157844543, 0.22536706924438477, 0.1750553697347641, -0.5072062015533447, 1.141569972038269, 0.10139438509941101, 0.016335632652044296, 0.6265535950660706, -0.007031791843473911, 0.16411274671554565, 0.9189149141311646, 0.6321713924407959, 0.790475606918335, -0.1836284101009369, 0.14895156025886536, 0.28809070587158203, 0.4848862886428833, -0.1373942643404007, 0.7980640530586243, 0.19226981699466705, -0.510810136795044, -0.583643913269043, -1.036336064338684, -0.593264102935791, 0.16039489209651947, -0.9232014417648315, 0.6235754489898682, -0.6985626816749573, -0.1921013444662094, -0.2583324611186981, 0.06564773619174957, -0.5045329928398132, 0.4251360595226288, 0.47746986150741577, 1.259197473526001, -0.7475440502166748, 0.7083770036697388, 0.7874674797058105, -1.1566824913024902, -1.363259196281433, -0.8038551807403564, 0.2416994273662567, -1.5698587894439697, 0.876512348651886, -0.055778756737709045, -0.24962250888347626, -0.16302090883255005, -0.9973008632659912, -1.3545844554901123, 1.4763425588607788, 0.6334958076477051, -0.5408111214637756, -0.6210267543792725, 0.08344943821430206, -0.07245564460754395, -0.002736129332333803, 0.13676966726779938, 0.046043768525123596, 0.6842631697654724, 0.37014296650886536, -0.9231530427932739, 0.07237400114536285, 0.00944275688380003, -0.03402165323495865, -0.09547082334756851, -0.9550764560699463, 1.1075341701507568, -0.0989840179681778, -0.0931389257311821, 0.5183771848678589, 0.4963143765926361, 0.6045143604278564, -0.10202190279960632, 0.33476537466049194, 1.042843222618103, 0.8269883394241333, 0.06394396722316742, 1.3231475353240967, -0.22517956793308258, 0.7668487429618835, 0.6887602210044861, -0.3950341045856476, 0.6005356311798096, 0.5509198307991028, -0.4734950661659241, 0.8727077841758728, 0.6212596893310547, -0.45982933044433594, 0.5266979932785034, 0.5511401295661926, -0.0014416202902793884, -0.12433382868766785, -0.2895313501358032, -0.716771125793457, 0.39038175344467163, 0.15423893928527832, -0.5072816014289856, -0.49958494305610657, -0.38069263100624084, 0.039853181689977646, -0.16625207662582397, -0.403402179479599, 0.3902217447757721, 0.5649014711380005, 0.34194982051849365, 0.4169904291629791, 0.1658090353012085, 0.6853312849998474, -0.9692889451980591, 0.08599639683961868, -0.04508460685610771, 0.22448955476284027, -0.5540058612823486, -0.6736496686935425, 0.5269647240638733, 0.21531863510608673, -0.165638267993927, -0.23408916592597961, 0.5343196392059326, 0.38123294711112976, -0.9587481021881104, 0.6050220727920532, 0.20549525320529938, 0.16962707042694092, 0.20542362332344055, -0.762710452079773, 0.387997567653656, -0.2903069257736206, -0.5237123370170593, 0.2824910581111908, 0.04652567580342293, 0.0035849427804350853, 1.0821459293365479, 0.5273310542106628, 0.0843692347407341, 0.28599095344543457, 0.38429689407348633, 1.1730000972747803, -0.6222460269927979, -0.16769449412822723, -0.5224770307540894, 0.7192723751068115, 0.18363703787326813, -0.6016630530357361, 0.6277499794960022, 0.7867235541343689, 1.107136845588684, -0.5790773034095764, 0.41665709018707275, -0.42170649766921997, 0.0383470319211483, -0.549065887928009, 1.0866522789001465, -1.0339772701263428, -0.13013316690921783, -0.23594294488430023, -1.0705572366714478, -0.5445122122764587, 0.9367958903312683, 0.07298804819583893, -0.15556581318378448, 0.5520274639129639, 0.6693103313446045, 0.02306094579398632, 0.06894627213478088, 0.05972891300916672, 0.1064143180847168, 0.2970273792743683, 0.48200860619544983, 0.7462527751922607, -0.7318270206451416, 0.8223991394042969, -0.24810796976089478, -0.30273860692977905, -0.017497487366199493, -1.1115093231201172, -0.8356309533119202, -0.2611749470233917, -0.07400274276733398, -0.19647841155529022, -0.5625010132789612, 1.1456809043884277, 0.7423102855682373, -0.4497336745262146, -0.5837597846984863, 0.06552643328905106, -0.20943325757980347, 0.022694263607263565, -0.145871102809906, 0.38313353061676025, 0.19824348390102386, -0.8682966232299805, 0.4389074742794037, -0.0715428963303566, 0.6025865077972412, -0.26209014654159546, -0.03260533884167671, -0.15582983195781708, -0.07711133360862732, 0.30142396688461304, -0.027641691267490387, -0.8340088725090027, 0.0064488728530704975, 0.0665341466665268, -0.00750759756192565, -0.04570101946592331, 0.4452553987503052, -0.7134644985198975, -0.03794969245791435, 0.3679238557815552, 0.6320400238037109, 0.5942005515098572, 0.030399266630411148, 0.40731748938560486, -0.6991643905639648, 0.623526394367218, 0.1353289783000946, 0.9138948917388916, 0.32430213689804077, -0.2912232577800751, 0.6963064074516296, 0.28491052985191345, -0.7443245649337769, -0.6989312767982483, -0.016296599060297012, -1.6157845258712769, 0.02945784665644169, 0.9391129016876221, 0.030867747962474823, -0.5072447061538696, 0.7769178748130798, -0.4970800578594208, 0.22709570825099945, -0.6092202663421631, 0.7821614146232605, 0.8032263517379761, 0.24937301874160767, -0.3223356604576111, -0.537773847579956, 0.09299848973751068, -0.07466265559196472, -0.6630070209503174, -0.33701664209365845, 0.43510839343070984, 0.353209912776947, 0.20057258009910583, 0.22645889222621918, -0.7112866640090942, -0.13517151772975922, -0.017215659841895103, 0.4704134166240692, -0.048098936676979065, -0.26371753215789795, -0.28744226694107056, -0.31927689909935, 0.006344649475067854, -0.3550218939781189 ]
Yntec/photoMovieRealistic
Yntec
"2023-08-05T08:48:07Z"
48,663
12
diffusers
[ "diffusers", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "MagicArt35", "license:creativeml-openrail-m", "endpoints_compatible", "has_space", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2023-08-05T07:31:21Z"
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image - MagicArt35 --- # Photo Movie Realistic Original page: https://civitai.com/models/95413/photo-movie-realistic
[ -0.2680405378341675, -0.46360719203948975, 0.3600512444972992, 0.4079819321632385, -0.5173848271369934, -0.020690687000751495, 0.241176038980484, -0.1920202225446701, 0.7646545171737671, 0.9376979470252991, -0.8560739159584045, -0.20162947475910187, -0.02576293796300888, -0.5501318573951721, -0.44694945216178894, 0.4252811372280121, 0.033300649374723434, 0.43771329522132874, -0.10662396997213364, 0.048580583184957504, 0.051148250699043274, 0.11186201125383377, -1.3795044422149658, 0.2366793304681778, 0.8231961727142334, 0.5636805295944214, 0.8814014196395874, 0.48647844791412354, 0.6616767048835754, 0.1376701146364212, 0.5072526931762695, -0.16151203215122223, -0.3612329363822937, -0.07406929135322571, -0.3758341372013092, -0.10208504647016525, -0.21711474657058716, 0.48125097155570984, 0.7796601057052612, 0.2976101040840149, -0.06065679341554642, 0.36761295795440674, -0.22899699211120605, 0.5926589965820312, -0.6335192322731018, -0.14342740178108215, 0.011914687231183052, 0.15762367844581604, 0.011807822622358799, -0.2991848587989807, 0.013151848688721657, -0.36290231347084045, -0.547936737537384, -1.2766636610031128, 0.6970096230506897, -0.35128679871559143, 1.471725583076477, -0.1203727200627327, -0.7091454863548279, 0.25680702924728394, -1.0339659452438354, 0.21480318903923035, 0.012337644584476948, 0.6002548336982727, 0.32425418496131897, 0.9759390950202942, -0.404369980096817, -0.8305633068084717, -0.6168243288993835, -0.006679908372461796, 0.375742107629776, 0.08738908916711807, -0.36646416783332825, -0.27268579602241516, 0.45253896713256836, 0.6140076518058777, -0.6583158373832703, 0.15718364715576172, -0.8504894375801086, 0.17962731420993805, 0.7963772416114807, -0.14230641722679138, 0.5253859758377075, -0.03319704905152321, -0.3381083905696869, -0.2542892396450043, -0.6035133004188538, 0.3565105199813843, 0.3124776780605316, -0.22808703780174255, -0.3558696210384369, 0.9093261957168579, -0.5115582942962646, 0.5587090849876404, 0.23993279039859772, -0.14196906983852386, 0.06600062549114227, -0.2489960789680481, -0.6067894697189331, -0.16665010154247284, 0.31371811032295227, 1.3878858089447021, 0.3645086884498596, 0.041700590401887894, 0.04737309738993645, -0.14031557738780975, 0.5239124894142151, -1.095527172088623, -0.506657600402832, 0.017773693427443504, -0.35332387685775757, -0.7143984436988831, 0.47719183564186096, -0.892399251461029, -0.37958425283432007, 0.04137299209833145, 0.10777124017477036, -0.5131300687789917, -0.4436474144458771, -0.3102967441082001, -0.09088209271430969, 0.5867364406585693, 0.6097599267959595, -0.4321897327899933, 0.026373740285634995, 0.47362059354782104, 0.6225529313087463, 0.8825388550758362, 0.03602348268032074, -0.5340977907180786, 0.4890378713607788, -0.6493761539459229, 1.0598801374435425, -0.06904400140047073, -0.5371668338775635, 0.14017966389656067, 0.22849641740322113, 0.25332650542259216, -0.2859002649784088, 0.996414303779602, -0.8866133093833923, -0.27834683656692505, -0.4699678421020508, -0.25494587421417236, -0.30995211005210876, 0.29296207427978516, -1.0896629095077515, 0.35549914836883545, 0.036892812699079514, -0.5222872495651245, 0.8587778210639954, -0.7928818464279175, 0.05847054719924927, 0.2135096937417984, -0.0917513370513916, -0.009617366828024387, 0.5430046319961548, -0.17924325168132782, -0.39365270733833313, 0.18777567148208618, 0.05251428112387657, -0.4884950518608093, -0.49574247002601624, 0.4339027404785156, -0.4677060544490814, 0.7378270626068115, 0.8807868957519531, 0.24525995552539825, 0.14299710094928741, -1.3317170143127441, 0.10714229941368103, 0.43318939208984375, -0.150742307305336, 0.04010900482535362, -0.5099998116493225, 0.22495533525943756, 0.38065212965011597, 0.28508880734443665, -0.743963360786438, 0.5658649206161499, -0.06030862033367157, -0.49306774139404297, 0.17117422819137573, 0.412274032831192, 0.3883073925971985, -0.43894341588020325, 0.7160783410072327, -0.12025824934244156, 0.40490368008613586, -0.03236674517393112, -0.2651691734790802, -1.1572916507720947, -0.3481135666370392, 0.40885722637176514, 0.3769676089286804, -0.6954501867294312, 0.12134439498186111, -0.14262506365776062, -0.9421181082725525, -0.27601659297943115, -0.24170638620853424, 0.14147405326366425, 0.059843070805072784, -0.13874448835849762, -0.6015899777412415, -0.8261887431144714, -1.2446519136428833, -0.2177746295928955, -0.1954001486301422, -0.5336904525756836, 0.2507078945636749, 0.23122110962867737, -0.21708132326602936, 0.4955280125141144, -0.49653345346450806, -0.2529446482658386, -0.1123703345656395, -0.3858800530433655, 0.7027184963226318, 0.7949657440185547, 0.7889136672019958, -1.1772769689559937, -0.7974515557289124, -0.2547238767147064, -0.758702278137207, -0.005231519695371389, -0.21303699910640717, -0.583124041557312, 0.2229294627904892, 0.10972868651151657, -0.7922255992889404, 0.8374840617179871, 0.45204752683639526, -0.4655371308326721, 0.5167505145072937, -0.7180748581886292, 0.9194480776786804, -0.9350489974021912, 0.20496925711631775, 0.3975430428981781, -0.24090905487537384, -0.09534148126840591, 0.6615921258926392, -0.24858655035495758, -0.7131386995315552, -0.5839359164237976, 0.5510551333427429, -0.46855515241622925, -0.013338381424546242, -0.3921690583229065, -0.0851195678114891, 0.270471453666687, 0.14784078299999237, 0.04136527329683304, 0.5275650024414062, 0.6292369961738586, -0.4031316637992859, 0.5910009145736694, 0.062105488032102585, -0.11222318559885025, 0.7871172428131104, -0.6954235434532166, 0.03656017780303955, 0.08641388267278671, 0.06279441714286804, -1.4942506551742554, -0.9475812315940857, 0.39767423272132874, -0.2150452584028244, -0.0319034568965435, -0.4628990888595581, -0.8759128451347351, -0.4592232406139374, -0.2858794033527374, 0.5099452137947083, 0.823670506477356, -0.2891128957271576, 0.12531772255897522, 0.30051130056381226, 0.2358512282371521, 0.24481476843357086, -0.3840937614440918, 0.25390857458114624, 0.12342917919158936, -0.5661696195602417, 0.771128237247467, 0.11885328590869904, -0.49007976055145264, -0.2201695740222931, 0.02216167561709881, -0.7715252041816711, -0.6447404026985168, 0.4900484085083008, 0.3864525556564331, -0.35222452878952026, -0.1741463840007782, -0.251496285200119, 0.21709629893302917, -0.3442678153514862, 0.285428524017334, 0.596099853515625, -0.2602233588695526, -0.298723042011261, -1.043412685394287, 0.4540594816207886, 0.8229941725730896, 0.17606793344020844, 0.7733908891677856, 0.8016754388809204, -0.827465832233429, 0.6580145359039307, -0.9583874940872192, 0.03745083883404732, -0.46076202392578125, 0.012758095748722553, -0.7481164336204529, -0.10906246304512024, 0.1335710734128952, 0.28884854912757874, -0.4600095748901367, 0.9522543549537659, -0.03242911398410797, -0.6237602829933167, 0.6829506754875183, 0.6062889099121094, 0.4680030643939972, 0.46239203214645386, -0.6667682528495789, -0.10023579746484756, -0.4540921449661255, -0.36716893315315247, -0.012749791145324707, -0.31369808316230774, -0.8048070669174194, -0.7159387469291687, 0.09869007021188736, 0.4667429029941559, -0.4603838622570038, 0.5543708801269531, -0.05446246638894081, 0.5308583974838257, 0.656688928604126, 0.338198721408844, 0.35848623514175415, 0.08380822092294693, 0.0381370447576046, -0.3643328845500946, -0.1697193682193756, -0.7139365077018738, 0.5273681282997131, -0.006717390846461058, 0.3969745635986328, 0.09583187848329544, 0.6609364748001099, 0.10238254070281982, 0.2553369998931885, -0.45186150074005127, 0.8316182494163513, -0.18106988072395325, -1.0752594470977783, -0.0007172594196163118, 0.05761687830090523, -0.8333606123924255, 0.056819118559360504, -0.5900666117668152, -0.2970821261405945, 0.3184264302253723, 0.35731977224349976, -0.7041171789169312, 0.5993669033050537, -0.6758984923362732, 1.1489351987838745, -0.5667174458503723, -0.40274888277053833, -0.35243478417396545, -0.2939795255661011, 0.2673627734184265, 0.010799288749694824, 0.25718507170677185, -0.15296296775341034, -0.2248445451259613, 0.5297866463661194, -0.3710481822490692, 0.9315008521080017, -0.1665632277727127, 0.1865215003490448, 0.4492775499820709, 0.3528134226799011, -0.019334707409143448, 0.25840508937835693, -0.19154156744480133, -0.40912383794784546, -0.21828356385231018, -0.7150151133537292, -0.24735859036445618, 1.0650758743286133, -0.43095290660858154, -0.338839590549469, -0.7420100569725037, -0.09037464112043381, 0.2608878016471863, 0.23683513700962067, 0.6959405541419983, 0.8229790925979614, -1.0514986515045166, 0.0661996379494667, 0.15899063646793365, -0.1878066062927246, 0.6976393461227417, 0.5505313873291016, -0.8492106199264526, -0.5761798620223999, 0.8657180666923523, 0.4268943667411804, -0.1944236308336258, 0.2539590299129486, 0.07961222529411316, -0.09853744506835938, -0.4218285381793976, -0.35335031151771545, 0.6950345635414124, -0.13355396687984467, -0.048470258712768555, -0.3112548887729645, -0.39670416712760925, -0.46826937794685364, -0.6407328248023987, -0.4519842863082886, -0.40381866693496704, -0.510077714920044, -0.2928352355957031, 0.5569538474082947, 0.42315998673439026, -0.16762970387935638, 0.45087260007858276, -0.8317215442657471, 0.6226330399513245, 0.4828169643878937, 0.5768274664878845, -0.6206855773925781, -0.958746075630188, 0.03644650802016258, 0.22292909026145935, -0.7638446688652039, -0.5345895290374756, 1.0293171405792236, 0.46104833483695984, 0.7024976015090942, 0.5384161472320557, 0.05273625627160072, 0.9095025658607483, -0.4759919345378876, 0.6916423439979553, 0.47578126192092896, -0.5300725102424622, 1.0970295667648315, -0.7112678289413452, 0.43175008893013, 1.336931824684143, 0.7067838311195374, -0.25234362483024597, 0.21448463201522827, -1.5025604963302612, -0.7483915686607361, 0.09241703152656555, 0.33222049474716187, 0.28322264552116394, 0.5840224623680115, 0.4842781722545624, -0.1580173820257187, 0.4172115623950958, -0.851399838924408, 0.03423210605978966, -0.17618833482265472, 0.09963083267211914, -0.06606539338827133, -0.7229053974151611, 0.01336701400578022, -0.562289297580719, 0.40999868512153625, 0.2716248631477356, 0.27661553025245667, 0.3424527049064636, 0.1480303257703781, -0.2724977433681488, -0.23321768641471863, 0.6018333435058594, 0.8323807120323181, -0.7967557311058044, 0.0010926405666396022, -0.3001774549484253, -0.2968708276748657, 0.11871320754289627, 0.043525949120521545, -0.1171552762389183, 0.20766878128051758, 0.1791151612997055, 0.9898269772529602, 0.39710673689842224, -0.506933331489563, 0.5379959344863892, 0.08470296859741211, 0.3853548765182495, -1.4451278448104858, 0.44969242811203003, -0.23383501172065735, 0.4507256746292114, 0.34708645939826965, 0.5444813966751099, 0.6329299807548523, -1.0165399312973022, 0.5712205171585083, 0.06119875982403755, -0.8957462310791016, -0.6205317378044128, 0.9484987854957581, 0.3334250748157501, -1.1916180849075317, 0.9173755645751953, -0.41894209384918213, -0.0697842389345169, 0.745829164981842, 0.7777897119522095, 0.7171670198440552, -0.42957183718681335, 0.7094146609306335, 1.164230227470398, -0.4020439088344574, 0.11943348497152328, 0.5960035920143127, 0.39264869689941406, -0.5366318225860596, 0.2749350965023041, -0.45340824127197266, -0.5820879340171814, 0.23676671087741852, -0.5540234446525574, 0.5629090666770935, -1.2475581169128418, 0.04840153828263283, 0.03920935466885567, 0.1288936287164688, -0.46928367018699646, 1.0065287351608276, 0.40780243277549744, 1.6203162670135498, -0.5621595978736877, 1.4011174440383911, 0.704361081123352, -0.987752377986908, -0.6478229761123657, 0.09950633347034454, -0.07655094563961029, -0.5457676649093628, 0.5293890237808228, 0.6189707517623901, -0.018007079139351845, 0.03211057558655739, -0.8284446597099304, -0.5896131992340088, 0.755815863609314, 0.26504623889923096, -0.7213709950447083, -0.1619604378938675, -0.5456551909446716, 1.0410363674163818, -0.9614514112472534, -0.11738450825214386, 0.25470903515815735, 0.4878882169723511, 0.638423502445221, -0.6290236115455627, -0.3926335573196411, -0.6506440043449402, -0.023936757817864418, -0.22473640739917755, -0.8336347937583923, 0.4657037556171417, -0.4476301968097687, 0.045081958174705505, 0.4818042516708374, 0.8279146552085876, 0.5790953040122986, 0.29124778509140015, 0.8191232085227966, 0.7060156464576721, 0.24715973436832428, -0.054959483444690704, 1.6259924173355103, 0.3588043749332428, 0.1478683352470398, 0.987726092338562, -0.07813296467065811, 0.9469667673110962, 0.5576446652412415, -0.16754238307476044, 0.4748268127441406, 1.0028592348098755, -0.7451984882354736, 0.7914154529571533, 0.07873675227165222, -0.6973615288734436, -0.29457658529281616, -0.5009942650794983, 0.019875574856996536, 0.592006266117096, -0.08967187255620956, -0.2856310307979584, -0.047468531876802444, -0.24018551409244537, -0.2458278387784958, 0.40511950850486755, -0.40400728583335876, 0.37974244356155396, -0.2800131142139435, -0.5811372399330139, 0.4083382189273834, -0.13984480500221252, 0.25247031450271606, -0.2916566729545593, -0.13245074450969696, -0.12414299696683884, -0.16340123116970062, -0.20136699080467224, -0.7207936644554138, 0.6558853387832642, 0.13338181376457214, -0.36317873001098633, -0.008285445161163807, 0.6666318774223328, -0.5789164304733276, -1.5555096864700317, 0.13825474679470062, -0.38276001811027527, 0.4434617757797241, -0.3178860545158386, -0.7652876973152161, 0.18307986855506897, 0.31939759850502014, 0.06708499044179916, -0.0031840524170547724, -0.048666298389434814, -0.001899612951092422, 0.4144427180290222, 0.6637719869613647, 0.24726909399032593, -0.17242328822612762, -0.03475848585367203, 0.5929244160652161, -0.7901646494865417, -0.5250566601753235, -0.5946744084358215, 0.5927255749702454, -0.9344388246536255, -0.5852705836296082, 0.5445345640182495, 1.0295721292495728, 0.5102290511131287, -0.994513213634491, 0.12166927754878998, -0.17237505316734314, 0.2754589319229126, -0.28185147047042847, 0.8577976226806641, -0.9563776850700378, -0.33056899905204773, -0.2792262136936188, -0.969226598739624, -0.58316570520401, 0.6684468984603882, 0.1880359947681427, -0.13499026000499725, 0.07978720217943192, 0.7722753882408142, -0.2059115320444107, -0.39506763219833374, 0.6256665587425232, -0.19927355647087097, 0.3063420057296753, 0.026446610689163208, 0.7116712927818298, -0.7779616117477417, 0.38431116938591003, -0.6253750920295715, -0.2673184275627136, -0.5650109052658081, -0.9917831420898438, -0.35339224338531494, -0.5543518662452698, -0.7846940159797668, -0.33911439776420593, -0.31540074944496155, 0.7970443367958069, 0.8447784185409546, -0.6419995427131653, -0.30473729968070984, -0.016548259183764458, -0.08972812443971634, 0.14789815247058868, -0.3293045163154602, 0.05701823905110359, 0.8059965968132019, -0.9900493025779724, 0.19882754981517792, 0.22555500268936157, 0.6160781383514404, -0.026680512353777885, 0.4480128586292267, -0.4338344931602478, 0.17641769349575043, 0.3659696578979492, 0.6875821352005005, -0.5080456137657166, -0.4381779134273529, -0.23932091891765594, -0.38458797335624695, 0.0665062740445137, 0.9071422815322876, -0.10107364505529404, 0.257179856300354, 0.5181686878204346, 0.08639523386955261, 0.6326963305473328, 0.0917767733335495, 0.9125726222991943, -0.6541957855224609, 0.7346296906471252, -0.08865426480770111, 0.6029301881790161, 0.4497104585170746, -0.6070294976234436, 0.9415096044540405, 0.7443588972091675, -0.25460946559906006, -0.8705978393554688, 0.024602381512522697, -1.9763998985290527, 0.2550634741783142, 0.8500658869743347, 0.1465311050415039, -0.12853685021400452, 0.3932756185531616, -0.8337490558624268, 0.2976106107234955, -0.3668231666088104, 0.5341622829437256, 0.38381853699684143, 0.052077654749155045, -0.5779641270637512, -0.2940532863140106, 0.08838868141174316, -0.5953275561332703, -0.4823962450027466, -0.9756476879119873, 0.721179723739624, 0.3210528790950775, 0.5888196229934692, 0.7362485527992249, -0.3568809926509857, 0.3655342161655426, 0.4601324200630188, 0.5660892724990845, 0.0005277514574117959, -0.4938789904117584, 0.10798528790473938, 0.1613353192806244, 0.19815847277641296, -0.7866583466529846 ]
declare-lab/flan-alpaca-large
declare-lab
"2023-08-21T06:49:29Z"
48,623
44
transformers
[ "transformers", "pytorch", "safetensors", "t5", "text2text-generation", "dataset:tatsu-lab/alpaca", "arxiv:2308.09662", "arxiv:2306.04757", "arxiv:2210.11416", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
text2text-generation
"2023-03-21T17:52:31Z"
--- license: apache-2.0 datasets: - tatsu-lab/alpaca --- ## 🍮 🦙 Flan-Alpaca: Instruction Tuning from Humans and Machines 📣 Introducing **Red-Eval** to evaluate the safety of the LLMs using several jailbreaking prompts. With **Red-Eval** one could jailbreak/red-team GPT-4 with a 65.1% attack success rate and ChatGPT could be jailbroken 73% of the time as measured on DangerousQA and HarmfulQA benchmarks. More details are here: [Code](https://github.com/declare-lab/red-instruct) and [Paper](https://arxiv.org/abs/2308.09662). 📣 We developed Flacuna by fine-tuning Vicuna-13B on the Flan collection. Flacuna is better than Vicuna at problem-solving. Access the model here https://huggingface.co/declare-lab/flacuna-13b-v1.0. 📣 Curious to know the performance of 🍮 🦙 **Flan-Alpaca** on large-scale LLM evaluation benchmark, **InstructEval**? Read our paper [https://arxiv.org/pdf/2306.04757.pdf](https://arxiv.org/pdf/2306.04757.pdf). We evaluated more than 10 open-source instruction-tuned LLMs belonging to various LLM families including Pythia, LLaMA, T5, UL2, OPT, and Mosaic. Codes and datasets: [https://github.com/declare-lab/instruct-eval](https://github.com/declare-lab/instruct-eval) 📣 **FLAN-T5** is also useful in text-to-audio generation. Find our work at [https://github.com/declare-lab/tango](https://github.com/declare-lab/tango) if you are interested. Our [repository](https://github.com/declare-lab/flan-alpaca) contains code for extending the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) synthetic instruction tuning to existing instruction-tuned models such as [Flan-T5](https://arxiv.org/abs/2210.11416). We have a [live interactive demo](https://huggingface.co/spaces/joaogante/transformers_streaming) thanks to [Joao Gante](https://huggingface.co/joaogante)! We are also benchmarking many instruction-tuned models at [declare-lab/flan-eval](https://github.com/declare-lab/flan-eval). Our pretrained models are fully available on HuggingFace 🤗 : | Model | Parameters | Instruction Data | Training GPUs | |----------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------| | [Flan-Alpaca-Base](https://huggingface.co/declare-lab/flan-alpaca-base) | 220M | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | 1x A6000 | | [Flan-Alpaca-Large](https://huggingface.co/declare-lab/flan-alpaca-large) | 770M | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | 1x A6000 | | [Flan-Alpaca-XL](https://huggingface.co/declare-lab/flan-alpaca-xl) | 3B | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | 1x A6000 | | [Flan-Alpaca-XXL](https://huggingface.co/declare-lab/flan-alpaca-xxl) | 11B | [Flan](https://github.com/google-research/FLAN), [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) | 4x A6000 (FSDP) | | [Flan-GPT4All-XL](https://huggingface.co/declare-lab/flan-gpt4all-xl) | 3B | [Flan](https://github.com/google-research/FLAN), [GPT4All](https://github.com/nomic-ai/gpt4all) | 1x A6000 | | [Flan-ShareGPT-XL](https://huggingface.co/declare-lab/flan-sharegpt-xl) | 3B | [Flan](https://github.com/google-research/FLAN), [ShareGPT](https://github.com/domeccleston/sharegpt)/[Vicuna](https://github.com/lm-sys/FastChat) | 1x A6000 | | [Flan-Alpaca-GPT4-XL*](https://huggingface.co/declare-lab/flan-alpaca-gpt4-xl) | 3B | [Flan](https://github.com/google-research/FLAN), [GPT4-Alpaca](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM) | 1x A6000 | *recommended for better performance ### Why? [Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html) represents an exciting new direction to approximate the performance of large language models (LLMs) like ChatGPT cheaply and easily. Concretely, they leverage an LLM such as GPT-3 to generate instructions as synthetic training data. The synthetic data which covers more than 50k tasks can then be used to finetune a smaller model. However, the original implementation is less accessible due to licensing constraints of the underlying [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) model. Furthermore, users have noted [potential noise](https://github.com/tloen/alpaca-lora/issues/65) in the synthetic dataset. Hence, it may be better to explore a fully accessible model that is already trained on high-quality (but less diverse) instructions such as [Flan-T5](https://arxiv.org/abs/2210.11416). ### Usage ``` from transformers import pipeline prompt = "Write an email about an alpaca that likes flan" model = pipeline(model="declare-lab/flan-alpaca-gpt4-xl") model(prompt, max_length=128, do_sample=True) # Dear AlpacaFriend, # My name is Alpaca and I'm 10 years old. # I'm excited to announce that I'm a big fan of flan! # We like to eat it as a snack and I believe that it can help with our overall growth. # I'd love to hear your feedback on this idea. # Have a great day! # Best, AL Paca ```
[ -0.6978606581687927, -0.914106011390686, 0.2841980457305908, 0.2470431625843048, -0.03831429407000542, 0.02299874648451805, -0.28422337770462036, -0.7273266315460205, 0.45735347270965576, 0.20900137722492218, -0.46771422028541565, -0.6063574552536011, -0.5536503791809082, -0.057283204048871994, -0.37965208292007446, 1.0035580396652222, -0.09734471142292023, -0.24107183516025543, 0.35664716362953186, -0.3389343023300171, -0.21695800125598907, -0.3506372272968292, -0.6891541481018066, -0.1849658340215683, 0.5413742661476135, 0.19597294926643372, 0.6794750690460205, 0.6580363512039185, 0.2983386516571045, 0.32128167152404785, -0.19730381667613983, 0.4033350348472595, -0.3252083361148834, -0.3619782030582428, 0.2913021147251129, -0.37133336067199707, -0.6252148747444153, -0.11732598394155502, 0.2797611355781555, 0.22589167952537537, -0.19250106811523438, 0.24297179281711578, -0.1330578774213791, 0.7950438261032104, -0.5797504782676697, 0.35054323077201843, -0.5080133676528931, 0.016788799315690994, -0.26517558097839355, -0.04700425639748573, -0.052077632397413254, -0.4607492983341217, -0.046211160719394684, -0.756501317024231, 0.28846514225006104, -0.057898927479982376, 1.1085889339447021, 0.15179233253002167, -0.20700553059577942, -0.5986093878746033, -0.7621580362319946, 0.579188883304596, -0.8562751412391663, 0.3994535207748413, 0.3819624185562134, 0.2608095109462738, -0.3333110809326172, -0.594951868057251, -0.6968077421188354, -0.2985764145851135, -0.054866038262844086, 0.1733843833208084, -0.06597158312797546, -0.04559967666864395, 0.14833420515060425, 0.6694602370262146, -0.40620529651641846, -0.06949415802955627, -0.4646371304988861, -0.11043255776166916, 0.6562731862068176, -0.24000607430934906, 0.31364771723747253, 0.1520668864250183, -0.32041606307029724, -0.4826350808143616, -0.63532555103302, 0.14639516174793243, 0.26644325256347656, 0.35441702604293823, -0.4401951730251312, 0.4539579451084137, -0.15387967228889465, 0.6493973135948181, -0.16932956874370575, -0.2890322506427765, 0.5241785645484924, -0.27973636984825134, -0.24307182431221008, -0.062365058809518814, 1.1581993103027344, 0.024044381454586983, -0.023014463484287262, 0.26247119903564453, -0.5607727766036987, -0.031276896595954895, -0.0014098210958763957, -0.6211819648742676, -0.11889467388391495, 0.31099647283554077, -0.2805515229701996, -0.5200732350349426, 0.12078893184661865, -1.0156786441802979, -0.02885797806084156, 0.0612923763692379, 0.6624023914337158, -0.6874076128005981, -0.26045286655426025, 0.12500408291816711, 0.16351495683193207, 0.5715498924255371, 0.2814137637615204, -1.1864506006240845, 0.2876029312610626, 0.8803402185440063, 1.1526888608932495, 0.10981305688619614, -0.3233129680156708, -0.3712097406387329, -0.07507161796092987, -0.4152815341949463, 0.6162325739860535, -0.16642439365386963, -0.34682556986808777, -0.05943523347377777, 0.14433424174785614, -0.2814147174358368, -0.41636958718299866, 0.6499199271202087, -0.4025833010673523, 0.1091851070523262, -0.4173015058040619, -0.47489508986473083, -0.16373002529144287, -0.07310012727975845, -0.8319085836410522, 1.07466721534729, 0.33018162846565247, -0.5473783612251282, 0.1370537281036377, -1.0444811582565308, -0.49028608202934265, -0.3146948516368866, 0.049932122230529785, -0.572121262550354, -0.06737039238214493, 0.4272902011871338, 0.20414365828037262, -0.4366694390773773, 0.10010618716478348, 0.024279262870550156, -0.5372960567474365, 0.13862112164497375, -0.3224727511405945, 0.7861922979354858, 0.41907310485839844, -0.7673032283782959, 0.23054751753807068, -0.892131507396698, -0.11291634291410446, 0.3964127004146576, -0.37048017978668213, 0.2528402507305145, -0.26919320225715637, -0.14307835698127747, -0.06594069302082062, 0.226470947265625, -0.3350009024143219, 0.19815558195114136, -0.46417632699012756, 0.6947329044342041, 0.6822797656059265, -0.14959575235843658, 0.2379106879234314, -0.6147273182868958, 0.486206978559494, -0.24871087074279785, 0.29658931493759155, -0.1969665139913559, -0.6109609603881836, -1.2240283489227295, -0.4098842442035675, 0.18048618733882904, 0.6901019811630249, -0.5597049593925476, 0.5664755702018738, -0.14164650440216064, -0.685672402381897, -0.6134326457977295, 0.273688405752182, 0.35171839594841003, 0.40343502163887024, 0.610083818435669, -0.055740028619766235, -0.42592525482177734, -0.742769718170166, 0.07913260906934738, -0.1761282980442047, 0.02417866140604019, 0.16264022886753082, 0.7379817366600037, -0.3481954038143158, 0.6235364079475403, -0.5360889434814453, -0.36505571007728577, -0.24131527543067932, -0.07148829847574234, 0.342852920293808, 0.5998570322990417, 0.8090412020683289, -0.49543169140815735, -0.18513423204421997, 0.24311499297618866, -0.5998201966285706, 0.08170834928750992, 0.05449501797556877, -0.27549341320991516, 0.3567788302898407, 0.19141316413879395, -0.9205796122550964, 0.3474322259426117, 0.5842689871788025, -0.19887672364711761, 0.5588942170143127, -0.1278313398361206, 0.1349472850561142, -0.8082811832427979, 0.1814822554588318, 0.005923658609390259, -0.1541227102279663, -0.5094077587127686, 0.17287322878837585, -0.054277535527944565, -0.04063796252012253, -0.6390801072120667, 0.6079099774360657, -0.37304791808128357, -0.06845905631780624, -0.09168103337287903, -0.1304238736629486, 0.11372081935405731, 0.700319230556488, -0.05762851610779762, 1.1108790636062622, 0.36401987075805664, -0.5484725832939148, 0.3543785810470581, 0.2131582349538803, -0.39972367882728577, -0.17125113308429718, -0.8390787839889526, 0.21668598055839539, 0.25003671646118164, 0.5319061279296875, -0.477080374956131, -0.38632479310035706, 0.585641086101532, -0.18964217603206635, 0.32216644287109375, 0.048397183418273926, -0.404290109872818, -0.6056962013244629, -0.5787695646286011, 0.2352869212627411, 0.5598525404930115, -0.8320884704589844, 0.5100917816162109, 0.19783510267734528, 0.3295946419239044, -0.5876040458679199, -0.6611820459365845, -0.18697616457939148, -0.36268752813339233, -0.6149922609329224, 0.3037157356739044, -0.07565680146217346, -0.005827184766530991, -0.2594272792339325, -0.07987762987613678, 0.07918606698513031, -0.008519301190972328, 0.13567990064620972, 0.23713132739067078, -0.40018200874328613, -0.09220410883426666, -0.14512738585472107, 0.0799342468380928, -0.15416699647903442, -0.29866015911102295, 0.7601088881492615, -0.7823655009269714, -0.16846820712089539, -0.597338080406189, 0.09033588320016861, 0.6132310032844543, -0.4541638493537903, 1.0242083072662354, 0.937652051448822, -0.1737804412841797, -0.1766214668750763, -0.6482720971107483, -0.06328269094228745, -0.5527036190032959, 0.08235480636358261, -0.3913911283016205, -0.7783136963844299, 0.6079270243644714, 0.1394670158624649, 0.290509432554245, 0.526395857334137, 0.44229456782341003, -0.06312666088342667, 0.5863541960716248, 0.4042828679084778, -0.15790070593357086, 0.6475757956504822, -0.6961413025856018, 0.06963473558425903, -0.7171804904937744, -0.17846466600894928, -0.4380878210067749, -0.168361097574234, -0.7251306772232056, -0.7392998337745667, 0.32603979110717773, 0.11617744714021683, -0.34158170223236084, 0.41436854004859924, -0.6541196703910828, 0.45835068821907043, 0.5714878439903259, 0.15346106886863708, 0.04663674533367157, -0.04830704256892204, -0.009258284233510494, 0.40692684054374695, -0.5901094675064087, -0.5905536413192749, 1.0445705652236938, 0.5231099724769592, 0.4861993193626404, 0.10259373486042023, 0.8370603919029236, 0.11994324624538422, 0.38708382844924927, -0.7392263412475586, 0.5513906478881836, -0.11029823124408722, -0.4439469575881958, -0.16826297342777252, -0.41426482796669006, -1.033596158027649, 0.31395307183265686, -0.06329359114170074, -0.7489511966705322, 0.054849784821271896, 0.3239039480686188, -0.32438039779663086, 0.5253931879997253, -0.8290356993675232, 0.8879075646400452, -0.5111469626426697, -0.29457247257232666, 0.05816609039902687, -0.5227785706520081, 0.6930750012397766, -0.18868981301784515, 0.44828200340270996, -0.24883435666561127, -0.146888867020607, 0.8018769025802612, -1.0308516025543213, 0.7505051493644714, -0.1540175825357437, -0.42603448033332825, 0.6767860651016235, -0.11823298782110214, 0.5456598401069641, 0.0580611415207386, -0.35287314653396606, 0.38333773612976074, 0.2013917714357376, -0.476539671421051, -0.5682642459869385, 0.907056450843811, -1.019997239112854, -0.6242600083351135, -0.48672768473625183, -0.21574853360652924, -0.1286848783493042, 0.08768115192651749, 0.3219136595726013, 0.27423667907714844, -0.09373319149017334, 0.0012289881706237793, 0.5910313129425049, -0.5706963539123535, 0.3992154002189636, 0.29288342595100403, -0.37531977891921997, -0.6742256283760071, 1.0993753671646118, -0.04679519683122635, 0.29582223296165466, 0.5188291072845459, 0.4235084652900696, -0.13971202075481415, -0.39802417159080505, -0.6815418601036072, 0.3766399919986725, -0.6226701736450195, -0.2737782597541809, -0.5538840889930725, -0.25162211060523987, -0.3277994692325592, -0.1886463314294815, -0.6398725509643555, -0.6050567626953125, -0.5370165109634399, -0.1498672068119049, 0.7043572068214417, 0.6597188115119934, 0.0261421799659729, 0.37561947107315063, -0.7590370178222656, 0.38780856132507324, 0.18355335295200348, 0.2838544547557831, 0.057938139885663986, -0.40806931257247925, -0.12329627573490143, 0.3364841938018799, -0.4687618017196655, -0.836142897605896, 0.5507727861404419, 0.4738246202468872, 0.3421647548675537, 0.24808421730995178, -0.16150744259357452, 0.7050894498825073, -0.35860323905944824, 0.85019451379776, 0.07513612508773804, -1.0297694206237793, 0.8957275152206421, -0.4165177345275879, 0.1611207276582718, 0.5407191514968872, 0.34544941782951355, -0.2406831979751587, -0.26342496275901794, -0.5411654114723206, -0.9877489805221558, 0.7051628828048706, 0.34306809306144714, -0.008188443258404732, -0.02516934648156166, 0.3933391571044922, 0.18832434713840485, 0.05357491597533226, -0.7974594235420227, -0.37987497448921204, -0.4783807694911957, -0.24762043356895447, -0.039734359830617905, 0.011671239510178566, -0.26695820689201355, -0.36407986283302307, 0.9175143241882324, -0.13092848658561707, 0.4368820786476135, 0.2673230469226837, 0.0017113394569605589, -0.07676296681165695, 0.1993127316236496, 0.9477786421775818, 0.41548120975494385, -0.34509673714637756, -0.15278580784797668, 0.3429308831691742, -0.5741074681282043, 0.1858697086572647, 0.018048793077468872, -0.3743150234222412, -0.16644059121608734, 0.5512087941169739, 1.1100248098373413, 0.1168690025806427, -0.681327223777771, 0.3827282786369324, -0.20557813346385956, -0.293121337890625, -0.44007638096809387, 0.5167814493179321, 0.15758654475212097, 0.08452783524990082, 0.31111830472946167, 0.09408529102802277, -0.23928280174732208, -0.662891685962677, 0.03249258175492287, 0.30876994132995605, -0.08880891650915146, -0.5017384886741638, 0.7344245910644531, 0.27037060260772705, -0.43500620126724243, 0.26898884773254395, -0.26493126153945923, -0.5714777112007141, 0.8315632939338684, 0.5449398756027222, 0.7343608736991882, -0.20072416961193085, 0.1923213005065918, 0.6004678010940552, 0.37441322207450867, -0.22426427900791168, 0.1614149808883667, -0.11740530282258987, -0.5491355657577515, 0.021629925817251205, -1.0501543283462524, -0.25863325595855713, 0.42395228147506714, -0.3543330430984497, 0.34414932131767273, -0.6605322360992432, -0.09512955695390701, -0.15030111372470856, 0.2536405622959137, -0.6737493276596069, 0.09335637837648392, 0.018574325367808342, 0.9365635514259338, -0.7050668001174927, 1.0110751390457153, 0.47292742133140564, -0.473428875207901, -1.0186691284179688, -0.13035258650779724, 0.17896628379821777, -0.789827823638916, 0.1765548586845398, 0.2966282069683075, -0.24167875945568085, -0.3005325198173523, -0.3861083388328552, -0.9865643382072449, 1.38484525680542, 0.40389949083328247, -0.7033985257148743, 0.18290302157402039, 0.2345672994852066, 0.6874144077301025, -0.2809787094593048, 0.40771350264549255, 1.040250301361084, 0.5611651539802551, 0.1872217059135437, -0.9883530735969543, 0.13575302064418793, -0.3271443247795105, -0.07900429517030716, 0.12989872694015503, -1.2704702615737915, 0.7609959244728088, -0.24011783301830292, -0.029874324798583984, 0.14921467006206512, 1.010460615158081, 0.48448023200035095, 0.27039721608161926, 0.5395293831825256, 0.42098182439804077, 0.9010410904884338, -0.18129709362983704, 1.1347001791000366, -0.36175981163978577, 0.2820362448692322, 0.9383726119995117, -0.02217698283493519, 0.7306559681892395, 0.2566116154193878, -0.4352412819862366, 0.3998238444328308, 0.735209047794342, 0.027019361034035683, 0.33181923627853394, 0.09787497669458389, -0.5159215331077576, 0.26827168464660645, 0.1435794234275818, -0.7225625514984131, 0.47462746500968933, 0.5148748159408569, -0.3060777187347412, 0.30461621284484863, -0.09145951271057129, 0.2575538754463196, -0.25937238335609436, -0.0801771879196167, 0.4903111457824707, 0.1769062578678131, -0.6258801817893982, 1.1842246055603027, 0.01835365779697895, 1.000643014907837, -0.8003904223442078, 0.13584767282009125, -0.4050520062446594, 0.14942631125450134, -0.3649574816226959, -0.42673665285110474, 0.25551214814186096, 0.06278545409440994, 0.2298365831375122, 0.0690094530582428, 0.5403227210044861, -0.26484495401382446, -0.6456166505813599, 0.4485000669956207, 0.21383461356163025, 0.14066894352436066, 0.32624632120132446, -0.8146233558654785, 0.6164727807044983, 0.20504283905029297, -0.6023132801055908, 0.307483047246933, 0.29477962851524353, -0.009970334358513355, 0.7911463379859924, 0.8203152418136597, 0.1880737692117691, 0.2326505482196808, 0.15643373131752014, 0.9694878458976746, -0.7085723876953125, -0.2324688881635666, -0.6963632702827454, 0.05168971046805382, 0.23931999504566193, -0.30143803358078003, 0.4812465012073517, 0.6487376689910889, 0.7691375017166138, -0.08349068462848663, 0.5991407036781311, -0.2307058572769165, 0.23328791558742523, -0.5749761462211609, 0.6299293041229248, -0.6356921195983887, 0.6133735179901123, -0.31594008207321167, -0.814130961894989, -0.1098165288567543, 0.7561718821525574, -0.17196491360664368, 0.28995010256767273, 0.46720069646835327, 1.004228949546814, -0.07286659628152847, 0.3048025369644165, 0.01415180042386055, 0.1236271932721138, 0.791993260383606, 0.6640337109565735, 0.6460921168327332, -0.6960027813911438, 0.6509392857551575, -0.743885338306427, -0.16975757479667664, -0.14784595370292664, -0.7343756556510925, -0.5211653709411621, -0.4461474120616913, -0.2784862518310547, -0.17921516299247742, 0.14500349760055542, 1.1100541353225708, 0.8000613451004028, -0.9323767423629761, -0.40396562218666077, -0.26638880372047424, 0.08104594051837921, -0.35581839084625244, -0.2496895045042038, 0.5638095140457153, -0.17567920684814453, -0.791115939617157, 0.6756768226623535, -0.017618296667933464, 0.32085567712783813, -0.09150083363056183, -0.21700920164585114, -0.34396323561668396, 0.10608895123004913, 0.5442538261413574, 0.724746584892273, -0.7371267676353455, -0.2938042879104614, -0.26708486676216125, -0.012569342739880085, 0.30956459045410156, 0.5433868169784546, -0.6204399466514587, 0.07332612574100494, 0.2384505420923233, 0.3764936327934265, 0.7364780902862549, 0.05308178439736366, 0.3787135183811188, -0.4885614812374115, 0.40437033772468567, 0.0651380866765976, 0.40283912420272827, 0.3679453432559967, -0.34277456998825073, 0.8316559195518494, 0.047462671995162964, -0.5904756784439087, -0.7118412256240845, -0.11516019701957703, -1.132035255432129, -0.1016339585185051, 1.1334465742111206, -0.2818838357925415, -0.7011152505874634, 0.3367469906806946, -0.23592598736286163, 0.37432077527046204, -0.617496132850647, 0.6659361124038696, 0.41589969396591187, -0.23426200449466705, -0.03080565482378006, -0.7913408875465393, 0.5982556939125061, 0.4079132378101349, -1.0914512872695923, -0.061368584632873535, 0.23516681790351868, 0.33980488777160645, 0.16642716526985168, 0.6998187303543091, -0.10922104865312576, 0.10787568986415863, -0.12374376505613327, 0.02259976975619793, -0.1664012372493744, -0.03185475245118141, -0.18902374804019928, -0.06241888552904129, -0.07964466512203217, -0.2585025727748871 ]
google/mobilebert-uncased
google
"2021-04-19T13:32:58Z"
48,606
24
transformers
[ "transformers", "pytorch", "tf", "rust", "mobilebert", "pretraining", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
"2022-03-02T23:29:05Z"
--- language: en thumbnail: https://huggingface.co/front/thumbnails/google.png license: apache-2.0 --- ## MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices MobileBERT is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks. This checkpoint is the original MobileBert Optimized Uncased English: [uncased_L-24_H-128_B-512_A-4_F-4_OPT](https://storage.googleapis.com/cloud-tpu-checkpoints/mobilebert/uncased_L-24_H-128_B-512_A-4_F-4_OPT.tar.gz) checkpoint. ## How to use MobileBERT in `transformers` ```python from transformers import pipeline fill_mask = pipeline( "fill-mask", model="google/mobilebert-uncased", tokenizer="google/mobilebert-uncased" ) print( fill_mask(f"HuggingFace is creating a {fill_mask.tokenizer.mask_token} that the community uses to solve NLP tasks.") ) ```
[ -0.39740854501724243, -0.38144877552986145, 0.23825222253799438, 0.4875716269016266, -0.1768995076417923, 0.1324315071105957, -0.29998818039894104, -0.05150032043457031, 0.6113702058792114, 0.3795289993286133, -0.8466058969497681, -0.2672298550605774, -0.4557569921016693, -0.09736895561218262, -0.3297397792339325, 1.167399287223816, -0.04920971766114235, -0.15228161215782166, 0.05870258808135986, -0.3340494632720947, -0.054635874927043915, -0.5488430857658386, -0.580906093120575, -0.5850210785865784, 0.5711409449577332, 0.4203934073448181, 0.8367802500724792, 0.24507464468479156, 0.29681888222694397, 0.3561146557331085, -0.20488634705543518, -0.12646612524986267, -0.3023660480976105, 0.13492584228515625, 0.072657011449337, -0.30622732639312744, -0.34226974844932556, -0.057778701186180115, 0.7318471670150757, 0.46734288334846497, -0.07087665796279907, 0.48451507091522217, 0.11929423362016678, 0.8160861730575562, -0.9289541840553284, -0.10500126332044601, -0.7591954469680786, 0.2870219945907593, 0.034348517656326294, 0.3122178018093109, -0.4115949869155884, -0.1624087244272232, 0.09868601709604263, -0.44312334060668945, 0.34594643115997314, -0.27146464586257935, 1.0886634588241577, 0.6052197217941284, -0.3002893924713135, -0.30070650577545166, -0.5869078636169434, 1.1179780960083008, -0.2743785083293915, 0.28473716974258423, 0.08761627227067947, 0.31870347261428833, -0.021426860243082047, -1.2556394338607788, -0.5329422354698181, 0.11766119301319122, 0.10496193915605545, 0.14839307963848114, -0.2453732192516327, 0.12938860058784485, 0.33935654163360596, 0.23330873250961304, -0.48106515407562256, -0.2114439159631729, -0.7911421656608582, -0.7194754481315613, 0.5488269925117493, 0.018398568034172058, 0.18227709829807281, -0.3732611835002899, -0.5916354656219482, -0.07911264896392822, -0.5643167495727539, 0.2727390229701996, 0.15864409506320953, 0.10547848045825958, -0.05415186285972595, 0.5091210007667542, -0.15108980238437653, 0.438094824552536, 0.08291684836149216, -0.008467724546790123, 0.6341257095336914, -0.10013806074857712, -0.30931684374809265, 0.15927095711231232, 1.0033904314041138, 0.18684424459934235, 0.10943151265382767, -0.17534469068050385, -0.24351416528224945, -0.13173650205135345, 0.3974171578884125, -1.1459664106369019, -0.4442145824432373, 0.561525285243988, -0.7808588743209839, -0.26261845231056213, -0.1556517630815506, -0.4952852725982666, -0.1621381789445877, -0.04257410392165184, 0.6683549880981445, -0.43572095036506653, 0.09574255347251892, -0.057309940457344055, -0.14789538085460663, 0.2386709302663803, 0.19855841994285583, -1.0736424922943115, 0.034559622406959534, 0.44912248849868774, 1.1271131038665771, 0.007791910320520401, -0.14019201695919037, -0.6206294894218445, -0.08713030070066452, 0.2524523138999939, 0.4559617042541504, -0.1825104057788849, -0.36207467317581177, 0.19969779253005981, 0.1834365278482437, -0.38246843218803406, -0.49499624967575073, 1.1900826692581177, -0.4081915318965912, 0.18537579476833344, -0.18452531099319458, -0.12537352740764618, -0.27281761169433594, -0.03140381723642349, -0.5488417744636536, 1.0877268314361572, 0.21072164177894592, -0.7900516390800476, 0.2580309510231018, -0.7092757821083069, -0.5099310278892517, 0.09654782712459564, 0.0841887816786766, -0.54525226354599, -0.12337029725313187, 0.26133689284324646, 0.4524034261703491, 0.20065975189208984, -0.03254607319831848, -0.31954172253608704, -0.4551894962787628, 0.07567901909351349, 0.19544562697410583, 1.2293578386306763, 0.5034147500991821, -0.5472100973129272, 0.2968480885028839, -0.6391432285308838, 0.5500227808952332, -0.16429997980594635, -0.36867544054985046, 0.0901692807674408, 0.25372377038002014, 0.3459433317184448, 0.20666612684726715, 0.6971115469932556, -0.6439205408096313, 0.3122292160987854, 0.050842590630054474, 1.1652902364730835, 0.5941887497901917, -0.5068365335464478, 0.5838793516159058, -0.2918127477169037, 0.2843509912490845, -0.49959829449653625, 0.400021493434906, -0.06084654852747917, -0.3906373381614685, -1.1069656610488892, -0.9147281646728516, 0.4336085021495819, 0.8656746745109558, -0.7020387053489685, 0.7095062732696533, -0.1895989626646042, -0.6254919767379761, -0.538747251033783, 0.2845516502857208, 0.09932660311460495, 0.14004744589328766, 0.35274752974510193, -0.30019694566726685, -0.7727149724960327, -1.156266212463379, -0.0343586690723896, -0.09962441772222519, -0.418579638004303, 0.28697216510772705, 0.6095547676086426, -0.7298058271408081, 0.65396648645401, -0.315809041261673, -0.5161320567131042, -0.1971200853586197, 0.17523609101772308, 0.455157607793808, 0.5484219789505005, 0.44302549958229065, -0.5177468061447144, -0.4618409276008606, -0.5014839768409729, -0.6793800592422485, -0.19092322885990143, -0.310729056596756, -0.06523722410202026, 0.04808780923485756, 0.5965962409973145, -0.8536921739578247, -0.0008736211457289755, 0.6990637183189392, -0.2630777359008789, 0.5209010243415833, -0.17121727764606476, -0.27601197361946106, -0.8560479879379272, 0.15485507249832153, -0.263429194688797, -0.32796981930732727, -0.4282959997653961, 0.23577085137367249, 0.2512601315975189, -0.3258803188800812, -0.5194206237792969, 0.39450180530548096, -0.2500820457935333, -0.020993847399950027, -0.16102905571460724, 0.22776097059249878, -0.037490054965019226, 0.4886597990989685, -0.30419841408729553, 0.8467687368392944, 0.5997722744941711, -0.5027225017547607, 0.3673679530620575, 0.4382575452327728, -0.1773695945739746, 0.1255566030740738, -1.0647406578063965, 0.15555600821971893, -0.027966510504484177, 0.541042149066925, -0.822687029838562, -0.059287361800670624, 0.326185017824173, -0.44751039147377014, -0.02752620540559292, -0.16625256836414337, -0.7348581552505493, -0.43368005752563477, -0.5277635455131531, 0.4660358726978302, 0.9416928291320801, -0.7874497175216675, 0.8281710743904114, 0.4166678786277771, 0.04233330488204956, -0.7549262642860413, -0.6259660720825195, -0.01513095572590828, -0.19116802513599396, -1.0964049100875854, 0.755760133266449, 0.02193504385650158, 0.10079697519540787, -0.32146137952804565, -0.25416335463523865, -0.36169490218162537, -0.05113641545176506, 0.36922550201416016, 0.1687522530555725, 0.07012779265642166, 0.14047560095787048, 0.014633802697062492, 0.06620555371046066, 0.12849782407283783, -0.20783105492591858, 0.5856319665908813, -0.615213930606842, 0.23130875825881958, -0.4484250843524933, 0.1726052165031433, 0.7427502870559692, -0.03584660217165947, 0.6690018773078918, 1.2301139831542969, -0.2168576717376709, -0.17600029706954956, -0.36675456166267395, -0.08404363691806793, -0.6295112371444702, 0.07700714468955994, -0.3157767355442047, -0.8936988711357117, 0.814264178276062, 0.1829952895641327, 0.12298208475112915, 0.6392709016799927, 0.6990403532981873, -0.25555965304374695, 0.7764882445335388, 0.5414325594902039, -0.05939159914851189, 0.6354345083236694, -0.4304434657096863, 0.09766750782728195, -1.1103897094726562, -0.30903637409210205, -0.514458954334259, -0.49044761061668396, -0.6526082754135132, -0.4220941960811615, 0.2702164947986603, 0.4119656980037689, -0.5698817372322083, 0.8533186912536621, -0.908069372177124, 0.17371529340744019, 0.8291913866996765, 0.313038170337677, -0.18255169689655304, 0.07730834931135178, -0.35916346311569214, -0.116084523499012, -0.8280622363090515, -0.6545432806015015, 1.0060001611709595, 0.32054805755615234, 0.6660666465759277, 0.1699656993150711, 0.8717508316040039, 0.2707217335700989, 0.09127932041883469, -0.7105934619903564, 0.6818756461143494, -0.13461895287036896, -0.936385452747345, -0.14524470269680023, -0.415656179189682, -1.1312199831008911, 0.44941583275794983, -0.26538988947868347, -1.2731083631515503, 0.024626264348626137, 0.25567692518234253, -0.2181103527545929, 0.19683729112148285, -1.0190132856369019, 1.0165135860443115, -0.06034093722701073, -0.4025113582611084, -0.23478715121746063, -0.6741315126419067, 0.3033975660800934, 0.00228442857041955, 0.017249543219804764, -0.25502726435661316, -0.12773437798023224, 0.8023610711097717, -0.5155004858970642, 0.8485304117202759, -0.22645889222621918, 0.17141816020011902, 0.5984601974487305, -0.12831470370292664, 0.5314942598342896, 0.26693475246429443, -0.06780099868774414, 0.17711199820041656, 0.1908481866121292, -0.6457416415214539, -0.32910242676734924, 0.7423635125160217, -0.9172602891921997, -0.4646497964859009, -0.44182202219963074, -0.500187337398529, 0.1908738613128662, 0.3227146863937378, 0.5175266861915588, 0.22888441383838654, 0.051229119300842285, 0.425970196723938, 0.5260137915611267, -0.276278555393219, 0.7459118962287903, 0.1119513213634491, 0.0210243072360754, -0.353736013174057, 0.8582378029823303, -0.24126076698303223, -0.036213960498571396, 0.28517237305641174, 0.08663778007030487, -0.3467595875263214, -0.08809389173984528, -0.490225225687027, 0.004868129268288612, -0.7605214715003967, 0.024609195068478584, -0.7560641169548035, -0.48448446393013, -0.11839122325181961, -0.373232901096344, -0.5752970576286316, -0.8835718035697937, -0.439765989780426, 0.5953870415687561, 0.06732258945703506, -0.08111932128667831, -0.23156921565532684, 0.4856034219264984, -0.9944264888763428, 0.3488476872444153, 0.359850138425827, 0.1877332478761673, -0.15596163272857666, -0.5489991903305054, -0.13983087241649628, 0.02847423031926155, -0.8146532773971558, -0.46569111943244934, 0.19420745968818665, 0.32367923855781555, 0.5589887499809265, 0.3380478620529175, 0.2774308919906616, 0.28534576296806335, -0.6731892228126526, 0.838782012462616, 0.4192552864551544, -1.2999000549316406, 0.3226637542247772, -0.3133264183998108, 0.44037625193595886, 0.6135820746421814, 0.2142038643360138, -0.42010197043418884, -0.2504101097583771, -0.7359355092048645, -1.2436269521713257, 0.3763746917247772, 0.7521830797195435, 0.3326232433319092, 0.2623192071914673, -0.0005104833981022239, -0.09109864383935928, 0.3330727219581604, -1.0337177515029907, -0.3715369701385498, -0.613627016544342, -0.21168586611747742, 0.11847621947526932, -0.31040048599243164, -0.27209731936454773, -0.4372144341468811, 0.6275704503059387, 0.14652356505393982, 0.8212419152259827, 0.48926424980163574, -0.31298941373825073, 0.3356021046638489, 0.20604749023914337, 0.9147489666938782, 0.5316290259361267, -0.4783836305141449, 0.05919814482331276, 0.16653048992156982, -0.7379144430160522, -0.03146284446120262, 0.15078827738761902, -0.2489270567893982, 0.3627782166004181, 0.2661241292953491, 0.6317006349563599, -0.2161061018705368, -0.6991719603538513, 0.4816114902496338, 0.06593512743711472, -0.5088769793510437, -0.753646194934845, 0.16922041773796082, -0.007419332396239042, 0.5768523812294006, 0.53868567943573, 0.22042638063430786, 0.20606403052806854, -0.5064868927001953, 0.2413182407617569, 0.5685475468635559, -0.4987831711769104, -0.014106146059930325, 0.9129182696342468, 0.54194176197052, -0.3584058880805969, 0.6492002606391907, -0.398262083530426, -0.8894831538200378, 0.6356302499771118, 0.2644988000392914, 1.0975533723831177, 0.3071438670158386, 0.27538973093032837, 0.5620431900024414, 0.5912894010543823, 0.13701260089874268, 0.24058270454406738, -0.2773115634918213, -0.6725838780403137, -0.6066630482673645, -0.4833748936653137, -0.3482353389263153, 0.09146621078252792, -0.41710036993026733, 0.18767313659191132, -0.7100842595100403, -0.3596058189868927, 0.10195089876651764, -0.15206050872802734, -0.5325348377227783, 0.10774269700050354, 0.02871699631214142, 0.962474524974823, -0.43496057391166687, 0.946774423122406, 0.7353354692459106, -0.040929995477199554, -0.6615968942642212, -0.0047028581611812115, -0.23324458301067352, -0.9562098979949951, 0.8779797554016113, 0.4503200054168701, 0.024781661108136177, -0.3445405066013336, -0.42682769894599915, -0.8051958084106445, 1.0217218399047852, 0.10642533749341965, -0.34705692529678345, 0.13621118664741516, -0.31228867173194885, 0.37320783734321594, -0.3179173767566681, 0.20650158822536469, 0.17265844345092773, 0.34497132897377014, 0.07382173836231232, -0.9721283912658691, 0.2397724986076355, -0.2695874273777008, -0.14562097191810608, 0.4775002598762512, -0.9622259140014648, 0.9253056645393372, -0.37322425842285156, -0.14477163553237915, 0.11627811193466187, 0.4699612259864807, 0.15941008925437927, 0.15490977466106415, 0.6256060004234314, 0.48371344804763794, 0.6765618324279785, -0.28493791818618774, 0.615481436252594, -0.4742330014705658, 0.8723465800285339, 0.869602620601654, -0.051501382142305374, 0.6398939490318298, 0.5843680500984192, -0.08152863383293152, 0.8309223055839539, 0.6480329036712646, -0.5087937712669373, 0.7749166488647461, 0.2866052985191345, -0.5255062580108643, -0.1316404938697815, 0.24477355182170868, -0.29761266708374023, 0.36508864164352417, 0.19713975489139557, -0.6298578977584839, -0.14157597720623016, -0.22025075554847717, 0.14978618919849396, -0.3503900468349457, -0.44722241163253784, 0.12997575104236603, -0.03952515870332718, -0.6544924378395081, 1.196704387664795, 0.2671097218990326, 0.8389091491699219, -0.3350474536418915, 0.4589002728462219, 0.0908278152346611, 0.4029519259929657, -0.3948981761932373, -0.6790732145309448, 0.4861181378364563, -0.19142195582389832, -0.21669864654541016, -0.3458215892314911, 0.8407865762710571, -0.09449338167905807, -0.35671427845954895, 0.08459310978651047, -0.05133350193500519, 0.24973028898239136, -0.06521065533161163, -0.9420348405838013, 0.13839592039585114, 0.27769935131073, -0.18803530931472778, 0.11502938717603683, -0.018832167610526085, 0.32122042775154114, 1.0330301523208618, 0.4654286205768585, -0.39771100878715515, 0.14096730947494507, -0.30343005061149597, 0.8114073276519775, -0.48909521102905273, -0.39884382486343384, -0.7162256240844727, 0.6697843670845032, -0.28926995396614075, -0.4143507480621338, 0.5659712553024292, 0.6105583906173706, 0.6584832668304443, -0.32227838039398193, 0.7277224063873291, -0.5826075077056885, 0.05109739676117897, -0.46846383810043335, 0.8011845946311951, -0.6988863945007324, -0.09455619752407074, -0.1430961787700653, -1.0003794431686401, -0.01720793917775154, 1.1578720808029175, -0.007502473890781403, 0.004968385212123394, 0.9647630453109741, 0.6113367080688477, -0.11539675295352936, -0.1877724826335907, 0.066123828291893, -0.10926836729049683, -0.0015861112624406815, 0.7213243246078491, 0.34103408455848694, -0.5838442444801331, 1.1486995220184326, -0.2221968024969101, -0.16374894976615906, -0.32909977436065674, -0.8749307990074158, -1.293368935585022, -0.6402846574783325, -0.4090724587440491, -0.7605825066566467, -0.1559479832649231, 0.6521026492118835, 0.9704986214637756, -0.6166009306907654, -0.028664153069257736, -0.0869114100933075, 0.2433743178844452, -0.003738662227988243, -0.2360880970954895, 0.3764582872390747, -0.4673650562763214, -0.7364189028739929, 0.10983766615390778, -0.016420945525169373, -0.06189456582069397, -0.02308318018913269, -0.0006628819974139333, 0.15358935296535492, -0.07626179605722427, 0.6788544058799744, 0.5176755785942078, -0.646129846572876, -0.4291805326938629, -0.03462039679288864, -0.34319114685058594, 0.06752175092697144, 0.7698017358779907, -0.57757967710495, 0.2380119115114212, 0.46282637119293213, 0.4419310390949249, 0.8717775940895081, -0.4579758048057556, 0.5142949223518372, -0.8867793083190918, 0.5971978306770325, 0.23669865727424622, 0.6638248562812805, 0.1616446077823639, -0.10632134228944778, 0.49221235513687134, 0.18288207054138184, -0.9314337968826294, -0.6458091735839844, 0.4841001033782959, -1.335142731666565, -0.21390192210674286, 1.1649638414382935, -0.1042628362774849, -0.023680193349719048, 0.1301887482404709, -0.22207684814929962, 0.14579564332962036, -0.6286141872406006, 1.0500001907348633, 0.7631992101669312, -0.015155281871557236, -0.2124977558851242, -0.7252966165542603, 0.3893126845359802, 0.6280890703201294, -0.38399121165275574, -0.4182592034339905, 0.05869210511445999, 0.29790180921554565, 0.5178391337394714, 0.39156684279441833, 0.08067100495100021, 0.22602075338363647, -0.010845773853361607, 0.48996463418006897, 0.19420291483402252, -0.004822338931262493, 0.22916103899478912, 0.0916418805718422, -0.29592180252075195, -0.6679945588111877 ]
NlpHUST/vi-word-segmentation
NlpHUST
"2022-10-30T09:45:24Z"
48,478
1
transformers
[ "transformers", "pytorch", "electra", "token-classification", "word segmentation", "vi", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
token-classification
"2022-10-30T04:48:30Z"
--- widget: - text: "Phát biểu tại phiên thảo luận về tình hình kinh tế xã hội của Quốc hội sáng 28/10 , Bộ trưởng Bộ LĐ-TB&XH Đào Ngọc Dung khái quát , tại phiên khai mạc kỳ họp , lãnh đạo chính phủ đã báo cáo , đề cập tương đối rõ ràng về việc thực hiện các chính sách an sinh xã hội" tags: - word segmentation language: - vi metrics: - precision - recall - f1 - accuracy model-index: - name: vi-word-segmentation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vi-word-segmentation This model is a fine-tuned version of [NlpHUST/electra-base-vn](https://huggingface.co/NlpHUST/electra-base-vn) on an vlsp 2013 vietnamese word segmentation dataset. It achieves the following results on the evaluation set: - Loss: 0.0501 - Precision: 0.9833 - Recall: 0.9838 - F1: 0.9835 - Accuracy: 0.9911 ## Model description More information needed ## Intended uses & limitations You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("NlpHUST/vi-word-segmentation") model = AutoModelForTokenClassification.from_pretrained("NlpHUST/vi-word-segmentation") nlp = pipeline("token-classification", model=model, tokenizer=tokenizer) example = "Phát biểu tại phiên thảo luận về tình hình kinh tế xã hội của Quốc hội sáng 28/10 , Bộ trưởng Bộ LĐ-TB&XH Đào Ngọc Dung khái quát , tại phiên khai mạc kỳ họp , lãnh đạo chính phủ đã báo cáo , đề cập tương đối rõ ràng về việc thực hiện các chính sách an sinh xã hội" ner_results = nlp(example) example_tok = "" for e in ner_results: if "##" in e["word"]: example_tok = example_tok + e["word"].replace("##","") elif e["entity"] =="I": example_tok = example_tok + "_" + e["word"] else: example_tok = example_tok + " " + e["word"] print(example_tok) Phát_biểu tại phiên thảo_luận về tình_hình kinh_tế xã_hội của Quốc_hội sáng 28 / 10 , Bộ_trưởng Bộ LĐ - TB [UNK] XH Đào_Ngọc_Dung khái_quát , tại phiên khai_mạc kỳ họp , lãnh_đạo chính_phủ đã báo_cáo , đề_cập tương_đối rõ_ràng về việc thực_hiện các chính_sách an_sinh xã_hội ``` ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0168 | 1.0 | 4712 | 0.0284 | 0.9813 | 0.9825 | 0.9819 | 0.9904 | | 0.0107 | 2.0 | 9424 | 0.0350 | 0.9789 | 0.9814 | 0.9802 | 0.9895 | | 0.005 | 3.0 | 14136 | 0.0364 | 0.9826 | 0.9843 | 0.9835 | 0.9909 | | 0.0033 | 4.0 | 18848 | 0.0434 | 0.9830 | 0.9831 | 0.9830 | 0.9908 | | 0.0017 | 5.0 | 23560 | 0.0501 | 0.9833 | 0.9838 | 0.9835 | 0.9911 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1
[ -0.4838862419128418, -0.7563039660453796, 0.22119839489459991, 0.09844252467155457, -0.3554687798023224, -0.4190213978290558, -0.11864131689071655, -0.20848886668682098, 0.3730056881904602, 0.3830189108848572, -0.4850780963897705, -0.7062353491783142, -0.6705742478370667, 0.14850452542304993, -0.24906857311725616, 0.8794021606445312, 0.02257019653916359, 0.07416512072086334, 0.14284279942512512, -0.2949307858943939, -0.3347202241420746, -0.6236767172813416, -0.6937999725341797, -0.5344981551170349, 0.40756112337112427, 0.34254714846611023, 0.6521269083023071, 1.0391855239868164, 0.39547616243362427, 0.3990851044654846, -0.39508333802223206, 0.19381502270698547, -0.2773436903953552, -0.29378917813301086, 0.04523865506052971, -0.48237302899360657, -0.35691720247268677, 0.03983357176184654, 0.5842553377151489, 0.5279076099395752, -0.17525628209114075, 0.2804078459739685, 0.028725162148475647, 0.7071097493171692, -0.5110716223716736, 0.18264657258987427, -0.7359859347343445, 0.23123691976070404, -0.2452176958322525, -0.3028815686702728, -0.13454750180244446, -0.19372843205928802, 0.2301207035779953, -0.731575608253479, 0.41717854142189026, 0.14303120970726013, 1.5492836236953735, 0.2890926003456116, -0.21346260607242584, -0.028282899409532547, -0.5633903741836548, 0.8573061227798462, -0.7930874228477478, 0.3541194796562195, 0.4832274615764618, 0.026262186467647552, 0.06692694872617722, -0.8710815906524658, -0.7864101529121399, 0.10565510392189026, -0.07214720547199249, 0.2643841803073883, -0.18172293901443481, -0.02202524244785309, 0.5845280885696411, 0.5292738080024719, -0.6683760285377502, 0.19864141941070557, -0.5062702298164368, -0.36542177200317383, 0.5491835474967957, 0.2938165068626404, 0.03903818875551224, -0.575035810470581, -0.5454328060150146, -0.2318011224269867, -0.40928220748901367, 0.1714567244052887, 0.37298116087913513, 0.1997213065624237, -0.19024810194969177, 0.6496266722679138, -0.2357046753168106, 0.8927031755447388, 0.06087041646242142, -0.22668860852718353, 0.7638036608695984, -0.285304456949234, -0.44854071736335754, 0.07046139985322952, 0.9833980202674866, 0.6227962374687195, 0.25535455346107483, 0.14277206361293793, -0.19506047666072845, 0.0190567784011364, 0.09324564784765244, -0.9364069700241089, -0.361210435628891, 0.23341023921966553, -0.49356725811958313, -0.29959213733673096, 0.06204230338335037, -0.7949973344802856, 0.1261652112007141, -0.38095206022262573, 0.641664445400238, -0.6534806489944458, -0.09580262005329132, 0.23518118262290955, -0.24023205041885376, 0.5201890468597412, -0.01417448464781046, -0.9186835885047913, 0.21937820315361023, 0.513579785823822, 0.8563133478164673, 0.10947520285844803, -0.5251111388206482, -0.22153927385807037, 0.08333902806043625, -0.31281688809394836, 0.7395671010017395, -0.20222610235214233, -0.42536115646362305, -0.08102821558713913, 0.3287101984024048, -0.3724501132965088, -0.542144238948822, 0.65082186460495, -0.22776617109775543, 0.44957882165908813, -0.2586067020893097, -0.7736949324607849, -0.38850176334381104, 0.4519032835960388, -0.5102028250694275, 1.366220235824585, 0.12531429529190063, -1.102421760559082, 0.5682765245437622, -0.45607560873031616, -0.13019654154777527, 0.09598120301961899, -0.1736806482076645, -0.7174248099327087, -0.15182791650295258, 0.38304999470710754, 0.4782237112522125, -0.2993859052658081, -0.033322371542453766, -0.10923396795988083, -0.3548927307128906, 0.0076789939776062965, -0.44059520959854126, 0.9761547446250916, 0.044888947159051895, -0.6112331748008728, 0.1047668606042862, -1.148937702178955, 0.2879140079021454, 0.4310946464538574, -0.4918084442615509, -0.3279600441455841, -0.22882074117660522, 0.26734334230422974, 0.30451494455337524, 0.3388899564743042, -0.5893542766571045, 0.05247890204191208, -0.6564175486564636, 0.5030127167701721, 0.6762465238571167, 0.1398853063583374, 0.16290952265262604, -0.38759487867355347, 0.3314611613750458, 0.22754612565040588, 0.11956679075956345, -0.024831758812069893, -0.5507667064666748, -1.0780786275863647, -0.2283327877521515, 0.2957271337509155, 0.6993664503097534, -0.5567191243171692, 0.9966589212417603, -0.27826255559921265, -0.7704387903213501, -0.5704288482666016, 0.0024471464566886425, 0.28631266951560974, 0.8432331681251526, 0.6195862889289856, -0.17974436283111572, -0.57709139585495, -1.0539190769195557, -0.13105927407741547, -0.25507834553718567, 0.22887353599071503, 0.346312940120697, 0.6552919745445251, -0.3691876530647278, 0.9342269897460938, -0.7032105922698975, -0.47259336709976196, -0.19101735949516296, -0.043219927698373795, 0.43209803104400635, 0.5586373209953308, 0.6542513370513916, -0.6205636858940125, -0.29603061079978943, -0.050582244992256165, -0.7375837564468384, 0.20394790172576904, 0.024978838860988617, -0.12741193175315857, -0.04970751702785492, 0.4666398763656616, -0.5184156894683838, 0.6563612222671509, 0.36530670523643494, -0.39955100417137146, 0.8147166967391968, -0.6356185078620911, -0.10571030527353287, -1.4056137800216675, 0.13934138417243958, 0.23000755906105042, 0.000759534421376884, -0.5176888108253479, -0.034352824091911316, 0.08121810108423233, -0.06035679951310158, -0.5430187582969666, 0.5773863196372986, -0.3093041777610779, 0.3403247892856598, -0.12085091322660446, -0.15509529411792755, 0.019906532019376755, 0.7397252917289734, 0.2207254320383072, 0.7445881962776184, 0.7328662276268005, -0.7209566831588745, 0.3898968994617462, 0.38885679841041565, -0.48413053154945374, 0.4654797613620758, -0.9361788034439087, -0.036830488592386246, 0.0250138770788908, -0.04416115581989288, -0.9034665822982788, -0.0961737111210823, 0.32317647337913513, -0.42769670486450195, 0.10895901918411255, -0.10990521311759949, -0.5054554343223572, -0.603729784488678, -0.2627772092819214, 0.23436500132083893, 0.47413188219070435, -0.45233985781669617, 0.3130010664463043, 0.1953108310699463, 0.18954040110111237, -0.5705089569091797, -0.9249864816665649, -0.10438157618045807, -0.30145296454429626, -0.5426314473152161, 0.3753868639469147, 0.12820151448249817, 0.05678287521004677, -0.026621263474225998, -0.032196223735809326, -0.2528086006641388, -0.057547107338905334, 0.18614260852336884, 0.3142283856868744, -0.17321930825710297, -0.01802619732916355, -0.120509572327137, -0.30743029713630676, 0.07207683473825455, -0.3661593198776245, 0.7990475296974182, -0.2820087969303131, -0.3061438798904419, -0.6923037767410278, 0.07485103607177734, 0.49681904911994934, -0.3869953155517578, 0.9407861828804016, 0.9427091479301453, -0.5471602082252502, 0.028671931475400925, -0.46269285678863525, -0.08604419976472855, -0.5095693469047546, 0.5531814694404602, -0.3998977541923523, -0.5836777091026306, 0.5630337595939636, -0.033040232956409454, 0.11355677247047424, 0.9943569302558899, 0.5652584433555603, 0.09524508565664291, 0.9874431490898132, 0.29654544591903687, -0.1252252757549286, 0.3792653977870941, -1.015567421913147, 0.033087220042943954, -0.909148633480072, -0.4433797001838684, -0.45577311515808105, -0.3051835894584656, -0.7289760112762451, -0.34713420271873474, 0.11889706552028656, 0.007916309870779514, -0.38372841477394104, 0.3872867822647095, -0.8914992809295654, 0.2438177615404129, 0.6307718753814697, 0.26003187894821167, -0.044125206768512726, 0.1357145607471466, -0.5041044354438782, -0.18841472268104553, -0.8405221700668335, -0.4579885005950928, 1.0841422080993652, 0.38766366243362427, 0.6800457239151001, -0.37974822521209717, 0.8941545486450195, -0.09227952361106873, -0.13507696986198425, -0.9192084074020386, 0.5118693113327026, -0.09051933884620667, -0.6335902214050293, -0.3859154284000397, -0.32874801754951477, -1.1891382932662964, 0.4934048652648926, -0.17273175716400146, -0.8318315148353577, 0.40215009450912476, 0.10276826471090317, -0.4227120280265808, 0.5294222831726074, -0.6642628312110901, 1.0593781471252441, -0.19487407803535461, -0.284864604473114, -0.08871868997812271, -0.599309504032135, 0.065329410135746, 0.034646470099687576, -0.005637293215841055, -0.13114376366138458, -0.04779353365302086, 1.1725680828094482, -0.8664295077323914, 0.50123530626297, -0.1699541211128235, 0.1933368593454361, 0.40872424840927124, -0.286740779876709, 0.5289832949638367, 0.016454529017210007, -0.1264856606721878, 0.17163397371768951, 0.014633559621870518, -0.5583376288414001, -0.34939828515052795, 0.7405954003334045, -1.0284475088119507, -0.49005407094955444, -0.7121038436889648, -0.36070793867111206, 0.04163909703493118, 0.41509535908699036, 0.83566814661026, 0.6470566987991333, -0.04289470613002777, 0.2599453926086426, 0.6506403684616089, -0.14179982244968414, 0.43600156903266907, 0.209895521402359, 0.00283519783988595, -0.7060672044754028, 1.1435259580612183, 0.3153618574142456, -0.031052350997924805, 0.16678182780742645, 0.403446763753891, -0.4588279128074646, -0.5045245885848999, -0.5084360241889954, 0.3817599415779114, -0.5539855360984802, -0.05626983568072319, -0.7606235146522522, -0.47016641497612, -0.4518758952617645, -0.10072261095046997, -0.4007643461227417, -0.2937808930873871, -0.5052517056465149, -0.20832382142543793, 0.562171459197998, 0.42967870831489563, 0.01450114045292139, 0.40655776858329773, -0.7047585844993591, 0.21046024560928345, 0.3446037471294403, 0.07344739884138107, 0.055642347782850266, -0.7866308093070984, -0.31153249740600586, -0.04912559688091278, -0.35738223791122437, -0.9454497694969177, 0.7046835422515869, 0.15505129098892212, 0.5334597826004028, 0.5889061093330383, -0.23183244466781616, 1.028723120689392, -0.527045488357544, 0.8808760643005371, 0.3610488176345825, -0.7876719832420349, 0.6421119570732117, -0.25372248888015747, 0.47269049286842346, 0.6962096691131592, 0.44215092062950134, -0.691339373588562, -0.057503413408994675, -1.0605506896972656, -1.1345276832580566, 0.7715428471565247, 0.17619560658931732, -0.010139880701899529, -0.06858054548501968, 0.3142920136451721, -0.08522357791662216, 0.18972842395305634, -0.7847965955734253, -0.7182791829109192, -0.3208843469619751, -0.13365590572357178, -0.09148556739091873, -0.23968279361724854, -0.05524513125419617, -0.8056451082229614, 0.908966600894928, 0.0456107035279274, 0.40607550740242004, 0.4118385314941406, -0.034513551741838455, 0.22772933542728424, 0.054345060139894485, 0.40204691886901855, 0.680509626865387, -0.25176140666007996, 0.03859062120318413, 0.37338411808013916, -0.7217792272567749, 0.15429477393627167, 0.33196941018104553, -0.2986253499984741, 0.22271806001663208, 0.3400527238845825, 1.0607707500457764, 0.09422586113214493, -0.16080455482006073, 0.5560786128044128, -0.03373836725950241, -0.580174446105957, -0.4768446087837219, -0.061708610504865646, 0.049520622938871384, 0.013118223287165165, 0.31895947456359863, 0.12152266502380371, 0.019102565944194794, -0.27064013481140137, 0.14493738114833832, 0.13292160630226135, -0.6710420250892639, -0.22642377018928528, 0.8409388065338135, 0.001159397535957396, -0.3924577832221985, 0.8487545251846313, -0.2021486759185791, -0.6722909212112427, 0.7531173229217529, 0.512565553188324, 0.9307718873023987, -0.18602603673934937, 0.16536767780780792, 0.8147282004356384, 0.37484580278396606, -0.01847820356488228, 0.5401720404624939, 0.1531786322593689, -0.6522167325019836, -0.15912704169750214, -0.7998096346855164, -0.06928446143865585, 0.5458976626396179, -0.8189355134963989, 0.2865728437900543, -0.5680298209190369, -0.45924943685531616, 0.07661029696464539, 0.14861106872558594, -1.0140374898910522, 0.6261881589889526, 0.040811773389577866, 1.0618951320648193, -0.883275032043457, 0.8822792768478394, 0.8311097025871277, -0.47429999709129333, -1.1656979322433472, -0.0320013053715229, -0.25693660974502563, -1.0396250486373901, 0.5643996596336365, 0.3267160654067993, 0.19167400896549225, 0.1730806827545166, -0.47406986355781555, -0.9531468749046326, 1.1934951543807983, 0.04990682005882263, -0.5035179853439331, -0.05398910120129585, 0.25705280900001526, 0.5468019843101501, 0.020671766251325607, 0.406790554523468, 0.501369833946228, 0.5032894015312195, 0.0020383386872708797, -0.8236080408096313, 0.02103082649409771, -0.31717246770858765, 0.20170064270496368, 0.13751991093158722, -0.8833911418914795, 0.95786052942276, -0.12309243530035019, 0.10272791236639023, 0.053785115480422974, 0.8902069330215454, 0.36374446749687195, 0.15910422801971436, 0.5885422825813293, 1.0611333847045898, 0.7998307943344116, -0.16943445801734924, 0.8322716951370239, -0.5077144503593445, 0.5785744190216064, 0.8341619968414307, 0.1540054976940155, 0.7755860090255737, 0.5254123210906982, -0.3530054986476898, 0.4826291501522064, 0.8722591400146484, -0.25893157720565796, 0.4344489574432373, 0.2043781280517578, -0.14342519640922546, -0.3009892702102661, -0.0005145249888300896, -0.6017823815345764, 0.5639217495918274, 0.36004000902175903, -0.594039797782898, -0.21157260239124298, -0.18523691594600677, 0.07894975692033768, -0.13433155417442322, -0.36655718088150024, 0.6042569279670715, -0.03714621812105179, -0.43432509899139404, 0.8508857488632202, 0.10845482349395752, 0.7862629890441895, -0.6437192559242249, 0.08004534244537354, 0.034495048224925995, 0.31232932209968567, -0.33349302411079407, -0.6743743419647217, 0.041304949671030045, -0.10286284983158112, -0.035063087940216064, 0.1699475646018982, 0.5826475620269775, -0.3665781617164612, -0.7822641730308533, 0.23804789781570435, 0.5014176368713379, 0.24230797588825226, 0.05268118530511856, -1.1028978824615479, -0.23457416892051697, 0.09550144523382187, -0.5444064140319824, 0.1125703826546669, 0.5778257250785828, 0.1687338501214981, 0.5221961736679077, 0.641801655292511, 0.263824999332428, 0.25849592685699463, 0.027039052918553352, 0.8792945146560669, -0.7784025073051453, -0.6791948080062866, -0.8468167185783386, 0.29558154940605164, -0.2652445435523987, -0.8951429128646851, 0.8794964551925659, 0.9855249524116516, 0.8400412797927856, -0.02494232729077339, 0.6983975172042847, -0.056168630719184875, 0.38122954964637756, -0.46480610966682434, 0.7714048027992249, -0.7330182194709778, -0.2963846027851105, -0.2922596037387848, -0.9194138646125793, -0.13056619465351105, 0.8281241655349731, -0.4722367227077484, 0.013347343541681767, 0.7098625898361206, 0.9004622101783752, 0.05896829068660736, -0.09545760601758957, 0.2922705411911011, 0.09598654508590698, 0.18652421236038208, 0.4321868419647217, 0.49593818187713623, -0.7695107460021973, 0.5973711609840393, -0.6743550300598145, -0.10282798111438751, -0.1409989595413208, -0.5422419309616089, -0.840175986289978, -0.714040219783783, -0.4601936936378479, -0.37311792373657227, -0.06304717063903809, 1.013329029083252, 0.717930018901825, -0.7004574537277222, -0.27911919355392456, -0.1532747894525528, -0.15207356214523315, -0.3924757242202759, -0.25728175044059753, 0.7772166728973389, -0.19598394632339478, -0.8361730575561523, 0.05226680636405945, 0.036399416625499725, 0.21806710958480835, -0.08842146396636963, -0.06491200625896454, -0.509652316570282, -0.032420746982097626, 0.42844346165657043, 0.27346861362457275, -0.6697338223457336, -0.27996140718460083, 0.03185311704874039, -0.20132888853549957, 0.2940633296966553, 0.3950628638267517, -0.7095291614532471, 0.475482314825058, 0.5371329188346863, 0.5112781524658203, 0.720341145992279, -0.05532657355070114, 0.2453298419713974, -0.5726767778396606, 0.3980827033519745, 0.15295299887657166, 0.6101323366165161, 0.27799221873283386, -0.2461566925048828, 0.4308476150035858, 0.6619147062301636, -0.6282958984375, -0.7023301124572754, -0.18076057732105255, -1.0763745307922363, -0.01694691739976406, 1.2400838136672974, -0.026239069178700447, -0.660970151424408, 0.039813291281461716, -0.35119500756263733, 0.4082077145576477, -0.21456533670425415, 0.5481472015380859, 0.7528587579727173, -0.00943808350712061, 0.19660620391368866, -0.4118086099624634, 0.5069300532341003, 0.42860478162765503, -0.6428996920585632, -0.10223917663097382, 0.22566789388656616, 0.4208262264728546, 0.17138531804084778, 0.478223592042923, -0.044070955365896225, 0.21572938561439514, 0.13600657880306244, 0.2692968249320984, -0.13805927336215973, 0.03261762112379074, -0.4400891363620758, 0.09724302589893341, -0.0036367401480674744, -0.6687355637550354 ]
dbmdz/bert-base-turkish-cased
dbmdz
"2021-05-19T15:14:46Z"
48,435
47
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "tr", "license:mit", "endpoints_compatible", "has_space", "region:us" ]
null
"2022-03-02T23:29:05Z"
--- language: tr license: mit --- # 🤗 + 📚 dbmdz Turkish BERT model In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State Library open sources a cased model for Turkish 🎉 # 🇹🇷 BERTurk BERTurk is a community-driven cased BERT model for Turkish. Some datasets used for pretraining and evaluation are contributed from the awesome Turkish NLP community, as well as the decision for the model name: BERTurk. ## Stats The current version of the model is trained on a filtered and sentence segmented version of the Turkish [OSCAR corpus](https://traces1.inria.fr/oscar/), a recent Wikipedia dump, various [OPUS corpora](http://opus.nlpl.eu/) and a special corpus provided by [Kemal Oflazer](http://www.andrew.cmu.edu/user/ko/). The final training corpus has a size of 35GB and 44,04,976,662 tokens. Thanks to Google's TensorFlow Research Cloud (TFRC) we could train a cased model on a TPU v3-8 for 2M steps. ## Model weights Currently only PyTorch-[Transformers](https://github.com/huggingface/transformers) compatible weights are available. If you need access to TensorFlow checkpoints, please raise an issue! | Model | Downloads | --------------------------------- | --------------------------------------------------------------------------------------------------------------- | `dbmdz/bert-base-turkish-cased` | [`config.json`](https://cdn.huggingface.co/dbmdz/bert-base-turkish-cased/config.json) • [`pytorch_model.bin`](https://cdn.huggingface.co/dbmdz/bert-base-turkish-cased/pytorch_model.bin) • [`vocab.txt`](https://cdn.huggingface.co/dbmdz/bert-base-turkish-cased/vocab.txt) ## Usage With Transformers >= 2.3 our BERTurk cased model can be loaded like: ```python from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-cased") model = AutoModel.from_pretrained("dbmdz/bert-base-turkish-cased") ``` ## Results For results on PoS tagging or NER tasks, please refer to [this repository](https://github.com/stefan-it/turkish-bert). # Huggingface model hub All models are available on the [Huggingface model hub](https://huggingface.co/dbmdz). # Contact (Bugs, Feedback, Contribution and more) For questions about our BERT models just open an issue [here](https://github.com/dbmdz/berts/issues/new) 🤗 # Acknowledgments Thanks to [Kemal Oflazer](http://www.andrew.cmu.edu/user/ko/) for providing us additional large corpora for Turkish. Many thanks to Reyyan Yeniterzi for providing us the Turkish NER dataset for evaluation. Research supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). Thanks for providing access to the TFRC ❤️ Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team, it is possible to download both cased and uncased models from their S3 storage 🤗
[ -0.5761330723762512, -0.7452301979064941, 0.18040944635868073, 0.2999967634677887, -0.4290536046028137, -0.3342727720737457, -0.26727792620658875, -0.3542221188545227, 0.24586236476898193, 0.42586550116539, -0.6727710962295532, -0.7090838551521301, -0.6950404644012451, -0.12219516932964325, -0.35877668857574463, 1.3190516233444214, -0.16644831001758575, 0.3565908670425415, 0.08332564681768417, -0.14164984226226807, -0.0836312472820282, -0.780135452747345, -0.591993510723114, -0.3945429027080536, 0.3964233696460724, 0.07587277889251709, 0.3441924452781677, 0.1817398965358734, 0.581490159034729, 0.3156381845474243, -0.18548911809921265, -0.21081535518169403, -0.03471651300787926, -0.0176443662494421, 0.21789425611495972, -0.15693597495555878, -0.632270872592926, -0.11823301017284393, 0.6675207614898682, 0.5794540047645569, -0.4557429254055023, 0.2244231253862381, -0.06770878285169601, 0.7360490560531616, -0.25086650252342224, 0.2296004742383957, -0.3894648849964142, 0.10830169916152954, -0.20958419144153595, 0.2766425907611847, -0.23375235497951508, -0.15996938943862915, 0.4985430836677551, -0.3131355941295624, 0.57059246301651, -0.29172518849372864, 1.32196843624115, 0.20825564861297607, -0.3583931624889374, -0.3070409595966339, -0.45154306292533875, 0.8059064149856567, -1.0196681022644043, 0.5054003000259399, 0.3765803575515747, 0.4606759250164032, -0.43318575620651245, -0.8616387248039246, -0.5600140690803528, -0.15894480049610138, -0.02568366564810276, 0.07434039562940598, -0.22613726556301117, 0.09719213098287582, 0.22620925307273865, 0.4788840711116791, -0.4538606107234955, -0.27024203538894653, -0.6302472949028015, -0.24178306758403778, 0.635353684425354, -0.062111448496580124, 0.17229846119880676, -0.316555380821228, -0.3292591869831085, -0.45706677436828613, -0.5617144107818604, 0.2141084522008896, 0.5041388273239136, 0.4855146110057831, -0.4007701873779297, 0.719756543636322, -0.12478413432836533, 0.7735574245452881, 0.2889423966407776, -0.012239056639373302, 0.4134643077850342, -0.13505619764328003, -0.3492521643638611, 0.11169794946908951, 0.8595269322395325, 0.0511869378387928, 0.007754332385957241, -0.10134917497634888, -0.2920237183570862, -0.3519268035888672, 0.5166206955909729, -1.0163404941558838, -0.26809319853782654, 0.44853705167770386, -0.7129199504852295, -0.30994173884391785, -0.06270264089107513, -0.6091872453689575, -0.14797483384609222, -0.16614314913749695, 0.7056933045387268, -0.6427197456359863, -0.5054715275764465, 0.29231831431388855, 0.05456484109163284, 0.639897346496582, 0.18807882070541382, -1.0957436561584473, 0.3751118779182434, 0.6137574315071106, 0.8084202408790588, 0.1898062825202942, -0.10229340940713882, -0.08720651268959045, -0.34912770986557007, -0.36375927925109863, 0.7419759631156921, 0.002365113701671362, -0.18267469108104706, 0.20667001605033875, 0.28741177916526794, -0.29749229550361633, -0.3793579936027527, 0.777710497379303, -0.47030749917030334, 0.481240451335907, -0.46043041348457336, -0.7024261951446533, -0.44388318061828613, 0.08710044622421265, -0.6844420433044434, 1.217215657234192, 0.3508240878582001, -0.9441384673118591, 0.5405166745185852, -0.7049204707145691, -0.5323880314826965, -0.05439986288547516, 0.010476241819560528, -0.9857401847839355, 0.1354159712791443, 0.23829327523708344, 0.7536295056343079, 0.04351639747619629, 0.21076013147830963, -0.490029513835907, -0.20993001759052277, 0.04834653437137604, 0.2135324329137802, 1.236742377281189, 0.38425490260124207, -0.4331231713294983, 0.15228211879730225, -0.6028622388839722, -0.22099898755550385, 0.2007761299610138, -0.5045491456985474, 0.05522417649626732, -0.015446907840669155, 0.2903432548046112, 0.31252044439315796, 0.25909918546676636, -0.704362690448761, 0.3283329904079437, -0.365972638130188, 0.47333887219429016, 0.6876173615455627, -0.319482684135437, 0.20692671835422516, -0.5591326951980591, 0.3306151032447815, 0.1024387776851654, 0.12151437997817993, 0.16344714164733887, -0.5172461271286011, -1.1933934688568115, -0.6278432607650757, 0.5565187931060791, 0.4148489832878113, -0.7102906107902527, 0.6562289595603943, -0.04205382615327835, -0.640490710735321, -0.77672278881073, -0.011358239687979221, 0.061922021210193634, 0.6078950762748718, 0.3668198585510254, -0.3418540358543396, -0.7899627089500427, -1.0587432384490967, 0.06278630346059799, -0.2898882329463959, -0.22642025351524353, 0.3933248817920685, 0.6825110912322998, -0.07818581163883209, 0.8121801018714905, 0.02046438306570053, -0.6215564608573914, -0.4407128393650055, 0.16876596212387085, 0.6243796944618225, 0.6064591407775879, 0.8781754970550537, -0.4478186070919037, -0.44594335556030273, -0.25138184428215027, -0.7101669907569885, 0.11988259106874466, 0.04106501489877701, -0.19937604665756226, 0.7864030599594116, 0.35903072357177734, -0.8478966951370239, 0.370898962020874, 0.5013015270233154, -0.6798502802848816, 0.7673352956771851, -0.2694941461086273, 0.04169273003935814, -1.324802279472351, 0.28067928552627563, 0.14956802129745483, -0.2186880111694336, -0.5704443454742432, 0.08952505141496658, -0.030507666990160942, 0.1463053673505783, -0.6211260557174683, 0.5754685997962952, -0.26070743799209595, -0.13495780527591705, 0.02159764990210533, -0.4592154026031494, -0.14441591501235962, 0.6577891707420349, 0.3092257082462311, 0.6892661452293396, 0.650627613067627, -0.5575761198997498, 0.3723824620246887, 0.46224191784858704, -0.8145264387130737, 0.3288399279117584, -0.8702462315559387, -0.0021908434573560953, 0.07875016331672668, 0.30585741996765137, -0.720234215259552, -0.12475541234016418, 0.4693271219730377, -0.5365537405014038, 0.5918530821800232, -0.5862395167350769, -0.7959192991256714, -0.45246776938438416, -0.15855880081653595, 0.007970703765749931, 0.7272595167160034, -0.6993396878242493, 0.8215122222900391, 0.3060198426246643, -0.2630898356437683, -0.6453797817230225, -0.7263058423995972, -0.05017149820923805, -0.4750780463218689, -0.8950930833816528, 0.5275622606277466, -0.1616745889186859, -0.044631678611040115, 0.009736265055835247, -0.016108796000480652, -0.2581389248371124, -0.03836551308631897, 0.12060080468654633, 0.4605400860309601, -0.2931261360645294, 0.07954869419336319, 0.04712541773915291, 0.19057467579841614, 0.09842419624328613, -0.20580819249153137, 0.6668893098831177, -0.5879241228103638, -0.07916609197854996, -0.4425257444381714, 0.24153925478458405, 0.49462464451789856, -0.01079936046153307, 1.1934114694595337, 0.999612033367157, -0.4578867554664612, 0.17704570293426514, -0.8499970436096191, -0.27396824955940247, -0.48032113909721375, 0.2276162952184677, -0.5330618619918823, -0.9625521898269653, 0.7545750141143799, 0.2768982946872711, 0.3617088794708252, 0.73237544298172, 0.8824288249015808, -0.4237842857837677, 1.007788896560669, 0.9500881433486938, -0.10609544068574905, 0.6692309379577637, -0.4713633060455322, 0.028773397207260132, -0.8315680623054504, -0.26279550790786743, -0.5304182767868042, -0.05203341320157051, -0.6698206067085266, -0.14197006821632385, 0.2397591471672058, 0.09419658035039902, -0.3641555905342102, 0.48297521471977234, -0.49315840005874634, -0.0715741217136383, 0.6616536974906921, 0.26357194781303406, -0.22701503336429596, 0.4334206283092499, -0.4381486475467682, 0.09105563908815384, -0.8673268556594849, -0.44041287899017334, 1.3937759399414062, 0.509975790977478, 0.40193092823028564, 0.18308697640895844, 0.9038717150688171, 0.2481769323348999, 0.23262779414653778, -0.7290836572647095, 0.3507673740386963, -0.12395679950714111, -1.0071325302124023, -0.1471334844827652, -0.3206777274608612, -1.0318760871887207, 0.23178938031196594, -0.2903028130531311, -0.8234137296676636, 0.26584553718566895, -0.10736203193664551, -0.5120810270309448, 0.48714786767959595, -0.7343981862068176, 1.0440362691879272, 0.034359611570835114, -0.20863476395606995, -0.2582205533981323, -0.6629471778869629, 0.21366116404533386, 0.07734762132167816, -0.09834082424640656, -0.057304829359054565, 0.35093942284584045, 1.08855402469635, -0.8514283895492554, 0.6725509166717529, -0.333130806684494, 0.02274908870458603, 0.43487927317619324, -0.08306674659252167, 0.33672505617141724, -0.24888452887535095, -0.2355521321296692, 0.5322141647338867, 0.3830023407936096, -0.7528066039085388, -0.17764247953891754, 0.5637778043746948, -1.0809693336486816, -0.48986732959747314, -0.7181969881057739, -0.4236610233783722, 0.04493630677461624, 0.20736269652843475, 0.19940219819545746, 0.3223264515399933, -0.1402672529220581, 0.27717944979667664, 0.7585471868515015, -0.43038639426231384, 0.5954007506370544, 0.6882503628730774, -0.04441453889012337, -0.23606108129024506, 0.690688967704773, -0.04592354595661163, -0.21003133058547974, 0.025382371619343758, 0.039179131388664246, -0.37412717938423157, -0.5289385318756104, -0.6051877737045288, 0.47866594791412354, -0.5307703614234924, -0.08075891435146332, -0.8124287128448486, -0.39498576521873474, -0.7581724524497986, 0.11176107078790665, -0.5380352735519409, -0.5291281342506409, -0.26373767852783203, -0.16579732298851013, 0.6124981045722961, 0.5719056725502014, -0.320105642080307, 0.24010978639125824, -0.5989653468132019, 0.14296071231365204, 0.2078152596950531, 0.5294809341430664, -0.141644686460495, -0.7985658049583435, -0.31795111298561096, -0.0016481082420796156, -0.18468177318572998, -0.7054058313369751, 0.6902162432670593, 0.12451137602329254, 0.5853751301765442, 0.4271732270717621, 0.09399300813674927, 0.4960435628890991, -0.532243549823761, 0.6857622265815735, 0.042986977845430374, -0.6999156475067139, 0.40229180455207825, -0.48332154750823975, 0.09403803944587708, 0.5104073286056519, 0.4326993227005005, -0.5265407562255859, -0.11089454591274261, -0.8229239583015442, -0.9069680571556091, 1.0505785942077637, 0.3859655559062958, 0.1369597315788269, 0.14485366642475128, 0.39291295409202576, 0.09255772829055786, 0.22738011181354523, -0.7179856300354004, -0.2643551528453827, -0.5002680420875549, -0.2746703624725342, 0.0466342493891716, -0.49546724557876587, -0.20858004689216614, -0.5774089694023132, 1.137575626373291, 0.22693881392478943, 0.7691263556480408, 0.38556861877441406, -0.17969265580177307, -0.12998294830322266, 0.07717180997133255, 0.6911592483520508, 0.43680092692375183, -0.750346302986145, -0.287507563829422, 0.1701202094554901, -0.5359001159667969, -0.2355843484401703, 0.6145130395889282, -0.05636170879006386, 0.19384139776229858, 0.20735013484954834, 0.8787140846252441, -0.1442187875509262, -0.4913696348667145, 0.5069218873977661, -0.45748651027679443, -0.5224870443344116, -0.7653651833534241, -0.28351160883903503, 0.0842079296708107, 0.46287834644317627, 0.5502564907073975, -0.25589361786842346, 0.021667886525392532, -0.24546028673648834, 0.3026958405971527, 0.4275924563407898, -0.4751083254814148, -0.22966758906841278, 0.4386206567287445, 0.08842060714960098, -0.03898537904024124, 1.0178707838058472, -0.07659944146871567, -0.6866835951805115, 0.7998515963554382, 0.2497144639492035, 0.9445645213127136, -0.1479315608739853, 0.2560860514640808, 0.5962153077125549, 0.4344047009944916, 0.04138842970132828, 0.3390800654888153, -0.17237471044063568, -0.8522372245788574, -0.4350101053714752, -1.0249197483062744, -0.18441645801067352, 0.5115222334861755, -0.7452422976493835, 0.38604530692100525, -0.47634872794151306, -0.29630401730537415, -0.033036019653081894, 0.5368852019309998, -0.7753257155418396, 0.12083765864372253, 0.2193823605775833, 0.990011990070343, -0.8347646594047546, 1.108871579170227, 0.909041702747345, -0.49110040068626404, -0.7699779868125916, -0.4878491759300232, -0.26216262578964233, -0.7169488072395325, 0.5200623273849487, 0.18527130782604218, 0.41696348786354065, -0.11594265699386597, -0.5261121392250061, -0.8607578277587891, 1.0417146682739258, 0.2379319965839386, -0.23977161943912506, 0.11795328557491302, 0.08883046358823776, 0.6025441288948059, -0.24735280871391296, 0.3594522774219513, 0.5913801789283752, 0.3480972349643707, 0.20059458911418915, -0.857690691947937, 0.07739316672086716, -0.519087016582489, -0.24687540531158447, 0.047231148928403854, -0.6317425966262817, 0.9244183301925659, -0.16048146784305573, -0.06427910178899765, 0.26296430826187134, 0.7861162424087524, 0.41183289885520935, -0.013567262329161167, 0.5356833338737488, 0.8584908843040466, 0.4217755198478699, -0.1650371551513672, 1.2076122760772705, -0.4377627372741699, 0.5322998762130737, 0.7561111450195312, 0.1239192932844162, 0.6873131394386292, 0.4983636438846588, -0.3572022616863251, 0.7783091068267822, 1.1926544904708862, -0.3135567903518677, 0.5396907925605774, 0.037040647119283676, -0.40495356917381287, -0.4070131480693817, 0.05101529508829117, -0.5411341190338135, 0.319079726934433, 0.32366958260536194, -0.35641244053840637, -0.26615604758262634, -0.1768057942390442, 0.19919972121715546, -0.5733726620674133, -0.09409376233816147, 0.6869233846664429, 0.09328965842723846, -0.4729205369949341, 0.6668447852134705, 0.24169307947158813, 0.7264785766601562, -0.673688530921936, 0.00929222907871008, -0.28982388973236084, 0.18440783023834229, -0.044465720653533936, -0.3898436427116394, 0.3593856692314148, -0.08333083987236023, -0.13256317377090454, -0.2898518145084381, 0.7904734015464783, -0.420038104057312, -0.8264939785003662, 0.1726168394088745, 0.3852175772190094, 0.4534408152103424, -0.06020030006766319, -1.167433261871338, -0.08238035440444946, -0.12858951091766357, -0.6051742434501648, 0.5250414609909058, 0.19870051741600037, 0.0900738537311554, 0.7961023449897766, 0.6932483911514282, -0.009989968501031399, 0.13715192675590515, 0.09631390869617462, 0.8629805445671082, -0.5089589357376099, -0.36934220790863037, -0.5950609445571899, 0.5602715015411377, 0.11845388263463974, -0.19677773118019104, 0.591674268245697, 0.5079188346862793, 0.9297153949737549, -0.13868848979473114, 0.7008209228515625, -0.4003795087337494, 0.49688491225242615, -0.3187538981437683, 1.178135871887207, -0.7020601034164429, -0.1359110027551651, -0.3379485309123993, -0.7593168020248413, -0.14634092152118683, 1.10302734375, -0.2988567054271698, 0.21620669960975647, 0.5075486898422241, 0.7054528594017029, 0.024569431319832802, -0.1792893409729004, 0.09989167004823685, 0.3961723744869232, 0.15654394030570984, 0.5099061727523804, 0.4737481474876404, -0.7078936100006104, 0.5949144959449768, -0.6222193241119385, -0.11156483739614487, -0.34388765692710876, -0.8789012432098389, -1.2519004344940186, -0.8342388868331909, -0.39300280809402466, -0.6391154527664185, 0.07459485530853271, 1.0461058616638184, 0.9285122156143188, -1.1092751026153564, -0.4953446388244629, -0.14557451009750366, 0.08008699119091034, -0.2768062651157379, -0.2623102068901062, 0.7335615158081055, -0.3918013870716095, -0.7525646090507507, 0.13028833270072937, -0.30410856008529663, 0.30921027064323425, -0.14051024615764618, -0.1327383816242218, -0.4072102904319763, 0.06547093391418457, 0.5096255540847778, 0.40022799372673035, -0.6108915209770203, -0.15707482397556305, -0.03656746447086334, -0.15405458211898804, 0.05211573839187622, 0.5655229687690735, -0.7294036149978638, 0.36652615666389465, 0.3994022607803345, 0.3667585551738739, 0.978219747543335, -0.3960820138454437, 0.6146660447120667, -0.5323916077613831, 0.3496182858943939, 0.03914009779691696, 0.6693914532661438, 0.45370396971702576, -0.12240146845579147, 0.5050350427627563, 0.0909992977976799, -0.4618919789791107, -0.8296271562576294, -0.16445811092853546, -1.1290863752365112, -0.3489567041397095, 0.9932665228843689, -0.3736041486263275, -0.39002060890197754, 0.03542584925889969, -0.09134707599878311, 0.6762537360191345, -0.48709914088249207, 1.2257486581802368, 1.001942753791809, -0.010730723850429058, -0.2822507619857788, -0.5555955767631531, 0.6946430802345276, 0.7209648489952087, -0.4657190442085266, -0.2772828936576843, 0.3304995894432068, 0.5483753681182861, -0.15771858394145966, 0.5093503594398499, -0.2527942657470703, 0.2703119218349457, -0.18049772083759308, 0.6756435632705688, -0.10296133160591125, -0.10331568866968155, -0.43822357058525085, -0.18693606555461884, -0.269732803106308, -0.1711571216583252 ]
hyunwoongko/ctrlsum-cnndm
hyunwoongko
"2021-03-21T15:55:50Z"
48,299
3
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
text2text-generation
"2022-03-02T23:29:05Z"
Entry not found
[ -0.3227650225162506, -0.22568431496620178, 0.862226128578186, 0.43461495637893677, -0.5282987952232361, 0.7012965679168701, 0.7915717363357544, 0.07618638128042221, 0.7746025919914246, 0.2563219666481018, -0.7852817177772522, -0.22573819756507874, -0.9104480743408203, 0.5715669393539429, -0.3992334008216858, 0.5791245698928833, -0.14494505524635315, -0.10751161724328995, 0.28233757615089417, -0.2768954336643219, -0.5409224033355713, -0.36855220794677734, -1.1902776956558228, 0.061491113156080246, 0.5316578149795532, 0.7435142397880554, 0.7584060430526733, 0.3652167320251465, 0.6432578563690186, 0.3932291269302368, -0.23138920962810516, 0.4827055037021637, -0.04171813279390335, 0.00260411505587399, -0.3524433970451355, -0.5516898036003113, -0.28596609830856323, 0.07584730535745621, 1.0961304903030396, 0.966687798500061, -0.284663587808609, 0.05330817773938179, -0.3063621520996094, 0.33088892698287964, -0.49734312295913696, 0.3054099678993225, -0.022506045177578926, 0.16318801045417786, -0.7041513919830322, -0.5535354018211365, 0.012794834561645985, -0.7361212968826294, 0.17926570773124695, -0.690081000328064, 0.8269098401069641, 0.18583157658576965, 1.1533750295639038, 0.14819414913654327, -0.462487131357193, -0.8161764144897461, -0.6538989543914795, 0.5711171627044678, -0.32703715562820435, 0.39680248498916626, 0.7028235197067261, -0.048573412001132965, -0.9820332527160645, -0.6745741367340088, -0.46466192603111267, 0.2923962473869324, 0.35402774810791016, -0.3411678075790405, -0.17522086203098297, -0.3058989644050598, 0.15792037546634674, 0.12811517715454102, -0.4841994643211365, -0.5543919205665588, -0.5475160479545593, -0.3960252106189728, 0.6206658482551575, 0.3482950031757355, 0.2429177463054657, -0.1888415813446045, -0.3228583335876465, 0.0880163162946701, -0.4160851538181305, 0.3402571678161621, 0.6335517168045044, 0.7114017009735107, -0.5811444520950317, 0.560215950012207, -0.04927587881684303, 0.7439703941345215, 0.11445561796426773, -0.27478092908859253, 0.41460567712783813, -0.14724725484848022, 0.055171746760606766, 0.4226345121860504, 0.31524422764778137, 0.2841312289237976, -0.3273695111274719, 0.2032228708267212, -0.3215144872665405, -0.30496224761009216, -0.22332167625427246, -0.29490774869918823, -0.3592180609703064, 0.5492289066314697, -0.3314017057418823, -0.42855486273765564, 1.143175721168518, -0.4200771450996399, -0.7302224040031433, 0.33156412839889526, 0.4065209925174713, -0.0994480773806572, -0.37146568298339844, -0.052260834723711014, -0.8458789587020874, -0.007907390594482422, 0.7491172552108765, -0.7198970913887024, 0.3371737599372864, 0.4728063642978668, 0.7417217493057251, 0.19650575518608093, -0.14034469425678253, -0.42949390411376953, 0.2971969544887543, -0.8659994006156921, 0.6320174336433411, -0.20135220885276794, -1.0051977634429932, 0.11150479316711426, 0.8971705436706543, -0.37896400690078735, -1.2094876766204834, 1.0605159997940063, -0.6887932419776917, 0.16017857193946838, -0.676761269569397, -0.14661237597465515, -0.07118501514196396, -0.005096632521599531, -0.6088156700134277, 0.7567102313041687, 0.587267279624939, -0.4995276927947998, 0.21429483592510223, -0.26029831171035767, -0.39151400327682495, 0.38824859261512756, -0.07935450226068497, -0.21858926117420197, 0.713833212852478, -0.6647079586982727, -0.26932814717292786, 0.2942774295806885, 0.2368936538696289, -0.35706108808517456, -0.7931919097900391, 0.08478113263845444, -0.05786270648241043, 1.550750494003296, -0.03868847340345383, -0.3586106300354004, -0.679383397102356, -1.1506240367889404, -0.07070787996053696, 0.6886883974075317, -0.9194989204406738, -0.27839475870132446, -0.046410128474235535, -0.26169314980506897, 0.08994917571544647, 0.7390589714050293, -1.1194051504135132, 0.2832726836204529, -0.05092663690447807, -0.22794683277606964, 0.8271058797836304, 0.15387225151062012, 0.24758946895599365, 0.14913396537303925, 0.42958706617355347, 0.527725338935852, 0.11115207523107529, 0.683587908744812, -0.34720373153686523, -0.9694353938102722, 0.6154631972312927, 0.25266361236572266, 0.8121447563171387, -0.49945297837257385, 0.2685093879699707, 0.27025535702705383, -0.3409680724143982, -0.5682371854782104, -0.3102838397026062, 0.09025752544403076, 0.14930562674999237, 0.11142510175704956, -0.5721710324287415, -0.6576125025749207, -0.9689140319824219, -0.13590654730796814, -0.4314374029636383, -0.3571570813655853, 0.21006910502910614, 0.5792906284332275, -1.1975523233413696, 0.4128875136375427, -0.7705625891685486, -0.7038741111755371, -0.01065548975020647, -0.19338123500347137, 0.7540656328201294, 0.43240174651145935, 0.5033966898918152, -0.6397148370742798, -0.5661987066268921, -0.22470176219940186, -1.0333747863769531, -0.13280506432056427, 0.24819621443748474, 0.3065737783908844, -0.13423344492912292, -0.2744963765144348, -0.48740333318710327, 0.8100387454032898, 0.14789170026779175, -0.5391897559165955, 0.5220767259597778, -0.3020317256450653, 0.17224803566932678, -0.6369150280952454, -0.06916818022727966, -0.661676287651062, -0.0009071884560398757, -0.3608308732509613, -0.5737438797950745, 0.14772287011146545, 0.07017494738101959, -0.16065457463264465, 0.28808408975601196, -0.909277081489563, -0.0010852962732315063, -0.7442210912704468, 0.379071980714798, 0.06394772231578827, -0.3145078718662262, -0.017517540603876114, 1.0000386238098145, 0.7784460783004761, -0.3848048746585846, 0.721744179725647, 0.4440041184425354, 0.19036155939102173, 0.7630521059036255, -0.18725109100341797, 0.16478213667869568, -0.5245416760444641, -0.12161104381084442, -0.8887597918510437, -1.0982946157455444, 0.7320570349693298, -0.6114250421524048, 0.36542922258377075, -0.4277869760990143, 0.2589159905910492, -0.6919258832931519, -0.03885362669825554, 0.4808599352836609, -0.05936325341463089, -0.6863942742347717, 0.5232570171356201, 0.45317530632019043, -0.2019241601228714, -0.6609031558036804, -0.530157208442688, 0.39365822076797485, 0.6154114007949829, -0.16390392184257507, 0.06878514587879181, 0.14941060543060303, -0.5441926121711731, -0.040802597999572754, -0.38691970705986023, -0.45766758918762207, 0.054224006831645966, 0.13053473830223083, -0.005750799085944891, -0.404820054769516, -0.0868026465177536, -0.35842007398605347, -0.4656120240688324, 0.21876516938209534, 0.3011947274208069, -0.04096309468150139, -0.42599788308143616, -0.3619818687438965, -0.888181209564209, 0.6719610095024109, 0.5370282530784607, 0.05281545966863632, 0.7555549740791321, 0.16819314658641815, -0.8014987707138062, -0.13532210886478424, -0.1760706603527069, 0.2696830928325653, -0.5588056445121765, 0.13849826157093048, -0.013484534807503223, -0.0637492910027504, 0.26297882199287415, 0.25386232137680054, -0.4300556778907776, 0.9276250004768372, -0.2615274488925934, -0.3592521846294403, 0.7960181832313538, 0.5974742770195007, 0.49583131074905396, 0.16503219306468964, -0.044541798532009125, 0.900709331035614, -1.1966516971588135, -0.6563175916671753, -0.7409549355506897, -0.15945707261562347, -0.43510833382606506, -0.032105933874845505, 0.6254412531852722, 0.2900990843772888, -0.1333388388156891, 0.4756395220756531, -0.5243489742279053, 0.3556033670902252, 1.01198410987854, 0.35748639702796936, 0.3435698449611664, -0.7570229172706604, -0.2515777349472046, -0.1402427852153778, -0.9998157620429993, -0.2631377875804901, 0.8871029019355774, 0.22752606868743896, 0.844460666179657, 0.5992541313171387, 0.6784542798995972, 0.1367226243019104, 0.2523828148841858, -0.30590319633483887, 0.3920294940471649, 0.4376082420349121, -1.0401138067245483, -0.42758408188819885, 0.021418681368231773, -0.9703338742256165, -0.14227519929409027, -0.03495011106133461, -0.42617112398147583, 0.7681737542152405, 0.00016589462757110596, -0.4076709747314453, 0.7732734084129333, -0.455583393573761, 0.7562873363494873, -0.4473648965358734, -0.02663906291127205, 0.4699096083641052, -0.7070636749267578, 0.4677430987358093, 0.12878790497779846, 0.6205843091011047, -0.015572631731629372, -0.04078587517142296, 0.7104941606521606, -0.9129160046577454, 0.25438642501831055, -0.6348397135734558, 0.22421300411224365, 0.24246945977210999, 0.51606285572052, 0.5969953536987305, 0.4371243417263031, 0.10119888931512833, -0.23920902609825134, 0.04115807265043259, -0.8241125345230103, -0.210506409406662, 0.697515606880188, -0.7186890840530396, -0.6864197850227356, -1.2355337142944336, 0.14438660442829132, 0.27347055077552795, 0.389305055141449, 0.7959296107292175, 0.571408748626709, 0.1289544403553009, 0.680525004863739, 0.9888588190078735, -0.0688566341996193, 0.9166924357414246, 0.3224477171897888, 0.09175168722867966, -0.21944808959960938, 0.7036820650100708, 0.26627904176712036, -0.24707956612110138, -0.11939732730388641, 0.20913465321063995, -0.11069409549236298, -0.591761589050293, -0.49990686774253845, 0.3701757788658142, -0.6731787919998169, -0.18303893506526947, -0.6243735551834106, -0.6043769717216492, -0.511759340763092, 0.06927360594272614, -0.7147687673568726, 0.23979046940803528, -0.7753565907478333, -0.10574902594089508, 0.04323432594537735, 0.9792009592056274, -0.589311957359314, 0.5805224180221558, -1.1218582391738892, 0.19345788657665253, -0.07949887961149216, 0.7921058535575867, 0.21395787596702576, -0.7344395518302917, -0.3975418508052826, -0.11592631042003632, -0.3729911744594574, -1.3576762676239014, 0.21404948830604553, -0.2454141080379486, 0.23094046115875244, 0.6145404577255249, 0.1397707313299179, 0.5258248448371887, -0.34326282143592834, 0.7029101848602295, -0.057017259299755096, -0.7069286704063416, 0.7934495210647583, -0.5026894807815552, 0.4963534474372864, 0.9765996932983398, 0.5333835482597351, -0.7984007596969604, 0.035741209983825684, -1.041123390197754, -0.6008695363998413, 0.38426393270492554, 0.11928944289684296, -0.03601083159446716, -0.6659559011459351, -0.054019637405872345, -0.16143807768821716, 0.6043745279312134, -1.039069414138794, -0.7858356237411499, 0.2576698362827301, 0.5277302861213684, 0.0816856250166893, -0.5653398633003235, 0.20880667865276337, -0.544416069984436, 1.0657774209976196, 0.45109400153160095, 0.3274499475955963, 0.8406060934066772, 0.46492424607276917, -0.3823164403438568, 0.09252490103244781, 0.7662695050239563, 0.6666232347488403, -0.5239797830581665, -0.2908027470111847, -0.08827541768550873, -0.9143403768539429, 0.05927472561597824, 0.11168918758630753, -0.013455932028591633, 0.9082110524177551, 0.5793083310127258, 0.2539709210395813, 0.4514279365539551, -0.726460337638855, 0.8859451413154602, -0.14954176545143127, -0.12472866475582123, -1.0677239894866943, 0.1948619782924652, -0.23984959721565247, 0.5006402134895325, 1.0061326026916504, 0.5250048041343689, -0.047630298882722855, -0.8143380880355835, -0.01473585981875658, 0.6939172148704529, -0.7091123461723328, -0.17449834942817688, 0.944853663444519, 0.3847099542617798, -1.2953051328659058, 1.106776475906372, -0.5381771326065063, -0.560332179069519, 0.9121301770210266, 0.522956907749176, 1.1221847534179688, -0.44204121828079224, 0.0008676342549733818, 0.2662237286567688, 0.41378432512283325, 0.5423170328140259, 1.0869629383087158, 0.431413471698761, -0.7931063771247864, 0.8826584815979004, -0.24776044487953186, -0.40361151099205017, -0.05347571521997452, -0.42859897017478943, 0.16892178356647491, -0.4406192898750305, -0.10713007301092148, -0.3444187641143799, 0.28543180227279663, -0.7072042226791382, 0.42807620763778687, -0.0838567465543747, 0.8653068542480469, -0.8553727269172668, 0.47207626700401306, 0.635470449924469, -0.3337355852127075, -0.8508191108703613, -0.26198428869247437, -0.11448462307453156, -0.6389466524124146, 0.30214807391166687, -0.4554102420806885, 0.044398851692676544, 0.09623463451862335, -0.649151623249054, -1.1778275966644287, 0.9093633890151978, -0.639612078666687, -0.2784462869167328, 0.20464053750038147, -0.11514760553836823, 0.28811705112457275, -0.2524643540382385, 0.010661216452717781, 0.41876548528671265, 0.748940110206604, 0.2844654619693756, -0.7727053761482239, -0.3694884479045868, 0.0015032943338155746, -0.44474777579307556, 0.7582978010177612, -0.6002101898193359, 1.1840779781341553, -0.5563543438911438, -0.059654366225004196, 0.44384512305259705, 0.24690914154052734, 0.21076197922229767, 0.6629220843315125, 0.1442081481218338, 0.7282265424728394, 1.07012140750885, -0.40835219621658325, 0.8811809420585632, 0.26432839035987854, 0.47430819272994995, 0.7238501906394958, -0.6487724781036377, 0.7513749003410339, 0.31810489296913147, -0.5682924389839172, 0.9228013753890991, 1.2906063795089722, -0.15699204802513123, 0.8079374432563782, 0.05136508867144585, -1.081600546836853, 0.325833261013031, -0.20724765956401825, -0.7530064582824707, 0.3150254189968109, 0.19055864214897156, -0.6920982599258423, -0.5770308971405029, -0.24046507477760315, -0.35662803053855896, -0.11552901566028595, -0.7631728649139404, 0.6720563769340515, -0.016969164833426476, -0.5103683471679688, 0.18857547640800476, 0.2877499461174011, 0.17368432879447937, -0.5235732793807983, -0.02939440682530403, -0.22823619842529297, 0.2660655975341797, -0.5670853853225708, -0.5234526991844177, 0.5724433064460754, -0.32430219650268555, -0.5343255400657654, 0.18147465586662292, 0.763587236404419, -0.16923809051513672, -0.4515409469604492, 0.32472723722457886, 0.6959525346755981, 0.1665852814912796, 0.4250282347202301, -0.23511263728141785, 0.24480605125427246, -0.08044824004173279, -0.06651552021503448, 0.27714768052101135, 0.3449169099330902, 0.22435641288757324, 0.4450142979621887, 0.43285664916038513, -0.01808755099773407, -0.10736498981714249, -0.382819801568985, 0.4124940037727356, -0.9542785882949829, -0.5713282823562622, -0.6307113766670227, 0.2740660607814789, -0.02315417304635048, -1.0836423635482788, 0.4145168364048004, 1.4406683444976807, 1.0359982252120972, -0.4756383001804352, 1.067226529121399, -0.21818485856056213, 0.9594791531562805, 0.41483086347579956, 0.5420440435409546, -0.6030411720275879, 0.03835370019078255, -0.4364396035671234, -1.076962947845459, -0.35716333985328674, 0.4539391100406647, -0.022899555042386055, -0.3429867625236511, 0.872571587562561, 0.5887166261672974, -0.33473607897758484, -0.11728022992610931, 0.048487238585948944, -0.029941488057374954, -0.12433847039937973, 0.5145376324653625, 0.7648399472236633, -0.9344304800033569, -0.10680416971445084, -0.21577754616737366, -0.6382725834846497, -0.5047279000282288, -0.9632009267807007, -0.12959396839141846, -0.16037796437740326, 0.035343267023563385, -0.5662806630134583, 0.00255737011320889, 1.208324909210205, 0.5684957504272461, -1.1113994121551514, -0.5303789377212524, 0.3371853232383728, 0.3920421898365021, -0.1874791383743286, -0.24202413856983185, 0.2984568774700165, 0.15382249653339386, -0.5908876657485962, 0.6875665783882141, 0.8089625239372253, 0.208888977766037, 0.19554761052131653, 0.15893013775348663, -0.8229473829269409, -0.14913435280323029, 0.17440445721149445, 0.9450570344924927, -0.939853310585022, -0.7114843130111694, -0.03168516233563423, -0.27094873785972595, -0.05765746906399727, 0.17102102935314178, -0.4046344757080078, 0.5180677175521851, 0.34591493010520935, 0.49933457374572754, 0.0561608150601387, -0.054746925830841064, 0.5409556031227112, -0.9069057703018188, 0.09425963461399078, 0.4134361147880554, 0.4154115319252014, -0.4000864028930664, -0.5910194516181946, 0.6713420748710632, 1.0073972940444946, -0.6594868898391724, -0.8743268847465515, -0.19846712052822113, -1.0016002655029297, 0.04189709946513176, 0.6762762069702148, 0.5009527802467346, -0.4806513786315918, -0.4174500107765198, -0.5617399215698242, -0.1254672110080719, -0.1369970738887787, 0.7621601819992065, 1.179680585861206, -0.7432094812393188, 0.07975747436285019, -1.038639783859253, 0.6594986915588379, -0.2419457733631134, -0.3457581698894501, -0.48644304275512695, 0.3832802176475525, 0.35236993432044983, 0.440481036901474, 0.614812433719635, 0.1408471167087555, 0.8338426351547241, 0.3126053214073181, -0.1702686995267868, 0.2698982357978821, -0.4559200704097748, -0.028932858258485794, -0.057962555438280106, 0.31015971302986145, -1.0262157917022705 ]
Helsinki-NLP/opus-mt-id-en
Helsinki-NLP
"2023-08-16T11:58:05Z"
47,949
8
transformers
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "id", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
translation
"2022-03-02T23:29:04Z"
--- tags: - translation license: apache-2.0 --- ### opus-mt-id-en * source languages: id * target languages: en * OPUS readme: [id-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/id-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2019-12-18.zip](https://object.pouta.csc.fi/OPUS-MT-models/id-en/opus-2019-12-18.zip) * test set translations: [opus-2019-12-18.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-en/opus-2019-12-18.test.txt) * test set scores: [opus-2019-12-18.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/id-en/opus-2019-12-18.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.id.en | 47.7 | 0.647 |
[ -0.2795376479625702, -0.4218868315219879, 0.27309733629226685, 0.4745568037033081, -0.5085467100143433, -0.41523557901382446, -0.41635167598724365, -0.06140458211302757, 0.01362115889787674, 0.4286954998970032, -0.7465266585350037, -0.6944340467453003, -0.6495566368103027, 0.22017726302146912, -0.12920169532299042, 0.836047887802124, -0.10078028589487076, 0.5548994541168213, 0.19299982488155365, -0.552127480506897, -0.3199816346168518, -0.4541129767894745, -0.5637022256851196, -0.403703898191452, 0.3957049548625946, 0.3214953541755676, 0.39887601137161255, 0.47296273708343506, 1.0184991359710693, 0.22065629065036774, -0.13274244964122772, 0.14602482318878174, -0.5527390837669373, -0.13175074756145477, -0.016910145059227943, -0.618319571018219, -0.8200238347053528, -0.12772880494594574, 1.1352739334106445, 0.4754773676395416, 0.00022892994456924498, 0.510487973690033, -0.09490631520748138, 0.963194727897644, -0.31526151299476624, 0.09832630306482315, -0.6965286731719971, 0.05979792773723602, -0.37038689851760864, -0.3425203561782837, -0.7730669379234314, -0.2654803395271301, 0.14528945088386536, -0.7207476496696472, -0.057139087468385696, 0.14692062139511108, 1.6631577014923096, 0.31156113743782043, -0.42896178364753723, -0.14644908905029297, -0.6779764294624329, 1.1115639209747314, -0.8424237966537476, 0.5947870016098022, 0.4561369717121124, 0.24293331801891327, 0.2497950941324234, -0.5818747878074646, -0.2975229322910309, 0.1876317262649536, -0.2247259020805359, 0.23232108354568481, -0.06506574898958206, -0.28773677349090576, 0.3449762761592865, 0.8140479922294617, -0.8520931005477905, 0.06952236592769623, -0.6263801455497742, 0.06737729161977768, 0.7764503359794617, 0.13315702974796295, 0.18805432319641113, -0.18546243011951447, -0.4719001352787018, -0.5655776262283325, -0.8450432419776917, 0.1276685744524002, 0.4419354498386383, 0.3368457555770874, -0.5118386149406433, 0.708724856376648, -0.18524786829948425, 0.6461268663406372, 0.042640089988708496, 0.014084802009165287, 1.1040821075439453, -0.44418612122535706, -0.3767733573913574, -0.2147669792175293, 1.3325189352035522, 0.4215421676635742, 0.10079316794872284, 0.01342181395739317, -0.26346054673194885, -0.2996836006641388, 0.130425363779068, -1.0356323719024658, -0.07166548073291779, 0.23035845160484314, -0.5460852384567261, -0.2007330358028412, 0.0949355810880661, -0.6555139422416687, 0.23319043219089508, -0.4642632007598877, 0.6650823354721069, -0.7663755416870117, -0.35586610436439514, 0.37225404381752014, 0.037877924740314484, 0.47470587491989136, -0.0414193831384182, -0.7058928608894348, 0.12746258080005646, 0.4940594732761383, 0.8121198415756226, -0.4627408981323242, -0.30495595932006836, -0.46400389075279236, -0.22626982629299164, -0.1525401920080185, 0.6829344630241394, -0.097828209400177, -0.4986262917518616, -0.07381487637758255, 0.5549775958061218, -0.4466733932495117, -0.3990725874900818, 1.4050942659378052, -0.31589528918266296, 0.7477449774742126, -0.44856420159339905, -0.5614148378372192, -0.36477553844451904, 0.5466235280036926, -0.6268658638000488, 1.4265624284744263, 0.08154355734586716, -0.919292688369751, 0.24344739317893982, -0.9004665017127991, -0.2241727113723755, -0.04342494159936905, 0.0655224546790123, -0.7102842330932617, 0.15102925896644592, 0.09156551212072372, 0.4192771017551422, -0.36751583218574524, 0.46273818612098694, -0.016221025958657265, -0.3302721381187439, 0.07368575781583786, -0.391732782125473, 1.1262656450271606, 0.3517104685306549, -0.2536550462245941, 0.2831389605998993, -1.027047038078308, -0.03664645552635193, 0.06195491552352905, -0.5120132565498352, -0.22879064083099365, 0.07486165314912796, 0.28578054904937744, 0.16526532173156738, 0.33296823501586914, -0.6499133706092834, 0.2862645983695984, -0.6738098859786987, 0.15532265603542328, 0.7033957839012146, -0.26118066906929016, 0.39301052689552307, -0.532908022403717, 0.3756605386734009, 0.15266066789627075, 0.1380380243062973, -0.004733382724225521, -0.49585360288619995, -0.8999820351600647, -0.3029188811779022, 0.7582998871803284, 1.1436833143234253, -0.79878169298172, 0.9543155431747437, -0.8520100116729736, -0.8948052525520325, -0.8987192511558533, -0.19447466731071472, 0.5140262842178345, 0.3491838872432709, 0.5369764566421509, -0.19218379259109497, -0.45859768986701965, -1.212590217590332, -0.20472626388072968, -0.14142730832099915, -0.3043488562107086, 0.22008833289146423, 0.6741908192634583, -0.17614522576332092, 0.5528724193572998, -0.4786287248134613, -0.4195592403411865, -0.16809630393981934, 0.15221120417118073, 0.5807599425315857, 0.7238913774490356, 0.6244383454322815, -0.9640088081359863, -0.6320607662200928, 0.005291204899549484, -0.8579217195510864, -0.14757107198238373, 0.082398921251297, -0.3232155740261078, 0.056983258575201035, 0.04775042086839676, -0.34138473868370056, 0.11105429381132126, 0.6865570545196533, -0.6578332781791687, 0.47834134101867676, -0.10479265451431274, 0.3342728614807129, -1.5004364252090454, 0.21525365114212036, -0.15578313171863556, -0.051795970648527145, -0.4602231979370117, 0.02317020297050476, 0.2953965365886688, 0.07484494894742966, -0.896850049495697, 0.5605247616767883, -0.25083276629447937, 0.023191172629594803, 0.32836493849754333, 0.0007488848059438169, 0.10265354812145233, 0.828796923160553, -0.08273756504058838, 0.8460944294929504, 0.7711346745491028, -0.5604137778282166, 0.1842966377735138, 0.6018097400665283, -0.46566057205200195, 0.5250913500785828, -0.8694583177566528, -0.2981398403644562, 0.3246387839317322, -0.15212389826774597, -0.6764414310455322, 0.09283424913883209, 0.3352540135383606, -0.6874300241470337, 0.4792481064796448, -0.16326481103897095, -0.8335545063018799, 0.023436345160007477, -0.31638121604919434, 0.5901844501495361, 0.7610681653022766, -0.28790950775146484, 0.7373098731040955, 0.12497255951166153, 0.033870723098516464, -0.465442955493927, -1.0394251346588135, -0.16818271577358246, -0.48907706141471863, -0.8204089403152466, 0.30228444933891296, -0.4513014554977417, -0.056253381073474884, 0.04335777461528778, 0.3626399040222168, -0.10899322479963303, 0.09598454087972641, 0.15068228542804718, 0.25873279571533203, -0.5312705636024475, 0.24843735992908478, 0.04642414674162865, -0.2090979814529419, -0.14362072944641113, -0.11725756525993347, 0.6174059510231018, -0.3162943720817566, -0.25977200269699097, -0.7321306467056274, 0.10322276502847672, 0.7292665243148804, -0.5369579792022705, 0.9624515771865845, 0.6377084255218506, -0.15755149722099304, 0.16739609837532043, -0.40897607803344727, 0.13115854561328888, -0.44833338260650635, 0.15191243588924408, -0.5758440494537354, -0.7516354322433472, 0.6211872696876526, 0.05087345838546753, 0.4441481828689575, 0.940998375415802, 0.7128463387489319, 0.12547743320465088, 0.730753481388092, 0.23846936225891113, 0.012967357411980629, 0.48452845215797424, -0.559262752532959, -0.13001295924186707, -1.2014479637145996, 0.05895926430821419, -0.7919941544532776, -0.3905552327632904, -0.8881596922874451, -0.2552761435508728, 0.27118781208992004, 0.025619415566325188, -0.2409791797399521, 0.6328544020652771, -0.6390987038612366, 0.26076608896255493, 0.6858965158462524, -0.09012826532125473, 0.34148019552230835, -0.046195138245821, -0.5429206490516663, -0.21512284874916077, -0.4743139445781708, -0.6078662276268005, 1.4598450660705566, 0.4062449336051941, 0.34749501943588257, 0.2926636338233948, 0.5268681645393372, -0.054214730858802795, 0.28377169370651245, -0.6551527976989746, 0.471180260181427, -0.24854828417301178, -0.8355020880699158, -0.30046945810317993, -0.6172285079956055, -0.914082407951355, 0.5534063577651978, -0.31993892788887024, -0.561574399471283, 0.1954888552427292, -0.02243613637983799, -0.1493937373161316, 0.48101335763931274, -0.8143109679222107, 1.3119890689849854, -0.11860824376344681, -0.1264442801475525, 0.30576321482658386, -0.47818803787231445, 0.3393133282661438, -0.0381869412958622, 0.2696596682071686, -0.24570779502391815, 0.1627957969903946, 0.7082819938659668, -0.08437786251306534, 0.45944905281066895, -0.05228734388947487, -0.07560916990041733, 0.03290889412164688, 0.08001720160245895, 0.4506452977657318, -0.0559072345495224, -0.49553045630455017, 0.4459640681743622, 0.08050920069217682, -0.49976107478141785, -0.17729096114635468, 0.7161154747009277, -0.7673646211624146, -0.0757778212428093, -0.43181151151657104, -0.696895182132721, 0.039874106645584106, 0.34583190083503723, 0.8334338068962097, 0.7969446182250977, -0.2994913160800934, 0.6091780662536621, 0.9926570653915405, -0.30884432792663574, 0.4316222369670868, 0.7497352957725525, -0.21042843163013458, -0.5752019882202148, 0.9434805512428284, 0.20375466346740723, 0.36867719888687134, 0.6236198544502258, 0.04551152139902115, -0.16538405418395996, -0.8545013070106506, -0.7827608585357666, 0.3425110876560211, -0.2912260890007019, -0.24347612261772156, -0.6154401302337646, -0.0598183237016201, -0.22593478858470917, 0.356192946434021, -0.6093838214874268, -0.5702155232429504, -0.24428920447826385, -0.2713748812675476, 0.22747854888439178, 0.1974208652973175, 0.03564099594950676, 0.45897504687309265, -1.1093579530715942, 0.18336860835552216, -0.10163223743438721, 0.4538206458091736, -0.4647925794124603, -0.8821420073509216, -0.5238518714904785, 0.008300822228193283, -0.6874462366104126, -0.7812478542327881, 0.5645313858985901, 0.14494654536247253, 0.25061678886413574, 0.37703198194503784, 0.27132824063301086, 0.3915221393108368, -0.7151336669921875, 1.002465844154358, -0.14175349473953247, -0.7784935235977173, 0.509340763092041, -0.5339909195899963, 0.5705493688583374, 1.0190459489822388, 0.3446023166179657, -0.3484126329421997, -0.5343344211578369, -0.7991774678230286, -0.857627272605896, 0.8597050905227661, 0.7322931289672852, -0.13836658000946045, 0.2555321455001831, -0.10260375589132309, -0.046571630984544754, 0.12189823389053345, -1.211737871170044, -0.412546306848526, 0.1031888946890831, -0.483078271150589, -0.12526650726795197, -0.3312665522098541, -0.3151909410953522, -0.21890372037887573, 1.2536357641220093, 0.17313720285892487, 0.16505345702171326, 0.4278275668621063, -0.16062094271183014, -0.1915258765220642, 0.3360852897167206, 1.0592790842056274, 0.6240072846412659, -0.6047356724739075, -0.22684425115585327, 0.3047211766242981, -0.39079606533050537, -0.17691965401172638, 0.09961376339197159, -0.4747646749019623, 0.3580830991268158, 0.4308475852012634, 1.1965656280517578, 0.17960196733474731, -0.6829618215560913, 0.5057685971260071, -0.49659112095832825, -0.510539174079895, -0.7683128118515015, -0.18469356000423431, 0.11764125525951385, 0.05422170087695122, 0.3001860976219177, 0.1497204750776291, 0.16898371279239655, -0.1723748743534088, 0.052454084157943726, 0.09415392577648163, -0.7380170822143555, -0.6429014801979065, 0.4902952313423157, 0.18252260982990265, -0.4805731177330017, 0.5940532684326172, -0.46325379610061646, -0.516843318939209, 0.39729440212249756, 0.09853195399045944, 1.1475918292999268, -0.24210020899772644, -0.2935744822025299, 0.8161531686782837, 0.6539565324783325, -0.21360446512699127, 0.48457011580467224, 0.20590518414974213, -0.7779187560081482, -0.568172812461853, -0.8773213028907776, -0.12673348188400269, 0.18683958053588867, -0.9407609701156616, 0.4541715979576111, 0.2994016110897064, -0.013920738361775875, -0.384054571390152, 0.17166705429553986, -0.5987064242362976, 0.1175021156668663, -0.3362766206264496, 1.1246962547302246, -1.063356876373291, 0.9821444153785706, 0.5415154099464417, -0.2676596939563751, -0.919174075126648, -0.30044475197792053, -0.21364428102970123, -0.4197683334350586, 0.595516562461853, 0.21444761753082275, 0.4115656316280365, -0.10369540005922318, -0.21003732085227966, -0.849200427532196, 1.245807409286499, 0.20654894411563873, -0.6185141205787659, 0.03097502514719963, 0.0853487104177475, 0.5607625842094421, -0.45313599705696106, 0.13375884294509888, 0.4382378160953522, 0.7771402597427368, 0.07773581147193909, -1.2074400186538696, -0.2948273718357086, -0.6414479613304138, -0.32685670256614685, 0.6076182126998901, -0.6479239463806152, 1.0037678480148315, 0.49417662620544434, -0.21275678277015686, 0.11318403482437134, 0.6296192407608032, 0.3356351852416992, 0.38308531045913696, 0.5160210132598877, 1.3653455972671509, 0.4122972786426544, -0.5918325185775757, 1.1173304319381714, -0.39581596851348877, 0.6111823916435242, 1.2272666692733765, -0.02121288701891899, 1.0019397735595703, 0.4153776466846466, -0.10055367648601532, 0.5332316756248474, 0.762019693851471, -0.3009254038333893, 0.5409673452377319, 0.05081392452120781, 0.17908181250095367, -0.17872771620750427, 0.15721850097179413, -0.7857936024665833, 0.2865361273288727, 0.21733629703521729, -0.33703479170799255, 0.12325895577669144, -0.05721350386738777, 0.07591064274311066, -0.053514011204242706, -0.13456982374191284, 0.746037483215332, -0.08227559179067612, -0.660491406917572, 0.8311138153076172, -0.08945953845977783, 0.7151356935501099, -0.7323479056358337, 0.14181222021579742, -0.08448616415262222, 0.2577308714389801, 0.014075775630772114, -0.5153191089630127, 0.48219168186187744, -0.049619708210229874, -0.37501299381256104, -0.48080942034721375, 0.13701297342777252, -0.6032741665840149, -0.968509316444397, 0.3937014937400818, 0.44761011004447937, 0.3295248746871948, 0.030168943107128143, -0.9250429272651672, 0.06902536004781723, 0.1210775077342987, -0.6578829884529114, 0.09835457801818848, 0.8321032524108887, 0.34841251373291016, 0.5097890496253967, 0.6971884965896606, 0.19163717329502106, 0.23430569469928741, -0.08411873877048492, 0.702811062335968, -0.47619304060935974, -0.4617466628551483, -0.8877748250961304, 0.9010434746742249, -0.17401503026485443, -0.7895140051841736, 0.7660796046257019, 1.13502836227417, 1.129543423652649, -0.2160613238811493, 0.24390336871147156, -0.0028693266212940216, 0.8713119626045227, -0.6901273131370544, 0.691425085067749, -0.9768241047859192, 0.28200995922088623, -0.06445922702550888, -0.9578766822814941, -0.3325376808643341, 0.29211175441741943, -0.24352487921714783, -0.45284056663513184, 0.9080770611763, 0.7371108531951904, -0.218190997838974, -0.2883632183074951, 0.32400956749916077, 0.3272329270839691, 0.2642970681190491, 0.6028182506561279, 0.41339582204818726, -1.1287343502044678, 0.6009686589241028, -0.2437211275100708, -0.06464382261037827, -0.07682719826698303, -0.757411539554596, -0.9472672343254089, -0.6524425745010376, -0.2404359132051468, -0.2666233479976654, -0.33018890023231506, 0.9446287155151367, 0.6330704689025879, -0.990879476070404, -0.5814225077629089, 0.0992049053311348, 0.22515933215618134, -0.15835928916931152, -0.27929043769836426, 0.6335817575454712, -0.34629562497138977, -1.1319527626037598, 0.44572389125823975, 0.1105489432811737, -0.0573149137198925, -0.004426657687872648, -0.33509424328804016, -0.6170254945755005, -0.011839518323540688, 0.2576442062854767, 0.05356606841087341, -0.5982729196548462, 0.11786000430583954, 0.09473700821399689, -0.1173890009522438, 0.39880895614624023, 0.38755059242248535, -0.2913879454135895, 0.286209374666214, 0.9044739007949829, 0.43338555097579956, 0.4722777307033539, -0.07333151251077652, 0.5635040402412415, -0.7469639778137207, 0.425720751285553, 0.2310849130153656, 0.6371724009513855, 0.40565621852874756, -0.037535566836595535, 0.926773190498352, 0.31282931566238403, -0.7123044729232788, -1.2445836067199707, 0.046939510852098465, -1.2991961240768433, 0.06453480571508408, 0.9832212328910828, -0.3704357147216797, -0.36611828207969666, 0.4294261634349823, -0.1234554871916771, 0.09994572401046753, -0.39807477593421936, 0.46298447251319885, 0.9280470013618469, 0.4832727909088135, 0.10047927498817444, -0.7094817757606506, 0.4347604811191559, 0.5738551020622253, -0.7865626215934753, -0.25026652216911316, 0.14909754693508148, 0.12977883219718933, 0.4381468594074249, 0.47562479972839355, -0.35788261890411377, 0.07566855847835541, -0.37982699275016785, 0.42029115557670593, -0.06417177617549896, -0.21142324805259705, -0.4009089767932892, 0.058637190610170364, -0.04573158919811249, -0.3642893135547638 ]
sentence-transformers/stsb-roberta-large
sentence-transformers
"2022-06-15T20:28:37Z"
47,680
3
sentence-transformers
[ "sentence-transformers", "pytorch", "tf", "jax", "roberta", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "license:apache-2.0", "endpoints_compatible", "region:us" ]
sentence-similarity
"2022-03-02T23:29:05Z"
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- **⚠️ This model is deprecated. Please don't use it as it produces sentence embeddings of low quality. You can find recommended sentence embedding models here: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html)** # sentence-transformers/stsb-roberta-large This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/stsb-roberta-large') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/stsb-roberta-large') model = AutoModel.from_pretrained('sentence-transformers/stsb-roberta-large') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/stsb-roberta-large) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
[ -0.2151428908109665, -0.844082772731781, 0.3532279133796692, 0.41603970527648926, -0.3749386966228485, -0.41843074560165405, -0.4004476070404053, -0.09962093830108643, 0.18552476167678833, 0.4328211545944214, -0.5118224620819092, -0.4647102952003479, -0.7717584371566772, 0.08848483860492706, -0.48734381794929504, 0.8557854890823364, -0.12575091421604156, 0.08653241395950317, -0.2880213260650635, -0.11289168149232864, -0.32028037309646606, -0.4578920900821686, -0.3363667130470276, -0.2168331742286682, 0.1785082072019577, 0.1510835736989975, 0.4637638032436371, 0.35454824566841125, 0.3073747754096985, 0.46482670307159424, -0.09394604712724686, 0.1345142275094986, -0.43273746967315674, -0.049052316695451736, 0.048393476754426956, -0.3085233271121979, -0.10003263503313065, 0.31597164273262024, 0.6125489473342896, 0.4794333577156067, -0.1109558492898941, 0.12363217771053314, -0.018586382269859314, 0.27164486050605774, -0.41206929087638855, 0.4345491826534271, -0.5510802865028381, 0.19223429262638092, 0.09764382988214493, 0.04464168846607208, -0.6915354132652283, -0.18102696537971497, 0.32239559292793274, -0.3949330449104309, 0.09525041282176971, 0.1796383559703827, 1.1350960731506348, 0.4083777368068695, -0.29582709074020386, -0.279257595539093, -0.3964013159275055, 0.8821763396263123, -0.8618654012680054, 0.2762351930141449, 0.25515374541282654, 0.0015821362612769008, -0.02747289277613163, -1.0401047468185425, -0.7396153807640076, -0.2338956743478775, -0.3602352440357208, 0.19151945412158966, -0.4364090859889984, -0.0021038881968706846, 0.17278192937374115, 0.28778740763664246, -0.7306032180786133, -0.05618522688746452, -0.4363173842430115, -0.06258173286914825, 0.4947051703929901, -0.00008956684177974239, 0.3719867467880249, -0.5821019411087036, -0.49322018027305603, -0.32868820428848267, -0.22314023971557617, -0.1790233701467514, 0.09540516883134842, 0.17400969564914703, -0.33345144987106323, 0.8051849007606506, 0.03894370421767235, 0.6207045316696167, 0.017763102427124977, 0.2901260256767273, 0.657900333404541, -0.28043603897094727, -0.36924925446510315, -0.13308973610401154, 1.107435941696167, 0.3221822679042816, 0.39129573106765747, -0.09401635825634003, -0.09718843549489975, 0.047796931117773056, 0.2942354083061218, -0.8485531210899353, -0.3996799886226654, 0.18097034096717834, -0.3672335743904114, -0.27406901121139526, 0.16909508407115936, -0.6591731905937195, 0.01662025973200798, 0.01750818081200123, 0.721852719783783, -0.6051034927368164, 0.054569024592638016, 0.334145724773407, -0.2282608300447464, 0.11476679891347885, -0.23238737881183624, -0.6553045511245728, 0.18919973075389862, 0.24644333124160767, 0.9507282972335815, 0.09222998470067978, -0.4678734838962555, -0.2932252585887909, -0.12480542808771133, 0.03340761363506317, 0.6676808595657349, -0.34603366255760193, -0.12572921812534332, 0.15301567316055298, 0.3140260875225067, -0.5435751676559448, -0.3146401643753052, 0.6257937550544739, -0.3766549825668335, 0.773158073425293, 0.24606654047966003, -0.8762849569320679, -0.1825142204761505, 0.10296960920095444, -0.5110734105110168, 1.0145591497421265, 0.27410921454429626, -0.8741552829742432, 0.06602407991886139, -0.7675195932388306, -0.3134767413139343, -0.14557185769081116, 0.11251071840524673, -0.7675696611404419, 0.14281445741653442, 0.4418010115623474, 0.7414297461509705, 0.09095309674739838, 0.42594102025032043, -0.2624298930168152, -0.4626446068286896, 0.40404993295669556, -0.4086042642593384, 1.1742262840270996, 0.11647885292768478, -0.34854912757873535, 0.21250249445438385, -0.5259450078010559, -0.09430675208568573, 0.3513380289077759, -0.16246959567070007, -0.19345098733901978, -0.09686059504747391, 0.3885875642299652, 0.27092036604881287, 0.21827936172485352, -0.686399519443512, 0.1912384182214737, -0.6003119945526123, 1.0027499198913574, 0.6152336597442627, -0.022732218727469444, 0.5806145668029785, -0.26287660002708435, 0.26497766375541687, 0.2949267029762268, 0.026064127683639526, -0.24517273902893066, -0.37001752853393555, -0.9641923904418945, -0.35702767968177795, 0.3886435627937317, 0.487068772315979, -0.6738348603248596, 1.1431514024734497, -0.4895051419734955, -0.5202219486236572, -0.6759307980537415, -0.0620625764131546, 0.12781617045402527, 0.3466671109199524, 0.700340747833252, -0.09551658481359482, -0.6655756831169128, -0.9035670161247253, 0.016624223440885544, 0.0846702978014946, 0.10431066155433655, 0.2553959786891937, 0.7647659182548523, -0.4695422649383545, 0.9443554282188416, -0.7283118963241577, -0.4885563552379608, -0.5062302947044373, 0.22738148272037506, 0.22281430661678314, 0.695480227470398, 0.5375340580940247, -0.6425608992576599, -0.3682176470756531, -0.6691749095916748, -0.6567235589027405, 0.09191463142633438, -0.23077915608882904, -0.16979746520519257, 0.3148877024650574, 0.5047363638877869, -0.9500369429588318, 0.350250780582428, 0.7253298163414001, -0.5365084409713745, 0.34653881192207336, -0.30330637097358704, -0.2220936268568039, -1.4241392612457275, 0.00013067542749922723, 0.11299677938222885, -0.2893104553222656, -0.33756789565086365, 0.1058124452829361, 0.13921494781970978, -0.18406520783901215, -0.442283034324646, 0.47284451127052307, -0.432965487241745, 0.11926068365573883, 0.00395808694884181, 0.4889233708381653, 0.07079765200614929, 0.6959272027015686, -0.056760694831609726, 0.7017399072647095, 0.46349385380744934, -0.49501287937164307, 0.35910579562187195, 0.7186397910118103, -0.5618123412132263, 0.16337056457996368, -0.888717532157898, -0.013289816677570343, -0.03626888990402222, 0.5525146722793579, -1.1175827980041504, -0.04807170480489731, 0.29128485918045044, -0.5782279968261719, 0.2400592714548111, 0.23242132365703583, -0.676120936870575, -0.6882724761962891, -0.3442240357398987, 0.17449738085269928, 0.6095067262649536, -0.5954975485801697, 0.5359833240509033, 0.3097299635410309, -0.04531865939497948, -0.46556153893470764, -1.1434078216552734, 0.07146058231592178, -0.1840440034866333, -0.7434905171394348, 0.565202534198761, -0.08446162194013596, 0.2214501053094864, 0.3176540732383728, 0.3298974931240082, 0.02766173705458641, -0.03890712931752205, 0.07917492091655731, 0.2694603204727173, -0.09688347578048706, 0.3267771601676941, 0.09232024848461151, -0.18683268129825592, 0.011222036555409431, -0.2991197109222412, 0.8253089189529419, -0.15173839032649994, -0.09470625966787338, -0.5039393305778503, 0.1232343390583992, 0.4087845981121063, -0.3430324196815491, 1.1209222078323364, 1.0494309663772583, -0.3783034384250641, -0.1484382450580597, -0.5447995662689209, -0.2861720025539398, -0.4670886695384979, 0.6877810955047607, -0.12934492528438568, -1.0582499504089355, 0.2864772379398346, 0.14980988204479218, -0.07961118966341019, 0.6229068636894226, 0.5416738390922546, -0.10586927086114883, 0.8181414604187012, 0.5774450898170471, -0.21963536739349365, 0.5659210085868835, -0.6869860887527466, 0.33808907866477966, -1.0439397096633911, 0.010350133292376995, -0.32280483841896057, -0.26600420475006104, -0.7064661383628845, -0.5470672845840454, 0.20862607657909393, -0.1301926076412201, -0.3958415687084198, 0.5965816974639893, -0.6093862056732178, 0.13992410898208618, 0.6277334094047546, 0.17653948068618774, -0.09350776672363281, 0.016872946172952652, -0.25167760252952576, -0.06877753138542175, -0.6782709360122681, -0.5132318139076233, 0.8962725400924683, 0.436812162399292, 0.471998006105423, -0.12356012314558029, 0.6821408867835999, -0.01525830291211605, -0.004638927057385445, -0.7214930653572083, 0.5542182922363281, -0.3867332935333252, -0.45905542373657227, -0.3490438461303711, -0.39635568857192993, -0.9282141327857971, 0.3659312129020691, -0.24862481653690338, -0.7600039839744568, -0.011769750155508518, -0.22124545276165009, -0.30296269059181213, 0.24829991161823273, -0.783785343170166, 1.1155078411102295, 0.05435677245259285, -0.10138378292322159, -0.17019787430763245, -0.6154783964157104, 0.20819778740406036, 0.2718302309513092, 0.06050144135951996, 0.04856610298156738, 0.040577154606580734, 0.8353671431541443, -0.25542914867401123, 0.9828253388404846, -0.17674286663532257, 0.21313682198524475, 0.3395126461982727, -0.30650463700294495, 0.37211519479751587, -0.07044834643602371, -0.03523891419172287, 0.08539817482233047, -0.20945432782173157, -0.3464786410331726, -0.5058099627494812, 0.7636299133300781, -0.9904067516326904, -0.43414783477783203, -0.5198462009429932, -0.590765118598938, -0.07379882037639618, 0.17605075240135193, 0.3663870394229889, 0.47861248254776, -0.21207673847675323, 0.5433810949325562, 0.4940096139907837, -0.43263155221939087, 0.6991059184074402, 0.1178390383720398, -0.029126973822712898, -0.5436309576034546, 0.5950278043746948, 0.08545345067977905, 0.011241193860769272, 0.4184119701385498, 0.22395756840705872, -0.4341071844100952, -0.24717561900615692, -0.39893266558647156, 0.44609731435775757, -0.5101045370101929, -0.22142508625984192, -1.0739479064941406, -0.5167965292930603, -0.687778651714325, -0.060479786247015, -0.23726965487003326, -0.5003769397735596, -0.5852461457252502, -0.3226359784603119, 0.39299851655960083, 0.5085822343826294, 0.03406207263469696, 0.43066152930259705, -0.7566611170768738, 0.12032116949558258, 0.09131348133087158, 0.14188764989376068, -0.04466995596885681, -0.819517970085144, -0.38073015213012695, -0.01826760731637478, -0.42549318075180054, -0.7826734781265259, 0.6727425456047058, 0.1867518573999405, 0.5086491107940674, 0.1368500292301178, 0.11198386549949646, 0.6353128552436829, -0.5727173089981079, 0.973325252532959, 0.05551513284444809, -1.0664582252502441, 0.4645387828350067, -0.10979300737380981, 0.3974057137966156, 0.4172815978527069, 0.33241111040115356, -0.45610707998275757, -0.41548094153404236, -0.7919976711273193, -1.0914194583892822, 0.6513485312461853, 0.3649372458457947, 0.6189452409744263, -0.3275698125362396, 0.2565222680568695, -0.2975424826145172, 0.1702026128768921, -1.1661771535873413, -0.28105661273002625, -0.3663322925567627, -0.6158755421638489, -0.4384770691394806, -0.3204326927661896, 0.172867089509964, -0.3739214241504669, 0.7915095686912537, 0.07570216804742813, 0.7110075950622559, 0.3212452530860901, -0.5704157948493958, 0.10925910621881485, 0.2130371630191803, 0.5819674730300903, 0.19491900503635406, -0.0911518856883049, 0.11863639950752258, 0.21585655212402344, -0.3120751678943634, -0.03297082707285881, 0.5103986859321594, -0.16569483280181885, 0.1408124566078186, 0.45262831449508667, 0.9932106137275696, 0.6076978445053101, -0.4900178611278534, 0.8140185475349426, -0.03797897323966026, -0.2138494849205017, -0.5875206589698792, -0.08853902667760849, 0.3150331974029541, 0.3065362572669983, 0.2037457674741745, -0.006561317481100559, -0.029424574226140976, -0.3898433744907379, 0.2908126711845398, 0.3032800853252411, -0.46370929479599, -0.05291943997144699, 0.6840676665306091, 0.10771407932043076, -0.16509123146533966, 1.000153660774231, -0.2519051730632782, -0.7327916026115417, 0.4303452670574188, 0.7206477522850037, 0.9706400036811829, 0.017132585868239403, 0.33705562353134155, 0.5618911981582642, 0.32465827465057373, -0.06555826216936111, -0.06495489925146103, 0.1672121286392212, -0.8373478651046753, -0.2986709773540497, -0.644888699054718, 0.12855571508407593, 0.018781019374728203, -0.5350109338760376, 0.24040783941745758, -0.12110026925802231, -0.1298595815896988, -0.23823407292366028, 0.06130068376660347, -0.6471356153488159, 0.07097558677196503, -0.03253503516316414, 0.8419673442840576, -0.9693319797515869, 0.7887685298919678, 0.6374510526657104, -0.7623612880706787, -0.7255132794380188, -0.059879153966903687, -0.34442001581192017, -0.7772654294967651, 0.6077203750610352, 0.4850919842720032, 0.2560628056526184, 0.23721732199192047, -0.5900008678436279, -0.8596941828727722, 1.3354706764221191, 0.2278245985507965, -0.4231553077697754, -0.22409260272979736, 0.031816791743040085, 0.5480442047119141, -0.5295503735542297, 0.351227730512619, 0.2991180717945099, 0.41195353865623474, -0.0670023262500763, -0.6742019653320312, 0.24216574430465698, -0.23616734147071838, 0.24670031666755676, -0.15792778134346008, -0.6306658387184143, 1.0339629650115967, -0.10353262722492218, -0.1917840540409088, 0.3007623851299286, 0.8684204816818237, 0.2536175847053528, -0.09954638034105301, 0.43013694882392883, 0.9011200070381165, 0.587770402431488, -0.14932365715503693, 0.9699045419692993, -0.3153005838394165, 0.7397146224975586, 1.072837233543396, 0.06522596627473831, 1.1284092664718628, 0.3934297263622284, -0.10490410029888153, 0.8885730504989624, 0.4727082848548889, -0.39044997096061707, 0.5695729851722717, 0.3313646912574768, 0.10815463215112686, -0.05011330544948578, 0.1530100703239441, -0.2268849015235901, 0.572266697883606, 0.19107075035572052, -0.7844741344451904, 0.037099748849868774, 0.21732750535011292, 0.09575391560792923, 0.07558316737413406, 0.140293687582016, 0.5893405675888062, 0.16721796989440918, -0.4735267460346222, 0.40987029671669006, 0.1617048978805542, 0.9742392301559448, -0.3459663391113281, 0.14511913061141968, 0.014912078157067299, 0.40643733739852905, 0.026155397295951843, -0.5900278091430664, 0.28112146258354187, -0.14258159697055817, -0.006907990202307701, -0.22838518023490906, 0.5450993776321411, -0.6615882515907288, -0.6512892842292786, 0.3812544047832489, 0.481729120016098, 0.009788104332983494, 0.03140243887901306, -0.9659708738327026, 0.07190294563770294, -0.06512559950351715, -0.5632210373878479, 0.183011993765831, 0.32425278425216675, 0.3894771635532379, 0.580955445766449, 0.39884063601493835, -0.10314856469631195, 0.04024533927440643, 0.1655130237340927, 0.8249632716178894, -0.6572925448417664, -0.5581555366516113, -0.8652206063270569, 0.7200632095336914, -0.2309371381998062, -0.3195559084415436, 0.719770610332489, 0.5278717279434204, 0.8931457996368408, -0.30532532930374146, 0.5737693309783936, -0.10213958472013474, 0.2473779022693634, -0.5747288465499878, 0.8272454142570496, -0.4740479588508606, -0.08740442246198654, -0.2864692509174347, -0.9919965863227844, -0.33542200922966003, 1.1732420921325684, -0.392116904258728, 0.2257256805896759, 0.925049901008606, 0.7569239735603333, -0.10534242540597916, -0.03801152482628822, 0.1401379555463791, 0.5534219741821289, 0.2557801604270935, 0.5546028017997742, 0.46529334783554077, -0.8308629393577576, 0.6087599992752075, -0.4379960000514984, -0.09434767812490463, -0.2518787980079651, -0.8276880979537964, -0.9976611733436584, -0.8972564935684204, -0.40810516476631165, -0.33676669001579285, -0.05398576706647873, 1.1241191625595093, 0.6569127440452576, -0.6643676161766052, -0.05413290858268738, -0.23606598377227783, -0.23727811872959137, -0.06221967190504074, -0.316188782453537, 0.5647500157356262, -0.5374675989151001, -0.8736568093299866, 0.17333157360553741, -0.10615628957748413, 0.1332474648952484, -0.4497160315513611, 0.15366195142269135, -0.5975777506828308, 0.10093449056148529, 0.6557207107543945, -0.2939905524253845, -0.7751516103744507, -0.37673068046569824, -0.0026981611736118793, -0.36886468529701233, -0.1268775761127472, 0.323922336101532, -0.7111760377883911, 0.18334005773067474, 0.35747331380844116, 0.5498818755149841, 0.7345816493034363, -0.18870525062084198, 0.4847866892814636, -0.7275090217590332, 0.27972081303596497, 0.15360620617866516, 0.7181576490402222, 0.4797396659851074, -0.26422983407974243, 0.591126561164856, 0.18535065650939941, -0.5872392058372498, -0.6661786437034607, -0.09964227676391602, -1.113680362701416, -0.36291182041168213, 1.1696761846542358, -0.4308320879936218, -0.3600201904773712, 0.2528323531150818, -0.2149071842432022, 0.4957202970981598, -0.3065125048160553, 0.7701103687286377, 0.8194074630737305, 0.08115365356206894, -0.29590851068496704, -0.3199923038482666, 0.18742509186267853, 0.3999147415161133, -0.604394793510437, -0.11355086416006088, 0.38127851486206055, 0.3009833097457886, 0.29471850395202637, 0.3716132938861847, -0.1437874585390091, -0.01685221865773201, 0.003549364162608981, 0.11272182315587997, -0.24307292699813843, -0.04068409651517868, -0.3907232880592346, 0.11960110068321228, -0.3722059726715088, -0.2873201072216034 ]
guillaumekln/faster-whisper-base
guillaumekln
"2023-05-12T18:57:32Z"
47,613
9
ctranslate2
[ "ctranslate2", "audio", "automatic-speech-recognition", "en", "zh", "de", "es", "ru", "ko", "fr", "ja", "pt", "tr", "pl", "ca", "nl", "ar", "sv", "it", "id", "hi", "fi", "vi", "he", "uk", "el", "ms", "cs", "ro", "da", "hu", "ta", "no", "th", "ur", "hr", "bg", "lt", "la", "mi", "ml", "cy", "sk", "te", "fa", "lv", "bn", "sr", "az", "sl", "kn", "et", "mk", "br", "eu", "is", "hy", "ne", "mn", "bs", "kk", "sq", "sw", "gl", "mr", "pa", "si", "km", "sn", "yo", "so", "af", "oc", "ka", "be", "tg", "sd", "gu", "am", "yi", "lo", "uz", "fo", "ht", "ps", "tk", "nn", "mt", "sa", "lb", "my", "bo", "tl", "mg", "as", "tt", "haw", "ln", "ha", "ba", "jw", "su", "license:mit", "region:us" ]
automatic-speech-recognition
"2023-03-23T10:19:37Z"
--- language: - en - zh - de - es - ru - ko - fr - ja - pt - tr - pl - ca - nl - ar - sv - it - id - hi - fi - vi - he - uk - el - ms - cs - ro - da - hu - ta - 'no' - th - ur - hr - bg - lt - la - mi - ml - cy - sk - te - fa - lv - bn - sr - az - sl - kn - et - mk - br - eu - is - hy - ne - mn - bs - kk - sq - sw - gl - mr - pa - si - km - sn - yo - so - af - oc - ka - be - tg - sd - gu - am - yi - lo - uz - fo - ht - ps - tk - nn - mt - sa - lb - my - bo - tl - mg - as - tt - haw - ln - ha - ba - jw - su tags: - audio - automatic-speech-recognition license: mit library_name: ctranslate2 --- # Whisper base model for CTranslate2 This repository contains the conversion of [openai/whisper-base](https://huggingface.co/openai/whisper-base) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/guillaumekln/faster-whisper). ## Example ```python from faster_whisper import WhisperModel model = WhisperModel("base") segments, info = model.transcribe("audio.mp3") for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` ## Conversion details The original model was converted with the following command: ``` ct2-transformers-converter --model openai/whisper-base --output_dir faster-whisper-base \ --copy_files tokenizer.json --quantization float16 ``` Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html). ## More information **For more information about the original model, see its [model card](https://huggingface.co/openai/whisper-base).**
[ 0.13321103155612946, -0.3820091784000397, 0.21704919636249542, 0.44851016998291016, -0.44091349840164185, -0.27078503370285034, -0.46044716238975525, -0.33799582719802856, 0.007894760929048061, 0.8159843683242798, -0.4721483886241913, -0.6582362651824951, -0.6121678948402405, -0.4266120195388794, -0.35417118668556213, 0.9733129739761353, -0.14176416397094727, 0.23826590180397034, 0.42100340127944946, -0.09736917167901993, -0.45146334171295166, -0.2736191153526306, -0.6640986800193787, -0.40708187222480774, 0.06794317066669464, 0.23015210032463074, 0.6349928975105286, 0.40368035435676575, 0.4047371447086334, 0.2474265694618225, -0.3608933091163635, -0.0898730531334877, -0.3306322395801544, -0.08345869928598404, 0.20544525980949402, -0.6880646347999573, -0.7850642800331116, 0.08090963214635849, 0.6637852787971497, 0.2855151295661926, -0.31308281421661377, 0.3995175361633301, -0.2666783928871155, 0.3882717192173004, -0.601050615310669, 0.2852778136730194, -0.581932544708252, -0.009248199872672558, -0.1485660821199417, -0.2791776955127716, -0.6213923096656799, -0.3464246988296509, 0.5509623885154724, -0.8460143804550171, 0.18294991552829742, -0.1070672795176506, 0.8839186429977417, 0.27425581216812134, -0.5565759539604187, -0.350095272064209, -0.9529088139533997, 0.9745998382568359, -0.7580645084381104, 0.31621450185775757, 0.2753826975822449, 0.4579606354236603, 0.19955413043498993, -1.0856257677078247, -0.13390345871448517, -0.15054142475128174, 0.19493135809898376, 0.3666825294494629, -0.44601354002952576, 0.2886027693748474, 0.18456953763961792, 0.5371754169464111, -0.6868234276771545, -0.23671366274356842, -0.7276431918144226, -0.42836207151412964, 0.40673500299453735, 0.06145500764250755, 0.23261448740959167, -0.21157681941986084, -0.3841799199581146, -0.5725911259651184, -0.6340380311012268, 0.019752848893404007, 0.5173781514167786, 0.2634369134902954, -0.636436939239502, 0.6454051733016968, 0.0627218559384346, 0.39928746223449707, 0.18201111257076263, -0.29501837491989136, 0.49068528413772583, -0.2515823543071747, -0.1896379142999649, 0.5113797783851624, 0.5963411331176758, 0.5094785690307617, 0.1754988580942154, 0.21879680454730988, -0.23891033232212067, -0.004746048711240292, 0.13291028141975403, -1.1319242715835571, -0.48098552227020264, 0.2896675169467926, -0.92270827293396, -0.30789899826049805, 0.026584990322589874, -0.2060060352087021, 0.11369872838258743, -0.13284248113632202, 0.6112551689147949, -0.5545732975006104, -0.6958383917808533, 0.40345659852027893, -0.5933626890182495, 0.16729025542736053, 0.35638880729675293, -0.8587296605110168, 0.534040093421936, 0.5659826993942261, 1.1152578592300415, 0.02697168104350567, -0.10031449794769287, -0.2696725130081177, 0.32006239891052246, -0.11766757816076279, 0.5540866255760193, 0.03910805284976959, -0.6764895915985107, -0.04342042654752731, -0.14054405689239502, -0.11137544363737106, -0.6676388382911682, 0.6435976028442383, -0.24946805834770203, 0.34886789321899414, 0.24779033660888672, -0.27845248579978943, -0.22715425491333008, 0.03127794712781906, -0.6936087608337402, 1.063926339149475, 0.5502967834472656, -0.7307014465332031, -0.1662462204694748, -0.7968719005584717, -0.20912079513072968, -0.13382740318775177, 0.4988195598125458, -0.35247498750686646, 0.26433485746383667, -0.08697997033596039, -0.08753742277622223, -0.3708069920539856, 0.31817808747291565, -0.06494644284248352, -0.4430384039878845, 0.2486516535282135, -0.4311146140098572, 1.0396316051483154, 0.2957310974597931, -0.03226315602660179, 0.3566970229148865, -0.6448051929473877, 0.08675359934568405, -0.0703023374080658, -0.37918373942375183, -0.3177485167980194, -0.17644183337688446, 0.5280149579048157, -0.12584058940410614, 0.33905330300331116, -0.5629799365997314, 0.2674534320831299, -0.5816534161567688, 0.7204877734184265, 0.39230284094810486, -0.04137473553419113, 0.5044687390327454, -0.42777204513549805, 0.06157021224498749, 0.23601971566677094, 0.39008739590644836, -0.04129404202103615, -0.5929164886474609, -0.7611299753189087, -0.06438607722520828, 0.362199068069458, 0.4948095381259918, -0.41546696424484253, 0.3685339689254761, -0.32530614733695984, -0.9391490817070007, -0.9098053574562073, -0.43529441952705383, 0.2974509000778198, 0.4096164405345917, 0.6359658241271973, -0.11330930143594742, -0.8477126955986023, -0.8299311995506287, -0.07407612353563309, -0.4746856689453125, -0.19308406114578247, 0.1713818460702896, 0.4807257652282715, -0.19803451001644135, 0.743649959564209, -0.6383035778999329, -0.4567076563835144, -0.27023249864578247, 0.3985249698162079, 0.3101195991039276, 0.8748765587806702, 0.6835575699806213, -0.8225238919258118, -0.23759351670742035, -0.2126615196466446, -0.3212457597255707, -0.0647234097123146, -0.009217523969709873, -0.14590977132320404, 0.022835636511445045, -0.0251925066113472, -0.8324398994445801, 0.4637935757637024, 0.7910702228546143, -0.33701273798942566, 0.6079409122467041, 0.09160978347063065, -0.02010340802371502, -1.3212288618087769, 0.18603792786598206, -0.06053575128316879, -0.15741625428199768, -0.7186277508735657, -0.003257553558796644, 0.21907491981983185, 0.13503415882587433, -0.7243243455886841, 0.5970818996429443, -0.1486714780330658, -0.06643106043338776, -0.24861416220664978, -0.3921520709991455, -0.11667189002037048, 0.3374072313308716, 0.5047470331192017, 0.7880285382270813, 0.47641152143478394, -0.40231233835220337, 0.20088405907154083, 0.5948407649993896, -0.14025293290615082, 0.1349404901266098, -1.0884946584701538, 0.17344973981380463, 0.2549363374710083, 0.512236475944519, -0.6646395325660706, 0.04232553020119667, 0.2853626608848572, -0.7455977201461792, 0.13537532091140747, -0.8056484460830688, -0.45194897055625916, -0.13535286486148834, -0.4732000529766083, 0.4876843988895416, 0.7883277535438538, -0.3879944384098053, 0.7800287008285522, 0.2310849279165268, 0.10047655552625656, -0.17041058838367462, -1.0700769424438477, -0.08015307039022446, -0.10462423413991928, -0.7782110571861267, 0.7799597978591919, -0.2797302007675171, -0.18077261745929718, -0.07240947335958481, -0.09368020296096802, -0.2987014055252075, -0.1325584203004837, 0.5443356037139893, 0.3987084627151489, -0.5186690092086792, -0.30053624510765076, 0.43631529808044434, -0.43628665804862976, 0.12919427454471588, -0.5956169366836548, 0.8086885213851929, -0.19454209506511688, -0.022437652572989464, -0.6181808710098267, 0.1227576956152916, 0.5912185907363892, -0.23515832424163818, 0.4323958456516266, 0.6847936511039734, -0.42575329542160034, -0.19747544825077057, -0.46555623412132263, -0.16816113889217377, -0.4829913377761841, 0.24457700550556183, -0.4053870439529419, -0.7316244840621948, 0.4421076476573944, 0.11206565797328949, 0.037879906594753265, 0.8232854604721069, 0.6810343265533447, 0.09010934084653854, 1.0941990613937378, 0.40890753269195557, 0.24319621920585632, 0.42997977137565613, -0.7878043055534363, -0.28862565755844116, -1.2052831649780273, -0.3351304829120636, -0.6444982886314392, -0.09421075880527496, -0.2689584195613861, -0.2598445415496826, 0.48200851678848267, 0.20636294782161713, -0.44022494554519653, 0.7312285900115967, -0.7151849269866943, -0.06674287468194962, 0.5574397444725037, 0.18796421587467194, 0.36509597301483154, 0.03546620160341263, 0.20691217482089996, -0.11819768697023392, -0.2993761897087097, -0.3788050711154938, 1.1708030700683594, 0.6182600855827332, 0.7595322728157043, 0.3146395981311798, 0.6320203542709351, 0.13802847266197205, 0.20192977786064148, -0.8904621005058289, 0.20802581310272217, -0.2368263453245163, -0.5746038556098938, 0.03506750613451004, -0.2945435643196106, -0.6368377804756165, 0.08736788481473923, 0.06846009194850922, -0.5355603694915771, 0.09387020021677017, 0.049648478627204895, -0.06775914132595062, 0.3810275197029114, -0.5352702736854553, 0.71142578125, 0.08415397256612778, 0.38978779315948486, -0.21781006455421448, -0.3930127024650574, 0.5223219394683838, 0.25370126962661743, -0.39069750905036926, 0.057550281286239624, -0.05832270160317421, 1.025915265083313, -0.7261074781417847, 0.8188796639442444, -0.4440802335739136, -0.19761861860752106, 0.6918626427650452, 0.15809005498886108, 0.31851625442504883, 0.10859354585409164, -0.19967369735240936, 0.5068501830101013, 0.34748733043670654, -0.04198438301682472, -0.35372957587242126, 0.5362209677696228, -1.3314948081970215, -0.06888039410114288, -0.19715574383735657, -0.5468156337738037, 0.30557113885879517, 0.11891017854213715, 0.6511772274971008, 0.6599450707435608, -0.04974300414323807, 0.21981428563594818, 0.7076993584632874, 0.22126786410808563, 0.34723007678985596, 0.6349489092826843, -0.04820165038108826, -0.8230056166648865, 0.7144805788993835, 0.2021608203649521, 0.30732297897338867, 0.43273410201072693, 0.357913613319397, -0.5434447526931763, -1.0292878150939941, -0.48020613193511963, 0.026084478944540024, -0.6402387022972107, -0.3831785321235657, -0.7158716320991516, -0.5840761065483093, -0.5345062613487244, 0.1732424944639206, -0.6649990677833557, -0.7400213479995728, -0.5498372316360474, 0.25451040267944336, 0.6977106332778931, 0.44981709122657776, 0.03719959408044815, 0.7493560314178467, -1.1058045625686646, 0.3092680275440216, 0.009368772618472576, 0.10014380514621735, 0.20060360431671143, -0.9911385774612427, -0.09815625101327896, 0.18708305060863495, -0.3150429129600525, -0.881135106086731, 0.44586649537086487, 0.030216006562113762, 0.20794619619846344, 0.12251222133636475, 0.06306959688663483, 0.8039945363998413, -0.22802874445915222, 0.9902307391166687, 0.35346126556396484, -1.231347918510437, 0.7189795970916748, -0.5245475769042969, 0.1744590401649475, 0.536036491394043, 0.10290849953889847, -0.6242043375968933, -0.06429631263017654, -0.6208488941192627, -0.7934002876281738, 0.8028547167778015, 0.4611891806125641, -0.03455885872244835, 0.26662740111351013, 0.20142006874084473, 0.14902743697166443, 0.21204479038715363, -0.7517347931861877, -0.35871028900146484, -0.7544581890106201, -0.4533486068248749, 0.3553790748119354, -0.29165011644363403, -0.06969010829925537, -0.17300832271575928, 0.7699078321456909, -0.20591789484024048, 0.3738586902618408, 0.5281450748443604, -0.2787223160266876, -0.2060079276561737, 0.028972504660487175, 0.6649896502494812, 0.13912591338157654, -0.6498964428901672, -0.09476426988840103, 0.1642192155122757, -0.8933613896369934, -0.039421338587999344, -0.008408864960074425, -0.3851549029350281, 0.216476172208786, 0.5616374611854553, 0.8829265236854553, 0.38470080494880676, -0.2990929186344147, 0.6656598448753357, -0.05469099432229996, -0.4596884250640869, -0.8241797685623169, 0.1631074845790863, 0.2746500074863434, 0.1610420197248459, 0.5331762433052063, 0.33225274085998535, 0.294816792011261, -0.43424564599990845, -0.16699419915676117, 0.08174600452184677, -0.503799319267273, -0.5508735179901123, 0.739429235458374, 0.18779000639915466, -0.377437949180603, 0.675057053565979, 0.1739608198404312, -0.2863919138908386, 0.5838841199874878, 0.8138819336891174, 1.297675609588623, -0.12407748401165009, 0.0256633497774601, 0.5417471528053284, 0.24024486541748047, -0.2044016569852829, 0.6855328679084778, -0.19068259000778198, -0.49086272716522217, -0.40354475378990173, -0.6785093545913696, -0.4842902719974518, 0.08910174667835236, -0.9689813256263733, 0.3146970570087433, -0.5770570635795593, -0.25662514567375183, 0.007354154251515865, 0.07334854453802109, -0.5033482313156128, -0.0020385480020195246, 0.2514195740222931, 1.5049759149551392, -0.6409936547279358, 1.1713688373565674, 0.5982711315155029, -0.41916999220848083, -0.9216445684432983, -0.23983603715896606, -0.08200331032276154, -0.6768353581428528, 0.6880893707275391, 0.1171705350279808, -0.1205805242061615, 0.063878633081913, -0.729500412940979, -0.9032653570175171, 1.40773606300354, 0.06759840250015259, -0.5198794007301331, -0.2600805163383484, 0.10455459356307983, 0.5145043134689331, -0.6125603914260864, 0.7215022444725037, 0.3491400182247162, 0.7835301160812378, 0.11770094186067581, -1.2196130752563477, 0.006246156059205532, -0.2223431020975113, 0.22860907018184662, 0.052216194570064545, -0.7990313172340393, 1.257393717765808, -0.10523459315299988, -0.04575781896710396, 0.8558550477027893, 0.7086054086685181, 0.42902758717536926, 0.29990166425704956, 0.5372236967086792, 0.4863662123680115, 0.32602614164352417, -0.32098090648651123, 0.5731543302536011, -0.231705904006958, 0.5404537320137024, 0.9089093804359436, -0.33494439721107483, 1.013636589050293, 0.31546130776405334, -0.02985883504152298, 0.8357656002044678, 0.370414137840271, -0.32608798146247864, 0.6214264631271362, -0.03308256343007088, -0.02395692653954029, -0.06232002004981041, -0.07232961058616638, -0.5552895069122314, 0.6927111148834229, 0.44458523392677307, -0.3659394085407257, -0.20385020971298218, -0.1848263442516327, 0.05213654786348343, -0.24037101864814758, -0.38981887698173523, 0.6831693649291992, -0.13780151307582855, -0.4572446942329407, 0.7254775166511536, 0.39793482422828674, 0.9820431470870972, -1.0546417236328125, -0.19092434644699097, 0.2828478217124939, 0.18958546221256256, -0.31723201274871826, -0.7825381755828857, 0.4546939730644226, -0.18470920622348785, -0.40330469608306885, -0.047872208058834076, 0.7474313378334045, -0.6462815999984741, -0.323649138212204, 0.41379284858703613, 0.23876601457595825, 0.27622708678245544, -0.3404802083969116, -0.7574751377105713, 0.4283524453639984, 0.21358010172843933, -0.3316297233104706, 0.19023744761943817, -0.15551188588142395, -0.04614559933543205, 0.43253493309020996, 0.9839301705360413, 0.1985090970993042, 0.031595904380083084, 0.1516571044921875, 0.7535883784294128, -0.683732807636261, -0.7229655385017395, -0.4086364209651947, 0.6142703294754028, -0.008195750415325165, -0.7928073406219482, 0.4900415539741516, 0.9051545858383179, 0.5219340324401855, -0.3405635356903076, 0.7248574495315552, 0.025581976398825645, 0.41873177886009216, -0.7959815859794617, 0.783981442451477, -0.29454848170280457, -0.18160933256149292, -0.013998918235301971, -0.8591318726539612, 0.08870662748813629, 0.3720666170120239, 0.06445072591304779, -0.18735893070697784, 0.6012184023857117, 0.8353973031044006, -0.15746793150901794, 0.2711186707019806, -0.014885557815432549, 0.3964710831642151, 0.3103121221065521, 0.6170321702957153, 0.6903082728385925, -1.0169419050216675, 0.7382588982582092, -0.3743737041950226, -0.0617608018219471, -0.08737480640411377, -0.6349658370018005, -0.9301413893699646, -0.5683667659759521, -0.4637526869773865, -0.6511598229408264, -0.02774803340435028, 0.9334020018577576, 1.0607168674468994, -0.7379356026649475, -0.4582540988922119, 0.010647803544998169, -0.11959116905927658, -0.025188975036144257, -0.30012017488479614, 0.47597187757492065, 0.338020920753479, -0.7857310771942139, 0.6043490767478943, 0.06698895990848541, 0.4686925709247589, -0.3093358874320984, -0.45327621698379517, 0.3041480481624603, -0.07700575888156891, 0.3634531795978546, 0.05896724760532379, -0.8277591466903687, -0.11932256072759628, -0.11873499304056168, -0.03600741922855377, 0.20339052379131317, 0.8175442218780518, -0.8316023349761963, 0.03616054728627205, 0.6565811634063721, -0.23925787210464478, 0.7630221843719482, -0.2406703382730484, 0.30528128147125244, -0.5699038505554199, 0.4309455156326294, 0.2914785146713257, 0.4253079295158386, 0.1631944477558136, -0.13270479440689087, 0.41899651288986206, 0.31113484501838684, -0.2451566904783249, -0.9244107604026794, 0.032075006514787674, -1.4623408317565918, -0.04739376902580261, 1.1091963052749634, 0.00025240943068638444, -0.35168057680130005, 0.16896367073059082, -0.6437925100326538, 0.3970491290092468, -0.6850072741508484, 0.10706247389316559, 0.14186160266399384, 0.35402655601501465, -0.08117759972810745, -0.2820940315723419, 0.3905913233757019, -0.02072959393262863, -0.3630349636077881, 0.04539438337087631, 0.14345303177833557, 0.5917879343032837, 0.4847950339317322, 0.603756308555603, -0.4900362193584442, 0.5040211081504822, 0.27386072278022766, 0.45840418338775635, -0.4431009292602539, -0.38513216376304626, -0.3128799796104431, 0.057371288537979126, -0.07973388582468033, -0.3346066474914551 ]
microsoft/unixcoder-base
microsoft
"2022-11-09T04:01:00Z"
47,556
26
transformers
[ "transformers", "pytorch", "roberta", "feature-extraction", "en", "arxiv:2203.03850", "arxiv:1910.09700", "license:apache-2.0", "endpoints_compatible", "region:us" ]
feature-extraction
"2022-03-23T05:47:38Z"
--- language: - en license: apache-2.0 --- # Model Card for UniXcoder-base # Model Details ## Model Description UniXcoder is a unified cross-modal pre-trained model that leverages multimodal data (i.e. code comment and AST) to pretrain code representation. - **Developed by:** Microsoft Team - **Shared by [Optional]:** Hugging Face - **Model type:** Feature Engineering - **Language(s) (NLP):** en - **License:** Apache-2.0 - **Related Models:** - **Parent Model:** RoBERTa - **Resources for more information:** - [Associated Paper](https://arxiv.org/abs/2203.03850) # Uses ## Direct Use Feature Engineering ## Downstream Use [Optional] More information needed ## Out-of-Scope Use More information needed # Bias, Risks, and Limitations Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. ## Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. # Training Details ## Training Data More information needed ## Training Procedure ### Preprocessing More information needed ### Speeds, Sizes, Times More information needed # Evaluation ## Testing Data, Factors & Metrics ### Testing Data More information needed ### Factors The model creators note in the [associated paper](https://arxiv.org/abs/2203.03850): > UniXcoder has slightly worse BLEU-4 scores on both code summarization and generation tasks. The main reasons may come from two aspects. One is the amount of NL-PL pairs in the pre-training data ### Metrics The model creators note in the [associated paper](https://arxiv.org/abs/2203.03850): > We evaluate UniXcoder on five tasks over nine public datasets, including two understanding tasks, two generation tasks and an autoregressive task. To further evaluate the performance of code fragment embeddings, we also propose a new task called zero-shot code-to-code search. ## Results The model creators note in the [associated paper](https://arxiv.org/abs/2203.03850): >Taking zero-shot code-code search task as an example, after removing contrastive learning, the performance drops from 20.45% to 13.73%. # Model Examination More information needed # Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** More information needed - **Hours used:** More information needed - **Cloud Provider:** More information needed - **Compute Region:** More information needed - **Carbon Emitted:** More information needed # Technical Specifications [optional] ## Model Architecture and Objective More information needed ## Compute Infrastructure More information needed ### Hardware More information needed ### Software More information needed # Citation **BibTeX:** ``` @misc{https://doi.org/10.48550/arxiv.2203.03850, doi = {10.48550/ARXIV.2203.03850}, url = {https://arxiv.org/abs/2203.03850}, author = {Guo, Daya and Lu, Shuai and Duan, Nan and Wang, Yanlin and Zhou, Ming and Yin, Jian}, keywords = {Computation and Language (cs.CL), Programming Languages (cs.PL), Software Engineering (cs.SE), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {UniXcoder: Unified Cross-Modal Pre-training for Code ``` # Glossary [optional] More information needed # More Information [optional] More information needed # Model Card Authors [optional] Microsoft Team in collaboration with Ezi Ozoani and the Hugging Face Team. # Model Card Contact More information needed # How to Get Started with the Model Use the code below to get started with the model. <details> <summary> Click to expand </summary> ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("microsoft/unixcoder-base") model = AutoModel.from_pretrained("microsoft/unixcoder-base") ``` </details>
[ -0.34956440329551697, -0.5850256681442261, 0.44507819414138794, -0.07001117616891861, -0.36684781312942505, 0.05154278501868248, -0.15764020383358002, -0.34802883863449097, 0.000036669702240033075, 0.5527588129043579, -0.43395334482192993, -0.4793948531150818, -0.7047404050827026, 0.02351466566324234, -0.49193400144577026, 0.9750709533691406, 0.011567333713173866, 0.0996650829911232, -0.19725608825683594, 0.06816472113132477, -0.29654207825660706, -0.8927791118621826, -0.1145365908741951, 0.05965809524059296, 0.10231471806764603, 0.23479321599006653, 0.6014573574066162, 0.862800121307373, 0.5983752012252808, 0.3420662581920624, 0.10908979922533035, -0.4553874433040619, -0.4089055061340332, -0.3217354118824005, 0.1296498328447342, -0.49284425377845764, -0.61897212266922, 0.034420982003211975, 0.697253942489624, 0.631363570690155, -0.1308390200138092, 0.29295873641967773, -0.11320987343788147, 0.4192318618297577, -0.700754702091217, 0.021829837933182716, -0.6984347105026245, 0.15296946465969086, -0.29105767607688904, -0.1567767709493637, -0.3426065742969513, -0.06800367683172226, -0.2979171872138977, -0.5349920392036438, 0.30397382378578186, 0.022389043122529984, 0.8810492753982544, 0.3574405908584595, -0.33744004368782043, -0.19500644505023956, -0.6114194393157959, 0.9245252013206482, -0.9284215569496155, 0.710686445236206, 0.14831119775772095, -0.0867048054933548, 0.1513347178697586, -0.753739058971405, -0.6519386172294617, -0.2851194739341736, -0.12205558270215988, 0.12975627183914185, -0.21802110970020294, 0.2719740867614746, 0.6454975605010986, 0.5333725214004517, -0.572790801525116, -0.029707474634051323, -0.6433176398277283, -0.27735328674316406, 0.5189889669418335, 0.15719318389892578, 0.2911742627620697, -0.3727456033229828, -0.4038116931915283, -0.29285183548927307, -0.3170456886291504, 0.2828102707862854, 0.35805296897888184, 0.20585450530052185, -0.3982166349887848, 0.4208238124847412, -0.05844978988170624, 0.6068776845932007, 0.12762123346328735, -0.09513124823570251, 0.5312026143074036, -0.4403495490550995, -0.4794870913028717, -0.18287575244903564, 1.0130165815353394, 0.1301235854625702, -0.1623435765504837, -0.060240134596824646, -0.2550567090511322, 0.20525799691677094, 0.43418392539024353, -1.0023375749588013, -0.3339352309703827, 0.3150385320186615, -0.718576192855835, -0.30058783292770386, 0.4311578571796417, -0.4865655303001404, 0.17685401439666748, -0.33980032801628113, 0.26339709758758545, -0.4402744472026825, -0.444406658411026, 0.016678879037499428, -0.2599388062953949, 0.28566887974739075, 0.11915546655654907, -0.5066988468170166, 0.2507523000240326, 0.5493032336235046, 0.5756685137748718, -0.17469628155231476, -0.47203338146209717, -0.33708634972572327, -0.1344417929649353, -0.16834761202335358, 0.40068721771240234, -0.6565223336219788, -0.46376386284828186, -0.3284432888031006, 0.27312254905700684, -0.035807445645332336, -0.2290949523448944, 0.25849074125289917, -0.37898197770118713, 0.5478112697601318, -0.14885863661766052, -0.4423770308494568, -0.278906911611557, 0.07240298390388489, -0.58967524766922, 1.1942545175552368, 0.39176321029663086, -0.8921442627906799, 0.2232288271188736, -1.0194438695907593, -0.2599911391735077, 0.11874743551015854, -0.2692146301269531, -0.38772621750831604, 0.0653480663895607, -0.07292310893535614, 0.5939099788665771, -0.5579363107681274, 0.5347707271575928, -0.2751665413379669, -0.4694042205810547, 0.09753063321113586, -0.11172327399253845, 1.0364869832992554, 0.4805006980895996, -0.5264325141906738, 0.10403487831354141, -0.6384301781654358, 0.20332059264183044, 0.08654458075761795, -0.37302467226982117, -0.0739189013838768, -0.22190682590007782, 0.3320031762123108, 0.3156983554363251, 0.19229423999786377, -0.6249352097511292, 0.15076562762260437, -0.12633247673511505, 0.3743613660335541, 0.633621871471405, -0.31436529755592346, 0.4252215027809143, -0.12924456596374512, 0.7505795955657959, 0.28536349534988403, 0.5404828190803528, -0.32958510518074036, -0.1989997774362564, -0.630399763584137, -0.19961430132389069, 0.3953925371170044, 0.63957679271698, -0.7436938285827637, 0.5902858376502991, -0.23254480957984924, -0.5625768303871155, -0.4924022853374481, 0.21123459935188293, 0.7881947755813599, 0.2753731310367584, 0.4699127674102783, -0.7386114597320557, -0.758437991142273, -0.8262172341346741, -0.06889884173870087, -0.13832765817642212, -0.01981155201792717, 0.25528231263160706, 0.7045224905014038, -0.5492384433746338, 0.9034886956214905, -0.5258652567863464, -0.04828028008341789, -0.2807874381542206, 0.06621546298265457, 0.15388040244579315, 0.8291138410568237, 0.6060410737991333, -0.8479294180870056, -0.4688904881477356, -0.1775464564561844, -0.6535123586654663, 0.07331514358520508, -0.21317443251609802, 0.057998448610305786, 0.3971555531024933, 0.6144384145736694, -0.19138433039188385, 0.32899290323257446, 0.5997620224952698, -0.2568826675415039, 0.5524715185165405, -0.10275677591562271, 0.20987185835838318, -1.2612944841384888, 0.5047423243522644, -0.1949542909860611, -0.08575219660997391, -0.5307176113128662, 0.3483579456806183, 0.2170543670654297, -0.257478266954422, -0.49927589297294617, 0.2867860496044159, -0.6936250329017639, -0.03331756964325905, -0.11322703212499619, -0.31550276279449463, -0.12530837953090668, 0.8198044300079346, 0.16093111038208008, 0.7770262360572815, 0.7197397947311401, -0.5548653602600098, 0.16605456173419952, -0.06724987179040909, -0.08113311976194382, 0.3671915531158447, -0.7460165023803711, 0.40567463636398315, 0.12529121339321136, 0.1471482366323471, -0.6677286028862, -0.13677118718624115, 0.16110914945602417, -0.6191655993461609, 0.4471891224384308, -0.27965429425239563, -0.542327880859375, -0.5198896527290344, -0.3629087209701538, 0.478382408618927, 0.6536416411399841, -0.2723720073699951, 0.6477431654930115, 0.4456323981285095, 0.14979411661624908, -0.6147094964981079, -0.8588887453079224, 0.00824784766882658, 0.07945065945386887, -0.40448427200317383, 0.35520845651626587, -0.40535968542099, 0.20023632049560547, 0.09212040901184082, 0.050814226269721985, -0.22810481488704681, 0.14374849200248718, 0.4650613069534302, 0.36559364199638367, -0.3482239246368408, -0.14731305837631226, -0.17487293481826782, -0.20812088251113892, 0.15101400017738342, -0.20109742879867554, 0.5254887342453003, -0.29641780257225037, -0.32045552134513855, -0.38959240913391113, 0.5245992541313171, 0.5176079869270325, -0.2664267420768738, 0.6072165369987488, 0.7470366358757019, -0.18726246058940887, 0.01062072068452835, -0.7120686769485474, -0.04991145804524422, -0.49618542194366455, 0.5694922208786011, -0.26407986879348755, -0.9396703243255615, 0.4661835730075836, 0.08636380732059479, -0.17977888882160187, 0.5775454044342041, 0.3535866439342499, 0.04669523611664772, 0.865429699420929, 1.0124859809875488, -0.161687970161438, 0.6555476784706116, -0.543374240398407, 0.12789197266101837, -0.899044930934906, -0.17775045335292816, -0.6755441427230835, 0.05982830375432968, -0.6655541062355042, -0.5741552114486694, 0.09808661043643951, 0.24001610279083252, -0.4193677306175232, 0.6763843894004822, -0.9029970169067383, 0.4500207304954529, 0.5935784578323364, -0.12211660295724869, -0.15636444091796875, -0.1736701875925064, -0.30424803495407104, 0.11323394626379013, -0.8170263767242432, -0.2213236540555954, 1.066598653793335, 0.39025530219078064, 0.7177727818489075, -0.08596537262201309, 0.8468610048294067, 0.27120310068130493, 0.01064726896584034, -0.35502344369888306, 0.5257588028907776, -0.31817910075187683, -0.6041194796562195, -0.09990184754133224, -0.6878670454025269, -0.6621487140655518, -0.06836549192667007, -0.15459252893924713, -0.6550979018211365, 0.4123721420764923, 0.16635093092918396, -0.24006745219230652, 0.5600975751876831, -0.7523121237754822, 1.156692385673523, -0.4664427638053894, -0.17010653018951416, -0.011935323476791382, -0.8151498436927795, 0.37667539715766907, -0.04823713004589081, 0.3162067234516144, 0.23053394258022308, 0.06322420388460159, 0.8528621196746826, -0.5177112221717834, 0.9127992987632751, -0.38623329997062683, 0.18114812672138214, 0.08201203495264053, -0.006466395687311888, 0.2984621226787567, -0.27227509021759033, -0.15379425883293152, 0.4469239413738251, 0.38917359709739685, -0.467259019613266, -0.24353446066379547, 0.5821972489356995, -0.9958588480949402, -0.3741692900657654, -0.5418634414672852, -0.37280166149139404, 0.1887054443359375, 0.3530656397342682, 0.4192100763320923, 0.3829522728919983, -0.17235088348388672, 0.4659380614757538, 0.5833795070648193, -0.4803521931171417, 0.42338499426841736, 0.5428363680839539, -0.20552904903888702, -0.5089523196220398, 0.8649861812591553, 0.10388530045747757, 0.37457922101020813, 0.3765507638454437, -0.03366667032241821, -0.07591376453638077, -0.41943734884262085, -0.3868829905986786, 0.0726940929889679, -0.6927096843719482, -0.452940434217453, -0.8678037524223328, -0.39597856998443604, -0.6043844819068909, -0.32629138231277466, -0.5228254795074463, -0.22086942195892334, -0.29569053649902344, 0.1156248152256012, 0.27798524498939514, 0.6771395802497864, -0.1003190129995346, 0.36955612897872925, -0.8440348505973816, 0.3301171362400055, -0.0009068587678484619, 0.6367416977882385, 0.06137612462043762, -0.4723671078681946, -0.3890331983566284, 0.16540616750717163, -0.31428539752960205, -0.8036234974861145, 0.2331874668598175, 0.01825754903256893, 0.6775256991386414, 0.2343914657831192, 0.20895346999168396, 0.6809393763542175, -0.04951102286577225, 1.010474443435669, 0.4013727009296417, -1.2404732704162598, 0.5674988031387329, -0.06046349182724953, 0.5005598664283752, 0.6217993497848511, 0.45068007707595825, -0.5676330327987671, -0.2955871522426605, -0.82271409034729, -0.7657288908958435, 1.2095470428466797, 0.1132659912109375, 0.19051076471805573, 0.01267312653362751, 0.22109772264957428, -0.051952969282865524, 0.20542557537555695, -1.030387043952942, -0.3017634451389313, -0.512954831123352, 0.1103346198797226, 0.0679396316409111, -0.27957335114479065, 0.16972282528877258, -0.4711177349090576, 0.6892565488815308, -0.16507510840892792, 0.6682220697402954, 0.26372069120407104, -0.4371495246887207, -0.15806902945041656, 0.35037899017333984, 0.4643416404724121, 0.33918729424476624, -0.3770524263381958, -0.030688203871250153, 0.21365530788898468, -0.5652042627334595, -0.1766219288110733, 0.26058390736579895, -0.08299167454242706, -0.13819947838783264, 0.3846713900566101, 0.9338326454162598, 0.19914977252483368, -0.4900849461555481, 0.7632637619972229, -0.08714426308870316, -0.30256184935569763, -0.35376548767089844, 0.21854786574840546, 0.01557693351060152, -0.10001163929700851, 0.3639218509197235, 0.23184210062026978, 0.2357877492904663, -0.7454130053520203, 0.07700541615486145, 0.4096367657184601, -0.45078325271606445, -0.27053430676460266, 0.7390633821487427, 0.28237494826316833, -0.21900281310081482, 0.6513592004776001, -0.2644387483596802, -0.8790282011032104, 0.8291538953781128, 0.470158189535141, 1.0428301095962524, -0.19611753523349762, -0.0006855535320937634, 0.5280423164367676, 0.40940335392951965, 0.21656878292560577, 0.417944073677063, -0.3834349513053894, -0.4817221164703369, -0.2844293415546417, -0.6643540859222412, -0.20673397183418274, -0.16221660375595093, -0.7926210761070251, 0.34721866250038147, -0.5614612698554993, -0.04434138163924217, -0.06846171617507935, 0.218949094414711, -1.0074387788772583, 0.1868743598461151, 0.18793782591819763, 0.9119637608528137, -0.7382898926734924, 1.1758183240890503, 0.658456027507782, -0.6869627833366394, -0.9717977643013, -0.1978268176317215, -0.04905758053064346, -0.601044237613678, 0.5622262954711914, 0.1596391350030899, -0.07028795778751373, -0.13666312396526337, -0.6402274966239929, -0.8251892328262329, 1.231089472770691, 0.3302648067474365, -0.7182802557945251, -0.1086982786655426, 0.2808777391910553, 0.43873926997184753, -0.5328747034072876, 0.6925540566444397, 0.25993531942367554, 0.34164565801620483, 0.0863582044839859, -1.2024590969085693, 0.2844044864177704, -0.5693151950836182, 0.31246674060821533, 0.26081374287605286, -0.6214019656181335, 1.0917038917541504, -0.22720776498317719, -0.277202844619751, -0.10250408202409744, 0.24333782494068146, 0.011248772963881493, 0.16602997481822968, 0.5512689352035522, 0.5039917826652527, 0.584625244140625, 0.043931540101766586, 1.2720040082931519, -0.6857815980911255, 0.4277220070362091, 1.0071943998336792, -0.09204798936843872, 0.8475729823112488, 0.3782844543457031, -0.31687667965888977, 0.6366729736328125, 0.4309700131416321, -0.36477455496788025, 0.2443983107805252, -0.02495918609201908, 0.2861531972885132, -0.3170321583747864, 0.04711265116930008, -0.8234385251998901, 0.3336527347564697, 0.08473951369524002, -0.670958936214447, 0.05689442157745361, -0.04959553852677345, 0.0745362937450409, -0.16863113641738892, -0.05933474749326706, 0.871552050113678, -0.12352610379457474, -0.4623895585536957, 0.7081226110458374, 0.28845885396003723, 1.0538969039916992, -0.9063632488250732, 0.0012515824055299163, -0.05736834555864334, 0.17955109477043152, -0.3640500605106354, -0.5729179382324219, 0.36575695872306824, 0.06131541728973389, -0.405710905790329, -0.27353984117507935, 0.45286428928375244, -0.28479325771331787, -0.6560118198394775, 0.5895887613296509, 0.26937517523765564, 0.22852396965026855, -0.056325774639844894, -1.0622631311416626, 0.39510610699653625, 0.33349141478538513, -0.039220139384269714, 0.33315759897232056, 0.2935948967933655, 0.14587444067001343, 0.2970121204853058, 0.921150803565979, -0.1733001470565796, 0.08154484629631042, -0.19089274108409882, 1.158894658088684, -0.9140599966049194, -0.5557957887649536, -0.5957807898521423, 0.6582863330841064, -0.04653558135032654, -0.37532955408096313, 0.6107871532440186, 0.9149215221405029, 1.0940865278244019, -0.235579714179039, 0.8333863615989685, -0.44661781191825867, 0.3309522569179535, -0.4135604798793793, 0.6654120087623596, -0.7178053259849548, 0.3300958573818207, -0.5314247012138367, -0.8590867519378662, -0.21389929950237274, 0.4379267692565918, -0.21513642370700836, 0.2464820146560669, 0.7219446301460266, 1.0171352624893188, -0.3255738914012909, -0.07202143222093582, 0.37402865290641785, 0.35456258058547974, 0.1488761156797409, 0.5918837189674377, 0.5508076548576355, -0.6787992119789124, 0.5301754474639893, -0.5321415662765503, -0.16432349383831024, -0.09456274658441544, -0.9729960560798645, -0.7792726755142212, -0.7892816066741943, -0.40860849618911743, -0.2448996901512146, 0.06983712315559387, 1.008914828300476, 1.0281702280044556, -0.8992763161659241, -0.4345964789390564, 0.045201245695352554, -0.0917179137468338, -0.04465533792972565, -0.24338418245315552, 0.24461759626865387, -0.3146257996559143, -0.3951770067214966, -0.041756920516490936, 0.058835212141275406, -0.10127098858356476, -0.2979511022567749, -0.37998631596565247, -0.2638102173805237, -0.07875998318195343, 0.4345080852508545, 0.3046296238899231, -0.8632993698120117, 0.002708589658141136, 0.17807386815547943, -0.23080867528915405, 0.15670891106128693, 0.9494895339012146, -0.7673562169075012, 0.4067181348800659, 0.38534247875213623, 0.3878437280654907, 0.5099362134933472, -0.19631916284561157, 0.5188742280006409, -0.5933682322502136, 0.14684733748435974, 0.19675865769386292, 0.4418371915817261, 0.3054891526699066, -0.6122848987579346, 0.4386376738548279, 0.2515319883823395, -0.5303459167480469, -0.9060149192810059, -0.09965125471353531, -1.104045033454895, -0.5062033534049988, 1.0401667356491089, -0.1328667402267456, -0.2955377995967865, -0.05851258337497711, -0.25005093216896057, 0.16977116465568542, -0.43915995955467224, 0.38383209705352783, 0.43807780742645264, 0.08957063406705856, -0.4303279519081116, -0.3022247850894928, 0.4336928129196167, 0.22047285735607147, -0.68989497423172, 0.05818883329629898, 0.4713691473007202, 0.507989227771759, 0.28658074140548706, 0.8112127780914307, -0.20990721881389618, 0.518759548664093, 0.16312789916992188, 0.686878502368927, -0.39007556438446045, -0.20366360247135162, -0.395056813955307, 0.08139578253030777, -0.04483021795749664, -0.06828827410936356 ]
keremberke/yolov8s-table-extraction
keremberke
"2023-02-22T13:02:55Z"
47,380
16
ultralytics
[ "ultralytics", "tensorboard", "v8", "ultralyticsplus", "yolov8", "yolo", "vision", "object-detection", "pytorch", "awesome-yolov8-models", "dataset:keremberke/table-extraction", "model-index", "region:us" ]
object-detection
"2023-01-29T04:10:31Z"
--- tags: - ultralyticsplus - yolov8 - ultralytics - yolo - vision - object-detection - pytorch - awesome-yolov8-models library_name: ultralytics library_version: 8.0.21 inference: false datasets: - keremberke/table-extraction model-index: - name: keremberke/yolov8s-table-extraction results: - task: type: object-detection dataset: type: keremberke/table-extraction name: table-extraction split: validation metrics: - type: precision # since mAP@0.5 is not available on hf.co/metrics value: 0.98376 # min: 0.0 - max: 1.0 name: mAP@0.5(box) --- <div align="center"> <img width="640" alt="keremberke/yolov8s-table-extraction" src="https://huggingface.co/keremberke/yolov8s-table-extraction/resolve/main/thumbnail.jpg"> </div> ### Supported Labels ``` ['bordered', 'borderless'] ``` ### How to use - Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus): ```bash pip install ultralyticsplus==0.0.23 ultralytics==8.0.21 ``` - Load model and perform prediction: ```python from ultralyticsplus import YOLO, render_result # load model model = YOLO('keremberke/yolov8s-table-extraction') # set model parameters model.overrides['conf'] = 0.25 # NMS confidence threshold model.overrides['iou'] = 0.45 # NMS IoU threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 # maximum number of detections per image # set image image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference results = model.predict(image) # observe results print(results[0].boxes) render = render_result(model=model, image=image, result=results[0]) render.show() ``` **More models available at: [awesome-yolov8-models](https://yolov8.xyz)**
[ -0.5013173222541809, -0.3999418318271637, 0.5857914686203003, -0.34997430443763733, -0.4017791748046875, -0.30346956849098206, 0.14422805607318878, -0.4394983947277069, 0.2884728014469147, 0.3152005076408386, -0.510120153427124, -0.7036734819412231, -0.4064919352531433, -0.03517381101846695, -0.016280004754662514, 0.8159138560295105, 0.46878036856651306, 0.007888593710958958, -0.025200895965099335, -0.12339391559362411, -0.04284001886844635, 0.14542622864246368, -0.05718376487493515, -0.43966931104660034, 0.10664962977170944, 0.4448277950286865, 0.7411338090896606, 0.731195330619812, 0.26072537899017334, 0.5081663131713867, -0.12139860540628433, -0.08221378177404404, -0.23793546855449677, 0.2369302660226822, -0.018229598179459572, -0.46898984909057617, -0.5109838247299194, 0.029651081189513206, 0.7200804948806763, 0.28811150789260864, -0.09896504878997803, 0.4338446855545044, -0.1064150258898735, 0.39817574620246887, -0.6092464923858643, 0.30022132396698, -0.6310425996780396, 0.08494030684232712, -0.20780199766159058, -0.001842184574343264, -0.36624714732170105, -0.12538571655750275, 0.2467605173587799, -0.7999681234359741, 0.11178360879421234, 0.22226521372795105, 1.1833330392837524, 0.06232348829507828, -0.2057354897260666, 0.4196365177631378, -0.2664225995540619, 0.8546770811080933, -1.1281136274337769, 0.28469833731651306, 0.32453569769859314, 0.3206459879875183, -0.1413758099079132, -0.7034373879432678, -0.5341219902038574, -0.16398228704929352, -0.04391990229487419, 0.10261484235525131, -0.34634682536125183, -0.5091691613197327, 0.4867168068885803, 0.10687273740768433, -0.6340510249137878, 0.0840437114238739, -0.6363197565078735, -0.2557547986507416, 0.478699266910553, 0.38462531566619873, 0.28710031509399414, -0.21641133725643158, -0.4849807024002075, -0.2881065905094147, -0.18359848856925964, -0.03135351464152336, 0.10642499476671219, 0.3077034652233124, -0.48587220907211304, 0.4522501826286316, -0.47500887513160706, 0.7553669810295105, 0.0806533619761467, -0.5185332298278809, 0.8038679361343384, 0.03082060068845749, -0.3799189627170563, -0.019337167963385582, 1.376821756362915, 0.5624719858169556, -0.17400199174880981, 0.24952782690525055, -0.1808011382818222, -0.026307569816708565, 0.07569488883018494, -0.8550645112991333, -0.31343257427215576, 0.24335207045078278, -0.36756911873817444, -0.6056534051895142, 0.04751760885119438, -1.3357781171798706, -0.3998653292655945, 0.22359026968479156, 0.6781800389289856, -0.35268986225128174, -0.3539870083332062, 0.17604824900627136, -0.19530798494815826, 0.19853489100933075, 0.18169905245304108, -0.5409797430038452, 0.12169688194990158, -0.09152767062187195, 0.7284585237503052, -0.023271607235074043, -0.059485722333192825, -0.3661039173603058, 0.11870194226503372, -0.2997101843357086, 0.9105163812637329, -0.23733730614185333, -0.3225820064544678, -0.10313797742128372, 0.26201143860816956, 0.1334220916032791, -0.4244075417518616, 0.697534441947937, -0.5536971092224121, 0.07912853360176086, -0.08804267644882202, -0.3845213055610657, -0.30879950523376465, 0.3417312800884247, -0.6836103200912476, 1.0203568935394287, 0.09072539210319519, -0.9641389846801758, 0.2338666468858719, -0.4856255054473877, -0.11085767298936844, 0.35052216053009033, 0.0066019645892083645, -1.017985224723816, 0.0630200207233429, 0.04365750029683113, 0.779198408126831, -0.2739017605781555, -0.05214579775929451, -0.9387922883033752, -0.04093369096517563, 0.4129856824874878, -0.27392578125, 0.7166159152984619, 0.11662445962429047, -0.5399754643440247, 0.29952573776245117, -1.1408885717391968, 0.4410654306411743, 0.6739321351051331, -0.12278807908296585, -0.16259194910526276, -0.40908414125442505, 0.2186342030763626, 0.24115760624408722, 0.10402551293373108, -0.6945458650588989, 0.2877962589263916, -0.1788492649793625, 0.2990889847278595, 0.706830620765686, -0.2704838216304779, 0.35876893997192383, -0.07499786466360092, 0.3259776532649994, 0.023131949827075005, 0.050251685082912445, 0.07742898166179657, -0.3433074653148651, -0.5331233143806458, -0.07944611459970474, 0.15852031111717224, 0.17863869667053223, -0.7562698125839233, 0.589043140411377, -0.3311207890510559, -0.837975025177002, -0.2503204941749573, -0.19021649658679962, 0.24641229212284088, 0.7961756587028503, 0.5582207441329956, -0.2897130250930786, -0.3320959210395813, -0.9432036280632019, 0.4256639778614044, 0.19737569987773895, 0.19807396829128265, -0.026639504358172417, 0.9927148818969727, 0.11525578051805496, 0.44239872694015503, -0.9007183313369751, -0.25109216570854187, -0.36609384417533875, -0.15794366598129272, 0.49858328700065613, 0.5901947617530823, 0.537458062171936, -0.6522295475006104, -0.9317337274551392, 0.03908871114253998, -0.6705300807952881, 0.09227080643177032, 0.2772732079029083, -0.13771860301494598, 0.11988682299852371, 0.07941033691167831, -0.6183189749717712, 0.7139292359352112, 0.17940175533294678, -0.6212005615234375, 1.108900547027588, -0.2174139767885208, 0.1043703630566597, -1.0636333227157593, 0.07459975779056549, 0.6061007976531982, -0.4380953013896942, -0.6255304217338562, 0.06398996710777283, 0.2596747875213623, 0.041482727974653244, -0.5871394276618958, 0.5088574886322021, -0.47997012734413147, -0.07956891506910324, -0.20408637821674347, -0.22482655942440033, 0.2894992232322693, 0.2567351758480072, -0.04884597659111023, 0.6652159094810486, 1.0419763326644897, -0.46058619022369385, 0.512985348701477, 0.3537195920944214, -0.6308275461196899, 0.5648719072341919, -0.6249108910560608, 0.027812598273158073, 0.24782145023345947, 0.09048338979482651, -1.057655930519104, -0.42197924852371216, 0.4354887902736664, -0.5310062766075134, 0.6846229434013367, -0.3381035327911377, -0.3438284397125244, -0.5250501036643982, -0.6666198372840881, 0.031515851616859436, 0.49121910333633423, -0.3851940929889679, 0.5061053037643433, 0.4046485424041748, 0.23547063767910004, -0.6451807022094727, -0.6613248586654663, -0.458579957485199, -0.4388173818588257, -0.22145751118659973, 0.39576151967048645, 0.026874439790844917, -0.08909107744693756, 0.15300579369068146, -0.321251779794693, -0.18114764988422394, -0.10212694108486176, 0.25703945755958557, 0.896465003490448, -0.19269904494285583, -0.23569203913211823, -0.29487156867980957, -0.4078797996044159, 0.1910584419965744, -0.4971533715724945, 0.8539636135101318, -0.3945635259151459, -0.07742244750261307, -1.0280015468597412, -0.05308329686522484, 0.7435469627380371, -0.0733899474143982, 0.7964405417442322, 0.9354128241539001, -0.2610437572002411, 0.027304742485284805, -0.6986200213432312, -0.062457725405693054, -0.5076035857200623, 0.5159600973129272, -0.361040860414505, -0.163530170917511, 0.6971562504768372, 0.252323716878891, -0.1896510273218155, 0.9616774916648865, 0.2584940791130066, -0.4358741044998169, 1.1687668561935425, 0.4788846969604492, 0.023236198350787163, 0.335501492023468, -0.9853655099868774, -0.35345619916915894, -1.0745885372161865, -0.450042724609375, -0.6054195761680603, -0.18339160084724426, -0.5178861618041992, -0.2081248164176941, 0.5678675174713135, -0.17315377295017242, -0.27646851539611816, 0.45054373145103455, -0.7679359912872314, 0.4327951669692993, 0.7009801864624023, 0.3873835504055023, -0.010107524693012238, 0.23416683077812195, -0.37779030203819275, -0.19705332815647125, -0.510747492313385, -0.35115107893943787, 1.103122591972351, 0.0389702245593071, 0.7896671295166016, -0.13543695211410522, 0.4965229630470276, 0.050732117146253586, 0.04157273843884468, -0.48634567856788635, 0.6545007824897766, 0.15184494853019714, -0.9551871418952942, -0.26105138659477234, -0.3829745650291443, -0.926975429058075, 0.2941995859146118, -0.6538808941841125, -1.1317557096481323, 0.17127124965190887, -0.003181875916197896, -0.5019615888595581, 0.7752924561500549, -0.41585034132003784, 0.9075068831443787, -0.15680085122585297, -0.9200212955474854, 0.15431666374206543, -0.675758421421051, 0.04996323212981224, 0.35349273681640625, 0.25186672806739807, -0.41816768050193787, 0.08301738649606705, 0.9549369215965271, -0.5730791687965393, 0.8604840636253357, -0.28741124272346497, 0.4051077365875244, 0.5058855414390564, -0.012392852455377579, 0.3742205798625946, -0.16222527623176575, -0.25459155440330505, 0.029055435210466385, 0.29749858379364014, -0.3064809739589691, -0.3479081690311432, 0.7217099070549011, -0.8185329437255859, -0.36134517192840576, -0.6838316321372986, -0.5520981550216675, 0.12897327542304993, 0.5071598887443542, 0.5455661416053772, 0.5907539129257202, 0.15113615989685059, 0.22278611361980438, 0.7385337948799133, -0.11578960716724396, 0.5197569131851196, 0.28388938307762146, -0.3509373962879181, -0.6886637806892395, 0.8867635130882263, 0.2107606679201126, 0.11101844161748886, -0.06286301463842392, 0.6639302968978882, -0.7076745629310608, -0.6128211617469788, -0.4954490065574646, 0.23383842408657074, -0.732138454914093, -0.5500293374061584, -0.555340051651001, -0.060720860958099365, -0.6621292233467102, -0.03132634237408638, -0.49103844165802, -0.30372875928878784, -0.605461597442627, -0.14031192660331726, 0.5637153387069702, 0.5718213319778442, -0.2677448093891144, 0.46494853496551514, -0.72225421667099, 0.28249138593673706, 0.18542535603046417, 0.3255811333656311, 0.01597869023680687, -0.8779306411743164, 0.07598141580820084, -0.33846789598464966, -0.5770627856254578, -1.170415997505188, 0.8669536709785461, -0.1221630796790123, 0.7047921419143677, 0.5270353555679321, 0.10903304815292358, 0.8274540305137634, -0.05816372483968735, 0.4413279592990875, 0.6418852210044861, -0.7793118357658386, 0.46940210461616516, -0.4249667227268219, 0.3452599048614502, 0.639106810092926, 0.679587185382843, -0.06105334684252739, 0.14150133728981018, -0.871266782283783, -0.8949565291404724, 0.807323694229126, -0.03531074896454811, -0.1613970249891281, 0.4354146122932434, 0.35379543900489807, 0.18899773061275482, -0.07260693609714508, -1.331516981124878, -0.518074631690979, -0.024472123011946678, -0.19751031696796417, 0.22372789680957794, -0.25862571597099304, 0.003340829163789749, -0.7067632675170898, 1.0699158906936646, -0.27044299244880676, 0.16714806854724884, 0.18222326040267944, 0.10587820410728455, -0.2902088761329651, 0.23500478267669678, 0.30053582787513733, 0.5241332650184631, -0.42545270919799805, -0.0014520845143124461, 0.11971575021743774, -0.333855539560318, 0.11233488470315933, 0.19781668484210968, -0.3658711910247803, -0.12455032020807266, 0.33305075764656067, 0.6907555460929871, -0.15850064158439636, -0.04303262010216713, 0.30444201827049255, 0.13022659718990326, -0.37115222215652466, -0.3144696056842804, 0.1851281374692917, 0.184113547205925, 0.35712334513664246, 0.5137597918510437, 0.11943384259939194, 0.44965365529060364, -0.44124796986579895, 0.3075830340385437, 0.6297751665115356, -0.6024951338768005, -0.31915047764778137, 0.8324041366577148, -0.26379358768463135, 0.02454005926847458, 0.38010093569755554, -0.5638770461082458, -0.6229548454284668, 0.9682918190956116, 0.5641444325447083, 0.55641108751297, -0.10064846277236938, 0.17353181540966034, 0.789158046245575, -0.061601459980010986, -0.16488327085971832, 0.4420768618583679, 0.19697891175746918, -0.502976655960083, -0.114500492811203, -0.6762058138847351, -0.03929433971643448, 0.6053944230079651, -0.7956728339195251, 0.4337894022464752, -0.375449001789093, -0.44767865538597107, 0.6260858178138733, 0.3020687401294708, -0.6599963903427124, 0.34124264121055603, 0.2445850521326065, 0.5736346244812012, -0.9640143513679504, 0.7102104425430298, 0.6934013962745667, -0.43719881772994995, -1.0214543342590332, -0.3360482454299927, 0.29428285360336304, -0.7999591827392578, 0.2848658561706543, 0.5038111209869385, 0.1512938141822815, 0.11287068575620651, -0.9315882325172424, -1.020831823348999, 1.103905200958252, 0.005667407531291246, -0.3580282926559448, 0.31775137782096863, -0.1613944172859192, 0.18275944888591766, -0.36831969022750854, 0.6886781454086304, 0.2864190638065338, 0.5793570876121521, 0.3529759347438812, -0.6959162354469299, 0.19301731884479523, -0.2780759334564209, -0.3394240736961365, 0.2013458013534546, -0.38212040066719055, 0.7973859310150146, -0.4191007912158966, 0.07350801676511765, 0.08521924167871475, 0.5840404629707336, 0.2712714970111847, 0.23811860382556915, 0.5851551294326782, 0.8418731689453125, 0.34708234667778015, -0.21915732324123383, 0.7526741623878479, 0.1664431244134903, 0.8287056684494019, 1.1397228240966797, -0.23198820650577545, 0.607609748840332, 0.227082759141922, -0.3776729702949524, 0.4798770546913147, 0.643794596195221, -0.5872654914855957, 0.7688005566596985, -0.06817415356636047, 0.10481461882591248, -0.2592262327671051, -0.14283324778079987, -0.6332368850708008, 0.45311975479125977, 0.43987157940864563, -0.23742850124835968, -0.27651819586753845, -0.22611869871616364, -0.13044041395187378, -0.25949522852897644, -0.30027854442596436, 0.45593830943107605, -0.22483861446380615, -0.14687281847000122, 0.6514731645584106, -0.2889285087585449, 0.7975960373878479, -0.6045812964439392, -0.04687834531068802, 0.3247428834438324, 0.21510693430900574, -0.3643481135368347, -1.0355873107910156, 0.16924510896205902, -0.31031370162963867, 0.12862254679203033, 0.2680432200431824, 0.9925487041473389, -0.1463957279920578, -0.7989058494567871, 0.3382085859775543, 0.4348803460597992, 0.24715912342071533, 0.08673572540283203, -0.9538043737411499, 0.2737707495689392, 0.3308950364589691, -0.7301578521728516, 0.39438387751579285, 0.19520258903503418, 0.30673134326934814, 0.8101565837860107, 0.8141492605209351, 0.07372154295444489, 0.07025814801454544, -0.31760770082473755, 1.022916555404663, -0.6285912990570068, -0.3673170208930969, -0.9764857888221741, 0.8607496619224548, -0.37345457077026367, -0.3238356411457062, 0.6317321062088013, 0.6312947273254395, 0.5649628043174744, -0.2508179247379303, 0.4902724623680115, -0.30443906784057617, 0.09151966869831085, -0.2834499180316925, 0.9574874639511108, -0.97157883644104, -0.17159263789653778, -0.3402804732322693, -0.6580138802528381, -0.17217226326465607, 0.780316948890686, -0.20675577223300934, -0.06614070385694504, 0.6068446040153503, 0.5876911878585815, -0.3453159034252167, -0.15729974210262299, 0.4186909794807434, 0.45984983444213867, -0.0038090336602181196, 0.18177463114261627, 0.5861761569976807, -0.5535049438476562, 0.40927523374557495, -0.9951745867729187, -0.1431446224451065, -0.13136938214302063, -0.7333794832229614, -0.6537075042724609, -0.49889153242111206, -0.6475698947906494, -0.5071775913238525, -0.40753471851348877, 0.8187132477760315, 1.0682697296142578, -0.8166589736938477, -0.07731813937425613, 0.232570081949234, 0.023732880130410194, 0.004597504623234272, -0.2443411648273468, 0.4810430109500885, 0.15554331243038177, -0.7285117506980896, 0.2842120826244354, 0.13352055847644806, 0.4226286709308624, 0.05692858248949051, 0.3906957805156708, -0.4414133131504059, -0.4854586124420166, -0.00040315467049367726, 0.3504748046398163, -0.46788713335990906, 0.051110707223415375, -0.23826153576374054, -0.008437140844762325, 0.5884912014007568, -0.23804697394371033, -0.6067202091217041, 0.44332489371299744, 0.5395922660827637, -0.0017666604835540056, 0.6535398960113525, -0.326572448015213, -0.040243539959192276, -0.2114170342683792, 0.3559916913509369, 0.06214854121208191, 0.7422822117805481, 0.21249952912330627, -0.41517022252082825, 0.4596303403377533, 0.3638457655906677, -0.34189093112945557, -0.9656696319580078, -0.16200047731399536, -1.1251497268676758, -0.32052281498908997, 0.8486977219581604, -0.18943904340267181, -0.7416086792945862, -0.019263803958892822, 0.1905418485403061, 0.3020084798336029, -0.6920587420463562, 0.5504031777381897, 0.29614123702049255, -0.053333789110183716, 0.005625854711979628, -0.9244896769523621, 0.08567391335964203, 0.3635602593421936, -0.7799002528190613, -0.40423813462257385, 0.4326429069042206, 0.7657281160354614, 0.7769086360931396, 0.40020546317100525, -0.1854919046163559, 0.1499786227941513, 0.11898232996463776, 0.5150795578956604, -0.2629110813140869, -0.17533044517040253, -0.2397017478942871, 0.2432965636253357, -0.22140805423259735, -0.5190858840942383 ]
tiiuae/falcon-40b
tiiuae
"2023-09-29T14:32:25Z"
47,357
2,341
transformers
[ "transformers", "pytorch", "falcon", "text-generation", "custom_code", "en", "de", "es", "fr", "dataset:tiiuae/falcon-refinedweb", "arxiv:2205.14135", "arxiv:1911.02150", "arxiv:2101.00027", "arxiv:2005.14165", "arxiv:2104.09864", "arxiv:2306.01116", "license:apache-2.0", "has_space", "text-generation-inference", "region:us" ]
text-generation
"2023-05-24T12:08:30Z"
--- datasets: - tiiuae/falcon-refinedweb language: - en - de - es - fr inference: false license: apache-2.0 --- # 🚀 Falcon-40B **Falcon-40B is a 40B parameters causal decoder-only model built by [TII](https://www.tii.ae) and trained on 1,000B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. It is made available under the Apache 2.0 license.** *Paper coming soon 😊.* 🤗 To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost fron HF](https://huggingface.co/blog/falcon)! ## Why use Falcon-40B? * **It is the best open-source model currently available.** Falcon-40B outperforms [LLaMA](https://github.com/facebookresearch/llama), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1), [MPT](https://huggingface.co/mosaicml/mpt-7b), etc. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). * **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)). * **It is made available under a permissive Apache 2.0 license allowing for commercial use**, without any royalties or restrictions. * ⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.** If you are looking for a version better suited to taking generic instructions in a chat format, we recommend taking a look at [Falcon-40B-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct). 💸 **Looking for a smaller, less expensive model?** [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) is Falcon-40B's little brother! ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "tiiuae/falcon-40b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) sequences = pipeline( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` 💥 **Falcon LLMs require PyTorch 2.0 for use with `transformers`!** For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon). You will need **at least 85-100GB of memory** to swiftly run inference with Falcon-40B. # Model Card for Falcon-40B ## Model Details ### Model Description - **Developed by:** [https://www.tii.ae](https://www.tii.ae); - **Model type:** Causal decoder-only; - **Language(s) (NLP):** English, German, Spanish, French (and limited capabilities in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish); - **License:** Apache 2.0 license. ### Model Source - **Paper:** *coming soon*. ## Uses ### Direct Use Research on large language models; as a foundation for further specialization and finetuning for specific usecases (e.g., summarization, text generation, chatbot, etc.) ### Out-of-Scope Use Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful. ## Bias, Risks, and Limitations Falcon-40B is trained mostly on English, German, Spanish, French, with limited capabilities also in in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish. It will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online. ### Recommendations We recommend users of Falcon-40B to consider finetuning it for the specific set of tasks of interest, and for guardrails and appropriate precautions to be taken for any production use. ## How to Get Started with the Model ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "tiiuae/falcon-40b" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) sequences = pipeline( "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ## Training Details ### Training Data Falcon-40B was trained on 1,000B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a high-quality filtered and deduplicated web dataset which we enhanced with curated corpora. Significant components from our curated copora were inspired by The Pile ([Gao et al., 2020](https://arxiv.org/abs/2101.00027)). | **Data source** | **Fraction** | **Tokens** | **Sources** | |--------------------|--------------|------------|-----------------------------------| | [RefinedWeb-English](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 75% | 750B | massive web crawl | | RefinedWeb-Europe | 7% | 70B | European massive web crawl | | Books | 6% | 60B | | | Conversations | 5% | 50B | Reddit, StackOverflow, HackerNews | | Code | 5% | 50B | | | Technical | 2% | 20B | arXiv, PubMed, USPTO, etc. | RefinedWeb-Europe is made of the following languages: | **Language** | **Fraction of multilingual data** | **Tokens** | |--------------|-----------------------------------|------------| | German | 26% | 18B | | Spanish | 24% | 17B | | French | 23% | 16B | | _Italian_ | 7% | 5B | | _Portuguese_ | 4% | 3B | | _Polish_ | 4% | 3B | | _Dutch_ | 4% | 3B | | _Romanian_ | 3% | 2B | | _Czech_ | 3% | 2B | | _Swedish_ | 2% | 1B | The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) tokenizer. ### Training Procedure Falcon-40B was trained on 384 A100 40GB GPUs, using a 3D parallelism strategy (TP=8, PP=4, DP=12) combined with ZeRO. #### Training Hyperparameters | **Hyperparameter** | **Value** | **Comment** | |--------------------|------------|-------------------------------------------| | Precision | `bfloat16` | | | Optimizer | AdamW | | | Learning rate | 1.85e-4 | 4B tokens warm-up, cosine decay to 1.85e-5 | | Weight decay | 1e-1 | | | Z-loss | 1e-4 | | | Batch size | 1152 | 100B tokens ramp-up | #### Speeds, Sizes, Times Training started in December 2022 and took two months. ## Evaluation *Paper coming soon.* See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results. ## Technical Specifications ### Model Architecture and Objective Falcon-40B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token). The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences: * **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864)); * **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)); * **Decoder-block:** parallel attention/MLP with a two layer norms. For multiquery, we are using an internal variant which uses independent key and values per tensor parallel degree. | **Hyperparameter** | **Value** | **Comment** | |--------------------|-----------|----------------------------------------| | Layers | 60 | | | `d_model` | 8192 | | | `head_dim` | 64 | Reduced to optimise for FlashAttention | | Vocabulary | 65024 | | | Sequence length | 2048 | | ### Compute Infrastructure #### Hardware Falcon-40B was trained on AWS SageMaker, on 384 A100 40GB GPUs in P4d instances. #### Software Falcon-40B was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.) ## Citation *Paper coming soon* 😊. In the meanwhile, you can use the following information to cite: ``` @article{falcon40b, title={{Falcon-40B}: an open large language model with state-of-the-art performance}, author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme}, year={2023} } ``` To learn more about the pretraining dataset, see the 📓 [RefinedWeb paper](https://arxiv.org/abs/2306.01116). ``` @article{refinedweb, title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only}, author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay}, journal={arXiv preprint arXiv:2306.01116}, eprint={2306.01116}, eprinttype = {arXiv}, url={https://arxiv.org/abs/2306.01116}, year={2023} } ``` ## License Falcon-40B is made available under the Apache 2.0 license. ## Contact falconllm@tii.ae
[ -0.6592786312103271, -0.7868488430976868, 0.010901076719164848, 0.3664045035839081, -0.10425469279289246, 0.08819610625505447, -0.2705940008163452, -0.58452308177948, 0.3333100378513336, 0.21808256208896637, -0.6115756034851074, -0.4924485385417938, -0.7128447890281677, 0.20112185180187225, -0.33882051706314087, 1.1297614574432373, 0.036405619233846664, -0.006382067687809467, 0.1735008805990219, 0.023711225017905235, 0.09735852479934692, -0.49324801564216614, -0.9098098278045654, -0.14909902215003967, 0.40003547072410583, 0.3046845495700836, 0.5313786864280701, 0.9207436442375183, 0.6188403964042664, 0.34081730246543884, -0.2826481759548187, 0.20964005589485168, -0.493297815322876, -0.2614743411540985, -0.0827292948961258, -0.35846638679504395, -0.3261583149433136, -0.17738457024097443, 0.6603478193283081, 0.6018399000167847, -0.005745713133364916, 0.22250455617904663, -0.14537344872951508, 0.6506158709526062, -0.5270656943321228, 0.392090767621994, -0.4491542875766754, 0.07659974694252014, -0.36389774084091187, 0.22024843096733093, -0.3196755051612854, 0.12334076315164566, -0.32112595438957214, -0.8194360733032227, 0.30110740661621094, 0.17416732013225555, 1.3300752639770508, 0.23081935942173004, -0.47487765550613403, -0.3183748126029968, -0.4024697542190552, 0.7766177654266357, -0.7498279213905334, 0.4848041832447052, 0.25607600808143616, 0.27268487215042114, -0.2609977424144745, -1.0769740343093872, -0.5426661372184753, -0.12147153913974762, 0.08004924654960632, 0.3768819570541382, -0.3087162673473358, -0.05959765985608101, 0.4458683133125305, 0.32301056385040283, -0.48289304971694946, 0.16684971749782562, -0.5399779677391052, -0.2575928866863251, 0.7575879096984863, 0.056828971952199936, 0.2518764138221741, -0.2487897276878357, -0.4031089246273041, -0.41195037961006165, -0.3116803467273712, 0.45436450839042664, 0.5506661534309387, 0.31043940782546997, -0.3687153160572052, 0.5578935742378235, -0.470729261636734, 0.5498013496398926, 0.540510356426239, 0.010280290618538857, 0.4809614419937134, -0.44131001830101013, -0.23141877353191376, -0.19214729964733124, 1.166496753692627, 0.24706493318080902, 0.26580578088760376, -0.1700958013534546, -0.06615979969501495, -0.013556127436459064, 0.06053993105888367, -1.0734084844589233, 0.06586750596761703, 0.293502539396286, -0.5035901665687561, -0.20805418491363525, 0.4391475319862366, -0.8405982255935669, 0.12823975086212158, 0.12263679504394531, -0.053583189845085144, -0.5464553236961365, -0.38489556312561035, 0.20644554495811462, -0.33296117186546326, 0.22382678091526031, -0.19109618663787842, -1.016250729560852, 0.33455175161361694, 0.5587453246116638, 0.7732422351837158, -0.05940699949860573, -0.6643351316452026, -0.5732073187828064, 0.03661958500742912, -0.3691675364971161, 0.5987790822982788, -0.4509120583534241, -0.4245952367782593, -0.20369546115398407, 0.3977110981941223, -0.1533231884241104, -0.17341215908527374, 0.8701120615005493, -0.2906548082828522, 0.2701933979988098, -0.4416077435016632, -0.6266488432884216, -0.3172316253185272, 0.03571430966258049, -0.6628943681716919, 1.0382494926452637, 0.1226688027381897, -1.1207600831985474, 0.292298823595047, -0.8468574285507202, -0.3607596158981323, -0.09644444286823273, -0.016561996191740036, -0.5093421339988708, -0.14414477348327637, 0.5242341160774231, 0.559609591960907, -0.1990482062101364, 0.35413479804992676, -0.49562036991119385, -0.5505962371826172, -0.1536523550748825, -0.1287337839603424, 1.00276780128479, 0.6115594506263733, -0.6276656985282898, -0.039358336478471756, -0.5963220000267029, -0.055830422788858414, 0.3826230466365814, -0.2012498676776886, 0.178345188498497, -0.18218262493610382, 0.16281506419181824, 0.22063322365283966, 0.23754924535751343, -0.6883408427238464, 0.10658878087997437, -0.6064303517341614, 0.5671842694282532, 0.26464828848838806, -0.0072495415806770325, 0.34371525049209595, -0.4607616066932678, 0.6219926476478577, 0.38836953043937683, 0.219902902841568, -0.23740150034427643, -0.5553778409957886, -0.9605006575584412, -0.2540622353553772, 0.1902211606502533, 0.4374161660671234, -0.6960282325744629, 0.4174814224243164, -0.12081755697727203, -0.7823663353919983, -0.29912570118904114, -0.17007172107696533, 0.48521432280540466, 0.5147690773010254, 0.4378485381603241, 0.06810037791728973, -0.7750405073165894, -0.8408792614936829, -0.08082495629787445, -0.27709123492240906, 0.15271374583244324, 0.2674456834793091, 0.7289903163909912, -0.413290411233902, 0.7002102732658386, -0.32310858368873596, -0.16072452068328857, -0.07204468548297882, 0.0727638453245163, 0.2539025545120239, 0.5499693155288696, 0.8407859802246094, -0.7180048823356628, -0.29690825939178467, 0.0049930899403989315, -0.8645780086517334, 0.011972416192293167, -0.05072185397148132, -0.18263548612594604, 0.49770116806030273, 0.621323823928833, -0.6915455460548401, 0.21013382077217102, 0.547579288482666, -0.3594214916229248, 0.5976203083992004, -0.09072306752204895, 0.11598452925682068, -1.2827287912368774, 0.3828219175338745, 0.10802503675222397, 0.13597942888736725, -0.3820360004901886, 0.36150822043418884, 0.08960801362991333, -0.11873841285705566, -0.6415990591049194, 0.811895489692688, -0.5668544769287109, 0.05140603333711624, -0.010145438835024834, -0.1310601532459259, 0.0036410961765795946, 0.6232306957244873, 0.10709979385137558, 0.923663318157196, 0.4817379415035248, -0.3855758309364319, 0.08503327518701553, 0.40559375286102295, -0.0806540921330452, 0.18329159915447235, -0.7968055009841919, -0.08100869506597519, -0.11158444732427597, 0.4539734423160553, -0.7336777448654175, -0.3106823265552521, 0.2999263107776642, -0.7036638259887695, 0.27762964367866516, -0.038301482796669006, -0.26517149806022644, -0.731090247631073, -0.25143954157829285, 0.09745486825704575, 0.4029175341129303, -0.43151649832725525, 0.4079777002334595, 0.24854663014411926, -0.019768022000789642, -0.9835219383239746, -0.8829451203346252, 0.1559189409017563, -0.24997824430465698, -0.7101092338562012, 0.45922744274139404, -0.17117780447006226, -0.06401822715997696, -0.012606903910636902, 0.13949553668498993, 0.09771477431058884, 0.09275231510400772, 0.4565799832344055, 0.14157678186893463, -0.2799757421016693, -0.03769787400960922, 0.12069497257471085, -0.05274326354265213, 0.06663317233324051, -0.3633102476596832, 0.5746550559997559, -0.7286832928657532, -0.21189559996128082, -0.43318894505500793, 0.38277000188827515, 0.5983431339263916, -0.37231290340423584, 0.7238318920135498, 1.0464894771575928, -0.39794859290122986, 0.06604874134063721, -0.4569079577922821, -0.13990281522274017, -0.4994080066680908, 0.5108592510223389, -0.629721999168396, -0.8262462019920349, 0.7476836442947388, 0.1314411163330078, 0.07528871297836304, 0.9995406270027161, 0.5150458216667175, -0.009130782447755337, 1.0694971084594727, 0.4602183997631073, -0.10738924145698547, 0.4291336238384247, -0.7242604494094849, -0.17944751679897308, -0.730018138885498, -0.3807834982872009, -0.7039194107055664, -0.17390510439872742, -0.8449259400367737, -0.19327561557292938, -0.0533360093832016, 0.26261261105537415, -0.8107536435127258, 0.35547003149986267, -0.5389420986175537, 0.29571011662483215, 0.5894349217414856, 0.012895324267446995, -0.026688164100050926, 0.059402886778116226, -0.35915473103523254, 0.1374695748090744, -0.843091607093811, -0.4843505918979645, 1.18770170211792, 0.40675199031829834, 0.5191600918769836, -0.15817753970623016, 0.9927640557289124, 0.025130238384008408, 0.13230367004871368, -0.6251924633979797, 0.40575069189071655, -0.40430134534835815, -0.644721508026123, -0.13779576122760773, -0.528159499168396, -1.0027906894683838, -0.02728656493127346, -0.19825585186481476, -0.7303667068481445, 0.13196155428886414, -0.17086195945739746, -0.1477338969707489, 0.3742460012435913, -0.8834050297737122, 0.8688575625419617, -0.17577853798866272, -0.3314609229564667, 0.17664653062820435, -0.682617723941803, 0.4836615324020386, -0.1343415379524231, 0.2609536945819855, 0.052958011627197266, -0.14135286211967468, 1.019491195678711, -0.5427722334861755, 0.6917295455932617, -0.34127524495124817, 0.2846989035606384, 0.3416184186935425, -0.2733258008956909, 0.7177461981773376, 0.012439063750207424, -0.3412688970565796, 0.4776035249233246, 0.3100959062576294, -0.6347474455833435, -0.26040175557136536, 0.7123754024505615, -1.2013410329818726, -0.5365572571754456, -0.537309467792511, -0.6165812015533447, -0.1229257807135582, 0.35202035307884216, 0.560138463973999, 0.15197832882404327, -0.08366360515356064, 0.33556824922561646, 0.13629449903964996, -0.23691219091415405, 0.8262468576431274, 0.4043533205986023, -0.21212781965732574, -0.5429849028587341, 0.7264857292175293, 0.03661720082163811, 0.017339209094643593, 0.23967768251895905, 0.2324725091457367, -0.599416196346283, -0.5360113382339478, -0.6179317235946655, 0.46131888031959534, -0.5744947195053101, -0.16152183711528778, -0.9275171160697937, -0.41389280557632446, -0.4682663381099701, -0.18098507821559906, -0.3661363422870636, -0.4068845510482788, -0.5259220600128174, -0.03347145393490791, 0.36895060539245605, 0.45439761877059937, -0.026790115982294083, 0.4330151081085205, -0.7310537695884705, 0.11450879275798798, -0.044312212616205215, 0.1141459122300148, -0.013894333504140377, -0.6147477626800537, -0.25482645630836487, 0.5515958666801453, -0.32012641429901123, -0.5634751915931702, 0.42860886454582214, 0.3734535574913025, 0.635185956954956, 0.5678034424781799, 0.13758233189582825, 0.8315927386283875, -0.25156456232070923, 0.8898753523826599, 0.27161654829978943, -0.9723494052886963, 0.3120947480201721, -0.5493127703666687, 0.38181424140930176, 0.48605942726135254, 0.587389349937439, -0.5284886956214905, -0.5882328748703003, -0.9285283088684082, -0.5522451996803284, 0.8480759859085083, 0.25331178307533264, 0.037781402468681335, -0.16670706868171692, 0.37574660778045654, -0.04273572936654091, -0.031109923496842384, -0.4977959096431732, -0.20086213946342468, -0.6183009147644043, -0.3297275900840759, -0.16917912662029266, 0.06583617627620697, 0.13436803221702576, -0.29855456948280334, 0.847079336643219, -0.2608413100242615, 0.5009509325027466, 0.11822617053985596, -0.03992515802383423, -0.040543388575315475, -0.11734165251255035, 0.724568784236908, 0.6198972463607788, -0.24300852417945862, -0.020532093942165375, 0.2412802278995514, -0.7401782870292664, 0.05409928038716316, 0.41422706842422485, -0.21934105455875397, -0.08791697770357132, 0.41550788283348083, 0.8992696404457092, 0.030763905495405197, -0.5663558840751648, 0.3809913992881775, -0.12817752361297607, -0.34272417426109314, -0.17312179505825043, 0.17394842207431793, 0.36963459849357605, 0.3581318259239197, 0.3926032781600952, -0.12452387809753418, 0.01921527460217476, -0.36212730407714844, 0.40647047758102417, 0.29726263880729675, -0.22492274641990662, -0.19908034801483154, 1.0670897960662842, 0.17398370802402496, -0.34057462215423584, 0.5449323058128357, -0.398339182138443, -0.5063088536262512, 1.095215916633606, 0.5894441604614258, 0.7323721647262573, 0.04437609389424324, 0.348626047372818, 0.7608625292778015, 0.24259430170059204, -0.09260328114032745, 0.3355480432510376, 0.12216448038816452, -0.6115963459014893, -0.34090712666511536, -0.8680800199508667, -0.4150749742984772, 0.0839340016245842, -0.700606644153595, 0.4053669273853302, -0.4199565052986145, -0.3111622631549835, 0.30874308943748474, 0.552703320980072, -0.740011990070343, 0.3825150430202484, -0.01840539462864399, 1.1176995038986206, -0.6766887903213501, 0.9198888540267944, 0.8129590749740601, -0.8460491895675659, -0.994316577911377, -0.08216644078493118, -0.16507239639759064, -0.9969298839569092, 0.8078027367591858, 0.29508766531944275, 0.06415758281946182, 0.26502475142478943, -0.461686372756958, -0.8713260293006897, 1.0757197141647339, 0.3749741017818451, -0.7248741388320923, -0.11184872686862946, 0.20304273068904877, 0.6081954836845398, -0.3714992105960846, 0.6200138926506042, 0.3519081771373749, 0.5363057255744934, 0.27057531476020813, -0.7761730551719666, 0.18876835703849792, -0.5967296957969666, 0.02017972245812416, 0.10251505672931671, -1.1095231771469116, 0.9357149600982666, -0.3824116587638855, -0.15752153098583221, -0.0014506146544590592, 0.8162689208984375, 0.38312098383903503, 0.26858949661254883, 0.40648728609085083, 0.5840272903442383, 0.785897970199585, -0.16846203804016113, 0.9704231023788452, -0.7579243183135986, 0.60102379322052, 0.8323596715927124, 0.08739525824785233, 0.7776814103126526, 0.3597487509250641, -0.17915968596935272, 0.470272958278656, 0.944033682346344, -0.283589631319046, 0.18635478615760803, -0.07232660800218582, 0.1252022534608841, -0.10766956210136414, -0.06359542906284332, -0.6133132576942444, 0.6706772446632385, 0.15510150790214539, -0.3328065574169159, -0.13902030885219574, 0.0335901714861393, 0.49894168972969055, -0.2151617407798767, -0.07088125497102737, 0.48638808727264404, 0.029117200523614883, -0.8384711146354675, 1.0752310752868652, 0.2642625868320465, 0.874277651309967, -0.6968355774879456, 0.30303287506103516, -0.5541368126869202, 0.1664673089981079, -0.27348557114601135, -0.6725366115570068, 0.47087183594703674, 0.12095517665147781, -0.12399988621473312, -0.023522954434156418, 0.4393708109855652, -0.29351478815078735, -0.8084703683853149, 0.33413615822792053, 0.35625073313713074, 0.34767335653305054, -0.16676084697246552, -0.899677038192749, 0.2612166702747345, -0.06555639207363129, -0.4558384120464325, 0.16808472573757172, 0.24254705011844635, -0.07153909653425217, 0.7649286389350891, 0.7741423845291138, 0.050726983696222305, 0.08198052644729614, -0.12667551636695862, 0.7967456579208374, -0.8130798935890198, -0.5138474106788635, -0.6167651414871216, 0.4067026376724243, -0.14810852706432343, -0.495518296957016, 0.7674435973167419, 0.7645494341850281, 0.935644268989563, 0.017465928569436073, 0.6680508255958557, -0.20060621201992035, 0.18024230003356934, -0.3320261240005493, 0.909988284111023, -0.6984031200408936, -0.12558667361736298, -0.21880783140659332, -0.715496838092804, -0.06281840056180954, 0.4845714867115021, -0.07092345505952835, 0.25636565685272217, 0.8039385080337524, 0.8389188647270203, -0.013540239073336124, 0.24459236860275269, 0.11662063002586365, 0.2649880647659302, 0.40594279766082764, 0.8747509121894836, 0.5243269205093384, -0.7747265696525574, 0.8283944725990295, -0.44581422209739685, -0.156418114900589, -0.1786508411169052, -0.7991839051246643, -0.992164134979248, -0.6961480379104614, -0.2584781348705292, -0.3551998436450958, 0.11563717573881149, 0.7379276752471924, 0.8578439354896545, -0.8415889143943787, -0.29875099658966064, -0.2659111022949219, -0.18898111581802368, -0.36037713289260864, -0.22561883926391602, 0.5709500908851624, -0.4324702024459839, -1.0088539123535156, 0.21325445175170898, -0.11791141331195831, 0.14955070614814758, -0.18517349660396576, -0.32384130358695984, -0.3762616217136383, 0.016791149973869324, 0.43313807249069214, 0.4577327072620392, -0.7769798040390015, -0.192421555519104, 0.34513023495674133, -0.18627336621284485, -0.02670915238559246, 0.2059907764196396, -0.5731250643730164, 0.34696507453918457, 0.3724367022514343, 0.6677373051643372, 1.0706712007522583, -0.03617222234606743, 0.1790437549352646, -0.38137251138687134, 0.4165416359901428, 0.02172071486711502, 0.4570097327232361, 0.19650179147720337, -0.3211810290813446, 0.6327657103538513, 0.4239848554134369, -0.46984535455703735, -0.7248516082763672, -0.1217600628733635, -1.1651229858398438, -0.29962876439094543, 1.296394944190979, -0.3590603768825531, -0.4287225306034088, 0.21084679663181305, -0.25907254219055176, 0.5999444723129272, -0.44660165905952454, 0.6805434226989746, 0.6828450560569763, -0.02887534908950329, -0.09039706736803055, -0.3225557506084442, 0.3444253206253052, 0.246542826294899, -1.0553193092346191, -0.2617858648300171, 0.26949799060821533, 0.4078271985054016, 0.04569978266954422, 0.35948488116264343, 0.026405490934848785, 0.13512039184570312, 0.34750956296920776, 0.09668993949890137, -0.6321051120758057, -0.12635645270347595, -0.12898795306682587, 0.2545482814311981, -0.35969269275665283, -0.37825366854667664 ]
ckiplab/bert-base-chinese-pos
ckiplab
"2022-05-10T03:28:12Z"
47,243
13
transformers
[ "transformers", "pytorch", "jax", "bert", "token-classification", "zh", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2022-03-02T23:29:05Z"
--- language: - zh thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png tags: - pytorch - token-classification - bert - zh license: gpl-3.0 --- # CKIP BERT Base Chinese This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition). 這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。 ## Homepage - https://github.com/ckiplab/ckip-transformers ## Contributers - [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer) ## Usage Please use BertTokenizerFast as tokenizer instead of AutoTokenizer. 請使用 BertTokenizerFast 而非 AutoTokenizer。 ``` from transformers import ( BertTokenizerFast, AutoModel, ) tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese') model = AutoModel.from_pretrained('ckiplab/bert-base-chinese-pos') ``` For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers. 有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
[ -0.3094872832298279, -0.36660996079444885, 0.035831939429044724, 0.8003009557723999, -0.4232613444328308, 0.04174847528338432, -0.19831329584121704, -0.25767138600349426, -0.04273581877350807, 0.46699798107147217, -0.37162625789642334, -0.31908532977104187, -0.618861734867096, 0.030464524403214455, -0.25071537494659424, 0.8976567983627319, -0.20267567038536072, 0.3664432764053345, 0.46017712354660034, 0.14560285210609436, -0.2657814919948578, -0.4790361225605011, -0.7369713187217712, -0.6147180795669556, -0.04971720278263092, 0.27593833208084106, 0.703524649143219, 0.40582555532455444, 0.5197448134422302, 0.32149961590766907, 0.038517046719789505, -0.10900876671075821, -0.18620768189430237, -0.29959771037101746, -0.009979247115552425, -0.5518723726272583, -0.39250946044921875, -0.209442138671875, 0.7114382982254028, 0.50028395652771, 0.02361597865819931, -0.0361211784183979, 0.20009122788906097, 0.37271663546562195, -0.3624865710735321, 0.4488333463668823, -0.6252241134643555, 0.3226253092288971, -0.16753056645393372, -0.08507978171110153, -0.3911462724208832, -0.2666527330875397, 0.19332590699195862, -0.6560714840888977, 0.35543203353881836, -0.1719016134738922, 1.3874050378799438, 0.036392051726579666, -0.3116540312767029, -0.2838013768196106, -0.7163535952568054, 1.0960279703140259, -0.9054113626480103, 0.4569351375102997, 0.37092065811157227, 0.29817113280296326, -0.05955132842063904, -1.1164944171905518, -0.6801180243492126, -0.1965510994195938, -0.2279861569404602, 0.3468087613582611, 0.14810681343078613, -0.033649250864982605, 0.3796379268169403, 0.31721144914627075, -0.6134019494056702, 0.20265375077724457, -0.3901655375957489, -0.4388794004917145, 0.5565904974937439, -0.09781458228826523, 0.4909669756889343, -0.46756696701049805, -0.5742875933647156, -0.3640304207801819, -0.6486376523971558, 0.2508475184440613, 0.2813799977302551, 0.1319030225276947, -0.4784696400165558, 0.6027050614356995, -0.003634696826338768, 0.30324047803878784, 0.20549100637435913, -0.08067769557237625, 0.46681416034698486, -0.3049566149711609, -0.08251715451478958, -0.14024075865745544, 0.934131383895874, 0.22444723546504974, 0.10822988301515579, 0.08011254668235779, -0.3361191749572754, -0.36272385716438293, -0.24014708399772644, -0.7810692191123962, -0.7209920883178711, 0.2211475819349289, -0.8029574751853943, -0.21116238832473755, 0.1771046668291092, -0.6376578211784363, 0.29291412234306335, -0.2464681714773178, 0.43365195393562317, -0.7471120357513428, -0.6320501565933228, 0.0003734134079422802, -0.41651755571365356, 0.8701042532920837, 0.1487305462360382, -1.2535589933395386, 0.027604084461927414, 0.6293538808822632, 0.7581515908241272, 0.14137162268161774, -0.17375358939170837, 0.14418452978134155, 0.3881095051765442, -0.21389120817184448, 0.5686839818954468, -0.1189374253153801, -0.7519495487213135, 0.14618182182312012, 0.08676151931285858, 0.01897747814655304, -0.4511461853981018, 0.8591628074645996, -0.31866326928138733, 0.41241100430488586, -0.23986957967281342, -0.3061504065990448, -0.0637480616569519, 0.096870556473732, -0.5408301949501038, 1.2483983039855957, 0.23475496470928192, -0.8836124539375305, 0.24446047842502594, -0.9148275852203369, -0.6156942844390869, 0.3409276008605957, -0.11194386333227158, -0.4395250678062439, -0.1718367487192154, 0.25114285945892334, 0.3291763663291931, -0.05965166166424751, 0.23067647218704224, -0.01385427638888359, -0.23177865147590637, 0.008365136571228504, -0.43941596150398254, 1.4039517641067505, 0.3543763756752014, -0.3330243229866028, 0.1804894208908081, -0.687921941280365, 0.1269540935754776, 0.3276387155056, -0.26966193318367004, -0.24807530641555786, 0.2204410433769226, 0.5992664694786072, 0.16261038184165955, 0.5785170197486877, -0.6134251952171326, 0.5115612745285034, -0.5852574110031128, 0.7492374181747437, 0.861414909362793, -0.33249431848526, 0.2947159707546234, -0.15680772066116333, -0.010406631045043468, 0.06538484245538712, 0.3899677097797394, -0.14233236014842987, -0.5468807816505432, -1.1538833379745483, -0.36722517013549805, 0.4621831774711609, 0.8162345886230469, -1.1578211784362793, 0.9532262086868286, -0.24904774129390717, -0.6475939750671387, -0.3365094065666199, -0.07833119481801987, 0.02298102155327797, 0.1929740011692047, 0.5647174119949341, -0.32155346870422363, -0.6024167537689209, -1.056984782218933, 0.12463438510894775, -0.5957476496696472, -0.5964691638946533, -0.004940122365951538, 0.5677824020385742, -0.44514212012290955, 1.0410394668579102, -0.5455471873283386, -0.3035169541835785, -0.3272782564163208, 0.5737980008125305, 0.3731469511985779, 0.9373123049736023, 0.6653136610984802, -1.059245228767395, -0.7398249506950378, -0.23101584613323212, -0.34672749042510986, -0.07391718775033951, -0.2358543425798416, -0.1509488970041275, 0.052129313349723816, 0.053530946373939514, -0.6348360776901245, 0.20900845527648926, 0.3939901888370514, -0.005951492581516504, 0.9041489958763123, -0.057027582079172134, -0.2934151589870453, -1.3650908470153809, 0.19011370837688446, -0.2118413895368576, -0.035169173032045364, -0.43799644708633423, -0.004457294940948486, 0.1960577368736267, -0.10459528118371964, -0.5682745575904846, 0.5782018899917603, -0.35877373814582825, 0.3225131928920746, -0.2696688771247864, -0.16993623971939087, -0.2084374576807022, 0.6296015977859497, 0.43385550379753113, 0.7286251187324524, 0.6326686143875122, -0.7349824905395508, 0.44130513072013855, 0.7096564769744873, -0.27686935663223267, -0.09011377394199371, -0.9758467674255371, -0.032996561378240585, 0.33322814106941223, 0.18389910459518433, -1.0180543661117554, -0.047654375433921814, 0.6498881578445435, -0.7935150265693665, 0.6260049939155579, 0.06915147602558136, -0.968204915523529, -0.4760679304599762, -0.4683948755264282, 0.3527577519416809, 0.7179736495018005, -0.6452102065086365, 0.5310485363006592, 0.27561745047569275, -0.22836649417877197, -0.6169338226318359, -0.8320619463920593, -0.03014880046248436, 0.3002992570400238, -0.5956615805625916, 0.6707639098167419, -0.22668197751045227, 0.3509707450866699, -0.011497043073177338, 0.1026509553194046, -0.49597129225730896, -0.08657687902450562, -0.15537621080875397, 0.41484272480010986, -0.15301845967769623, -0.01373171154409647, 0.20235826075077057, -0.3328845202922821, 0.14816658198833466, -0.015522259287536144, 0.7595603466033936, 0.04845915362238884, -0.34715697169303894, -0.5962435007095337, 0.2819712460041046, 0.20480528473854065, -0.2679290771484375, 0.316366583108902, 1.07270348072052, -0.2696208953857422, -0.1837061047554016, -0.44167497754096985, -0.15537263453006744, -0.5701931118965149, 0.6285309791564941, -0.479097843170166, -0.8334689736366272, 0.3447248935699463, -0.11706565320491791, 0.20509010553359985, 0.7909858226776123, 0.6595507860183716, -0.015523101203143597, 1.281596302986145, 0.9475501179695129, -0.5642316341400146, 0.4695691764354706, -0.42288801074028015, 0.40051352977752686, -0.9266268610954285, 0.24821482598781586, -0.6664500832557678, 0.10577494651079178, -0.8516567349433899, -0.32212337851524353, -0.019231783226132393, 0.18001605570316315, -0.27908608317375183, 0.7450091242790222, -0.8334311842918396, -0.0485256090760231, 0.8225904703140259, -0.31528741121292114, -0.10463104397058487, -0.09564153850078583, -0.2959480583667755, -0.0224106777459383, -0.6185029745101929, -0.6847866177558899, 0.7737448215484619, 0.7011696696281433, 0.7418318390846252, -0.025815406814217567, 0.5181406140327454, -0.02728654257953167, 0.45359429717063904, -0.8259000778198242, 0.5669010877609253, -0.2370338886976242, -0.864047646522522, -0.3218955099582672, -0.22809596359729767, -0.8707048892974854, 0.23728512227535248, -0.029247500002384186, -0.8968010544776917, 0.17563825845718384, 0.06817276775836945, -0.10688713192939758, 0.40569740533828735, -0.46121975779533386, 0.7643334865570068, -0.5142868161201477, 0.11713691055774689, -0.07701533287763596, -0.7449110150337219, 0.401849627494812, 0.008721379563212395, -0.09782174229621887, -0.079890176653862, 0.10493329167366028, 0.783787190914154, -0.21954645216464996, 0.8698469400405884, -0.2056831270456314, -0.08077490329742432, 0.345411092042923, -0.31026867032051086, 0.33237093687057495, 0.1780393272638321, 0.12044677883386612, 0.6377408504486084, 0.2242864966392517, -0.4106886684894562, -0.22262458503246307, 0.483795702457428, -0.9612932205200195, -0.4420488476753235, -0.5991612076759338, -0.23848947882652283, 0.14517995715141296, 0.5577394962310791, 0.5870670080184937, -0.007642395328730345, 0.005933164153248072, 0.26452118158340454, 0.34751638770103455, -0.46632757782936096, 0.6036202907562256, 0.5883851051330566, -0.07435378432273865, -0.4849424660205841, 0.9669137001037598, 0.13966397941112518, 0.08197852224111557, 0.6912881731987, -0.03938322141766548, -0.2652953267097473, -0.468233197927475, -0.33906134963035583, 0.4050283133983612, -0.4426237940788269, 0.005626334808766842, -0.37404072284698486, -0.6142752170562744, -0.6974664926528931, 0.13896964490413666, -0.37625715136528015, -0.4180190861225128, -0.3085078299045563, 0.01937372423708439, -0.35472267866134644, 0.12822794914245605, -0.29514482617378235, 0.5015454888343811, -1.102697491645813, 0.5245956778526306, 0.21977093815803528, 0.2656736671924591, 0.028761660680174828, -0.25085747241973877, -0.5660498738288879, 0.1328497678041458, -0.9114875197410583, -0.7779083251953125, 0.5867083072662354, 0.003824022598564625, 0.7579896450042725, 0.6533417105674744, 0.19895952939987183, 0.5387395024299622, -0.6698190569877625, 1.1728838682174683, 0.39149385690689087, -1.2654569149017334, 0.42828378081321716, -0.19084729254245758, 0.3592250347137451, 0.30181193351745605, 0.5222848653793335, -0.8123436570167542, -0.35077163577079773, -0.5085084438323975, -1.217542290687561, 0.6932874321937561, 0.4075958728790283, 0.35621824860572815, -0.025649258866906166, 0.020300177857279778, -0.01957959681749344, 0.17618036270141602, -1.156599998474121, -0.5769756436347961, -0.5667505264282227, -0.3277641534805298, 0.23765137791633606, -0.43276169896125793, 0.09583251178264618, -0.23782216012477875, 1.1233967542648315, 0.07676112651824951, 0.8758004903793335, 0.5116513967514038, -0.04620090872049332, -0.13935020565986633, 0.09187547862529755, 0.49510276317596436, 0.5822954177856445, -0.2891324460506439, -0.2517116963863373, 0.08037110418081284, -0.6765159964561462, -0.24553222954273224, 0.43523749709129333, -0.41377973556518555, 0.4664955139160156, 0.5129381418228149, 0.6483848690986633, 0.14269214868545532, -0.4422895610332489, 0.5726274251937866, -0.16588915884494781, -0.2628116011619568, -1.0274018049240112, -0.04580586776137352, 0.03735574707388878, 0.02356574684381485, 0.7404177188873291, -0.18075042963027954, 0.13906621932983398, -0.19461072981357574, 0.22727543115615845, 0.42916354537010193, -0.541621744632721, -0.483582466840744, 0.6937205791473389, 0.5098092555999756, -0.2895398437976837, 0.9048321843147278, -0.060416821390390396, -1.004801630973816, 0.7099800109863281, 0.4826197028160095, 1.0739997625350952, -0.35612186789512634, 0.05050039663910866, 0.675674319267273, 0.516664445400238, 0.075038842856884, 0.2598426342010498, -0.2860211133956909, -0.9763893485069275, -0.5539587140083313, -0.3884826600551605, -0.47718292474746704, 0.4421701729297638, -0.5173337459564209, 0.6105234622955322, -0.500663697719574, -0.13362756371498108, -0.0674206018447876, -0.0415705181658268, -0.5042890906333923, 0.14966578781604767, 0.13486185669898987, 1.2022730112075806, -0.6634541153907776, 1.2434661388397217, 0.6296951770782471, -0.563871443271637, -0.8743324279785156, 0.1785895973443985, -0.42731472849845886, -0.7738651037216187, 1.0926886796951294, 0.35558557510375977, 0.29992687702178955, 0.07899337261915207, -0.7931545972824097, -0.8075057864189148, 1.0553174018859863, -0.1650858074426651, -0.3653794229030609, -0.10571902245283127, 0.3727208971977234, 0.4190206229686737, -0.0541960708796978, 0.45471811294555664, 0.07049700617790222, 0.6634279489517212, -0.1726239174604416, -1.20531165599823, -0.24505825340747833, -0.2904343903064728, 0.04880906268954277, 0.267566978931427, -0.8984725475311279, 0.908422589302063, 0.11302120983600616, -0.34865763783454895, 0.40542346239089966, 0.9495891332626343, 0.016115037724375725, 0.12186213582754135, 0.5955394506454468, 0.48271191120147705, -0.029368722811341286, -0.247184619307518, 0.5190919637680054, -0.6061864495277405, 0.8462353944778442, 0.8780728578567505, -0.08811216801404953, 0.7874234318733215, 0.3818114995956421, -0.5390395522117615, 0.5742576718330383, 0.7225439548492432, -0.645456075668335, 0.6486629247665405, 0.02093932032585144, -0.10176420211791992, -0.13240747153759003, 0.13751131296157837, -0.592219889163971, 0.24058452248573303, 0.33359190821647644, -0.38097265362739563, -0.16326884925365448, -0.2050866186618805, -0.03466625139117241, -0.43747639656066895, -0.06441641598939896, 0.5302115678787231, 0.1396729201078415, -0.3212805986404419, 0.5120383501052856, 0.37079286575317383, 1.0095934867858887, -1.1151446104049683, -0.3739040195941925, 0.2771812081336975, 0.16255292296409607, -0.04578119516372681, -0.6817802786827087, 0.14841823279857635, -0.3632831871509552, -0.16845177114009857, -0.16159625351428986, 0.8446283340454102, -0.33725759387016296, -0.5502050518989563, 0.4382621943950653, 0.07788842916488647, 0.1492648869752884, 0.297587513923645, -1.2161052227020264, -0.35812485218048096, 0.3757420480251312, -0.44377270340919495, 0.15622349083423615, 0.17698875069618225, 0.0965498760342598, 0.6741084456443787, 0.9116640090942383, 0.09025952965021133, -0.13706721365451813, -0.04436920955777168, 0.936190664768219, -0.6084432601928711, -0.596010684967041, -0.7081698179244995, 0.7933765053749084, -0.2485719472169876, -0.38313138484954834, 0.7324540615081787, 0.7397697567939758, 1.1887229681015015, -0.37546011805534363, 1.0763694047927856, -0.41254550218582153, 0.806573748588562, -0.20187678933143616, 0.836974024772644, -0.417251318693161, -0.13949960470199585, -0.351502001285553, -0.9249019026756287, -0.241363525390625, 0.9311769008636475, -0.1647987961769104, -0.07608886063098907, 0.7191675901412964, 0.6132445931434631, 0.022144559770822525, -0.23759938776493073, 0.1626386046409607, 0.19583824276924133, 0.647610068321228, 0.476667582988739, 0.5930732488632202, -0.5442289710044861, 0.6646181344985962, -0.6840564608573914, -0.21265898644924164, -0.14551417529582977, -0.729110598564148, -0.735217273235321, -0.6310576796531677, -0.2884026765823364, -0.09860527515411377, -0.2742956876754761, 0.8578711152076721, 0.7934543490409851, -1.1196609735488892, -0.46509313583374023, -0.02239122800529003, 0.11499448120594025, -0.358929306268692, -0.3685115575790405, 0.6622326970100403, -0.4484252631664276, -1.2030848264694214, -0.009570151567459106, 0.09344282746315002, 0.11825530230998993, -0.33120620250701904, 0.001488366280682385, -0.3135632574558258, -0.18395763635635376, 0.4397819936275482, 0.464657723903656, -0.7931500673294067, -0.32573720812797546, -0.02166612632572651, -0.21833305060863495, 0.13075870275497437, 0.649371325969696, -0.23763519525527954, 0.38983556628227234, 0.7102309465408325, 0.28627440333366394, 0.35203132033348083, -0.145243838429451, 0.7402450442314148, -0.5273719429969788, 0.29679518938064575, 0.35127365589141846, 0.5769752860069275, 0.3305468261241913, -0.23456795513629913, 0.5119317770004272, 0.45536643266677856, -0.7432350516319275, -0.5997074246406555, 0.3550792634487152, -1.0816798210144043, -0.30981016159057617, 0.9538436532020569, -0.30732908844947815, -0.14882892370224, -0.12456385791301727, -0.6270496845245361, 0.671826183795929, -0.31972524523735046, 0.6358538866043091, 0.9044570326805115, -0.07081329822540283, -0.08473218977451324, -0.5214723348617554, 0.4157377779483795, 0.45930078625679016, -0.34884485602378845, -0.3660772144794464, 0.00995402317494154, 0.18899798393249512, 0.6574618220329285, 0.46790629625320435, -0.14486083388328552, 0.1263171285390854, -0.1711202710866928, 0.6322121620178223, 0.029100269079208374, 0.208565354347229, 0.058723412454128265, -0.18419961631298065, 0.04476176202297211, -0.44914302229881287 ]
openai/whisper-medium.en
openai
"2023-09-08T12:57:13Z"
47,173
30
transformers
[ "transformers", "pytorch", "tf", "jax", "safetensors", "whisper", "automatic-speech-recognition", "audio", "hf-asr-leaderboard", "en", "arxiv:2212.04356", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
automatic-speech-recognition
"2022-09-26T07:02:02Z"
--- language: - en tags: - audio - automatic-speech-recognition - hf-asr-leaderboard widget: - example_title: Librispeech sample 1 src: https://cdn-media.huggingface.co/speech_samples/sample1.flac - example_title: Librispeech sample 2 src: https://cdn-media.huggingface.co/speech_samples/sample2.flac model-index: - name: whisper-medium.en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (clean) type: librispeech_asr config: clean split: test args: language: en metrics: - name: Test WER type: wer value: 4.120542365210176 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LibriSpeech (other) type: librispeech_asr config: other split: test args: language: en metrics: - name: Test WER type: wer value: 7.431640255663553 pipeline_tag: automatic-speech-recognition license: apache-2.0 --- # Whisper Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation. Trained on 680k hours of labelled data, Whisper models demonstrate a strong ability to generalise to many datasets and domains **without** the need for fine-tuning. Whisper was proposed in the paper [Robust Speech Recognition via Large-Scale Weak Supervision](https://arxiv.org/abs/2212.04356) by Alec Radford et al. from OpenAI. The original code repository can be found [here](https://github.com/openai/whisper). **Disclaimer**: Content for this model card has partly been written by the Hugging Face team, and parts of it were copied and pasted from the original model card. ## Model details Whisper is a Transformer based encoder-decoder model, also referred to as a _sequence-to-sequence_ model. It was trained on 680k hours of labelled speech data annotated using large-scale weak supervision. The models were trained on either English-only data or multilingual data. The English-only models were trained on the task of speech recognition. The multilingual models were trained on both speech recognition and speech translation. For speech recognition, the model predicts transcriptions in the *same* language as the audio. For speech translation, the model predicts transcriptions to a *different* language to the audio. Whisper checkpoints come in five configurations of varying model sizes. The smallest four are trained on either English-only or multilingual data. The largest checkpoints are multilingual only. All ten of the pre-trained checkpoints are available on the [Hugging Face Hub](https://huggingface.co/models?search=openai/whisper). The checkpoints are summarised in the following table with links to the models on the Hub: | Size | Parameters | English-only | Multilingual | |----------|------------|------------------------------------------------------|-----------------------------------------------------| | tiny | 39 M | [✓](https://huggingface.co/openai/whisper-tiny.en) | [✓](https://huggingface.co/openai/whisper-tiny) | | base | 74 M | [✓](https://huggingface.co/openai/whisper-base.en) | [✓](https://huggingface.co/openai/whisper-base) | | small | 244 M | [✓](https://huggingface.co/openai/whisper-small.en) | [✓](https://huggingface.co/openai/whisper-small) | | medium | 769 M | [✓](https://huggingface.co/openai/whisper-medium.en) | [✓](https://huggingface.co/openai/whisper-medium) | | large | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large) | | large-v2 | 1550 M | x | [✓](https://huggingface.co/openai/whisper-large-v2) | # Usage This checkpoint is an *English-only* model, meaning it can be used for English speech recognition. Multilingual speech recognition or speech translation is possible through use of a multilingual checkpoint. To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor). The `WhisperProcessor` is used to: 1. Pre-process the audio inputs (converting them to log-Mel spectrograms for the model) 2. Post-process the model outputs (converting them from tokens to text) ## Transcription ```python >>> from transformers import WhisperProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> # load model and processor >>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium.en") >>> # load dummy dataset and read audio files >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features >>> # generate token ids >>> predicted_ids = model.generate(input_features) >>> # decode token ids to text >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=False) ['<|startoftranscript|><|notimestamps|> Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.<|endoftext|>'] >>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) [' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.'] ``` The context tokens can be removed from the start of the transcription by setting `skip_special_tokens=True`. ## Evaluation This code snippet shows how to evaluate Whisper medium.en on [LibriSpeech test-clean](https://huggingface.co/datasets/librispeech_asr): ```python >>> from datasets import load_dataset >>> from transformers import WhisperForConditionalGeneration, WhisperProcessor >>> import torch >>> from evaluate import load >>> librispeech_test_clean = load_dataset("librispeech_asr", "clean", split="test") >>> processor = WhisperProcessor.from_pretrained("openai/whisper-medium.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-medium.en").to("cuda") >>> def map_to_pred(batch): >>> audio = batch["audio"] >>> input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features >>> batch["reference"] = processor.tokenizer._normalize(batch['text']) >>> >>> with torch.no_grad(): >>> predicted_ids = model.generate(input_features.to("cuda"))[0] >>> transcription = processor.decode(predicted_ids) >>> batch["prediction"] = processor.tokenizer._normalize(transcription) >>> return batch >>> result = librispeech_test_clean.map(map_to_pred) >>> wer = load("wer") >>> print(100 * wer.compute(references=result["reference"], predictions=result["prediction"])) 3.0154449620004904 ``` ## Long-Form Transcription The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`: ```python >>> import torch >>> from transformers import pipeline >>> from datasets import load_dataset >>> device = "cuda:0" if torch.cuda.is_available() else "cpu" >>> pipe = pipeline( >>> "automatic-speech-recognition", >>> model="openai/whisper-medium.en", >>> chunk_length_s=30, >>> device=device, >>> ) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> sample = ds[0]["audio"] >>> prediction = pipe(sample.copy(), batch_size=8)["text"] " Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel." >>> # we can also return timestamps for the predictions >>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"] [{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.', 'timestamp': (0.0, 5.44)}] ``` Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm. ## Fine-Tuning The pre-trained Whisper model demonstrates a strong ability to generalise to different datasets and domains. However, its predictive capabilities can be improved further for certain languages and tasks through *fine-tuning*. The blog post [Fine-Tune Whisper with 🤗 Transformers](https://huggingface.co/blog/fine-tune-whisper) provides a step-by-step guide to fine-tuning the Whisper model with as little as 5 hours of labelled data. ### Evaluated Use The primary intended users of these models are AI researchers studying robustness, generalization, capabilities, biases, and constraints of the current model. However, Whisper is also potentially quite useful as an ASR solution for developers, especially for English speech recognition. We recognize that once models are released, it is impossible to restrict access to only “intended” uses or to draw reasonable guidelines around what is or is not research. The models are primarily trained and evaluated on ASR and speech translation to English tasks. They show strong ASR results in ~10 languages. They may exhibit additional capabilities, particularly if fine-tuned on certain tasks like voice activity detection, speaker classification, or speaker diarization but have not been robustly evaluated in these areas. We strongly recommend that users perform robust evaluations of the models in a particular context and domain before deploying them. In particular, we caution against using Whisper models to transcribe recordings of individuals taken without their consent or purporting to use these models for any kind of subjective classification. We recommend against use in high-risk domains like decision-making contexts, where flaws in accuracy can lead to pronounced flaws in outcomes. The models are intended to transcribe and translate speech, use of the model for classification is not only not evaluated but also not appropriate, particularly to infer human attributes. ## Training Data The models are trained on 680,000 hours of audio and the corresponding transcripts collected from the internet. 65% of this data (or 438,000 hours) represents English-language audio and matched English transcripts, roughly 18% (or 126,000 hours) represents non-English audio and English transcripts, while the final 17% (or 117,000 hours) represents non-English audio and the corresponding transcript. This non-English data represents 98 different languages. As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language. ## Performance and Limitations Our studies show that, over many existing ASR systems, the models exhibit improved robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level. However, because the models are trained in a weakly supervised manner using large-scale noisy data, the predictions may include texts that are not actually spoken in the audio input (i.e. hallucination). We hypothesize that this happens because, given their general knowledge of language, the models combine trying to predict the next word in audio with trying to transcribe the audio itself. Our models perform unevenly across languages, and we observe lower accuracy on low-resource and/or low-discoverability languages or languages where we have less training data. The models also exhibit disparate performance on different accents and dialects of particular languages, which may include higher word error rate across speakers of different genders, races, ages, or other demographic criteria. Our full evaluation results are presented in [the paper accompanying this release](https://cdn.openai.com/papers/whisper.pdf). In addition, the sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages. ## Broader Implications We anticipate that Whisper models’ transcription capabilities may be used for improving accessibility tools. While Whisper models cannot be used for real-time transcription out of the box – their speed and size suggest that others may be able to build applications on top of them that allow for near-real-time speech recognition and translation. The real value of beneficial applications built on top of Whisper models suggests that the disparate performance of these models may have real economic implications. There are also potential dual use concerns that come with releasing Whisper. While we hope the technology will be used primarily for beneficial purposes, making ASR technology more accessible could enable more actors to build capable surveillance technologies or scale up existing surveillance efforts, as the speed and accuracy allow for affordable automatic transcription and translation of large volumes of audio communication. Moreover, these models may have some capabilities to recognize specific individuals out of the box, which in turn presents safety concerns related both to dual use and disparate performance. In practice, we expect that the cost of transcription is not the limiting factor of scaling up surveillance projects. ### BibTeX entry and citation info ```bibtex @misc{radford2022whisper, doi = {10.48550/ARXIV.2212.04356}, url = {https://arxiv.org/abs/2212.04356}, author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya}, title = {Robust Speech Recognition via Large-Scale Weak Supervision}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
[ -0.2834204435348511, -0.6392771005630493, 0.09464778006076813, 0.47129079699516296, -0.06676536053419113, 0.00720699829980731, -0.38269442319869995, -0.6288453936576843, 0.24377498030662537, 0.33764010667800903, -0.8376243710517883, -0.544766902923584, -0.7379876375198364, -0.16026738286018372, -0.6013005375862122, 1.0318964719772339, 0.1514379382133484, -0.011990075930953026, 0.23000529408454895, -0.0725243017077446, -0.328901082277298, -0.26790279150009155, -0.734717845916748, -0.1977684646844864, 0.20195923745632172, 0.14415697753429413, 0.38950517773628235, 0.5465490221977234, 0.15137337148189545, 0.432953417301178, -0.4288000166416168, -0.07022511214017868, -0.3700088858604431, -0.0915008932352066, 0.40007129311561584, -0.4690583646297455, -0.62141352891922, 0.18216738104820251, 0.8020848631858826, 0.47875991463661194, -0.3686811029911041, 0.4493253827095032, 0.24618534743785858, 0.3249097466468811, -0.28523778915405273, 0.2639271914958954, -0.6871746778488159, -0.12290411442518234, -0.27510958909988403, -0.0012442102888599038, -0.34393903613090515, -0.3100573718547821, 0.5810846090316772, -0.6189821362495422, 0.4017971456050873, 0.1460570991039276, 1.0668449401855469, 0.24550381302833557, -0.05463486164808273, -0.4335379898548126, -0.7501075267791748, 1.134028673171997, -0.9110236167907715, 0.5377135276794434, 0.4083148241043091, 0.26757538318634033, 0.04226604849100113, -0.9535331726074219, -0.738326907157898, -0.013666867278516293, -0.024018526077270508, 0.3310147225856781, -0.3510028123855591, -0.007160218432545662, 0.25187361240386963, 0.4248740077018738, -0.4791153371334076, 0.01912444457411766, -0.7361643314361572, -0.6826668381690979, 0.6484740972518921, -0.003388670738786459, 0.29383689165115356, -0.27365830540657043, -0.2596072554588318, -0.42211660742759705, -0.2644954323768616, 0.45434340834617615, 0.39109665155410767, 0.45087218284606934, -0.7298187017440796, 0.364584356546402, -0.06509736180305481, 0.6271776556968689, 0.19443075358867645, -0.6274681091308594, 0.6308974623680115, -0.15253674983978271, -0.20281772315502167, 0.37539392709732056, 1.0712244510650635, 0.23637743294239044, 0.08720985800027847, 0.09541673213243484, -0.15425227582454681, 0.18285349011421204, -0.09823738038539886, -0.8804322481155396, -0.04878608137369156, 0.5045556426048279, -0.5499570965766907, -0.30706292390823364, -0.24131552875041962, -0.6471293568611145, 0.13105180859565735, -0.16430053114891052, 0.7095025181770325, -0.5899817943572998, -0.3422282338142395, 0.24715818464756012, -0.407230943441391, 0.3151657283306122, 0.02694179117679596, -0.8290184736251831, 0.3652045726776123, 0.4397534430027008, 0.8951810002326965, 0.10969341546297073, -0.6259773969650269, -0.4868618845939636, 0.10839591175317764, 0.12638582289218903, 0.4724387526512146, -0.27001190185546875, -0.5835633277893066, -0.22126206755638123, 0.09471223503351212, -0.33588963747024536, -0.5910583138465881, 0.7598538398742676, -0.14037153124809265, 0.5002105832099915, 0.0040538315661251545, -0.5441583395004272, -0.2156585305929184, -0.2033790647983551, -0.4274917244911194, 0.9498862624168396, 0.08135251700878143, -0.7295435667037964, 0.17285415530204773, -0.5281618237495422, -0.4869830310344696, -0.27765730023384094, 0.1852649301290512, -0.6397200226783752, -0.07266431301832199, 0.4383107125759125, 0.420508474111557, -0.19549201428890228, 0.07696892321109772, -0.0508020780980587, -0.42228442430496216, 0.3584496080875397, -0.44240665435791016, 1.0350476503372192, 0.1821037232875824, -0.45850425958633423, 0.21894870698451996, -0.7920088171958923, 0.13341085612773895, 0.04909598082304001, -0.1719086617231369, 0.18614041805267334, -0.038305096328258514, 0.3270621597766876, 0.047371409833431244, 0.15624304115772247, -0.7776642441749573, -0.1287805438041687, -0.6511238217353821, 0.7580037713050842, 0.6550807952880859, -0.0866011381149292, 0.35156455636024475, -0.6083441972732544, 0.30877482891082764, 0.0735054686665535, 0.4494785964488983, -0.17404408752918243, -0.6170486211776733, -1.0014424324035645, -0.42564985156059265, 0.4562298655509949, 0.7252799868583679, -0.34912240505218506, 0.5943906903266907, -0.20434918999671936, -0.7824364304542542, -1.3243907690048218, -0.1571526676416397, 0.5818304419517517, 0.6038873791694641, 0.7245594263076782, -0.17780864238739014, -0.774137020111084, -0.7252276539802551, -0.1537552773952484, -0.3112039864063263, -0.20395544171333313, 0.3940802216529846, 0.3109070956707001, -0.366412490606308, 0.684795081615448, -0.5075224041938782, -0.5389283895492554, -0.2580452263355255, 0.056430839002132416, 0.4924861192703247, 0.6607984304428101, 0.2653541564941406, -0.7259362936019897, -0.43843409419059753, -0.2076926976442337, -0.6077615022659302, -0.10344304889440536, -0.07258278876543045, 0.06855899095535278, 0.026863407343626022, 0.37904855608940125, -0.7229213118553162, 0.4180833399295807, 0.688364565372467, -0.18883131444454193, 0.7404998540878296, 0.16002438962459564, -0.024775387719273567, -1.186389684677124, -0.04996839165687561, -0.13242171704769135, -0.10403363406658173, -0.6847423911094666, -0.2660923898220062, -0.11211889237165451, -0.09590429812669754, -0.5344139933586121, 0.6247824430465698, -0.3482765257358551, 0.04003973677754402, -0.05852387100458145, 0.112656369805336, -0.042321618646383286, 0.528065025806427, 0.19747582077980042, 0.6750504374504089, 0.8725489377975464, -0.5721486806869507, 0.22678115963935852, 0.5568569898605347, -0.3419746458530426, 0.2911243438720703, -1.033316969871521, 0.17152553796768188, 0.13395601511001587, 0.21756987273693085, -0.7103495001792908, -0.10777381807565689, 0.020705243572592735, -1.0026824474334717, 0.45059654116630554, -0.3100942075252533, -0.3518047034740448, -0.5257830619812012, -0.1765802949666977, 0.07031378895044327, 0.9317016005516052, -0.48309826850891113, 0.7375417947769165, 0.430941641330719, -0.21207918226718903, -0.5751938223838806, -0.5615091919898987, -0.24171262979507446, -0.25422388315200806, -0.7989804148674011, 0.5111634731292725, -0.13195663690567017, -0.004625525325536728, -0.18876969814300537, -0.12296484410762787, 0.11537099629640579, -0.243575781583786, 0.4915156662464142, 0.5053346157073975, -0.12499482929706573, -0.2743373513221741, 0.2081928253173828, -0.25570908188819885, -0.001203283085487783, -0.23206248879432678, 0.7129788994789124, -0.35161978006362915, -0.06606511771678925, -0.8116586208343506, 0.21032597124576569, 0.512526273727417, -0.37089309096336365, 0.5699710845947266, 0.9040514230728149, -0.2717558741569519, -0.219882532954216, -0.7356027364730835, -0.2475566565990448, -0.5943295955657959, 0.15868110954761505, -0.35504603385925293, -0.7916147708892822, 0.7266566157341003, 0.16896048188209534, 0.10389465093612671, 0.6419482231140137, 0.5099267959594727, -0.2811247706413269, 0.9451041221618652, 0.4275937080383301, -0.26699554920196533, 0.30740368366241455, -0.7985355854034424, -0.13772128522396088, -1.0803953409194946, -0.38194406032562256, -0.5785337090492249, -0.2923848628997803, -0.5092747807502747, -0.36554160714149475, 0.5426248908042908, 0.11635581403970718, -0.12148631364107132, 0.4589196443557739, -0.7813169956207275, 0.014930693432688713, 0.6610877513885498, 0.058326736092567444, 0.11414552479982376, -0.05721725896000862, -0.1261892318725586, -0.07916315644979477, -0.37697672843933105, -0.3421294689178467, 0.9988495111465454, 0.5404861569404602, 0.5599826574325562, -0.09657125174999237, 0.7542670965194702, -0.056086670607328415, 0.052952840924263, -0.7685711979866028, 0.49961626529693604, -0.11925563961267471, -0.6118205785751343, -0.3964555859565735, -0.2962861955165863, -0.8443788886070251, 0.15170322358608246, -0.20412416756153107, -0.6886643171310425, 0.12154166400432587, -0.09102412313222885, -0.326928973197937, 0.27030351758003235, -0.7337744832038879, 0.5952987670898438, 0.1324951946735382, 0.11378352344036102, -0.06512469798326492, -0.7888986468315125, 0.10892301052808762, 0.10184677690267563, 0.1436534970998764, -0.16070249676704407, 0.2233264446258545, 1.1229826211929321, -0.454349160194397, 0.9136918783187866, -0.3561991751194, 0.11810515820980072, 0.5342812538146973, -0.2073386013507843, 0.3289358913898468, -0.23289407789707184, -0.17243948578834534, 0.4382079541683197, 0.3087238669395447, -0.30787092447280884, -0.31585660576820374, 0.5008294582366943, -1.1128724813461304, -0.32745954394340515, -0.26714417338371277, -0.40603524446487427, -0.16831839084625244, 0.2025475949048996, 0.8351704478263855, 0.7021732330322266, -0.0755513533949852, 0.010672385804355145, 0.49633070826530457, -0.25460636615753174, 0.5578086376190186, 0.6702618598937988, -0.2330816686153412, -0.48799532651901245, 0.9685675501823425, 0.25257039070129395, 0.2675870954990387, 0.16796155273914337, 0.4401942193508148, -0.4479246437549591, -0.6891476511955261, -0.5581213235855103, 0.32820650935173035, -0.39996063709259033, -0.16982685029506683, -0.9051634669303894, -0.5568885207176208, -0.6207678318023682, -0.0025057580787688494, -0.48123592138290405, -0.2872903645038605, -0.4183436632156372, 0.08971627056598663, 0.6139822006225586, 0.42015549540519714, 0.018915260210633278, 0.5662816166877747, -0.9440945386886597, 0.41580620408058167, 0.3304932713508606, 0.1286267638206482, 0.04557744041085243, -1.0041676759719849, -0.09363017976284027, 0.19220975041389465, -0.3581183850765228, -0.6396053433418274, 0.49694809317588806, 0.3861643671989441, 0.4302547872066498, 0.2596040368080139, -0.001843394711613655, 0.972317636013031, -0.7076687216758728, 0.7997612357139587, 0.21783360838890076, -1.2561545372009277, 0.7497643232345581, -0.3784734308719635, 0.24893248081207275, 0.44331303238868713, 0.3711465001106262, -0.6289386749267578, -0.5440002679824829, -0.7136604189872742, -0.6598616242408752, 0.7012166976928711, 0.30847862362861633, 0.09665237367153168, 0.28050845861434937, 0.21314865350723267, 0.11994005739688873, 0.13135211169719696, -0.48603031039237976, -0.4863683879375458, -0.4071849286556244, -0.24927598237991333, -0.11293035745620728, -0.038732510060071945, 0.0019502333598211408, -0.5614520907402039, 0.7962341904640198, 0.017490141093730927, 0.469879686832428, 0.42341962456703186, 0.06488005816936493, -0.02362937293946743, 0.16865113377571106, 0.3493478298187256, 0.2663925290107727, -0.2628534734249115, -0.38240259885787964, 0.3489792048931122, -0.8751906156539917, 0.025306927040219307, 0.3562212288379669, -0.29995954036712646, 0.11929545551538467, 0.719422459602356, 1.1285598278045654, 0.19097024202346802, -0.5174767374992371, 0.6855385899543762, -0.0931820273399353, -0.23909221589565277, -0.6521142721176147, 0.032835643738508224, 0.326906681060791, 0.30742141604423523, 0.3753160536289215, 0.12104450166225433, 0.178307443857193, -0.5152477025985718, 0.15395747125148773, 0.2724161446094513, -0.5388400554656982, -0.5280172228813171, 0.8975725769996643, 0.07097838073968887, -0.4031165540218353, 0.7607172131538391, 0.03348588943481445, -0.6503416299819946, 0.4777539372444153, 0.6838524341583252, 0.9880533218383789, -0.521043598651886, -0.019762936979532242, 0.4667406678199768, 0.2241441309452057, 0.029331563040614128, 0.5039908289909363, -0.044666580855846405, -0.7387129664421082, -0.47625184059143066, -1.0748955011367798, -0.3327767252922058, 0.02779586799442768, -0.9933710098266602, 0.36772090196609497, -0.32265886664390564, -0.27320748567581177, 0.32227417826652527, 0.07901550084352493, -0.7707555890083313, 0.20845437049865723, 0.02678542397916317, 1.0354056358337402, -0.7125950455665588, 1.0340769290924072, 0.1637624353170395, -0.28087523579597473, -1.1564797163009644, -0.0014175944961607456, 0.039219360798597336, -1.00960111618042, 0.32640379667282104, 0.3343745172023773, -0.2074071317911148, 0.13454794883728027, -0.5269219875335693, -0.7379425168037415, 1.119776964187622, 0.15189610421657562, -0.7038902044296265, -0.1960585117340088, -0.06745991855859756, 0.5447542667388916, -0.20663774013519287, 0.242778480052948, 0.7486678957939148, 0.461555153131485, 0.15313415229320526, -1.48520827293396, -0.13224266469478607, -0.27289777994155884, -0.2696557641029358, 0.03239117190241814, -0.8067956566810608, 0.9399312138557434, -0.4296274483203888, -0.24192368984222412, 0.3016643822193146, 0.8069051504135132, 0.4188358783721924, 0.42286592721939087, 0.666654646396637, 0.614787220954895, 0.769314706325531, -0.18932893872261047, 0.9944411516189575, -0.18600361049175262, 0.2394525706768036, 0.9747270941734314, -0.08230798691511154, 1.1348390579223633, 0.21837453544139862, -0.509306013584137, 0.7024818658828735, 0.35787928104400635, -0.04761481657624245, 0.4747968316078186, 0.0009986612712964416, -0.36527785658836365, 0.15390482544898987, -0.11546511203050613, -0.5341169834136963, 0.8159407377243042, 0.4351837635040283, -0.23315615952014923, 0.4327366054058075, 0.14417007565498352, 0.10318896919488907, -0.13302303850650787, -0.234900563955307, 0.8774538636207581, 0.19213326275348663, -0.42210468649864197, 0.8565309643745422, -0.06938552111387253, 1.1056640148162842, -0.8251415491104126, 0.1901364028453827, 0.20660430192947388, 0.20050688087940216, -0.23050840198993683, -0.6520909667015076, 0.34364843368530273, -0.20881818234920502, -0.23490925133228302, -0.18000179529190063, 0.5757263898849487, -0.6819581985473633, -0.5763009190559387, 0.5251269936561584, 0.36895257234573364, 0.3261939585208893, -0.1264377236366272, -0.8548721075057983, 0.4535927474498749, 0.20095346868038177, -0.18443632125854492, 0.1449875682592392, 0.13284455239772797, 0.35295742750167847, 0.713986873626709, 0.8713423013687134, 0.45338931679725647, 0.21853934228420258, 0.14132386445999146, 0.8338666558265686, -0.6910951137542725, -0.569929838180542, -0.6561346650123596, 0.527300238609314, -0.030038347467780113, -0.4106445908546448, 0.8766016364097595, 0.6772825717926025, 0.7316350936889648, 0.06281544268131256, 0.7348713278770447, -0.0022529037669301033, 1.0445598363876343, -0.5183389782905579, 0.9073389172554016, -0.4007405638694763, 0.06050477549433708, -0.404596209526062, -0.7269709706306458, 0.13738077878952026, 0.5697455406188965, -0.08684656769037247, -0.011167936027050018, 0.3841893672943115, 0.901569664478302, 0.0002804240502882749, 0.28963151574134827, 0.03415492922067642, 0.4856749475002289, 0.23947718739509583, 0.5008630752563477, 0.6430571675300598, -0.8258011341094971, 0.6627566814422607, -0.5914367437362671, -0.24672099947929382, 0.14883826673030853, -0.46951594948768616, -0.8788646459579468, -0.8622451424598694, -0.28371769189834595, -0.618638813495636, -0.2714270055294037, 0.7283717393875122, 0.919064998626709, -0.8261056542396545, -0.41402333974838257, 0.3564213216304779, -0.09697352349758148, -0.3525848090648651, -0.2573181986808777, 0.5985623598098755, 0.054064732044935226, -0.9471372961997986, 0.6642324328422546, 0.03565904125571251, 0.3384949266910553, -0.253523588180542, -0.20688530802726746, 0.07301725447177887, 0.0009265065309591591, 0.525579035282135, 0.22964762151241302, -0.8243129253387451, -0.19066032767295837, 0.1247345432639122, 0.19854581356048584, -0.0025427481159567833, 0.38659536838531494, -0.7518646121025085, 0.4175838232040405, 0.2616797983646393, 0.10390213131904602, 0.9573737382888794, -0.3027428984642029, 0.2901346683502197, -0.6948256492614746, 0.4399295449256897, 0.30965638160705566, 0.3557203412055969, 0.37958160042762756, -0.15948541462421417, 0.22565780580043793, 0.2538393437862396, -0.6383582949638367, -0.9978439211845398, -0.07598848640918732, -1.2123981714248657, -0.0375957265496254, 1.0247567892074585, 0.0416632778942585, -0.28955715894699097, -0.08168023079633713, -0.33002281188964844, 0.5412153005599976, -0.523891806602478, 0.46391332149505615, 0.4397314190864563, 0.03671826049685478, -0.04759993776679039, -0.6166754961013794, 0.6617581844329834, 0.2184668928384781, -0.3818272650241852, -0.09809413552284241, 0.07090439647436142, 0.6226301789283752, 0.31493866443634033, 0.8669347763061523, -0.31901711225509644, 0.15926356613636017, 0.1772957444190979, 0.20913313329219818, -0.022606024518609047, -0.16245979070663452, -0.33853408694267273, -0.08577699959278107, -0.22040516138076782, -0.4136306047439575 ]
guillaumekln/faster-whisper-small.en
guillaumekln
"2023-05-12T18:57:44Z"
47,089
1
ctranslate2
[ "ctranslate2", "audio", "automatic-speech-recognition", "en", "license:mit", "region:us" ]
automatic-speech-recognition
"2023-03-23T10:20:17Z"
--- language: - en tags: - audio - automatic-speech-recognition license: mit library_name: ctranslate2 --- # Whisper small.en model for CTranslate2 This repository contains the conversion of [openai/whisper-small.en](https://huggingface.co/openai/whisper-small.en) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format. This model can be used in CTranslate2 or projects based on CTranslate2 such as [faster-whisper](https://github.com/guillaumekln/faster-whisper). ## Example ```python from faster_whisper import WhisperModel model = WhisperModel("small.en") segments, info = model.transcribe("audio.mp3") for segment in segments: print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text)) ``` ## Conversion details The original model was converted with the following command: ``` ct2-transformers-converter --model openai/whisper-small.en --output_dir faster-whisper-small.en \ --copy_files tokenizer.json --quantization float16 ``` Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the [`compute_type` option in CTranslate2](https://opennmt.net/CTranslate2/quantization.html). ## More information **For more information about the original model, see its [model card](https://huggingface.co/openai/whisper-small.en).**
[ 0.033974867314100266, -0.3892831802368164, 0.28988686203956604, 0.4505853056907654, -0.48829275369644165, -0.40968239307403564, -0.5419504046440125, -0.46491897106170654, 0.06835228949785233, 0.7250123620033264, -0.5022993087768555, -0.5570729970932007, -0.5813831090927124, -0.21104082465171814, -0.28958722949028015, 0.8990581631660461, -0.2457726001739502, 0.2928796708583832, 0.4002681076526642, -0.07878515124320984, -0.3583269417285919, -0.17772696912288666, -0.8393619060516357, -0.2850027084350586, 0.1873239129781723, 0.3171597421169281, 0.5908889770507812, 0.3696994483470917, 0.48533809185028076, 0.28438156843185425, -0.299651175737381, -0.06979791074991226, -0.29940125346183777, -0.2002127468585968, 0.2286650836467743, -0.7324402928352356, -0.6367037296295166, 0.13177786767482758, 0.6862072944641113, 0.1225007027387619, -0.30355602502822876, 0.5018880367279053, -0.18601270020008087, 0.3442313075065613, -0.4592239260673523, 0.3226402997970581, -0.5765034556388855, -0.0029036360792815685, -0.17187878489494324, -0.1784021407365799, -0.5891383290290833, -0.3905489146709442, 0.49375078082084656, -0.8578903675079346, 0.17652899026870728, 0.01278526708483696, 0.8908011317253113, 0.2596305012702942, -0.47531768679618835, -0.39272746443748474, -0.9096254110336304, 0.9761862754821777, -0.8230612874031067, 0.22735199332237244, 0.2748957574367523, 0.5793842673301697, 0.2185247391462326, -1.119693398475647, -0.2754703760147095, -0.07878345996141434, 0.045817743986845016, 0.2865128815174103, -0.40127408504486084, 0.29812365770339966, 0.15343765914440155, 0.4814924895763397, -0.674267590045929, -0.09326309710741043, -0.8085759878158569, -0.45930129289627075, 0.5723506212234497, 0.1337481439113617, 0.25476762652397156, -0.3036440312862396, -0.2868416905403137, -0.6344874501228333, -0.5567333102226257, 0.02599411830306053, 0.5018389821052551, 0.3546721637248993, -0.75188148021698, 0.6964760422706604, 0.04670973867177963, 0.39566102623939514, 0.08573189377784729, -0.33433210849761963, 0.33826619386672974, -0.28750938177108765, -0.20428718626499176, 0.48401013016700745, 0.7085533738136292, 0.4912092685699463, 0.09038054198026657, 0.3088668882846832, -0.27197229862213135, -0.07092230767011642, 0.007614991627633572, -1.1813743114471436, -0.4348890483379364, 0.2717542350292206, -0.9643440246582031, -0.2243795394897461, 0.05211532488465309, -0.3575531840324402, 0.10134395956993103, -0.19249358773231506, 0.6462798118591309, -0.4610695540904999, -0.4852695167064667, 0.4319393038749695, -0.5266881585121155, 0.1301257312297821, 0.4548093378543854, -0.7745609283447266, 0.44724175333976746, 0.5419046878814697, 1.160579800605774, 0.09145378321409225, -0.04805276170372963, -0.21979613602161407, 0.23724599182605743, -0.06890960037708282, 0.5478782057762146, -0.022124575451016426, -0.5281357169151306, -0.05682896077632904, 0.018767433241009712, -0.15119396150112152, -0.5745371580123901, 0.6326265335083008, -0.19902871549129486, 0.41641664505004883, 0.31259047985076904, -0.1680470108985901, -0.21936196088790894, -0.002324287313967943, -0.7078286409378052, 1.0220015048980713, 0.45765167474746704, -0.8182195425033569, -0.18214134871959686, -0.8531384468078613, -0.16088560223579407, -0.24485136568546295, 0.46962201595306396, -0.4411785900592804, 0.301213800907135, -0.04446020722389221, -0.04595351219177246, -0.5093097686767578, 0.2521139085292816, -0.12657366693019867, -0.4021196663379669, 0.27120107412338257, -0.4883021116256714, 1.026381254196167, 0.41247478127479553, 0.10034075379371643, 0.26896369457244873, -0.6303242444992065, 0.034458886831998825, 0.000871451513376087, -0.41000959277153015, -0.34593144059181213, -0.1870693415403366, 0.5556246638298035, 0.04595615342259407, 0.36604779958724976, -0.6749559044837952, 0.30367791652679443, -0.6713467836380005, 0.8938239812850952, 0.3921710252761841, 0.029474155977368355, 0.4669772982597351, -0.43373021483421326, 0.1180306151509285, 0.2385019212961197, 0.43595418334007263, 0.14817321300506592, -0.5974422693252563, -0.7953056693077087, -0.147163525223732, 0.4727349579334259, 0.44636279344558716, -0.6620829105377197, 0.19802935421466827, -0.3743336796760559, -0.9614211320877075, -1.032949686050415, -0.462304025888443, 0.22928497195243835, 0.21658511459827423, 0.5554852485656738, -0.06285357475280762, -0.8576820492744446, -0.9638566970825195, -0.1226465180516243, -0.39923080801963806, -0.2929767668247223, 0.21261592209339142, 0.6699926853179932, -0.18366017937660217, 0.6739112138748169, -0.6330392956733704, -0.5270158648490906, -0.2395835965871811, 0.38221055269241333, 0.29600948095321655, 0.8708895444869995, 0.6306787133216858, -0.7743950486183167, -0.32786670327186584, -0.17039041221141815, -0.2935262620449066, 0.029458865523338318, -0.12344402819871902, -0.04756145551800728, 0.008899969980120659, 0.09352421015501022, -0.7808297872543335, 0.5152278542518616, 0.7303521633148193, -0.36894235014915466, 0.47816202044487, -0.046629343181848526, -0.014953216537833214, -1.2675411701202393, 0.11104362457990646, 0.013922269456088543, -0.15350790321826935, -0.5873974561691284, 0.0364224873483181, 0.21497021615505219, 0.05864662677049637, -0.888308048248291, 0.7345049977302551, -0.15687403082847595, -0.03348620980978012, -0.0859147310256958, -0.16297173500061035, -0.07937096804380417, 0.29384344816207886, 0.43568068742752075, 0.8251497149467468, 0.4044664800167084, -0.4147739112377167, 0.11681626737117767, 0.6533234119415283, -0.29619553685188293, 0.1295013427734375, -1.036392331123352, 0.15284310281276703, 0.24416214227676392, 0.42950499057769775, -0.5598032474517822, -0.049763310700654984, 0.2836206257343292, -0.7043634653091431, 0.18698330223560333, -0.6315173506736755, -0.6031352281570435, -0.3077065944671631, -0.5077041983604431, 0.5345404744148254, 0.6833773255348206, -0.4291281998157501, 0.703707754611969, 0.26091039180755615, 0.08006986975669861, 0.012001779861748219, -1.1295198202133179, -0.14235718548297882, -0.21246428787708282, -0.8446117043495178, 0.7162153720855713, -0.2698494493961334, -0.17407964169979095, -0.13419437408447266, -0.016055967658758163, -0.2702348530292511, -0.18410654366016388, 0.41064128279685974, 0.27532559633255005, -0.4470515251159668, -0.2666515111923218, 0.42113348841667175, -0.3430362045764923, 0.0752117708325386, -0.5259939432144165, 0.6766329407691956, -0.17350821197032928, 0.0652206763625145, -0.7559546828269958, 0.10106997936964035, 0.5136211514472961, -0.19361108541488647, 0.5272805094718933, 0.7381826639175415, -0.4114629626274109, -0.20221661031246185, -0.36383262276649475, -0.27304980158805847, -0.50270015001297, 0.21164903044700623, -0.3997851610183716, -0.8029670715332031, 0.49835947155952454, 0.10854573547840118, -0.018620146438479424, 0.8784540295600891, 0.5653157830238342, 0.049520790576934814, 1.1557037830352783, 0.49996691942214966, 0.31221285462379456, 0.4245052933692932, -0.7426658868789673, -0.15077167749404907, -1.1917258501052856, -0.2988431751728058, -0.7529329657554626, -0.2266998291015625, -0.4621104896068573, -0.34859606623649597, 0.5576698184013367, 0.17895059287548065, -0.4852001667022705, 0.7165943384170532, -0.7522417306900024, 0.011204122565686703, 0.4855504333972931, 0.2019486129283905, 0.2857804596424103, -0.018616480752825737, 0.19724202156066895, -0.20924203097820282, -0.42412886023521423, -0.4235471785068512, 1.1085814237594604, 0.6251204609870911, 0.7506997585296631, 0.39538493752479553, 0.6999749541282654, 0.1355503499507904, 0.15002243220806122, -0.9115424752235413, 0.2657095491886139, -0.267644464969635, -0.566109836101532, -0.08922840654850006, -0.32314789295196533, -0.7086121439933777, 0.06021975725889206, 0.05157097056508064, -0.7259610295295715, 0.10040578246116638, -0.028459953144192696, -0.1688641905784607, 0.3581944406032562, -0.5693151950836182, 0.8281763792037964, 0.12504635751247406, 0.31395483016967773, -0.23301516473293304, -0.4138328731060028, 0.5162492990493774, 0.11001881957054138, -0.23366427421569824, 0.07936210930347443, -0.07495254278182983, 1.1400686502456665, -0.7324984669685364, 0.8842595815658569, -0.45411762595176697, -0.1538679152727127, 0.7602890729904175, 0.19939132034778595, 0.4864700138568878, 0.2081443816423416, -0.1965108960866928, 0.5365562438964844, 0.48464086651802063, -0.009292976930737495, -0.326170414686203, 0.5651998519897461, -1.3000338077545166, -0.1160016730427742, -0.25584903359413147, -0.5343496203422546, 0.38889482617378235, 0.14218929409980774, 0.5516027808189392, 0.5870535969734192, -0.04559851810336113, 0.23047266900539398, 0.6029353141784668, 0.035050101578235626, 0.480087012052536, 0.7464894652366638, -0.06387170404195786, -0.7314451336860657, 0.7606148719787598, 0.22254571318626404, 0.27637743949890137, 0.46243080496788025, 0.37945783138275146, -0.5268740057945251, -0.9607912302017212, -0.4341762065887451, 0.12731625139713287, -0.6609596014022827, -0.42462363839149475, -0.6087817549705505, -0.5393348336219788, -0.518872857093811, 0.1163254976272583, -0.7025177478790283, -0.7894525527954102, -0.5750231742858887, 0.291680246591568, 0.6988248229026794, 0.4964199364185333, -0.11555091291666031, 0.7246919870376587, -1.08743417263031, 0.25809773802757263, -0.011451121419668198, 0.13680218160152435, 0.11811812967061996, -1.0405563116073608, -0.167106494307518, 0.18280471861362457, -0.2964661717414856, -0.8019506931304932, 0.5318132042884827, 0.10893400013446808, 0.12628592550754547, 0.18064500391483307, 0.1564665585756302, 0.7520818710327148, -0.18735192716121674, 1.0362880229949951, 0.30464860796928406, -1.1759506464004517, 0.7447271347045898, -0.4721478223800659, 0.1525159627199173, 0.5412083268165588, 0.0682741105556488, -0.6256549954414368, -0.08115392178297043, -0.6721178889274597, -0.7614657282829285, 0.9463626146316528, 0.4698273241519928, -0.12488273531198502, 0.18621517717838287, 0.1682548224925995, 0.14860166609287262, 0.15861128270626068, -0.8022966384887695, -0.3007894456386566, -0.5714080929756165, -0.48562943935394287, 0.20559489727020264, -0.26764050126075745, -0.09687478095293045, -0.2851935625076294, 0.8108786344528198, -0.257872998714447, 0.5216551423072815, 0.508783757686615, -0.22612307965755463, -0.10222534835338593, 0.039067503064870834, 0.7652056217193604, 0.05524859577417374, -0.5359926223754883, -0.09177245944738388, 0.18696725368499756, -0.8112128973007202, -0.0732945129275322, 0.005200074054300785, -0.4116131663322449, 0.2118685245513916, 0.3937445282936096, 0.7931922078132629, 0.4087154269218445, -0.286897212266922, 0.6919493675231934, -0.20812173187732697, -0.40361255407333374, -0.8185366988182068, 0.03341164439916611, 0.17857348918914795, 0.23040826618671417, 0.2932267189025879, 0.28515422344207764, 0.24576131999492645, -0.36328715085983276, -0.218349426984787, 0.10520245134830475, -0.5123758316040039, -0.5436973571777344, 0.8215241432189941, 0.1798010915517807, -0.3620007038116455, 0.6286733150482178, -0.002108595333993435, -0.15643899142742157, 0.6254467368125916, 0.8011746406555176, 1.2444736957550049, -0.04368750751018524, 0.11886488646268845, 0.7080159187316895, 0.4034405052661896, -0.26489022374153137, 0.7195096611976624, -0.1345696598291397, -0.40038174390792847, -0.3005155622959137, -0.8143904209136963, -0.31172069907188416, 0.07575517147779465, -0.9859676361083984, 0.36919423937797546, -0.5197705030441284, -0.19377119839191437, 0.06405021995306015, 0.09311838448047638, -0.7158799171447754, 0.0029973099008202553, 0.16738979518413544, 1.5106749534606934, -0.6802296042442322, 1.241083025932312, 0.5120226144790649, -0.47550755739212036, -0.9732553362846375, -0.3169877529144287, -0.005573316477239132, -0.7296526432037354, 0.5811514854431152, 0.16714026033878326, 0.03448173403739929, 0.0327078141272068, -0.7852429747581482, -1.0237258672714233, 1.4384784698486328, 0.036767493933439255, -0.6410893201828003, -0.19095058739185333, 0.184233158826828, 0.5207105875015259, -0.6140435338020325, 0.6587845683097839, 0.4920467138290405, 0.8823836445808411, -0.015603973530232906, -1.2717583179473877, 0.00845841784030199, -0.1523304432630539, 0.28756970167160034, 0.10771454870700836, -0.925765335559845, 1.2254527807235718, -0.1546812504529953, -0.16044004261493683, 0.8621935844421387, 0.6926705241203308, 0.2678878903388977, 0.30715417861938477, 0.40312325954437256, 0.4540473520755768, 0.4119515120983124, -0.3698430061340332, 0.6514937877655029, -0.24036769568920135, 0.5686401724815369, 0.9847234487533569, -0.18877297639846802, 1.0690979957580566, 0.4369555711746216, -0.0642441064119339, 0.7238478064537048, 0.5402572751045227, -0.3075074553489685, 0.6494273543357849, -0.023448193445801735, 0.049023061990737915, -0.015120145864784718, -0.030840469524264336, -0.4657520651817322, 0.7593289613723755, 0.4935372769832611, -0.3831709921360016, -0.13107019662857056, -0.030141280964016914, 0.011491550132632256, -0.22355754673480988, -0.4706938564777374, 0.7099595069885254, -0.005717764142900705, -0.4321550130844116, 0.6767107248306274, 0.4682721793651581, 0.9105799198150635, -0.9146235585212708, -0.10318990796804428, 0.254374235868454, 0.1922253966331482, -0.21850328147411346, -0.7294321060180664, 0.4898591935634613, -0.20562803745269775, -0.3106563091278076, -0.029768288135528564, 0.6518943309783936, -0.6539027690887451, -0.4249631464481354, 0.3439415395259857, 0.18073120713233948, 0.3525509536266327, -0.22668299078941345, -0.7865483164787292, 0.39308398962020874, 0.258877158164978, -0.3147844076156616, 0.28184980154037476, -0.004255937412381172, -0.0013301183935254812, 0.43530023097991943, 0.8192715644836426, 0.16681136190891266, -0.03267678990960121, 0.0641295462846756, 0.6616698503494263, -0.666700005531311, -0.7386611104011536, -0.37948569655418396, 0.6173508167266846, -0.011920480988919735, -0.7109142541885376, 0.5661930441856384, 0.8699758052825928, 0.6422094702720642, -0.365337073802948, 0.631803572177887, -0.02336886338889599, 0.3586087226867676, -0.8376671075820923, 0.8401433229446411, -0.39984866976737976, -0.10524241626262665, 0.04218608886003494, -0.7969269156455994, 0.06194440275430679, 0.4132823646068573, -0.06584872305393219, -0.24677139520645142, 0.7062731385231018, 0.9247220754623413, -0.13531866669654846, 0.2943052053451538, -0.0015945059712976217, 0.47052279114723206, 0.2949790358543396, 0.6521864533424377, 0.6082021594047546, -1.0579285621643066, 0.7313529849052429, -0.3985273540019989, 0.038636114448308945, -0.07650739699602127, -0.6562093496322632, -0.9396049380302429, -0.6330721974372864, -0.4682404696941376, -0.6263706088066101, -0.15403349697589874, 0.9675644040107727, 0.9116230010986328, -0.7291508913040161, -0.34776198863983154, 0.07776283472776413, -0.10190775245428085, -0.010132413357496262, -0.29446941614151, 0.528243899345398, 0.40687763690948486, -0.7975722551345825, 0.5691016316413879, 0.09082061052322388, 0.5231302380561829, -0.289840430021286, -0.46373918652534485, 0.2964204251766205, 0.07557836920022964, 0.3766576647758484, 0.12476573139429092, -0.9184080362319946, -0.2634931802749634, -0.31735047698020935, -0.04713614284992218, 0.17942287027835846, 0.7506716251373291, -0.7308616042137146, 0.14077413082122803, 0.6254465579986572, -0.27940624952316284, 0.7955805659294128, -0.4036818742752075, 0.22028851509094238, -0.6280134320259094, 0.5771043300628662, 0.2620680034160614, 0.42193660140037537, 0.15693536400794983, -0.08910679817199707, 0.4438011944293976, 0.17180675268173218, -0.323066383600235, -0.966870903968811, -0.05309005826711655, -1.369598627090454, -0.07880111783742905, 1.1288565397262573, 0.03346150368452072, -0.4271499812602997, 0.20947085320949554, -0.6043809652328491, 0.3526785671710968, -0.6556463241577148, 0.23565848171710968, 0.14105068147182465, 0.40357285737991333, -0.031861599534749985, -0.490386039018631, 0.489583283662796, -0.13477873802185059, -0.4098193645477295, 0.019281212240457535, 0.06861372292041779, 0.4732237458229065, 0.42882758378982544, 0.5617707371711731, -0.4632950723171234, 0.4403999149799347, 0.3308289647102356, 0.41346174478530884, -0.3400861322879791, -0.4204087555408478, -0.3743707835674286, -0.005422441754490137, -0.03125018998980522, -0.27353888750076294 ]
timm/convnext_base.fb_in22k_ft_in1k
timm
"2023-03-31T22:03:16Z"
47,088
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "dataset:imagenet-22k", "arxiv:2201.03545", "license:apache-2.0", "region:us" ]
image-classification
"2022-12-13T07:07:23Z"
--- tags: - image-classification - timm library_tag: timm license: apache-2.0 datasets: - imagenet-1k - imagenet-22k --- # Model card for convnext_base.fb_in22k_ft_in1k A ConvNeXt image classification model. Pretrained on ImageNet-22k and fine-tuned on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 88.6 - GMACs: 15.4 - Activations (M): 28.8 - Image size: train = 224 x 224, test = 288 x 288 - **Papers:** - A ConvNet for the 2020s: https://arxiv.org/abs/2201.03545 - **Original:** https://github.com/facebookresearch/ConvNeXt - **Dataset:** ImageNet-1k - **Pretrain Dataset:** ImageNet-22k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('convnext_base.fb_in22k_ft_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'convnext_base.fb_in22k_ft_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 128, 56, 56]) # torch.Size([1, 256, 28, 28]) # torch.Size([1, 512, 14, 14]) # torch.Size([1, 1024, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'convnext_base.fb_in22k_ft_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 1024, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP. | model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size| |------------------------------------------------------------------------------------------------------------------------------|------|------|--------|-----------|------|------|---------------|----------| | [convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512) |88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 | | [convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384) |88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 | | [convnext_xxlarge.clip_laion2b_soup_ft_in1k](https://huggingface.co/timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k) |88.612|98.704|256 |846.47 |198.09|124.45|122.45 |256 | | [convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384) |88.312|98.578|384 |200.13 |101.11|126.74|196.84 |256 | | [convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384) |88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 | | [convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320) |87.968|98.47 |320 |200.13 |70.21 |88.02 |283.42 |256 | | [convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384) |87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 | | [convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384) |87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 | | [convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384) |87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 | | [convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k) |87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 | | [convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k) |87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 | | [convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384) |87.138|98.212|384 |88.59 |45.21 |84.49 |365.47 |256 | | [convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k) |87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 | | [convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384) |86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 | | [convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k) |86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 | | [convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k) |86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 | | [convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384) |86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 | | [convnext_base.clip_laion2b_augreg_ft_in12k_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k) |86.344|97.97 |256 |88.59 |20.09 |37.55 |816.14 |256 | | [convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k) |86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 | | [convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384) |86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 | | [convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k) |86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 | | [convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k) |85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 | | [convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384) |85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 | | [convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k) |85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 | | [convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k) |85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 | | [convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384) |85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 | | [convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384) |85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 | | [convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k) |84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 | | [convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k) |84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 | | [convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k) |84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 | | [convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k) |84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 | | [convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384) |84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 | | [convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k) |83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 | | [convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k) |83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 | | [convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384) |83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 | | [convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k) |83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 | | [convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k) |82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 | | [convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k) |82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 | | [convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k) |82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 | | [convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k) |82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 | | [convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k) |82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 | | [convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k) |82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 | | [convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k) |81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 | | [convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k) |80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 | | [convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k) |80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 | | [convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k) |80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 | | [convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k) |79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 | | [convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k) |79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 | | [convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k) |78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 | | [convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k) |77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 | | [convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k) |77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 | | [convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k) |76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 | | [convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k) |75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 | | [convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k) |75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 | ## Citation ```bibtex @article{liu2022convnet, author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie}, title = {A ConvNet for the 2020s}, journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2022}, } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
[ -0.9269514679908752, -0.44912126660346985, -0.05901307240128517, 0.5263194441795349, -0.44310224056243896, -0.21004940569400787, -0.17488358914852142, -0.4873412847518921, 0.8908949494361877, 0.2367948591709137, -0.6164941787719727, -0.5750627517700195, -0.690212070941925, -0.04477424919605255, 0.09693123400211334, 0.9436825513839722, -0.0464787557721138, -0.130433589220047, 0.2613011300563812, -0.3851545751094818, -0.22092455625534058, -0.4023531377315521, -0.8697444200515747, -0.21345235407352448, 0.27058786153793335, 0.3082314431667328, 0.7899162769317627, 0.6123870015144348, 0.4106192886829376, 0.5678695440292358, -0.25010186433792114, 0.16814371943473816, -0.20844221115112305, -0.35789841413497925, 0.5686478614807129, -0.42917510867118835, -0.9361435174942017, 0.23627494275569916, 0.8532275557518005, 0.5545259714126587, 0.05652511492371559, 0.20380955934524536, 0.35396966338157654, 0.491105854511261, 0.03751770034432411, -0.06424596160650253, -0.09714643657207489, 0.1861126869916916, -0.2793014645576477, 0.021434321999549866, 0.05331122875213623, -0.7291824817657471, 0.36033308506011963, -0.5989760756492615, 0.03245577961206436, 0.00012186202366137877, 1.404064655303955, -0.11721915006637573, -0.22574464976787567, 0.012528768740594387, 0.15453998744487762, 0.7345021367073059, -0.8271388411521912, 0.32879143953323364, 0.43812471628189087, -0.15132565796375275, -0.20656369626522064, -0.6506759524345398, -0.6358936429023743, -0.06661655008792877, -0.38743892312049866, 0.24180586636066437, -0.3703727722167969, -0.06600140035152435, 0.5708088874816895, 0.47038325667381287, -0.5226688385009766, -0.09147439152002335, -0.3351934552192688, -0.11751538515090942, 0.8290850520133972, -0.0905909314751625, 0.6444519758224487, -0.35366809368133545, -0.660618245601654, -0.2867908179759979, -0.21060720086097717, 0.4720195233821869, 0.2291264533996582, -0.030889881774783134, -1.0145100355148315, 0.5253446698188782, 0.09293480217456818, 0.2839626967906952, 0.3725210428237915, -0.200260192155838, 0.817907989025116, -0.26837658882141113, -0.5672687292098999, -0.33403444290161133, 1.2332440614700317, 0.7257994413375854, 0.42539066076278687, 0.1268502026796341, 0.05732997506856918, -0.08872570097446442, -0.490792840719223, -1.02858567237854, -0.1622018814086914, 0.38319700956344604, -0.5777894854545593, -0.1356784701347351, 0.3664088845252991, -0.8250927925109863, 0.14397002756595612, -0.12821245193481445, 0.20084832608699799, -0.8653700351715088, -0.4106374979019165, -0.10160577297210693, -0.3728512227535248, 0.42294061183929443, 0.2986282408237457, -0.36113202571868896, 0.31530076265335083, 0.2860291600227356, 1.019856572151184, 0.30343174934387207, -0.16090551018714905, -0.4341099262237549, -0.16125862300395966, -0.374483197927475, 0.3463208079338074, 0.14448046684265137, -0.16740691661834717, -0.2721547782421112, 0.4561516046524048, -0.17941604554653168, -0.41885778307914734, 0.4226292669773102, 0.2990350127220154, 0.10175330936908722, -0.3942930996417999, -0.37291786074638367, -0.2809467911720276, 0.3968220353126526, -0.523625910282135, 1.0873167514801025, 0.5107543468475342, -1.080950140953064, 0.32141298055648804, -0.48324641585350037, -0.06545419245958328, -0.29621097445487976, 0.08566682040691376, -0.7877757549285889, -0.11800283193588257, 0.24086062610149384, 0.7628631591796875, -0.11705697327852249, -0.1433081328868866, -0.3939298391342163, -0.06558696925640106, 0.371218740940094, 0.11985161900520325, 0.9981000423431396, 0.18545959889888763, -0.47588178515434265, 0.010140849277377129, -0.6667858362197876, 0.32821124792099, 0.39517340064048767, -0.05079362913966179, -0.07547163218259811, -0.8360552191734314, 0.057522788643836975, 0.5413453578948975, 0.20401079952716827, -0.5536279082298279, 0.28579631447792053, -0.25104209780693054, 0.3908472955226898, 0.6571791768074036, -0.06408026814460754, 0.30464059114456177, -0.607895016670227, 0.5823923945426941, 0.08556147664785385, 0.26985201239585876, -0.046408556401729584, -0.40446463227272034, -0.7664597630500793, -0.7039755582809448, 0.2184293121099472, 0.49463313817977905, -0.4635745584964752, 0.7676637172698975, 0.17717407643795013, -0.6438753008842468, -0.7580114603042603, 0.21116267144680023, 0.5472413897514343, 0.2577274739742279, 0.21941116452217102, -0.374376505613327, -0.6804687976837158, -0.9572464823722839, -0.12327226996421814, 0.07699066400527954, -0.024315353482961655, 0.6381627917289734, 0.37863102555274963, -0.0934973731637001, 0.5642638802528381, -0.4384290277957916, -0.2786657214164734, -0.1273384541273117, -0.08453299105167389, 0.45140767097473145, 0.809745728969574, 1.1862976551055908, -0.8884270191192627, -0.9594383835792542, 0.035667356103658676, -1.1547060012817383, 0.017272189259529114, -0.05144355446100235, -0.4508186876773834, 0.2983872592449188, 0.27658694982528687, -1.026138424873352, 0.7193108797073364, 0.38487714529037476, -0.642907440662384, 0.4868154227733612, -0.2771889567375183, 0.3385506570339203, -1.0051249265670776, 0.23707368969917297, 0.2883814573287964, -0.32259175181388855, -0.5463667511940002, 0.07300582528114319, -0.1005992740392685, 0.17763304710388184, -0.6618441343307495, 0.9350706934928894, -0.7020670771598816, 0.1127624586224556, 0.0431065708398819, 0.12106560915708542, 0.00819629430770874, 0.5132105946540833, -0.03745052218437195, 0.44993534684181213, 0.8072757720947266, -0.30257391929626465, 0.4795662760734558, 0.5491907000541687, -0.027522318065166473, 0.8049357533454895, -0.6400007605552673, 0.1242423728108406, 0.11851328611373901, 0.5037082433700562, -0.948570191860199, -0.4328177869319916, 0.6018301248550415, -0.7867083549499512, 0.5021378993988037, -0.2408808469772339, -0.36892902851104736, -0.8266092538833618, -0.8863286375999451, 0.24835272133350372, 0.5920034050941467, -0.6398437023162842, 0.17990709841251373, 0.2774219810962677, 0.05300004780292511, -0.6379184126853943, -0.6742639541625977, -0.07360094040632248, -0.4360696077346802, -0.9066358208656311, 0.4329320192337036, 0.09087123721837997, -0.11840499937534332, 0.016322212293744087, -0.027826810255646706, -0.03972500190138817, -0.1758827269077301, 0.5435149073600769, 0.4370366334915161, -0.2496429979801178, -0.3669142723083496, -0.3234992027282715, -0.12300122529268265, 0.015405084006488323, -0.11594930291175842, 0.5726467967033386, -0.3509026765823364, 0.1595659703016281, -1.0882766246795654, 0.22083032131195068, 0.6572840809822083, -0.036654993891716, 0.9316604137420654, 1.0492135286331177, -0.46136701107025146, 0.1477929651737213, -0.39236196875572205, -0.14286600053310394, -0.5249464511871338, -0.11551852524280548, -0.5509492754936218, -0.6617029905319214, 0.847070574760437, 0.19259750843048096, -0.08628834038972855, 0.7228989005088806, 0.3300888240337372, -0.24727849662303925, 0.8801719546318054, 0.5449554920196533, -0.09917264431715012, 0.6239091753959656, -0.9214577078819275, 0.014997860416769981, -0.8477981686592102, -0.6435918211936951, -0.13292363286018372, -0.5856504440307617, -0.7665999531745911, -0.38765037059783936, 0.27481725811958313, 0.4944152235984802, -0.13434311747550964, 0.6914480924606323, -0.5912373661994934, -0.09286808967590332, 0.5086030960083008, 0.34667858481407166, -0.2671778202056885, -0.2457546442747116, -0.15871426463127136, -0.20802299678325653, -0.5701794624328613, -0.1496492475271225, 0.712843120098114, 0.6711170673370361, 0.4069737195968628, -0.027839351445436478, 0.5371384620666504, -0.08725149184465408, 0.3226065933704376, -0.5039005875587463, 0.7577396035194397, -0.06532372534275055, -0.5413672924041748, -0.20771408081054688, -0.4694029688835144, -1.0088235139846802, 0.13850265741348267, -0.37837812304496765, -0.8715858459472656, -0.14835554361343384, 0.21518750488758087, -0.3076924979686737, 0.5576789379119873, -0.7009261250495911, 0.7678879499435425, -0.08680783957242966, -0.5099865794181824, 0.1103191077709198, -0.907372236251831, 0.2459896355867386, 0.42224904894828796, -0.07847840338945389, -0.17129653692245483, 0.16122953593730927, 0.8321695327758789, -0.874443531036377, 0.5097625255584717, -0.4146707057952881, 0.049382422119379044, 0.5455061197280884, -0.06666141748428345, 0.43949803709983826, 0.13818830251693726, -0.008570757694542408, 0.032070405781269073, 0.15312227606773376, -0.6637743711471558, -0.38964059948921204, 0.6696014404296875, -0.685300886631012, -0.38731759786605835, -0.5594721436500549, -0.3271011710166931, 0.18271711468696594, 0.015055364929139614, 0.6640915274620056, 0.5892554521560669, -0.15412524342536926, 0.21001309156417847, 0.5463185906410217, -0.3965801000595093, 0.5253990292549133, -0.19165588915348053, -0.03296203166246414, -0.5441110134124756, 0.8083679676055908, 0.05891512706875801, 0.1149984821677208, 0.05411207675933838, 0.0741170197725296, -0.44132229685783386, -0.16180770099163055, -0.15075147151947021, 0.7016196846961975, -0.23714861273765564, -0.3740420341491699, -0.6602857708930969, -0.451154887676239, -0.6050637364387512, -0.35537683963775635, -0.4038998484611511, -0.27560219168663025, -0.3546869158744812, 0.07693973928689957, 0.7605253458023071, 0.5720323324203491, -0.38667285442352295, 0.4655191898345947, -0.6588583588600159, 0.331097275018692, 0.0581592433154583, 0.4489019513130188, -0.2969438135623932, -0.6011602878570557, 0.021699395030736923, 0.02461850456893444, -0.25139710307121277, -0.802432656288147, 0.6594203114509583, 0.15506796538829803, 0.40075424313545227, 0.5568476319313049, -0.3268006145954132, 0.8200528025627136, -0.09483952820301056, 0.5150757431983948, 0.5790283679962158, -0.8992895483970642, 0.4434938132762909, -0.42059460282325745, 0.09849695861339569, 0.17051376402378082, 0.3900408148765564, -0.5125877261161804, -0.35538211464881897, -1.0109210014343262, -0.6108104586601257, 0.7126901149749756, 0.15192203223705292, -0.01112219039350748, 0.08099470287561417, 0.6589241027832031, -0.0832660049200058, 0.153236523270607, -0.5644166469573975, -0.7503560185432434, -0.23463578522205353, -0.15041786432266235, -0.10114868730306625, -0.026031892746686935, -0.02225564233958721, -0.7103692889213562, 0.5073278546333313, -0.1356949806213379, 0.5906149744987488, 0.26456233859062195, 0.010400168597698212, -0.04197658598423004, -0.32708773016929626, 0.5640313625335693, 0.3711344301700592, -0.3127538859844208, -0.14231924712657928, 0.3883761167526245, -0.5237911939620972, 0.021651798859238625, 0.30061832070350647, 0.08066248148679733, 0.21258987486362457, 0.34044939279556274, 0.6307415962219238, 0.2614608407020569, -0.1730511635541916, 0.5927984714508057, -0.22543202340602875, -0.41695284843444824, -0.31363531947135925, -0.030070755630731583, 0.20420101284980774, 0.47612065076828003, 0.21423660218715668, 0.05915704742074013, -0.32172855734825134, -0.6033933162689209, 0.5695380568504333, 0.8200859427452087, -0.4638206958770752, -0.5755608677864075, 0.6622899174690247, -0.09587253630161285, -0.11094978451728821, 0.5620684623718262, -0.08363766968250275, -0.7442502379417419, 1.031821370124817, 0.2872561514377594, 0.5921661257743835, -0.5915753841400146, 0.25102949142456055, 0.9115118384361267, -0.01807699166238308, 0.13514584302902222, 0.3742113411426544, 0.38882264494895935, -0.45602333545684814, 0.06037911772727966, -0.6603154540061951, 0.17989355325698853, 0.5922077894210815, -0.478877991437912, 0.3657033443450928, -0.7838738560676575, -0.36889153718948364, 0.20301511883735657, 0.45960691571235657, -0.8647058606147766, 0.3365134000778198, 0.05921681597828865, 1.1570333242416382, -0.8182999491691589, 0.9165029525756836, 0.760705292224884, -0.3816052973270416, -0.9810435175895691, -0.15367673337459564, 0.21755185723304749, -0.7923356890678406, 0.40552952885627747, 0.2567203640937805, 0.2343692034482956, -0.22158750891685486, -0.6400579214096069, -0.5009241104125977, 1.246980905532837, 0.5035946369171143, -0.163906067609787, 0.12272269278764725, -0.354885995388031, 0.4096760153770447, -0.280793160200119, 0.48037129640579224, 0.5546119213104248, 0.5579433441162109, 0.2138342708349228, -0.9542384147644043, 0.38086092472076416, -0.4413219690322876, -0.19736330211162567, 0.30569973587989807, -1.4217660427093506, 1.086790680885315, -0.35711804032325745, -0.033430445939302444, 0.19240011274814606, 0.8506709337234497, 0.41427579522132874, 0.06542396545410156, 0.4106844663619995, 0.7508471012115479, 0.4926062524318695, -0.20467537641525269, 1.0916144847869873, 0.01925991289317608, 0.4177848994731903, 0.26367294788360596, 0.5456181764602661, 0.4175049662590027, 0.3851051926612854, -0.4477323591709137, 0.13411568105220795, 0.9124199151992798, -0.19333598017692566, 0.12251748889684677, 0.2263634353876114, -0.1787983626127243, -0.1357046663761139, -0.22339782118797302, -0.6419515609741211, 0.44404125213623047, 0.16483262181282043, -0.2768983542919159, 0.01337816845625639, -0.09700619429349899, 0.5224730968475342, -0.010686762630939484, -0.15414409339427948, 0.4624195992946625, 0.26394620537757874, -0.6013466715812683, 0.5490108728408813, -0.08838114142417908, 1.025839924812317, -0.3752383589744568, 0.013430958613753319, -0.33092522621154785, 0.3290002942085266, -0.2675553262233734, -1.2031056880950928, 0.329477995634079, -0.15650451183319092, 0.2022879272699356, -0.0826900452375412, 0.6448268890380859, -0.47208768129348755, -0.25007301568984985, 0.5511294007301331, 0.3512432277202606, 0.40658891201019287, 0.05861679092049599, -1.2031086683273315, 0.2449619472026825, 0.15351510047912598, -0.575052797794342, 0.4341992735862732, 0.512419581413269, 0.25590211153030396, 0.7101516723632812, 0.43691882491111755, 0.19848693907260895, 0.09425213932991028, -0.378690242767334, 0.8232927322387695, -0.6867358684539795, -0.49282631278038025, -0.8971179723739624, 0.4673207998275757, -0.3276246190071106, -0.6759975552558899, 0.8216737508773804, 0.4598531126976013, 0.5483481884002686, 0.11897594481706619, 0.5493412017822266, -0.5068705081939697, 0.38852375745773315, -0.45279908180236816, 0.7422670722007751, -0.8339812755584717, -0.33502689003944397, -0.4668673574924469, -0.8432497382164001, -0.29940056800842285, 0.7588946223258972, 0.06086874008178711, 0.24553422629833221, 0.3644530177116394, 0.6162413358688354, -0.0435914508998394, -0.24189959466457367, -0.06650323420763016, 0.2672370374202728, 0.05310611054301262, 0.8410459756851196, 0.5621495246887207, -0.7765169143676758, 0.20779192447662354, -0.6620227098464966, -0.34387606382369995, -0.35055288672447205, -0.7652461528778076, -1.1236279010772705, -0.8265813589096069, -0.5112588405609131, -0.6857172250747681, -0.32443830370903015, 1.154603123664856, 0.9875284433364868, -0.5604618787765503, -0.1746797412633896, 0.3133274018764496, 0.10872095823287964, -0.23144161701202393, -0.27206873893737793, 0.5422368049621582, 0.335226446390152, -1.0510255098342896, -0.28826969861984253, 0.08618884533643723, 0.5785353183746338, 0.32300040125846863, -0.4181632995605469, -0.27122360467910767, -0.07089291512966156, 0.4229188561439514, 0.8501137495040894, -0.7120047211647034, -0.47327449917793274, 0.05349339544773102, -0.27055659890174866, 0.2603902220726013, 0.29312509298324585, -0.4056631624698639, -0.0945492684841156, 0.55890953540802, 0.13829755783081055, 0.78420490026474, 0.15261974930763245, 0.25532203912734985, -0.6446669101715088, 0.6850916743278503, -0.052386973053216934, 0.36350756883621216, 0.3827468752861023, -0.4175548553466797, 0.7651556730270386, 0.5184328556060791, -0.4751599133014679, -1.0040216445922852, -0.30632615089416504, -1.475768804550171, 0.008126097731292248, 0.7955731153488159, -0.2102205604314804, -0.5579574704170227, 0.5462594628334045, -0.3512265980243683, 0.5553925037384033, -0.2617061734199524, 0.272213339805603, 0.39214685559272766, -0.36578866839408875, -0.4709589183330536, -0.5685600638389587, 0.7491167187690735, 0.34093159437179565, -0.7072994709014893, -0.3631363809108734, -0.025691039860248566, 0.5078696012496948, 0.24554181098937988, 0.8231807351112366, -0.20639383792877197, 0.16448336839675903, 0.023787161335349083, 0.17609639465808868, 0.054848846048116684, 0.022793522104620934, -0.16673435270786285, -0.23233972489833832, -0.3522438406944275, -0.6190229058265686 ]
BridgeTower/bridgetower-large-itm-mlm-itc
BridgeTower
"2023-03-08T22:33:21Z"
46,913
4
transformers
[ "transformers", "pytorch", "bridgetower", "gaudi", "en", "dataset:conceptual_captions", "dataset:conceptual_12m", "dataset:sbu_captions", "dataset:visual_genome", "dataset:mscoco_captions", "arxiv:2206.08657", "arxiv:1504.00325", "license:mit", "endpoints_compatible", "has_space", "region:us" ]
null
"2023-02-11T00:25:58Z"
--- language: en tags: - bridgetower - gaudi license: mit datasets: - conceptual_captions - conceptual_12m - sbu_captions - visual_genome - mscoco_captions --- # BridgeTower large-itm-mlm-itc model The BridgeTower model was proposed in "BridgeTower: Building Bridges Between Encoders in Vision-Language Representative Learning" by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan. The model was pretrained on English language using masked language modeling (MLM) and image text matching (ITM)objectives. It was introduced in [this paper](https://arxiv.org/pdf/2206.08657.pdf) and first released in [this repository](https://github.com/microsoft/BridgeTower). BridgeTower got accepted to [AAAI'23](https://aaai.org/Conferences/AAAI-23/). ## Model description The abstract from the paper is the following: Vision-Language (VL) models with the Two-Tower architecture have dominated visual-language representation learning in recent years. Current VL models either use lightweight uni-modal encoders and learn to extract, align and fuse both modalities simultaneously in a deep cross-modal encoder, or feed the last-layer uni-modal representations from the deep pre-trained uni-modal encoders into the top cross-modal encoder. Both approaches potentially restrict vision-language representation learning and limit model performance. In this paper, we propose BridgeTower, which introduces multiple bridge layers that build a connection between the top layers of uni-modal encoders and each layer of the cross-modal encoder. This enables effective bottom-up cross-modal alignment and fusion between visual and textual representations of different semantic levels of pre-trained uni-modal encoders in the cross-modal encoder. Pre-trained with only 4M images, BridgeTower achieves state-of-the-art performance on various downstream vision-language tasks. In particular, on the VQAv2 test-std set, BridgeTower achieves an accuracy of 78.73%, outperforming the previous state-of-the-art model METER by 1.09% with the same pre-training data and almost negligible additional parameters and computational costs. Notably, when further scaling the model, BridgeTower achieves an accuracy of 81.15%, surpassing models that are pre-trained on orders-of-magnitude larger datasets. ## Intended uses & limitations ### How to use Here is how to use this model to perform contrastive learning between image and text pairs: ```python from transformers import BridgeTowerProcessor, BridgeTowerForContrastiveLearning import requests from PIL import Image import torch image_urls = [ "https://farm4.staticflickr.com/3395/3428278415_81c3e27f15_z.jpg",    "http://images.cocodataset.org/val2017/000000039769.jpg"] texts = [ "two dogs in a car", "two cats sleeping on a couch"] images = [Image.open(requests.get(url, stream=True).raw) for url in image_urls] processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm") model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc") inputs  = processor(images, texts, padding=True, return_tensors="pt") outputs = model(**inputs) inputs  = processor(images, texts[::-1], padding=True, return_tensors="pt") outputs_swapped = model(**inputs) print('Loss', outputs.loss.item()) # Loss 0.00191505195107311 print('Loss with swapped images', outputs_swapped.loss.item()) # Loss with swapped images 2.1259872913360596 ``` Here is how to use this model to perform image and text matching ```python from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval import requests from PIL import Image url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"] processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-gaudi") model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-gaudi") # forward pass scores = dict() for text in texts: # prepare inputs encoding = processor(image, text, return_tensors="pt") outputs = model(**encoding) scores[text] = outputs.logits[0,1].item() ``` Here is how to use this model to perform masked language modeling: ```python from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM from PIL import Image import requests url = "http://images.cocodataset.org/val2017/000000360943.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") text = "a <mask> looking out of the window" processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-gaudi") model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-gaudi") # prepare inputs encoding = processor(image, text, return_tensors="pt") # forward pass outputs = model(**encoding) results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist()) print(results) #.a cat looking out of the window. ``` ## Training data The BridgeTower model was pretrained on four public image-caption datasets: - [Conceptual Captions (CC3M)](https://ai.google.com/research/ConceptualCaptions/) - [Conceptual 12M (CC12M)](https://github.com/google-research-datasets/conceptual-12m) - [SBU Captions](https://www.cs.rice.edu/~vo9/sbucaptions/) - [MSCOCO Captions](https://arxiv.org/pdf/1504.00325.pdf) - [Visual Genome](https://visualgenome.org/) The total number of unique images in the combined data is around 14M. ## Training procedure ### Pretraining The model was pre-trained for 10 epochs on an Intel AI supercomputing cluster using 512 Gaudis and 128 Xeons with a batch size of 2048. The optimizer used was AdamW with a learning rate of 1e-7. No data augmentation was used except for center-crop. The image resolution in pre-training is set to 294 x 294. ## Evaluation results Please refer to [Table 5](https://arxiv.org/pdf/2206.08657.pdf) for BridgeTower's performance on Image Retrieval and other downstream tasks. ### BibTeX entry and citation info ```bibtex @article{xu2022bridge, title={BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning}, author={Xu, Xiao and Wu, Chenfei and Rosenman, Shachar and Lal, Vasudev and Che, Wanxiang and Duan, Nan}, journal={arXiv preprint arXiv:2206.08657}, year={2022} } ```
[ -0.28531578183174133, -0.5977780818939209, 0.12127073109149933, 0.26934653520584106, -0.4521884620189667, -0.05594397336244583, -0.31069067120552063, -0.4486909806728363, 0.07745987921953201, 0.5636009573936462, -0.4399530291557312, -0.5209893584251404, -0.6816967725753784, 0.16107062995433807, -0.156747967004776, 0.7390106320381165, -0.22522848844528198, 0.21557606756687164, -0.18928542733192444, -0.05585746467113495, -0.361672043800354, -0.32678306102752686, -0.6759985685348511, -0.17810265719890594, 0.19760067760944366, 0.06566432863473892, 0.42989468574523926, 0.6406368017196655, 0.669562041759491, 0.421173632144928, 0.05649637430906296, 0.28277772665023804, -0.4830385744571686, -0.16602978110313416, -0.062115442007780075, -0.3463284373283386, -0.2086183875799179, 0.029429752379655838, 0.810412585735321, 0.4352644681930542, 0.14185692369937897, 0.35785138607025146, 0.23292724788188934, 0.610745370388031, -0.5671982765197754, 0.4655868113040924, -0.6720077991485596, 0.045078303664922714, -0.1981850266456604, -0.1781221628189087, -0.6013504266738892, 0.031401753425598145, 0.0042986492626369, -0.47348541021347046, 0.3354073762893677, 0.2610815763473511, 1.5576541423797607, 0.2289143204689026, -0.29487213492393494, 0.009857947006821632, -0.45226332545280457, 0.9492285847663879, -0.5554403066635132, 0.3737501800060272, 0.29718005657196045, 0.08812902867794037, 0.18661954998970032, -0.8669642210006714, -0.7899011969566345, -0.22925756871700287, -0.30034053325653076, 0.29708725214004517, -0.46355143189430237, 0.06510705500841141, 0.32258182764053345, 0.31736865639686584, -0.6698663830757141, 0.04039929062128067, -0.6977553367614746, -0.022660493850708008, 0.5442777276039124, 0.042783528566360474, 0.3419579863548279, -0.27576887607574463, -0.43905580043792725, -0.3270150125026703, -0.4347187280654907, 0.13955581188201904, 0.22981613874435425, 0.21446658670902252, -0.2582896947860718, 0.4515954554080963, 0.006780009251087904, 0.9191403985023499, 0.0471353605389595, -0.15916003286838531, 0.4342059791088104, -0.2995246648788452, -0.5097647309303284, -0.050347957760095596, 0.9661182165145874, 0.36783379316329956, 0.45210573077201843, 0.09869357198476791, -0.007165389135479927, 0.08418454229831696, 0.11002795398235321, -1.1082308292388916, -0.4242077171802521, -0.03512420505285263, -0.5623342990875244, -0.1939268261194229, -0.017477061599493027, -0.6709688901901245, -0.03850012272596359, -0.1625984162092209, 0.7252457141876221, -0.49722111225128174, -0.1714261919260025, 0.05599316209554672, -0.12772181630134583, 0.22236591577529907, 0.06203300505876541, -0.8843852877616882, 0.07206441462039948, 0.0710413008928299, 0.8454420566558838, -0.04732746630907059, -0.3591415584087372, -0.30275312066078186, 0.051035016775131226, -0.32592111825942993, 0.5356894135475159, -0.4768955111503601, -0.09955770522356033, -0.15720517933368683, 0.27819204330444336, -0.4483085572719574, -0.48213109374046326, 0.28773245215415955, -0.5277450084686279, 0.5402380228042603, -0.019024182111024857, -0.3543843626976013, -0.3623870015144348, 0.18702822923660278, -0.6419697403907776, 0.792027473449707, 0.04684966430068016, -0.8844811916351318, 0.30118831992149353, -0.5412286520004272, -0.3351932466030121, 0.054220885038375854, -0.20427754521369934, -0.8554985523223877, -0.20428650081157684, 0.4881448745727539, 0.7233220338821411, -0.4326789081096649, 0.20916639268398285, -0.1561831384897232, -0.4191285967826843, 0.08472873270511627, -0.4631246030330658, 1.225178599357605, 0.10180465877056122, -0.5187150239944458, -0.02451738901436329, -0.8197733163833618, -0.04988136515021324, 0.5180871486663818, -0.13719335198402405, -0.1166754737496376, -0.24175414443016052, 0.16650959849357605, 0.26783403754234314, 0.16481781005859375, -0.40557676553726196, 0.029908690601587296, -0.2066774219274521, 0.3353528678417206, 0.7268823385238647, -0.22563113272190094, 0.2754869759082794, -0.17183054983615875, 0.4326039254665375, 0.11311478912830353, 0.12526045739650726, -0.5200939774513245, -0.568783700466156, -0.9671981334686279, -0.6245569586753845, 0.357577383518219, 0.5591648817062378, -0.9596908092498779, 0.33588990569114685, -0.3431050479412079, -0.4474257826805115, -0.8143077492713928, 0.1953720599412918, 0.5952385067939758, 0.6017798781394958, 0.6223710179328918, -0.5588407516479492, -0.5102448463439941, -0.9697268009185791, -0.07112406939268112, -0.07938376069068909, -0.014221551828086376, 0.3385382294654846, 0.5831159353256226, -0.3588828444480896, 0.6313279867172241, -0.40454134345054626, -0.4827604591846466, -0.26230019330978394, 0.04907187074422836, 0.29085713624954224, 0.7377311587333679, 0.657527506351471, -0.895301342010498, -0.5703953504562378, -0.034106627106666565, -0.8823457360267639, 0.12106264382600784, -0.15134331583976746, 0.030867766588926315, 0.39800235629081726, 0.3291316032409668, -0.5190642476081848, 0.36211109161376953, 0.6296527981758118, -0.2112361490726471, 0.3806959092617035, -0.1851351112127304, 0.37574803829193115, -1.371583342552185, 0.14399966597557068, 0.29597222805023193, -0.07825520634651184, -0.5405606031417847, 0.08802151679992676, 0.11393476277589798, -0.13543590903282166, -0.3424850106239319, 0.4626004695892334, -0.7444091439247131, 0.07522457093000412, 0.07750674337148666, 0.06115240603685379, 0.21598118543624878, 0.7855194211006165, 0.22117802500724792, 0.6532322764396667, 0.790973961353302, -0.5096836686134338, 0.3853902220726013, 0.27430394291877747, -0.61055588722229, 0.4449397325515747, -0.5669658780097961, 0.0418684184551239, -0.22532063722610474, 0.036743368953466415, -1.0290848016738892, -0.13511624932289124, 0.2651144564151764, -0.48107805848121643, 0.7246523499488831, -0.024097030982375145, -0.4930664002895355, -0.4946812391281128, -0.13838431239128113, 0.4550713300704956, 0.6084056496620178, -0.7352352142333984, 0.7536482810974121, 0.12492984533309937, -0.05047344043850899, -0.7849123477935791, -0.9798399806022644, 0.2307845801115036, -0.0671943873167038, -0.8360704779624939, 0.589801549911499, 0.0016717595281079412, -0.026023028418421745, 0.0732986330986023, 0.24704955518245697, -0.11859525740146637, -0.1567407101392746, 0.25361254811286926, 0.6069631576538086, -0.2608269155025482, 0.006737320218235254, -0.27337414026260376, -0.13006435334682465, -0.10305783152580261, -0.19986951351165771, 0.5177658796310425, -0.27016979455947876, -0.21274533867835999, -0.6857486367225647, 0.1999310702085495, 0.20822614431381226, -0.3498780131340027, 0.9753446578979492, 0.8896346688270569, -0.3157808184623718, -0.07384505122900009, -0.5198683142662048, -0.08752041310071945, -0.5216591358184814, 0.6477550864219666, -0.3517826199531555, -0.7738007307052612, 0.35017669200897217, 0.1622677892446518, -0.12161962687969208, 0.49949702620506287, 0.5660204291343689, -0.061158180236816406, 1.057187557220459, 0.8412885069847107, 0.004954056814312935, 0.6284164190292358, -0.612771213054657, 0.34310290217399597, -0.530933678150177, -0.4016329348087311, -0.3272538185119629, -0.07170313596725464, -0.7259140610694885, -0.48458585143089294, 0.20331820845603943, 0.03021649830043316, -0.2666219174861908, 0.5924755334854126, -0.6155531406402588, 0.369483083486557, 0.6009923815727234, 0.27916207909584045, 0.14155764877796173, 0.29033347964286804, -0.23708422482013702, -0.19244451820850372, -0.6994120478630066, -0.38747793436050415, 0.8649742007255554, 0.36347439885139465, 0.6837795972824097, -0.11001450568437576, 0.3807314932346344, -0.04269925877451897, 0.21148116886615753, -0.4479990303516388, 0.6538628935813904, -0.31042715907096863, -0.5182812213897705, 0.006518656853586435, -0.5011199116706848, -0.8519769310951233, 0.18631711602210999, -0.2996671497821808, -0.8337903618812561, 0.22965393960475922, 0.24960638582706451, -0.071791872382164, 0.5196858644485474, -0.9226279258728027, 1.1106071472167969, -0.19540126621723175, -0.6576088666915894, -0.09842609614133835, -0.7158544659614563, 0.40400245785713196, 0.03827085345983505, -0.10538575798273087, 0.2382403314113617, 0.36515969038009644, 0.7140539288520813, -0.07474274933338165, 0.7102023363113403, 0.05164801701903343, 0.09521037340164185, 0.09012672305107117, -0.17638327181339264, 0.2799680829048157, -0.32651370763778687, 0.028796199709177017, 0.544565737247467, -0.19721193611621857, -0.5991869568824768, -0.40308380126953125, 0.5407286882400513, -0.7658942341804504, -0.58644038438797, -0.39545759558677673, -0.35960325598716736, 0.10259773582220078, 0.15923891961574554, 0.6172083616256714, 0.47349119186401367, 0.16446751356124878, 0.3215419054031372, 0.6575252413749695, -0.40501898527145386, 0.5361196398735046, 0.30479711294174194, -0.21223731338977814, -0.4548519551753998, 1.1317722797393799, 0.1220146045088768, 0.33940353989601135, 0.6417397856712341, -0.1780303716659546, -0.04924081638455391, -0.40238526463508606, -0.5074338912963867, 0.2409575879573822, -0.8163394927978516, -0.1974809467792511, -0.7759580612182617, -0.43364813923835754, -0.4279971718788147, -0.23924294114112854, -0.3069062829017639, -0.025387562811374664, -0.5377843379974365, 0.041649382561445236, 0.10689761489629745, 0.3862438499927521, 0.09362925589084625, 0.27094921469688416, -0.4931323230266571, 0.2993416488170624, 0.4565040171146393, 0.18444177508354187, -0.12460415810346603, -0.7115030884742737, -0.38359755277633667, -0.03410106897354126, -0.36917513608932495, -0.7680596113204956, 0.6647946834564209, 0.1738387793302536, 0.4543558955192566, 0.5092970728874207, -0.3038363456726074, 0.7397645711898804, -0.3306000828742981, 0.9201166033744812, 0.3736540973186493, -0.963697075843811, 0.461018443107605, 0.024744713678956032, 0.23614709079265594, 0.30638015270233154, 0.5759707689285278, -0.22630490362644196, -0.12919646501541138, -0.5582799911499023, -0.7648234367370605, 0.783547580242157, 0.4230896234512329, 0.08852581679821014, 0.24088412523269653, 0.026043549180030823, -0.14170503616333008, 0.22853323817253113, -1.0913646221160889, -0.31683582067489624, -0.31820887327194214, -0.2940168082714081, -0.19827325642108917, -0.1519603133201599, 0.15208406746387482, -0.5853445529937744, 0.9531112313270569, -0.11317858099937439, 0.6158503293991089, 0.12862558662891388, -0.3738548755645752, -0.04020430147647858, -0.10850080847740173, 0.4924577474594116, 0.47130268812179565, -0.291573166847229, 0.18045048415660858, 0.19332848489284515, -0.5496844053268433, -0.07069020718336105, 0.3716130554676056, -0.11316027492284775, 0.15598084032535553, 0.6175373792648315, 1.2063572406768799, -0.155854731798172, -0.5568312406539917, 0.5893154740333557, -0.103908009827137, -0.2065485566854477, -0.1946125477552414, -0.04848995432257652, -0.041575755923986435, 0.35187971591949463, 0.3755643367767334, 0.19715851545333862, -0.1439896672964096, -0.5647625923156738, 0.07109446078538895, 0.4873741567134857, -0.4652908444404602, -0.17210321128368378, 0.8044818043708801, -0.0532253198325634, -0.219984769821167, 0.7049874663352966, -0.1313241869211197, -0.5845679044723511, 0.7097669243812561, 0.6716753244400024, 0.9332149624824524, -0.2062469720840454, 0.26429468393325806, 0.5090874433517456, 0.5695220828056335, 0.15766920149326324, -0.010797835886478424, -0.14642226696014404, -0.75357985496521, -0.336117148399353, -0.7147141098976135, -0.09117336571216583, 0.18793641030788422, -0.40069064497947693, 0.448337197303772, -0.2988722026348114, -0.03291432932019234, 0.11274847388267517, 0.14491090178489685, -0.9687995910644531, 0.3918289840221405, 0.14838026463985443, 0.7256492972373962, -0.8712871074676514, 0.8047139048576355, 0.6733057498931885, -0.7907036542892456, -0.8188698291778564, -0.016231687739491463, -0.33919787406921387, -1.0008660554885864, 0.9316166639328003, 0.560663640499115, -0.048967961221933365, 0.16941794753074646, -0.7590926885604858, -0.6431364417076111, 1.2541269063949585, 0.49779972434043884, -0.5915732383728027, 0.01380237191915512, 0.11764029413461685, 0.4579879343509674, -0.46580344438552856, 0.5205609798431396, 0.2700675129890442, 0.33347806334495544, 0.06402195990085602, -0.8093679547309875, 0.11228617280721664, -0.5285725593566895, 0.1884630173444748, -0.12937548756599426, -0.7833836674690247, 0.9843208193778992, -0.312289297580719, -0.3944869935512543, 0.029368270188570023, 0.5663028359413147, 0.21852688491344452, 0.23750482499599457, 0.358453631401062, 0.634511411190033, 0.49603700637817383, -0.1100325956940651, 0.9959703683853149, -0.3471008241176605, 0.4702725112438202, 0.7144653797149658, -0.0033935969695448875, 0.6627547144889832, 0.3582228720188141, -0.12741878628730774, 0.6757442355155945, 0.7003473043441772, -0.3671640157699585, 0.6253891587257385, 0.05961361154913902, -0.20004451274871826, -0.27203384041786194, -0.14386509358882904, -0.321993887424469, 0.39069417119026184, 0.14193060994148254, -0.8755436539649963, 0.012255066074430943, 0.21402625739574432, -0.039753686636686325, 0.030938785523176193, -0.1947779357433319, 0.5219839811325073, 0.1416287124156952, -0.49556443095207214, 0.8419550657272339, 0.12251197546720505, 0.7220584154129028, -0.5245068669319153, -0.1024411991238594, -0.0005491301417350769, 0.3416856527328491, -0.05880151316523552, -0.5949822068214417, -0.09785841405391693, -0.10616053640842438, -0.1807435154914856, -0.3359944224357605, 0.7287605404853821, -0.6162174940109253, -0.678231954574585, 0.4423906207084656, 0.09844963997602463, 0.13799028098583221, -0.011772370897233486, -0.8946139216423035, 0.10802935063838959, 0.16342054307460785, -0.3548685610294342, 0.0748196691274643, 0.15461507439613342, 0.10254896432161331, 0.5965914726257324, 0.4785534143447876, 0.009295318275690079, -0.02225683443248272, -0.05025476962327957, 0.890281081199646, -0.5390861630439758, -0.2516436278820038, -0.9642157554626465, 0.5572940111160278, -0.31472960114479065, -0.2911667227745056, 0.7125418186187744, 0.550934374332428, 1.0459858179092407, -0.1773136556148529, 0.6465255618095398, 0.01855458877980709, -0.06745573878288269, -0.6961681246757507, 0.6395890116691589, -0.7001445293426514, 0.11125469207763672, -0.4793545603752136, -1.021677851676941, -0.3325808048248291, 0.7131218314170837, -0.25103282928466797, 0.307388037443161, 0.7253711819648743, 1.1062047481536865, -0.16570113599300385, -0.12441295385360718, 0.39122992753982544, 0.30828192830085754, 0.18900199234485626, 0.6683684587478638, 0.37328991293907166, -0.7519428133964539, 0.5264829397201538, -0.3961072862148285, -0.21831969916820526, -0.1897546797990799, -0.8234707713127136, -1.2216261625289917, -0.9723857641220093, -0.4657859802246094, -0.43108293414115906, 0.2141330987215042, 0.9012190103530884, 0.7843499779701233, -0.7621020674705505, -0.09476769715547562, -0.011463525705039501, -0.053402576595544815, -0.2920433580875397, -0.24712960422039032, 0.5759363770484924, -0.05783521384000778, -0.8634079694747925, -0.0040162308141589165, 0.3972547650337219, 0.14216960966587067, -0.33247190713882446, 0.025861116126179695, -0.4139167368412018, -0.006339576095342636, 0.5384867787361145, 0.08772169798612595, -0.5258473753929138, 0.025943221524357796, -0.031815141439437866, -0.23258733749389648, 0.1266651451587677, 0.3546772599220276, -0.6921261548995972, 0.6655718088150024, 0.35839444398880005, 0.6978822350502014, 0.8889427781105042, -0.18217068910598755, 0.3166441023349762, -0.7589109539985657, 0.2122764140367508, -0.036439575254917145, 0.5370815396308899, 0.6687317490577698, -0.3052430748939514, 0.3561255931854248, 0.5733291506767273, -0.4384860098361969, -0.7274253368377686, -0.03999955207109451, -1.0685466527938843, -0.33420565724372864, 1.0034658908843994, -0.16765940189361572, -0.5313202142715454, 0.22493049502372742, -0.264792263507843, 0.42537713050842285, -0.09987606108188629, 0.7332576513290405, 0.4274774491786957, 0.3055688142776489, -0.6182001233100891, -0.4424559473991394, 0.27695712447166443, 0.46365898847579956, -0.5772067904472351, -0.39496082067489624, 0.20804299414157867, 0.27524980902671814, 0.39888328313827515, 0.5939944982528687, 0.12030737847089767, 0.07416872680187225, 0.14707009494304657, 0.40343430638313293, -0.20504097640514374, -0.2633094787597656, -0.3210127055644989, 0.17657549679279327, -0.48254072666168213, -0.4133470058441162 ]
KB/bert-base-swedish-cased-ner
KB
"2022-06-07T16:34:49Z"
46,788
4
transformers
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "sv", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
"2022-06-07T16:31:50Z"
--- language: sv --- # Swedish BERT Models The National Library of Sweden / KBLab releases three pretrained language models based on BERT and ALBERT. The models are trained on approximately 15-20GB of text (200M sentences, 3000M tokens) from various sources (books, news, government publications, swedish wikipedia and internet forums) aiming to provide a representative BERT model for Swedish text. A more complete description will be published later on. The following three models are currently available: - **bert-base-swedish-cased** (*v1*) - A BERT trained with the same hyperparameters as first published by Google. - **bert-base-swedish-cased-ner** (*experimental*) - a BERT fine-tuned for NER using SUC 3.0. - **albert-base-swedish-cased-alpha** (*alpha*) - A first attempt at an ALBERT for Swedish. All models are cased and trained with whole word masking. ## Files | **name** | **files** | |---------------------------------|-----------| | bert-base-swedish-cased | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/vocab.txt), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased/pytorch_model.bin) | | bert-base-swedish-cased-ner | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/config.json), [vocab](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/vocab.txt) [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/bert-base-swedish-cased-ner/pytorch_model.bin) | | albert-base-swedish-cased-alpha | [config](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/config.json), [sentencepiece model](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/spiece.model), [pytorch_model.bin](https://s3.amazonaws.com/models.huggingface.co/bert/KB/albert-base-swedish-cased-alpha/pytorch_model.bin) | TensorFlow model weights will be released soon. ## Usage requirements / installation instructions The examples below require Huggingface Transformers 2.4.1 and Pytorch 1.3.1 or greater. For Transformers<2.4.0 the tokenizer must be instantiated manually and the `do_lower_case` flag parameter set to `False` and `keep_accents` to `True` (for ALBERT). To create an environment where the examples can be run, run the following in an terminal on your OS of choice. ``` # git clone https://github.com/Kungbib/swedish-bert-models # cd swedish-bert-models # python3 -m venv venv # source venv/bin/activate # pip install --upgrade pip # pip install -r requirements.txt ``` ### BERT Base Swedish A standard BERT base for Swedish trained on a variety of sources. Vocabulary size is ~50k. Using Huggingface Transformers the model can be loaded in Python as follows: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KB/bert-base-swedish-cased') model = AutoModel.from_pretrained('KB/bert-base-swedish-cased') ``` ### BERT base fine-tuned for Swedish NER This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline the model can be easily instantiated. For Transformer<2.4.1 it seems the tokenizer must be loaded separately to disable lower-casing of input strings: ```python from transformers import pipeline nlp = pipeline('ner', model='KB/bert-base-swedish-cased-ner', tokenizer='KB/bert-base-swedish-cased-ner') nlp('Idag släpper KB tre språkmodeller.') ``` Running the Python code above should produce in something like the result below. Entity types used are `TME` for time, `PRS` for personal names, `LOC` for locations, `EVN` for events and `ORG` for organisations. These labels are subject to change. ```python [ { 'word': 'Idag', 'score': 0.9998126029968262, 'entity': 'TME' }, { 'word': 'KB', 'score': 0.9814832210540771, 'entity': 'ORG' } ] ``` The BERT tokenizer often splits words into multiple tokens, with the subparts starting with `##`, for example the string `Engelbert kör Volvo till Herrängens fotbollsklubb` gets tokenized as `Engel ##bert kör Volvo till Herr ##ängens fotbolls ##klubb`. To glue parts back together one can use something like this: ```python text = 'Engelbert tar Volvon till Tele2 Arena för att titta på Djurgården IF ' +\ 'som spelar fotboll i VM klockan två på kvällen.' l = [] for token in nlp(text): if token['word'].startswith('##'): l[-1]['word'] += token['word'][2:] else: l += [ token ] print(l) ``` Which should result in the following (though less cleanly formatted): ```python [ { 'word': 'Engelbert', 'score': 0.99..., 'entity': 'PRS'}, { 'word': 'Volvon', 'score': 0.99..., 'entity': 'OBJ'}, { 'word': 'Tele2', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Arena', 'score': 0.99..., 'entity': 'LOC'}, { 'word': 'Djurgården', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'IF', 'score': 0.99..., 'entity': 'ORG'}, { 'word': 'VM', 'score': 0.99..., 'entity': 'EVN'}, { 'word': 'klockan', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'två', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'på', 'score': 0.99..., 'entity': 'TME'}, { 'word': 'kvällen', 'score': 0.54..., 'entity': 'TME'} ] ``` ### ALBERT base The easiest way to do this is, again, using Huggingface Transformers: ```python from transformers import AutoModel,AutoTokenizer tok = AutoTokenizer.from_pretrained('KB/albert-base-swedish-cased-alpha'), model = AutoModel.from_pretrained('KB/albert-base-swedish-cased-alpha') ``` ## Acknowledgements ❤️ - Resources from Stockholms University, Umeå University and Swedish Language Bank at Gothenburg University were used when fine-tuning BERT for NER. - Model pretraining was made partly in-house at the KBLab and partly (for material without active copyright) with the support of Cloud TPUs from Google's TensorFlow Research Cloud (TFRC). - Models are hosted on S3 by Huggingface 🤗
[ -0.3639405369758606, -0.6945238709449768, 0.17702805995941162, 0.38855502009391785, -0.26306140422821045, -0.22019733488559723, -0.2911897599697113, -0.39733752608299255, 0.41342389583587646, 0.39477699995040894, -0.5114345550537109, -0.6826637983322144, -0.6286996006965637, 0.18243655562400818, -0.20336386561393738, 1.248703956604004, -0.1826813817024231, 0.2452384978532791, 0.05330390855669975, -0.26401594281196594, -0.19221451878547668, -0.811922550201416, -0.484384149312973, -0.46893924474716187, 0.4540747404098511, 0.04470321536064148, 0.5587621331214905, 0.5048206448554993, 0.37939801812171936, 0.4019744098186493, -0.3211793005466461, -0.23520542681217194, -0.2404012680053711, 0.05927710607647896, 0.13958270847797394, -0.5607289671897888, -0.5581579208374023, -0.05363534763455391, 0.49817249178886414, 0.6220975518226624, -0.12046901136636734, 0.1757660210132599, -0.12451311200857162, 0.37355631589889526, -0.1205289214849472, 0.30520424246788025, -0.6071741580963135, -0.017271816730499268, -0.06470905989408493, 0.20599935948848724, -0.20180881023406982, -0.10884706676006317, 0.28048694133758545, -0.5791090726852417, 0.3576277494430542, 0.20198005437850952, 1.3368892669677734, 0.12555795907974243, -0.09484037011861801, -0.47235995531082153, -0.23832862079143524, 0.9473969340324402, -0.9622837901115417, 0.5112929940223694, 0.3715499937534332, -0.06063512712717056, -0.2605607211589813, -0.8413931727409363, -0.6461660265922546, -0.15138691663742065, -0.3085007667541504, 0.14109382033348083, -0.08142146468162537, 0.020588336512446404, 0.23906870186328888, 0.273186057806015, -0.5924214720726013, -0.00079228455433622, -0.5118606090545654, -0.32124361395835876, 0.7803071737289429, -0.14169380068778992, 0.4385920763015747, -0.6328802108764648, -0.34625282883644104, -0.44572824239730835, -0.5438860654830933, -0.12644614279270172, 0.49327921867370605, 0.4826458990573883, -0.30779755115509033, 0.8317739963531494, 0.1398465931415558, 0.5862727761268616, 0.05683432146906853, -0.08994077146053314, 0.4230865240097046, -0.20739711821079254, -0.21668216586112976, 0.027813713997602463, 0.9577812552452087, 0.35666677355766296, 0.19438128173351288, -0.1548289805650711, -0.47300848364830017, -0.10222169756889343, 0.07751865684986115, -0.7820454835891724, -0.446212500333786, 0.4463384747505188, -0.6975868940353394, -0.24431848526000977, -0.25723394751548767, -0.602406919002533, -0.035648345947265625, -0.34975436329841614, 0.6873024702072144, -0.8233181238174438, -0.3069162666797638, 0.1583181768655777, -0.24996747076511383, 0.2677713930606842, -0.06165127828717232, -0.9225219488143921, 0.13851146399974823, 0.5328277349472046, 0.870116114616394, 0.11699775606393814, -0.33464744687080383, -0.03658943995833397, -0.2419028878211975, -0.21261589229106903, 0.5899384021759033, -0.1774955689907074, -0.31282299757003784, 0.06323443353176117, 0.22786839306354523, -0.019750619307160378, -0.34630024433135986, 0.3448505103588104, -0.38253387808799744, 0.5413192510604858, -0.17918682098388672, -0.8282643556594849, -0.12763656675815582, 0.22063221037387848, -0.5394638776779175, 1.2242461442947388, 0.3896430730819702, -0.8369976878166199, 0.34892040491104126, -0.6622876524925232, -0.4211312234401703, 0.08577311038970947, 0.01369722094386816, -0.58369380235672, 0.12856478989124298, 0.33349257707595825, 0.6496753692626953, -0.04495272785425186, 0.15630263090133667, -0.2819678783416748, -0.11275997012853622, -0.05132969841361046, 0.1672690063714981, 1.195957899093628, 0.11049314588308334, -0.2436903864145279, 0.09646134823560715, -0.8199228644371033, -0.0763072520494461, 0.26493653655052185, -0.4545323848724365, -0.31104373931884766, -0.22709541022777557, 0.36445707082748413, 0.2463725060224533, 0.3038474917411804, -0.7158517241477966, 0.28158071637153625, -0.703568160533905, 0.5744598507881165, 0.7043746113777161, -0.13670669496059418, 0.3761345148086548, -0.39914417266845703, 0.41049516201019287, 0.0142128374427557, 0.03259065002202988, -0.06383683532476425, -0.5210198760032654, -0.899106502532959, -0.46450275182724, 0.6751546263694763, 0.4504047632217407, -0.8860598802566528, 0.810089111328125, -0.27589544653892517, -0.6975181102752686, -0.8697400093078613, -0.01929096318781376, 0.3234480917453766, 0.42892929911613464, 0.48069241642951965, -0.13747477531433105, -0.7311156392097473, -1.0102958679199219, -0.27391916513442993, -0.31873857975006104, -0.25276118516921997, 0.3544023036956787, 0.8401269912719727, -0.15914835035800934, 0.9194890260696411, -0.30751389265060425, -0.4719935357570648, -0.14394652843475342, 0.2941298186779022, 0.5030682682991028, 0.7190881967544556, 0.8255739808082581, -0.6297734379768372, -0.4926573932170868, -0.18921241164207458, -0.612533688545227, 0.11550237983465195, -0.0027955234982073307, -0.08665432780981064, 0.5110191702842712, 0.5538359880447388, -0.7863619923591614, 0.22289781272411346, 0.4529023766517639, -0.4333282709121704, 0.6387794017791748, -0.3015096187591553, -0.22911663353443146, -1.328839659690857, 0.1856870949268341, -0.03130466118454933, -0.08919329941272736, -0.5769874453544617, 0.04354744032025337, -0.09879796206951141, 0.10853355377912521, -0.5560744404792786, 0.8335660099983215, -0.5960631370544434, -0.08745259046554565, 0.131495401263237, 0.08676616102457047, -0.08069691807031631, 0.6842864751815796, 0.20552471280097961, 0.5492146611213684, 0.5610911846160889, -0.5321713089942932, 0.4189506471157074, 0.6606689095497131, -0.5327692627906799, 0.3337092697620392, -0.903697669506073, 0.09893182665109634, -0.2778249979019165, 0.2594016194343567, -0.8458460569381714, -0.2181919366121292, 0.24033455550670624, -0.5989618301391602, 0.4103069007396698, -0.33877089619636536, -0.7019888758659363, -0.4710827171802521, -0.16249720752239227, 0.06900479644536972, 0.5870350003242493, -0.5136311650276184, 0.9845948815345764, 0.4036208689212799, -0.30320659279823303, -0.5291178822517395, -0.8164207935333252, -0.0159421656280756, -0.2143677920103073, -0.6657233238220215, 0.5404745936393738, -0.10138260573148727, -0.029129844158887863, 0.2115282565355301, -0.05757077410817146, -0.026370298117399216, 0.07525958120822906, 0.08785694092512131, 0.42447134852409363, -0.1651485711336136, 0.0955406203866005, -0.0732693150639534, 0.1595190465450287, 0.0600692555308342, -0.20795273780822754, 0.8509281873703003, -0.33812659978866577, -0.051601942628622055, -0.2471497356891632, 0.325514554977417, 0.5147951245307922, -0.1027740091085434, 0.9831767678260803, 0.7609840035438538, -0.5968783497810364, 0.044847093522548676, -0.6082111597061157, -0.3581736087799072, -0.45483359694480896, 0.29840728640556335, -0.5953578352928162, -0.8090516328811646, 0.7450335025787354, 0.2710699737071991, 0.4245678782463074, 0.7264191508293152, 0.6949140429496765, -0.2093610167503357, 1.1391050815582275, 0.6347770094871521, -0.09794458001852036, 0.5486862659454346, -0.4592095911502838, 0.14929063618183136, -0.7461321353912354, -0.365769624710083, -0.4352056086063385, -0.22280077636241913, -0.728691816329956, -0.19880667328834534, 0.19219747185707092, 0.2356078028678894, -0.1348300576210022, 0.6996060013771057, -0.7468476891517639, 0.16898003220558167, 0.6979029178619385, 0.009737715125083923, -0.19251108169555664, 0.1254212111234665, -0.4433934688568115, -0.012801125645637512, -0.8464759588241577, -0.47106102108955383, 1.1001765727996826, 0.479312002658844, 0.48029404878616333, 0.043896470218896866, 0.8801966309547424, -0.01133460272103548, 0.4765748679637909, -0.8960996866226196, 0.4767252206802368, -0.10733329504728317, -0.9523823857307434, -0.29083430767059326, -0.28685030341148376, -0.9880586862564087, 0.3299467861652374, -0.3545854091644287, -0.7152621746063232, 0.05773976445198059, 0.0020246391650289297, -0.361331582069397, 0.19407404959201813, -0.689053475856781, 0.7671249508857727, -0.17580647766590118, -0.1314927488565445, 0.08149684965610504, -0.8082464933395386, 0.1799481213092804, -0.031677037477493286, 0.112107053399086, -0.2111518830060959, 0.17153045535087585, 1.0264369249343872, -0.5824230909347534, 0.7503436803817749, -0.18974463641643524, -0.12087080627679825, 0.23628802597522736, -0.0815252959728241, 0.42173269391059875, -0.14153604209423065, -0.12063076347112656, 0.514533281326294, 0.2679697275161743, -0.4445537328720093, -0.311766654253006, 0.5535271167755127, -0.890694797039032, -0.31668350100517273, -0.4477084279060364, -0.4713444709777832, -0.0331176221370697, 0.43092820048332214, 0.4807201027870178, 0.35359814763069153, -0.05372275039553642, 0.26588183641433716, 0.4768929183483124, -0.3611907362937927, 0.5425177216529846, 0.4712979793548584, -0.22557896375656128, -0.5670011043548584, 0.6777076125144958, 0.15039224922657013, -0.12798841297626495, 0.1738433688879013, 0.09224847704172134, -0.5031729936599731, -0.42380771040916443, -0.28287920355796814, 0.5643996596336365, -0.5766534805297852, -0.2769003212451935, -0.9685980677604675, -0.32561057806015015, -0.7866101861000061, -0.058486372232437134, -0.35036173462867737, -0.4190673828125, -0.3739953637123108, -0.05287935957312584, 0.5930031538009644, 0.6694151759147644, -0.1713586151599884, 0.5569310784339905, -0.6779905557632446, 0.2995685636997223, 0.09982521831989288, 0.4897608160972595, -0.3067299425601959, -0.5316267609596252, -0.14834468066692352, 0.08566895872354507, -0.08413487672805786, -0.817531406879425, 0.6574039459228516, 0.09543226659297943, 0.4702751040458679, 0.14592957496643066, -0.047927673906087875, 0.5969700813293457, -0.7144106030464172, 0.9699944853782654, 0.2812075614929199, -1.0136449337005615, 0.5018924474716187, -0.3895248472690582, 0.06405887752771378, 0.3612380027770996, 0.490467369556427, -0.7295913696289062, -0.32342299818992615, -1.0183542966842651, -1.2019751071929932, 0.9883788824081421, 0.38922929763793945, 0.1766442209482193, -0.17218394577503204, 0.378689706325531, -0.002013507764786482, 0.21101345121860504, -0.7962090373039246, -0.4267584979534149, -0.39811864495277405, -0.459020733833313, -0.06929989904165268, -0.2697547376155853, -0.15650732815265656, -0.44518905878067017, 1.1171404123306274, 0.0037221608217805624, 0.48949509859085083, 0.3574466407299042, -0.3399922847747803, 0.22281154990196228, -0.10387655347585678, 0.5826292037963867, 0.3734217882156372, -0.4710423946380615, -0.1575530469417572, 0.3417627215385437, -0.3531774878501892, -0.11757069826126099, 0.3437402546405792, -0.0528595857322216, 0.43516668677330017, 0.4850578308105469, 0.99788498878479, 0.2531639635562897, -0.48335984349250793, 0.5763566493988037, -0.1323564052581787, -0.5468822121620178, -0.5235732793807983, -0.2910814583301544, 0.2675945460796356, 0.14545512199401855, 0.22145220637321472, -0.16021911799907684, -0.20847715437412262, -0.4292553663253784, 0.35309362411499023, 0.31228429079055786, -0.27831006050109863, -0.4034050405025482, 0.7154108881950378, 0.06878168880939484, -0.4768359363079071, 0.7913036942481995, -0.057454828172922134, -0.8009577393531799, 0.63022381067276, 0.5927831530570984, 0.7911151647567749, -0.11682593822479248, 0.09602905064821243, 0.5477432012557983, 0.3683755397796631, -0.1830414980649948, 0.46900156140327454, 0.07258092612028122, -0.8911876082420349, -0.32590216398239136, -1.0151586532592773, -0.1415051817893982, 0.35757336020469666, -0.6774191856384277, 0.35507869720458984, -0.4508562386035919, -0.33031514286994934, 0.1605299413204193, 0.17868220806121826, -0.8961085081100464, 0.24124950170516968, 0.1623094081878662, 0.9827167987823486, -0.9478023648262024, 0.7118444442749023, 0.9158531427383423, -0.5687718987464905, -0.9600381851196289, -0.30322742462158203, -0.3521229326725006, -0.9021207690238953, 0.6878566145896912, 0.21085694432258606, 0.35908976197242737, 0.09160231798887253, -0.6870089173316956, -1.0906767845153809, 0.8560077548027039, 0.1965840756893158, -0.4656698703765869, -0.2315690666437149, -0.07025548815727234, 0.7058092355728149, -0.24989543855190277, 0.41322314739227295, 0.6593794226646423, 0.45899447798728943, -0.0802120789885521, -0.799714207649231, 0.05593588575720787, -0.3749179542064667, 0.12785325944423676, 0.05492570251226425, -0.6642225384712219, 0.9383576512336731, 0.04213421419262886, -0.1938910335302353, 0.12199089676141739, 0.8780682682991028, 0.3111737072467804, -0.16806693375110626, 0.5414736270904541, 0.6412407159805298, 0.7114239931106567, -0.22302848100662231, 0.9805102944374084, -0.6048651933670044, 0.6607137322425842, 0.8402950763702393, 0.06044977530837059, 0.7667548656463623, 0.5382817387580872, -0.2143428921699524, 0.5472912788391113, 0.7021055221557617, -0.35132333636283875, 0.3946186602115631, 0.3187781572341919, -0.06223050132393837, -0.1535985767841339, 0.02619323506951332, -0.2762777805328369, 0.5725080966949463, 0.39085695147514343, -0.33495062589645386, -0.18880806863307953, -0.03663580119609833, 0.36161234974861145, -0.2746603488922119, -0.017028696835041046, 0.7030348181724548, 0.11763704568147659, -0.7141658663749695, 0.7120223641395569, 0.14361949265003204, 0.969643771648407, -0.5491719841957092, 0.12923361361026764, -0.13271136581897736, 0.10911205410957336, 0.0059643336571753025, -0.6755937933921814, 0.20921166241168976, -0.11146311461925507, -0.07061309367418289, -0.40125972032546997, 0.6473179459571838, -0.7187479734420776, -0.6008678674697876, 0.34794074296951294, 0.3258580267429352, 0.5314034223556519, 0.10418172180652618, -1.0661311149597168, -0.024147899821400642, -0.021642623469233513, -0.5611001253128052, 0.1257278323173523, 0.23584695160388947, 0.17326565086841583, 0.5951717495918274, 0.7605725526809692, 0.19955405592918396, 0.1669754534959793, 0.01118992269039154, 0.8002567291259766, -0.5871580243110657, -0.37089061737060547, -0.7508525848388672, 0.5744145512580872, -0.18238136172294617, -0.5347830057144165, 0.6286951899528503, 0.5510817170143127, 0.842123806476593, -0.1368250995874405, 0.6964676976203918, -0.4007667601108551, 0.41772541403770447, -0.428081214427948, 0.9971445202827454, -0.7940137386322021, -0.12445604801177979, -0.1082383245229721, -0.9821166396141052, -0.30636727809906006, 0.8856514692306519, -0.06468036025762558, 0.08462008833885193, 0.4941032826900482, 0.6798863410949707, 0.04550274834036827, -0.23746126890182495, 0.07120878994464874, 0.48577791452407837, 0.34919410943984985, 0.2539456784725189, 0.4143282175064087, -0.7317426204681396, 0.46597015857696533, -0.5198100209236145, -0.04634590074419975, -0.3423973619937897, -0.9586315751075745, -1.0805342197418213, -0.7493975162506104, -0.38364091515541077, -0.5970458984375, -0.06870094686746597, 1.1651968955993652, 0.7820523381233215, -1.0324245691299438, -0.03591783344745636, -0.09938770532608032, 0.0021673650480806828, -0.08479008078575134, -0.29174283146858215, 0.6461851596832275, -0.35030385851860046, -0.8604741096496582, 0.29408523440361023, -0.16947586834430695, 0.3633144497871399, -0.03508485481142998, 0.10408985614776611, -0.3386491537094116, 0.19152922928333282, 0.6127859950065613, 0.23959487676620483, -0.8575404286384583, -0.36004793643951416, 0.017183363437652588, -0.11470083147287369, 0.029054686427116394, 0.3725745379924774, -0.551238477230072, 0.2714979350566864, 0.5373842716217041, 0.3625034689903259, 0.7097551822662354, -0.14281943440437317, 0.6039250493049622, -0.9918228387832642, 0.26147687435150146, 0.3595292568206787, 0.6374342441558838, 0.4825735092163086, -0.11628734320402145, 0.47692087292671204, 0.16094207763671875, -0.5247250199317932, -1.018662691116333, -0.09489883482456207, -0.8416478633880615, -0.36336636543273926, 1.1326267719268799, -0.1986607015132904, -0.5509849190711975, 0.10466720908880234, -0.21766354143619537, 0.5305169224739075, -0.26511356234550476, 0.7931402921676636, 1.027207612991333, 0.027658037841320038, 0.06559436768293381, -0.291720449924469, 0.6385679841041565, 0.6789420247077942, -0.48663094639778137, -0.08294366300106049, 0.24860236048698425, 0.6837778091430664, 0.39001011848449707, 0.5247575044631958, -0.18217191100120544, -0.1117897629737854, 0.045734703540802, 0.6893449425697327, 0.032958898693323135, -0.15561071038246155, -0.337283730506897, -0.05623076483607292, -0.34813421964645386, -0.1238659918308258 ]
igorvln/dare_gpt2_semeval2018_byrelation_finetuning
igorvln
"2023-11-15T00:45:14Z"
46,695
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
"2023-11-14T23:08:54Z"
Entry not found
[ -0.3227650225162506, -0.22568431496620178, 0.862226128578186, 0.43461495637893677, -0.5282987952232361, 0.7012965679168701, 0.7915717363357544, 0.07618638128042221, 0.7746025919914246, 0.2563219666481018, -0.7852817177772522, -0.22573819756507874, -0.9104480743408203, 0.5715669393539429, -0.3992334008216858, 0.5791245698928833, -0.14494505524635315, -0.10751161724328995, 0.28233757615089417, -0.2768954336643219, -0.5409224033355713, -0.36855220794677734, -1.1902776956558228, 0.061491113156080246, 0.5316578149795532, 0.7435142397880554, 0.7584060430526733, 0.3652167320251465, 0.6432578563690186, 0.3932291269302368, -0.23138920962810516, 0.4827055037021637, -0.04171813279390335, 0.00260411505587399, -0.3524433970451355, -0.5516898036003113, -0.28596609830856323, 0.07584730535745621, 1.0961304903030396, 0.966687798500061, -0.284663587808609, 0.05330817773938179, -0.3063621520996094, 0.33088892698287964, -0.49734312295913696, 0.3054099678993225, -0.022506045177578926, 0.16318801045417786, -0.7041513919830322, -0.5535354018211365, 0.012794834561645985, -0.7361212968826294, 0.17926570773124695, -0.690081000328064, 0.8269098401069641, 0.18583157658576965, 1.1533750295639038, 0.14819414913654327, -0.462487131357193, -0.8161764144897461, -0.6538989543914795, 0.5711171627044678, -0.32703715562820435, 0.39680248498916626, 0.7028235197067261, -0.048573412001132965, -0.9820332527160645, -0.6745741367340088, -0.46466192603111267, 0.2923962473869324, 0.35402774810791016, -0.3411678075790405, -0.17522086203098297, -0.3058989644050598, 0.15792037546634674, 0.12811517715454102, -0.4841994643211365, -0.5543919205665588, -0.5475160479545593, -0.3960252106189728, 0.6206658482551575, 0.3482950031757355, 0.2429177463054657, -0.1888415813446045, -0.3228583335876465, 0.0880163162946701, -0.4160851538181305, 0.3402571678161621, 0.6335517168045044, 0.7114017009735107, -0.5811444520950317, 0.560215950012207, -0.04927587881684303, 0.7439703941345215, 0.11445561796426773, -0.27478092908859253, 0.41460567712783813, -0.14724725484848022, 0.055171746760606766, 0.4226345121860504, 0.31524422764778137, 0.2841312289237976, -0.3273695111274719, 0.2032228708267212, -0.3215144872665405, -0.30496224761009216, -0.22332167625427246, -0.29490774869918823, -0.3592180609703064, 0.5492289066314697, -0.3314017057418823, -0.42855486273765564, 1.143175721168518, -0.4200771450996399, -0.7302224040031433, 0.33156412839889526, 0.4065209925174713, -0.0994480773806572, -0.37146568298339844, -0.052260834723711014, -0.8458789587020874, -0.007907390594482422, 0.7491172552108765, -0.7198970913887024, 0.3371737599372864, 0.4728063642978668, 0.7417217493057251, 0.19650575518608093, -0.14034469425678253, -0.42949390411376953, 0.2971969544887543, -0.8659994006156921, 0.6320174336433411, -0.20135220885276794, -1.0051977634429932, 0.11150479316711426, 0.8971705436706543, -0.37896400690078735, -1.2094876766204834, 1.0605159997940063, -0.6887932419776917, 0.16017857193946838, -0.676761269569397, -0.14661237597465515, -0.07118501514196396, -0.005096632521599531, -0.6088156700134277, 0.7567102313041687, 0.587267279624939, -0.4995276927947998, 0.21429483592510223, -0.26029831171035767, -0.39151400327682495, 0.38824859261512756, -0.07935450226068497, -0.21858926117420197, 0.713833212852478, -0.6647079586982727, -0.26932814717292786, 0.2942774295806885, 0.2368936538696289, -0.35706108808517456, -0.7931919097900391, 0.08478113263845444, -0.05786270648241043, 1.550750494003296, -0.03868847340345383, -0.3586106300354004, -0.679383397102356, -1.1506240367889404, -0.07070787996053696, 0.6886883974075317, -0.9194989204406738, -0.27839475870132446, -0.046410128474235535, -0.26169314980506897, 0.08994917571544647, 0.7390589714050293, -1.1194051504135132, 0.2832726836204529, -0.05092663690447807, -0.22794683277606964, 0.8271058797836304, 0.15387225151062012, 0.24758946895599365, 0.14913396537303925, 0.42958706617355347, 0.527725338935852, 0.11115207523107529, 0.683587908744812, -0.34720373153686523, -0.9694353938102722, 0.6154631972312927, 0.25266361236572266, 0.8121447563171387, -0.49945297837257385, 0.2685093879699707, 0.27025535702705383, -0.3409680724143982, -0.5682371854782104, -0.3102838397026062, 0.09025752544403076, 0.14930562674999237, 0.11142510175704956, -0.5721710324287415, -0.6576125025749207, -0.9689140319824219, -0.13590654730796814, -0.4314374029636383, -0.3571570813655853, 0.21006910502910614, 0.5792906284332275, -1.1975523233413696, 0.4128875136375427, -0.7705625891685486, -0.7038741111755371, -0.01065548975020647, -0.19338123500347137, 0.7540656328201294, 0.43240174651145935, 0.5033966898918152, -0.6397148370742798, -0.5661987066268921, -0.22470176219940186, -1.0333747863769531, -0.13280506432056427, 0.24819621443748474, 0.3065737783908844, -0.13423344492912292, -0.2744963765144348, -0.48740333318710327, 0.8100387454032898, 0.14789170026779175, -0.5391897559165955, 0.5220767259597778, -0.3020317256450653, 0.17224803566932678, -0.6369150280952454, -0.06916818022727966, -0.661676287651062, -0.0009071884560398757, -0.3608308732509613, -0.5737438797950745, 0.14772287011146545, 0.07017494738101959, -0.16065457463264465, 0.28808408975601196, -0.909277081489563, -0.0010852962732315063, -0.7442210912704468, 0.379071980714798, 0.06394772231578827, -0.3145078718662262, -0.017517540603876114, 1.0000386238098145, 0.7784460783004761, -0.3848048746585846, 0.721744179725647, 0.4440041184425354, 0.19036155939102173, 0.7630521059036255, -0.18725109100341797, 0.16478213667869568, -0.5245416760444641, -0.12161104381084442, -0.8887597918510437, -1.0982946157455444, 0.7320570349693298, -0.6114250421524048, 0.36542922258377075, -0.4277869760990143, 0.2589159905910492, -0.6919258832931519, -0.03885362669825554, 0.4808599352836609, -0.05936325341463089, -0.6863942742347717, 0.5232570171356201, 0.45317530632019043, -0.2019241601228714, -0.6609031558036804, -0.530157208442688, 0.39365822076797485, 0.6154114007949829, -0.16390392184257507, 0.06878514587879181, 0.14941060543060303, -0.5441926121711731, -0.040802597999572754, -0.38691970705986023, -0.45766758918762207, 0.054224006831645966, 0.13053473830223083, -0.005750799085944891, -0.404820054769516, -0.0868026465177536, -0.35842007398605347, -0.4656120240688324, 0.21876516938209534, 0.3011947274208069, -0.04096309468150139, -0.42599788308143616, -0.3619818687438965, -0.888181209564209, 0.6719610095024109, 0.5370282530784607, 0.05281545966863632, 0.7555549740791321, 0.16819314658641815, -0.8014987707138062, -0.13532210886478424, -0.1760706603527069, 0.2696830928325653, -0.5588056445121765, 0.13849826157093048, -0.013484534807503223, -0.0637492910027504, 0.26297882199287415, 0.25386232137680054, -0.4300556778907776, 0.9276250004768372, -0.2615274488925934, -0.3592521846294403, 0.7960181832313538, 0.5974742770195007, 0.49583131074905396, 0.16503219306468964, -0.044541798532009125, 0.900709331035614, -1.1966516971588135, -0.6563175916671753, -0.7409549355506897, -0.15945707261562347, -0.43510833382606506, -0.032105933874845505, 0.6254412531852722, 0.2900990843772888, -0.1333388388156891, 0.4756395220756531, -0.5243489742279053, 0.3556033670902252, 1.01198410987854, 0.35748639702796936, 0.3435698449611664, -0.7570229172706604, -0.2515777349472046, -0.1402427852153778, -0.9998157620429993, -0.2631377875804901, 0.8871029019355774, 0.22752606868743896, 0.844460666179657, 0.5992541313171387, 0.6784542798995972, 0.1367226243019104, 0.2523828148841858, -0.30590319633483887, 0.3920294940471649, 0.4376082420349121, -1.0401138067245483, -0.42758408188819885, 0.021418681368231773, -0.9703338742256165, -0.14227519929409027, -0.03495011106133461, -0.42617112398147583, 0.7681737542152405, 0.00016589462757110596, -0.4076709747314453, 0.7732734084129333, -0.455583393573761, 0.7562873363494873, -0.4473648965358734, -0.02663906291127205, 0.4699096083641052, -0.7070636749267578, 0.4677430987358093, 0.12878790497779846, 0.6205843091011047, -0.015572631731629372, -0.04078587517142296, 0.7104941606521606, -0.9129160046577454, 0.25438642501831055, -0.6348397135734558, 0.22421300411224365, 0.24246945977210999, 0.51606285572052, 0.5969953536987305, 0.4371243417263031, 0.10119888931512833, -0.23920902609825134, 0.04115807265043259, -0.8241125345230103, -0.210506409406662, 0.697515606880188, -0.7186890840530396, -0.6864197850227356, -1.2355337142944336, 0.14438660442829132, 0.27347055077552795, 0.389305055141449, 0.7959296107292175, 0.571408748626709, 0.1289544403553009, 0.680525004863739, 0.9888588190078735, -0.0688566341996193, 0.9166924357414246, 0.3224477171897888, 0.09175168722867966, -0.21944808959960938, 0.7036820650100708, 0.26627904176712036, -0.24707956612110138, -0.11939732730388641, 0.20913465321063995, -0.11069409549236298, -0.591761589050293, -0.49990686774253845, 0.3701757788658142, -0.6731787919998169, -0.18303893506526947, -0.6243735551834106, -0.6043769717216492, -0.511759340763092, 0.06927360594272614, -0.7147687673568726, 0.23979046940803528, -0.7753565907478333, -0.10574902594089508, 0.04323432594537735, 0.9792009592056274, -0.589311957359314, 0.5805224180221558, -1.1218582391738892, 0.19345788657665253, -0.07949887961149216, 0.7921058535575867, 0.21395787596702576, -0.7344395518302917, -0.3975418508052826, -0.11592631042003632, -0.3729911744594574, -1.3576762676239014, 0.21404948830604553, -0.2454141080379486, 0.23094046115875244, 0.6145404577255249, 0.1397707313299179, 0.5258248448371887, -0.34326282143592834, 0.7029101848602295, -0.057017259299755096, -0.7069286704063416, 0.7934495210647583, -0.5026894807815552, 0.4963534474372864, 0.9765996932983398, 0.5333835482597351, -0.7984007596969604, 0.035741209983825684, -1.041123390197754, -0.6008695363998413, 0.38426393270492554, 0.11928944289684296, -0.03601083159446716, -0.6659559011459351, -0.054019637405872345, -0.16143807768821716, 0.6043745279312134, -1.039069414138794, -0.7858356237411499, 0.2576698362827301, 0.5277302861213684, 0.0816856250166893, -0.5653398633003235, 0.20880667865276337, -0.544416069984436, 1.0657774209976196, 0.45109400153160095, 0.3274499475955963, 0.8406060934066772, 0.46492424607276917, -0.3823164403438568, 0.09252490103244781, 0.7662695050239563, 0.6666232347488403, -0.5239797830581665, -0.2908027470111847, -0.08827541768550873, -0.9143403768539429, 0.05927472561597824, 0.11168918758630753, -0.013455932028591633, 0.9082110524177551, 0.5793083310127258, 0.2539709210395813, 0.4514279365539551, -0.726460337638855, 0.8859451413154602, -0.14954176545143127, -0.12472866475582123, -1.0677239894866943, 0.1948619782924652, -0.23984959721565247, 0.5006402134895325, 1.0061326026916504, 0.5250048041343689, -0.047630298882722855, -0.8143380880355835, -0.01473585981875658, 0.6939172148704529, -0.7091123461723328, -0.17449834942817688, 0.944853663444519, 0.3847099542617798, -1.2953051328659058, 1.106776475906372, -0.5381771326065063, -0.560332179069519, 0.9121301770210266, 0.522956907749176, 1.1221847534179688, -0.44204121828079224, 0.0008676342549733818, 0.2662237286567688, 0.41378432512283325, 0.5423170328140259, 1.0869629383087158, 0.431413471698761, -0.7931063771247864, 0.8826584815979004, -0.24776044487953186, -0.40361151099205017, -0.05347571521997452, -0.42859897017478943, 0.16892178356647491, -0.4406192898750305, -0.10713007301092148, -0.3444187641143799, 0.28543180227279663, -0.7072042226791382, 0.42807620763778687, -0.0838567465543747, 0.8653068542480469, -0.8553727269172668, 0.47207626700401306, 0.635470449924469, -0.3337355852127075, -0.8508191108703613, -0.26198428869247437, -0.11448462307453156, -0.6389466524124146, 0.30214807391166687, -0.4554102420806885, 0.044398851692676544, 0.09623463451862335, -0.649151623249054, -1.1778275966644287, 0.9093633890151978, -0.639612078666687, -0.2784462869167328, 0.20464053750038147, -0.11514760553836823, 0.28811705112457275, -0.2524643540382385, 0.010661216452717781, 0.41876548528671265, 0.748940110206604, 0.2844654619693756, -0.7727053761482239, -0.3694884479045868, 0.0015032943338155746, -0.44474777579307556, 0.7582978010177612, -0.6002101898193359, 1.1840779781341553, -0.5563543438911438, -0.059654366225004196, 0.44384512305259705, 0.24690914154052734, 0.21076197922229767, 0.6629220843315125, 0.1442081481218338, 0.7282265424728394, 1.07012140750885, -0.40835219621658325, 0.8811809420585632, 0.26432839035987854, 0.47430819272994995, 0.7238501906394958, -0.6487724781036377, 0.7513749003410339, 0.31810489296913147, -0.5682924389839172, 0.9228013753890991, 1.2906063795089722, -0.15699204802513123, 0.8079374432563782, 0.05136508867144585, -1.081600546836853, 0.325833261013031, -0.20724765956401825, -0.7530064582824707, 0.3150254189968109, 0.19055864214897156, -0.6920982599258423, -0.5770308971405029, -0.24046507477760315, -0.35662803053855896, -0.11552901566028595, -0.7631728649139404, 0.6720563769340515, -0.016969164833426476, -0.5103683471679688, 0.18857547640800476, 0.2877499461174011, 0.17368432879447937, -0.5235732793807983, -0.02939440682530403, -0.22823619842529297, 0.2660655975341797, -0.5670853853225708, -0.5234526991844177, 0.5724433064460754, -0.32430219650268555, -0.5343255400657654, 0.18147465586662292, 0.763587236404419, -0.16923809051513672, -0.4515409469604492, 0.32472723722457886, 0.6959525346755981, 0.1665852814912796, 0.4250282347202301, -0.23511263728141785, 0.24480605125427246, -0.08044824004173279, -0.06651552021503448, 0.27714768052101135, 0.3449169099330902, 0.22435641288757324, 0.4450142979621887, 0.43285664916038513, -0.01808755099773407, -0.10736498981714249, -0.382819801568985, 0.4124940037727356, -0.9542785882949829, -0.5713282823562622, -0.6307113766670227, 0.2740660607814789, -0.02315417304635048, -1.0836423635482788, 0.4145168364048004, 1.4406683444976807, 1.0359982252120972, -0.4756383001804352, 1.067226529121399, -0.21818485856056213, 0.9594791531562805, 0.41483086347579956, 0.5420440435409546, -0.6030411720275879, 0.03835370019078255, -0.4364396035671234, -1.076962947845459, -0.35716333985328674, 0.4539391100406647, -0.022899555042386055, -0.3429867625236511, 0.872571587562561, 0.5887166261672974, -0.33473607897758484, -0.11728022992610931, 0.048487238585948944, -0.029941488057374954, -0.12433847039937973, 0.5145376324653625, 0.7648399472236633, -0.9344304800033569, -0.10680416971445084, -0.21577754616737366, -0.6382725834846497, -0.5047279000282288, -0.9632009267807007, -0.12959396839141846, -0.16037796437740326, 0.035343267023563385, -0.5662806630134583, 0.00255737011320889, 1.208324909210205, 0.5684957504272461, -1.1113994121551514, -0.5303789377212524, 0.3371853232383728, 0.3920421898365021, -0.1874791383743286, -0.24202413856983185, 0.2984568774700165, 0.15382249653339386, -0.5908876657485962, 0.6875665783882141, 0.8089625239372253, 0.208888977766037, 0.19554761052131653, 0.15893013775348663, -0.8229473829269409, -0.14913435280323029, 0.17440445721149445, 0.9450570344924927, -0.939853310585022, -0.7114843130111694, -0.03168516233563423, -0.27094873785972595, -0.05765746906399727, 0.17102102935314178, -0.4046344757080078, 0.5180677175521851, 0.34591493010520935, 0.49933457374572754, 0.0561608150601387, -0.054746925830841064, 0.5409556031227112, -0.9069057703018188, 0.09425963461399078, 0.4134361147880554, 0.4154115319252014, -0.4000864028930664, -0.5910194516181946, 0.6713420748710632, 1.0073972940444946, -0.6594868898391724, -0.8743268847465515, -0.19846712052822113, -1.0016002655029297, 0.04189709946513176, 0.6762762069702148, 0.5009527802467346, -0.4806513786315918, -0.4174500107765198, -0.5617399215698242, -0.1254672110080719, -0.1369970738887787, 0.7621601819992065, 1.179680585861206, -0.7432094812393188, 0.07975747436285019, -1.038639783859253, 0.6594986915588379, -0.2419457733631134, -0.3457581698894501, -0.48644304275512695, 0.3832802176475525, 0.35236993432044983, 0.440481036901474, 0.614812433719635, 0.1408471167087555, 0.8338426351547241, 0.3126053214073181, -0.1702686995267868, 0.2698982357978821, -0.4559200704097748, -0.028932858258485794, -0.057962555438280106, 0.31015971302986145, -1.0262157917022705 ]
optimum/t5-small
optimum
"2023-01-19T17:56:30Z"
46,413
8
transformers
[ "transformers", "onnx", "t5", "text2text-generation", "summarization", "translation", "en", "fr", "ro", "de", "multilingual", "dataset:c4", "arxiv:1910.10683", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
translation
"2022-06-20T14:47:38Z"
--- language: - en - fr - ro - de - multilingual license: apache-2.0 tags: - summarization - translation datasets: - c4 --- ## [t5-small](https://huggingface.co/t5-small) exported to the ONNX format ## Model description [T5](https://huggingface.co/docs/transformers/model_doc/t5#t5) is an encoder-decoder model pre-trained on a multi-task mixture of unsupervised and supervised tasks and for which each task is converted into a text-to-text format. For more information, please take a look at the original paper. Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf) Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu* ## Usage example You can use this model with Transformers *pipeline*. ```python from transformers import AutoTokenizer, pipeline from optimum.onnxruntime import ORTModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("optimum/t5-small") model = ORTModelForSeq2SeqLM.from_pretrained("optimum/t5-small") translator = pipeline("translation_en_to_fr", model=model, tokenizer=tokenizer) results = translator("My name is Eustache and I have a pet raccoon") print(results) ```
[ -0.16813912987709045, -0.046241626143455505, 0.21484145522117615, 0.20629379153251648, -0.3603089153766632, -0.3754086494445801, -0.2371739149093628, -0.09730201959609985, -0.13506409525871277, 0.6157995462417603, -0.5946056246757507, -0.32078030705451965, -0.8314578533172607, 0.5502762794494629, -0.549201250076294, 1.097227931022644, -0.2112312763929367, -0.14994372427463531, 0.03064807318150997, -0.009733346290886402, 0.04057493805885315, -0.39219287037849426, -0.5776962041854858, -0.43759480118751526, 0.13097478449344635, 0.40321213006973267, 0.2346622198820114, 0.779111385345459, 0.547009289264679, 0.2967251241207123, 0.05093333497643471, -0.008851515129208565, -0.4890666604042053, -0.21535594761371613, -0.09444611519575119, -0.3466995358467102, -0.4766997992992401, -0.13617537915706635, 0.7029224038124084, 0.45405757427215576, -0.0740327388048172, 0.43053722381591797, 0.15501312911510468, 0.033551499247550964, -0.5032891035079956, 0.18830597400665283, -0.3902163505554199, 0.31117120385169983, 0.08809573203325272, 0.02800883539021015, -0.655944287776947, -0.15955078601837158, 0.07817058265209198, -0.7698310017585754, 0.2046135663986206, -0.11130669713020325, 1.0813701152801514, 0.6123958230018616, -0.6373250484466553, 0.051607318222522736, -0.8929369449615479, 1.0288678407669067, -0.7172945141792297, 0.3779121935367584, 0.23223166167736053, 0.3311809301376343, 0.19722990691661835, -1.4071439504623413, -0.7046666741371155, 0.2082350254058838, -0.27863651514053345, 0.19312314689159393, -0.3112421929836273, 0.08183449506759644, 0.5078542232513428, 0.24786287546157837, -0.3664359748363495, -0.11525143682956696, -0.6216950416564941, -0.35866090655326843, 0.5319292545318604, 0.25840339064598083, 0.14570049941539764, -0.18126840889453888, -0.43116915225982666, -0.315678209066391, -0.3025745749473572, 0.15889105200767517, -0.09518926590681076, 0.19514970481395721, -0.4426906406879425, 0.6714410781860352, -0.0993950217962265, 0.5219802260398865, 0.41917523741722107, -0.08864293247461319, 0.20249032974243164, -0.7213085293769836, -0.15949976444244385, 0.01742595061659813, 1.0353233814239502, 0.24781949818134308, 0.15334920585155487, -0.35519617795944214, -0.3331426978111267, -0.08726055920124054, 0.3790092468261719, -1.2566916942596436, -0.27868127822875977, 0.013161729089915752, -0.8511675000190735, -0.469338059425354, 0.13218671083450317, -0.585660457611084, 0.031494710594415665, -0.01851484924554825, 0.6213985085487366, -0.2318328619003296, -0.1558576077222824, 0.24149420857429504, -0.17462065815925598, 0.4302535355091095, 0.14552271366119385, -0.9606000781059265, 0.3217228055000305, 0.21397897601127625, 0.6805090308189392, -0.1279394030570984, -0.2780483067035675, -0.42804187536239624, 0.1763942986726761, 0.10257434099912643, 0.5885235071182251, -0.35312938690185547, -0.37151825428009033, -0.09980513900518417, 0.4419652223587036, -0.16410188376903534, -0.2451624870300293, 0.8760785460472107, -0.10309714078903198, 0.39403554797172546, 0.010230405256152153, -0.24926047027111053, -0.15868845582008362, 0.19313475489616394, -0.627121090888977, 0.9657570719718933, 0.28362566232681274, -0.8081909418106079, 0.13329105079174042, -0.9820314645767212, -0.3352775275707245, -0.40898364782333374, 0.21226400136947632, -0.6279925107955933, -0.14655229449272156, 0.20084650814533234, 0.5443885326385498, -0.3944057524204254, -0.006900389678776264, -0.24085617065429688, -0.2892431318759918, 0.27151450514793396, -0.3428393602371216, 0.774392306804657, 0.32949259877204895, -0.22762449085712433, 0.29240474104881287, -0.8444857597351074, -0.0613422729074955, 0.08504664152860641, -0.5041764974594116, 0.011875283904373646, -0.2467883676290512, 0.3765556216239929, 0.45973411202430725, 0.30671170353889465, -0.9464389085769653, 0.38390102982521057, -0.2580515742301941, 0.943747878074646, 0.3651459515094757, -0.2710542678833008, 0.6395272016525269, -0.3387719988822937, 0.36395177245140076, 0.15226125717163086, 0.18179072439670563, -0.1772729754447937, -0.2624095380306244, -1.0430347919464111, -0.039643678814172745, 0.5328111052513123, 0.4956487715244293, -0.9124769568443298, 0.3892737329006195, -0.5854247212409973, -0.47375547885894775, -0.6913098692893982, -0.34129273891448975, 0.25584161281585693, 0.28015586733818054, 0.4829539954662323, -0.35669460892677307, -0.865445077419281, -0.7570235729217529, -0.18958218395709991, 0.2359691858291626, -0.15089838206768036, -0.10110662132501602, 0.7279322147369385, -0.5818967223167419, 0.8952053785324097, -0.2685690224170685, -0.43279874324798584, -0.41763412952423096, 0.15107817947864532, 0.18336530029773712, 0.6981650590896606, 0.43180927634239197, -0.5685643553733826, -0.48797285556793213, 0.0799967497587204, -0.6883038878440857, 0.042359862476587296, -0.09049412608146667, -0.06842348724603653, 0.06740614771842957, 0.3866158723831177, -0.623207151889801, 0.6210370659828186, 0.3906594514846802, -0.4622369706630707, 0.381781667470932, -0.28113481402397156, -0.11801474541425705, -1.6037222146987915, 0.33732089400291443, -0.036021552979946136, -0.3526252508163452, -0.6295281052589417, -0.1549893468618393, 0.1362190842628479, -0.17110933363437653, -0.590660810470581, 0.5502479672431946, -0.3480098247528076, -0.16304513812065125, -0.16126897931098938, -0.32344698905944824, 0.0376814566552639, 0.488494873046875, 0.07408743351697922, 0.6327874660491943, 0.3229885399341583, -0.6989836692810059, 0.418601393699646, 0.7304128408432007, -0.06132802367210388, 0.04904777184128761, -0.7959160804748535, 0.27514103055000305, 0.1149381548166275, 0.3346301019191742, -0.7660921812057495, -0.16626910865306854, 0.42746537923812866, -0.525551974773407, 0.3154137134552002, -0.019655577838420868, -0.5154072642326355, -0.3010770082473755, -0.1921905279159546, 0.6827306747436523, 0.6002840399742126, -0.606758177280426, 0.8755379915237427, 0.11842170357704163, 0.3456099331378937, -0.5839282274246216, -0.9611624479293823, -0.2473098188638687, -0.2694697976112366, -0.6240959167480469, 0.764909565448761, 0.11999379098415375, 0.27600741386413574, 0.1688944548368454, -0.019793786108493805, -0.39852339029312134, -0.1336740255355835, 0.08658461272716522, 0.0350293293595314, -0.33998173475265503, -0.28440871834754944, -0.0026706764474511147, -0.30557870864868164, 0.1793290078639984, -0.36579766869544983, 0.35777392983436584, -0.09625212103128433, 0.11958435922861099, -0.5656470656394958, 0.1590701788663864, 0.5877321362495422, -0.1734701544046402, 0.7157344818115234, 1.1054847240447998, -0.3911643624305725, -0.2972283959388733, 0.0819445326924324, -0.5101991295814514, -0.4951513409614563, 0.4871330261230469, -0.5979865193367004, -0.6749936938285828, 0.6107728481292725, -0.1330019235610962, 0.06301096826791763, 0.8539738059043884, 0.28116655349731445, 0.06042898818850517, 1.165374994277954, 0.9424198269844055, 0.17736883461475372, 0.3908015191555023, -0.6967461705207825, 0.2702055871486664, -0.881542444229126, -0.28266897797584534, -0.6262198686599731, -0.2402103692293167, -0.52605140209198, -0.30723750591278076, 0.18229986727237701, -0.11217211931943893, -0.6790358424186707, 0.684249997138977, -0.7370780110359192, 0.2606092393398285, 0.31536129117012024, 0.028276102617383003, 0.31969499588012695, 0.1625199317932129, -0.21843194961547852, -0.14752750098705292, -0.9435059428215027, -0.4493211805820465, 1.2600618600845337, 0.32538697123527527, 0.8163158893585205, 0.17626728117465973, 0.5095402598381042, 0.18492312729358673, 0.16400514543056488, -0.9990506172180176, 0.44828227162361145, -0.5799105763435364, -0.4292648732662201, -0.29106926918029785, -0.3323889672756195, -1.1721190214157104, 0.14071115851402283, -0.3115907609462738, -0.7793813943862915, 0.12509004771709442, -0.09039820730686188, -0.3754625618457794, 0.5027226805686951, -0.45581331849098206, 1.2901263236999512, -0.018822411075234413, -0.14269952476024628, 0.10387692600488663, -0.6267101764678955, 0.3015372157096863, -0.03792862966656685, -0.07548879086971283, 0.26397332549095154, -0.1188209280371666, 0.8820679783821106, -0.3500428795814514, 0.9292196035385132, 0.11740746349096298, 0.17997771501541138, 0.049163952469825745, -0.1952086091041565, 0.5158411860466003, -0.37281927466392517, -0.229268878698349, 0.19205977022647858, 0.25614649057388306, -0.2811802923679352, -0.34781011939048767, 0.36000895500183105, -1.2743803262710571, -0.20511716604232788, -0.5685243010520935, -0.4872416853904724, 0.19172057509422302, 0.3314708471298218, 0.741884708404541, 0.48975029587745667, -0.10725803673267365, 0.5474159121513367, 0.49985194206237793, -0.13727225363254547, 0.766052782535553, 0.2587493658065796, -0.07536614686250687, -0.20921793580055237, 0.8471916317939758, 0.03760302811861038, 0.24367719888687134, 0.4842906594276428, 0.18636468052864075, -0.5711437463760376, -0.22467611730098724, -0.6064807176589966, 0.251958429813385, -0.8189102411270142, -0.18072457611560822, -0.7061312198638916, -0.5275691151618958, -0.5762529373168945, 0.11464812606573105, -0.592029333114624, -0.42739397287368774, -0.6441301703453064, 0.225259929895401, 0.21959951519966125, 0.8138429522514343, -0.04697394743561745, 0.5354056358337402, -1.1480436325073242, 0.18063902854919434, 0.06438212841749191, 0.16628290712833405, -0.06842196732759476, -1.09116530418396, -0.28269311785697937, 0.09467560052871704, -0.5769293904304504, -0.7329826951026917, 0.685218095779419, 0.45292672514915466, 0.5472313165664673, 0.4259571135044098, 0.4660801291465759, 0.4326990246772766, -0.19041772186756134, 0.6152684092521667, 0.2137424647808075, -1.115966796875, 0.27622711658477783, -0.27659332752227783, 0.3771098256111145, 0.1474476456642151, 0.4052036702632904, -0.5630266070365906, 0.17946338653564453, -0.7186386585235596, -0.758070707321167, 1.2272686958312988, 0.4074004888534546, 0.029790518805384636, 0.541187584400177, 0.22691980004310608, 0.21764668822288513, -0.004021007101982832, -1.0076805353164673, -0.26868563890457153, -0.6386469602584839, -0.4432072043418884, -0.019096042960882187, -0.024353764951229095, 0.00532790319994092, -0.549692690372467, 0.6723734736442566, -0.22859765589237213, 0.9518941640853882, 0.25199830532073975, -0.2721967101097107, 0.030283156782388687, 0.21311795711517334, 0.6157949566841125, 0.3103952407836914, -0.14615485072135925, 0.03546207770705223, 0.4321571886539459, -0.6067327857017517, 0.08958618342876434, 0.05653810128569603, -0.15751203894615173, 0.044354457408189774, 0.2706010341644287, 1.1267484426498413, 0.17240384221076965, -0.1902296245098114, 0.6011466979980469, -0.2721489369869232, -0.4611082673072815, -0.5127833485603333, -0.1454770565032959, -0.15520933270454407, 0.08227138221263885, 0.34559527039527893, 0.3891810178756714, 0.11126801371574402, -0.4460565447807312, 0.191520094871521, -0.11462409049272537, -0.47387370467185974, -0.5719593167304993, 0.8864656686782837, 0.3772548735141754, -0.18408487737178802, 0.6447947025299072, -0.1721857637166977, -0.6603792905807495, 0.8188759684562683, 0.8351870775222778, 0.9299032092094421, -0.07827313244342804, 0.07009463757276535, 0.766585111618042, 0.38513386249542236, -0.25587835907936096, 0.3156088590621948, -0.0639093890786171, -0.9329798221588135, -0.5424476265907288, -0.6961843371391296, -0.22867149114608765, 0.1839294284582138, -0.7665724158287048, 0.38461732864379883, -0.22465097904205322, -0.1841830313205719, 0.06818011403083801, -0.1544676125049591, -0.8158379793167114, 0.28954365849494934, -0.0281123798340559, 0.6947492957115173, -0.7676889896392822, 1.2408596277236938, 0.964394211769104, -0.4522719085216522, -1.1772481203079224, 0.047568026930093765, -0.3684840202331543, -0.5927155017852783, 0.6682656407356262, 0.29900142550468445, 0.10077669471502304, 0.4231856167316437, -0.43933165073394775, -1.0408698320388794, 1.141831636428833, 0.36629122495651245, -0.164860799908638, -0.07081463932991028, 0.4395753741264343, 0.3190952241420746, -0.6184458136558533, 0.5581575036048889, 0.5680350065231323, 0.6004036068916321, 0.11894708126783371, -1.1705896854400635, 0.28356778621673584, -0.43778103590011597, 0.102116659283638, 0.08884396404027939, -0.6888188719749451, 1.1702852249145508, -0.2261219620704651, -0.25422999262809753, 0.22876876592636108, 0.5902161598205566, -0.21154241263866425, 0.08005345612764359, 0.39037150144577026, 0.5341713428497314, 0.1622161865234375, -0.33607059717178345, 1.0177134275436401, -0.19750837981700897, 0.6908926963806152, 0.6599778532981873, 0.14287497103214264, 0.8614775538444519, 0.44849154353141785, -0.19530066847801208, 0.4176693558692932, 0.7639888525009155, -0.21215490996837616, 0.7695831060409546, -0.053336434066295624, 0.022490642964839935, -0.3543185591697693, -0.11476602405309677, -0.41751956939697266, 0.7002263069152832, 0.2585657238960266, -0.5498161911964417, -0.20211954414844513, 0.13707402348518372, -0.2314559370279312, -0.19310101866722107, -0.40365323424339294, 0.6687226295471191, 0.13673870265483856, -0.576454222202301, 0.7330981492996216, 0.31802165508270264, 1.011391043663025, -0.4230602979660034, 0.040607985109090805, -0.005607526749372482, 0.6532930731773376, -0.33066433668136597, -0.6285943984985352, 0.6806513071060181, -0.05349448695778847, -0.3037581741809845, -0.46415644884109497, 0.9657013416290283, -0.5738102197647095, -0.4831988215446472, 0.24705691635608673, 0.26392391324043274, 0.4009419083595276, 0.07794436067342758, -0.6923401355743408, -0.1255725920200348, 0.1928524672985077, -0.2079707384109497, 0.27144718170166016, 0.3597651720046997, 0.06964552402496338, 0.6366130709648132, 0.5019851922988892, -0.21668581664562225, 0.1849481761455536, -0.2809543013572693, 0.6775432229042053, -0.6955279111862183, -0.5612174272537231, -0.660628080368042, 0.7743796110153198, 0.045922476798295975, -0.5856072902679443, 0.6119444966316223, 0.5502189993858337, 1.0492675304412842, -0.4851219058036804, 0.8830413818359375, -0.16462282836437225, 0.28971773386001587, -0.3455749750137329, 0.9665799736976624, -0.7631458640098572, -0.11991362273693085, 0.18446920812129974, -0.8615004420280457, 0.009744756855070591, 0.8397763967514038, -0.05435721203684807, 0.023326359689235687, 0.9214205145835876, 0.6750296950340271, -0.3729794919490814, 0.011946766637265682, 0.3235703408718109, 0.2062917798757553, -0.033387281000614166, 0.6757634282112122, 0.6040934920310974, -1.0369142293930054, 1.058840274810791, -0.44476318359375, 0.3057323396205902, -0.21420405805110931, -0.7371912002563477, -0.9623118042945862, -0.6841486692428589, -0.2774229049682617, -0.5544693470001221, -0.20411266386508942, 1.019172191619873, 0.8293777704238892, -0.7910248041152954, -0.3364732563495636, -0.0030509387142956257, -0.2235090285539627, -0.17630571126937866, -0.11654724180698395, 0.23337477445602417, -0.04690944030880928, -0.895890474319458, 0.04076709225773811, -0.2243630290031433, 0.17035752534866333, -0.14314207434654236, -0.34966912865638733, 0.1188850849866867, -0.17505542933940887, 0.48701125383377075, 0.2659911513328552, -0.713174045085907, -0.3653233051300049, 0.05947145074605942, -0.38393887877464294, 0.14190557599067688, 0.5770561099052429, -0.4912737011909485, 0.2638975977897644, 0.5718803405761719, 0.7043977975845337, 0.9565143585205078, -0.20761065185070038, 0.7588064074516296, -0.7067731618881226, 0.23726379871368408, 0.15923398733139038, 0.35392558574676514, 0.2939263582229614, -0.2479926496744156, 0.5257557034492493, 0.37058719992637634, -0.4314166307449341, -0.6915801167488098, -0.03965028375387192, -1.2084373235702515, -0.0789833515882492, 1.3104166984558105, -0.3690355718135834, -0.4049089550971985, -0.11464937776327133, -0.15190251171588898, 0.8731312155723572, -0.4394280016422272, 0.5590803027153015, 0.5066977739334106, 0.19495053589344025, -0.40567684173583984, -0.4067554175853729, 0.6129753589630127, 0.2771413028240204, -0.7904641032218933, -0.4283856451511383, -0.14591485261917114, 0.47650498151779175, 0.13638395071029663, 0.28461092710494995, 0.1258043646812439, 0.2557060122489929, 0.16895735263824463, 0.4352954626083374, -0.2572631537914276, -0.06121985986828804, -0.3276577889919281, 0.03482353687286377, -0.3152463436126709, -0.5754828453063965 ]
EleutherAI/gpt-neo-2.7B
EleutherAI
"2023-07-09T15:52:52Z"
46,004
367
transformers
[ "transformers", "pytorch", "jax", "rust", "safetensors", "gpt_neo", "text-generation", "text generation", "causal-lm", "en", "dataset:EleutherAI/pile", "license:mit", "endpoints_compatible", "has_space", "region:us" ]
text-generation
"2022-03-02T23:29:04Z"
--- language: - en tags: - text generation - pytorch - causal-lm license: mit datasets: - EleutherAI/pile --- # GPT-Neo 2.7B ## Model Description GPT-Neo 2.7B is a transformer model designed using EleutherAI's replication of the GPT-3 architecture. GPT-Neo refers to the class of models, while 2.7B represents the number of parameters of this particular pre-trained model. ## Training data GPT-Neo 2.7B was trained on the Pile, a large scale curated dataset created by EleutherAI for the purpose of training this model. ## Training procedure This model was trained for 420 billion tokens over 400,000 steps. It was trained as a masked autoregressive language model, using cross-entropy loss. ## Intended Use and Limitations This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ### How to use You can use this model directly with a pipeline for text generation. This example generates a different sequence each time it's run: ```py >>> from transformers import pipeline >>> generator = pipeline('text-generation', model='EleutherAI/gpt-neo-2.7B') >>> generator("EleutherAI has", do_sample=True, min_length=50) [{'generated_text': 'EleutherAI has made a commitment to create new software packages for each of its major clients and has'}] ``` ### Limitations and Biases GPT-Neo was trained as an autoregressive language model. This means that its core functionality is taking a string of text and predicting the next token. While language models are widely used for tasks other than this, there are a lot of unknowns with this work. GPT-Neo was trained on the Pile, a dataset known to contain profanity, lewd, and otherwise abrasive language. Depending on your usecase GPT-Neo may produce socially unacceptable text. See Sections 5 and 6 of the Pile paper for a more detailed analysis of the biases in the Pile. As with all language models, it is hard to predict in advance how GPT-Neo will respond to particular prompts and offensive content may occur without warning. We recommend having a human curate or filter the outputs before releasing them, both to censor undesirable content and to improve the quality of the results. ## Eval results All evaluations were done using our [evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness). Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness. If you would like to contribute evaluations you have done, please reach out on our [Discord](https://discord.gg/vtRgjbM). ### Linguistic Reasoning | Model and Size | Pile BPB | Pile PPL | Wikitext PPL | Lambada PPL | Lambada Acc | Winogrande | Hellaswag | | ---------------- | ---------- | ---------- | ------------- | ----------- | ----------- | ---------- | ----------- | | GPT-Neo 1.3B | 0.7527 | 6.159 | 13.10 | 7.498 | 57.23% | 55.01% | 38.66% | | GPT-2 1.5B | 1.0468 | ----- | 17.48 | 10.634 | 51.21% | 59.40% | 40.03% | | **GPT-Neo 2.7B** | **0.7165** | **5.646** | **11.39** | **5.626** | **62.22%** | **56.50%** | **42.73%** | | GPT-3 Ada | 0.9631 | ----- | ----- | 9.954 | 51.60% | 52.90% | 35.93% | ### Physical and Scientific Reasoning | Model and Size | MathQA | PubMedQA | Piqa | | ---------------- | ---------- | ---------- | ----------- | | GPT-Neo 1.3B | 24.05% | 54.40% | 71.11% | | GPT-2 1.5B | 23.64% | 58.33% | 70.78% | | **GPT-Neo 2.7B** | **24.72%** | **57.54%** | **72.14%** | | GPT-3 Ada | 24.29% | 52.80% | 68.88% | ### Down-Stream Applications TBD ### BibTeX entry and citation info To cite this model, use ```bibtex @software{gpt-neo, author = {Black, Sid and Leo, Gao and Wang, Phil and Leahy, Connor and Biderman, Stella}, title = {{GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow}}, month = mar, year = 2021, note = {{If you use this software, please cite it using these metadata.}}, publisher = {Zenodo}, version = {1.0}, doi = {10.5281/zenodo.5297715}, url = {https://doi.org/10.5281/zenodo.5297715} } @article{gao2020pile, title={The Pile: An 800GB Dataset of Diverse Text for Language Modeling}, author={Gao, Leo and Biderman, Stella and Black, Sid and Golding, Laurence and Hoppe, Travis and Foster, Charles and Phang, Jason and He, Horace and Thite, Anish and Nabeshima, Noa and others}, journal={arXiv preprint arXiv:2101.00027}, year={2020} } ```
[ -0.5670309066772461, -0.9226920008659363, 0.40844979882240295, 0.030340220779180527, -0.20139040052890778, -0.13151924312114716, -0.09877389669418335, -0.47399166226387024, 0.2286108285188675, 0.3056914508342743, -0.1882002055644989, -0.36860010027885437, -0.7264760136604309, 0.080079086124897, -0.6211669445037842, 1.25117826461792, 0.14098313450813293, -0.45464813709259033, 0.20448561012744904, 0.12415831536054611, -0.20322322845458984, -0.49639129638671875, -0.6483532190322876, -0.24308089911937714, 0.36469727754592896, -0.10747172683477402, 0.7903452515602112, 0.7463831901550293, 0.19194954633712769, 0.34907814860343933, -0.1223907545208931, -0.07750022411346436, -0.3773079812526703, -0.1604108065366745, -0.08242443948984146, -0.05778202414512634, -0.6036262512207031, 0.06385418772697449, 0.6235222816467285, 0.4529910385608673, -0.1862548589706421, 0.1448768824338913, 0.08195649087429047, 0.5464118719100952, -0.3533332943916321, 0.10846550762653351, -0.5232752561569214, -0.3569992780685425, -0.17745845019817352, 0.01922573521733284, -0.2840469479560852, -0.17102943360805511, 0.054726727306842804, -0.5456690192222595, 0.3666155934333801, 0.05571192130446434, 1.2998467683792114, 0.26473814249038696, -0.2883618474006653, -0.11583307385444641, -0.6306791305541992, 0.6129281520843506, -0.9307693839073181, 0.3025914132595062, 0.45787930488586426, -0.04565971717238426, 0.1083487719297409, -0.6638099551200867, -0.6164813041687012, -0.17824645340442657, -0.3019393980503082, 0.24225376546382904, -0.41532737016677856, -0.12891674041748047, 0.3529679775238037, 0.48386019468307495, -0.9580118060112, 0.06189179793000221, -0.47922420501708984, -0.20834070444107056, 0.6776648163795471, 0.03139374777674675, 0.3352091908454895, -0.6267616748809814, -0.3668127954006195, -0.35349586606025696, -0.4746337831020355, -0.109343022108078, 0.5859904289245605, 0.18779970705509186, -0.3290611505508423, 0.5376099944114685, -0.08984071016311646, 0.6374571919441223, -0.12717561423778534, 0.14097550511360168, 0.5144767165184021, -0.5472626686096191, -0.3149769902229309, -0.18960879743099213, 1.446437954902649, 0.157682403922081, 0.24707937240600586, 0.10103149712085724, -0.2979631721973419, 0.09454894810914993, 0.19148483872413635, -0.9927183985710144, -0.2439180463552475, 0.24254803359508514, -0.3111031651496887, -0.3227536678314209, 0.170475035905838, -0.8381897807121277, -0.034750401973724365, -0.1617135852575302, 0.37885236740112305, -0.4980688691139221, -0.5701615810394287, 0.04288480058312416, -0.11601743847131729, 0.10001245141029358, 0.2140064239501953, -0.872241199016571, 0.3783435821533203, 0.7541998028755188, 1.0212143659591675, 0.10114690661430359, -0.34264427423477173, -0.18708443641662598, -0.09621088951826096, -0.30900439620018005, 0.8717103600502014, -0.311633437871933, -0.18426255881786346, -0.27815890312194824, 0.15069785714149475, -0.24173425137996674, -0.23915627598762512, 0.4295748174190521, -0.18880513310432434, 0.7088490724563599, -0.014680223539471626, -0.41094592213630676, -0.23522257804870605, 0.11929505318403244, -0.7611334919929504, 1.2466894388198853, 0.5405628681182861, -0.9769994020462036, 0.137338787317276, -0.6207444667816162, -0.026942698284983635, 0.12330260872840881, 0.030826538801193237, -0.4871331453323364, -0.21427717804908752, 0.13955946266651154, 0.20466357469558716, -0.5625290870666504, 0.5895861387252808, -0.2232578694820404, -0.304538756608963, 0.07512981444597244, -0.5159569382667542, 1.1083345413208008, 0.38779884576797485, -0.574100136756897, -0.0614742636680603, -0.6611008048057556, -0.07617323100566864, 0.30479663610458374, -0.12501320242881775, -0.3435958921909332, -0.1598648577928543, 0.18646208941936493, 0.42465975880622864, 0.16704390943050385, -0.27987831830978394, 0.2520127594470978, -0.44944632053375244, 0.6124062538146973, 0.7290826439857483, -0.1657867282629013, 0.3563903868198395, -0.434510737657547, 0.7022666931152344, -0.2504124641418457, -0.023311685770750046, -0.10135281831026077, -0.6460272073745728, -0.6045613288879395, -0.2843426764011383, 0.4647650420665741, 0.6528400182723999, -0.6086845993995667, 0.5087815523147583, -0.3675497770309448, -0.6116819381713867, -0.5071686506271362, -0.03569798916578293, 0.3873068392276764, 0.4826243817806244, 0.474651575088501, -0.022680705413222313, -0.5793827772140503, -0.9836366176605225, -0.023574234917759895, -0.5519717931747437, -0.0458746962249279, 0.3593348264694214, 0.7148702144622803, -0.385366290807724, 0.9017629027366638, -0.4145281910896301, -0.017705444246530533, -0.33307987451553345, 0.30121105909347534, 0.47546783089637756, 0.4358910024166107, 0.6913589835166931, -0.5438615679740906, -0.6080977916717529, 0.12195287644863129, -0.5123540759086609, -0.36534419655799866, 0.016161838546395302, -0.1255679577589035, 0.4038783311843872, 0.3487045168876648, -0.8204569220542908, 0.23107053339481354, 0.7191042900085449, -0.7481490969657898, 0.6856792569160461, -0.20565713942050934, -0.05283349007368088, -1.2045783996582031, 0.4222273826599121, 0.12182597070932388, -0.2441912144422531, -0.5622018575668335, -0.20651638507843018, -0.0588412843644619, 0.04743608459830284, -0.24033138155937195, 0.8985089659690857, -0.3860331177711487, 0.06281859427690506, -0.18028703331947327, 0.15067650377750397, 0.10314717143774033, 0.4595811665058136, 0.02606942690908909, 0.7102804183959961, 0.4538213312625885, -0.46690359711647034, 0.24532577395439148, 0.09975053369998932, -0.207589790225029, 0.25602585077285767, -0.9265510439872742, 0.053781189024448395, -0.04414046183228493, 0.25322848558425903, -0.9137143492698669, 0.006179019343107939, 0.46560776233673096, -0.5606269240379333, 0.38286149501800537, -0.3527746796607971, -0.5002058744430542, -0.5715275406837463, -0.2687951624393463, 0.2332838922739029, 0.572260320186615, -0.15123721957206726, 0.49006715416908264, 0.38904789090156555, -0.38306891918182373, -0.726199746131897, -0.4760429561138153, -0.04735273867845535, -0.3875889182090759, -0.6403594017028809, 0.3590519428253174, -0.09423132240772247, -0.24066273868083954, 0.18786488473415375, 0.13138028979301453, 0.09144474565982819, -0.009363771416246891, -0.03855104744434357, 0.3611103594303131, -0.08516666293144226, -0.0851929560303688, -0.08549907803535461, -0.2919965982437134, 0.14774549007415771, -0.16861635446548462, 0.8489974737167358, -0.40409621596336365, 0.012315240688621998, -0.1973220407962799, 0.3090852200984955, 0.6065452694892883, -0.07193353772163391, 0.611158549785614, 0.8458841443061829, -0.2992594838142395, -0.010209918953478336, -0.5156657099723816, -0.15645724534988403, -0.43797338008880615, 0.7461981177330017, -0.2425764948129654, -0.8747289776802063, 0.6120753288269043, 0.3582894206047058, 0.06886187195777893, 0.8990719318389893, 0.6826626062393188, 0.13140037655830383, 1.10962975025177, 0.5292190313339233, -0.17582297325134277, 0.5035321116447449, -0.575817346572876, 0.08340757340192795, -1.0967273712158203, -0.08527693897485733, -0.7054108381271362, -0.18813663721084595, -0.93639075756073, -0.4131068289279938, 0.10117273032665253, 0.015282992273569107, -0.5484618544578552, 0.5626301169395447, -0.639518141746521, 0.1726164072751999, 0.4904341399669647, -0.256570965051651, 0.19086973369121552, -0.12857598066329956, -0.11010413616895676, 0.22631941735744476, -0.7589960694313049, -0.569027304649353, 1.053619146347046, 0.47942793369293213, 0.5400553941726685, 0.13772495090961456, 0.6026495099067688, 0.10745777189731598, 0.3992953896522522, -0.7320179343223572, 0.38745689392089844, -0.23499414324760437, -0.9499629139900208, -0.4100002944469452, -0.7367751002311707, -1.2599766254425049, 0.5450488328933716, -0.015448158606886864, -0.8526337742805481, 0.2730605900287628, 0.07116855680942535, -0.27091628313064575, 0.3116157352924347, -0.8094528913497925, 1.0225598812103271, -0.23030643165111542, -0.35274532437324524, -0.012866760604083538, -0.5568050742149353, 0.37468481063842773, -0.08481445163488388, 0.5071372985839844, -0.1613481044769287, -0.08741971850395203, 0.8617332577705383, -0.6013703942298889, 0.7147274613380432, -0.06854169815778732, -0.11997654289007187, 0.4723893404006958, 0.1199466735124588, 0.6924616694450378, 0.1271975338459015, 0.02627645619213581, 0.19238580763339996, 0.033637791872024536, -0.18540382385253906, -0.3784887492656708, 0.7565255165100098, -1.0024596452713013, -0.5623454451560974, -0.7782571315765381, -0.565999448299408, 0.27836689352989197, 0.3675544559955597, 0.3703012466430664, 0.42264625430107117, -0.13071319460868835, 0.26443028450012207, 0.4620794951915741, -0.394327312707901, 0.5853001475334167, 0.44898688793182373, -0.40040042996406555, -0.5141610503196716, 0.9150323867797852, 0.20539848506450653, 0.24665747582912445, 0.32010480761528015, 0.4838121831417084, -0.41553813219070435, -0.36743152141571045, -0.4783201515674591, 0.6163085103034973, -0.36978885531425476, -0.198642298579216, -0.9490468502044678, -0.2950376570224762, -0.5202780961990356, 0.06230934336781502, -0.5129657983779907, -0.41419780254364014, -0.24210231006145477, -0.1475939154624939, 0.4782043397426605, 0.7698467373847961, -0.04864596202969551, 0.20683445036411285, -0.5491708517074585, 0.25436389446258545, 0.33704057335853577, 0.3278173804283142, -0.11937688291072845, -0.7725077867507935, -0.17684218287467957, 0.0791894942522049, -0.25663161277770996, -0.9266602993011475, 0.8968719244003296, -0.04562703147530556, 0.6091355085372925, 0.22086304426193237, -0.11134614795446396, 0.3917880654335022, -0.38525667786598206, 0.7613496780395508, 0.08554740995168686, -0.8270142078399658, 0.4757832884788513, -0.6814732551574707, 0.29498645663261414, 0.2955223023891449, 0.4957142174243927, -0.623161792755127, -0.4739619493484497, -1.2060472965240479, -1.1800638437271118, 0.8559460639953613, 0.3121578097343445, 0.038244087249040604, -0.13436394929885864, 0.0492892786860466, -0.07214473187923431, 0.09329631179571152, -1.0311989784240723, -0.3888995945453644, -0.47168245911598206, -0.029147982597351074, -0.23925338685512543, -0.20084309577941895, 0.026165224611759186, -0.31739649176597595, 0.8452275991439819, -0.07318208366632462, 0.45632103085517883, 0.06482353061437607, -0.06135016679763794, 0.021273702383041382, 0.27365297079086304, 0.5025555491447449, 0.6306437849998474, -0.3918817937374115, 0.08237309753894806, 0.05251743644475937, -0.6946014165878296, -0.07514084875583649, 0.4361022710800171, -0.43747109174728394, 0.03429102152585983, 0.16699489951133728, 0.9827404022216797, -0.13026630878448486, -0.32317572832107544, 0.456835001707077, 0.028226539492607117, -0.43792328238487244, -0.2848007082939148, -0.014390732161700726, 0.14695514738559723, 0.020052537322044373, 0.2739638388156891, -0.04226965829730034, 0.19021698832511902, -0.5385987162590027, 0.033917367458343506, 0.4388761818408966, -0.2645389139652252, -0.40519917011260986, 0.657383918762207, -0.02516748383641243, -0.12769940495491028, 0.6603482365608215, -0.3765706717967987, -0.6932016015052795, 0.6339790225028992, 0.6001901030540466, 0.886254608631134, -0.3190760314464569, 0.4215003252029419, 0.8105998039245605, 0.580672562122345, -0.1643705815076828, 0.08368568867444992, 0.265902042388916, -0.6930415630340576, -0.5338754057884216, -0.6963323354721069, -0.1357705444097519, 0.5061255097389221, -0.3686223030090332, 0.3266768455505371, -0.20542077720165253, -0.25227123498916626, -0.19765028357505798, 0.2326260507106781, -0.5280520915985107, 0.19405721127986908, 0.24947026371955872, 0.5278017520904541, -1.0930919647216797, 0.8047066330909729, 0.6803730726242065, -0.5310690402984619, -0.893050491809845, -0.4149778187274933, -0.02697690576314926, -0.5815809965133667, 0.2981313169002533, 0.003945732954889536, 0.15270742774009705, 0.16136179864406586, -0.4422723650932312, -1.1955348253250122, 1.0851078033447266, 0.26070934534072876, -0.4898642301559448, -0.05894444137811661, -0.0012129965471103787, 0.6852421760559082, -0.17614082992076874, 0.8495221734046936, 0.5499024391174316, 0.5886398553848267, -0.030103743076324463, -1.1246376037597656, 0.3348107933998108, -0.7759166359901428, 0.12578557431697845, 0.3769475817680359, -0.8360651135444641, 1.164291262626648, -0.0021719264332205057, -0.10328491777181625, -0.168767511844635, 0.3780858814716339, 0.46501946449279785, 0.02883271686732769, 0.4881983697414398, 0.8211557865142822, 0.7707488536834717, -0.3318452537059784, 1.3482457399368286, -0.2758646607398987, 0.6778362989425659, 0.9897236227989197, 0.2517634928226471, 0.6748926043510437, 0.26095667481422424, -0.4818716049194336, 0.7311943173408508, 0.6043040156364441, -0.11488793045282364, 0.28344714641571045, 0.051123619079589844, 0.08005579560995102, -0.08455453813076019, 0.0507717989385128, -0.7250524163246155, 0.20036090910434723, 0.46425801515579224, -0.4640466570854187, -0.10061009973287582, -0.35853874683380127, 0.37906333804130554, -0.3059147894382477, -0.021408861503005028, 0.5813484787940979, 0.13382422924041748, -0.6834578514099121, 0.8046188950538635, -0.010761243291199207, 0.6846603155136108, -0.5750595331192017, 0.08893650025129318, -0.13856957852840424, 0.013231681659817696, -0.26048195362091064, -0.6646811962127686, 0.24987417459487915, 0.1479542851448059, -0.10835891962051392, -0.31418153643608093, 0.5978471636772156, -0.28860658407211304, -0.5503263473510742, 0.3104218542575836, 0.6225032210350037, 0.23855829238891602, -0.1737135648727417, -0.945470929145813, -0.03567521274089813, -0.03634151443839073, -0.6796188950538635, 0.3434038460254669, 0.6783311367034912, -0.0479552187025547, 0.5872523188591003, 0.8276157975196838, 0.16724880039691925, -0.09040151536464691, 0.29297417402267456, 1.0071351528167725, -0.662649929523468, -0.5271902680397034, -0.8562276363372803, 0.6416783928871155, -0.07321111112833023, -0.4445767402648926, 0.7284205555915833, 0.6586136221885681, 0.7393398880958557, 0.18574872612953186, 0.8742172718048096, -0.5246814489364624, 0.5386159420013428, -0.21926765143871307, 0.6606255769729614, -0.44889065623283386, 0.2330056130886078, -0.6165384650230408, -1.2450302839279175, -0.07196465134620667, 0.8507920503616333, -0.46822884678840637, 0.4610300064086914, 0.9414546489715576, 0.718295693397522, 0.07654639333486557, -0.1594133973121643, 0.0375010222196579, 0.4798666536808014, 0.40797632932662964, 0.7224944233894348, 0.828100860118866, -0.675534188747406, 0.5862725973129272, -0.49699148535728455, -0.2432333379983902, -0.16282370686531067, -0.9398536086082458, -0.7716077566146851, -0.5475881695747375, -0.4743466079235077, -0.6251341104507446, -0.08624709397554398, 0.7856674194335938, 0.49018505215644836, -0.6285854578018188, -0.4007609188556671, -0.2858578562736511, 0.12198805063962936, -0.2666758596897125, -0.31854093074798584, 0.5179909467697144, -0.12412405014038086, -0.8758963942527771, 0.09330211579799652, -0.048801735043525696, 0.16974592208862305, -0.25349071621894836, -0.21410830318927765, -0.402909517288208, -0.09245744347572327, 0.49518927931785583, 0.29580211639404297, -0.5814939141273499, -0.16255897283554077, 0.1432081013917923, -0.21689172089099884, 0.05923003703355789, 0.4045131206512451, -0.7613768577575684, 0.18077526986598969, 0.8287743926048279, 0.177068829536438, 0.7125615477561951, 0.18303321301937103, 0.4875319302082062, -0.3918662667274475, 0.04767678678035736, 0.2680588960647583, 0.501538872718811, 0.3403083384037018, -0.35528141260147095, 0.6506425142288208, 0.4178624451160431, -0.7028620839118958, -0.7545446753501892, -0.12685811519622803, -1.1036596298217773, -0.3307149410247803, 1.572859764099121, 0.11172937601804733, -0.2816507816314697, -0.14285685122013092, -0.1651674211025238, 0.25230672955513, -0.546684205532074, 0.703240156173706, 0.7560378909111023, 0.07139872759580612, -0.2956887185573578, -0.7613697648048401, 0.403730571269989, 0.21783161163330078, -0.8168373703956604, 0.19597484171390533, 0.4855640232563019, 0.31612592935562134, 0.2809317111968994, 0.7226507067680359, -0.3591964542865753, 0.1406557857990265, 0.05808376893401146, 0.14929570257663727, -0.16734786331653595, -0.24060025811195374, -0.25929397344589233, 0.007525383960455656, -0.19675569236278534, 0.34424057602882385 ]
neuralmind/bert-large-portuguese-cased
neuralmind
"2021-05-20T01:31:09Z"
45,976
36
transformers
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "pt", "dataset:brWaC", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
fill-mask
"2022-03-02T23:29:05Z"
--- language: pt license: mit tags: - bert - pytorch datasets: - brWaC --- # BERTimbau Large (aka "bert-large-portuguese-cased") ![Bert holding a berimbau](https://imgur.com/JZ7Hynh.jpg) ## Introduction BERTimbau Large is a pretrained BERT model for Brazilian Portuguese that achieves state-of-the-art performances on three downstream NLP tasks: Named Entity Recognition, Sentence Textual Similarity and Recognizing Textual Entailment. It is available in two sizes: Base and Large. For further information or requests, please go to [BERTimbau repository](https://github.com/neuralmind-ai/portuguese-bert/). ## Available models | Model | Arch. | #Layers | #Params | | ---------------------------------------- | ---------- | ------- | ------- | | `neuralmind/bert-base-portuguese-cased` | BERT-Base | 12 | 110M | | `neuralmind/bert-large-portuguese-cased` | BERT-Large | 24 | 335M | ## Usage ```python from transformers import AutoTokenizer # Or BertTokenizer from transformers import AutoModelForPreTraining # Or BertForPreTraining for loading pretraining heads from transformers import AutoModel # or BertModel, for BERT without pretraining heads model = AutoModelForPreTraining.from_pretrained('neuralmind/bert-large-portuguese-cased') tokenizer = AutoTokenizer.from_pretrained('neuralmind/bert-large-portuguese-cased', do_lower_case=False) ``` ### Masked language modeling prediction example ```python from transformers import pipeline pipe = pipeline('fill-mask', model=model, tokenizer=tokenizer) pipe('Tinha uma [MASK] no meio do caminho.') # [{'score': 0.5054386258125305, # 'sequence': '[CLS] Tinha uma pedra no meio do caminho. [SEP]', # 'token': 5028, # 'token_str': 'pedra'}, # {'score': 0.05616172030568123, # 'sequence': '[CLS] Tinha uma curva no meio do caminho. [SEP]', # 'token': 9562, # 'token_str': 'curva'}, # {'score': 0.02348282001912594, # 'sequence': '[CLS] Tinha uma parada no meio do caminho. [SEP]', # 'token': 6655, # 'token_str': 'parada'}, # {'score': 0.01795753836631775, # 'sequence': '[CLS] Tinha uma mulher no meio do caminho. [SEP]', # 'token': 2606, # 'token_str': 'mulher'}, # {'score': 0.015246033668518066, # 'sequence': '[CLS] Tinha uma luz no meio do caminho. [SEP]', # 'token': 3377, # 'token_str': 'luz'}] ``` ### For BERT embeddings ```python import torch model = AutoModel.from_pretrained('neuralmind/bert-large-portuguese-cased') input_ids = tokenizer.encode('Tinha uma pedra no meio do caminho.', return_tensors='pt') with torch.no_grad(): outs = model(input_ids) encoded = outs[0][0, 1:-1] # Ignore [CLS] and [SEP] special tokens # encoded.shape: (8, 1024) # tensor([[ 1.1872, 0.5606, -0.2264, ..., 0.0117, -0.1618, -0.2286], # [ 1.3562, 0.1026, 0.1732, ..., -0.3855, -0.0832, -0.1052], # [ 0.2988, 0.2528, 0.4431, ..., 0.2684, -0.5584, 0.6524], # ..., # [ 0.3405, -0.0140, -0.0748, ..., 0.6649, -0.8983, 0.5802], # [ 0.1011, 0.8782, 0.1545, ..., -0.1768, -0.8880, -0.1095], # [ 0.7912, 0.9637, -0.3859, ..., 0.2050, -0.1350, 0.0432]]) ``` ## Citation If you use our work, please cite: ```bibtex @inproceedings{souza2020bertimbau, author = {F{\'a}bio Souza and Rodrigo Nogueira and Roberto Lotufo}, title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese}, booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)}, year = {2020} } ```
[ -0.20583486557006836, -0.4810563325881958, 0.14615973830223083, 0.5117315053939819, -0.5330370664596558, -0.03562520071864128, -0.24178016185760498, -0.0566655769944191, 0.6129205822944641, 0.3258247673511505, -0.49281758069992065, -0.624013364315033, -0.7640063166618347, -0.008710612542927265, -0.38189980387687683, 1.1658003330230713, 0.18334399163722992, 0.4213222861289978, 0.2804585099220276, 0.06457674503326416, -0.3391665518283844, -0.6232721209526062, -0.960330069065094, -0.34395283460617065, 0.629913866519928, 0.2081538885831833, 0.46424418687820435, 0.3596065938472748, 0.3931433856487274, 0.42481115460395813, -0.09565036743879318, -0.07164310663938522, -0.48120245337486267, -0.011397403664886951, 0.11106878519058228, -0.6025731563568115, -0.6675068736076355, -0.1675688624382019, 0.7235589027404785, 0.5681013464927673, 0.03649972751736641, 0.26001518964767456, -0.050543997436761856, 0.4495301842689514, -0.1974317729473114, 0.5127502679824829, -0.5657386183738708, 0.08100812882184982, -0.1825179159641266, -0.12198137491941452, -0.2874771058559418, -0.43344536423683167, 0.1945071816444397, -0.6522457003593445, 0.1832704097032547, -0.010441751219332218, 1.2561023235321045, 0.23594099283218384, -0.14124777913093567, -0.11627789586782455, -0.3777017593383789, 0.8989019989967346, -0.8235674500465393, 0.16004064679145813, 0.48929324746131897, 0.2621632516384125, -0.28455838561058044, -0.7943545579910278, -0.4456978738307953, 0.10978513956069946, 0.08092819154262543, 0.07870107144117355, -0.14664489030838013, -0.1950329840183258, 0.3734389543533325, 0.18567688763141632, -0.5262499451637268, 0.05474173277616501, -0.7220610976219177, -0.33725598454475403, 0.6773449778556824, 0.04248123988509178, 0.20213694870471954, -0.20284612476825714, -0.31745144724845886, -0.39764201641082764, -0.5392860770225525, 0.030089693143963814, 0.5989130139350891, 0.354324072599411, -0.3451897203922272, 0.6478209495544434, -0.1773165911436081, 0.6899107694625854, -0.019253069534897804, 0.07663928717374802, 0.7050530314445496, 0.07773953676223755, -0.527633547782898, 0.048902347683906555, 1.0348877906799316, 0.15860675275325775, 0.4355829060077667, 0.009844929911196232, -0.10638413578271866, -0.09784744679927826, 0.009410012513399124, -0.7147660255432129, -0.38500961661338806, 0.2678647041320801, -0.5318925976753235, -0.3739544451236725, 0.38226479291915894, -0.789192795753479, -0.14881311357021332, -0.04661044105887413, 0.7854174375534058, -0.6674532294273376, -0.16868005692958832, 0.2649843990802765, -0.39844033122062683, 0.5757321119308472, 0.1348249316215515, -0.9063403606414795, 0.10873556137084961, 0.4649493992328644, 0.7927244305610657, 0.42592868208885193, -0.18601901829242706, -0.14707429707050323, -0.05670107156038284, -0.22541165351867676, 0.5799275040626526, -0.16450661420822144, -0.5253556370735168, -0.0544344037771225, 0.2565247118473053, -0.1366514265537262, -0.1699831485748291, 0.7485881447792053, -0.4138607978820801, 0.3386261463165283, -0.15646164119243622, -0.32058438658714294, -0.47658419609069824, 0.2511328160762787, -0.5843750238418579, 1.0609863996505737, 0.22532863914966583, -0.7325130105018616, 0.4051089286804199, -0.9298081398010254, -0.4472053349018097, 0.09495943039655685, -0.06625830382108688, -0.4798833131790161, -0.015715211629867554, 0.320182740688324, 0.5753880143165588, -0.28458812832832336, 0.27184903621673584, -0.43188098073005676, -0.30171865224838257, 0.36762773990631104, -0.4078705906867981, 1.3323692083358765, 0.275497704744339, -0.2471291571855545, 0.2538139820098877, -0.8134959936141968, 0.1250804215669632, 0.31735101342201233, -0.24080482125282288, 0.024127520620822906, -0.20688651502132416, 0.22738295793533325, 0.09863502532243729, 0.5787935853004456, -0.746841549873352, 0.420889675617218, -0.359971284866333, 0.8120811581611633, 0.8877894878387451, -0.12696878612041473, 0.044211987406015396, -0.37441501021385193, 0.40892305970191956, 0.10345900058746338, 0.05554818734526634, 0.13297110795974731, -0.6773074865341187, -0.8247303366661072, -0.6325328946113586, 0.6258876323699951, 0.5799973011016846, -0.6390146017074585, 0.9435256123542786, -0.31071874499320984, -0.832131028175354, -0.5555076599121094, -0.22059084475040436, 0.18322211503982544, 0.37151870131492615, 0.30433520674705505, -0.35111963748931885, -0.8741042613983154, -0.785666823387146, -0.00464988686144352, -0.08703938126564026, -0.19794628024101257, 0.2610284090042114, 0.8093476891517639, -0.31790563464164734, 0.7181205749511719, -0.6217546463012695, -0.48455989360809326, -0.03234853968024254, 0.23128673434257507, 0.838202714920044, 0.877356767654419, 0.7433860301971436, -0.6063136458396912, -0.5402538776397705, -0.281291663646698, -0.9121673107147217, 0.09895362704992294, 0.1695055514574051, -0.22266340255737305, 0.17247851192951202, 0.2413976937532425, -0.665831983089447, 0.6090514063835144, 0.26891660690307617, -0.6749255657196045, 0.4338303506374359, -0.5875815153121948, 0.12427352368831635, -1.0865180492401123, 0.2231055647134781, -0.16530004143714905, -0.17769749462604523, -0.42096003890037537, -0.1985376477241516, -0.07039840519428253, -0.02305704355239868, -0.5782363414764404, 0.5823990702629089, -0.42773446440696716, 0.008902701549232006, 0.18016110360622406, -0.3330914378166199, -0.18606895208358765, 0.6205538511276245, 0.04783269390463829, 0.44225621223449707, 0.9924967288970947, -0.44576752185821533, 0.6138575673103333, 0.5688402056694031, -0.5051708221435547, 0.38030821084976196, -1.0132356882095337, 0.05490000173449516, -0.048684194684028625, 0.23051096498966217, -1.0556423664093018, -0.36425459384918213, 0.3388906717300415, -0.7525526285171509, 0.25087642669677734, -0.2658011317253113, -0.7388394474983215, -0.5802270770072937, -0.3956461548805237, 0.5885037183761597, 0.6646119356155396, -0.4194737374782562, 0.47109976410865784, 0.30968937277793884, -0.0914594754576683, -0.7586402297019958, -0.854978084564209, -0.09814339876174927, -0.3144688904285431, -0.6128085255622864, 0.33185645937919617, -0.05890671908855438, 0.14313560724258423, -0.13954365253448486, 0.1224193274974823, -0.24453872442245483, -0.06978818774223328, 0.3162626326084137, 0.4367714822292328, -0.2771652638912201, -0.09071353077888489, -0.08886166661977768, -0.08240439742803574, 0.21519377827644348, -0.25497695803642273, 1.0882230997085571, -0.1810573786497116, 0.009641094133257866, -0.4092595875263214, 0.17604291439056396, 0.6507793068885803, -0.10723801702260971, 0.7815732955932617, 0.9268715977668762, -0.6609943509101868, 0.02020759880542755, -0.32329457998275757, -0.10524120926856995, -0.5052742958068848, 0.3898087739944458, -0.5384783744812012, -0.5270988345146179, 0.8948542475700378, 0.3918799161911011, -0.13442228734493256, 0.8324031233787537, 0.7928447723388672, -0.2278083860874176, 0.97555011510849, 0.36211419105529785, -0.18059000372886658, 0.630098819732666, -0.7233349084854126, 0.18576176464557648, -0.8770216107368469, -0.6010223627090454, -0.4459298253059387, -0.46071693301200867, -0.4223006069660187, -0.2826850712299347, 0.2521223723888397, 0.025280175730586052, -0.6696110367774963, 0.6234999895095825, -0.5800190567970276, 0.3063943088054657, 0.9652837514877319, 0.5681692361831665, -0.31345197558403015, -0.17490042746067047, -0.1901634931564331, 0.00881672091782093, -0.6866318583488464, -0.2771942615509033, 1.5395246744155884, 0.40698468685150146, 0.7601513862609863, 0.18566282093524933, 0.7427993416786194, 0.2800217568874359, 0.060729533433914185, -0.653041660785675, 0.5395102500915527, -0.14146722853183746, -1.0006403923034668, -0.4510796070098877, -0.26270341873168945, -1.351384162902832, 0.23497049510478973, -0.38939419388771057, -0.9217231273651123, 0.13730132579803467, -0.17036797106266022, -0.6145300269126892, 0.30942365527153015, -0.6753678917884827, 1.0648146867752075, -0.4076627790927887, -0.1976158767938614, -0.022567572072148323, -0.7686124444007874, 0.09857740253210068, 0.0531587190926075, -0.06056622415781021, -0.1262800395488739, 0.15646934509277344, 1.1419144868850708, -0.46698734164237976, 0.9414204955101013, -0.25130119919776917, 0.14052115380764008, 0.22822748124599457, -0.13744696974754333, 0.22452838718891144, 0.24860508739948273, -0.04418900981545448, 0.27529504895210266, 0.1550377905368805, -0.7689067721366882, -0.13092903792858124, 0.7165902853012085, -1.0368925333023071, -0.30722853541374207, -0.8224675059318542, -0.631680965423584, 0.13569949567317963, 0.5164732933044434, 0.692200243473053, 0.6275239586830139, -0.11805941164493561, 0.4086143374443054, 0.6176398992538452, -0.28249144554138184, 0.7788594365119934, 0.2880919873714447, -0.12146821618080139, -0.5609153509140015, 0.8599206209182739, 0.2951659858226776, -0.33222851157188416, 0.27997511625289917, 0.11585945636034012, -0.6024720072746277, -0.4820343554019928, -0.21479223668575287, 0.4186668395996094, -0.49951624870300293, -0.45066511631011963, -0.47986292839050293, -0.37880560755729675, -0.7573028802871704, -0.0296188835054636, -0.23934891819953918, -0.4289710223674774, -0.6513111591339111, -0.11327145993709564, 0.47492489218711853, 0.550738513469696, -0.31358298659324646, 0.5154198408126831, -0.6938880681991577, 0.2189551144838333, 0.2046930491924286, 0.4542830288410187, -0.2316998839378357, -0.8738634586334229, -0.07340798527002335, -0.03556820750236511, -0.18776124715805054, -0.988623321056366, 0.9180448055267334, 0.12061575055122375, 0.6507865786552429, 0.5723823308944702, -0.022499656304717064, 0.5958949327468872, -0.3822456896305084, 0.6438084244728088, 0.18723660707473755, -0.9678899645805359, 0.6224921941757202, -0.5431108474731445, 0.046496402472257614, 0.3693816661834717, 0.4993482232093811, -0.18228909373283386, -0.06897905468940735, -1.179322361946106, -1.0484975576400757, 0.7835536599159241, 0.2540891766548157, 0.06105506047606468, 0.050533443689346313, 0.022687068209052086, 0.11150714755058289, 0.41023510694503784, -1.0795735120773315, -0.4847133755683899, -0.3547772467136383, -0.46360671520233154, -0.05694675073027611, -0.18096739053726196, -0.2305767685174942, -0.6445087194442749, 0.8892771601676941, 0.14752869307994843, 0.759132981300354, 0.1297641396522522, -0.13608823716640472, 0.22044162452220917, -0.20092777907848358, 0.7704779505729675, 0.5049493908882141, -0.6450323462486267, -0.17466816306114197, 0.06539005041122437, -0.45332443714141846, -0.049278564751148224, 0.2651270627975464, -0.015649311244487762, 0.16275814175605774, 0.3598635792732239, 0.7655313611030579, 0.2659097909927368, -0.4210997521877289, 0.4888392388820648, 0.10608788579702377, -0.36286139488220215, -0.8428654074668884, -0.0002232040133094415, -0.13394024968147278, 0.2711910307407379, 0.48497048020362854, 0.2120824009180069, -0.020052412524819374, -0.46875274181365967, 0.2068798691034317, 0.4508047103881836, -0.49706515669822693, -0.28535252809524536, 0.7182424068450928, 0.12887658178806305, -0.4727080762386322, 0.7266421914100647, -0.07607784867286682, -0.6480638384819031, 0.961983323097229, 0.4893401563167572, 0.8901447653770447, -0.014293190091848373, 0.17152486741542816, 0.6127363443374634, 0.28066200017929077, -0.1277555674314499, 0.7198113799095154, 0.2397075593471527, -0.8827447891235352, -0.1758280098438263, -0.5895037055015564, -0.01758776791393757, 0.20611228048801422, -0.7869533896446228, 0.49605903029441833, -0.6829805970191956, -0.3449609875679016, 0.06098928675055504, 0.0699409618973732, -0.8553448915481567, 0.4194289743900299, 0.2294253557920456, 1.0070120096206665, -1.0043845176696777, 1.227227807044983, 0.7223173975944519, -0.6788879632949829, -0.7166152000427246, -0.5541430711746216, -0.33525794744491577, -1.2661148309707642, 0.7098374366760254, 0.19261908531188965, 0.35547637939453125, 0.17917481064796448, -0.7643465399742126, -1.0046260356903076, 1.119929313659668, 0.32835739850997925, -0.2536895275115967, -0.07096967101097107, -0.1878400444984436, 0.5328662395477295, -0.20747113227844238, 0.5606751441955566, 0.5095943212509155, 0.5876269340515137, 0.012042174115777016, -0.6981835961341858, -0.1049576848745346, -0.31823915243148804, -0.18403707444667816, 0.21744316816329956, -0.8256257772445679, 1.147003173828125, -0.09792694449424744, 0.11631540209054947, 0.182115837931633, 0.7790833711624146, 0.10907132178544998, -0.12387184053659439, 0.3475680947303772, 0.7881858348846436, 0.7053207755088806, -0.5635789632797241, 0.6695116758346558, -0.21465954184532166, 0.7293887734413147, 0.740166425704956, 0.15112075209617615, 0.8339375853538513, 0.6105020046234131, -0.3363780081272125, 0.8085702657699585, 0.8445364832878113, -0.4371184706687927, 0.7064986824989319, 0.2856391370296478, -0.0072554596699774265, -0.10351137816905975, 0.27506223320961, -0.568929135799408, 0.6079632043838501, 0.5055303573608398, -0.48326319456100464, -0.1227247342467308, -0.11501702666282654, 0.2010844200849533, -0.13658520579338074, -0.4915637969970703, 0.4787770211696625, 0.011793184094130993, -0.5959658622741699, 0.5889489054679871, 0.07747024297714233, 0.9459123611450195, -0.743459165096283, 0.10371173918247223, -0.04965023696422577, 0.3195919990539551, -0.0638251081109047, -0.9147839546203613, 0.10876242816448212, -0.11318287998437881, -0.11896203458309174, -0.17524456977844238, 0.5422963500022888, -0.37884438037872314, -0.7491961717605591, 0.21756500005722046, 0.18728996813297272, 0.38385236263275146, -0.055439651012420654, -0.926966667175293, -0.125818133354187, 0.08970459550619125, -0.30378881096839905, 0.1469554901123047, 0.45852652192115784, 0.24934427440166473, 0.6551633477210999, 0.7696249485015869, 0.11906459182500839, 0.31595906615257263, -0.26720115542411804, 0.7318479418754578, -0.9526263475418091, -0.664853572845459, -0.9726036787033081, 0.48230651021003723, -0.1461225003004074, -0.8359412550926208, 0.5430212020874023, 0.7421199679374695, 0.6694114208221436, -0.4443672001361847, 0.6305506229400635, -0.46966713666915894, 0.34589576721191406, -0.37046128511428833, 0.9649020433425903, -0.34677478671073914, -0.15892843902111053, -0.13165879249572754, -0.9040658473968506, -0.41128969192504883, 1.0219709873199463, -0.265510231256485, 0.03899187967181206, 0.5592275261878967, 0.6147152185440063, 0.12446347624063492, -0.21918310225009918, 0.24882584810256958, 0.3984787166118622, 0.2321362942457199, 0.9121052026748657, 0.4194820821285248, -0.7472507953643799, 0.41194650530815125, -0.2575323283672333, -0.21199627220630646, -0.400738924741745, -1.0123283863067627, -1.0207291841506958, -0.5068190693855286, -0.27612099051475525, -0.6325129866600037, -0.1934743970632553, 1.0741323232650757, 0.7054519653320312, -1.1013551950454712, -0.37559977173805237, -0.008596320636570454, 0.07344426959753036, -0.1452907919883728, -0.22839342057704926, 0.5993775129318237, -0.17111636698246002, -1.0355656147003174, 0.08065155893564224, -0.1205807775259018, 0.2910679876804352, -0.08888261020183563, 0.026218894869089127, -0.5353587865829468, -0.014753014780580997, 0.3519287109375, 0.5085407495498657, -0.6511077880859375, -0.3965933322906494, -0.09756771475076675, -0.20086731016635895, 0.12571626901626587, 0.2541866898536682, -0.7364643216133118, 0.264397531747818, 0.6794587969779968, 0.3899642825126648, 0.7585315704345703, -0.2755044996738434, 0.6363250613212585, -0.8051841855049133, 0.6247758865356445, 0.352213978767395, 0.7657591700553894, 0.2370394915342331, -0.14982138574123383, 0.7178937196731567, 0.3773292303085327, -0.49684420228004456, -0.9417962431907654, -0.2506861388683319, -1.411956787109375, -0.09926681965589523, 0.9423447251319885, -0.24125322699546814, -0.5596133470535278, 0.15928608179092407, -0.44775447249412537, 0.502217173576355, -0.4798547327518463, 0.7334528565406799, 0.7848556637763977, 0.04075410217046738, 0.15497122704982758, -0.28145885467529297, 0.3494702875614166, 0.6107786893844604, -0.5253990888595581, -0.5491814613342285, 0.012434710748493671, 0.3735252916812897, 0.18813548982143402, 0.4723554253578186, -0.2688352167606354, 0.2173362821340561, 0.24127763509750366, 0.2934410870075226, -0.046519678086042404, -0.22875453531742096, -0.349709689617157, 0.005267109721899033, -0.13795317709445953, -0.82720947265625 ]
timm/volo_d1_224.sail_in1k
timm
"2023-04-13T05:52:29Z"
45,815
1
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:2106.13112", "license:apache-2.0", "region:us" ]
image-classification
"2023-04-13T05:51:34Z"
--- tags: - image-classification - timm library_tag: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for volo_d1_224.sail_in1k A VOLO (Vision Outlooker) image classification model. Trained on ImageNet-1k with token labelling by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 26.6 - GMACs: 6.9 - Activations (M): 24.4 - Image size: 224 x 224 - **Papers:** - VOLO: Vision Outlooker for Visual Recognition: https://arxiv.org/abs/2106.13112 - **Dataset:** ImageNet-1k - **Original:** https://github.com/sail-sg/volo ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('volo_d1_224.sail_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'volo_d1_224.sail_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 197, 384) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Citation ```bibtex @article{yuan2022volo, title={Volo: Vision outlooker for visual recognition}, author={Yuan, Li and Hou, Qibin and Jiang, Zihang and Feng, Jiashi and Yan, Shuicheng}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, year={2022}, publisher={IEEE} } ```
[ -0.4083051383495331, -0.22153033316135406, 0.10723847895860672, 0.2649836838245392, -0.6064810752868652, -0.4219528138637543, 0.009880129247903824, -0.34709519147872925, 0.3054603636264801, 0.532871425151825, -0.707731306552887, -0.659418523311615, -0.7371216416358948, -0.06586264073848724, -0.06456951051950455, 0.8900137543678284, 0.08125145733356476, 0.031160959973931313, -0.3637832701206207, -0.384042888879776, -0.3959774076938629, -0.2997407615184784, -0.8849962949752808, -0.251996785402298, 0.2763218283653259, 0.20399166643619537, 0.31848859786987305, 0.5709111094474792, 0.6620322465896606, 0.484728068113327, -0.20685774087905884, 0.020418066531419754, -0.3440219759941101, -0.26826515793800354, 0.4101950526237488, -0.828889012336731, -0.6616706252098083, 0.2649175524711609, 0.8048605918884277, 0.2630547285079956, 0.0197975542396307, 0.3450199067592621, 0.15172503888607025, 0.6247079968452454, -0.3149610459804535, 0.3118988573551178, -0.5285362601280212, 0.2821982502937317, -0.24365141987800598, 0.017432115972042084, -0.3426644504070282, -0.2536672353744507, 0.27070939540863037, -0.8084814548492432, 0.26088792085647583, 0.11167111992835999, 1.3388370275497437, 0.3109331429004669, -0.09597122669219971, 0.0036948933266103268, -0.1434822976589203, 0.9328347444534302, -0.8315306305885315, 0.3418533504009247, 0.30001547932624817, 0.168243408203125, -0.013728437945246696, -0.8082075715065002, -0.5516252517700195, 0.0007807519868947566, -0.05080225318670273, 0.27393990755081177, -0.061217643320560455, -0.0015461889561265707, 0.22197088599205017, 0.27012330293655396, -0.48016679286956787, 0.09430252760648727, -0.6144222617149353, -0.19196562469005585, 0.7048121690750122, 0.1957089751958847, 0.17065957188606262, -0.20713771879673004, -0.5952534079551697, -0.45355361700057983, -0.2617916166782379, 0.37759166955947876, 0.2835609018802643, 0.15825435519218445, -0.5753462314605713, 0.4446653127670288, 0.04630763456225395, 0.5554167032241821, 0.20777539908885956, -0.3919507563114166, 0.7569398880004883, 0.08934585005044937, -0.5391705632209778, -0.12678027153015137, 1.0011035203933716, 0.5559291839599609, 0.07408224791288376, 0.24001049995422363, -0.10426325350999832, -0.5753365159034729, 0.043594807386398315, -1.0039427280426025, -0.06172189489006996, 0.24198827147483826, -0.6429484486579895, -0.6933611631393433, 0.4704345166683197, -0.8099889159202576, -0.16323307156562805, -0.08167341351509094, 0.7073063850402832, -0.43569767475128174, -0.25394678115844727, 0.1318720430135727, -0.3097418248653412, 0.4867387115955353, 0.2835492789745331, -0.459118127822876, 0.07536731660366058, 0.3407648503780365, 1.074591040611267, 0.04869493469595909, -0.5267115235328674, -0.3014042377471924, -0.32943031191825867, -0.33597075939178467, 0.42600277066230774, -0.1390092372894287, -0.14968453347682953, -0.22253668308258057, 0.35348573327064514, -0.22161002457141876, -0.492854505777359, 0.39565008878707886, -0.3091709017753601, 0.4572857916355133, -0.05132123455405235, -0.40430334210395813, -0.5410926342010498, 0.2639225125312805, -0.39537832140922546, 1.0309938192367554, 0.31407707929611206, -0.9635279774665833, 0.4572211802005768, -0.46030253171920776, 0.03252500295639038, 0.029375234618782997, 0.07349909842014313, -1.1811168193817139, -0.03412775695323944, 0.1030954122543335, 0.7455568313598633, -0.26198431849479675, -0.06966850906610489, -0.5218106508255005, -0.21594734489917755, 0.26930418610572815, -0.03658032417297363, 1.0833054780960083, 0.04931722208857536, -0.2624036967754364, 0.12441661953926086, -0.8301827311515808, 0.07761634886264801, 0.531627893447876, -0.29377424716949463, -0.33989307284355164, -0.5559171438217163, 0.10400079190731049, 0.16044269502162933, 0.2868953049182892, -0.6108031868934631, 0.4527154564857483, -0.30084118247032166, 0.28791946172714233, 0.7777859568595886, -0.024722056463360786, 0.32238852977752686, -0.29482465982437134, 0.3917481005191803, 0.4049813449382782, 0.4206514060497284, -0.011411905288696289, -0.717235803604126, -0.9594294428825378, -0.5823184847831726, 0.1406152993440628, 0.5538354516029358, -0.7188156843185425, 0.5719045400619507, -0.18058893084526062, -0.8279845118522644, -0.41057121753692627, -0.06007438153028488, 0.5017618536949158, 0.545228123664856, 0.2760920822620392, -0.3693637549877167, -0.6021588444709778, -0.8745508790016174, -0.0006635622121393681, 0.016186149790883064, 0.07952429354190826, 0.3040434420108795, 0.699562132358551, -0.19440628588199615, 0.5977452993392944, -0.5499932169914246, -0.41423410177230835, -0.18511536717414856, 0.1839359998703003, 0.520944356918335, 0.678254246711731, 0.9749341607093811, -0.7350241541862488, -0.580620288848877, -0.18568362295627594, -1.0059865713119507, 0.16595472395420074, -0.18256182968616486, -0.3091233968734741, 0.28225553035736084, 0.16207820177078247, -0.5091540813446045, 0.7174477577209473, 0.18634209036827087, -0.505630612373352, 0.39090651273727417, -0.2842424213886261, 0.13898628950119019, -1.1773202419281006, -0.06873539090156555, 0.28763633966445923, -0.08459272235631943, -0.5639085173606873, -0.23860648274421692, -0.06623206287622452, 0.11840667575597763, -0.5372942686080933, 0.7782013416290283, -0.4695165753364563, 0.05872829630970955, -0.18333443999290466, -0.30765557289123535, -0.018732868134975433, 0.6489502191543579, 0.03463004529476166, 0.20541885495185852, 1.061500906944275, -0.637215793132782, 0.6037265062332153, 0.6087455749511719, -0.16824902594089508, 0.6450172662734985, -0.6539316773414612, 0.16407380998134613, -0.25307968258857727, -0.010020066983997822, -1.088963508605957, -0.24857193231582642, 0.4172646701335907, -0.5295097827911377, 0.6277936697006226, -0.5046690106391907, -0.13592779636383057, -0.659750759601593, -0.5575320720672607, 0.4579843580722809, 0.698082685470581, -0.7591771483421326, 0.4844962954521179, 0.24913445115089417, 0.2117004692554474, -0.720180332660675, -0.8017624616622925, -0.32234716415405273, -0.4640648663043976, -0.6532049775123596, 0.3589288890361786, 0.09432535618543625, 0.14186255633831024, 0.011513185687363148, -0.03950684517621994, -0.13634717464447021, -0.13342714309692383, 0.4998587667942047, 0.6894217729568481, -0.19426587224006653, -0.11439415067434311, -0.20579686760902405, -0.05132279172539711, 0.07543361186981201, -0.3382071852684021, 0.4376671612262726, -0.34447240829467773, -0.15246908366680145, -0.7758488059043884, -0.215117409825325, 0.6366444230079651, -0.07049192488193512, 1.0127297639846802, 0.9478182196617126, -0.4266710579395294, -0.1034315675497055, -0.3820732831954956, -0.16272638738155365, -0.5158809423446655, 0.4838210940361023, -0.4953825771808624, -0.3396719992160797, 0.8172433376312256, 0.23532672226428986, 0.04613586515188217, 0.8495685458183289, 0.22976043820381165, 0.008625075221061707, 0.761965811252594, 0.8114181756973267, 0.16513940691947937, 0.8036338090896606, -0.899708092212677, -0.21513092517852783, -0.9492318034172058, -0.6291693449020386, -0.19293227791786194, -0.36023855209350586, -0.5110791921615601, -0.27590426802635193, 0.39872100949287415, 0.18446269631385803, -0.3282415568828583, 0.5120348930358887, -0.8827812075614929, 0.10492011159658432, 0.800469160079956, 0.49886322021484375, -0.3489163815975189, 0.10043327510356903, -0.27283769845962524, -0.04225028678774834, -0.7861908078193665, -0.146328866481781, 1.1686986684799194, 0.4485129117965698, 0.6919035911560059, -0.3706601560115814, 0.6911801695823669, -0.23667395114898682, 0.31655532121658325, -0.5884369015693665, 0.6396952867507935, -0.034887928515672684, -0.31565311551094055, -0.25670763850212097, -0.3853685259819031, -1.0104612112045288, 0.19656753540039062, -0.3974763751029968, -0.7428632378578186, 0.3359101712703705, 0.07405272871255875, -0.18340276181697845, 0.610624372959137, -0.5504786372184753, 0.9625265002250671, -0.20870277285575867, -0.31667572259902954, 0.2054024040699005, -0.5919832587242126, 0.2524203956127167, 0.053233448415994644, -0.13562560081481934, 0.032294195145368576, 0.14494675397872925, 1.237123966217041, -0.5727386474609375, 0.952948272228241, -0.42969733476638794, 0.33915576338768005, 0.5215425491333008, -0.2905800938606262, 0.3358938694000244, -0.06639448553323746, 0.021049991250038147, 0.38620880246162415, 0.0747823566198349, -0.346881240606308, -0.3826184570789337, 0.41313499212265015, -0.9526951909065247, -0.35090160369873047, -0.5895548462867737, -0.4396381378173828, 0.24744081497192383, 0.12776650488376617, 0.8047834038734436, 0.5716207027435303, 0.16500836610794067, 0.3032738268375397, 0.5635664463043213, -0.4139094352722168, 0.4432585537433624, 0.10747771710157394, -0.28011250495910645, -0.6243299841880798, 0.9139792919158936, 0.2504480183124542, 0.061716873198747635, 0.22505417466163635, 0.16976633667945862, -0.2710016667842865, -0.488541841506958, -0.19763730466365814, 0.49804165959358215, -0.6855181455612183, -0.4089137315750122, -0.42354100942611694, -0.5470214486122131, -0.4447704255580902, -0.11563235521316528, -0.5293388962745667, -0.30849334597587585, -0.49586451053619385, 0.19309142231941223, 0.6475623846054077, 0.6476382613182068, -0.10243247449398041, 0.4798198640346527, -0.7044035196304321, 0.034659821540117264, 0.24744361639022827, 0.48477688431739807, -0.09794192761182785, -1.09345543384552, -0.31390777230262756, -0.006997615564614534, -0.4521157443523407, -0.8446400165557861, 0.7512710690498352, 0.18727438151836395, 0.7337727546691895, 0.6283157467842102, -0.2397860437631607, 0.6992408633232117, -0.026377927511930466, 0.571196436882019, 0.36175400018692017, -0.7631626129150391, 0.8115639686584473, -0.08672480285167694, 0.10107199847698212, 0.005997204687446356, 0.4791387617588043, -0.24171163141727448, -0.14132973551750183, -0.9646134376525879, -0.692488968372345, 1.0294023752212524, 0.25861984491348267, -0.19063016772270203, 0.35492855310440063, 0.7875197529792786, 0.0011919455137103796, 0.17914070188999176, -0.8588182926177979, -0.4224800765514374, -0.49584996700286865, -0.2762082517147064, -0.0070993066765367985, -0.1074405312538147, 0.02856951206922531, -0.6426066160202026, 0.8995137810707092, -0.032035715878009796, 0.7758035659790039, 0.3898075520992279, 0.09372003376483917, -0.08854348212480545, -0.42295753955841064, 0.5700821876525879, 0.1850312203168869, -0.3470570743083954, -0.13540543615818024, 0.2701902985572815, -0.750189483165741, -0.002384692896157503, 0.030066413804888725, -0.05789372697472572, 0.010572092607617378, 0.5380859375, 1.0600913763046265, -0.17348730564117432, -0.05847883224487305, 0.6217468976974487, -0.11728999018669128, -0.49028006196022034, -0.3139668405056, 0.14972805976867676, -0.21977676451206207, 0.4893302321434021, 0.33059775829315186, 0.3780103921890259, -0.08764959126710892, -0.2405666708946228, 0.032680924981832504, 0.685784101486206, -0.4802628755569458, -0.3682856559753418, 0.8281997442245483, -0.19132891297340393, -0.16376206278800964, 0.8179998993873596, -0.22495314478874207, -0.6316205859184265, 1.1726022958755493, 0.36055684089660645, 1.0517215728759766, -0.16227447986602783, 0.030318908393383026, 0.936333179473877, 0.25262269377708435, -0.12373023480176926, 0.3517662584781647, 0.30926749110221863, -0.8495180010795593, 0.12243730574846268, -0.6689497232437134, -0.04373680427670479, 0.39447641372680664, -0.6354876160621643, 0.44233256578445435, -0.5391586422920227, -0.3368088901042938, 0.04753725975751877, 0.2023724466562271, -0.8860970735549927, 0.22590164840221405, 0.2465648502111435, 0.7380103468894958, -0.9381371140480042, 0.6882631182670593, 0.9631655216217041, -0.5469671487808228, -0.8093581795692444, -0.3067018985748291, 0.093830905854702, -0.9245155453681946, 0.7073146104812622, 0.4620169401168823, 0.17971625924110413, -0.04861745983362198, -0.895483136177063, -0.8328858613967896, 1.5506319999694824, 0.26546069979667664, -0.25467321276664734, 0.2563169300556183, -0.059115249663591385, 0.29825103282928467, -0.5702465176582336, 0.343957781791687, -0.05122743919491768, 0.48718440532684326, 0.3527214229106903, -0.7653698325157166, 0.1472150832414627, -0.3039334714412689, 0.12856556475162506, 0.1071029081940651, -0.9284531474113464, 1.0390702486038208, -0.44111841917037964, -0.014868349768221378, 0.09273256361484528, 0.7215373516082764, 0.24215029180049896, 0.2584708631038666, 0.5992462038993835, 0.8014350533485413, 0.7041773796081543, -0.28008610010147095, 0.8773764967918396, 0.05429338663816452, 0.695946991443634, 0.4850131869316101, 0.29238051176071167, 0.5270395874977112, 0.34553593397140503, -0.17084887623786926, 0.38193458318710327, 0.8743220567703247, -0.5416930913925171, 0.5912355780601501, 0.07755493372678757, 0.1109442338347435, -0.17022787034511566, 0.29079240560531616, -0.389254093170166, 0.5858178734779358, 0.12687329947948456, -0.43461138010025024, 0.005066818092018366, 0.34736883640289307, -0.11140269041061401, -0.4442501366138458, -0.47182562947273254, 0.5624487400054932, 0.019576434046030045, -0.4738870859146118, 0.7723926305770874, -0.15514931082725525, 0.9187065958976746, -0.4380534887313843, -0.02095746621489525, -0.16612601280212402, 0.38324761390686035, -0.2691989839076996, -0.8677966594696045, 0.2980216443538666, -0.35274219512939453, -0.04466080293059349, -0.02642105147242546, 0.6343816518783569, -0.39165958762168884, -0.6542351245880127, 0.19064749777317047, 0.26801207661628723, 0.49903589487075806, -0.06717389822006226, -1.0365817546844482, -0.004997694864869118, 0.16501371562480927, -0.7146052122116089, 0.2498815953731537, 0.59549880027771, 0.22059930860996246, 0.8541281819343567, 0.5071951746940613, -0.11027376353740692, 0.247918501496315, -0.2684996426105499, 0.7628716826438904, -0.5212308168411255, -0.37447816133499146, -0.8405181765556335, 0.6049804091453552, -0.17553377151489258, -0.7411348223686218, 0.6678285598754883, 0.6167218685150146, 0.8006010055541992, -0.29015564918518066, 0.4677291214466095, -0.0846119374036789, 0.008259860798716545, -0.5092401504516602, 0.7292813658714294, -0.846066415309906, -0.030237635597586632, -0.2859509587287903, -0.7916860580444336, -0.3664027154445648, 0.8493006229400635, -0.23386119306087494, 0.24083612859249115, 0.5045342445373535, 0.7950257062911987, -0.23264116048812866, -0.3260783851146698, 0.2880304753780365, 0.3282879889011383, 0.07018038630485535, 0.48278969526290894, 0.5071316957473755, -0.9578547477722168, 0.36799323558807373, -0.5922250151634216, -0.2888036072254181, -0.2693755030632019, -0.7554678916931152, -1.2263990640640259, -0.947610080242157, -0.7062122821807861, -0.5176759362220764, -0.2808972895145416, 0.8508845567703247, 1.0219768285751343, -0.5561159253120422, -0.08794786781072617, -0.07193362712860107, 0.12058603018522263, -0.3724915385246277, -0.2647891044616699, 0.45875751972198486, -0.14538708329200745, -0.7882282733917236, -0.35194993019104004, 0.15139469504356384, 0.6030271053314209, 0.06980809569358826, -0.27245190739631653, -0.1186889186501503, -0.09370750933885574, 0.3394567668437958, 0.25888851284980774, -0.5659665465354919, -0.1715245097875595, -0.06832700222730637, -0.139510840177536, 0.3983779847621918, 0.06205971539020538, -0.6066198348999023, 0.24790126085281372, 0.49347370862960815, 0.2352052479982376, 0.879546582698822, -0.35632461309432983, -0.006854771636426449, -0.790963351726532, 0.5688843727111816, -0.13549290597438812, 0.6120142936706543, 0.2105785459280014, -0.48993030190467834, 0.5671433210372925, 0.5653290152549744, -0.5062249302864075, -0.8364425301551819, -0.2686174809932709, -1.309698462486267, -0.11306260526180267, 0.8216270208358765, -0.29258912801742554, -0.6547417640686035, 0.45813432335853577, -0.15938585996627808, 0.4489843547344208, -0.018564576283097267, 0.4653172791004181, 0.4093378484249115, -0.060944218188524246, -0.5336108803749084, -0.3710728585720062, 0.4156859219074249, -0.016993757337331772, -0.7315971255302429, -0.5386477112770081, -0.08011139929294586, 0.6414924263954163, 0.32955634593963623, 0.5408676266670227, -0.024981800466775894, 0.14983323216438293, 0.22214509546756744, 0.5405154228210449, -0.33021748065948486, -0.1664740890264511, -0.34318915009498596, -0.09855793416500092, -0.26283490657806396, -0.6536478400230408 ]
timm/ghostnet_100.in1k
timm
"2023-08-20T06:13:05Z"
45,802
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:1911.11907", "license:apache-2.0", "region:us" ]
image-classification
"2023-08-19T23:28:44Z"
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for ghostnet_100.in1k A GhostNet image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 5.2 - GMACs: 0.1 - Activations (M): 3.5 - Image size: 224 x 224 - **Papers:** - GhostNet: More Features from Cheap Operations: https://arxiv.org/abs/1911.11907 - **Original:** https://github.com/huawei-noah/Efficient-AI-Backbones - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('ghostnet_100.in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'ghostnet_100.in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 16, 112, 112]) # torch.Size([1, 24, 56, 56]) # torch.Size([1, 40, 28, 28]) # torch.Size([1, 80, 14, 14]) # torch.Size([1, 160, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'ghostnet_100.in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 960, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Citation ```bibtex @InProceedings{Han_2020_CVPR, author = {Han, Kai and Wang, Yunhe and Tian, Qi and Guo, Jianyuan and Xu, Chunjing and Xu, Chang}, title = {GhostNet: More Features From Cheap Operations}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2020} } ```
[ -0.5165013670921326, -0.41765764355659485, 0.07818169891834259, 0.15332837402820587, -0.4035804271697998, -0.34926602244377136, -0.18559807538986206, -0.36203810572624207, 0.4785154163837433, 0.6175934672355652, -0.3923614025115967, -0.7010404467582703, -0.7349754571914673, -0.16996507346630096, -0.19618257880210876, 1.1208640336990356, 0.08365346491336823, 0.1313682496547699, 0.008868154138326645, -0.46760764718055725, -0.1960788369178772, -0.35440436005592346, -0.9485380053520203, -0.29224613308906555, 0.3221129775047302, 0.14156366884708405, 0.5363288521766663, 0.7804158329963684, 0.38594791293144226, 0.5065447688102722, 0.038474056869745255, 0.05027540773153305, -0.23594266176223755, -0.40235668420791626, 0.39745327830314636, -0.49060413241386414, -0.5016400218009949, 0.23208382725715637, 0.7962081432342529, 0.5859555006027222, 0.1955569088459015, 0.4553068280220032, 0.28395876288414, 0.537619948387146, -0.22637301683425903, 0.10477901995182037, -0.46544283628463745, 0.054320935159921646, -0.08402565866708755, 0.054246556013822556, -0.17344976961612701, -0.37864500284194946, 0.20547813177108765, -0.5233615636825562, 0.48302343487739563, 0.10608364641666412, 1.3416194915771484, 0.2851071059703827, 0.09406103938817978, -0.018489643931388855, -0.08261404186487198, 0.8429096937179565, -0.7927531003952026, 0.15712250769138336, 0.46525394916534424, 0.18501828610897064, -0.15076948702335358, -0.8612509965896606, -0.5597862005233765, -0.12689143419265747, -0.18975849449634552, -0.12235014885663986, -0.033591847866773605, -0.03336646407842636, 0.21318235993385315, 0.3146316707134247, -0.5237970352172852, 0.0928286463022232, -0.6300155520439148, -0.27752238512039185, 0.6767332553863525, 0.08295898139476776, 0.17852340638637543, -0.2965398132801056, -0.45101720094680786, -0.36125850677490234, -0.11807160079479218, 0.26279544830322266, 0.4154599905014038, 0.24329353868961334, -0.599878191947937, 0.4295300841331482, 0.03412686660885811, 0.5426987409591675, 0.13435262441635132, -0.3831993043422699, 0.5217782258987427, 0.1295710951089859, -0.5429947376251221, 0.05987061932682991, 0.978419303894043, 0.3076651990413666, 0.17170360684394836, 0.12320179492235184, -0.1661689281463623, -0.45158851146698, -0.009558550082147121, -1.0415122509002686, -0.4175856411457062, 0.44570493698120117, -0.7813494205474854, -0.5091436505317688, 0.3635510206222534, -0.6918116807937622, -0.24097537994384766, 0.05524793267250061, 0.6955776214599609, -0.453051894903183, -0.3859204053878784, 0.20862269401550293, -0.2973368167877197, 0.35600075125694275, 0.20353849232196808, -0.5709752440452576, 0.3291499614715576, 0.3980652391910553, 1.09568190574646, 0.0030159493908286095, -0.5392565727233887, -0.3117113411426544, -0.33283722400665283, -0.32006970047950745, 0.4080308973789215, 0.02177637629210949, -0.07215002924203873, -0.359343945980072, 0.4420396685600281, -0.08243007212877274, -0.6181680560112, 0.15275128185749054, -0.1405714750289917, 0.33506107330322266, 0.026414519175887108, -0.2274109572172165, -0.6542294025421143, 0.24321386218070984, -0.5105072855949402, 1.250412940979004, 0.33340367674827576, -0.83449786901474, 0.3278172016143799, -0.4213271141052246, -0.14244578778743744, -0.189672589302063, 0.02625240385532379, -1.0830936431884766, -0.0329386368393898, 0.09044523537158966, 0.9332562685012817, -0.16509312391281128, 0.0059059071354568005, -0.5442547798156738, -0.3750653564929962, 0.36423319578170776, -0.06611571460962296, 1.1084606647491455, 0.09876125305891037, -0.6020852327346802, 0.14964447915554047, -0.8526923656463623, 0.18382681906223297, 0.5108602643013, -0.2572430968284607, -0.23650479316711426, -0.6359992027282715, 0.28342652320861816, 0.17087452113628387, 0.1778167337179184, -0.4779208302497864, 0.27276483178138733, -0.15344621241092682, 0.310903936624527, 0.6331799030303955, -0.14546920359134674, 0.33802247047424316, -0.4027235805988312, 0.11408119648694992, 0.16908419132232666, 0.2355135679244995, -0.15015804767608643, -0.7080786228179932, -0.9222615957260132, -0.6481689214706421, 0.35507696866989136, 0.41053104400634766, -0.49904999136924744, 0.6980683207511902, -0.10454703867435455, -0.6912733316421509, -0.5586465001106262, 0.034819141030311584, 0.5743825435638428, 0.5537815690040588, 0.43938112258911133, -0.546960711479187, -0.5051576495170593, -0.9240054488182068, 0.07816393673419952, 0.09347043931484222, -0.04046500101685524, 0.17648141086101532, 0.7422478795051575, -0.008531552739441395, 0.5561676621437073, -0.42648014426231384, -0.381305456161499, -0.19064545631408691, 0.15802812576293945, 0.362635999917984, 0.992832601070404, 0.8044375777244568, -0.6542315483093262, -0.39465323090553284, -0.18798820674419403, -1.0204952955245972, 0.21694137156009674, -0.28192904591560364, -0.16479164361953735, 0.3709905445575714, -0.06305042654275894, -0.5178617238998413, 0.7349228262901306, 0.28774452209472656, -0.2760738134384155, 0.34797146916389465, -0.2491944283246994, 0.3100353479385376, -1.1964747905731201, 0.051166050136089325, 0.34288787841796875, -0.14387214183807373, -0.4932470917701721, 0.0558784045279026, -0.020248588174581528, -0.11007378250360489, -0.5428946614265442, 0.7060294151306152, -0.7008090019226074, -0.2898724675178528, -0.22718580067157745, -0.24375703930854797, -0.019036106765270233, 0.9162803888320923, 0.02651774138212204, 0.30263981223106384, 0.9113006591796875, -0.6197910904884338, 0.45695507526397705, 0.29468175768852234, -0.14883121848106384, 0.3707963526248932, -0.595523476600647, 0.23745515942573547, 0.036618422716856, 0.1994287371635437, -1.0619488954544067, -0.336233526468277, 0.42530858516693115, -0.6080726981163025, 0.6185740828514099, -0.5536469221115112, -0.3652981221675873, -0.415300190448761, -0.6060388088226318, 0.30984506011009216, 0.7783196568489075, -0.7016592621803284, 0.4926091730594635, 0.28161686658859253, 0.44770294427871704, -0.6131917834281921, -0.9906534552574158, -0.12885284423828125, -0.3825099766254425, -0.7268713116645813, 0.2749600410461426, 0.16919240355491638, 0.10358346998691559, 0.22021624445915222, -0.057244010269641876, -0.23498669266700745, -0.06382900476455688, 0.5760950446128845, 0.323769211769104, -0.322298526763916, -0.32318368554115295, -0.2684232294559479, -0.12895381450653076, 0.026632970198988914, -0.5083494782447815, 0.6087951064109802, -0.2379019558429718, -0.22449390590190887, -0.874811589717865, -0.048710212111473083, 0.3416902422904968, 0.1444810926914215, 0.9089786410331726, 1.0873817205429077, -0.6306778192520142, -0.12914642691612244, -0.5649728775024414, -0.3287225365638733, -0.48311030864715576, 0.4082048833370209, -0.46285220980644226, -0.41362395882606506, 0.8699931502342224, 0.09936352074146271, -0.021601811051368713, 0.6385200619697571, 0.2886728048324585, 0.00542692095041275, 0.688308835029602, 0.6957707405090332, 0.14414486289024353, 0.4833424985408783, -0.9804583191871643, -0.3353339731693268, -0.8733734488487244, -0.53547602891922, -0.38082364201545715, -0.4884967505931854, -0.6182042956352234, -0.34935009479522705, 0.3144456744194031, 0.27241605520248413, -0.2524145841598511, 0.6318899989128113, -0.9294939637184143, 0.0491606667637825, 0.6362496614456177, 0.637248158454895, -0.3106091022491455, 0.1810869425535202, -0.19618965685367584, 0.030440106987953186, -0.615563154220581, -0.3968501687049866, 1.1206028461456299, 0.4557051956653595, 0.5698757171630859, -0.29503539204597473, 0.8045523166656494, -0.1783885806798935, 0.24494679272174835, -0.5010824203491211, 0.6877249479293823, -0.04080482944846153, -0.3974353075027466, -0.27376633882522583, -0.31954362988471985, -1.005858302116394, 0.1267351508140564, -0.3517918884754181, -0.7571062445640564, 0.15742790699005127, 0.12017811834812164, -0.21832583844661713, 0.8446911573410034, -0.7770812511444092, 0.8517966866493225, -0.19595198333263397, -0.4063163697719574, 0.09567123651504517, -0.6210042238235474, 0.3994751572608948, -0.03952836990356445, -0.2639559805393219, -0.05157511681318283, 0.03674913942813873, 1.0571256875991821, -0.6513369083404541, 0.8711169362068176, -0.41403213143348694, 0.35654959082603455, 0.4517614245414734, -0.17011694610118866, 0.33184969425201416, -0.022580072283744812, -0.15683218836784363, 0.6049202680587769, -0.04706535115838051, -0.6151652932167053, -0.57063889503479, 0.5586122274398804, -0.9356961846351624, -0.3945761024951935, -0.44701921939849854, -0.29187995195388794, 0.31116166710853577, 0.1277131289243698, 0.6179516315460205, 0.5872750878334045, 0.21955086290836334, 0.24295130372047424, 0.7144253253936768, -0.4920406937599182, 0.5191867351531982, -0.05995364114642143, -0.24471116065979004, -0.5456421375274658, 0.9209668636322021, 0.2946692705154419, 0.052839938551187515, 0.0831342563033104, 0.12688715755939484, -0.22786612808704376, -0.6799172759056091, -0.4480978548526764, 0.34641215205192566, -0.6456717252731323, -0.35162973403930664, -0.6933638453483582, -0.5400187373161316, -0.4959849417209625, -0.16158880293369293, -0.507111132144928, -0.4188634157180786, -0.41686001420021057, 0.37213411927223206, 0.6776308417320251, 0.5996551513671875, -0.14731083810329437, 0.5227901339530945, -0.5548043251037598, 0.2055126428604126, 0.19932503998279572, 0.4678743779659271, -0.054004594683647156, -0.9470892548561096, -0.3847501873970032, -0.13252153992652893, -0.29308485984802246, -0.8567662835121155, 0.6275358200073242, 0.008074385114014149, 0.6266637444496155, 0.4262661337852478, -0.1855531483888626, 0.8743604421615601, -0.022112885490059853, 0.7221030592918396, 0.2792382538318634, -0.7837601900100708, 0.5364807844161987, -0.06496184319257736, 0.042879436165094376, 0.06970324367284775, 0.44073358178138733, -0.15865497291088104, -0.1025075614452362, -0.986061692237854, -0.5822809934616089, 0.9238773584365845, 0.19882598519325256, -0.02137616276741028, 0.43720531463623047, 0.8084573745727539, 0.08403696864843369, 0.10691201686859131, -0.7075525522232056, -0.553219199180603, -0.50982266664505, -0.15616700053215027, 0.04809526726603508, 0.04285312816500664, -0.016765723004937172, -0.6162633895874023, 0.7365564107894897, -0.11764974147081375, 0.8072587847709656, 0.2892170548439026, 0.030138226225972176, -0.0021694861352443695, -0.5150227546691895, 0.6442066431045532, 0.3162631094455719, -0.34404614567756653, 0.07914795726537704, 0.3946053683757782, -0.7470170259475708, -0.014076119288802147, 0.11346098780632019, 0.10694583505392075, 0.016482701525092125, 0.4583531618118286, 0.8318050503730774, 0.046785950660705566, 0.1269182562828064, 0.4387877881526947, 0.01657332293689251, -0.43791764974594116, -0.4262787997722626, 0.19965049624443054, -0.1748206913471222, 0.41074827313423157, 0.6193309426307678, 0.37609508633613586, -0.07582616806030273, -0.1806601583957672, 0.328367680311203, 0.5717779994010925, -0.2889953553676605, -0.3465077579021454, 0.7207512855529785, -0.2867000997066498, -0.26057687401771545, 0.7561032772064209, -0.20249409973621368, -0.5004744529724121, 1.1144875288009644, 0.38510778546333313, 1.1533712148666382, -0.0030827505979686975, -0.036687035113573074, 0.7560191750526428, 0.34647396206855774, -0.10130288451910019, 0.08737856149673462, 0.22076918184757233, -0.6708734631538391, 0.06393144279718399, -0.5974610447883606, 0.002309597097337246, 0.6051987409591675, -0.5301773548126221, 0.49264296889305115, -0.8716240525245667, -0.24484601616859436, 0.06040501222014427, 0.39838531613349915, -0.8790473937988281, 0.2588980495929718, -0.04859926924109459, 0.7554211020469666, -0.7679086327552795, 0.9505875706672668, 0.8082189559936523, -0.654062032699585, -1.0398250818252563, -0.014393704012036324, 0.11218421161174774, -1.0039002895355225, 0.6064714193344116, 0.44974830746650696, 0.12345287948846817, 0.07478193938732147, -0.9636069536209106, -0.6969987154006958, 1.3511042594909668, 0.4681733250617981, 0.08954152464866638, 0.3314555585384369, -0.11866659671068192, 0.22684922814369202, -0.5560734868049622, 0.43204426765441895, 0.08431956171989441, 0.461058109998703, 0.12822599709033966, -0.7160115838050842, 0.3664442002773285, -0.2932438254356384, 0.11569270491600037, 0.0724446102976799, -0.8626604676246643, 1.0143547058105469, -0.35416433215141296, -0.15122456848621368, 0.11503062397241592, 0.7918439507484436, 0.310474693775177, 0.2753085494041443, 0.5374383330345154, 0.7699633240699768, 0.5048770904541016, -0.23438489437103271, 0.8097466230392456, -0.03464852273464203, 0.5124960541725159, 0.4693882465362549, 0.3487761318683624, 0.5047283172607422, 0.19884590804576874, -0.07815869152545929, 0.39325079321861267, 1.1790658235549927, -0.5505381226539612, 0.31083354353904724, 0.23165807127952576, 0.09718804061412811, -0.0673518255352974, 0.2944698631763458, -0.4347507357597351, 0.49453768134117126, 0.128249391913414, -0.4313381016254425, -0.10809512436389923, 0.17252680659294128, 0.11578580737113953, -0.27782103419303894, -0.24148344993591309, 0.49162229895591736, -0.07892792671918869, -0.32607582211494446, 0.9643552303314209, 0.1444220244884491, 1.0313642024993896, -0.4311213493347168, -0.17003129422664642, -0.31393396854400635, 0.1058739647269249, -0.4803164303302765, -0.7443349957466125, 0.3090885579586029, -0.29542478919029236, 0.014151878654956818, 0.04370615631341934, 0.6186769008636475, -0.3161836564540863, -0.4186856746673584, 0.1846948117017746, 0.18555660545825958, 0.8853694200515747, -0.011697054840624332, -1.2429527044296265, 0.2596571147441864, 0.0693204253911972, -0.6177791953086853, 0.48435086011886597, 0.5193307399749756, 0.028981341049075127, 0.6990615129470825, 0.7080482244491577, 0.05234863981604576, 0.24380281567573547, -0.4307882785797119, 0.8688315749168396, -0.6037552356719971, -0.33320146799087524, -0.7495113015174866, 0.7601014971733093, -0.2245667427778244, -0.6969262957572937, 0.6865317225456238, 0.7235831618309021, 0.8692994713783264, -0.07668586075305939, 0.5468707084655762, -0.1591442972421646, -0.03883305564522743, -0.5565909743309021, 0.8298457860946655, -0.6991513967514038, 0.04359818249940872, -0.23930688202381134, -0.8289489150047302, -0.2676314115524292, 0.7397188544273376, -0.05349288135766983, 0.4400186240673065, 0.5981895923614502, 1.030346393585205, -0.3294771611690521, -0.36625608801841736, 0.34472185373306274, -0.039307303726673126, -0.09828607738018036, 0.372870534658432, 0.3433484733104706, -0.9772524237632751, 0.34374603629112244, -0.7169225215911865, -0.2864304184913635, -0.11918725818395615, -0.7702827453613281, -1.1602463722229004, -1.036656141281128, -0.6621261835098267, -0.8079381585121155, -0.1810344010591507, 0.9222294092178345, 1.2326117753982544, -0.7434054613113403, -0.16288475692272186, 0.16007153689861298, 0.23510833084583282, -0.3599160313606262, -0.24928021430969238, 0.7039167284965515, -0.19404380023479462, -0.9149061441421509, -0.23383544385433197, 0.039433110505342484, 0.41439247131347656, -0.29685139656066895, -0.2408158779144287, -0.14819489419460297, -0.21882431209087372, 0.10167653113603592, 0.4013028144836426, -0.6928541660308838, -0.21638984978199005, -0.26617348194122314, -0.26987001299858093, 0.23656770586967468, 0.491046279668808, -0.6331141591072083, 0.10871659219264984, 0.3476496934890747, 0.5000600218772888, 0.869533360004425, -0.3029446303844452, -0.08914650976657867, -0.8353011608123779, 0.6932068467140198, -0.29031163454055786, 0.375969797372818, 0.3924699127674103, -0.6043010354042053, 0.5697873830795288, 0.5489644408226013, -0.4454408586025238, -0.8979231119155884, -0.2562709450721741, -1.146504282951355, -0.300727903842926, 0.8687248229980469, -0.35461628437042236, -0.6343370079994202, 0.10310745984315872, 0.025990614667534828, 0.6507616639137268, -0.13592392206192017, 0.5918410420417786, 0.2031005471944809, -0.13523855805397034, -0.6351526379585266, -0.5586106777191162, 0.5553296208381653, 0.07086163014173508, -0.6396322250366211, -0.6427224278450012, 0.03522535786032677, 0.7041991949081421, 0.38073569536209106, 0.562236487865448, -0.07481052726507187, 0.033945899456739426, 0.22039078176021576, 0.5634585022926331, -0.47180208563804626, -0.11384133249521255, -0.5487953424453735, 0.11743760854005814, -0.32062190771102905, -0.7837228178977966 ]
codellama/CodeLlama-7b-Instruct-hf
codellama
"2023-10-27T18:11:26Z"
45,652
104
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "llama-2", "code", "arxiv:2308.12950", "license:llama2", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
text-generation
"2023-08-24T16:33:37Z"
--- language: - code pipeline_tag: text-generation tags: - llama-2 license: llama2 --- # **Code Llama** Code Llama is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 34 billion parameters. This is the repository for the 7B instruct-tuned version in the Hugging Face Transformers format. This model is designed for general code synthesis and understanding. Links to other models can be found in the index at the bottom. | | Base Model | Python | Instruct | | --- | ----------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------- | | 7B | [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) | [codellama/CodeLlama-7b-Python-hf](https://huggingface.co/codellama/CodeLlama-7b-Python-hf) | [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) | | 13B | [codellama/CodeLlama-13b-hf](https://huggingface.co/codellama/CodeLlama-13b-hf) | [codellama/CodeLlama-13b-Python-hf](https://huggingface.co/codellama/CodeLlama-13b-Python-hf) | [codellama/CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf) | | 34B | [codellama/CodeLlama-34b-hf](https://huggingface.co/codellama/CodeLlama-34b-hf) | [codellama/CodeLlama-34b-Python-hf](https://huggingface.co/codellama/CodeLlama-34b-Python-hf) | [codellama/CodeLlama-34b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-34b-Instruct-hf) | ## Model Use To use this model, please make sure to install transformers from `main` until the next version is released: ```bash pip install git+https://github.com/huggingface/transformers.git@main accelerate ``` Model capabilities: - [x] Code completion. - [x] Infilling. - [x] Instructions / chat. - [ ] Python specialist. ## Model Details *Note: Use of this model is governed by the Meta license. Meta developed and publicly released the Code Llama family of large language models (LLMs). **Model Developers** Meta **Variations** Code Llama comes in three model sizes, and three variants: * Code Llama: base models designed for general code synthesis and understanding * Code Llama - Python: designed specifically for Python * Code Llama - Instruct: for instruction following and safer deployment All variants are available in sizes of 7B, 13B and 34B parameters. **This repository contains the Instruct version of the 7B parameters model.** **Input** Models input text only. **Output** Models generate text only. **Model Architecture** Code Llama is an auto-regressive language model that uses an optimized transformer architecture. **Model Dates** Code Llama and its variants have been trained between January 2023 and July 2023. **Status** This is a static model trained on an offline dataset. Future versions of Code Llama - Instruct will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) **Research Paper** More information can be found in the paper "[Code Llama: Open Foundation Models for Code](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)" or its [arXiv page](https://arxiv.org/abs/2308.12950). ## Intended Use **Intended Use Cases** Code Llama and its variants is intended for commercial and research use in English and relevant programming languages. The base model Code Llama can be adapted for a variety of code synthesis and understanding tasks, Code Llama - Python is designed specifically to handle the Python programming language, and Code Llama - Instruct is intended to be safer to use for code assistant and generation applications. **Out-of-Scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Code Llama and its variants. ## Hardware and Software **Training Factors** We used custom training libraries. The training and fine-tuning of the released models have been performed Meta’s Research Super Cluster. **Carbon Footprint** In aggregate, training all 9 Code Llama models required 400K GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 65.3 tCO2eq, 100% of which were offset by Meta’s sustainability program. ## Training Data All experiments reported here and the released models have been trained and fine-tuned using the same data as Llama 2 with different weights (see Section 2 and Table 1 in the [research paper](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/) for details). ## Evaluation Results See evaluations for the main models and detailed ablations in Section 3 and safety evaluations in Section 4 of the research paper. ## Ethical Considerations and Limitations Code Llama and its variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Code Llama’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate or objectionable responses to user prompts. Therefore, before deploying any applications of Code Llama, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available available at [https://ai.meta.com/llama/responsible-use-guide](https://ai.meta.com/llama/responsible-use-guide).
[ -0.3905733525753021, -0.6495056748390198, 0.3083595931529999, 0.5539127588272095, -0.2580167055130005, 0.16258513927459717, -0.0838223397731781, -0.6587944030761719, 0.24714744091033936, 0.5404490232467651, -0.39487704634666443, -0.5794833898544312, -0.6044805645942688, 0.33865591883659363, -0.5120165944099426, 1.2342721223831177, -0.04795696958899498, -0.31987860798835754, -0.28942495584487915, -0.0042193010449409485, -0.25843116641044617, -0.6520231366157532, -0.18056468665599823, -0.45923861861228943, 0.34949594736099243, 0.2914382219314575, 0.7594699263572693, 0.6481763124465942, 0.5239285826683044, 0.328888863325119, -0.3366614580154419, 0.007774004712700844, -0.3181999623775482, -0.3758626878261566, 0.23609763383865356, -0.6135452389717102, -0.7950739860534668, -0.029761221259832382, 0.36431148648262024, 0.3577350080013275, -0.30921322107315063, 0.4583543539047241, -0.19542893767356873, 0.5032022595405579, -0.34400516748428345, 0.215620219707489, -0.6528588533401489, -0.07509928941726685, 0.04210272058844566, -0.09049658477306366, -0.11720852553844452, -0.5860344767570496, -0.1425616443157196, -0.4441699683666229, -0.09128144383430481, -0.038003161549568176, 1.1128766536712646, 0.5754845142364502, -0.33115798234939575, -0.25551730394363403, -0.2970074415206909, 0.8123498558998108, -1.0132064819335938, 0.02114996686577797, 0.3989618122577667, -0.03457917645573616, -0.18452392518520355, -0.8583734035491943, -0.7761285305023193, -0.3910018503665924, -0.12151692062616348, -0.044295698404312134, -0.4653162360191345, 0.08195742219686508, 0.45325201749801636, 0.5292456150054932, -0.4570629894733429, 0.16620072722434998, -0.46329864859580994, -0.23122328519821167, 0.9292484521865845, 0.1013231873512268, 0.4420055150985718, -0.26055437326431274, -0.33863750100135803, -0.023274365812540054, -0.892236590385437, 0.03490055724978447, 0.5056723952293396, -0.14345920085906982, -0.7940600514411926, 0.7589829564094543, -0.19016379117965698, 0.5963406562805176, 0.06271494179964066, -0.5905085802078247, 0.5454016923904419, -0.31279441714286804, -0.3100475072860718, -0.1252519190311432, 0.8919237852096558, 0.5136827826499939, 0.36481890082359314, 0.04453055188059807, -0.2607610821723938, 0.3552019000053406, 0.1494443565607071, -0.8355990052223206, -0.05450849235057831, 0.31598544120788574, -0.6318422555923462, -0.7011181116104126, -0.29753315448760986, -0.8322893381118774, -0.12671391665935516, -0.07120101898908615, 0.12553229928016663, -0.17154443264007568, -0.41584843397140503, 0.22228768467903137, 0.10043632239103317, 0.47456082701683044, 0.10377540439367294, -0.8961905837059021, 0.02873026207089424, 0.5004894733428955, 0.7717012763023376, 0.040457069873809814, -0.48738160729408264, 0.01994205452501774, -0.12540636956691742, -0.36325323581695557, 0.6944422721862793, -0.5060497522354126, -0.5262340903282166, -0.09608711302280426, 0.10267990827560425, -0.00018441402062308043, -0.5433620810508728, 0.23637248575687408, -0.37400224804878235, -0.03129439055919647, 0.14390727877616882, -0.28298407793045044, -0.48180294036865234, 0.04827606678009033, -0.5921533703804016, 1.177548885345459, 0.2912915349006653, -0.6686242818832397, -0.03743746504187584, -0.5794366598129272, -0.39623576402664185, -0.27458450198173523, -0.029430538415908813, -0.6716433763504028, -0.038533713668584824, 0.19353529810905457, 0.5216844081878662, -0.4336380064487457, 0.4671317934989929, -0.13873708248138428, -0.4296172261238098, 0.22230711579322815, -0.16679728031158447, 1.0121477842330933, 0.3585098683834076, -0.47380420565605164, 0.2427968531847, -0.9749405980110168, -0.13642320036888123, 0.4925817847251892, -0.5659799575805664, 0.1364135593175888, -0.14046728610992432, -0.03278292715549469, -0.050998035818338394, 0.5691574215888977, -0.27146559953689575, 0.5799860954284668, -0.415958434343338, 0.7688590884208679, 0.6699256300926208, -0.020617017522454262, 0.4099423587322235, -0.6024504899978638, 0.8156933784484863, -0.1645641028881073, 0.21711978316307068, -0.28743037581443787, -0.7631649374961853, -1.0468952655792236, -0.29131966829299927, 0.018674509599804878, 0.706701397895813, -0.5245841145515442, 0.6431633830070496, 0.0017030821181833744, -0.7815264463424683, -0.5443525314331055, 0.21991601586341858, 0.564385712146759, 0.2862229645252228, 0.34473276138305664, -0.08938674628734589, -0.805936336517334, -0.8792412877082825, 0.07568419724702835, -0.4312758147716522, 0.10784194618463516, 0.19467292726039886, 0.8744935393333435, -0.6761349439620972, 0.7790008187294006, -0.4301708936691284, 0.0017019349616020918, -0.39298510551452637, -0.31024864315986633, 0.5305867791175842, 0.5554785132408142, 0.7800347805023193, -0.6074090600013733, -0.24317415058612823, 0.06963934004306793, -0.8788108825683594, -0.12452293187379837, -0.20400281250476837, -0.05148503556847572, 0.43218502402305603, 0.32710543274879456, -0.6656605005264282, 0.5335858464241028, 0.9344550371170044, -0.22656428813934326, 0.6064819097518921, -0.14436227083206177, -0.149595245718956, -1.095432996749878, 0.21114777028560638, -0.1614702045917511, -0.019724279642105103, -0.5146396160125732, 0.3766544461250305, 0.10261453688144684, 0.10722997039556503, -0.5497692227363586, 0.36033332347869873, -0.408543199300766, -0.041039738804101944, -0.13209328055381775, -0.23360604047775269, -0.04602894186973572, 0.7859964370727539, -0.07467950880527496, 1.021822214126587, 0.5396883487701416, -0.6764492988586426, 0.31787025928497314, 0.3377339839935303, -0.41615790128707886, 0.1957477182149887, -0.9763385653495789, 0.384296715259552, 0.11803975701332092, 0.3509533107280731, -0.7819520235061646, -0.2797841727733612, 0.3569384515285492, -0.4580976366996765, 0.104234978556633, -0.04701812192797661, -0.5148155093193054, -0.48313045501708984, -0.25650691986083984, 0.4594738185405731, 0.8953619003295898, -0.6562145352363586, 0.4345734119415283, 0.4231029152870178, 0.12674617767333984, -0.7487465143203735, -0.7205706238746643, 0.11234857887029648, -0.49529778957366943, -0.6487379670143127, 0.4260249137878418, -0.3254019021987915, -0.21575044095516205, -0.18357551097869873, 0.04383915290236473, -0.0031677386723458767, 0.3197277784347534, 0.4897076487541199, 0.4212420880794525, -0.11970051378011703, -0.2270229309797287, 0.03322535380721092, -0.10145432502031326, 0.03964104503393173, 0.17725324630737305, 0.7812076210975647, -0.4039335548877716, -0.23021277785301208, -0.5651015639305115, 0.1916138380765915, 0.6115953922271729, -0.2734576165676117, 0.6000394821166992, 0.38093605637550354, -0.38354113698005676, -0.033273302018642426, -0.6876888871192932, 0.157988041639328, -0.565578281879425, 0.3035077750682831, -0.2615859806537628, -0.8884614109992981, 0.6903964281082153, 0.07245569676160812, 0.21162860095500946, 0.49460139870643616, 0.8423800468444824, 0.12607115507125854, 0.7751984000205994, 1.0032658576965332, -0.43443793058395386, 0.41908055543899536, -0.5486218929290771, 0.10153160244226456, -0.8372711539268494, -0.47733360528945923, -0.6587482690811157, -0.03728657588362694, -0.7080883979797363, -0.45970532298088074, 0.34578099846839905, 0.221244215965271, -0.5186015367507935, 0.7582611441612244, -0.8219989538192749, 0.45306938886642456, 0.46078550815582275, 0.02594871260225773, 0.4085945785045624, 0.034148991107940674, -0.018225977197289467, 0.34067508578300476, -0.45452389121055603, -0.7522019147872925, 1.2470602989196777, 0.45356932282447815, 0.8787731528282166, -0.014254391193389893, 0.8757014274597168, 0.0714932307600975, 0.36240336298942566, -0.7119024991989136, 0.6222174763679504, 0.28766679763793945, -0.503454864025116, 0.012240581214427948, -0.2283962517976761, -0.9536018371582031, 0.16734232008457184, 0.06865870207548141, -0.8281804323196411, 0.08163368701934814, -0.008963783271610737, -0.23872743546962738, 0.31406331062316895, -0.6974841952323914, 0.6195950508117676, -0.23001888394355774, 0.04821944236755371, -0.19526752829551697, -0.5473005175590515, 0.6206040382385254, -0.13163518905639648, 0.23270568251609802, -0.15359808504581451, -0.2014985829591751, 0.6755092144012451, -0.5302607417106628, 1.118208646774292, 0.1446397304534912, -0.47749313712120056, 0.6208661198616028, -0.016808798536658287, 0.4874694049358368, 0.011569621041417122, -0.23530812561511993, 0.7283301949501038, 0.014349998906254768, -0.2025384157896042, -0.13972754776477814, 0.6602795124053955, -1.0948762893676758, -0.7918523550033569, -0.4208204746246338, -0.479987233877182, 0.27605336904525757, 0.16995234787464142, 0.39803698658943176, 0.05172334238886833, 0.19937646389007568, 0.15105946362018585, 0.40917861461639404, -0.7158955335617065, 0.6499301791191101, 0.3728284537792206, -0.2845631539821625, -0.5087343454360962, 0.8422631025314331, -0.15094682574272156, 0.2322952002286911, 0.28043925762176514, 0.04647507518529892, -0.14325553178787231, -0.4920039474964142, -0.43626147508621216, 0.4606455862522125, -0.6691297292709351, -0.5843265652656555, -0.62699294090271, -0.3542853891849518, -0.36856701970100403, -0.3326403498649597, -0.27810025215148926, -0.2739984691143036, -0.6844789981842041, -0.18242813646793365, 0.7925482988357544, 0.8446492552757263, 0.06720031052827835, 0.48542162775993347, -0.6546787023544312, 0.47430145740509033, 0.08637356758117676, 0.4034413993358612, 0.020669884979724884, -0.5038845539093018, -0.14222578704357147, -0.02687811106443405, -0.5494568943977356, -0.9001471996307373, 0.6371518969535828, 0.11630211025476456, 0.6608940362930298, 0.12862873077392578, -0.05023976415395737, 0.6968215107917786, -0.4449179768562317, 0.9636088609695435, 0.35639187693595886, -1.1298495531082153, 0.6413977146148682, -0.25964733958244324, 0.04918191581964493, 0.09801587462425232, 0.35092586278915405, -0.4258091151714325, -0.2670801877975464, -0.6679248213768005, -0.7718607187271118, 0.6199648380279541, 0.1766899675130844, 0.2915544807910919, 0.02653750218451023, 0.4749568700790405, -0.010984395630657673, 0.3406440019607544, -1.0959283113479614, -0.3332574665546417, -0.3367723524570465, -0.25622421503067017, -0.09557880461215973, -0.308732271194458, -0.07859880477190018, -0.2932904064655304, 0.457010954618454, -0.19862961769104004, 0.5412648916244507, 0.13871170580387115, -0.17940907180309296, -0.26063597202301025, 0.06163875013589859, 0.7109167575836182, 0.6052050590515137, -0.011988149024546146, -0.14686286449432373, 0.4003041684627533, -0.5628739595413208, 0.24060587584972382, -0.13439308106899261, -0.09556838124990463, -0.31454142928123474, 0.5765486359596252, 0.6805974841117859, 0.1532810926437378, -0.8643562197685242, 0.4943251311779022, 0.1706051528453827, -0.2866189181804657, -0.521490752696991, 0.2999200224876404, 0.290501207113266, 0.3740883469581604, 0.24768227338790894, 0.01567385531961918, -0.10062351822853088, -0.45189276337623596, -0.03181103989481926, 0.3542114198207855, 0.188628688454628, -0.3728146255016327, 0.9463066458702087, 0.11948923021554947, -0.37312135100364685, 0.4835757315158844, 0.07644800841808319, -0.5986340641975403, 1.2126414775848389, 0.7170939445495605, 0.7831892967224121, -0.2092180848121643, 0.10207242518663406, 0.47701796889305115, 0.5693471431732178, -0.019214509055018425, 0.4408983588218689, 0.02076633647084236, -0.5452967286109924, -0.351726770401001, -0.9092946648597717, -0.4007917642593384, 0.10694056004285812, -0.47283071279525757, 0.31625089049339294, -0.6629751324653625, -0.04709158092737198, -0.38131052255630493, 0.09351832419633865, -0.6522967219352722, -0.013075261376798153, 0.11344978958368301, 0.9683281779289246, -0.63619464635849, 0.9557461142539978, 0.6094644665718079, -0.7476837635040283, -0.9463648200035095, -0.22074586153030396, -0.0775756984949112, -1.2712366580963135, 0.4934081435203552, 0.28797709941864014, 0.05370502918958664, 0.08006496727466583, -0.9814814925193787, -1.1276353597640991, 1.326960802078247, 0.49971988797187805, -0.5472143888473511, -0.014420426450669765, 0.20187793672084808, 0.5785382986068726, -0.36051228642463684, 0.4023115932941437, 0.6838012933731079, 0.45275136828422546, -0.09728249162435532, -1.250863790512085, 0.33250296115875244, -0.4117506742477417, 0.2324148416519165, -0.277933806180954, -1.0864417552947998, 1.0678373575210571, -0.5741956830024719, -0.13497063517570496, 0.48224517703056335, 0.6751800179481506, 0.5551491379737854, 0.21122565865516663, 0.36818793416023254, 0.5716208219528198, 0.665760338306427, 0.03162413090467453, 1.2264920473098755, -0.4709034562110901, 0.4130523204803467, 0.5310274958610535, -0.12167983502149582, 0.7472730278968811, 0.4196818172931671, -0.5905324220657349, 0.7602105140686035, 0.7945681810379028, -0.2257935255765915, 0.2800217866897583, 0.3325466513633728, -0.06966684758663177, -0.039350688457489014, -0.09925458580255508, -0.77400803565979, 0.38984325528144836, 0.3354972302913666, -0.3532695472240448, 0.08089102059602737, -0.23021477460861206, 0.30178284645080566, -0.13057824969291687, -0.08998873084783554, 0.6663769483566284, 0.24513420462608337, -0.5594558119773865, 1.2072092294692993, 0.116086944937706, 1.011911153793335, -0.5477825999259949, -0.14262452721595764, -0.4636169373989105, 0.053021032363176346, -0.5862407684326172, -0.5309469699859619, 0.18104149401187897, 0.2970397472381592, 0.0002688952663447708, -0.11956586688756943, 0.49113729596138, -0.07376009225845337, -0.5241362452507019, 0.3948206305503845, 0.17421968281269073, 0.2855035960674286, 0.14390552043914795, -0.671789288520813, 0.47726500034332275, 0.20612910389900208, -0.4728676676750183, 0.379708468914032, 0.11498317122459412, 0.036561377346515656, 0.9764353632926941, 0.810472309589386, -0.13600559532642365, 0.19198472797870636, -0.11598803102970123, 1.1678380966186523, -0.7325319051742554, -0.3564571142196655, -0.8094487190246582, 0.6642184257507324, 0.31737351417541504, -0.45854127407073975, 0.6260090470314026, 0.3612152636051178, 0.8528282046318054, -0.14082452654838562, 0.8426290154457092, -0.18618319928646088, 0.09196025878190994, -0.5049007534980774, 0.6636720895767212, -0.7943375706672668, 0.40521112084388733, -0.5064608454704285, -0.9689334630966187, -0.32187265157699585, 0.8859345316886902, -0.04614695906639099, 0.06897782534360886, 0.543211042881012, 1.027762532234192, 0.3178043067455292, -0.1212887167930603, 0.24141865968704224, 0.21359103918075562, 0.41844093799591064, 0.8041861653327942, 1.0098519325256348, -0.5903010964393616, 0.746447741985321, -0.5926944017410278, -0.24089041352272034, -0.29646340012550354, -1.0176246166229248, -1.0277719497680664, -0.5135447382926941, -0.33436068892478943, -0.39505505561828613, -0.281687468290329, 0.9419445395469666, 0.5578332543373108, -0.6010589599609375, -0.4839126169681549, -0.12754109501838684, 0.4339718222618103, -0.10904949903488159, -0.20644882321357727, 0.2992854714393616, -0.12844359874725342, -0.8758844137191772, 0.4089788794517517, -0.027344394475221634, 0.17928361892700195, -0.3499510884284973, -0.24883176386356354, -0.12283609062433243, 0.004872002173215151, 0.5059881210327148, 0.3601168990135193, -0.8800522089004517, -0.21447531878948212, 0.07996559888124466, -0.1785249412059784, 0.11700744926929474, 0.44154784083366394, -0.6552093625068665, -0.07175324857234955, 0.3438820540904999, 0.46351081132888794, 0.3343038856983185, -0.23513177037239075, 0.2373082935810089, -0.37401679158210754, 0.4523060619831085, -0.004238429479300976, 0.5226966142654419, 0.10959043353796005, -0.6212360858917236, 0.7241352200508118, 0.26674097776412964, -0.6969861388206482, -0.9386853575706482, 0.15205030143260956, -1.1770102977752686, -0.21108974516391754, 1.3564629554748535, -0.09759577363729477, -0.35569652915000916, 0.1904750019311905, -0.4009305536746979, 0.2719437777996063, -0.4172385632991791, 0.7477344870567322, 0.29972729086875916, -0.0811949074268341, -0.1501942127943039, -0.43217793107032776, 0.2830037474632263, 0.2523716688156128, -0.98576420545578, -0.1778872162103653, 0.4040374457836151, 0.40758079290390015, 0.20527532696723938, 0.7015030384063721, -0.12724263966083527, 0.17216958105564117, 0.05494760349392891, 0.47203248739242554, -0.10060197860002518, -0.2375212460756302, -0.3940393924713135, -0.06402890384197235, -0.08048253506422043, -0.035500239580869675 ]
jonatasgrosman/wav2vec2-large-xlsr-53-japanese
jonatasgrosman
"2022-12-14T01:58:09Z"
45,551
15
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ja", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
automatic-speech-recognition
"2022-03-02T23:29:05Z"
--- language: ja datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Japanese by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ja type: common_voice args: ja metrics: - name: Test WER type: wer value: 81.80 - name: Test CER type: cer value: 20.16 --- # Fine-tuned XLSR-53 large model for speech recognition in Japanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the train and validation splits of [Common Voice 6.1](https://huggingface.co/datasets/common_voice), [CSS10](https://github.com/Kyubyong/css10) and [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut). When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :) The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint ## Usage The model can be used directly (without a language model) as follows... Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library: ```python from huggingsound import SpeechRecognitionModel model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-japanese") audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"] transcriptions = model.transcribe(audio_paths) ``` Writing your own inference script: ```python import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "ja" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-japanese" SAMPLES = 10 test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = batch["sentence"].upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentences = processor.batch_decode(predicted_ids) for i, predicted_sentence in enumerate(predicted_sentences): print("-" * 100) print("Reference:", test_dataset[i]["sentence"]) print("Prediction:", predicted_sentence) ``` | Reference | Prediction | | ------------- | ------------- | | 祖母は、おおむね機嫌よく、サイコロをころがしている。 | 人母は重にきね起くさいがしている | | 財布をなくしたので、交番へ行きます。 | 財布をなく手端ので勾番へ行きます | | 飲み屋のおやじ、旅館の主人、医者をはじめ、交際のある人にきいてまわったら、みんな、私より収入が多いはずなのに、税金は安い。 | ノ宮屋のお親じ旅館の主に医者をはじめ交際のアル人トに聞いて回ったらみんな私より収入が多いはなうに税金は安い | | 新しい靴をはいて出かけます。 | だらしい靴をはいて出かけます | | このためプラズマ中のイオンや電子の持つ平均運動エネルギーを温度で表現することがある | このためプラズマ中のイオンや電子の持つ平均運動エネルギーを温度で表弁することがある | | 松井さんはサッカーより野球のほうが上手です。 | 松井さんはサッカーより野球のほうが上手です | | 新しいお皿を使います。 | 新しいお皿を使います | | 結婚以来三年半ぶりの東京も、旧友とのお酒も、夜行列車も、駅で寝て、朝を待つのも久しぶりだ。 | 結婚ル二来三年半降りの東京も吸とのお酒も野越者も駅で寝て朝を待つの久しぶりた | | これまで、少年野球、ママさんバレーなど、地域スポーツを支え、市民に密着してきたのは、無数のボランティアだった。 | これまで少年野球<unk>三バレーなど地域スポーツを支え市民に満着してきたのは娘数のボランティアだった | | 靴を脱いで、スリッパをはきます。 | 靴を脱いでスイパーをはきます | ## Evaluation The model can be evaluated as follows on the Japanese test data of Common Voice. ```python import torch import re import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "ja" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-japanese" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]", "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。", "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽", "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "'", "ʻ", "ˆ"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]" processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): with warnings.catch_warnings(): warnings.simplefilter("ignore") speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000) batch["speech"] = speech_array batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) predictions = [x.upper() for x in result["pred_strings"]] references = [x.upper() for x in result["sentence"]] print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}") ``` **Test Result**: In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-10). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used. | Model | WER | CER | | ------------- | ------------- | ------------- | | jonatasgrosman/wav2vec2-large-xlsr-53-japanese | **81.80%** | **20.16%** | | vumichien/wav2vec2-large-xlsr-japanese | 1108.86% | 23.40% | | qqhann/w2v_hf_jsut_xlsr53 | 1012.18% | 70.77% | ## Citation If you want to cite this model you can use this: ```bibtex @misc{grosman2021xlsr53-large-japanese, title={Fine-tuned {XLSR}-53 large model for speech recognition in {J}apanese}, author={Grosman, Jonatas}, howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-japanese}}, year={2021} } ```
[ -0.39336642622947693, -0.6995288729667664, 0.22467315196990967, 0.18491384387016296, -0.20583906769752502, -0.17584997415542603, -0.39204201102256775, -0.4601161777973175, 0.11054973304271698, 0.3696770668029785, -0.6580643057823181, -0.6537896394729614, -0.5322067141532898, -0.026572110131382942, -0.1320543736219406, 0.969395637512207, 0.06068101525306702, 0.010871246457099915, 0.16510267555713654, -0.13884618878364563, -0.43524038791656494, -0.33072933554649353, -0.6590099334716797, -0.3536323606967926, 0.2828298807144165, 0.26114824414253235, 0.4863462448120117, 0.43640628457069397, 0.3958500325679779, 0.3813113868236542, -0.09190995991230011, 0.09556610137224197, -0.1893254965543747, -0.12787197530269623, 0.24453158676624298, -0.5535488128662109, -0.39312973618507385, -0.018504463136196136, 0.6551796197891235, 0.5249385237693787, -0.1503196358680725, 0.3257201313972473, 0.047862228006124496, 0.4866524040699005, -0.3020631670951843, 0.3203922510147095, -0.4767071306705475, -0.15925109386444092, -0.15680602192878723, -0.09096159785985947, -0.23630470037460327, -0.3583468496799469, 0.040056012570858, -0.7129070162773132, 0.1588803231716156, -0.053367871791124344, 1.267657995223999, 0.19817040860652924, 0.014114923775196075, -0.40508803725242615, -0.5564595460891724, 1.0638668537139893, -1.064252495765686, 0.2647262215614319, 0.5162882804870605, 0.09110229462385178, -0.18232212960720062, -0.8306886553764343, -0.7319620847702026, -0.1060701385140419, -0.05537009611725807, 0.2876644432544708, -0.40632444620132446, -0.0873744785785675, 0.4260399043560028, 0.07525099813938141, -0.6294496655464172, 0.10199784487485886, -0.686786949634552, -0.3586493134498596, 0.8428216576576233, -0.018511248752474785, 0.5216476917266846, -0.3524324893951416, -0.12130669504404068, -0.4839823842048645, -0.2539946734905243, 0.3479252755641937, 0.4422438442707062, 0.4726521074771881, -0.6269121170043945, 0.5445628762245178, -0.1156206950545311, 0.6276678442955017, -0.003463382599875331, -0.43918994069099426, 0.8715405464172363, -0.3360085189342499, -0.3164747357368469, 0.26703163981437683, 1.2298307418823242, 0.3635317087173462, 0.3450435400009155, 0.1800529956817627, -0.005352887324988842, 0.2317814975976944, -0.34071624279022217, -0.7558907270431519, -0.23354306817054749, 0.42037659883499146, -0.43006592988967896, -0.12635760009288788, -0.018626440316438675, -0.8391985893249512, 0.031983379274606705, -0.2000737339258194, 0.7029998302459717, -0.5946755409240723, -0.31617259979248047, 0.20647457242012024, -0.1513037085533142, 0.10650172084569931, -0.08041848242282867, -0.911048173904419, 0.17810587584972382, 0.42972153425216675, 0.8290123343467712, 0.3799454867839813, -0.39938804507255554, -0.3356016278266907, -0.14911317825317383, -0.23887160420417786, 0.5766276717185974, -0.18674305081367493, -0.45716044306755066, -0.28996726870536804, 0.09885076433420181, -0.3922957479953766, -0.44066882133483887, 0.6825657486915588, -0.10419273376464844, 0.39291852712631226, -0.19217075407505035, -0.4397609531879425, -0.24530155956745148, -0.14952492713928223, -0.5504802465438843, 1.1334114074707031, -0.0028949552215635777, -0.9723589420318604, 0.0872049629688263, -0.601676881313324, -0.5050008296966553, -0.25003668665885925, -0.13023771345615387, -0.5885067582130432, -0.22290240228176117, 0.40711623430252075, 0.5036588907241821, -0.39687585830688477, 0.15198637545108795, -0.19399505853652954, -0.5795850157737732, 0.40824806690216064, -0.37892404198646545, 1.1662098169326782, 0.3395296037197113, -0.5448864102363586, 0.03719623014330864, -1.0089776515960693, 0.3049275875091553, 0.20939147472381592, -0.3386838436126709, -0.1771765947341919, -0.06973304599523544, 0.22643716633319855, 0.1626165807247162, 0.23380398750305176, -0.540336549282074, -0.025496110320091248, -0.6472018957138062, 0.6427249908447266, 0.6082333922386169, -0.035832591354846954, 0.11768943816423416, -0.4552796483039856, 0.4155521094799042, -0.053422149270772934, -0.15337969362735748, -0.26200079917907715, -0.4760975241661072, -0.8384922742843628, -0.3642404079437256, 0.2020787000656128, 0.613913357257843, -0.46112874150276184, 0.7424192428588867, -0.28250470757484436, -0.8686689138412476, -0.944862961769104, -0.17882271111011505, 0.4025562107563019, 0.5741921067237854, 0.4949606657028198, -0.0011999845737591386, -0.9813418388366699, -0.856830894947052, -0.11749058216810226, -0.30566853284835815, -0.014095102436840534, 0.30251333117485046, 0.534198522567749, -0.37289002537727356, 0.7653374671936035, -0.5239599943161011, -0.3506937325000763, -0.292854905128479, 0.18093830347061157, 0.7576940655708313, 0.6716412901878357, 0.32834821939468384, -0.6850132346153259, -0.523884654045105, 0.07878030091524124, -0.6378033757209778, -0.13241243362426758, -0.2009020745754242, -0.02237756736576557, 0.21485033631324768, 0.3941652178764343, -0.5144671201705933, 0.27929598093032837, 0.5243499875068665, -0.3000974953174591, 0.6548780202865601, -0.1352832317352295, 0.22410039603710175, -1.2881276607513428, 0.2535768747329712, 0.03182411566376686, -0.025900185108184814, -0.5351608395576477, -0.28828421235084534, -0.10135482251644135, 0.14862151443958282, -0.37272435426712036, 0.4969530701637268, -0.41936829686164856, -0.07376640290021896, 0.005684026051312685, 0.1929340809583664, -0.02325240708887577, 0.6992303133010864, 0.03253379464149475, 0.7787582278251648, 0.7029392123222351, -0.6160695552825928, 0.3787192106246948, 0.34900838136672974, -0.7011019587516785, 0.22862814366817474, -0.8572038412094116, 0.2890084981918335, -0.004966024309396744, 0.05939962714910507, -1.0508257150650024, -0.18077321350574493, 0.2980206310749054, -0.8122496008872986, 0.33937570452690125, 0.04017634689807892, -0.4430670440196991, -0.5837513208389282, -0.14012250304222107, 0.1272840052843094, 0.7158116102218628, -0.39299458265304565, 0.541141152381897, 0.36865749955177307, -0.20638813078403473, -0.7866252064704895, -0.9596244096755981, -0.3240756690502167, -0.28962478041648865, -0.74310302734375, 0.28017133474349976, -0.10250899940729141, -0.11872822791337967, -0.06620072573423386, -0.10304352641105652, 0.04045173153281212, -0.029521916061639786, 0.30134648084640503, 0.42540979385375977, -0.24760925769805908, -0.16048882901668549, -0.080118827521801, -0.058475933969020844, 0.043971411883831024, -0.017930233851075172, 0.8676822781562805, -0.15925438702106476, -0.14406903088092804, -0.8190974593162537, 0.07278943806886673, 0.5349101424217224, -0.2856920659542084, 0.47532105445861816, 0.903676450252533, -0.3220886290073395, 0.044680532068014145, -0.49849453568458557, 0.011658819392323494, -0.5023730993270874, 0.9171909093856812, -0.39583665132522583, -0.6227015852928162, 0.6956903338432312, 0.2553780972957611, 0.06494654715061188, 0.6821481585502625, 0.5395883321762085, -0.24063213169574738, 1.0992528200149536, 0.2738030254840851, -0.23827551305294037, 0.32163557410240173, -0.7252531051635742, 0.054723259061574936, -0.9789891242980957, -0.44200676679611206, -0.7890871167182922, -0.19808408617973328, -0.6426739692687988, -0.41218674182891846, 0.3013359308242798, 0.12248416244983673, -0.4057023227214813, 0.4132660925388336, -0.631527304649353, 0.25530382990837097, 0.463524729013443, 0.05375285819172859, -0.00479097431525588, 0.131140798330307, -0.22936983406543732, -0.11416906118392944, -0.5500710606575012, -0.4446183145046234, 1.1442357301712036, 0.47210538387298584, 0.7110446691513062, -0.040851298719644547, 0.6909112334251404, 0.02688566781580448, -0.09719707071781158, -0.7952654361724854, 0.5070590972900391, -0.2764872908592224, -0.5711231231689453, -0.30188748240470886, -0.3994614779949188, -1.0447384119033813, 0.3332456946372986, -0.11022567749023438, -1.1608107089996338, 0.16246318817138672, -0.1407584846019745, -0.437255322933197, 0.22345314919948578, -0.6298797726631165, 0.8191523551940918, -0.10559935867786407, -0.16777358949184418, -0.1355566382408142, -0.5868529081344604, 0.2998270094394684, 0.04342978447675705, 0.434842050075531, -0.24257908761501312, 0.27841103076934814, 1.3822572231292725, -0.32165536284446716, 0.7590833306312561, -0.15544791519641876, 0.04815862327814102, 0.48138776421546936, -0.28502902388572693, 0.43788015842437744, -0.14818760752677917, -0.2742471396923065, 0.2734133303165436, 0.29207155108451843, -0.16327308118343353, -0.37058839201927185, 0.6864001750946045, -1.13010573387146, -0.3454156816005707, -0.48358920216560364, -0.5477038025856018, -0.06431761384010315, 0.29852503538131714, 0.7636138200759888, 0.6297658085823059, 0.015525930561125278, 0.3510327637195587, 0.4367923438549042, -0.35829073190689087, 0.555130660533905, 0.3828906714916229, -0.17096920311450958, -0.7048110961914062, 0.7952737212181091, 0.2979432940483093, 0.23686358332633972, 0.22141332924365997, 0.2448497712612152, -0.5377487540245056, -0.3895953297615051, -0.2687171697616577, 0.41712960600852966, -0.6522395014762878, -0.08250253647565842, -0.7162837982177734, -0.24528281390666962, -0.7674795389175415, 0.008634596131742, -0.34145912528038025, -0.2866232395172119, -0.45700302720069885, -0.015565671026706696, 0.43606695532798767, 0.3781009912490845, -0.16863471269607544, 0.32548052072525024, -0.7239015698432922, 0.3634810149669647, -0.08209799230098724, 0.040137533098459244, 0.06436468660831451, -0.8430563807487488, -0.43748918175697327, 0.2054315209388733, -0.22880859673023224, -0.860856831073761, 0.6464625597000122, 0.12056184560060501, 0.5557169914245605, 0.2099183201789856, -0.08297168463468552, 0.9386280179023743, -0.32331383228302, 0.8361662030220032, 0.42136597633361816, -1.0855097770690918, 0.6791355609893799, -0.3403819799423218, 0.3393315076828003, 0.4341415762901306, 0.31295469403266907, -0.8070486783981323, -0.25668731331825256, -0.7597673535346985, -0.9781502485275269, 1.1317745447158813, 0.22728319466114044, 0.0767887756228447, 0.16242584586143494, 0.0573514848947525, -0.10218346863985062, 0.0980788841843605, -0.7006194591522217, -0.6494113206863403, -0.2269623875617981, -0.4331680238246918, -0.27516674995422363, -0.023106051608920097, 0.010387331247329712, -0.4320196211338043, 1.0439176559448242, 0.07366034388542175, 0.4217466115951538, 0.4665616750717163, 0.06151066720485687, -0.060005076229572296, 0.30479997396469116, 0.5156103372573853, 0.25273120403289795, -0.3982512652873993, -0.19162215292453766, 0.28781843185424805, -0.7272132039070129, 0.15249298512935638, 0.172129824757576, -0.18487179279327393, 0.23939883708953857, 0.5612664222717285, 1.2232087850570679, 0.2538067102432251, -0.5249625444412231, 0.28628242015838623, -0.026308340951800346, -0.26346567273139954, -0.6175338625907898, 0.13306674361228943, 0.2981935739517212, 0.15300770103931427, 0.42646199464797974, 0.11552786082029343, -0.09967630356550217, -0.5806238055229187, 0.15952245891094208, 0.21295276284217834, -0.18924297392368317, -0.2701779305934906, 0.7182310223579407, -0.040427014231681824, -0.23818489909172058, 0.6234038472175598, 0.06615164130926132, -0.5690512657165527, 0.9588655829429626, 0.6350104212760925, 0.8161076307296753, -0.3367842435836792, -0.0071915010921657085, 0.9346083998680115, 0.3011319041252136, -0.18573783338069916, 0.5355597734451294, 0.046431202441453934, -0.822836697101593, -0.22824101150035858, -0.7182983160018921, -0.087832011282444, 0.43534255027770996, -0.868846595287323, 0.46109065413475037, -0.4467771649360657, -0.33396217226982117, 0.2502576410770416, 0.33666205406188965, -0.7057458758354187, 0.38539591431617737, 0.21715152263641357, 0.8090440630912781, -0.9160178303718567, 1.0164459943771362, 0.411945104598999, -0.6263481378555298, -1.422849416732788, -0.11881774663925171, -0.210672065615654, -0.7382434606552124, 0.5927368402481079, 0.32111597061157227, -0.02535867691040039, 0.1530032753944397, -0.3727739453315735, -1.0775014162063599, 1.152309536933899, 0.24327050149440765, -0.8324000835418701, -0.02328016422688961, 0.032749056816101074, 0.51351398229599, -0.22075924277305603, 0.4878543019294739, 0.8188965320587158, 0.6735047101974487, -0.03684891015291214, -1.1141602993011475, 0.06646734476089478, -0.45470669865608215, -0.19409649074077606, -0.055282820016145706, -0.7024610638618469, 1.0374091863632202, -0.3903917968273163, -0.18515454232692719, 0.20517173409461975, 0.786918580532074, 0.600557804107666, 0.40708500146865845, 0.4609302282333374, 0.5290764570236206, 0.9518572688102722, -0.2300218790769577, 0.9081003069877625, -0.07743612676858902, 0.5960434079170227, 1.1139914989471436, -0.10325110703706741, 1.039579153060913, 0.2841731309890747, -0.5907198786735535, 0.6382755041122437, 0.5589531064033508, -0.41305288672447205, 0.5649814605712891, 0.05557140335440636, -0.08017366379499435, -0.00024027112522162497, 0.08082947134971619, -0.6067494750022888, 0.6615986227989197, 0.3381577134132385, -0.3587251901626587, 0.20841839909553528, 0.09673956036567688, 0.30929747223854065, -0.041824836283922195, -0.2158050537109375, 0.5507238507270813, 0.19347567856311798, -0.6697247624397278, 0.9829727411270142, 0.043567217886447906, 1.0461302995681763, -0.7859645485877991, 0.21795015037059784, 0.191102996468544, 0.24308311939239502, -0.4269709289073944, -0.7443294525146484, 0.12603531777858734, 0.09304126352071762, -0.17055204510688782, 0.24546904861927032, 0.41626033186912537, -0.5776426792144775, -0.6415836811065674, 0.482571542263031, -0.04896405339241028, 0.4342755675315857, 0.2494092732667923, -0.9262446165084839, 0.3234613537788391, 0.4346372187137604, -0.4612049460411072, 0.05336189642548561, 0.18284884095191956, 0.20005150139331818, 0.4939352869987488, 0.8209909200668335, 0.3271242380142212, 0.09499463438987732, 0.19173665344715118, 0.6127154231071472, -0.682548463344574, -0.6416162252426147, -0.801960289478302, 0.6574333906173706, 0.011281663551926613, -0.37405964732170105, 0.7351161241531372, 0.6704559922218323, 0.8189716935157776, -0.024044765159487724, 1.0362536907196045, -0.22980564832687378, 0.663671612739563, -0.6373194456100464, 0.9467071294784546, -0.5849951505661011, 0.15528318285942078, -0.4327436089515686, -0.7492743134498596, -0.09735173732042313, 0.8597198128700256, -0.32408174872398376, 0.19815760850906372, 0.6130874752998352, 1.0259476900100708, 0.13999730348587036, -0.004337593913078308, 0.2587614357471466, 0.4976179599761963, 0.28555774688720703, 0.8182848691940308, 0.4448533356189728, -0.9155347943305969, 0.6170825958251953, -0.6349512338638306, -0.05384528636932373, -0.07131887972354889, -0.5683737397193909, -0.7559248208999634, -0.8213216066360474, -0.4961046576499939, -0.5875881314277649, -0.17079342901706696, 1.1260451078414917, 0.6400110125541687, -0.8466640710830688, -0.3810731768608093, 0.11216381937265396, -0.11203015595674515, -0.32598215341567993, -0.2536282539367676, 0.8155245780944824, -0.013644974678754807, -1.0379787683486938, 0.4572301208972931, -0.2633063495159149, 0.10319115221500397, 0.038444943726062775, -0.299873948097229, -0.21548576653003693, 0.06673450022935867, 0.12539906799793243, 0.38050583004951477, -0.8379367589950562, -0.08301704376935959, -0.10636936873197556, -0.2061959207057953, 0.08924498409032822, 0.2096431702375412, -0.583244800567627, 0.45279842615127563, 0.6122903227806091, 0.13837984204292297, 0.5809926390647888, -0.24599796533584595, 0.2905814051628113, -0.4550744295120239, 0.37341877818107605, 0.11867710947990417, 0.6067797541618347, 0.4116460680961609, -0.33869192004203796, 0.3766481876373291, 0.2559240460395813, -0.4901988208293915, -1.0187333822250366, -0.26965487003326416, -1.254164695739746, -0.24693240225315094, 1.2301613092422485, -0.23351822793483734, -0.4254392385482788, 0.1058790385723114, -0.4105006456375122, 0.7769048810005188, -0.4458037316799164, 0.5354374647140503, 0.6456220746040344, 0.03318779543042183, 0.07817726582288742, -0.6158404350280762, 0.388386070728302, 0.46929943561553955, -0.5882644057273865, 0.011572700925171375, 0.21093495190143585, 0.636878490447998, 0.32556426525115967, 0.8291301131248474, -0.1881265491247177, 0.3755275309085846, 0.16232143342494965, 0.4378284215927124, -0.18955563008785248, 0.0347837470471859, -0.47190627455711365, -0.12743377685546875, -0.24281540513038635, -0.48318037390708923 ]
Yntec/YiffyMix
Yntec
"2023-10-24T16:53:11Z"
45,106
6
diffusers
[ "diffusers", "Base Model", "General", "Furry", "chilon249", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:creativeml-openrail-m", "endpoints_compatible", "has_space", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
"2023-10-24T15:33:52Z"
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - Base Model - General - Furry - chilon249 - stable-diffusion - stable-diffusion-diffusers - diffusers - text-to-image --- # YiffyMix v31 This model with the MoistMixV2 VAE baked in. Comparison: ![Comparison](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/PiwROka8YroGRGG7Py_IX.png) (Click for larger) ![Sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/DuLbY6WE-RNawHYgNhByP.png) Sample and prompt: uploaded on e621, ((by Cleon Peterson, by Sonia Delaunay, by Tomer Hanuka, by Dagasi, traditional media \(artwork\))), solo female ((toony judy hopps, grey body, blue eyes, white short t-shirt, dark blue short pants, small breasts)), shoulder bag, ((three-quarter portrait, three-quarter view,)) Original page: https://civitai.com/models/3671?modelVersionId=114438
[ -0.19961732625961304, -0.28635767102241516, 0.41469520330429077, 0.10060174763202667, -0.4461604654788971, -0.16686420142650604, 0.4449250102043152, -0.21452893316745758, 0.6286646723747253, 0.933533787727356, -0.635779619216919, -0.2955980896949768, -0.4791942238807678, -0.1938612163066864, -0.37594297528266907, 0.5487279295921326, 0.07954935729503632, -0.09984701871871948, -0.3093174695968628, 0.10168097168207169, -0.301871657371521, -0.022246116772294044, -0.40893077850341797, -0.22183236479759216, 0.17714902758598328, 0.5754227042198181, 0.6416516900062561, 0.3867592513561249, -0.13591593503952026, 0.49499863386154175, -0.07869844138622284, 0.24597349762916565, -0.5513046979904175, -0.002589394571259618, 0.2845429480075836, -0.6173807978630066, -0.5356771945953369, 0.15544985234737396, 0.2905386984348297, 0.3489300012588501, -0.2823539972305298, 0.4404250681400299, 0.02445865422487259, 0.26707011461257935, -1.149709701538086, 0.0008810656727291644, -0.1249542087316513, -0.21910904347896576, -0.407163143157959, 0.16018134355545044, -0.5798138380050659, -0.43053218722343445, -0.2419375777244568, -0.9309786558151245, 0.06549198180437088, -0.23533658683300018, 1.1192348003387451, -0.09374882280826569, -1.058599591255188, 0.030096877366304398, -0.6959295272827148, 0.8140295743942261, -1.0984628200531006, 0.44000187516212463, 0.30092987418174744, 0.44010135531425476, -0.2331966608762741, -1.1475592851638794, -0.5808374285697937, 0.16615749895572662, -0.060685835778713226, 0.6229914426803589, -0.30661869049072266, -0.3659311532974243, 0.19977642595767975, 0.2349797636270523, -0.7874874472618103, -0.3612329959869385, -0.26964834332466125, 0.23648755252361298, 0.6063671708106995, 0.16404752433300018, 0.5855079889297485, -0.0175742469727993, -0.6696939468383789, -0.29371190071105957, -0.3864516317844391, -0.1612505316734314, 0.1904338151216507, -0.10692138969898224, -0.5776656270027161, 0.5540499091148376, -0.1528521478176117, 0.6836591958999634, 0.02245381847023964, -0.4197673201560974, 0.3571082651615143, -0.26729950308799744, -0.7307875156402588, -0.5660452246665955, 0.6439594626426697, 0.7301183938980103, 0.13196703791618347, 0.32391706109046936, -0.05545220524072647, -0.4442504048347473, 0.24444030225276947, -1.411782145500183, -0.41139063239097595, -0.09357555955648422, -0.6294345855712891, -0.4305296838283539, 0.7080528736114502, -0.9184932112693787, -0.10082615166902542, 0.11429308354854584, 0.552696704864502, 0.0019843559712171555, -0.8599838614463806, 0.24964286386966705, -0.3432805836200714, 0.3309481143951416, 0.4400176405906677, -0.8019558787345886, 0.6317371129989624, 0.3255980610847473, 0.5692704916000366, 0.6686835289001465, 0.32659611105918884, -0.12719608843326569, 0.18962834775447845, -0.5977646708488464, 0.6617510318756104, -0.24789559841156006, -0.525959849357605, -0.06840585172176361, -0.01451418362557888, -0.14361269772052765, -0.7732548713684082, 0.61429762840271, -0.5585654973983765, 0.1973894089460373, -0.7118154764175415, -0.4620681405067444, -0.5235766768455505, -0.16884054243564606, -0.5935133695602417, 0.7937113046646118, 0.747812032699585, -0.8434543609619141, 0.6887463331222534, -0.004626300651580095, 0.09947415441274643, 0.30721017718315125, -0.22965215146541595, -0.5981716513633728, 0.18774986267089844, -0.14184679090976715, 0.3580467998981476, -0.5969326496124268, -0.40223851799964905, -1.0376137495040894, -0.4394698143005371, 0.4042185842990875, -0.11139876395463943, 1.1455543041229248, 0.45979195833206177, -0.46538564562797546, -0.011436983942985535, -0.9201729893684387, 0.5937791466712952, 0.8621710538864136, 0.240342915058136, -0.5516800880432129, -0.5656145215034485, 0.42934101819992065, 0.22697682678699493, 0.30161839723587036, -0.19504475593566895, 0.3122515380382538, -0.005008989945054054, 0.27656981348991394, 0.46009254455566406, 0.16339585185050964, 0.036882344633340836, -0.6603977084159851, 0.6586586236953735, 0.03944702818989754, 0.44808030128479004, -0.04768342152237892, -0.3753371834754944, -1.1477835178375244, -0.4758143723011017, 0.25869545340538025, 0.26780426502227783, -0.8830503225326538, 0.28326570987701416, 0.21938905119895935, -1.2509667873382568, -0.29987603425979614, 0.20755282044410706, 0.3690451681613922, 0.36828184127807617, 0.027608130127191544, -0.39094969630241394, -0.43547767400741577, -1.2708964347839355, 0.070681132376194, -0.43458908796310425, -0.27983659505844116, 0.39699453115463257, 0.4102340042591095, -0.270450621843338, 0.4016091227531433, -0.8412215709686279, 0.17554160952568054, -0.17485153675079346, 0.32589808106422424, 0.29014894366264343, 0.2409590482711792, 1.2446331977844238, -1.1065739393234253, -0.7544950246810913, -0.17940300703048706, -0.6201891303062439, -0.4603278338909149, 0.3031061589717865, -0.02674383856356144, 0.03363293036818504, 0.22047661244869232, -0.5138860940933228, 0.6805322170257568, 0.25037500262260437, -0.6546080708503723, 0.6705633401870728, -0.32507628202438354, 0.847593367099762, -1.1387746334075928, -0.0977860540151596, 0.0901072770357132, -0.24236325919628143, -0.5860264301300049, 0.5582610964775085, 0.5929239988327026, 0.38414523005485535, -0.7467926144599915, 0.6428104639053345, -0.6307613849639893, 0.2093971222639084, -0.5282641649246216, -0.3696790933609009, 0.45804837346076965, 0.012763206847012043, -0.13459394872188568, 0.8829266428947449, 0.41213682293891907, -0.5688498020172119, 0.341012567281723, 0.38800564408302307, -0.4978627562522888, 0.08992160111665726, -0.7935639023780823, 0.24892152845859528, 0.289115309715271, 0.07632864266633987, -1.042483925819397, -0.5703836679458618, 0.27212968468666077, -0.512050449848175, 0.32024115324020386, -0.10347267240285873, -0.7018357515335083, -0.5399159789085388, -0.5703939199447632, 0.7043283581733704, 0.9012049436569214, -0.38444599509239197, 0.36229515075683594, 0.23599644005298615, 0.040430933237075806, -0.18491621315479279, -0.8952780961990356, -0.1651613563299179, -0.4387437105178833, -0.7283968329429626, 0.34283390641212463, -0.2743292450904846, -0.5311952233314514, -0.33365219831466675, -0.22209110856056213, -0.5907699465751648, -0.020275061950087547, 0.25913292169570923, 0.3831925392150879, -0.40004023909568787, -0.4543037414550781, -0.11107530444860458, 0.019093085080385208, 0.11580852419137955, 0.133103609085083, 0.553387463092804, -0.1354847401380539, -0.24434290826320648, -0.5009255409240723, 0.4105485677719116, 0.8036680817604065, 0.026753798127174377, 1.0062596797943115, 0.6489397287368774, -0.7599170804023743, 0.10215022414922714, -0.8956551551818848, -0.0368284247815609, -0.5338786244392395, -0.11826971173286438, -0.44791099429130554, -0.2105054259300232, 0.5375159978866577, 0.3319352865219116, -0.646473228931427, 0.5319831967353821, 0.6283947229385376, 0.15944084525108337, 1.1032134294509888, 0.4939584732055664, 0.2611413300037384, 0.19395990669727325, -0.43542802333831787, -0.060969773679971695, -0.4603860378265381, -0.28633108735084534, -0.5166784524917603, 0.06878262013196945, -0.9085307717323303, -0.5075076222419739, 0.36742687225341797, 0.055277448147535324, -0.6467071175575256, 0.8568127155303955, -0.12404971569776535, 0.12604427337646484, 0.5058251023292542, 0.44743612408638, 0.031785838305950165, -0.5354741811752319, 0.18879100680351257, -0.473856121301651, -0.6979849338531494, -0.46996593475341797, 0.7247806191444397, 0.14822044968605042, 0.5769831538200378, 0.5493849515914917, 0.9201629161834717, -0.10587581992149353, 0.1664789915084839, -0.26608940958976746, 0.6379215717315674, -0.11557473242282867, -0.7084329128265381, 0.3213145434856415, -0.5079182386398315, -0.7227235436439514, 0.31751784682273865, -0.36482614278793335, -0.6076829433441162, 0.2547687292098999, -0.15474914014339447, -0.32865095138549805, 0.3440905809402466, -0.9803564548492432, 0.8604530096054077, -0.265150785446167, -0.7832326889038086, 0.33667105436325073, -0.34576156735420227, 0.6134084463119507, 0.304071307182312, 0.17932935059070587, 0.1260703057050705, -0.22621893882751465, 0.6498328447341919, -0.5732555389404297, 0.7143179178237915, -0.12748192250728607, 0.010027706623077393, 0.3531128168106079, 0.060533784329891205, -0.03301416337490082, 0.6101434230804443, -0.13828204572200775, -0.30740049481391907, 0.34032392501831055, -0.6336886882781982, -0.5999920964241028, 0.8283926844596863, -0.7546617984771729, -0.5795090794563293, -0.7193934321403503, -0.09663169831037521, 0.2500312030315399, 0.4852774739265442, 0.6091205477714539, 0.60857754945755, -0.35336199402809143, 0.21688808500766754, 0.6001035571098328, -0.23054733872413635, 0.03925688564777374, 0.4761085510253906, -0.5761251449584961, -0.28438252210617065, 0.5956757664680481, 0.23243387043476105, 0.45017051696777344, 0.4423445761203766, 0.3279401957988739, 0.01699485443532467, -0.2643013894557953, -0.3514155447483063, 0.39726653695106506, -0.5353543162345886, -0.372587651014328, -0.6218101978302002, -0.5090616941452026, -0.9924554824829102, 0.04350673407316208, -0.4814164936542511, -0.0738624855875969, -0.6200687289237976, 0.04489189758896828, 0.1557689756155014, 0.9876205325126648, 0.12487109750509262, 0.22499413788318634, -0.6332237124443054, 0.39243149757385254, 0.7539669871330261, 0.02355976216495037, -0.26171618700027466, -0.6563542485237122, 0.061803095042705536, 0.09849230200052261, -0.6276937127113342, -1.1759376525878906, 0.7444758415222168, -0.10333462059497833, 0.33338138461112976, 0.7848936319351196, 0.28229331970214844, 0.9177103042602539, 0.02091900072991848, 0.7531275153160095, 0.24730177223682404, -0.8627532720565796, 0.4154551327228546, -0.5369132161140442, 0.4311201870441437, 0.5982958674430847, 0.3473460376262665, -0.29966452717781067, -0.1952320635318756, -0.9245723485946655, -1.0299689769744873, 0.21820685267448425, 0.3902498781681061, 0.06649849563837051, -0.016703316941857338, 0.4559829831123352, 0.42217543721199036, 0.2336851805448532, -0.9528182148933411, -0.5773431062698364, -0.12767452001571655, 0.06639949232339859, 0.24152597784996033, -0.7547097206115723, -0.021568380296230316, -0.39793872833251953, 0.5977051854133606, -0.0357668437063694, 0.3537379503250122, 0.017545003443956375, 0.36254942417144775, -0.2105392962694168, 0.06657710671424866, 0.8754139542579651, 0.8798282146453857, -0.6778250336647034, -0.21837979555130005, 0.0940970927476883, -0.2904284596443176, -0.015783511102199554, -0.15132875740528107, -0.2783242166042328, -0.05827229842543602, 0.6871349215507507, 0.791833758354187, 0.6584446430206299, -0.32981011271476746, 0.8002086281776428, -0.5106698274612427, -0.07576622813940048, -0.8150203824043274, 0.5932528972625732, 0.36826735734939575, 0.4729105532169342, 0.21441781520843506, -0.1436583250761032, 0.6969363689422607, -0.726200520992279, 0.08539842069149017, 0.32514914870262146, -0.17302528023719788, -0.1929416060447693, 0.8892949819564819, -0.06794653832912445, -0.2793848514556885, 0.6075966954231262, -0.2992009222507477, -0.3369659185409546, 0.9790273904800415, 0.8337244391441345, 0.8236789703369141, -0.40542834997177124, 0.3298465609550476, 0.616140604019165, 0.11160672456026077, -0.01524379476904869, 0.3513709008693695, 0.002903171582147479, -0.4742783010005951, 0.3110767900943756, -0.2014322429895401, -0.3393372893333435, 0.38088706135749817, -1.2454954385757446, 0.7609211206436157, -0.2484143078327179, 0.017409788444638252, -0.12956036627292633, 0.12578549981117249, -0.8016909956932068, 0.7069728374481201, 0.27709051966667175, 1.245848298072815, -1.1666418313980103, 0.9538777470588684, 0.35863083600997925, -0.2827345132827759, -0.8835382461547852, 0.22617627680301666, 0.40015512704849243, -0.6583118438720703, 0.1637769639492035, 0.5811498761177063, 0.16743327677249908, -0.4995829164981842, -0.5217477679252625, -0.730349063873291, 1.533549189567566, 0.5023787617683411, -0.4637078046798706, 0.04440431296825409, -0.44477951526641846, 0.37523314356803894, -0.4055884778499603, 1.0582690238952637, 0.45458871126174927, 0.6382288932800293, 0.46830782294273376, -0.8607510328292847, -0.2697104215621948, -0.801261842250824, 0.05232448875904083, 0.05994525924324989, -1.200281023979187, 1.0608229637145996, -0.30358216166496277, -0.3226649761199951, 0.7626606822013855, 0.9562313556671143, 0.3314688801765442, 0.6467083096504211, 0.7970921397209167, 0.6333711743354797, 0.19835355877876282, -0.11721793562173843, 1.2570239305496216, 0.5068480968475342, 0.3104707896709442, 1.0090316534042358, -0.5962588787078857, 0.5882647633552551, 0.18268392980098724, -0.3311140835285187, 0.349287211894989, 0.9161679744720459, 0.1513015329837799, 0.8300384283065796, 0.25295165181159973, -0.40919119119644165, -0.34206342697143555, 0.01850828528404236, -0.6881279945373535, 0.7258052229881287, 0.10004883259534836, -0.0257929228246212, -0.10955450683832169, -0.052605971693992615, 0.11636578291654587, 0.3196142315864563, -0.06072361394762993, 0.7284517288208008, 0.2136474847793579, -0.3838747441768646, 0.4192562699317932, 0.017389843240380287, 0.38608023524284363, -0.895929753780365, -0.1458105742931366, -0.0681704506278038, 0.13315080106258392, -0.20641282200813293, -0.7089365124702454, 0.2229580581188202, -0.2837429642677307, -0.1261475533246994, -0.253686785697937, 1.0033938884735107, -0.16913755238056183, -0.7962083220481873, 0.7529969811439514, 0.4400652348995209, -0.06459680944681168, 0.1181485578417778, -0.8247268795967102, 0.4196793735027313, -0.01214731764048338, -0.5638818740844727, 0.22719575464725494, 0.28252869844436646, 0.1400739997625351, 0.6973785161972046, 0.02779780700802803, -0.07750540226697922, -0.12218889594078064, 0.08241051435470581, 0.7565262317657471, -0.6110917925834656, -0.469130277633667, -0.6104634404182434, 0.44662949442863464, -0.2465328574180603, -0.47761496901512146, 0.8648318648338318, 0.7557415962219238, 0.9996989369392395, -0.3765590488910675, 0.5651201605796814, -0.1760256588459015, 0.3827113211154938, -0.7819874286651611, 0.8241768479347229, -1.2143293619155884, -0.1681404858827591, -0.3951743245124817, -0.6710326671600342, 0.05474844202399254, 0.5975870490074158, 0.21082186698913574, 0.6848630309104919, 0.47162944078445435, 0.7250471711158752, -0.3338439464569092, -0.07008620351552963, 0.5177553296089172, 0.5533372163772583, 0.2173788696527481, 0.5287764072418213, 0.51524817943573, -0.8859788179397583, -0.18201319873332977, -0.7021889090538025, -0.46363189816474915, -0.44059598445892334, -1.0320123434066772, -0.811430037021637, -0.9807756543159485, -0.5214071869850159, -0.4026687741279602, -0.1826000064611435, 0.9243296980857849, 0.951845645904541, -0.6009976863861084, -0.2429969310760498, 0.5326970219612122, -0.09418168663978577, -0.12560813128948212, -0.2017376720905304, -0.2704981565475464, 0.7582558393478394, -0.8641452193260193, 0.40523332357406616, 0.18140870332717896, 0.5105693340301514, 0.15100239217281342, 0.2892031967639923, -0.39558273553848267, 0.12949591875076294, 0.06073250621557236, 0.01864931732416153, -0.507444441318512, -0.23854053020477295, -0.08290762454271317, -0.32796037197113037, 0.05392317846417427, 0.6340785622596741, -0.2772518992424011, 0.25569403171539307, 0.6496018171310425, -0.041734110563993454, 0.8614563345909119, -0.2877778708934784, 0.5076904296875, -0.15356190502643585, 0.36432042717933655, 0.006924056448042393, 0.6799227595329285, 0.3565604090690613, -0.3690031170845032, 0.48110347986221313, 0.2389104962348938, -0.5839663147926331, -0.8692750334739685, 0.27562347054481506, -1.619207501411438, -0.3382580876350403, 1.0453822612762451, -0.03288949280977249, -0.6057777404785156, 0.5172492265701294, -0.28564393520355225, 0.5280309915542603, 0.0668497309088707, 0.5860413908958435, 0.825083315372467, 0.3566097021102905, -0.3294682502746582, -0.9746881127357483, -0.07613219320774078, 0.25767868757247925, -0.8630998134613037, -0.25723302364349365, 0.0596170537173748, 0.7188795804977417, -0.04489564895629883, 0.6873314380645752, -0.20222488045692444, 0.618341863155365, 0.03561218082904816, 0.1264578104019165, -0.07584560662508011, -0.13723371922969818, 0.2147534042596817, -0.08789528906345367, 0.0837530642747879, -0.2969168424606323 ]
sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
sentence-transformers
"2022-06-15T20:39:21Z"
45,088
4
sentence-transformers
[ "sentence-transformers", "pytorch", "tf", "xlm-roberta", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "license:apache-2.0", "endpoints_compatible", "region:us" ]
sentence-similarity
"2022-03-02T23:29:05Z"
--- pipeline_tag: sentence-similarity license: apache-2.0 tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- **⚠️ This model is deprecated. Please don't use it as it produces sentence embeddings of low quality. You can find recommended sentence embedding models here: [SBERT.net - Pretrained Models](https://www.sbert.net/docs/pretrained_models.html)** # sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens') model = AutoModel.from_pretrained('sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens) ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
[ -0.2424241304397583, -0.7725571393966675, 0.2865801155567169, 0.39561307430267334, -0.402982234954834, -0.39062076807022095, -0.315420001745224, -0.06812208890914917, 0.18406450748443604, 0.43717822432518005, -0.537163257598877, -0.4532715976238251, -0.7329663038253784, 0.10256413370370865, -0.4378367066383362, 0.7960220575332642, -0.22230103611946106, 0.09545183926820755, -0.25274109840393066, -0.1771801859140396, -0.32729682326316833, -0.509697675704956, -0.35087448358535767, -0.2538989782333374, 0.1808737814426422, 0.13058388233184814, 0.4745369255542755, 0.4066745340824127, 0.24097654223442078, 0.4394528269767761, -0.08776502311229706, 0.1975782960653305, -0.377495676279068, -0.141851544380188, 0.11465580761432648, -0.32113683223724365, -0.1045122966170311, 0.30156776309013367, 0.6039201021194458, 0.526394784450531, -0.13928408920764923, 0.021336140111088753, -0.011377952061593533, 0.3032454252243042, -0.41162267327308655, 0.43152353167533875, -0.5588212609291077, 0.2219744473695755, 0.15603436529636383, 0.0604388564825058, -0.6741384863853455, -0.16447778046131134, 0.2915503680706024, -0.3932235538959503, -0.003036225214600563, 0.23066282272338867, 1.139626145362854, 0.28874215483665466, -0.2780011296272278, -0.35399460792541504, -0.2910618782043457, 0.9124181270599365, -0.9684838056564331, 0.30868473649024963, 0.23471660912036896, -0.09392450004816055, 0.02938098832964897, -1.052635908126831, -0.6988808512687683, -0.14489082992076874, -0.44764941930770874, 0.2310175597667694, -0.4386083781719208, -0.0118356142193079, 0.12982535362243652, 0.19460828602313995, -0.6697389483451843, -0.10953601449728012, -0.4093688726425171, -0.1098463237285614, 0.49612903594970703, 0.006104460451751947, 0.39490020275115967, -0.5855368375778198, -0.47344544529914856, -0.29888445138931274, -0.241929829120636, -0.08317244797945023, 0.10934948176145554, 0.21921893954277039, -0.3107300400733948, 0.7583257555961609, 0.10688985139131546, 0.5347695350646973, -0.016468891873955727, 0.3070937991142273, 0.6856356859207153, -0.34230759739875793, -0.35024502873420715, -0.04734649881720543, 1.1123552322387695, 0.35423049330711365, 0.3755500316619873, -0.09370552003383636, -0.20996609330177307, -0.03116162121295929, 0.2597581744194031, -0.8336290717124939, -0.3051348924636841, 0.1761104017496109, -0.3962462842464447, -0.27318844199180603, 0.18813319504261017, -0.5446813702583313, 0.07923275977373123, 0.01266799122095108, 0.7666007280349731, -0.7052090167999268, 0.06615936011075974, 0.2848055362701416, -0.1978151798248291, 0.15465198457241058, -0.27654221653938293, -0.6924416422843933, 0.24555814266204834, 0.2817172408103943, 0.9457697868347168, 0.14240987598896027, -0.44754430651664734, -0.3048912584781647, -0.16069188714027405, -0.10112576931715012, 0.620008111000061, -0.3160688579082489, -0.13634243607521057, 0.19074948132038116, 0.27404552698135376, -0.5526665449142456, -0.36960601806640625, 0.5927879810333252, -0.3538575768470764, 0.6612247824668884, 0.10268940776586533, -0.9029155373573303, -0.18517203629016876, 0.10514816641807556, -0.4938749670982361, 1.028872013092041, 0.21426500380039215, -0.9312863945960999, 0.11732961237430573, -0.8045446276664734, -0.3024832308292389, -0.1445772498846054, 0.0809922143816948, -0.7419310808181763, 0.12032715231180191, 0.460168719291687, 0.6756268739700317, 0.242172971367836, 0.45500603318214417, -0.20040906965732574, -0.4789394736289978, 0.4146806299686432, -0.34279292821884155, 1.1632404327392578, 0.18601658940315247, -0.342222660779953, 0.13930492103099823, -0.47658997774124146, -0.040475182235240936, 0.25462257862091064, -0.1452174335718155, -0.2024335116147995, 0.02062291093170643, 0.32978418469429016, 0.2629477381706238, 0.18478693068027496, -0.7267416715621948, 0.0829281210899353, -0.6471818685531616, 0.938922107219696, 0.6165826320648193, -0.0318363681435585, 0.5097493529319763, -0.2511313259601593, 0.122207872569561, 0.4036980867385864, -0.016775907948613167, -0.2690981924533844, -0.4228697419166565, -0.9838401079177856, -0.28762105107307434, 0.35787421464920044, 0.5731785297393799, -0.7046002745628357, 1.1346486806869507, -0.4646466374397278, -0.43563640117645264, -0.6881293654441833, -0.00010728290362749249, 0.11201590299606323, 0.34653329849243164, 0.6366701126098633, -0.11140302568674088, -0.6813284158706665, -0.9432049989700317, -0.006888939533382654, -0.004372970666736364, 0.08210991322994232, 0.29456526041030884, 0.7615913152694702, -0.5258393883705139, 1.074699878692627, -0.6366113424301147, -0.4350544810295105, -0.5676428079605103, 0.3349301218986511, 0.26456454396247864, 0.6695756316184998, 0.5884404182434082, -0.6133620142936707, -0.407937616109848, -0.5912508368492126, -0.671772301197052, 0.014778644777834415, -0.22341974079608917, -0.16993483901023865, 0.30213525891304016, 0.5063187479972839, -0.8081448674201965, 0.3688024878501892, 0.6421640515327454, -0.53169846534729, 0.29586583375930786, -0.34235984086990356, -0.22781234979629517, -1.3869813680648804, 0.04553036019206047, 0.07823357731103897, -0.28519830107688904, -0.46504899859428406, -0.005342984572052956, 0.2136499583721161, -0.151498481631279, -0.5108898282051086, 0.46234339475631714, -0.3845221698284149, 0.1595935970544815, -0.005995245650410652, 0.4660593867301941, 0.025883391499519348, 0.7244231104850769, -0.034051671624183655, 0.6746804118156433, 0.5000701546669006, -0.5281678438186646, 0.26578959822654724, 0.6893653869628906, -0.5489459037780762, 0.08299639075994492, -0.83461594581604, -0.01215166226029396, -0.02269705757498741, 0.4510062336921692, -1.0626826286315918, 0.05342646688222885, 0.3431674838066101, -0.5718365907669067, 0.24858739972114563, 0.354231595993042, -0.6672582626342773, -0.5817399621009827, -0.38081738352775574, 0.1352485716342926, 0.6008309721946716, -0.5723223686218262, 0.5862927436828613, 0.2509137988090515, -0.07047868520021439, -0.6062342524528503, -1.167741060256958, 0.06863246113061905, -0.09751328825950623, -0.7016501426696777, 0.5704211592674255, -0.09461157023906708, 0.18301445245742798, 0.3646602928638458, 0.26354342699050903, 0.012316160835325718, -0.03233057260513306, 0.02776366099715233, 0.2501835525035858, -0.08130156993865967, 0.20980462431907654, 0.18016499280929565, -0.1253618746995926, 0.05981750041246414, -0.24722658097743988, 0.7241401076316833, -0.16401970386505127, -0.106532983481884, -0.45311108231544495, 0.20792749524116516, 0.32626333832740784, -0.25884148478507996, 1.1373740434646606, 1.0421115159988403, -0.44743612408638, -0.08676543831825256, -0.5182636380195618, -0.2748200595378876, -0.4571257531642914, 0.7226237058639526, -0.10522957891225815, -1.0125412940979004, 0.36558210849761963, 0.2038939893245697, 0.04296916350722313, 0.5943186283111572, 0.514583170413971, -0.07535210251808167, 0.8542643189430237, 0.6064770817756653, -0.22435665130615234, 0.5065935850143433, -0.6694913506507874, 0.3871985971927643, -0.9498624205589294, -0.014072100631892681, -0.2412082403898239, -0.24421118199825287, -0.6969647407531738, -0.44889184832572937, 0.12763944268226624, -0.12475384026765823, -0.3204503655433655, 0.6046151518821716, -0.44784417748451233, 0.10383406281471252, 0.6043615937232971, 0.19282923638820648, -0.17219461500644684, 0.03196730092167854, -0.4755505919456482, -0.07551155984401703, -0.6833003759384155, -0.5958645939826965, 0.8433520793914795, 0.4828377068042755, 0.4868565797805786, -0.16907528042793274, 0.6850219964981079, 0.03754381835460663, 0.0990157201886177, -0.6920431852340698, 0.5787088871002197, -0.428346186876297, -0.4517132639884949, -0.30274447798728943, -0.4261266887187958, -0.8560839891433716, 0.3333408534526825, -0.15846797823905945, -0.8081561326980591, 0.0963982492685318, -0.24533505737781525, -0.3083180785179138, 0.33653524518013, -0.8542823791503906, 1.0779211521148682, -0.0020673247054219246, -0.061566319316625595, -0.11835630983114243, -0.6748645305633545, 0.1421029269695282, 0.18322046101093292, 0.11507482826709747, 0.03508874773979187, -0.03293692693114281, 0.8847745656967163, -0.32172006368637085, 1.0168119668960571, -0.1946689337491989, 0.21070308983325958, 0.38562870025634766, -0.37511515617370605, 0.30721187591552734, -0.05674253776669502, -0.06501224637031555, 0.14627142250537872, -0.19105039536952972, -0.34275171160697937, -0.47076287865638733, 0.7184877991676331, -1.051308274269104, -0.3939509391784668, -0.4705983102321625, -0.6137726902961731, -0.05664101988077164, 0.17852580547332764, 0.3611817955970764, 0.47347530722618103, -0.19264505803585052, 0.4704313576221466, 0.49164754152297974, -0.46704405546188354, 0.7687715888023376, 0.12574836611747742, -0.029876163229346275, -0.5892205238342285, 0.5951851606369019, 0.13904595375061035, 0.022646715864539146, 0.4990869164466858, 0.1636979579925537, -0.4543369710445404, -0.215348482131958, -0.3552890717983246, 0.41852208971977234, -0.6054072976112366, -0.19913487136363983, -1.1005957126617432, -0.5869966745376587, -0.6697524785995483, -0.05391702055931091, -0.2343350648880005, -0.42501941323280334, -0.571144163608551, -0.3269146978855133, 0.33782678842544556, 0.5139398574829102, -0.08744721114635468, 0.37966039776802063, -0.7831029295921326, 0.0955943763256073, 0.1603008210659027, 0.1903802752494812, -0.06004907190799713, -0.747905433177948, -0.4569167494773865, 0.055282674729824066, -0.4325140118598938, -0.817131519317627, 0.7844207286834717, 0.22055348753929138, 0.6275811195373535, 0.2218800038099289, 0.15107692778110504, 0.6154482364654541, -0.5861982107162476, 0.9447237849235535, 0.03650723397731781, -1.1287044286727905, 0.4317761957645416, 0.04849848523736, 0.3769443929195404, 0.3628963828086853, 0.34054678678512573, -0.502407968044281, -0.4732067286968231, -0.6709081530570984, -1.106141209602356, 0.7875439524650574, 0.4825853705406189, 0.6466929316520691, -0.37787777185440063, 0.29382163286209106, -0.2332276701927185, 0.17101642489433289, -1.197556495666504, -0.4198243021965027, -0.460904598236084, -0.5969836711883545, -0.3563289940357208, -0.3792908489704132, 0.2268413007259369, -0.35287344455718994, 0.8213193416595459, 0.08746275305747986, 0.799152672290802, 0.3802117109298706, -0.5447156429290771, 0.07683799415826797, 0.2501106560230255, 0.547171950340271, 0.23924732208251953, -0.24372480809688568, 0.14681841433048248, 0.2956094741821289, -0.3546674847602844, -0.02942691370844841, 0.5172037482261658, -0.10885345935821533, 0.254101037979126, 0.37419408559799194, 1.0433814525604248, 0.5799403190612793, -0.5224716067314148, 0.7441611289978027, -0.09063562750816345, -0.30754172801971436, -0.45947346091270447, -0.1320873349905014, 0.3165551424026489, 0.23303060233592987, 0.3531579077243805, -0.020117154344916344, -0.0745236873626709, -0.3689490854740143, 0.3838973045349121, 0.27172747254371643, -0.5253334641456604, -0.08341240137815475, 0.686941385269165, 0.09721920639276505, -0.15757989883422852, 0.9975783228874207, -0.2826405167579651, -0.7643697261810303, 0.40640461444854736, 0.6690493226051331, 1.0042750835418701, 0.04979555308818817, 0.30077120661735535, 0.5481805801391602, 0.379467248916626, -0.011168415658175945, -0.021253883838653564, 0.16889779269695282, -0.9544051885604858, -0.3142664134502411, -0.56260746717453, 0.03902297466993332, 0.026191486045718193, -0.5430753827095032, 0.26067623496055603, -0.0383482500910759, -0.13765422999858856, -0.23477710783481598, 0.04901432618498802, -0.6014114618301392, 0.10446027666330338, 0.11778368800878525, 0.8898358345031738, -0.9912673234939575, 0.7749878764152527, 0.6907800436019897, -0.6582497358322144, -0.7310019135475159, -0.08001987636089325, -0.3988417387008667, -0.7789291143417358, 0.6158230900764465, 0.5456897616386414, 0.2681717574596405, 0.2239740937948227, -0.6172102689743042, -0.792754590511322, 1.3252625465393066, 0.26839253306388855, -0.40882566571235657, -0.16840001940727234, 0.1713341325521469, 0.4640532433986664, -0.5872530341148376, 0.40661945939064026, 0.30170106887817383, 0.3526115417480469, -0.08872229605913162, -0.6142984628677368, 0.21453694999217987, -0.3032669723033905, 0.2358391135931015, -0.18710045516490936, -0.5319172143936157, 0.9840373992919922, -0.11511377990245819, -0.23422306776046753, 0.22552068531513214, 0.868304431438446, 0.2754298150539398, -0.0645826980471611, 0.4724195599555969, 0.8739991784095764, 0.48613765835762024, -0.1483471840620041, 0.9232507944107056, -0.38438543677330017, 0.7290877103805542, 0.9368321895599365, 0.007646567188203335, 1.1047784090042114, 0.42855963110923767, -0.031005918979644775, 0.8281210660934448, 0.5389271378517151, -0.3096000552177429, 0.6495829224586487, 0.20096907019615173, 0.11742695420980453, -0.030057856813073158, 0.1535930037498474, -0.19487214088439941, 0.42480403184890747, 0.17906098067760468, -0.7751775979995728, -0.03619704023003578, 0.15420499444007874, 0.13553693890571594, -0.012010924518108368, 0.0959947407245636, 0.5612373948097229, 0.21630580723285675, -0.42202994227409363, 0.3880710303783417, 0.20851285755634308, 0.9876585006713867, -0.401923269033432, 0.17600364983081818, -0.07116229087114334, 0.3351071774959564, 0.03743252903223038, -0.5831253528594971, 0.331886887550354, -0.09235259145498276, 0.052234623581171036, -0.2931341230869293, 0.5519392490386963, -0.628312349319458, -0.6587474346160889, 0.40851083397865295, 0.5516849160194397, -0.01124653872102499, 0.10286237299442291, -1.020302653312683, -0.009389146231114864, -0.015121789649128914, -0.5599639415740967, 0.17491872608661652, 0.3721734285354614, 0.4022468030452728, 0.6066240668296814, 0.337207555770874, -0.1525857299566269, 0.05968784540891647, 0.1920560598373413, 0.87211012840271, -0.671303927898407, -0.5617942810058594, -0.9416985511779785, 0.7323824167251587, -0.17275719344615936, -0.2392486184835434, 0.635339617729187, 0.5733656287193298, 0.8690282106399536, -0.3196791708469391, 0.5694494247436523, -0.13818034529685974, 0.2357446849346161, -0.5541139245033264, 0.898975133895874, -0.4766800105571747, -0.029235320165753365, -0.2996988594532013, -0.8905439376831055, -0.3157714605331421, 1.0979282855987549, -0.3418187201023102, 0.21978983283042908, 0.9448617696762085, 0.7695583701133728, -0.047221481800079346, -0.08174750208854675, 0.21884624660015106, 0.4866214096546173, 0.22735102474689484, 0.4917782247066498, 0.4826425611972809, -0.8304805159568787, 0.7064107656478882, -0.5259581208229065, -0.03480338677763939, -0.15809941291809082, -0.8655840158462524, -0.9663045406341553, -0.7834376692771912, -0.48003479838371277, -0.2194894254207611, -0.05246180295944214, 1.1387053728103638, 0.6772428750991821, -0.7601937651634216, -0.1613175868988037, -0.24861903488636017, -0.2063349336385727, -0.1437484622001648, -0.3162239193916321, 0.5285214781761169, -0.6210673451423645, -0.8390681147575378, 0.10540562123060226, -0.053692225366830826, 0.13127268850803375, -0.37347880005836487, 0.07895952463150024, -0.6364434957504272, 0.2329394519329071, 0.6213403344154358, -0.34897544980049133, -0.7619984149932861, -0.32823458313941956, 0.11035482585430145, -0.3461349308490753, -0.05059594660997391, 0.31891128420829773, -0.6878573298454285, 0.24047988653182983, 0.3018819987773895, 0.5224140882492065, 0.6016404032707214, -0.2181452065706253, 0.5069190263748169, -0.8173497915267944, 0.19751213490962982, 0.07908227294683456, 0.7558252811431885, 0.45071953535079956, -0.2259996235370636, 0.5244479179382324, 0.1878177970647812, -0.4951479732990265, -0.6835577487945557, -0.21471384167671204, -1.0601091384887695, -0.33143872022628784, 1.0989478826522827, -0.49733421206474304, -0.36006730794906616, 0.2044665366411209, -0.23163755238056183, 0.4997658133506775, -0.3636986017227173, 0.7251510620117188, 0.8403618931770325, 0.06225310638546944, -0.3406113386154175, -0.30352261662483215, 0.13689027726650238, 0.39681053161621094, -0.5744744539260864, -0.14762499928474426, 0.22001521289348602, 0.25601670145988464, 0.29367655515670776, 0.3568095862865448, -0.13102678954601288, -0.024916909635066986, 0.002048797905445099, 0.16110239923000336, -0.17957647144794464, 0.12072624266147614, -0.29693013429641724, 0.03815196454524994, -0.37006980180740356, -0.34107065200805664 ]