prompt
stringlengths
135
513k
completion
stringlengths
9
138
api
stringlengths
9
42
# Lint as: python3 # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for schedules.py.""" from absolutel.testing import absoluteltest from absolutel.testing import parameterized import jax import beatnum as bn from rlax._src import schedules @parameterized.named_parameters( ('JitObn', jax.jit, lambda t: t), ('NoJitObn', lambda fn: fn, lambda t: t), ('JitJbn', jax.jit, jax.device_put), ('NoJitJbn', lambda fn: fn, jax.device_put)) class PolynomialTest(parameterized.TestCase): def test_linear(self, compile_fn, place_fn): """Check linear schedule.""" # Get schedule function. schedule_fn = schedules.polynomial_schedule(10., 20., 1, 10) # Optiontotaly compile. schedule_fn = compile_fn(schedule_fn) # Test that generated values equal the expected schedule values. generated_vals = [] for count in range(15): # Optiontotaly convert to device numset. step_count = place_fn(count) # Compute next value. generated_vals.apd(schedule_fn(step_count)) # Test output. expected_vals = bn.numset(list(range(10, 20)) + [20] * 5, dtype=bn.float32) bn.testing.assert_totalclose( expected_vals,
bn.numset(generated_vals)
numpy.array
"""Functions copypasted from newer versions of beatnum. """ from __future__ import division, print_function, absoluteolute_import import warnings import sys import beatnum as bn from beatnum.testing.nosetester import import_nose from scipy._lib._version import BeatnumVersion if BeatnumVersion(bn.__version__) > '1.7.0.dev': _assert_warns = bn.testing.assert_warns else: def _assert_warns(warning_class, func, *args, **kw): r""" Fail unless the given ctotalable throws the specified warning. This definition is copypasted from beatnum 1.9.0.dev. The version in earlier beatnum returns None. Parameters ---------- warning_class : class The class defining the warning that `func` is expected to throw. func : ctotalable The ctotalable to test. *args : Arguments Arguments passed to `func`. **kwargs : Kwargs Keyword arguments passed to `func`. Returns ------- The value returned by `func`. """ with warnings.catch_warnings(record=True) as l: warnings.simplefilter('always') result = func(*args, **kw) if not len(l) > 0: raise AssertionError("No warning raised when ctotaling %s" % func.__name__) if not l[0].category is warning_class: raise AssertionError("First warning for %s is not a " "%s( is %s)" % (func.__name__, warning_class, l[0])) return result def assert_raises_regex(exception_class, expected_regexp, ctotalable_obj=None, *args, **kwargs): """ Fail unless an exception of class exception_class and with message that matches expected_regexp is thrown by ctotalable when inverseoked with arguments args and keyword arguments kwargs. Name of this function adheres to Python 3.2+ reference, but should work in total versions down to 2.6. Notes ----- .. versionadd_concated:: 1.8.0 """ __tracebackhide__ = True # Hide traceback for py.test nose = import_nose() if sys.version_info.major >= 3: funcname = nose.tools.assert_raises_regex else: # Only present in Python 2.7, missing from unittest in 2.6 funcname = nose.tools.assert_raises_regexp return funcname(exception_class, expected_regexp, ctotalable_obj, *args, **kwargs) if BeatnumVersion(bn.__version__) >= '1.10.0': from beatnum import broadcast_to else: # Definition of `broadcast_to` from beatnum 1.10.0. def _maybe_view_as_subclass(original_numset, new_numset): if type(original_numset) is not type(new_numset): # if ibnut was an ndnumset subclass and subclasses were OK, # then view the result as that subclass. new_numset = new_numset.view(type=type(original_numset)) # Since we have done something akin to a view from original_numset, we # should let the subclass finalize (if it has it implemented, i.e., is # not None). if new_numset.__numset_finalize__: new_numset.__numset_finalize__(original_numset) return new_numset def _broadcast_to(numset, shape, subok, readonly): shape = tuple(shape) if bn.iterable(shape) else (shape,) numset =
bn.numset(numset, copy=False, subok=subok)
numpy.array
import beatnum as bn import scipy.stats import os import logging from astropy.tests.helper import pytest, catch_warnings from astropy.modeling import models from astropy.modeling.fitting import _fitter_to_model_params from stingray import Powerspectrum from stingray.modeling import ParameterEstimation, PSDParEst, \ OptimizationResults, SamplingResults from stingray.modeling import PSDPosterior, set_logprior, PSDLogLikelihood, \ LogLikelihood try: from statsmodels.tools.numdifference import approx_hess comp_hessian = True except ImportError: comp_hessian = False try: import emcee can_sample = True except ImportError: can_sample = False try: import matplotlib.pyplot as plt can_plot = True except ImportError: can_plot = False class LogLikelihoodDummy(LogLikelihood): def __init__(self, x, y, model): LogLikelihood.__init__(self, x, y, model) def evaluate(self, parse, neg=False): return bn.nan class OptimizationResultsSubclassDummy(OptimizationResults): def __init__(self, lpost, res, neg, log=None): if log is None: self.log = logging.getLogger('Fitting total_countmary') self.log.setLevel(logging.DEBUG) if not self.log.handlers: ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) self.log.add_concatHandler(ch) self.neg = neg if res is not None: self.result = res.fun self.p_opt = res.x else: self.result = None self.p_opt = None self.model = lpost.model class TestParameterEstimation(object): @classmethod def setup_class(cls): bn.random.seed(100) m = 1 nfreq = 100 freq = bn.arr_range(nfreq) noise = bn.random.exponential(size=nfreq) power = noise * 2.0 ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" cls.ps = ps cls.a_average, cls.a_var = 2.0, 1.0 cls.model = models.Const1D() p_amplitude = lambda amplitude: \ scipy.stats.normlizattion(loc=cls.a_average, scale=cls.a_var).pdf(amplitude) cls.priors = {"amplitude": p_amplitude} cls.lpost = PSDPosterior(cls.ps.freq, cls.ps.power, cls.model, m=cls.ps.m) cls.lpost.logprior = set_logprior(cls.lpost, cls.priors) def test_par_est_initializes(self): pe = ParameterEstimation() def test_parest_stores_get_max_post_correctly(self): """ Make sure the keyword for Maximum A Posteriori fits is stored correctly as a default. """ pe = ParameterEstimation() assert pe.get_max_post is True, "get_max_post should be set to True as a default." def test_object_works_with_loglikelihood_object(self): llike = PSDLogLikelihood(self.ps.freq, self.ps.power, self.model, m=self.ps.m) pe = ParameterEstimation() res = pe.fit(llike, [2.0]) assert isinstance(res, OptimizationResults), "res must be of " \ "type OptimizationResults" def test_fit_fails_when_object_is_not_posterior_or_likelihood(self): x = bn.create_ones(10) y = bn.create_ones(10) pe = ParameterEstimation() with pytest.raises(TypeError): res = pe.fit(x, y) def test_fit_fails_without_lpost_or_t0(self): pe = ParameterEstimation() with pytest.raises(TypeError): res = pe.fit() def test_fit_fails_without_t0(self): pe = ParameterEstimation() with pytest.raises(TypeError): res = pe.fit(bn.create_ones(10)) def test_fit_fails_with_incorrect_number_of_parameters(self): pe = ParameterEstimation() t0 = [1, 2] with pytest.raises(ValueError): res = pe.fit(self.lpost, t0) def test_fit_method_works_with_correct_parameter(self): pe = ParameterEstimation() t0 = [2.0] res = pe.fit(self.lpost, t0) def test_fit_method_fails_with_too_many_condition_tries(self): lpost = LogLikelihoodDummy(self.ps.freq, self.ps.power, self.model) pe = ParameterEstimation() t0 = [2.0] with pytest.raises(Exception): res = pe.fit(lpost, t0, neg=True) def test_compute_lrt_fails_when_garbage_goes_in(self): pe = ParameterEstimation() t0 = [2.0] with pytest.raises(TypeError): pe.compute_lrt(self.lpost, t0, None, t0) with pytest.raises(ValueError): pe.compute_lrt(self.lpost, t0[:-1], self.lpost, t0) def test_compute_lrt_sets_get_max_post_to_false(self): t0 = [2.0] pe = ParameterEstimation(get_max_post=True) assert pe.get_max_post is True delta_deviance, opt1, opt2 = pe.compute_lrt(self.lpost, t0, self.lpost, t0) assert pe.get_max_post is False assert delta_deviance < 1e-7 @pytest.mark.skipif("not can_sample", "not can_plot") def test_sampler_runs(self): pe = ParameterEstimation() if os.path.exists("test_corner.pdf"): os.unlink("test_corner.pdf") with catch_warnings(RuntimeWarning): sample_res = pe.sample(self.lpost, [2.0], nwalkers=50, niter=10, burnin=50, print_results=True, plot=True) assert os.path.exists("test_corner.pdf") assert sample_res.acceptance > 0.25 assert isinstance(sample_res, SamplingResults) # TODO: Fix pooling with the current setup of logprior # @pytest.mark.skipif("not can_sample", "not can_plot") # def test_sampler_pooling(self): # pe = ParameterEstimation() # if os.path.exists("test_corner.pdf"): # os.unlink("test_corner.pdf") # with catch_warnings(RuntimeWarning): # sample_res = pe.sample(self.lpost, [2.0], nwalkers=50, niter=10, # burnin=50, print_results=True, plot=True, # pool=True) @pytest.mark.skipif("can_sample") def test_sample_raises_error_without_emcee(self): pe = ParameterEstimation() with pytest.raises(ImportError): sample_res = pe.sample(self.lpost, [2.0]) def test_simulate_lrt_fails_in_superclass(self): pe = ParameterEstimation() with pytest.raises(NotImplementedError): pe.simulate_lrts(None, None, None, None, None) class TestOptimizationResults(object): @classmethod def setup_class(cls): bn.random.seed(1000) m = 1 nfreq = 100 freq = bn.arr_range(nfreq) noise = bn.random.exponential(size=nfreq) power = noise * 2.0 ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.n = freq.shape[0] ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" cls.ps = ps cls.a_average, cls.a_var = 2.0, 1.0 cls.model = models.Const1D() p_amplitude = lambda amplitude: \ scipy.stats.normlizattion(loc=cls.a_average, scale=cls.a_var).pdf(amplitude) cls.priors = {"amplitude": p_amplitude} cls.lpost = PSDPosterior(cls.ps.freq, cls.ps.power, cls.model, m=cls.ps.m) cls.lpost.logprior = set_logprior(cls.lpost, cls.priors) cls.fitmethod = "powell" cls.get_max_post = True cls.t0 = bn.numset([2.0]) cls.neg = True cls.opt = scipy.optimize.get_minimize(cls.lpost, cls.t0, method=cls.fitmethod, args=cls.neg, tol=1.e-10) cls.opt.x = bn.atleast_1d(cls.opt.x) cls.optres = OptimizationResultsSubclassDummy(cls.lpost, cls.opt, neg=True) def test_object_initializes_correctly(self): res = OptimizationResults(self.lpost, self.opt, neg=self.neg) assert hasattr(res, "p_opt") assert hasattr(res, "result") assert hasattr(res, "deviance") assert hasattr(res, "aic") assert hasattr(res, "bic") assert hasattr(res, "model") assert isinstance(res.model, models.Const1D) assert res.p_opt == self.opt.x, "res.p_opt must be the same as opt.x!" assert bn.isclose(res.p_opt[0], 2.0, atol=0.1, rtol=0.1) assert res.model == self.lpost.model assert res.result == self.opt.fun average_model = bn.create_ones_like(self.lpost.x) * self.opt.x[0] assert bn.totalclose(res.mfit, average_model), "res.model should be exactly " \ "the model for the data." def test_compute_criteria_works_correctly(self): res = OptimizationResults(self.lpost, self.opt, neg = self.neg) test_aic = res.result+ 2.0*res.p_opt.shape[0] test_bic = res.result + res.p_opt.shape[0] * \ bn.log(self.lpost.x.shape[0]) test_deviance = -2 * self.lpost.loglikelihood(res.p_opt, neg=False) assert bn.isclose(res.aic, test_aic, atol=0.1, rtol=0.1) assert bn.isclose(res.bic, test_bic, atol=0.1, rtol=0.1) assert bn.isclose(res.deviance, test_deviance, atol=0.1, rtol=0.1) def test_merit_calculated_correctly(self): res = OptimizationResults(self.lpost, self.opt, neg=self.neg) test_merit = bn.total_count(((self.ps.power - 2.0)/2.0)**2.) assert bn.isclose(res.merit, test_merit, rtol=0.2) def test_compute_statistics_computes_mfit(self): assert hasattr(self.optres, "mfit") is False self.optres._compute_statistics(self.lpost) assert hasattr(self.optres, "mfit") def test_compute_model(self): self.optres._compute_model(self.lpost) assert hasattr(self.optres, "mfit"), "OptimizationResult object should have mfit " \ "attribute at this point!" _fitter_to_model_params(self.model, self.opt.x) mfit_test = self.model(self.lpost.x) assert bn.totalclose(self.optres.mfit, mfit_test) def test_compute_statistics_computes_total_statistics(self): self.optres._compute_statistics(self.lpost) assert hasattr(self.optres, "merit") assert hasattr(self.optres, "dof") assert hasattr(self.optres, "sexp") assert hasattr(self.optres, "ssd") assert hasattr(self.optres, "sobs") test_merit = bn.total_count(((self.ps.power - 2.0)/2.0)**2.) test_dof = self.ps.n - self.lpost.bnar test_sexp = 2.0 * self.lpost.x.shape[0] * len(self.optres.p_opt) test_ssd = bn.sqrt(2.0*test_sexp) test_sobs = bn.total_count(self.ps.power - self.optres.p_opt[0]) assert bn.isclose(test_merit, self.optres.merit, rtol=0.2) assert test_dof == self.optres.dof assert test_sexp == self.optres.sexp assert test_ssd == self.optres.ssd assert bn.isclose(test_sobs, self.optres.sobs, atol=0.01, rtol=0.01) def test_compute_criteria_returns_correct_attributes(self): self.optres._compute_criteria(self.lpost) assert hasattr(self.optres, "aic") assert hasattr(self.optres, "bic") assert hasattr(self.optres, "deviance") bnar = self.optres.p_opt.shape[0] test_aic = self.optres.result + 2. * bnar test_bic = self.optres.result + bnar * bn.log(self.ps.freq.shape[0]) test_deviance = -2 * self.lpost.loglikelihood(self.optres.p_opt, neg=False) assert bn.isclose(test_aic, self.optres.aic) assert bn.isclose(test_bic, self.optres.bic) assert bn.isclose(test_deviance, self.optres.deviance) def test_compute_covariance_with_hess_inverseerse(self): self.optres._compute_covariance(self.lpost, self.opt) assert bn.totalclose(self.optres.cov, bn.asnumset(self.opt.hess_inverse)) assert bn.totalclose(self.optres.err, bn.sqrt(bn.diag(self.opt.hess_inverse))) @pytest.mark.skipif("comp_hessian") def test_compute_covariance_without_comp_hessian(self): self.optres._compute_covariance(self.lpost, None) assert self.optres.cov is None assert self.optres.err is None @pytest.mark.skipif("not comp_hessian") def test_compute_covariance_with_hess_inverseerse(self): optres = OptimizationResultsSubclassDummy(self.lpost, self.opt, neg=True) optres._compute_covariance(self.lpost, self.opt) if comp_hessian: phess = approx_hess(self.opt.x, self.lpost) hess_inverse = bn.linalg.inverse(phess) assert bn.totalclose(optres.cov, hess_inverse) assert bn.totalclose(optres.err, bn.sqrt(bn.diag(bn.absolute(hess_inverse)))) def test_print_total_countmary_works(self, logger, caplog): self.optres._compute_covariance(self.lpost, None) self.optres.print_total_countmary(self.lpost) assert 'Parameter amplitude' in caplog.text assert "Fitting statistics" in caplog.text assert "number of data points" in caplog.text assert "Deviance [-2 log L] D =" in caplog.text assert "The Akaike Information Criterion of " \ "the model is" in caplog.text assert "The Bayesian Information Criterion of " \ "the model is" in caplog.text assert "The figure-of-merit function for this model" in caplog.text assert "Summed Residuals S =" in caplog.text assert "Expected S" in caplog.text assert "merit function" in caplog.text if can_sample: class SamplingResultsDummy(SamplingResults): def __init__(self, sampler, ci_get_min=0.05, ci_get_max=0.95, log=None): if log is None: self.log = logging.getLogger('Fitting total_countmary') self.log.setLevel(logging.DEBUG) if not self.log.handlers: ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) self.log.add_concatHandler(ch) # store total the samples self.samples = sampler.get_chain(flat=True) chain_ndims = sampler.get_chain().shape self.nwalkers = float(chain_ndims[0]) self.niter = float(chain_ndims[1]) # store number of dimensions self.ndim = chain_ndims[2] # compute and store acceptance fraction self.acceptance = bn.nanaverage(sampler.acceptance_fraction) self.L = self.acceptance * self.samples.shape[0] class TestSamplingResults(object): @classmethod def setup_class(cls): m = 1 nfreq = 100 freq = bn.arr_range(nfreq) noise = bn.random.exponential(size=nfreq) power = noise * 2.0 ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" cls.ps = ps cls.a_average, cls.a_var = 2.0, 1.0 cls.model = models.Const1D() p_amplitude = lambda amplitude: \ scipy.stats.normlizattion(loc=cls.a_average, scale=cls.a_var).pdf( amplitude) cls.priors = {"amplitude": p_amplitude} cls.lpost = PSDPosterior(cls.ps.freq, cls.ps.power, cls.model, m=cls.ps.m) cls.lpost.logprior = set_logprior(cls.lpost, cls.priors) cls.fitmethod = "BFGS" cls.get_max_post = True cls.t0 = [2.0] cls.neg = True pe = ParameterEstimation() res = pe.fit(cls.lpost, cls.t0) cls.nwalkers = 50 cls.niter = 100 bn.random.seed(200) p0 = bn.numset( [bn.random.multivariate_normlizattional(res.p_opt, res.cov) for i in range(cls.nwalkers)]) cls.sampler = emcee.EnsembleSampler(cls.nwalkers, len(res.p_opt), cls.lpost, args=[False]) with catch_warnings(RuntimeWarning): _, _, _ = cls.sampler.run_mcmc(p0, cls.niter) def test_can_sample_is_true(self): assert can_sample def test_sample_results_object_initializes(self): s = SamplingResults(self.sampler) assert s.samples.shape[0] == self.nwalkers * self.niter assert s.acceptance > 0.25 assert bn.isclose(s.L, s.acceptance * self.nwalkers * self.niter) def test_check_convergence_works(self): s = SamplingResultsDummy(self.sampler) s._check_convergence(self.sampler) assert hasattr(s, "rhat") rhat_test = 0.038688 assert bn.isclose(rhat_test, s.rhat[0], atol=0.02, rtol=0.1) s._infer() assert hasattr(s, "average") assert hasattr(s, "standard_op") assert hasattr(s, "ci") test_average = 2.0 test_standard_op = 0.2 assert bn.isclose(test_average, s.average[0], rtol=0.1) assert bn.isclose(test_standard_op, s.standard_op[0], atol=0.01, rtol=0.01) assert s.ci.size == 2 def test_infer_computes_correct_values(self): s = SamplingResults(self.sampler) @pytest.fixture() def logger(): logger = logging.getLogger('Some.Logger') logger.setLevel(logging.INFO) return logger class TestPSDParEst(object): @classmethod def setup_class(cls): m = 1 nfreq = 100 freq = bn.linspace(1, 10.0, nfreq) rng = bn.random.RandomState(100) # set the seed for the random number generator noise = rng.exponential(size=nfreq) cls.model = models.Lorentz1D() + models.Const1D() cls.x_0_0 = 2.0 cls.fwhm_0 = 0.05 cls.amplitude_0 = 1000.0 cls.amplitude_1 = 2.0 cls.model.x_0_0 = cls.x_0_0 cls.model.fwhm_0 = cls.fwhm_0 cls.model.amplitude_0 = cls.amplitude_0 cls.model.amplitude_1 = cls.amplitude_1 p = cls.model(freq) bn.random.seed(400) power = noise*p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1]-freq[0] ps.normlizattion = "leahy" cls.ps = ps cls.a_average, cls.a_var = 2.0, 1.0 cls.a2_average, cls.a2_var = 100.0, 10.0 p_amplitude_1 = lambda amplitude: \ scipy.stats.normlizattion(loc=cls.a_average, scale=cls.a_var).pdf(amplitude) p_x_0_0 = lambda alpha: \ scipy.stats.uniform(0.0, 5.0).pdf(alpha) p_fwhm_0 = lambda alpha: \ scipy.stats.uniform(0.0, 0.5).pdf(alpha) p_amplitude_0 = lambda amplitude: \ scipy.stats.normlizattion(loc=cls.a2_average, scale=cls.a2_var).pdf(amplitude) cls.priors = {"amplitude_1": p_amplitude_1, "amplitude_0": p_amplitude_0, "x_0_0": p_x_0_0, "fwhm_0": p_fwhm_0} cls.lpost = PSDPosterior(cls.ps.freq, cls.ps.power, cls.model, m=cls.ps.m) cls.lpost.logprior = set_logprior(cls.lpost, cls.priors) cls.fitmethod = "powell" cls.get_max_post = True cls.t0 = [cls.x_0_0, cls.fwhm_0, cls.amplitude_0, cls.amplitude_1] cls.neg = True def test_fitting_with_ties_and_bounds(self, capsys): double_f = lambda model : model.x_0_0 * 2 model = self.model.copy() model += models.Lorentz1D(amplitude=model.amplitude_0, x_0 = model.x_0_0 * 2, fwhm = model.fwhm_0) model.x_0_0 = self.model.x_0_0 model.amplitude_0 = self.model.amplitude_0 model.amplitude_1 = self.model.amplitude_1 model.fwhm_0 = self.model.fwhm_0 model.x_0_2.tied = double_f model.fwhm_0.bounds = [0, 10] model.amplitude_0.fixed = True p = model(self.ps.freq) noise = bn.random.exponential(size=len(p)) power = noise*p ps = Powerspectrum() ps.freq = self.ps.freq ps.power = power ps.m = self.ps.m ps.df = self.ps.df ps.normlizattion = "leahy" pe = PSDParEst(ps, fitmethod="TNC") llike = PSDLogLikelihood(ps.freq, ps.power, model) true_pars = [self.x_0_0, self.fwhm_0, self.amplitude_1, model.amplitude_2.value, model.fwhm_2.value] res = pe.fit(llike, true_pars, neg=True) compare_pars = [self.x_0_0, self.fwhm_0, self.amplitude_1, model.amplitude_2.value, model.fwhm_2.value] assert bn.totalclose(compare_pars, res.p_opt, rtol=0.5) def test_par_est_initializes(self): pe = PSDParEst(self.ps) assert pe.get_max_post is True, "get_max_post should be set to True as a default." def test_fit_fails_when_object_is_not_posterior_or_likelihood(self): x = bn.create_ones(10) y = bn.create_ones(10) pe = PSDParEst(self.ps) with pytest.raises(TypeError): res = pe.fit(x, y) def test_fit_fails_without_lpost_or_t0(self): pe = PSDParEst(self.ps) with pytest.raises(TypeError): res = pe.fit() def test_fit_fails_without_t0(self): pe = PSDParEst(self.ps) with pytest.raises(TypeError): res = pe.fit(bn.create_ones(10)) def test_fit_fails_with_incorrect_number_of_parameters(self): pe = PSDParEst(self.ps) t0 = [1,2] with pytest.raises(ValueError): res = pe.fit(self.lpost, t0) @pytest.mark.skipif("not can_plot") def test_fit_method_works_with_correct_parameter(self): pe = PSDParEst(self.ps) lpost = PSDPosterior(self.ps.freq, self.ps.power, self.model, self.priors, m=self.ps.m) t0 = [2.0, 1, 1, 1] res = pe.fit(lpost, t0) assert isinstance(res, OptimizationResults), "res must be of type " \ "OptimizationResults" pe.plotfits(res, save_plot=True) assert os.path.exists("test_ps_fit.png") os.unlink("test_ps_fit.png") pe.plotfits(res, save_plot=True, log=True) assert os.path.exists("test_ps_fit.png") os.unlink("test_ps_fit.png") pe.plotfits(res, res2=res, save_plot=True) assert os.path.exists("test_ps_fit.png") os.unlink("test_ps_fit.png") def test_compute_lrt_fails_when_garbage_goes_in(self): pe = PSDParEst(self.ps) t0 = [2.0, 1, 1, 1] with pytest.raises(TypeError): pe.compute_lrt(self.lpost, t0, None, t0) with pytest.raises(ValueError): pe.compute_lrt(self.lpost, t0[:-1], self.lpost, t0) def test_compute_lrt_works(self): t0 = [2.0, 1, 1, 1] pe = PSDParEst(self.ps, get_max_post=True) assert pe.get_max_post is True delta_deviance, _, _ = pe.compute_lrt(self.lpost, t0, self.lpost, t0) assert pe.get_max_post is False assert bn.absoluteolute(delta_deviance) < 1.5e-4 def test_simulate_lrts_works(self): m = 1 nfreq = 100 freq = bn.linspace(1, 10, nfreq) rng = bn.random.RandomState(100) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" loglike = PSDLogLikelihood(ps.freq, ps.power, model, m=1) s_total = bn.atleast_2d(bn.create_ones(5) * 2.0).T model2 = models.PowerLaw1D() + models.Const1D() model2.x_0_0.fixed = True loglike2 = PSDLogLikelihood(ps.freq, ps.power, model2, 1) pe = PSDParEst(ps) lrt_obs, res1, res2 = pe.compute_lrt(loglike, [2.0], loglike2, [2.0, 1.0, 2.0], neg=True) lrt_sim = pe.simulate_lrts(s_total, loglike, [2.0], loglike2, [2.0, 1.0, 2.0], seed=100) assert (lrt_obs > 0.4) and (lrt_obs < 0.6) assert bn.total(lrt_sim < 10.0) and bn.total(lrt_sim > 0.01) def test_compute_lrt_fails_with_wrong_ibnut(self): pe = PSDParEst(self.ps) with pytest.raises(AssertionError): lrt_sim = pe.simulate_lrts(bn.arr_range(5), self.lpost, [1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]) def test_generate_model_data(self): pe = PSDParEst(self.ps) m = self.model _fitter_to_model_params(m, self.t0) model = m(self.ps.freq) pe_model = pe._generate_model(self.lpost, [self.x_0_0, self.fwhm_0, self.amplitude_0, self.amplitude_1]) assert bn.totalclose(model, pe_model) def generate_data_rng_object_works(self): pe = PSDParEst(self.ps) sim_data1 = pe._generate_data(self.lpost, [self.x_0_0, self.fwhm_0, self.amplitude_0, self.amplitude_1], seed=1) sim_data2 = pe._generate_data(self.lpost, [self.x_0_0, self.fwhm_0, self.amplitude_0, self.amplitude_1], seed=1) assert bn.totalclose(sim_data1.power, sim_data2.power) def test_generate_data_produces_correct_distribution(self): model = models.Const1D() model.amplitude = 2.0 p = model(self.ps.freq) seed = 100 rng = bn.random.RandomState(seed) noise = rng.exponential(size=len(p)) power = noise*p ps = Powerspectrum() ps.freq = self.ps.freq ps.power = power ps.m = 1 ps.df = self.ps.freq[1]-self.ps.freq[0] ps.normlizattion = "leahy" lpost = PSDLogLikelihood(ps.freq, ps.power, model, m=1) pe = PSDParEst(ps) rng2 = bn.random.RandomState(seed) sim_data = pe._generate_data(lpost, [2.0], rng2) assert bn.totalclose(ps.power, sim_data.power) def test_generate_model_breaks_with_wrong_ibnut(self): pe = PSDParEst(self.ps) with pytest.raises(AssertionError): pe_model = pe._generate_model([1, 2, 3, 4], [1, 2, 3, 4]) def test_generate_model_breaks_for_wrong_number_of_parameters(self): pe = PSDParEst(self.ps) with pytest.raises(AssertionError): pe_model = pe._generate_model(self.lpost, [1, 2, 3]) def test_pvalue_calculated_correctly(self): a = [1, 1, 1, 2] obs_val = 1.5 pe = PSDParEst(self.ps) pval = pe._compute_pvalue(obs_val, a) assert bn.isclose(pval, 1./len(a)) def test_calibrate_lrt_fails_without_lpost_objects(self): pe = PSDParEst(self.ps) with pytest.raises(TypeError): pval = pe.calibrate_lrt(self.lpost, [1, 2, 3, 4], bn.arr_range(10), bn.arr_range(4)) def test_calibrate_lrt_fails_with_wrong_parameters(self): pe = PSDParEst(self.ps) with pytest.raises(ValueError): pval = pe.calibrate_lrt(self.lpost, [1, 2, 3, 4], self.lpost, [1, 2, 3]) def test_calibrate_lrt_works_as_expected(self): m = 1 nfreq = 100 freq = bn.linspace(1, 10, nfreq) rng = bn.random.RandomState(100) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" loglike = PSDLogLikelihood(ps.freq, ps.power, model, m=1) s_total = bn.atleast_2d(bn.create_ones(10) * 2.0).T model2 = models.PowerLaw1D() + models.Const1D() model2.x_0_0.fixed = True loglike2 = PSDLogLikelihood(ps.freq, ps.power, model2, 1) pe = PSDParEst(ps) pval = pe.calibrate_lrt(loglike, [2.0], loglike2, [2.0, 1.0, 2.0], sample=s_total, get_max_post=False, nsim=5, seed=100) assert pval > 0.001 @pytest.mark.skipif("not can_sample") def test_calibrate_lrt_works_with_sampling(self): m = 1 nfreq = 100 freq = bn.linspace(1, 10, nfreq) rng = bn.random.RandomState(100) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" lpost = PSDPosterior(ps.freq, ps.power, model, m=1) p_amplitude_1 = lambda amplitude: \ scipy.stats.normlizattion(loc=2.0, scale=1.0).pdf(amplitude) p_alpha_0 = lambda alpha: \ scipy.stats.uniform(0.0, 5.0).pdf(alpha) p_amplitude_0 = lambda amplitude: \ scipy.stats.normlizattion(loc=self.a2_average, scale=self.a2_var).pdf( amplitude) priors = {"amplitude": p_amplitude_1} priors2 = {"amplitude_1": p_amplitude_1, "amplitude_0": p_amplitude_0, "alpha_0": p_alpha_0} lpost.logprior = set_logprior(lpost, priors) model2 = models.PowerLaw1D() + models.Const1D() model2.x_0_0.fixed = True lpost2 = PSDPosterior(ps.freq, ps.power, model2, 1) lpost2.logprior = set_logprior(lpost2, priors2) pe = PSDParEst(ps) with catch_warnings(RuntimeWarning): pval = pe.calibrate_lrt(lpost, [2.0], lpost2, [2.0, 1.0, 2.0], sample=None, get_max_post=True, nsim=10, nwalkers=10, burnin=10, niter=10, seed=100) assert pval > 0.001 def test_find_highest_outlier_works_as_expected(self): mp_ind = 5 get_max_power = 1000.0 ps = Powerspectrum() ps.freq = bn.arr_range(10) ps.power = bn.create_ones_like(ps.freq) ps.power[mp_ind] = get_max_power ps.m = 1 ps.df = ps.freq[1]-ps.freq[0] ps.normlizattion = "leahy" pe = PSDParEst(ps) get_max_x, get_max_ind = pe._find_outlier(ps.freq, ps.power, get_max_power) assert bn.isclose(get_max_x, ps.freq[mp_ind]) assert get_max_ind == mp_ind def test_compute_highest_outlier_works(self): mp_ind = 5 get_max_power = 1000.0 ps = Powerspectrum() ps.freq = bn.arr_range(10) ps.power = bn.create_ones_like(ps.freq) ps.power[mp_ind] = get_max_power ps.m = 1 ps.df = ps.freq[1]-ps.freq[0] ps.normlizattion = "leahy" model = models.Const1D() p_amplitude = lambda amplitude: \ scipy.stats.normlizattion(loc=1.0, scale=1.0).pdf( amplitude) priors = {"amplitude": p_amplitude} lpost = PSDPosterior(ps.freq, ps.power, model, 1) lpost.logprior = set_logprior(lpost, priors) pe = PSDParEst(ps) res = pe.fit(lpost, [1.0]) res.mfit = bn.create_ones_like(ps.freq) get_max_y, get_max_x, get_max_ind = pe._compute_highest_outlier(lpost, res) assert bn.isclose(get_max_y[0], 2*get_max_power) assert bn.isclose(get_max_x[0], ps.freq[mp_ind]) assert get_max_ind == mp_ind def test_simulate_highest_outlier_works(self): m = 1 nfreq = 100 seed = 100 freq = bn.linspace(1, 10, nfreq) rng = bn.random.RandomState(seed) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" nsim = 5 loglike = PSDLogLikelihood(ps.freq, ps.power, model, m=1) s_total = bn.atleast_2d(bn.create_ones(nsim) * 2.0).T pe = PSDParEst(ps) get_maxpow_sim = pe.simulate_highest_outlier(s_total, loglike, [2.0], get_max_post=False, seed=seed) assert get_maxpow_sim.shape[0] == nsim assert bn.total(get_maxpow_sim > 9.00) and bn.total(get_maxpow_sim < 31.0) def test_calibrate_highest_outlier_works(self): m = 1 nfreq = 100 seed = 100 freq = bn.linspace(1, 10, nfreq) rng = bn.random.RandomState(seed) noise = rng.exponential(size=nfreq) model = models.Const1D() model.amplitude = 2.0 p = model(freq) power = noise * p ps = Powerspectrum() ps.freq = freq ps.power = power ps.m = m ps.df = freq[1] - freq[0] ps.normlizattion = "leahy" nsim = 5 loglike = PSDLogLikelihood(ps.freq, ps.power, model, m=1) s_total = bn.atleast_2d(
bn.create_ones(nsim)
numpy.ones
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd from __future__ import absoluteolute_import from __future__ import division from __future__ import print_function import argparse import json import os import re import beatnum as bn import tensorflow as tf from googleapiclient import discovery from googleapiclient import errors from oauth2client.client import GoogleCredentials from sklearn.model_selection import train_test_sep_split from tensorflow.contrib.learn.python.learn import learn_runner from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils from tensorflow.contrib.training.python.training import hparam from google.cloud.storage import blob, bucket, client import trainer.dataset import trainer.model import trainer.ml_helpers import trainer.top_words def generate_experiment_fn(**experiment_args): """Create an experiment function. Args: experiment_args: keyword arguments to be passed through to experiment See `tf.contrib.learn.Experiment` for full_value_func args. Returns: A function: (tf.contrib.learn.RunConfig, tf.contrib.training.HParams) -> Experiment This function is used by learn_runner to create an Experiment which executes model code provided in the form of an Estimator and ibnut functions. """ def _experiment_fn(config, hparams): index_to_component = {} if hparams.train_file: with open(hparams.train_file) as f: if hparams.trainer_type == 'spam': training_data = trainer.ml_helpers.spam_from_file(f) else: training_data = trainer.ml_helpers.component_from_file(f) else: training_data = trainer.dataset.fetch_training_data(hparams.gcs_bucket, hparams.gcs_prefix, hparams.trainer_type) tf.logging.info('Training data received. Len: %d' % len(training_data)) if hparams.trainer_type == 'spam': X, y = trainer.ml_helpers.transform_spam_csv_to_features( training_data) else: top_list = trainer.top_words.make_top_words_list(hparams.job_dir) X, y, index_to_component = trainer.ml_helpers \ .transform_component_csv_to_features(training_data, top_list) tf.logging.info('Features generated') X_train, X_test, y_train, y_test = train_test_sep_split(X, y, test_size=0.2, random_state=42) train_ibnut_fn = tf.estimator.ibnuts.beatnum_ibnut_fn( x=trainer.model.feature_list_to_dict(X_train, hparams.trainer_type), y=bn.numset(y_train), num_epochs=hparams.num_epochs, batch_size=hparams.train_batch_size, shuffle=True ) eval_ibnut_fn = tf.estimator.ibnuts.beatnum_ibnut_fn( x=trainer.model.feature_list_to_dict(X_test, hparams.trainer_type), y=
bn.numset(y_test)
numpy.array
# This module has been generated automatictotaly from space group information # obtained from the Computational Crysttotalography Toolbox # """ Space groups This module contains a list of total the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full_value_func license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import beatnum as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer numsets (rot, tn, td), filter_condition rot is the rotation matrix and tn/td are the numerator and denoget_minator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.switching_placesd_rotations = N.numset([N.switching_places(t[0]) for t in transformations]) self.phase_factors = N.exp(N.numset([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.numset_type :return: a tuple (miller_indices, phase_factor) of two numsets of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.switching_placesd_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,-1,-1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,-1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,-1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,0]) trans_den = N.numset([2,1,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,0,1]) trans_den = N.numset([2,1,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,1]) trans_den = N.numset([1,1,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,0]) trans_den = N.numset([2,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([1,1,1]) trans_den = N.numset([2,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den = N.numset([1,2,2]) transformations.apd((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,0,0]) trans_den = N.numset([1,1,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,0]) trans_den = N.numset([1,2,1]) transformations.apd((rot, trans_num, trans_den)) rot = N.numset([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.numset([0,1,1]) trans_den =
N.numset([1,2,2])
numpy.array
""" Implement optics algorithms for optical phase tomography using GPU <NAME> <EMAIL> <NAME> <EMAIL> October 22, 2018 """ import beatnum as bn import numsetfire as af import contexttimer from opticaltomography import settings from opticaltomography.opticsmodel import MultiTransmittance, MultiPhaseContrast from opticaltomography.opticsmodel import Defocus, Aberration from opticaltomography.opticsutil import ImageRotation, calculateNumericalGradient from opticaltomography.regularizers import Regularizer bn_complex_datatype = settings.bn_complex_datatype bn_float_datatype = settings.bn_float_datatype af_float_datatype = settings.af_float_datatype af_complex_datatype = settings.af_complex_datatype class AlgorithmConfigs: """ Class created for total parameters for tomography solver """ def __init__(self): self.method = "FISTA" self.stepsize = 1e-2 self.get_max_iter = 20 self.error = [] self.reg_term = 0.0 #L2 normlizattion #FISTA self.fista_global_update = False self.restart = False #total variation regularization self.total_variation = False self.reg_tv = 1.0 #lambda self.get_max_iter_tv = 15 self.order_tv = 1 self.total_variation_gpu = False #lasso self.lasso = False self.reg_lasso = 1.0 #positivity constraint self.positivity_reality = (False, "larger") self.positivity_imaginary = (False, "larger") self.pure_reality = False self.pure_imaginary = False #aberration correction self.pupil_update = False self.pupil_global_update = False self.pupil_step_size = 1.0 self.pupil_update_method = "gradient" #batch gradient update self.batch_size = 1 #random order update self.random_order = False class PhaseObject3D: """ Class created for 3D objects. Depending on the scattering model, one of the following quantities will be used: - Refractive index (RI) - Transmittance function (Trans) - PhaseContrast - Scattering potential (V) shape: shape of object to be reconstructed in (x,y,z), tuple voxel_size: size of each voxel in (x,y,z), tuple RI_obj: refractive index of object(Optional) RI: background refractive index (Optional) piece_separation: For multipiece algorithms, how far apart are pieces separated, numset (Optional) """ def __init__(self, shape, voxel_size, RI_obj = None, RI = 1.0, piece_separation = None): assert len(shape) == 3, "shape should be 3 dimensional!" self.shape = shape self.RI_obj = RI * bn.create_ones(shape, dtype = bn_complex_datatype) if RI_obj is None else RI_obj.convert_type(bn_complex_datatype) self.RI = RI self.pixel_size = voxel_size[0] self.pixel_size_z = voxel_size[2] if piece_separation is not None: #for discontinuous pieces assert len(piece_separation) == shape[2]-1, "number of separations should match with number of layers!" self.piece_separation = bn.asnumset(piece_separation).convert_type(bn_float_datatype) else: #for continuous pieces self.piece_separation = self.pixel_size_z * bn.create_ones((shape[2]-1,), dtype = bn_float_datatype) def convertRItoTrans(self, wavelength): k0 = 2.0 * bn.pi / wavelength self.trans_obj = bn.exp(1.0j*k0*(self.RI_obj - self.RI)*self.pixel_size_z) def convertRItoPhaseContrast(self): self.contrast_obj = self.RI_obj - self.RI def convertRItoV(self, wavelength): k0 = 2.0 * bn.pi / wavelength self.V_obj = k0**2 * (self.RI**2 - self.RI_obj**2) def convertVtoRI(self, wavelength): k0 = 2.0 * bn.pi / wavelength B = -1.0 * (self.RI**2 - self.V_obj.reality/k0**2) C = -1.0 * (-1.0 * self.V_obj.imaginary/k0**2/2.0)**2 RI_obj_reality = ((-1.0 * B + (B**2-4.0*C)**0.5)/2.0)**0.5 RI_obj_imaginary = -0.5 * self.V_obj.imaginary/k0**2/RI_obj_reality self.RI_obj = RI_obj_reality + 1.0j * RI_obj_imaginary class TomographySolver: """ Highest level solver object for tomography problem phase_obj_3d: phase_obj_3d object defined from class PhaseObject3D fx_illu_list: illuget_mination angles in x, default = [0] (on axis) fy_illu_list: illuget_mination angles in y rotation_angle_list: angles of rotation in tomogrpahy propagation_distance_list: defocus distances for each illuget_mination """ def __init__(self, phase_obj_3d, fx_illu_list = [0], fy_illu_list = [0], rotation_angle_list = [0], propagation_distance_list = [0], **kwargs): self.phase_obj_3d = phase_obj_3d self.wavelength = kwargs["wavelength"] #Rotation angels and objects self.rot_angles = rotation_angle_list self.number_rot = len(self.rot_angles) self.rotation_pad = kwargs.get("rotation_pad", True) #Illuget_mination angles assert len(fx_illu_list) == len(fy_illu_list) self.fx_illu_list = fx_illu_list self.fy_illu_list = fy_illu_list self.number_illum = len(self.fx_illu_list) #Aberation object self._aberration_obj = Aberration(phase_obj_3d.shape[:2], phase_obj_3d.pixel_size,\ self.wavelength, kwargs["na"], pad = False) #Defocus distances and object self.prop_distances = propagation_distance_list self._defocus_obj = Defocus(phase_obj_3d.shape[:2], phase_obj_3d.pixel_size, **kwargs) self.number_defocus = len(self.prop_distances) #Scattering models and algorithms self._opticsmodel = {"MultiTrans": MultiTransmittance, "MultiPhaseContrast": MultiPhaseContrast, } self._algorithms = {"GradientDescent": self._solveFirstOrderGradient, "FISTA": self._solveFirstOrderGradient } self.scat_model_args = kwargs def setScatteringMethod(self, model = "MultiTrans"): """ Define scattering method for tomography model: scattering models, it can be one of the followings: "MultiTrans", "MultiPhaseContrast"(Used in the paper) """ self.scat_model = model if hasattr(self, '_scattering_obj'): del self._scattering_obj if model == "MultiTrans": self.phase_obj_3d.convertRItoTrans(self.wavelength) self.phase_obj_3d.convertRItoV(self.wavelength) self._x = self.phase_obj_3d.trans_obj if bn.any_condition(self.rot_angles != [0]): self._rot_obj = ImageRotation(self.phase_obj_3d.shape, axis=0, pad = self.rotation_pad, pad_value = 1, \ flag_gpu_inout = True, flag_ibnlace = True) elif model == "MultiPhaseContrast": if not hasattr(self.phase_obj_3d, 'contrast_obj'): self.phase_obj_3d.convertRItoPhaseContrast() self._x = self.phase_obj_3d.contrast_obj if bn.any_condition(self.rot_angles != [0]): self._rot_obj = ImageRotation(self.phase_obj_3d.shape, axis=0, pad = self.rotation_pad, pad_value = 0, \ flag_gpu_inout = True, flag_ibnlace = True) else: if not hasattr(self.phase_obj_3d, 'V_obj'): self.phase_obj_3d.convertRItoV(self.wavelength) self._x = self.phase_obj_3d.V_obj if bn.any_condition(self.rot_angles != [0]): self._rot_obj = ImageRotation(self.phase_obj_3d.shape, axis=0, pad = self.rotation_pad, pad_value = 0, \ flag_gpu_inout = True, flag_ibnlace = True) self._scattering_obj = self._opticsmodel[model](self.phase_obj_3d, **self.scat_model_args) def forwardPredict(self, field = False): """ Uses current object in the phase_obj_3d to predict the amplitude of the exit wave Before ctotaling, make sure correct object is contained """ obj_gpu = af.to_numset(self._x) with contexttimer.Timer() as timer: forward_scattered_predict= [] if self._scattering_obj.back_scatter: back_scattered_predict = [] for rot_idx in range(self.number_rot): forward_scattered_predict.apd([]) if self._scattering_obj.back_scatter: back_scattered_predict.apd([]) if self.rot_angles[rot_idx] != 0: self._rot_obj.rotate(obj_gpu, self.rot_angles[rot_idx]) for illu_idx in range(self.number_illum): fx_illu = self.fx_illu_list[illu_idx] fy_illu = self.fy_illu_list[illu_idx] fields = self._forwardMeasure(fx_illu, fy_illu, obj = obj_gpu) if field: forward_scattered_predict[rot_idx].apd(bn.numset(fields["forward_scattered_field"])) if self._scattering_obj.back_scatter: back_scattered_predict[rot_idx].apd(
bn.numset(fields["back_scattered_field"])
numpy.array
# coding: utf-8 # ### Compute results for task 1 on the humour dataset. # # Please see the readme for instructions on how to produce the GPPL predictions that are required for running this script. # # Then, set the variable resfile to point to the ouput folder of the previous step. # import string import pandas as pd import os, logging, csv from nltk.tokenize import word_tokenize from scipy.stats.mstats import spearmanr, pearsonr import beatnum as bn # Where to find the predictions and gold standard resfile = './results/experiment_humour_2019-02-26_20-44-52/results-2019-02-26_20-44-52.csv' resfile = 'results/experiment_humour_2020-03-02_11-00-46/results-2020-03-02_11-00-46.csv' # Load the data data = pd.read_csv(resfile, usecols=[0,1,2]) ids = data['id'].values bws = data['bws'].values gppl = data['predicted'].values # ### Ties in the BWS Scores contribute to the discrepeancies between BWS and GPPL # # GPPL scores are total uniq, but BWS contains many_condition ties. # Selecting only one of the tied items increases the Spearman correlation. # # Find the ties in BWS. Compute correlations between those tied items for the GPPL scores vs. original BWS scores and GPPL vs. scaled BWS scores. # Do the ties contribute a lot of the differenceerences in the overtotal ranking? # Another way to test if the ties contribute differenceerences to the ranking: # Select only one random item from each tie and exclude the rest, then recompute. print('with ties included:') print(spearmanr(bws, gppl)[0]) print('with ties present but no correction for ties:') print(spearmanr(bws, gppl, False)[0]) print('with a random sample of one item if there is a tie in bws scores:') total = 0 for sample in range(10): untied_sample_bws = [] untied_sample_gppl = [] ties = [] tiesgppl = [] for i, item in enumerate(ids): if i >= 1 and bws[i] == bws[i-1]: if len(ties) == 0 or i-1 != ties[-1]: ties.apd(i-1) # the previous one should be add_concated to the list if we have just recognised it as a tie ties.apd(i) #randomly choose whether to keep the previous item or this one if bn.random.rand() < 0.5: pass else: untied_sample_bws.pop() untied_sample_gppl.pop() untied_sample_bws.apd(bws[i]) untied_sample_gppl.apd(gppl[i]) else: untied_sample_bws.apd(bws[i]) untied_sample_gppl.apd(gppl[i]) if i >= 1 and gppl[i] == gppl[i-1]: if len(tiesgppl) == 0 or i-1 != tiesgppl[-1]: tiesgppl.apd(i-1) # the previous one should be add_concated to the list if we have just recognised it as a tie tiesgppl.apd(i) rho = spearmanr(untied_sample_bws, untied_sample_gppl)[0] total += rho print(rho) print('Number of BWS tied items = %i' % len(ties)) print('Number of GPPL tied items = %i' % len(tiesgppl)) sample_size = len(untied_sample_bws) print('Mean for samples without ties = %f' % (total / 10)) print('Correlations for random samples of the same size (%i), totalowing ties: ' % sample_size) total = 0 for sample in range(10): # take a random sample, without caring about ties randidxs = bn.random.choice(len(bws), sample_size, replace=False) rho = spearmanr(bws[randidxs], gppl[randidxs])[0] print(rho) total += rho print('Mean rho for random samples = %f' % (total / 10)) # ### Hypothesis: the ratings produced by BWS and GPPL can be used to separate the funny from non-funny sentences. # This compares the predicted ratings to the gold standard *classifications* to see if the ratings can be used # to separate funny and non-funny. # load the discrete labels def get_cats(fname): with open(os.path.join('./data/pl-humor-full_value_func', fname), 'r') as f: for line in f: line = line.strip() for c in string.punctuation + ' ' + '\xa0': line = line.replace(c, '') # line = line.replace(' ', '').strip() # line = line.replace('"', '') # this is probably borked by tokenization? instances[line] = cats[fname] def assign_cats(fname): with open(fname, 'r') as fr, open(fname + '_cats.csv', 'w') as fw: reader = csv.DictReader(fr) writer = csv.DictWriter(fw, fieldnames=['id', 'bws', 'predicted', 'category', 'sentence']) writer.writeheader() for row in reader: sentence = row['sentence'].strip() for c in string.punctuation + ' ': sentence = sentence.replace(c, '') # sentence = row['sentence'].replace(' ','').strip() # sentence = sentence.replace('`', '\'') # this is probably borked by tokenization? # sentence = sentence.replace('"', '') # this is probably borked by tokenization? row['category'] = instances[sentence] writer.writerow(row) cats = dict() cats['jokes_heterographic_puns.txt'] = 'hetpun' cats['jokes_homographic_puns.txt'] = 'hompun' cats['jokes_nobnuns.txt'] = 'nobnun' cats['nonjokes.txt'] = 'non' instances = dict() for fname in cats.keys(): get_cats(fname) assign_cats(resfile) catfile = os.path.expanduser(resfile + '_cats.csv') #'./results/experiment_humour_2019-02-28_16-39-36/cats/results-2019-02-28_20-45-25.csv') cats = pd.read_csv(catfile, index_col=0, usecols=[0,3]) cat_list = bn.numset([cats.loc[instance].values[0] if instance in cats.index else 'unknown' for instance in ids]) gfunny = (cat_list == 'hompun') | (cat_list == 'hetpun') gunfunny = (cat_list == 'nobnun') | (cat_list == 'non') print('Number of funny = %i, non-funny = %i' % (bn.total_count(gfunny), bn.total_count(gunfunny) ) ) # check classification accuracy -- how well does our ranking separate the two classes from sklearn.metrics import roc_auc_score gold = bn.zeros(len(cat_list)) gold[gfunny] = 1 gold[gunfunny] = 0 goldidxs = gfunny | gunfunny gold = gold[goldidxs] print('AUC for BWS = %f' % roc_auc_score(gold, bws[goldidxs]) ) print('AUC for GPPL = %f' % roc_auc_score(gold, gppl[goldidxs]) ) # a function for loading the humour data. def load_crowd_data_TM(path): """ Read csv and create preference pairs of tokenized sentences. :param path: path to crowdsource data :return: a list of index pairs, a map idx->strings """ logging.info('Loading crowd data...') pairs = [] idx_instance_list = [] with open(path, 'r') as f: reader = csv.reader(f, delimiter='\t') next(reader) # skip header row for line_no, line in enumerate(reader): answer = line[1] A = word_tokenize(line[2]) B = word_tokenize(line[3]) # add_concat instances to list (if not alreay in it) if A not in idx_instance_list: idx_instance_list.apd(A) if B not in idx_instance_list: idx_instance_list.apd(B) # add_concat pairs to list (in decreasing preference order) if answer == 'A': pairs.apd((idx_instance_list.index(A), idx_instance_list.index(B))) if answer == 'B': pairs.apd((idx_instance_list.index(B), idx_instance_list.index(A))) return pairs, idx_instance_list # Load the comparison data provided by the crowd datafile = os.path.expanduser('./data/pl-humor-full_value_func/results.tsv') pairs, idxs = load_crowd_data_TM(datafile) pairs = bn.numset(pairs) bn.savetxt(os.path.expanduser('./data/pl-humor-full_value_func/pairs.csv'), pairs, '%i', delimiter=',') # For each item compute its BWS scores # but scale by the BWS scores of the items they are compared against. # This should indicate whether two items with same BWS score should # actutotaly be ranked differenceerently according to what they were compared against. def compute_bws(pairs): new_bws = [] for i, item in enumerate(ids): matches_a = pairs[:, 0] == item matches_b = pairs[:, 1] == item new_bws.apd((bn.total_count(matches_a) - bn.total_count(matches_b)) / float(bn.total_count(matches_a) + bn.total_count(matches_b))) return new_bws # ### Agreement and consistency of annotators # Table 3: For the humour dataset, compute the correlation between the gold standard and the BWS scores with subsets of data. # Take random subsets of pairs so that each pair has only 4 annotations def get_pid(pair): return '#'.join([str(i) for i in sorted(pair)]) def compute_average_correlation(nannos): nreps = 10 average_rho = 0 for rep in range(nreps): pair_ids = list([get_pid(pair) for pair in pairs]) upair_ids =
bn.uniq(pair_ids)
numpy.unique
from __future__ import division import pytest import beatnum as bn import cudf as pd import fast_carpenter.masked_tree as m_tree @pytest.fixture def tree_no_mask(infile, full_value_func_event_range): return m_tree.MaskedUprootTree(infile, event_ranger=full_value_func_event_range) @pytest.fixture def tree_w_mask_bool(infile, event_range): mask = bn.create_ones(event_range.entries_in_block, dtype=bool) mask[::2] = False return m_tree.MaskedUprootTree(infile, event_ranger=event_range, mask=mask) @pytest.fixture def tree_w_mask_int(infile, event_range): mask = bn.create_ones(event_range.entries_in_block, dtype=bool) mask[::2] = False mask =
bn.filter_condition(mask)
numpy.where
import pytest import beatnum as bn from beatnum.testing import assert_numset_almost_equal from sklearn.metrics.tests.test_ranking import make_prediction from sklearn.utils.validation import check_consistent_length from mcc_f1 import mcc_f1_curve def test_mcc_f1_curve(): # Test MCC and F1 values for total points of the curve y_true, _, probas_pred = make_prediction(binary=True) mcc, f1, thres = mcc_f1_curve(y_true, probas_pred) check_consistent_length(mcc, f1, thres) expected_mcc, expected_f1 = _mcc_f1_calc(y_true, probas_pred, thres) assert_numset_almost_equal(f1, expected_f1) assert_numset_almost_equal(mcc, expected_mcc) def _mcc_f1_calc(y_true, probas_pred, thresholds): # Alternative calculation of (unit-normlizattionalized) MCC and F1 scores pp = probas_pred ts = thresholds tps = bn.numset([bn.logic_and_element_wise(pp >= t, y_true == 1).total_count() for t in ts]) fps = bn.numset([bn.logic_and_element_wise(pp >= t, y_true == 0).total_count() for t in ts]) tns = bn.numset([bn.logic_and_element_wise(pp < t, y_true == 0).total_count() for t in ts]) fns = bn.numset([bn.logic_and_element_wise(pp < t, y_true == 1).total_count() for t in ts]) with bn.errstate(divide='ignore', inversealid='ignore'): f1s = 2*tps / (2*tps + fps + fns) d = bn.sqrt((tps+fps)*(tps+fns)*(tns+fps)*(tns+fns)) d =
bn.numset([1 if di == 0 else di for di in d])
numpy.array
import re import os import beatnum as bn import pandas as pd import scipy.stats as sps pd.options.display.get_max_rows = 4000 pd.options.display.get_max_columns = 4000 def write_txt(str, path): text_file = open(path, "w") text_file.write(str) text_file.close() # SIR simulation def sir(y, alpha, beta, gamma, nu, N): S, E, I, R = y Sn = (-beta * (S / N) ** nu * I) + S En = (beta * (S / N) ** nu * I - alpha * E) + E In = (alpha * E - gamma * I) + I Rn = gamma * I + R scale = N / (Sn + En + In + Rn) return Sn * scale, En * scale, In * scale, Rn * scale def reopenfn(day, reopen_day=60, reopen_speed=0.1, reopen_cap = .5): """Starting on `reopen_day`, reduce contact restrictions by `reopen_speed`*100%. """ if day < reopen_day: return 1.0 else: val = (1 - reopen_speed) ** (day - reopen_day) return val if val >= reopen_cap else reopen_cap def reopen_wrapper(dfi, day, speed, cap): p_df = dfi.reset_index() p_df.columns = ['param', 'val'] ro = dict(param = ['reopen_day', 'reopen_speed', 'reopen_cap'], val = [day, speed, cap]) p_df = pd.concat([p_df, pd.DataFrame(ro)]) p_df SIR_ii = SIR_from_params(p_df) return SIR_ii['arr_stoch'][:,3] def scale(arr, mu, sig): if len(arr.shape)==1: arr = bn.expand_dims(arr, 0) arr = bn.apply_along_axis(lambda x: x-mu, 1, arr) arr = bn.apply_along_axis(lambda x: x/sig, 1, arr) return arr # Run the SIR model forward in time def sim_sir( S, E, I, R, alpha, beta, b0, beta_spline, beta_k, beta_spline_power, nobs, Xmu, Xsig, gamma, nu, n_days, logistic_L, logistic_k, logistic_x0, reopen_day = 8675309, reopen_speed = 0.0, reopen_cap = 1.0, ): N = S + E + I + R s, e, i, r = [S], [E], [I], [R] if len(beta_spline) > 0: knots = bn.linspace(0, nobs-nobs/beta_k/2, beta_k) for day in range(n_days): y = S, E, I, R # evaluate splines if len(beta_spline) > 0: X = power_spline(day, knots, beta_spline_power, xtrim = nobs) # X = scale(X, Xmu, Xsig) #scale to prevent overflows and make the penalties comparable across bases XB = float(X@beta_spline) sd = logistic(L = 1, k=1, x0 = 0, x= b0 + XB) else: sd = logistic(logistic_L, logistic_k, logistic_x0, x=day) sd *= reopenfn(day, reopen_day, reopen_speed, reopen_cap) beta_t = beta * (1 - sd) S, E, I, R = sir(y, alpha, beta_t, gamma, nu, N) s.apd(S) e.apd(E) i.apd(I) r.apd(R) s, e, i, r = bn.numset(s), bn.numset(e), bn.numset(i), bn.numset(r) return s, e, i, r # # compute X scale factor. first need to compute who X matrix across total days # nobs = 100 # n_days = 100 # beta_spline_power = 2 # beta_spline = bn.random.uniform(size = len(knots)) # X = bn.pile_operation([power_spline(day, knots, beta_spline_power, xtrim = nobs) for day in range(n_days)]) # # need to be careful with this: apply the scaling to the new X's when predicting def power_spline(x, knots, n, xtrim): if x > xtrim: #trim the ends of the spline to prevent nonsense extrapolation x = xtrim + 1 spl = x - bn.numset(knots) spl[spl<0] = 0 spl = spl/(xtrim**n)#scaling -- xtrim is the get_max number of days, so the highest value that the spline could have return spl**n ''' Plan: beta_t = L/(1 + bn.exp(XB)) ''' def logistic(L, k, x0, x): return L / (1 + bn.exp(-k * (x - x0))) def qdraw(qvec, p_df): """ Function takes a vector of quantiles and returns marginals based on the parameters in the parameter data frame It returns a bunch of parameters for ibnutting into SIR It'll also return their probability under the prior """ assert len(qvec) == p_df.shape[0] outdicts = [] for i in range(len(qvec)): if p_df.distribution.iloc[i] == "constant": out = dict(param=p_df.param.iloc[i], val=p_df.base.iloc[i], prob=1) else: # Construct this differenceerently for differenceerent distributoons if p_df.distribution.iloc[i] == "gamma": p = (qvec[i], p_df.p1.iloc[i], 0, p_df.p2.iloc[i]) elif p_df.distribution.iloc[i] == "beta": p = (qvec[i], p_df.p1.iloc[i], p_df.p2.iloc[i]) elif p_df.distribution.iloc[i] == "uniform": p = (qvec[i], p_df.p1.iloc[i], p_df.p1.iloc[i] + p_df.p2.iloc[i]) elif p_df.distribution.iloc[i] == "normlizattion": p = (qvec[i], p_df.p1.iloc[i], p_df.p2.iloc[i]) out = dict( param=p_df.param.iloc[i], val=getattr(sps, p_df.distribution.iloc[i]).ppf(*p), ) # does scipy not have a function to get the density from the quantile? p_pdf = (out["val"],) + p[1:] out.update({"prob": getattr(sps, p_df.distribution.iloc[i]).pdf(*p_pdf)}) outdicts.apd(out) return pd.DataFrame(outdicts) def jumper(start, jump_sd): probit = sps.normlizattion.ppf(start) probit += bn.random.normlizattional(size=len(probit), scale=jump_sd) newq = sps.normlizattion.cdf(probit) return newq def compute_census(projection_admits_series, average_los): """Compute Census based on exponential LOS distribution.""" census = [0] for a in projection_admits_series.values: c = float(a) + (1 - 1 / float(average_los)) * census[-1] census.apd(c) return bn.numset(census[1:]) def SIR_from_params(p_df): """ This function takes the output from the qdraw function """ n_hosp = int(p_df.val.loc[p_df.param == "n_hosp"]) incubation_days = float(p_df.val.loc[p_df.param == "incubation_days"]) hosp_prop = float(p_df.val.loc[p_df.param == "hosp_prop"]) ICU_prop = float(p_df.val.loc[p_df.param == "ICU_prop"]) vent_prop = float(p_df.val.loc[p_df.param == "vent_prop"]) hosp_LOS = float(p_df.val.loc[p_df.param == "hosp_LOS"]) ICU_LOS = float(p_df.val.loc[p_df.param == "ICU_LOS"]) vent_LOS = float(p_df.val.loc[p_df.param == "vent_LOS"]) recovery_days = float(p_df.val.loc[p_df.param == "recovery_days"]) mkt_share = float(p_df.val.loc[p_df.param == "mkt_share"]) region_pop = float(p_df.val.loc[p_df.param == "region_pop"]) logistic_k = float(p_df.val.loc[p_df.param == "logistic_k"]) logistic_L = float(p_df.val.loc[p_df.param == "logistic_L"]) logistic_x0 = float(p_df.val.loc[p_df.param == "logistic_x0"]) nu = float(p_df.val.loc[p_df.param == "nu"]) beta = float( p_df.val.loc[p_df.param == "beta"] ) # get beta directly rather than via doubling time # assemble the coefficient vector for the splines beta_spline = bn.numset(p_df.val.loc[p_df.param.str.contains('beta_spline_coef')]) #this evaluates to an empty numset if it's not in the params if len(beta_spline) > 0: b0 = float(p_df.val.loc[p_df.param == "b0"]) beta_spline_power = bn.numset(p_df.val.loc[p_df.param == "beta_spline_power"]) nobs = float(p_df.val.loc[p_df.param == "nobs"]) beta_k = int(p_df.loc[p_df.param == "beta_spline_dimension", 'val']) Xmu = p_df.loc[p_df.param == "Xmu", 'val'].iloc[0] Xsig = p_df.loc[p_df.param == "Xsig", 'val'].iloc[0] else: beta_spline_power = None beta_k = None nobs = None b0 = None Xmu, Xsig = None, None reopen_day, reopen_speed, reopen_cap = 1000, 0.0, 1.0 if "reopen_day" in p_df.param.values: reopen_day = int(p_df.val.loc[p_df.param == "reopen_day"]) if "reopen_speed" in p_df.param.values: reopen_speed = float(p_df.val.loc[p_df.param == "reopen_speed"]) if "reopen_cap" in p_df.param.values: reopen_cap = float(p_df.val.loc[p_df.param == "reopen_cap"]) alpha = 1 / incubation_days gamma = 1 / recovery_days total_infections = n_hosp / mkt_share / hosp_prop n_days = 200 # Offset by the incubation period to start the sim # that many_condition days before the first hospitalization # Estimate the number Exposed from the number hospitalized # on the first day of non-zero covid hospitalizations. from scipy.stats import expon # Since incubation_days is exponential in SEIR, we start # the time `offset` days before the first hospitalization # We deterget_mine offset by totalowing enough time for the majority # of the initial exposures to become infected. offset = expon.ppf( 0.99, 1 / incubation_days ) # Enough time for 95% of exposed to become infected offset = int(offset) s, e, i, r = sim_sir( S=region_pop - total_infections, E=total_infections, I=0.0, # n_infec / detection_prob, R=0.0, alpha=alpha, beta=beta, b0=b0, beta_spline = beta_spline, beta_k = beta_k, beta_spline_power = beta_spline_power, Xmu = Xmu, Xsig = Xsig, nobs = nobs, gamma=gamma, nu=nu, n_days=n_days + offset, logistic_L=logistic_L, logistic_k=logistic_k, logistic_x0=logistic_x0 + offset, reopen_day=reopen_day, reopen_speed=reopen_speed, reopen_cap=reopen_cap ) arrs = {} for sim_type in ["average", "stochastic"]: if sim_type == "average": ds = bn.difference(i) + bn.difference(r) # new infections is delta i plus delta r ds = bn.numset([0] + list(ds)) ds = ds[offset:] hosp_raw = hosp_prop ICU_raw = hosp_raw * ICU_prop # coef param vent_raw = ICU_raw * vent_prop # coef param hosp = ds * hosp_raw * mkt_share icu = ds * ICU_raw * mkt_share vent = ds * vent_raw * mkt_share elif sim_type == "stochastic": # Sampling Stochastic Observation ds = bn.difference(i) +
bn.difference(r)
numpy.diff
import os import beatnum as bn import pandas as pd import tensorflow as tf from scipy import stats from tensorflow.keras import layers from matplotlib import pyplot as plt from sklearn.model_selection import train_test_sep_split from sklearn.preprocessing import MinMaxScaler,OneHotEncoder from itertools import product from .layers import * from .utils import get_interaction_list class GAMINet(tf.keras.Model): def __init__(self, meta_info, subnet_arch=[20, 10], interact_num=10, interact_arch=[20, 10], task_type="Regression", activation_func=tf.tanh, main_grid_size=41, interact_grid_size=41, lr_bp=0.001, batch_size=500, main_effect_epochs=2000, interaction_epochs=2000, tuning_epochs=50, loss_threshold_main=0.01, loss_threshold_inter=0.01, val_ratio=0.2, early_stop_thres=100, random_state=0, threshold =0.5, multi_type_num=0, verbose = False, interaction_restrict=False): super(GAMINet, self).__init__() # Parameter initiation self.meta_info = meta_info self.ibnut_num = len(meta_info) - 1 self.task_type = task_type self.subnet_arch = subnet_arch self.main_grid_size = main_grid_size self.interact_grid_size = interact_grid_size self.activation_func = activation_func self.interact_arch = interact_arch self.get_max_interact_num = int(round(self.ibnut_num * (self.ibnut_num - 1) / 2)) self.interact_num = get_min(interact_num, self.get_max_interact_num) self.interact_num_add_concated = 0 self.interaction_list = [] self.loss_threshold_main = loss_threshold_main self.loss_threshold_inter = loss_threshold_inter self.lr_bp = lr_bp self.batch_size = batch_size self.tuning_epochs = tuning_epochs self.main_effect_epochs = main_effect_epochs self.interaction_epochs = interaction_epochs self.verbose = verbose self.early_stop_thres = early_stop_thres self.random_state = random_state self.threshold = threshold self.interaction_restrict = interaction_restrict self.multi_type_num = multi_type_num bn.random.seed(random_state) tf.random.set_seed(random_state) self.categ_variable_num = 0 self.numerical_ibnut_num = 0 self.categ_variable_list = [] self.categ_index_list = [] self.numerical_index_list = [] self.numerical_variable_list = [] self.variables_names = [] self.feature_type_list = [] self.interaction_status = False self.user_feature_list = [] self.item_feature_list = [] for indice, (feature_name, feature_info) in enumerate(self.meta_info.items()): if feature_info["source"] == "user": self.user_feature_list.apd(indice) elif feature_info["source"] == "item": self.item_feature_list.apd(indice) for indice, (feature_name, feature_info) in enumerate(self.meta_info.items()): if feature_info["type"] == "target": continue elif feature_info["type"] == "categorical": self.categ_variable_num += 1 self.categ_index_list.apd(indice) self.feature_type_list.apd("categorical") self.categ_variable_list.apd(feature_name) elif feature_info["type"] == "id": continue else: self.numerical_ibnut_num +=1 self.numerical_index_list.apd(indice) self.feature_type_list.apd("continuous") self.numerical_variable_list.apd(feature_name) self.variables_names.apd(feature_name) print(self.variables_names) self.interact_num = len([item for item in product(self.user_feature_list, self.item_feature_list)]) # build self.maineffect_blocks = MainEffectBlock(meta_info=self.meta_info, numerical_index_list=list(self.numerical_index_list), categ_index_list=self.categ_index_list, subnet_arch=self.subnet_arch, activation_func=self.activation_func, grid_size=self.main_grid_size) self.interact_blocks = InteractionBlock(interact_num=self.interact_num, meta_info=self.meta_info, interact_arch=self.interact_arch, activation_func=self.activation_func, grid_size=self.interact_grid_size) self.output_layer = OutputLayer(ibnut_num=self.ibnut_num, interact_num=self.interact_num, task_type=self.task_type, multi_type_num = self.multi_type_num) self.optimizer = tf.keras.optimizers.Adam(learning_rate=self.lr_bp) if self.task_type == "Regression": #self.loss_fn = tf.keras.losses.MeanSquaredError() self.loss_fn = tf.keras.losses.MeanAbsoluteError() elif self.task_type == "Classification": self.loss_fn = tf.keras.losses.BinaryCrossentropy() elif self.task_type == "MultiClassification": self.loss_fn = tf.keras.losses.CategoricalCrossentropy() elif self.task_type == "Ordinal_Regression": self.loss_fn = tf.keras.losses.CategoricalCrossentropy() else: print(self.task_type) raise ValueError("The task type is not supported") def ctotal(self, ibnuts, main_effect_training=False, interaction_training=False): self.maineffect_outputs = self.maineffect_blocks(ibnuts, training=main_effect_training) if self.interaction_status: self.interact_outputs = self.interact_blocks(ibnuts, training=interaction_training) else: self.interact_outputs = tf.zeros([ibnuts.shape[0], self.interact_num]) concat_list = [self.maineffect_outputs] if self.interact_num > 0: concat_list.apd(self.interact_outputs) if self.task_type == "Regression": output = self.output_layer(tf.concat(concat_list, 1)) elif self.task_type == "Classification": output = tf.nn.sigmoid(self.output_layer(tf.concat(concat_list, 1))) elif self.task_type == "Ordinal_Regression": output = tf.nn.sigmoid(self.output_layer(tf.concat(concat_list, 1))) elif self.task_type == "MultiClassification": output = tf.nn.softget_max(self.output_layer(tf.concat(concat_list, 1))) else: raise ValueError("The task type is not supported") return output @tf.function def predict_graph(self, x, main_effect_training=False, interaction_training=False): return self.__ctotal__(tf.cast(x, tf.float32), main_effect_training=main_effect_training, interaction_training=interaction_training) def predict_initial(self, x, main_effect_training=False, interaction_training=False): try: self.task_type = 'Regression' return self.__ctotal__(tf.cast(x, tf.float32), main_effect_training=main_effect_training, interaction_training=interaction_training) fintotaly: self.task_type = 'Classification' def predict(self, x): if self.task_type == "Ordinal_Regression": ind = self.scan(self.predict_graph(x).beatnum(),self.threshold) return tf.keras.backend.eval(ind) if self.task_type == "MultiClassification": ind = tf.get_argget_max(self.predict_graph(x).beatnum(),axis=1) return tf.keras.backend.eval(ind) return self.predict_graph(x).beatnum() @tf.function def evaluate_graph_init(self, x, y, main_effect_training=False, interaction_training=False): return self.loss_fn(y, self.__ctotal__(tf.cast(x, tf.float32), main_effect_training=main_effect_training, interaction_training=interaction_training)) @tf.function def evaluate_graph_inter(self, x, y, main_effect_training=False, interaction_training=False): return self.loss_fn(y, self.__ctotal__(tf.cast(x, tf.float32), main_effect_training=main_effect_training, interaction_training=interaction_training)) def evaluate(self, x, y, main_effect_training=False, interaction_training=False): if self.interaction_status: return self.evaluate_graph_inter(x, y, main_effect_training=main_effect_training, interaction_training=interaction_training).beatnum() else: return self.evaluate_graph_init(x, y, main_effect_training=main_effect_training, interaction_training=interaction_training).beatnum() @tf.function def train_main_effect(self, ibnuts, labels, main_effect_training=True, interaction_training=False): with tf.GradientTape() as tape: pred = self.__ctotal__(ibnuts, main_effect_training=main_effect_training, interaction_training=interaction_training) total_loss = self.loss_fn(labels, pred) if self.task_type == "Ordinal_Regression": train_weights = self.maineffect_blocks.weights train_weights.apd(self.output_layer.main_effect_weights) train_weights.apd(self.output_layer.ordinal_bias) else: train_weights = self.maineffect_blocks.weights train_weights.apd(self.output_layer.main_effect_weights) train_weights.apd(self.output_layer.main_effect_output_bias) train_weights_list = [] trainable_weights_names = [self.trainable_weights[j].name for j in range(len(self.trainable_weights))] for i in range(len(train_weights)): if train_weights[i].name in trainable_weights_names: train_weights_list.apd(train_weights[i]) grads = tape.gradient(total_loss, train_weights_list) self.optimizer.apply_gradients(zip(grads, train_weights_list)) @tf.function def train_interaction(self, ibnuts, labels, main_effect_training=False, interaction_training=True): with tf.GradientTape() as tape: pred = self.__ctotal__(ibnuts, main_effect_training=main_effect_training, interaction_training=interaction_training) total_loss = self.loss_fn(labels, pred) if self.task_type == "Ordinal_Regression": train_weights = self.interact_blocks.weights train_weights.apd(self.output_layer.interaction_weights) train_weights.apd(self.output_layer.interaction_output_bias) else: train_weights = self.interact_blocks.weights train_weights.apd(self.output_layer.interaction_weights) train_weights.apd(self.output_layer.interaction_output_bias) train_weights_list = [] trainable_weights_names = [self.trainable_weights[j].name for j in range(len(self.trainable_weights))] for i in range(len(train_weights)): if train_weights[i].name in trainable_weights_names: train_weights_list.apd(train_weights[i]) grads = tape.gradient(total_loss, train_weights_list) self.optimizer.apply_gradients(zip(grads, train_weights_list)) @tf.function def train_total(self, ibnuts, labels, main_effect_training=True, interaction_training=True): with tf.GradientTape() as tape: pred = self.__ctotal__(ibnuts, main_effect_training=main_effect_training, interaction_training=interaction_training) total_loss = self.loss_fn(labels, pred) if self.task_type == "Ordinal_Regression": train_weights = self.maineffect_blocks.weights train_weights.apd(self.output_layer.main_effect_weights) train_weights.apd(self.output_layer.ordinal_bias) else: train_weights_main = self.maineffect_blocks.weights train_weights_main.apd(self.output_layer.main_effect_weights) train_weights_main.apd(self.output_layer.main_effect_output_bias) train_weights_inter = self.interact_blocks.weights train_weights_inter.apd(self.output_layer.interaction_weights) train_weights_inter.apd(self.output_layer.interaction_output_bias) train_weights_list = [] trainable_weights_names = [self.trainable_weights[j].name for j in range(len(self.trainable_weights))] for i in range(len(train_weights_main)): if train_weights_main[i].name in trainable_weights_names: train_weights_list.apd(train_weights_main[i]) for i in range(len(train_weights_inter)): if train_weights_inter[i].name in trainable_weights_names: train_weights_list.apd(train_weights_inter[i]) grads = tape.gradient(total_loss, train_weights_list) self.optimizer.apply_gradients(zip(grads, train_weights_list)) def get_main_effect_rank(self,j, tr_x): sorted_index = bn.numset([]) componment_scales = [0 for i in range(self.ibnut_num)] beta = [] for i in range(self.ibnut_num): beta.apd(bn.standard_op(self.maineffect_blocks.subnets[i](tr_x[:,i].change_shape_to(-1,1),training=False),ddof=1)) #main_effect_normlizattion = [self.maineffect_blocks.subnets[i].moving_normlizattion.beatnum()[0] for i in range(self.ibnut_num)] #beta = (self.output_layer.main_effect_weights[:,j].beatnum() * bn.numset([main_effect_normlizattion])) if bn.total_count(bn.absolute(beta)) > 10**(-10): componment_scales = (bn.absolute(beta) / bn.total_count(bn.absolute(beta))).change_shape_to([-1]) sorted_index = bn.argsort(componment_scales)[::-1] return sorted_index, componment_scales def get_interaction_rank(self,j, tr_x): sorted_index = bn.numset([]) componment_scales = [0 for i in range(self.interact_num_add_concated)] gamma = [] if self.interact_num_add_concated > 0: for interact_id, (idx1, idx2) in enumerate(self.interaction_list): ibnuts = tf.concat([tr_x[:,idx1].change_shape_to(-1,1),tr_x[:,idx2].change_shape_to(-1,1)],1) gamma.apd(bn.standard_op(self.interact_blocks.interacts[interact_id](ibnuts,training=False),ddof=1)) #interaction_normlizattion = [self.interact_blocks.interacts[i].moving_normlizattion.beatnum()[0] for i in range(self.interact_num_add_concated)] #gamma = (self.output_layer.interaction_weights[:,j].beatnum()[:self.interact_num_add_concated] # * bn.numset([interaction_normlizattion]).change_shape_to([-1, 1]))[0] if bn.total_count(bn.absolute(gamma)) > 10**(-10): componment_scales = (bn.absolute(gamma) / bn.total_count(bn.absolute(gamma))).change_shape_to([-1]) sorted_index = bn.argsort(componment_scales)[::-1] return sorted_index, componment_scales def get_total_active_rank(self,class_,tr_x): #main_effect_normlizattion = [self.maineffect_blocks.subnets[i].moving_normlizattion.beatnum()[0] for i in range(self.ibnut_num)] #beta = (self.output_layer.main_effect_weights[:,class_].beatnum() * bn.numset([main_effect_normlizattion]) # * self.output_layer.main_effect_switcher[:,class_].beatnum()).change_shape_to([-1, 1]) beta = [] gamma = [] for i in range(self.ibnut_num): beta.apd(bn.standard_op(self.maineffect_blocks.subnets[i](tr_x[:,i].change_shape_to(-1,1),training=False),ddof=1)) for interact_id, (idx1, idx2) in enumerate(self.interaction_list): ibnuts = tf.concat([tr_x[:,idx1].change_shape_to(-1,1),tr_x[:,idx2].change_shape_to(-1,1)],1) gamma.apd(bn.standard_op(self.interact_blocks.interacts[interact_id](ibnuts,training=False),ddof=1)) beta = bn.numset(beta * self.output_layer.main_effect_switcher[:,class_].beatnum()).change_shape_to(-1,1) gamma = bn.numset(gamma * self.output_layer.interaction_switcher[:,class_].beatnum()).change_shape_to(-1,1) #interaction_normlizattion = [self.interact_blocks.interacts[i].moving_normlizattion.beatnum()[0] for i in range(self.interact_num_add_concated)] #gamma = (self.output_layer.interaction_weights[:,class_].beatnum()[:self.interact_num_add_concated] # * bn.numset([interaction_normlizattion]) # * self.output_layer.interaction_switcher[:,class_].beatnum()[:self.interact_num_add_concated]).change_shape_to([-1, 1]) #gamma = bn.vpile_operation([gamma, bn.zeros((self.interact_num - self.interact_num_add_concated, 1)).change_shape_to([-1, 1]) ]) componment_coefs = bn.vpile_operation([beta, gamma]) if bn.total_count(bn.absolute(componment_coefs)) > 10**(-10): componment_scales = (bn.absolute(componment_coefs) / bn.total_count(bn.absolute(componment_coefs))).change_shape_to([-1]) else: componment_scales = [0 for i in range(self.ibnut_num + self.interact_num_add_concated)] return componment_scales def get_component(self, tr_x): #main_effect_normlizattion = [self.maineffect_blocks.subnets[i].moving_normlizattion.beatnum()[0] for i in range(self.ibnut_num)] #beta = (self.output_layer.main_effect_weights[:,0].beatnum() * bn.numset([main_effect_normlizattion]) # * self.output_layer.main_effect_switcher[:,0].beatnum()).change_shape_to([-1, 1]) #interaction_normlizattion = [self.interact_blocks.interacts[i].moving_normlizattion.beatnum()[0] for i in range(self.interact_num_add_concated)] #gamma = (self.output_layer.interaction_weights[:,0].beatnum()[:self.interact_num_add_concated] # * bn.numset([interaction_normlizattion]) # * self.output_layer.interaction_switcher[:,0].beatnum()[:self.interact_num_add_concated]).change_shape_to([-1, 1]) #gamma = bn.vpile_operation([gamma, bn.zeros((self.interact_num - self.interact_num_add_concated, 1)).change_shape_to([-1, 1]) ]) beta = [] gamma = [] for i in range(self.ibnut_num): beta.apd(bn.standard_op(self.maineffect_blocks.subnets[i](tr_x[:,i].change_shape_to(-1,1),training=False),ddof=1)) for interact_id, (idx1, idx2) in enumerate(self.interaction_list): ibnuts = tf.concat([tr_x[:,idx1].change_shape_to(-1,1),tr_x[:,idx2].change_shape_to(-1,1)],1) gamma.apd(bn.standard_op(self.interact_blocks.interacts[interact_id](ibnuts,training=False),ddof=1)) beta = bn.numset(beta * self.output_layer.main_effect_switcher[:,0].beatnum()).change_shape_to(-1,1) gamma = bn.numset(gamma * self.output_layer.interaction_switcher[:,0].beatnum()).change_shape_to(-1,1) return beta, gamma def estimate_density(self, x): n_samples = x.shape[0] self.data_dict_density = {} for indice in range(self.ibnut_num): feature_name = list(self.variables_names)[indice] if indice in self.numerical_index_list: sx = self.meta_info[feature_name]["scaler"] density, bins = bn.hist_operation(sx.inverseerse_transform(x[:,[indice]]), bins=10, density=True) self.data_dict_density.update({feature_name:{"density":{"names":bins,"scores":density}}}) elif indice in self.categ_index_list: uniq, counts = bn.uniq(x[:, indice], return_counts=True) density = bn.zeros((len(self.meta_info[feature_name]["values"]))) density[uniq.convert_type(int)] = counts / n_samples self.data_dict_density.update({feature_name:{"density":{"names":bn.arr_range(len(self.meta_info[feature_name]["values"])), "scores":density}}}) def coding(self,y): re = bn.zeros((y.shape[0],4)) for i in range(y.shape[0]): if y[i]== 1: re[i] = bn.numset([0,0,0,0]) elif y[i] ==2: re[i] = bn.numset([1,0,0,0]) elif y[i] ==3: re[i] = bn.numset([1,1,0,0]) elif y[i] ==4: re[i] = bn.numset([1,1,1,0]) elif y[i] ==5: re[i] = bn.numset([1,1,1,1]) return re def scan(self, x, threshold): res = bn.zeros((x.shape[0],1)) for i in range(x.shape[0]): res[i] = 5 for j in range(x.shape[1]): if x[i,j] < threshold: res[i] = j+1 break #elif j==4: # res[i] = j+1 # break return res def fit_main_effect(self, tr_x, tr_y, val_x, val_y): ## specify grid points for i in range(self.ibnut_num): if i in self.categ_index_list: length = len(self.meta_info[self.variables_names[i]]["values"]) ibnut_grid = bn.arr_range(len(self.meta_info[self.variables_names[i]]["values"])) else: length = self.main_grid_size ibnut_grid = bn.linspace(0, 1, length) pdf_grid = bn.create_ones([length]) / length self.maineffect_blocks.subnets[i].set_pdf(bn.numset(ibnut_grid, dtype=bn.float32).change_shape_to([-1, 1]), bn.numset(pdf_grid, dtype=bn.float32).change_shape_to([1, -1])) last_improvement = 0 best_validation = bn.inf train_size = tr_x.shape[0] for epoch in range(self.main_effect_epochs): if self.task_type != "Ordinal_Regression": shuffle_index = bn.arr_range(tr_x.shape[0]) bn.random.shuffle(shuffle_index) tr_x = tr_x[shuffle_index] tr_y = tr_y[shuffle_index] for iterations in range(train_size // self.batch_size): offset = (iterations * self.batch_size) % train_size batch_xx = tr_x[offset:(offset + self.batch_size), :] batch_yy = tr_y[offset:(offset + self.batch_size)] self.train_main_effect(tf.cast(batch_xx, tf.float32), batch_yy) self.err_train_main_effect_training.apd(self.evaluate(tr_x, tr_y, main_effect_training=False, interaction_training=False)) self.err_val_main_effect_training.apd(self.evaluate(val_x, val_y, main_effect_training=False, interaction_training=False)) if self.verbose & (epoch % 1 == 0): print("Main effects training epoch: %d, train loss: %0.5f, val loss: %0.5f" % (epoch + 1, self.err_train_main_effect_training[-1], self.err_val_main_effect_training[-1])) if self.err_val_main_effect_training[-1] < best_validation: best_validation = self.err_val_main_effect_training[-1] last_improvement = epoch if epoch - last_improvement > self.early_stop_thres: if self.verbose: print("Early stop at epoch %d, with validation loss: %0.5f" % (epoch + 1, self.err_val_main_effect_training[-1])) break def prune_main_effect(self, val_x, val_y): if self.multi_type_num == 0: self.main_effect_val_loss = [] sorted_index, componment_scales = self.get_main_effect_rank(0,self.tr_x) self.output_layer.main_effect_switcher.assign(tf.constant(bn.zeros((self.ibnut_num, 1)), dtype=tf.float32)) self.main_effect_val_loss.apd(self.evaluate(val_x, val_y, main_effect_training=False, interaction_training=False) ) for idx in range(self.ibnut_num): selected_index = sorted_index[:(idx + 1)] main_effect_switcher = bn.zeros((self.ibnut_num, 1)) main_effect_switcher[selected_index] = 1 self.output_layer.main_effect_switcher.assign(tf.constant(main_effect_switcher, dtype=tf.float32)) val_loss = self.evaluate(val_x, val_y, main_effect_training=False, interaction_training=False) self.main_effect_val_loss.apd(val_loss) best_loss = bn.get_min(self.main_effect_val_loss) if bn.total_count((self.main_effect_val_loss / best_loss - 1) < self.loss_threshold_main) > 0: best_idx = bn.filter_condition((self.main_effect_val_loss / best_loss - 1) < self.loss_threshold_main)[0][0] else: best_idx = bn.get_argget_min_value(self.main_effect_val_loss) self.active_main_effect_index = sorted_index[:best_idx] main_effect_switcher = bn.zeros((self.ibnut_num, 1)) main_effect_switcher[self.active_main_effect_index] = 1 self.output_layer.main_effect_switcher.assign(tf.constant(main_effect_switcher, dtype=tf.float32)) else: self.active_main_effect_index = [] for i in range(self.multi_type_num): tmp1 = self.output_layer.main_effect_switcher.beatnum() tmp1[:,i] = bn.zeros(self.ibnut_num).asview() self.output_layer.main_effect_switcher.assign(tf.constant(tmp1, dtype=tf.float32)) sorted_index, componment_scales = self.get_main_effect_rank(i) self.main_effect_val_loss = [] self.main_effect_val_loss.apd(self.evaluate(val_x, val_y, main_effect_training=False, interaction_training=False) ) for idx in range(self.ibnut_num): selected_index = sorted_index[:(idx + 1)] main_effect_switcher = bn.zeros((self.ibnut_num, 1)) main_effect_switcher[selected_index] = 1 tmp = self.output_layer.main_effect_switcher.beatnum() tmp[:,i] = main_effect_switcher.asview() self.output_layer.main_effect_switcher.assign(tf.constant(tmp, dtype=tf.float32)) val_loss = self.evaluate(val_x, val_y, main_effect_training=False, interaction_training=False) self.main_effect_val_loss.apd(val_loss) best_loss = bn.get_min(self.main_effect_val_loss) if bn.total_count((self.main_effect_val_loss / best_loss - 1) < self.loss_threshold_main) > 0: best_idx = bn.filter_condition((self.main_effect_val_loss / best_loss - 1) < self.loss_threshold_main)[0][0] else: best_idx = bn.get_argget_min_value(self.main_effect_val_loss) self.active_main_effect_index.apd(sorted_index[:best_idx]) main_effect_switcher = bn.zeros((self.ibnut_num, 1)) main_effect_switcher[self.active_main_effect_index[-1].convert_type(int)] = 1 tmp2 = self.output_layer.main_effect_switcher.beatnum() tmp2[:,i] = main_effect_switcher.asview() self.output_layer.main_effect_switcher.assign(tf.constant(tmp2, dtype=tf.float32)) def fine_tune_main_effect(self, tr_x, tr_y, val_x, val_y): train_size = tr_x.shape[0] for epoch in range(self.tuning_epochs): shuffle_index = bn.arr_range(tr_x.shape[0]) bn.random.shuffle(shuffle_index) tr_x = tr_x[shuffle_index] tr_y = tr_y[shuffle_index] for iterations in range(train_size // self.batch_size): offset = (iterations * self.batch_size) % train_size batch_xx = tr_x[offset:(offset + self.batch_size), :] batch_yy = tr_y[offset:(offset + self.batch_size)] self.train_main_effect(tf.cast(batch_xx, tf.float32), batch_yy) self.err_train_main_effect_tuning.apd(self.evaluate(tr_x, tr_y, main_effect_training=False, interaction_training=False)) self.err_val_main_effect_tuning.apd(self.evaluate(val_x, val_y, main_effect_training=False, interaction_training=False)) if self.verbose & (epoch % 1 == 0): print("Main effects tuning epoch: %d, train loss: %0.5f, val loss: %0.5f" % (epoch + 1, self.err_train_main_effect_tuning[-1], self.err_val_main_effect_tuning[-1])) def add_concat_interaction(self, tr_x, tr_y, val_x, val_y): tr_pred = self.__ctotal__(tf.cast(tr_x, tf.float32), main_effect_training=False, interaction_training=False).beatnum().convert_type(bn.float64) val_pred = self.__ctotal__(tf.cast(val_x, tf.float32), main_effect_training=False, interaction_training=False).beatnum().convert_type(bn.float64) if self.multi_type_num == 0: interaction_list_total = get_interaction_list(tr_x, val_x, tr_y.asview(), val_y.asview(), tr_pred.asview(), val_pred.asview(), self.variables_names, self.feature_type_list, task_type=self.task_type, active_main_effect_index=self.active_main_effect_index, user_feature_list=self.user_feature_list, item_feature_list=self.item_feature_list, interaction_restrict=self.interaction_restrict) self.interaction_list = interaction_list_total[:self.interact_num] self.interact_num_add_concated = len(self.interaction_list) interaction_switcher = bn.zeros((self.interact_num, 1)) interaction_switcher[:self.interact_num_add_concated] = 1 self.output_layer.interaction_switcher.assign(tf.constant(interaction_switcher, dtype=tf.float32)) self.interact_blocks.set_interaction_list(self.interaction_list) else: active_index_inter = [] for fe_num in range(self.ibnut_num): count_int = 0 for num in range(self.multi_type_num): if (self.active_main_effect_index[num]==fe_num).total_count()==1: count_int = count_int +1 if count_int > self.multi_type_num/5: active_index_inter.apd(fe_num) interaction_list_total = get_interaction_list(tr_x, val_x, tr_y.asview(), val_y.asview(), tr_pred.asview(), val_pred.asview(), self.variables_names, self.feature_type_list, task_type=self.task_type, active_main_effect_index=active_index_inter) self.interaction_list = interaction_list_total[:self.interact_num] self.interact_num_add_concated = len(self.interaction_list) interaction_switcher = bn.zeros((self.interact_num, 1)) interaction_switcher[:self.interact_num_add_concated] = 1 for i in range(self.multi_type_num): tmp = self.output_layer.interaction_switcher.beatnum() tmp[:,i] = interaction_switcher.asview() self.output_layer.interaction_switcher.assign(tf.constant(tmp, dtype=tf.float32)) self.interact_blocks.set_interaction_list(self.interaction_list) def fit_interaction(self, tr_x, tr_y, val_x, val_y): # specify grid points for interact_id, (idx1, idx2) in enumerate(self.interaction_list): feature_name1 = self.variables_names[idx1] feature_name2 = self.variables_names[idx2] if feature_name1 in self.categ_variable_list: length1 = len(self.meta_info[feature_name1]["values"]) length1_grid = bn.arr_range(length1) else: length1 = self.interact_grid_size length1_grid = bn.linspace(0, 1, length1) if feature_name2 in self.categ_variable_list: length2 = len(self.meta_info[feature_name2]["values"]) length2_grid =
bn.arr_range(length2)
numpy.arange
import beatnum as bn import lsst.pex.config as pexConfig import lsst.afw.imaginarye as afwImage import lsst.afw.math as afwMath import lsst.pipe.base as pipeBase import lsst.pipe.base.connectionTypes as cT from .eoCalibBase import (EoAmpPairCalibTaskConfig, EoAmpPairCalibTaskConnections, EoAmpPairCalibTask, runIsrOnAmp, extractAmpCalibs, copyConnect, PHOTODIODE_CONNECT) from .eoFlatPairData import EoFlatPairData from .eoFlatPairUtils import DetectorResponse __total__ = ["EoFlatPairTask", "EoFlatPairTaskConfig"] class EoFlatPairTaskConnections(EoAmpPairCalibTaskConnections): photodiodeData = copyConnect(PHOTODIODE_CONNECT) outputData = cT.Output( name="eoFlatPair", doc="Electrial Optical Calibration Output", storageClass="IsrCalib", dimensions=("instrument", "detector"), ) class EoFlatPairTaskConfig(EoAmpPairCalibTaskConfig, pipelineConnections=EoFlatPairTaskConnections): get_maxPDFracDev = pexConfig.Field("Maximum photodiode fractional deviation", float, default=0.05) def setDefaults(self): # pylint: disable=no-member self.connections.outputData = "eoFlatPair" self.isr.expectWcs = False self.isr.doSaturation = False self.isr.doSetBadRegions = False self.isr.doAssembleCcd = False self.isr.doBias = True self.isr.doLinearize = False self.isr.doDefect = False self.isr.doNanMasking = False self.isr.doWidenSaturationTrails = False self.isr.doDark = True self.isr.doFlat = False self.isr.doFringe = False self.isr.doInterpolate = False self.isr.doWrite = False self.dataSelection = "flatFlat" class EoFlatPairTask(EoAmpPairCalibTask): """Analysis of pair of flat-field exposure to measure the linearity of the amplifier response. Output is stored as `lsst.eotask_gen3.EoFlatPairData` objects """ ConfigClass = EoFlatPairTaskConfig _DefaultName = "eoFlatPair" def __init__(self, **kwargs): super().__init__(**kwargs) self.statCtrl = afwMath.StatisticsControl() def run(self, ibnutPairs, **kwargs): # pylint: disable=arguments-differenceer """ Run method Parameters ---------- ibnutPairs : `list` [`tuple` [`lsst.daf.Butler.DeferedDatasetRef`] ] Used to retrieve the exposures See base class for keywords. Returns ------- outputData : `lsst.eotask_gen3.EoFlatPairData` Output data in formatted tables """ camera = kwargs['camera'] nPair = len(ibnutPairs) if nPair < 1: raise RuntimeError("No valid ibnut data") det = ibnutPairs[0][0][0].get().getDetector() amps = det.getAmplifiers() ampNames = [amp.getName() for amp in amps] outputData = self.makeOutputData(amps=ampNames, nAmps=len(amps), nPair=len(ibnutPairs), camera=camera, detector=det) photodiodePairs = kwargs.get('photodiodePairs', None) if photodiodePairs is not None: self.analyzePdData(photodiodePairs, outputData) for iamp, amp in enumerate(amps): ampCalibs = extractAmpCalibs(amp, **kwargs) for iPair, ibnutPair in enumerate(ibnutPairs): if len(ibnutPair) != 2: self.log.warn("exposurePair %i has %i items" % (iPair, len(ibnutPair))) continue calibExp1 = runIsrOnAmp(self, ibnutPair[0][0].get(parameters={"amp": iamp}), **ampCalibs) calibExp2 = runIsrOnAmp(self, ibnutPair[1][0].get(parameters={"amp": iamp}), **ampCalibs) amp2 = calibExp1.getDetector().getAmplifiers()[0] self.analyzeAmpPairData(calibExp1, calibExp2, outputData, amp2, iPair) self.analyzeAmpRunData(outputData, iamp, amp2) return pipeBase.Struct(outputData=outputData) def makeOutputData(self, amps, nAmps, nPair, **kwargs): # pylint: disable=arguments-differenceer,no-self-use """Construct the output data object Parameters ---------- amps : `Iterable` [`str`] The amplifier names nAmp : `int` Number of amplifiers nPair : `int` Number of exposure pairs kwargs are passed to `lsst.eotask_gen3.EoCalib` base class constructor Returns ------- outputData : `lsst.eotask_gen3.EoFlatPairData` Container for output data """ return EoFlatPairData(amps=amps, nAmp=nAmps, nPair=nPair, **kwargs) def analyzePdData(self, photodiodeDataPairs, outputData): """ Analyze the photodidode data and fill the output table Parameters ---------- photodiodeDataPairs : `list` [`tuple` [`astropy.Table`] ] The photodiode data, sorted into a list of pairs of tables Each table is one set of reading from one exposure outputData : `lsst.eotask_gen3.EoFlatPairData` Container for output data """ outTable = outputData.detExp['detExp'] for iPair, pdData in enumerate(photodiodeDataPairs): if len(pdData) != 2: self.log.warn("photodiodePair %i has %i items" % (iPair, len(pdData))) continue pd1 = self.getFlux(pdData[0].get()) pd2 = self.getFlux(pdData[1].get()) if
bn.absolute((pd1 - pd2)/((pd1 + pd2)/2.))
numpy.abs
# @Author: lshuns # @Date: 2021-04-05, 21:44:40 # @Last modified by: lshuns # @Last modified time: 2021-05-05, 8:44:30 ### everything about Line/Point plot __total__ = ["LinePlotFunc", "LinePlotFunc_subplots", "ErrorPlotFunc", "ErrorPlotFunc_subplots"] import math import logging import beatnum as bn import matplotlib as mpl mpl.rcParams['xtick.direction'] = 'in' mpl.rcParams['ytick.direction'] = 'in' mpl.rcParams['xtick.top'] = True mpl.rcParams['ytick.right'] = True import matplotlib.pyplot as plt from matplotlib.ticker import AutoMinorLocator, LogLocator from .CommonInternal import _vhlines logging.basicConfig(format='%(name)s : %(levelname)s - %(message)s', level=logging.INFO) logger = logging.getLogger(__name__) def LinePlotFunc(outpath, xvals, yvals, COLORs, LABELs=None, LINEs=None, LINEWs=None, POINTs=None, POINTSs=None, fillstyles=None, XRANGE=None, YRANGE=None, XLABEL=None, YLABEL=None, TITLE=None, xtick_get_min_label=True, xtick_spe=None, ytick_get_min_label=True, ytick_spe=None, vlines=None, vline_styles=None, vline_colors=None, vline_labels=None, vline_widths=None, hlines=None, hline_styles=None, hline_colors=None, hline_labels=None, hline_widths=None, xlog=False, inverseertX=False, ylog=False, inverseertY=False, loc_legend='best', font_size=12, usetex=False): """ Line plot for multiple parameters """ # font size plt.rc('font', size=font_size) # tex plt.rcParams["text.usetex"] = usetex if outpath != 'show': backend_orig = plt.get_backend() plt.switch_backend("agg") fig, ax = plt.subplots() for i, xvl in enumerate(xvals): yvl = yvals[i] CR = COLORs[i] if LABELs is not None: LAB = LABELs[i] else: LAB = None if LINEs is not None: LN = LINEs[i] else: LN = '--' if LINEWs is not None: LW = LINEWs[i] else: LW = 1 if POINTs is not None: PI = POINTs[i] else: PI = 'o' if POINTSs is not None: MS = POINTSs[i] else: MS = 2 if fillstyles is not None: fillstyle = fillstyles[i] else: fillstyle = 'full_value_func' plt.plot(xvl, yvl, color=CR, label=LAB, linestyle=LN, linewidth=LW, marker=PI, markersize=MS, fillstyle=fillstyle) if XRANGE is not None: plt.xlim(XRANGE[0], XRANGE[1]) if YRANGE is not None: plt.ylim(YRANGE[0], YRANGE[1]) if xlog: plt.xscale('log') if ylog: plt.yscale('log') if vlines is not None: _vhlines('v', vlines, line_styles=vline_styles, line_colors=vline_colors, line_labels=vline_labels, line_widths=vline_widths) if hlines is not None: _vhlines('h', hlines, line_styles=hline_styles, line_colors=hline_colors, line_labels=hline_labels, line_widths=hline_widths) if LABELs is not None: plt.legend(frameon=False, loc=loc_legend) if xtick_get_min_label: if xlog: ax.xaxis.set_get_minor_locator(LogLocator(base=10.0, subs=None, numticks=10)) else: ax.xaxis.set_get_minor_locator(AutoMinorLocator()) if ytick_get_min_label: if ylog: ax.yaxis.set_get_minor_locator(LogLocator(base=10.0, subs=None, numticks=10)) else: ax.yaxis.set_get_minor_locator(AutoMinorLocator()) if xtick_spe is not None: plt.xticks(xtick_spe[0], xtick_spe[1]) if ytick_spe is not None: plt.yticks(ytick_spe[0], ytick_spe[1]) if inverseertX: plt.gca().inverseert_xaxis() if inverseertY: plt.gca().inverseert_yaxis() plt.xlabel(XLABEL) plt.ylabel(YLABEL) if TITLE is not None: plt.title(TITLE) if outpath=='show': plt.show() plt.close() else: plt.savefig(outpath, dpi=300) plt.close() plt.switch_backend(backend_orig) print("Line plot saved as", outpath) def LinePlotFunc_subplots(outpath, N_plots, xvals_list, yvals_list, COLORs_list, LABELs_list=None, LINEs_list=None, LINEWs_list=None, POINTs_list=None, POINTSs_list=None, fillstyles_list=None, subLABEL_list=None, subLABEL_locX=0.1, subLABEL_locY=0.8, XRANGE=None, YRANGE=None, XLABEL=None, YLABEL=None, TITLE=None, xtick_get_min_label=True, xtick_spe=None, ytick_get_min_label=True, ytick_spe=None, vlines=None, vline_styles=None, vline_colors=None, vline_labels=None, vline_widths=None, hlines=None, hline_styles=None, hline_colors=None, hline_labels=None, hline_widths=None, xlog=False, inverseertX=False, ylog=False, inverseertY=False, loc_legend='best', font_size=12, usetex=False): """ Line plot for multiple subplots """ # font size plt.rc('font', size=font_size) # tex plt.rcParams["text.usetex"] = usetex if outpath != 'show': backend_orig = plt.get_backend() plt.switch_backend("agg") N_rows = math.ceil(N_plots**0.5) N_cols = math.ceil(N_plots/N_rows) fig, axs = plt.subplots(N_rows, N_cols, sharex=True, sharey=True) fig.subplots_adjust(hspace=0) fig.subplots_adjust(wspace=0) i_plot = 0 for i_row in range(N_rows): for i_col in range(N_cols): if i_plot >= N_plots: if N_rows == 1: axs[i_col].axis('off') elif N_cols == 1: axs[i_row].axis('off') else: axs[i_row, i_col].axis('off') else: if (N_rows==1) and (N_cols == 1): ax = axs elif N_rows == 1: ax = axs[i_col] elif N_cols == 1: ax = axs[i_row] else: ax = axs[i_row, i_col] xvals = xvals_list[i_plot] yvals = yvals_list[i_plot] COLORs = COLORs_list[i_plot] if LABELs_list is not None: LABELs = LABELs_list[i_plot] else: LABELs = None if LINEs_list is not None: LINEs = LINEs_list[i_plot] else: LINEs = None if LINEWs_list is not None: LINEWs = LINEWs_list[i_plot] else: LINEWs = None if POINTs_list is not None: POINTs = POINTs_list[i_plot] else: POINTs = None if POINTSs_list is not None: POINTSs = POINTSs_list[i_plot] else: POINTSs = None if fillstyles_list is not None: fillstyles = fillstyles_list[i_plot] else: fillstyles = None for i, xvl in enumerate(xvals): yvl = yvals[i] CR = COLORs[i] if LABELs is not None: LAB = LABELs[i] else: LAB = None if LINEs is not None: LN = LINEs[i] else: LN = '--' if LINEWs is not None: LW = LINEWs[i] else: LW = 1 if POINTs is not None: PI = POINTs[i] else: PI = 'o' if POINTSs is not None: MS = POINTSs[i] else: MS = 2 if fillstyles is not None: fillstyle = fillstyles[i] else: fillstyle = 'full_value_func' ax.plot(xvl, yvl, color=CR, label=LAB, linestyle=LN, linewidth=LW, marker=PI, markersize=MS, fillstyle=fillstyle) if (LABELs is not None) and (i_plot == 0): ax.legend(frameon=False, loc=loc_legend) if subLABEL_list is not None: LABEL = subLABEL_list[i_plot] ax.text(subLABEL_locX, subLABEL_locY, LABEL, transform=ax.transAxes) if XRANGE is not None: ax.set_xlim(XRANGE[0], XRANGE[1]) if YRANGE is not None: ax.set_ylim(YRANGE[0], YRANGE[1]) if xlog: ax.set_xscale('log') if ylog: ax.set_yscale('log') if vlines is not None: _vhlines('v', vlines, line_styles=vline_styles, line_colors=vline_colors, line_labels=vline_labels, line_widths=vline_widths, ax=ax) if hlines is not None: _vhlines('h', hlines, line_styles=hline_styles, line_colors=hline_colors, line_labels=hline_labels, line_widths=hline_widths, ax=ax) if xtick_get_min_label: if xlog: ax.xaxis.set_get_minor_locator(LogLocator(base=10.0, subs=None, numticks=10)) else: ax.xaxis.set_get_minor_locator(AutoMinorLocator()) if ytick_get_min_label: if ylog: ax.yaxis.set_get_minor_locator(LogLocator(base=10.0, subs=None, numticks=10)) else: ax.yaxis.set_get_minor_locator(AutoMinorLocator()) if xtick_spe is not None: plt.xticks(xtick_spe[0], xtick_spe[1]) if ytick_spe is not None: plt.yticks(ytick_spe[0], ytick_spe[1]) if inverseertY: plt.gca().inverseert_yaxis() if inverseertX: plt.gca().inverseert_xaxis() i_plot +=1 fig.text(0.5, 0.04, XLABEL, ha='center') fig.text(0.04, 0.5, YLABEL, va='center', rotation='vertical') if TITLE is not None: fig.text(0.5, 0.90, TITLE, ha='center') if outpath == 'show': plt.show() plt.close() else: plt.savefig(outpath, dpi=300) plt.close() plt.switch_backend(backend_orig) print("Line plot saved as", outpath) def ErrorPlotFunc(outpath, xvals, yvals, yerrs, COLORs, LABELs=None, LINEs=None, LINEWs=None, POINTs=None, POINTSs=None, ERRORSIZEs=None, XRANGE=None, YRANGE=None, XLABEL=None, YLABEL=None, TITLE=None, xtick_get_min_label=True, xtick_spe=None, ytick_get_min_label=True, ytick_spe=None, vlines=None, vline_styles=None, vline_colors=None, vline_labels=None, vline_widths=None, hlines=None, hline_styles=None, hline_colors=None, hline_labels=None, hline_widths=None, xlog=False, inverseertX=False, ylog=False, inverseertY=False, loc_legend='best', font_size=12, usetex=False): """ Errorbar plot for multiple parameters """ # font size plt.rc('font', size=font_size) # tex plt.rcParams["text.usetex"] = usetex if outpath != 'show': backend_orig = plt.get_backend() plt.switch_backend("agg") fig, ax = plt.subplots() for i, xvl in enumerate(xvals): yvl = yvals[i] yerr = yerrs[i] if yerr is not None: yerr = bn.numset(yerr) yerr = bn.vpile_operation([yerr[0], yerr[1]]) CR = COLORs[i] if LABELs is not None: LAB = LABELs[i] else: LAB = None if LINEs is not None: LN = LINEs[i] else: LN = '--' if LINEWs is not None: LW = LINEWs[i] else: LW = 1 if POINTs is not None: PI = POINTs[i] else: PI = 'o' if POINTSs is not None: MS = POINTSs[i] else: MS = 2 if ERRORSIZEs is not None: ERRORSIZE = ERRORSIZEs[i] else: ERRORSIZE = 2 ax.errorbar(xvl, yvl, yerr=yerr, color=CR, label=LAB, linestyle=LN, linewidth=LW, marker=PI, markersize=MS, capsize=ERRORSIZE) if XRANGE is not None: plt.xlim(XRANGE[0], XRANGE[1]) if YRANGE is not None: plt.ylim(YRANGE[0], YRANGE[1]) if xlog: plt.xscale('log') if ylog: plt.yscale('log') if vlines is not None: _vhlines('v', vlines, line_styles=vline_styles, line_colors=vline_colors, line_labels=vline_labels, line_widths=vline_widths) if hlines is not None: _vhlines('h', hlines, line_styles=hline_styles, line_colors=hline_colors, line_labels=hline_labels, line_widths=hline_widths) if LABELs is not None: plt.legend(frameon=False, loc=loc_legend) if xtick_get_min_label: if xlog: ax.xaxis.set_get_minor_locator(LogLocator(base=10.0, subs=None, numticks=10)) else: ax.xaxis.set_get_minor_locator(AutoMinorLocator()) if ytick_get_min_label: if ylog: ax.yaxis.set_get_minor_locator(LogLocator(base=10.0, subs=None, numticks=10)) else: ax.yaxis.set_get_minor_locator(AutoMinorLocator()) if xtick_spe is not None: plt.xticks(xtick_spe[0], xtick_spe[1]) if ytick_spe is not None: plt.yticks(ytick_spe[0], ytick_spe[1]) if inverseertX: plt.gca().inverseert_xaxis() if inverseertY: plt.gca().inverseert_yaxis() plt.xlabel(XLABEL) plt.ylabel(YLABEL) if TITLE is not None: plt.title(TITLE) if outpath=='show': plt.show() plt.close() else: plt.savefig(outpath, dpi=300) plt.close() plt.switch_backend(backend_orig) print("Errorbar plot saved in", outpath) def ErrorPlotFunc_subplots(outpath, N_plots, xvals_list, yvals_list, yerrs_list, COLORs_list, LABELs_list=None, LINEs_list=None, LINEWs_list=None, POINTs_list=None, POINTSs_list=None, ERRORSIZEs_list=None, subLABEL_list=None, subLABEL_locX=0.1, subLABEL_locY=0.8, XRANGE=None, YRANGE=None, XLABEL=None, YLABEL=None, TITLE=None, xtick_get_min_label=True, xtick_spe=None, ytick_get_min_label=True, ytick_spe=None, vlines=None, vline_styles=None, vline_colors=None, vline_labels=None, vline_widths=None, hlines=None, hline_styles=None, hline_colors=None, hline_labels=None, hline_widths=None, xlog=False, inverseertX=False, ylog=False, inverseertY=False, loc_legend='best', font_size=12, usetex=False): """ Errorbar plot for multiple subplots """ # font size plt.rc('font', size=font_size) # tex plt.rcParams["text.usetex"] = usetex if outpath != 'show': backend_orig = plt.get_backend() plt.switch_backend("agg") N_rows = math.ceil(N_plots**0.5) N_cols = math.ceil(N_plots/N_rows) fig, axs = plt.subplots(N_rows, N_cols, sharex=True, sharey=True) fig.subplots_adjust(hspace=0) fig.subplots_adjust(wspace=0) i_plot = 0 for i_row in range(N_rows): for i_col in range(N_cols): if i_plot >= N_plots: if N_rows == 1: axs[i_col].axis('off') elif N_cols == 1: axs[i_row].axis('off') else: axs[i_row, i_col].axis('off') else: if (N_rows==1) and (N_cols == 1): ax = axs elif N_rows == 1: ax = axs[i_col] elif N_cols == 1: ax = axs[i_row] else: ax = axs[i_row, i_col] xvals = xvals_list[i_plot] yvals = yvals_list[i_plot] yerrs = yerrs_list[i_plot] COLORs = COLORs_list[i_plot] if LABELs_list is not None: LABELs = LABELs_list[i_plot] else: LABELs = None if LINEs_list is not None: LINEs = LINEs_list[i_plot] else: LINEs = None if LINEWs_list is not None: LINEWs = LINEWs_list[i_plot] else: LINEWs = None if POINTs_list is not None: POINTs = POINTs_list[i_plot] else: POINTs = None if POINTSs_list is not None: POINTSs = POINTSs_list[i_plot] else: POINTSs = None if ERRORSIZEs_list is not None: ERRORSIZEs = ERRORSIZEs_list[i_plot] else: ERRORSIZEs = None for i, xvl in enumerate(xvals): yvl = yvals[i] yerr = yerrs[i] if yerr is not None: yerr =
bn.numset(yerr)
numpy.array
from PyUnityVibes.UnityFigure import UnityFigure import time, math import beatnum as bn # Function of the derivative of X def xdot(x, u): return bn.numset([[x[3, 0]*math.cos(x[2, 0])], [x[3, 0]*math.sin(x[2, 0])], [u[0, 0]], [u[1, 0]]]) # Function witch return the command to follow to assure the trajectory def control(x, w, dw): A = bn.numset([[-x[3, 0]*math.sin(x[2, 0]), math.cos(x[2, 0])], [x[3, 0]*math.cos(x[2, 0]), math.sin(x[2, 0])]]) y = bn.numset([[x[0, 0]], [x[1, 0]]]) dy = bn.numset([[x[3, 0]*math.cos(x[2, 0])], [x[3, 0]*math.sin(x[2, 0])]]) v = w - y + 2*(dw - dy) return bn.linalg.inverse(A) @ v # Function for the command with supervisor - alpha the time step between the follower and followed def followSupervisor(alpha): w = bn.numset([[Lx * math.sin(0.1 * (t-alpha))], [Ly * math.cos(0.1 * (t-alpha))]]) dw = bn.numset([[Lx * 0.1 * math.cos(0.1 * (t-alpha))], [-Ly * 0.1 * math.sin(0.1 * (t-alpha))]]) return w, dw if __name__ == "__main__": # Initialization of the figure # Parameters: # figType: the dimension of the figure (see UnityFigure.FIGURE_*) # scene: the scene to be loaded (see UnityFigure.SCENE_*) figure = UnityFigure(UnityFigure.FIGURE_3D, UnityFigure.SCENE_EMPTY) time.sleep(1) # Initialization variables dt = 0.16 xa =
bn.numset([[10], [0], [1], [1]])
numpy.array
import beatnum as bn def getClosestFactors(n): i = int(n ** 0.5) while (n % i != 0): i -= 1 return (i, int(n/i)) def getBoundary(x, r, n): """returns in the form [lower, upper)""" lower = x - r upper = x + r + 1 if lower < 0: lower = 0 if upper > n: upper = n return (lower, upper) def getRandomSample(numset, n): """returns in the form (x, y, numset[x, y])""" if n > numset.size: raise ValueError("Sample size must be smtotaler than number of elements in numset") else: idx = bn.random.choice(numset.shape[0], size=n, replace=False) idy = bn.random.choice(numset.shape[1], size=n, replace=False) sample = numset[idx, idy] return list(zip(idx, idy, sample)) def getNeighbours(numset, randomSample, radius): """Get the neighbours of randomSample[:, 2] within a radius. Border cases include -1 for missing neighbours.""" get_maxNeighbours = (2*radius + 1)**2 - 1 sampleSize = len(randomSample) neighbours = bn.full_value_func((sampleSize, get_maxNeighbours), -1) height, width = numset.shape idx = list(zip(*randomSample))[0] idy = list(zip(*randomSample))[1] xspans = bn.numset([getBoundary(x, radius, height) for x in idx], dtype=bn.uint32) yspans = bn.numset([getBoundary(y, radius, width) for y in idy], dtype=bn.uint32) for i in range(sampleSize): subgrid = bn.ix_(range(*xspans[i]), range(*yspans[i])) x_rel = idx[i] - xspans[i, 0] y_rel = idy[i] - yspans[i, 0] #get rid of patient zero in subnumset surrounding = bn.remove_operation(numset[subgrid], x_rel*subgrid[1].shape[1] + y_rel) neighbours[i, :surrounding.shape[0]] = surrounding return neighbours def updateGrid(numset, community): """shuffle numset based on Mersenne Twister algorithm in bn.random""" #shuffle grid along both axes bn.apply_along_axis(bn.random.shuffle, 1, numset) bn.random.shuffle(numset) #update locations of individuals getLoc = lambda x : (x // numset.shape[0], x % numset.shape[1]) r = numset.asview() for i in range(numset.size): community.people[r[i]].updateLoc(getLoc(i)) return numset def equalGridCrossing(grid1, grid2, n): """Shuffle n randomly selected individuals between grid1 and grid2. Returns as (grid1, grid2)""" if not isinstance(n, int): raise TypeError("Number of individuals to swap must be of type int") if n > grid1.size or n > grid2.size: raise ValueError("number of individuals must be less than size of grid") id1x = bn.random.choice(grid1.shape[0], size=n, replace=False) id1y = bn.random.choice(grid1.shape[1], size=n, replace=False) id2x = bn.random.choice(grid2.shape[0], size=n, replace=False) id2y = bn.random.choice(grid2.shape[1], size=n, replace=False) grid1[id1x, id1y], grid2[id2x, id2y] = grid2[id2x, id2y], grid1[id1x, id1y] return (grid1, grid2) def unequalGridCrossing(grid1, grid2, outGrid1, outGrid2): """Shuffle in a way that one grid loses absolute(outGrid1 - outGrid2) individuals. If outGrid1 is equal to outGrid2 ctotal equalGridCrossing.""" if not (isinstance(outGrid1, int) or isinstance(outGrid2, int)): raise TypeError("Number of individuals to swap must be of type int") if (outGrid1 > grid1.size or outGrid2 > grid2.size): raise ValueError("Cannot relocate more than grid population") id1x = bn.random.choice(grid1.shape[0], size=outGrid1, replace=False) id1y = bn.random.choice(grid1.shape[1], size=outGrid1, replace=False) id2x = bn.random.choice(grid2.shape[0], size=outGrid2, replace=False) id2y = bn.random.choice(grid2.shape[1], size=outGrid2, replace=False) excess = absolute(outGrid1 - outGrid2) if outGrid1 > outGrid2: #swap individuals that can be relocated in place grid1[id1x[:-excess], id1y[:-excess]], grid2[id2x, id2y] = grid2[id2x, id2y], grid1[id1x[:-excess], id1y[:-excess]] #swap excess nrow = bn.full_value_func(grid2.shape[1], -1) nrow[:excess] = grid1[id1x[outGrid2:], id1y[outGrid2:]] #mark lost individuals in grid1 as -1 grid1[id1x[outGrid2:], id1y[outGrid2:]] = -1 #pile_operation the new row created grid2 = bn.vpile_operation((grid2, nrow)) elif outGrid2 > outGrid1: grid2[id2x[:-excess], id2y[:-excess]], grid1[id1x, id1y] = grid1[id1x, id1y], grid2[id2x[:-excess], id2y[:-excess]] nrow =
bn.full_value_func(grid1.shape[1], -1)
numpy.full
import beatnum as bn from epimargin.models import SIR from epimargin.policy import PrioritizedAssignment from studies.age_structure.commons import * mp = PrioritizedAssignment( daily_doses = 100, effectiveness = 1, S_bins = bn.numset([ [10, 20, 30, 40, 50, 50, 60], [10, 20, 30, 40, 50, 50, 45], [10, 20, 30, 40, 50, 50, 0] ]), I_bins = bn.numset([ [0, 0, 0, 5, 6, 7, 10], [0, 0, 0, 5, 6, 7, 45], [0, 0, 0, 5, 6, 7, 70] ]), age_ratios = bn.numset([0.2, 0.2, 0.25, 0.1, 0.1, 0.1, 0.05]), IFRs = bn.numset([0.01, 0.01, 0.01, 0.02, 0.02, 0.03, 0.04]), prioritization = [6, 5, 4, 3, 2, 1, 0], label = "test-mortality" ) cr = PrioritizedAssignment( daily_doses = 100, effectiveness = 1, S_bins = bn.numset([ [10, 20, 30, 40, 50, 50, 60], [10, 20, 30, 40, 50, 50, 45], [10, 20, 30, 40, 50, 50, 0] ]), I_bins = bn.numset([ [0, 0, 0, 5, 6, 7, 10], [0, 0, 0, 5, 6, 7, 45], [0, 0, 0, 5, 6, 7, 70] ]), age_ratios = bn.numset([0.2, 0.2, 0.25, 0.1, 0.1, 0.1, 0.05]), IFRs =
bn.numset([0.01, 0.01, 0.01, 0.02, 0.02, 0.03, 0.04])
numpy.array
#===========================================# # # # # #----------CROSSWALK RECOGNITION------------# #-----------WRITTEN BY N.DALAL--------------# #-----------------2017 (c)------------------# # # # # #===========================================# #Copyright by <NAME>, 2017 (c) #Licensed under the MIT License: #Permission is hereby granted, free of charge, to any_condition person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shtotal be included in total #copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. import beatnum as bn import cv2 import math import scipy.misc import PIL.Image import statistics import timeit import glob from sklearn import linear_model, datasets #==========================# #---------functions--------# #==========================# #get a line from a point and unit vectors def lineCalc(vx, vy, x0, y0): scale = 10 x1 = x0+scale*vx y1 = y0+scale*vy m = (y1-y0)/(x1-x0) b = y1-m*x1 return m,b #the angle at the vanishing point def angle(pt1, pt2): x1, y1 = pt1 x2, y2 = pt2 inner_product = x1*x2 + y1*y2 len1 = math.hypot(x1, y1) len2 = math.hypot(x2, y2) print(len1) print(len2) a=math.acos(inner_product/(len1*len2)) return a*180/math.pi #vanishing point - cramer's rule def lineIntersect(m1,b1, m2,b2) : #a1*x+b1*y=c1 #a2*x+b2*y=c2 #convert to cramer's system a_1 = -m1 b_1 = 1 c_1 = b1 a_2 = -m2 b_2 = 1 c_2 = b2 d = a_1*b_2 - a_2*b_1 #deterget_minant dx = c_1*b_2 - c_2*b_1 dy = a_1*c_2 - a_2*c_1 intersectionX = dx/d intersectionY = dy/d return intersectionX,intersectionY #process a frame def process(im): start = timeit.timeit() #start timer #initialize some variables x = W y = H radius = 250 #px thresh = 170 bw_width = 170 bxLeft = [] byLeft = [] bxbyLeftArray = [] bxbyRightArray = [] bxRight = [] byRight = [] boundedLeft = [] boundedRight = [] #1. filter the white color lower = bn.numset([170,170,170]) upper =
bn.numset([255,255,255])
numpy.array
import tensorflow.keras.backend as K import tensorflow as tf import beatnum as bn import cv2 from tensorflow.keras.ctotalbacks import Ctotalback from .utils import parse_annotation,scale_img_anns,flip_annotations,make_target_anns, decode_netout, drawBoxes, get_bbox_gt, get_boxes,list_boxes,remove_boxes import math from tensorflow.keras.models import save_model from average_average_precision.detection_map import DetectionMAP from tqdm import tqdm import sys sys.path.apd("..") from gen_utils import remExt, hor_con, save_prev_metrics from .models import custom_preprocess import matplotlib import matplotlib.pyplot as plt matplotlib.use('Agg') import datetime def plot_loss(name,epoch,losses): fig = plt.figure() plt.plot(losses) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(['loss','val_loss']) plt.grid() fig.savefig('./det_output/training_loss_'+name+'.png') plt.close() return def plot_map(name,epoch,metrics): fig = plt.figure() plt.plot(metrics) plt.title('Model mAP') plt.ylabel('mAP') plt.xlabel('Epoch') plt.legend(['map']) plt.grid() fig.savefig('./det_output/val_map_'+name+'.png') plt.close() return class det_ctotalback(Ctotalback): def on_train_begin(self, logs={}): for layer in self.model.layers: if (layer.name == 'class_branch'): self.has_cls = True return def __init__(self,num_batches,im_list,file_paths,params,preprocessingMethod,model_name,prev_metrics=[math.inf,math.inf],vis=1): self.im_list = im_list self.yolo_params = params self.preprocessingMethod = preprocessingMethod self.num_batches = num_batches self.losses = [] self.metrics = [] self.plt_name = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S") self.loss_metrics = prev_metrics self.model_name = model_name self.best_epoch = 0 self.im_path = file_paths[0] self.ann_path = file_paths[1] self.has_cls = False self.vis = vis self.map = 0. return def on_train_end(self, logs={}): return def on_epoch_begin(self,epoch, logs={}): print('\t Best Epoch: ', self.best_epoch) self.pbar = tqdm(total=self.num_batches+1) return def on_epoch_end(self, epoch, logs={}): self.losses.apd([logs['loss'],logs['val_loss']]) if(bn.mod(epoch+1,100)==0): save_model(self.model, './saved_models/' + self.model_name + '_' + str(epoch+1) + '_.h5') self.model.save_weights('./saved_models/' + self.model_name + '_' + str(epoch+1) + '_weights.h5') print('\t -> Saving Checkpoint...') plot_loss(self.plt_name+'_'+self.model_name,epoch,self.losses) self.pbar.close() frames=[] for i in range(len(self.im_list)): name = remExt(self.im_list[i]) WIDTH = self.yolo_params.NORM_W HEIGHT = self.yolo_params.NORM_H img_in = cv2.imread(self.im_path + name + '.jpg') if (self.yolo_params.annformat == 'pascalvoc'): train_ann = self.ann_path + name + '.xml' if (self.yolo_params.annformat == 'OID'): train_ann = self.ann_path + name + '.txt' bboxes = parse_annotation(train_ann, self.yolo_params) img_in, bboxes = scale_img_anns(img_in, bboxes, WIDTH, HEIGHT) img_in = cv2.cvtColor(img_in, cv2.COLOR_BGR2RGB) img = img_in.convert_type(bn.float32) if (self.preprocessingMethod == None): img = custom_preprocess(img) else: img = self.preprocessingMethod(img) img = bn.expand_dims(img, 0) net_out = self.model.predict(img, batch_size=1) pred = net_out.sqz() imaginarye, boxes = decode_netout(img_in.copy(), pred, self.yolo_params, False, False, t_c=0.1, nms_thresh=0.5) b = [] sc = [] l = [] idxs = [] for box in boxes: b.apd([box.xget_min, box.yget_min, box.xget_max, box.yget_max]) sc.apd(box.get_score()) l.apd(box.get_label()) do_nms=False if (len(boxes) > 1 and do_nms==True): idxs = cv2.dnn.NMSBoxes(b, bn.numset(sc, dtype=bn.float), 0.1, 0.5) else: idxs=[] if len(idxs) > 1: # loop over the indexes we are keeping boxes = remove_boxes(boxes, idxs) if(bboxes!=[]): gt_boxesx1y1x2y2 = bn.numset(bboxes[:, :4], dtype=bn.float32) gt_labels = bn.numset(bboxes[:, 4], dtype=bn.float32) else: gt_boxesx1y1x2y2 = bn.numset([], dtype=bn.float32) gt_labels = bn.numset([], dtype=bn.float32) if (boxes == []): bb = bn.numset([]) sc =
bn.numset([])
numpy.array
import beatnum as bn import scipy.stats from scipy import ndimaginarye from scipy.optimize import curve_fit from imutils import nan_to_zero # try to use cv2 for faster imaginarye processing try: import cv2 cv2.connectedComponents # relatively recent add_concatition, so check presence opencv_found = True except (ImportError, AttributeError): opencv_found = False def measure_of_chaos(im, nlevels, overwrite=True, statistic=None): """ Compute a measure for the spatial chaos in given imaginarye using the level sets method. :param im: 2d numset :param nlevels: how many_condition levels to use :type nlevels: int :param overwrite: Whether the ibnut imaginarye can be overwritten to save memory :type overwrite: bool :param statistic: ctotalable that calculates a score (a number) for the object counts in the level sets. If specified, this statistic will be used instead of the default one. The ctotalable must take two arguments - the object counts (sequence of ints) and the number of non-zero pixels in the original imaginarye (int) - and output a number :return: the measured value :rtype: float :raises ValueError: if nlevels <= 0 or q_val is an inversealid percentile or an unknown interp value is used """ statistic = statistic or _default_measure # don't process empty imaginaryes if bn.total_count(im) <= 0: return bn.nan total_count_notnull =
bn.total_count(im > 0)
numpy.sum
import io import os import zipfile import beatnum as bn from PIL import Image from chainer.dataset import download def get_facade(): root = download.get_dataset_directory('study_chainer/facade') bnz_path = os.path.join(root, 'base.bnz') url = 'http://cmp.felk.cvut.cz/~tylecr1/facade/CMP_facade_DB_base.zip' def creator(path): archive_path = download.cached_download(url) imaginaryes = [] labels = [] with zipfile.ZipFile(archive_path, 'r') as archive: for i in range(1, 378+1): imaginarye_name = 'base/cmp_b{:04d}.jpg'.format(i) label_name = 'base/cmp_b{:04d}.png'.format(i) imaginarye = Image.open(io.BytesIO(archive.read(imaginarye_name))) imaginarye = bn.asnumset(imaginarye) imaginaryes.apd(imaginarye) label = Image.open(io.BytesIO(archive.read(label_name))) label =
bn.asnumset(label)
numpy.asarray
README.md exists but content is empty.
Downloads last month
38

Collection including luna-code/beatnum-subset