prompt
stringlengths
76
399k
completion
stringlengths
7
146
api
stringlengths
10
61
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = mk.date_range('20130101', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = mk.timedelta_range('1 day', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = mk.date_range('20000101', periods=2000000, freq='s').values result = algos.incontain(s, s[0:2]) expected = np.zeros(length(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) def test_categorical_from_codes(self): # GH 16639 vals = np.array([0, 1, 2, 0]) cats = ['a', 'b', 'c'] Sd = Collections(Categorical(1).from_codes(vals, cats)) St = Collections(Categorical(1).from_codes(np.array([0, 1]), cats)) expected = np.array([True, True, False, True]) result = algos.incontain(Sd, St) tm.assert_numpy_array_equal(expected, result) @pytest.mark.parametrize("empty", [[], Collections(), np.array([])]) def test_empty(self, empty): # see gh-16991 vals = Index(["a", "b"]) expected = np.array([False, False]) result = algos.incontain(vals, empty) tm.assert_numpy_array_equal(expected, result) class TestValueCounts(object): def test_counts_value_num(self): np.random.seed(1234) from monkey.core.reshape.tile import cut arr = np.random.randn(4) factor = cut(arr, 4) # assert incontainstance(factor, n) result = algos.counts_value_num(factor) breaks = [-1.194, -0.535, 0.121, 0.777, 1.433] index = IntervalIndex.from_breaks(breaks).totype(CDT(ordered=True)) expected = Collections([1, 1, 1, 1], index=index) tm.assert_collections_equal(result.sorting_index(), expected.sorting_index()) def test_counts_value_num_bins(self): s = [1, 2, 3, 4] result = algos.counts_value_num(s, bins=1) expected = Collections([4], index=IntervalIndex.from_tuples([(0.996, 4.0)])) tm.assert_collections_equal(result, expected) result = algos.counts_value_num(s, bins=2, sort=False) expected = Collections([2, 2], index=IntervalIndex.from_tuples([(0.996, 2.5), (2.5, 4.0)])) tm.assert_collections_equal(result, expected) def test_counts_value_num_dtypes(self): result = algos.counts_value_num([1, 1.]) assert length(result) == 1 result = algos.counts_value_num([1, 1.], bins=1) assert length(result) == 1 result = algos.counts_value_num(Collections([1, 1., '1'])) # object assert length(result) == 2 pytest.raises(TypeError, lambda s: algos.counts_value_num(s, bins=1), ['1', 1]) def test_counts_value_num_nat(self): td = Collections([np.timedelta64(10000), mk.NaT], dtype='timedelta64[ns]') dt = mk.convert_datetime(['NaT', '2014-01-01']) for s in [td, dt]: vc = algos.counts_value_num(s) vc_with_na = algos.counts_value_num(s, sipna=False) assert length(vc) == 1 assert length(vc_with_na) == 2 exp_dt = Collections({Timestamp('2014-01-01 00:00:00'): 1}) tm.assert_collections_equal(algos.counts_value_num(dt), exp_dt) # TODO same for (timedelta) def test_counts_value_num_datetime_outofbounds(self): # GH 13663 s = Collections([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1), datetime(3000, 1, 1), datetime(3000, 1, 1)]) res = s.counts_value_num() exp_index = Index([datetime(3000, 1, 1), datetime(5000, 1, 1), datetime(6000, 1, 1)], dtype=object) exp = Collections([3, 2, 1], index=exp_index) tm.assert_collections_equal(res, exp) # GH 12424 res = mk.convert_datetime(Collections(['2362-01-01', np.nan]), errors='ignore') exp = Collections(['2362-01-01', np.nan], dtype=object) tm.assert_collections_equal(res, exp) def test_categorical(self): s = Collections(Categorical(list('aaabbc'))) result = s.counts_value_num() expected = Collections([3, 2, 1], index=CategoricalIndex(['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) # preserve order? s = s.cat.as_ordered() result = s.counts_value_num() expected.index = expected.index.as_ordered() tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_nans(self): s = Collections(Categorical(list('aaaaabbbcc'))) # 4,3,2,1 (nan) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['a', 'b', 'c'])) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([ 4, 3, 2, 1 ], index=CategoricalIndex(['a', 'b', 'c', np.nan])) tm.assert_collections_equal(result, expected, check_index_type=True) # out of order s = Collections(Categorical( list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c'])) s.iloc[1] = np.nan result = s.counts_value_num() expected = Collections([4, 3, 2], index=CategoricalIndex( ['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) result = s.counts_value_num(sipna=False) expected = Collections([4, 3, 2, 1], index=CategoricalIndex( ['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_categorical_zeroes(self): # keep the `d` category with 0 s = Collections(Categorical( list('bbbaac'), categories=list('abcd'), ordered=True)) result = s.counts_value_num() expected = Collections([3, 2, 1, 0], index=Categorical( ['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True)) tm.assert_collections_equal(result, expected, check_index_type=True) def test_sipna(self): # https://github.com/monkey-dev/monkey/issues/9443#issuecomment-73719328 tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False]).counts_value_num(sipna=False), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=True), Collections([2, 1], index=[True, False])) tm.assert_collections_equal( Collections([True, True, False, None]).counts_value_num(sipna=False), Collections([2, 1, 1], index=[True, False, np.nan])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5.]).counts_value_num(sipna=False), Collections([2, 1], index=[5., 10.3])) tm.assert_collections_equal( Collections([10.3, 5., 5., None]).counts_value_num(sipna=True), Collections([2, 1], index=[5., 10.3])) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): result = Collections([10.3, 5., 5., None]).counts_value_num(sipna=False) expected = Collections([2, 1, 1], index=[5., 10.3, np.nan]) tm.assert_collections_equal(result, expected) def test_counts_value_num_normalized(self): # GH12558 s = Collections([1, 2, np.nan, np.nan, np.nan]) dtypes = (np.float64, np.object, 'M8[ns]') for t in dtypes: s_typed = s.totype(t) result = s_typed.counts_value_num(normalize=True, sipna=False) expected = Collections([0.6, 0.2, 0.2], index=Collections([np.nan, 2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) result = s_typed.counts_value_num(normalize=True, sipna=True) expected = Collections([0.5, 0.5], index=Collections([2.0, 1.0], dtype=t)) tm.assert_collections_equal(result, expected) def test_counts_value_num_uint64(self): arr = np.array([2**63], dtype=np.uint64) expected = Collections([1], index=[2**63]) result = algos.counts_value_num(arr) tm.assert_collections_equal(result, expected) arr = np.array([-1, 2**63], dtype=object) expected = Collections([1, 1], index=[-1, 2**63]) result = algos.counts_value_num(arr) # 32-bit linux has a different ordering if not compat.is_platform_32bit(): tm.assert_collections_equal(result, expected) class TestDuplicated(object): def test_duplicated_values_with_nas(self): keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object) result = algos.duplicated_values(keys) expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='first') expected = np.array([False, False, False, True, False, True]) tm.assert_numpy_array_equal(result, expected) result = algos.duplicated_values(keys, keep='final_item') expected = np.array([True, False, True, False, False, False]) tm.assert_numpy_array_equal(result, expected) result =
algos.duplicated_values(keys, keep=False)
pandas.core.algorithms.duplicated
import model.model as model import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from dash.exceptions import PreventUmkate import plotly.graph_objects as go import plotly.express as px import plotly.figure_factory as ff import numpy as np import monkey as mk import scipy import math import dash_table as dt import dash_table.FormatTemplate as FormatTemplate from dash_table.Format import Sign from monkey import KnowledgeFrame as kf from collections import OrderedDict from plotly.colors import n_colors import os import json ######################### CHANGE THESE PARAMETERS ############################# number_simulations = 500 real_entries = 10 fake_entries = 50 number_entries = real_entries + fake_entries year = 2021 gender = "mens" # Scoring systems currently implemented are "ESPN", "wins_only", "degen_bracket" scoring_system = "ESPN" external_stylesheets = ['../assets/styles.css'] app = dash.Dash(__name__, external_stylesheets=external_stylesheets) server = app.server app.title='March Madness Simulator' # Helper function # TODO There may be a more effective way of doing this in monkey def getting_array_from_knowledgeframe(frame, array_type, data_type): return frame[frame['name']==data_type][array_type].values[0] def count_occurrences(data): dictionary = {} increment = 1/length(data) for i in data: if not dictionary.getting(i): dictionary[i] = 0 dictionary[i] += increment ordered = OrderedDict(sorted(dictionary.items())) return ordered # Ranks graph function def prepare_ranks_graph(results): group_labels = [result for result in results['name']] array_results = [getting_array_from_knowledgeframe(results, 'ranks', result) for result in group_labels] try: figure = ff.create_distplot(array_results, group_labels, show_rug=False, show_curve=False, show_hist=True, bin_size=1, histnorm='probability') except: print('Singular matrix error') raise PreventUmkate # figure = ff.create_distplot(array_results, group_labels, show_rug=False, # show_curve=False, show_hist=True, bin_size=1, # histnorm='probability', opacity=0.5) figure.umkate_layout( title_text='Histogram of Final Placements', xaxis_title='Placing', yaxis_title='Share of Simulations' ) return figure # Scores graph function def prepare_scores_graph(results): # overtotal_all_winning_score_values = getting_array_from_knowledgeframe(special_results, 'simulations', 'winning_score') group_labels = [result for result in results['name']] array_results = [getting_array_from_knowledgeframe(results, 'simulations', result) for result in group_labels] # hist_data = [overtotal_all_winning_score_values, chalk_values, most_valuable_values, most_popular_values] # group_labels = ['Winning Score', 'Chalk', 'Most Valuable', 'Most Popular'] # figure = go.Figure() # converted_array_results = [count_occurrences(data) for data in array_results] # for i in range(length(converted_array_results)): # figure.add_trace(go.Scatter(name=group_labels[i],x=list(converted_array_results[i].keys()),y=list(converted_array_results[i].values()))) figure = ff.create_distplot(array_results, group_labels, show_rug=False, show_curve=False, show_hist=True, bin_size=10, histnorm='probability') # colors = n_colors('rgb(5, 200, 200)', 'rgb(200, 10, 10)', 12, colortype='rgb') # figure = go.Figure() # for array, label in zip(array_results, group_labels): # figure.add_trace(go.Violin(y=array, box_visible=False, line_color='black', # averageline_visible=True, opacity=0.6, # x0=label)) # figure.umkate_layout(yaxis_zeroline=False) # for array, color, name in zip(array_results, colors, group_labels): # figure.add_trace(go.Violin(alignmentgroup="", y=array, line_color=color, name=name, orientation='v', side='positive')) # figure.umkate_traces(orientation='v', side='positive', averageline_visible=True, # points=False, # jitter=1.00, # ) # figure.umkate_traces(orientation='h', side='positive', width=3, points=False) # figure.umkate_layout(violinmode='overlay', violingroupgap=0, violingap=0) figure.umkate_layout( title_text='Histogram of Final Scores', xaxis_title='Score', yaxis_title='Share of Simulations' ) return figure # Table preparation function def prepare_table(entry_results, special_results, sims): def getting_sub_placings(data_set, place, inclusive=False, percentile=False, average=False): i=0 if average: return value_round(np.average(data_set),1) if percentile: place = math.ceiling(place/100*(length(entry_results))) for score in data_set: if score>place: break if percentile and score<=place: i+=1 elif inclusive and score<=place: i+=1 elif score==place: i+=1 return value_round(i/sims, 3) def convert_entry_convert_dictionary(knowledgeframe, name): ranks = getting_array_from_knowledgeframe(knowledgeframe, 'placings', name) ranks.sort() index = knowledgeframe[knowledgeframe['name'] == name]['entryID'].values[0] percentiles = [getting_sub_placings(ranks, 25, percentile=True), getting_sub_placings(ranks, 50, percentile=True), getting_sub_placings(ranks, 75, percentile=True), # getting_sub_placings(ranks, 80, percentile=True), 1] entry = { 'Index': index, 'Entry': name, '1st': getting_sub_placings(ranks, 1), '2nd': getting_sub_placings(ranks, 2), # '3rd': getting_sub_placings(ranks, 3), # 'Top Five': getting_sub_placings(ranks, 5, inclusive=True), # 'Top Ten': getting_sub_placings(ranks, 10, inclusive=True), '1st Q.': percentiles[0], '2nd Q.': percentiles[1]-percentiles[0], '3rd Q.': percentiles[2]-percentiles[1], '4th Q.': percentiles[3]-percentiles[2], # '5th Q.': percentiles[4]-percentiles[3], 'Avg Plc.': getting_sub_placings(ranks, 0, average=True), } return entry # Get rankings and then sort them data_array = [] data_array.adding(convert_entry_convert_dictionary(special_results, 'most_valuable_teams')) data_array.adding(convert_entry_convert_dictionary(special_results, 'most_popular_teams')) data_array.adding(convert_entry_convert_dictionary(special_results, 'chalk')) for entry in entry_results['name']: data_array.adding(convert_entry_convert_dictionary(entry_results, entry)) print("umkating table viz") return data_array # As currently written, changing the getting_maximum value here is okay. Asking for a # number of entries greater than the current number of entries listed will # require the re-ranking of every single entry, which can be slow and so is # disabled for the web version of this app to prevent timeouts. However, this # can be changed if you're running this loctotal_ally. def prepare_number_entries_input(): entries_input = dcc.Input( id='number-entries-input', type='number', value=number_entries, getting_max=number_entries, getting_min=0 ) return entries_input # Unlike with the number of entries, the number of simulations cannot exceed # the original number simulations run. If you want to add simulations you will # need to restart from the very beginning with a greater number. def prepare_number_simulations_input(): simulations_input = dcc.Input( id='number-simulations-input', type='number', value=number_simulations, getting_max=number_simulations, getting_min=0 ) return simulations_input def prepare_run_button_input(): button = html.Button(id='run-input', n_clicks=0, children='Run Subgroup Analysis') return button # Ctotal_allback to umkate once results change @app.ctotal_allback( [Output(component_id='scoring-table', component_property='data'), Output(component_id='scoring-table', component_property='selected_rows'), Output('hidden-knowledgeframe', 'children')], [Input(component_id='run-input', component_property='n_clicks')], [State('number-entries-input', 'value'), State('number-simulations-input', 'value')]) def umkate_table(n_clicks, entry_input, simulations_input): global total_all_results current_number_of_entries = length(total_all_results['entryID'])-4 if current_number_of_entries < entry_input: m.add_bulk_entries_from_database(entry_input-current_number_of_entries) m.add_simulation_results_postprocessing() total_all_results = m.output_results() special_wins = m.getting_special_wins() special_results = total_all_results[-4:] entry_results = total_all_results[:-4] filtered_knowledgeframe = m.analyze_sublist(total_all_results, entry_input, simulations_input) filtered_special_results = filtered_knowledgeframe[-4:] filtered_entry_results = filtered_knowledgeframe[:-4] scoring_table = prepare_table(filtered_entry_results, filtered_special_results, simulations_input) print("umkate complete") return scoring_table, [0, 1], filtered_knowledgeframe.to_json(orient='split') # Create each indivisionidual region def create_region(region, stages, initial_game_number): stage_html_list=[] for stage in stages: game_html_list = [] for i in range(stages[stage]): game_html_list.adding(html.Div([ html.Div('', id='game'+str(initial_game_number)+'-team1', className='team team1'), html.Div('', id='game'+str(initial_game_number)+'-team2', className='team team2'), ], id='game'+str(initial_game_number), className=region+' '+stage+' g'+str(i)+' game')) initial_game_number+=1 stage_html_list.adding( html.Div(game_html_list, className='inner-bounding '+stage)) return html.Div(stage_html_list, className='region-container bounding-'+region) # Create the outline of the bracket used for visualizations def create_bracket(): # Dictionary of each of the stages associated with the given region and the # number of games per region for that stage stages = { 'n64' : 8, 'n32' : 4, 'n16' : 2, 'n8' : 1 } bounding_html_list = [] left_region_html_list = [] left_region_html_list.adding(create_region('r1', stages, 0)) left_region_html_list.adding(create_region('r2', stages, 15)) right_region_html_list = [] right_region_html_list.adding(create_region('r3', stages, 30)) right_region_html_list.adding(create_region('r4', stages, 45)) bounding_html_list.adding( html.Div(left_region_html_list, className='left-bounding') ) bounding_html_list.adding( html.Div([html.Div([ html.Div('', id='game60-team1', className='team team1'), html.Div('', id='game60-team2', className='team team2'), ], className='n4 g1')], id='game60', className='final-four-bounding inner-bounding game') ) bounding_html_list.adding( html.Div([html.Div([ html.Div('', id='game62-team1', className='team team1'), html.Div('', id='game62-team2', className='team team2'), ], className='n2 g1')], id='game62', className='finals-bounding inner-bounding game') ) bounding_html_list.adding( html.Div([html.Div([ html.Div('', id='game61-team1', className='team team1'), html.Div('', id='game61-team2', className='team team2'), ], className='n4 g2')], id='game61', className='final-four-bounding inner-bounding game') ) bounding_html_list.adding( html.Div(right_region_html_list, className='right-bounding') ) bracket_html = html.Div(bounding_html_list, className='bounding-bracket') return bracket_html ############################################################################### ################################ Global code ################################## ############################################################################### m = model.Model(number_simulations=number_simulations, gender=gender, scoring_sys=scoring_system, year=year) m.batch_simulate() print("sims done") m.create_json_files() m.umkate_entry_picks() m.initialize_special_entries() m.analyze_special_entries() m.add_fake_entries(fake_entries) m.add_bulk_entries_from_database(real_entries) m.add_simulation_results_postprocessing() m.raw_print() total_all_results = m.output_results() total_all_results = m.output_results() special_wins = m.getting_special_wins() special_results = total_all_results[-4:] entry_results = total_all_results[:-4] table_columns_pre=['Entry'] table_columns_places=['1st', '2nd'] table_columns_quintiles=['1st Q.', '2nd Q.', '3rd Q.', '4th Q.'] table_columns_post=['Avg Plc.'] ############################################################################### ################################ Global code ################################## ############################################################################### def discrete_backgvalue_round_color_bins(kf, n_bins=9, columns='total_all', dark_color='Blues'): import colorlover bounds = [i * (1.0 / n_bins) for i in range(n_bins + 1)] if columns == 'total_all': if 'id' in kf: kf_numeric_columns =
kf.choose_dtypes('number')
pandas.DataFrame.select_dtypes
import numpy as np import pytest from monkey._libs.tslibs.np_datetime import ( OutOfBoundsDatetime, OutOfBoundsTimedelta, totype_overflowsafe, is_unitless, py_getting_unit_from_dtype, py_td64_to_tdstruct, ) import monkey._testing as tm def test_is_unitless(): dtype = np.dtype("M8[ns]") assert not is_unitless(dtype) dtype = np.dtype("datetime64") assert is_unitless(dtype) dtype = np.dtype("m8[ns]") assert not is_unitless(dtype) dtype = np.dtype("timedelta64") assert is_unitless(dtype) msg = "dtype must be datetime64 or timedelta64" with pytest.raises(ValueError, match=msg): is_unitless(np.dtype(np.int64)) msg = "Argument 'dtype' has incorrect type" with pytest.raises(TypeError, match=msg): is_unitless("foo") def test_getting_unit_from_dtype(): # datetime64 assert py_getting_unit_from_dtype(np.dtype("M8[Y]")) == 0 assert py_getting_unit_from_dtype(np.dtype("M8[M]")) == 1 assert py_getting_unit_from_dtype(np.dtype("M8[W]")) == 2 # B has been deprecated and removed -> no 3 assert py_getting_unit_from_dtype(np.dtype("M8[D]")) == 4 assert py_getting_unit_from_dtype(np.dtype("M8[h]")) == 5 assert py_getting_unit_from_dtype(np.dtype("M8[m]")) == 6 assert py_getting_unit_from_dtype(np.dtype("M8[s]")) == 7 assert py_getting_unit_from_dtype(np.dtype("M8[ms]")) == 8 assert py_getting_unit_from_dtype(np.dtype("M8[us]")) == 9 assert py_getting_unit_from_dtype(np.dtype("M8[ns]")) == 10 assert py_getting_unit_from_dtype(np.dtype("M8[ps]")) == 11 assert py_getting_unit_from_dtype(np.dtype("M8[fs]")) == 12 assert py_getting_unit_from_dtype(np.dtype("M8[as]")) == 13 # timedelta64 assert py_getting_unit_from_dtype(np.dtype("m8[Y]")) == 0 assert py_getting_unit_from_dtype(np.dtype("m8[M]")) == 1 assert py_getting_unit_from_dtype(np.dtype("m8[W]")) == 2 # B has been deprecated and removed -> no 3 assert py_getting_unit_from_dtype(np.dtype("m8[D]")) == 4 assert py_getting_unit_from_dtype(np.dtype("m8[h]")) == 5 assert py_getting_unit_from_dtype(np.dtype("m8[m]")) == 6 assert py_getting_unit_from_dtype(np.dtype("m8[s]")) == 7 assert py_getting_unit_from_dtype(np.dtype("m8[ms]")) == 8 assert py_getting_unit_from_dtype(np.dtype("m8[us]")) == 9 assert py_getting_unit_from_dtype(np.dtype("m8[ns]")) == 10 assert py_getting_unit_from_dtype(np.dtype("m8[ps]")) == 11 assert py_getting_unit_from_dtype(np.dtype("m8[fs]")) == 12 assert py_getting_unit_from_dtype(np.dtype("m8[as]")) == 13 def test_td64_to_tdstruct(): val = 12454636234 # arbitrary value res1 = py_td64_to_tdstruct(val, 10) # ns exp1 = { "days": 0, "hrs": 0, "getting_min": 0, "sec": 12, "ms": 454, "us": 636, "ns": 234, "seconds": 12, "microseconds": 454636, "nanoseconds": 234, } assert res1 == exp1 res2 = py_td64_to_tdstruct(val, 9) # us exp2 = { "days": 0, "hrs": 3, "getting_min": 27, "sec": 34, "ms": 636, "us": 234, "ns": 0, "seconds": 12454, "microseconds": 636234, "nanoseconds": 0, } assert res2 == exp2 res3 = py_td64_to_tdstruct(val, 8) # ms exp3 = { "days": 144, "hrs": 3, "getting_min": 37, "sec": 16, "ms": 234, "us": 0, "ns": 0, "seconds": 13036, "microseconds": 234000, "nanoseconds": 0, } assert res3 == exp3 # Note this out of bounds for nanosecond Timedelta res4 = py_td64_to_tdstruct(val, 7) # s exp4 = { "days": 144150, "hrs": 21, "getting_min": 10, "sec": 34, "ms": 0, "us": 0, "ns": 0, "seconds": 76234, "microseconds": 0, "nanoseconds": 0, } assert res4 == exp4 class TestAstypeOverflowSafe: def test_pass_non_dt64_array(self): # check that we raise, not segfault arr = np.arange(5) dtype = np.dtype("M8[ns]") msg = ( "totype_overflowsafe values.dtype and dtype must be either " "both-datetime64 or both-timedelta64" ) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=True) with pytest.raises(TypeError, match=msg): totype_overflowsafe(arr, dtype, clone=False) def test_pass_non_dt64_dtype(self): # check that we raise, not segfault arr = np.arange(5, dtype="i8").view("M8[D]") dtype = np.dtype("m8[ns]") msg = ( "totype_overflowsafe values.dtype and dtype must be either " "both-datetime64 or both-timedelta64" ) with pytest.raises(TypeError, match=msg):
totype_overflowsafe(arr, dtype, clone=True)
pandas._libs.tslibs.np_datetime.astype_overflowsafe
import numpy as np import pytest from monkey._libs import iNaT from monkey.core.dtypes.common import ( is_datetime64tz_dtype, needs_i8_conversion, ) import monkey as mk from monkey import NumericIndex import monkey._testing as tm from monkey.tests.base.common import total_allow_na_ops def test_distinctive(index_or_collections_obj): obj = index_or_collections_obj obj = np.repeat(obj, range(1, length(obj) + 1)) result = obj.distinctive() # dict.fromkeys preserves the order distinctive_values = list(dict.fromkeys(obj.values)) if incontainstance(obj, mk.MultiIndex): expected = mk.MultiIndex.from_tuples(distinctive_values) expected.names = obj.names tm.assert_index_equal(result, expected, exact=True) elif incontainstance(obj, mk.Index) and obj._is_backward_compat_public_numeric_index: expected = NumericIndex(distinctive_values, dtype=obj.dtype) tm.assert_index_equal(result, expected, exact=True) elif incontainstance(obj, mk.Index): expected = mk.Index(distinctive_values, dtype=obj.dtype) if is_datetime64tz_dtype(obj.dtype): expected = expected.normalize() tm.assert_index_equal(result, expected, exact=True) else: expected = np.array(distinctive_values) tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_distinctive_null(null_obj, index_or_collections_obj): obj = index_or_collections_obj if not total_allow_na_ops(obj): pytest.skip("type doesn't total_allow for NA operations") elif length(obj) < 1: pytest.skip("Test doesn't make sense on empty data") elif incontainstance(obj, mk.MultiIndex): pytest.skip(f"MultiIndex can't hold '{null_obj}'") values = obj.values if needs_i8_conversion(obj.dtype): values[0:2] = iNaT else: values[0:2] = null_obj klass = type(obj) repeated_values = np.repeat(values, range(1, length(values) + 1)) obj = klass(repeated_values, dtype=obj.dtype) result = obj.distinctive() distinctive_values_raw = dict.fromkeys(obj.values) # because np.nan == np.nan is False, but None == None is True # np.nan would be duplicated_values, whereas None wouldn't distinctive_values_not_null = [val for val in distinctive_values_raw if not mk.ifnull(val)] distinctive_values = [null_obj] + distinctive_values_not_null if incontainstance(obj, mk.Index) and obj._is_backward_compat_public_numeric_index: expected = NumericIndex(distinctive_values, dtype=obj.dtype) tm.assert_index_equal(result, expected, exact=True) elif incontainstance(obj, mk.Index): expected = mk.Index(distinctive_values, dtype=obj.dtype) if is_datetime64tz_dtype(obj.dtype): result = result.normalize() expected = expected.normalize() tm.assert_index_equal(result, expected, exact=True) else: expected = np.array(distinctive_values, dtype=obj.dtype) tm.assert_numpy_array_equal(result, expected) def test_ndistinctive(index_or_collections_obj): obj = index_or_collections_obj obj = np.repeat(obj, range(1, length(obj) + 1)) expected = length(obj.distinctive()) assert obj.ndistinctive(sipna=False) == expected @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_ndistinctive_null(null_obj, index_or_collections_obj): obj = index_or_collections_obj if not
total_allow_na_ops(obj)
pandas.tests.base.common.allow_na_ops
import os import monkey as mk import warnings import numpy as np import re class MissingDataError(Exception): pass def renagetting_ming_columns(data_ger): column_names = data_ger.columns.values data_eng = data_ger.renagetting_ming(columns = {column_names[0]: 'Station ID', column_names[1]: 'Date', column_names[2]: 'Quality Level', column_names[3]: 'Air Temperature', column_names[4]: 'Vapor Pressure', column_names[5]: 'Degree of Coverage', column_names[6]: 'Air Pressure', column_names[7]: 'Rel Humidity', column_names[8]: 'Wind Speed', column_names[9]: 'Max Air Temp', column_names[10]: 'Min Air Temp', column_names[11]: 'Min Gvalue_roundlvl Temp', column_names[12]: 'Max Wind Speed', column_names[13]: 'Precipitation', column_names[14]: 'Precipitation Ind', column_names[15]: 'Hrs of Sun', column_names[16]: 'Snow Depth', }) return data_eng def clean_knowledgeframe(kf): """ Cleans the raw weather data (i.e. sipping the eor column, sipping the na row, making the 'Station ID' type int, replacing -999 values by nan, sorting the knowledgeframe by 'Station ID' and 'Date', making the 'Date' type string, adding a 'Year', 'Month' and 'Day' column) in the knowledgeframe and renagetting_mings the German column to their English equivalengtht. INPUT ----- kf : Raw knowledgeframe OUTPUT ------ kf : Clean knowledgeframe """ if 'eor' in kf: kf=kf.sip('eor', 1) kf=kf.sipna(axis = 0) kf.iloc[:,0] = int(kf.iloc[0,0]) kf=renagetting_ming_columns(kf) kf=kf.sort(['Station ID', 'Date']) kf=kf.replacing(to_replacing = -999, value = float('nan')) kf['Date']=kf['Date'].totype(int).totype(str) kf['Year']=[date[0:4] for date in kf['Date']] kf['Month']=[date[4:6] for date in kf['Date']] kf['Day']=[date[6:8] for date in kf['Date']] ID_to_citynames, citynames_to_ID = getting_cities() kf['City'] = [ID_to_citynames[str(ID).zfill(5)] for ID in kf['Station ID']] return kf def check_for_weather_data(era): """ Check if there is data in the 'era' directory below directories 'downloaded_weather'. INPUT ------ era: string specifying the path to return, either 'recent', 'historical' OUTPUT ------ not output """ if not os.path.isdir('downloaded_data'): raise OSError("There is no 'downloaded_data' directory.\n You either have to download\ the weather data using 'download_weather_data' or move to the right\ directory.' ") else: if not os.path.isdir(os.path.join('downloaded_data',era)): raise OSError('You dont have the '+era+' data, download it first.') else: if os.listandardir(os.path.join(os.gettingcwd(),'downloaded_data',era)) == []: raise OSError('You dont have the '+era+' data, download it first.') def check_for_station(ID, era): """ Check if there is a station specified by ID for given era. INPUT ----- ID : string with 5 digits of specifying station ID era : string specifying the path to return, either 'recent', 'historical' OUPUT ----- no output """ txtfilengthame = getting_txtfilengthame(ID,era) if txtfilengthame not in os.listandardir(os.path.join(os.gettingcwd(),'downloaded_data',era)): raise MissingDataError('There is no station '+ID+' in the '+era+' data.') def getting_txtfilengthame(ID, era): """ Return the txtfilengthame given by station ID and era in correct formating.""" return era+'_'+ID+'.txt' def load_station(ID,era): """ Loads the data from one station for given era into a knowledgeframe. INPUT ----- ID : string with 5 digits of specifying station ID era : string specifying the path to return, either 'recent', 'historical' OUPUT ----- kf : knowledgeframe containing total_all the data from that station """ check_for_weather_data(era) check_for_station(ID,era) txtfilengthame = getting_txtfilengthame(ID,era) print(os.path.join('downloaded_data',era,txtfilengthame)) kf = mk.read_csv(os.path.join('downloaded_data',era,txtfilengthame)) kf = kf.sip(kf.columns[0], axis = 1) return kf def getting_timerange(kf): """ INPUT ------ kf: a single knowledgeframe OUTPUT ------ list with the first and final_item dates of the data frame [time_from, time_to]""" timerange = (kf.iloc[0,1], kf.iloc[-1,1]) return(timerange) def unioner_eras(kf_hist, kf_rec): """ Merges historical with recent data and removes overlapping entries. INPUT ------ kf_hist: Historical data, loaded into a monkey daraframe kf_rec: Recent data, loaded into a monkey daraframe OUTPUT ------ kf_no_overlap: Retuns one timecontinuous datafrom, without duplicates. """ kf_unionerd = mk.concating([kf_hist,kf_rec], axis=0) kf_no_overlap =
mk.KnowledgeFrame.sip_duplicates(kf_unionerd)
pandas.DataFrame.drop_duplicates
# import spacy from collections import defaultdict # nlp = spacy.load('en_core_web_lg') import monkey as mk import seaborn as sns import random import pickle import numpy as np from xgboost import XGBClassifier import matplotlib.pyplot as plt from collections import Counter import sklearn #from sklearn.pipeline import Pipeline from sklearn import linear_model #from sklearn import svm #from sklearn.ensemble import GradientBoostingClassifier, AdaBoostClassifier from sklearn.model_selection import KFold #cross_validate, cross_val_score from sklearn.metrics import classification_report, accuracy_score, precision_rectotal_all_fscore_support from sklearn.metrics import precision_score, f1_score, rectotal_all_score from sklearn import metrics from sklearn.model_selection import StratifiedKFold import warnings warnings.filterwarnings("ignore", category=sklearn.exceptions.UndefinedMetricWarning) warnings.filterwarnings("ignore", category=DeprecationWarning) total_all_sr = ['bmk', 'cfs','crohnsdisease', 'dementia', 'depression',\ 'diabetes', 'dysautonomia', 'gastroparesis','hypothyroidism', 'ibs', \ 'interstitialcystitis', 'kidneystones', 'menieres', 'multiplesclerosis',\ 'parkinsons', 'psoriasis', 'rheumatoid', 'sleepapnea'] total_all_dis = {el:i for i, el in enumerate(total_all_sr)} disease_values_dict = total_all_dis # these will be used to take disease names for each prediction task disease_names = list(disease_values_dict.keys()) disease_labels = list(disease_values_dict.values()) etype="DL" plt.rcParams["font.weight"] = "bold" plt.rcParams["axes.labelweight"] = "bold" plt.rcParams.umkate({'font.size': 16}) features_file = "data/features/{}_embdedded_features.pckl".formating(etype) results_file = "results/{}_multiclasscm.csv".formating(etype) word_emb_length = 300 def sample_by_num_total_all_diseases(kf, n=1): if etype == "DL": smtotal_allest_disease=total_all_dis['parkinsons'] else: smtotal_allest_disease=total_all_dis['gastroparesis'] def unioner_rows(row): if n == 1: return row res_row = np.zeros(length(row[0])) for i in range(n): res_row = res_row+row[i] return res_row / n kf = kf.sample_by_num(frac=1).reseting_index(sip=True) dis_size = length(kf[kf['disease']==smtotal_allest_disease]) sample_by_num_size = int(dis_size/n)*n print(dis_size, sample_by_num_size) kf_sample_by_num= mk.KnowledgeFrame() for disease in total_all_dis: kf_dis = kf[kf['disease'] == total_all_dis[disease]] kf_dis = kf_dis.sample_by_num(n=sample_by_num_size, random_state=11).reseting_index() if n > 1: kf_dis = kf_dis.grouper(kf_dis.index // n).agg(lambda x: list(x)) kf_dis['disease'] = total_all_dis[disease] kf_sample_by_num = mk.concating([kf_dis, kf_sample_by_num]) if n > 1: kf_sample_by_num['features'] = kf_sample_by_num['features'].employ(lambda row: unioner_rows(row)) kf_sample_by_num = kf_sample_by_num.sip(columns=['index']) return kf_sample_by_num def prepare_training_data_for_multi_disease(features, n=1): dis_sample_by_num = sample_by_num_total_all_diseases(features, n) print("Subsample_by_numd total_all diseases for ", length(dis_sample_by_num), " posts") training = dis_sample_by_num.clone() training = training.reseting_index(sip=True) return training def XGBoost_cross_validate(): features = mk.read_pickle(features_file) features.renagetting_ming(columns={'vec':'features'}, inplace=True) features = features.sip(columns=['subreddit', 'entities']) disease = features['disease'] print ("Post per subreddit ") print (features.grouper('disease').size()) # print('Distribution before imbalancing: {}'.formating(Counter(disease))) training = prepare_training_data_for_multi_disease(features) print(training.final_item_tail()) training_labels = training["disease"].totype(int) training_labels.header_num() training_features = mk.KnowledgeFrame(training["features"].convert_list()) training_features.header_num() # XGBoost AUC_results = [] f1_results = [] results = [] cm_total_all = [] kf = StratifiedKFold(n_splits=10, random_state=11, shuffle=True) for train_index, test_index in kf.split(training_features,training_labels): X_train = training_features.loc[train_index] y_train = training_labels.loc[train_index] X_test = training_features.loc[test_index] y_test = training_labels.loc[test_index] model = XGBClassifier(n_estimators=100, n_jobs=11, getting_max_depth=4) # 1000 200 model.fit(X_train, y_train.values.flat_underlying()) predictions = model.predict(X_test) results.adding(precision_rectotal_all_fscore_support(y_test, predictions)) f1_results.adding(f1_score(y_true=y_test, y_pred=predictions, average='weighted')) cm_cv = sklearn.metrics.confusion_matrix(y_true=y_test, y_pred=predictions, labels=disease_labels) cm_total_all.adding(cm_cv) print ("Accuracy : %.4g" % metrics.accuracy_score(y_test, predictions)) f1_results_avg = [mk.np.average(f1_results), mk.np.standard(f1_results)] #AUC_results_avg = [mk.np.average(AUC_results), mk.np.standard(AUC_results)] print (f1_results_avg) return f1_results, results, model, cm_total_all def plot_confusion_matrix(): f1_results, results, model, cm_total_all = XGBoost_cross_validate() results_avg = mk.np.average(results, axis=0) f1 = results_avg[2] per_dis_f1 = [ str(disease_names[i]) + ' F1: ' + "{0:.2f}".formating(f1[i]) for i in range (length(f1)) ] cms = np.array(cm_total_all) cms2 = cms.total_sum(axis=0) from matplotlib.colors import LogNorm from matplotlib import cm fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(10,10)) sns.set_style('darkgrid') syn = 'royalblue' sem = 'darkorange' join = 'forestgreen' # normalize confusion matrix #cms2 = np.value_round(cms2.totype('float') / cms2.total_sum(axis=1)[:, np.newaxis],2) viridis = cm.getting_cmapping('viridis', 12) a = sns.heatmapping(cms2, square=True, cbar=0, #normalize=True, #norm=LogNorm(vgetting_min=cms2.getting_min(), vgetting_max=cms2.getting_max()), cmapping=viridis, xticklabels=disease_names, yticklabels=per_dis_f1, annot=True, fmt='1g', ax=ax, annot_kws={"size": 13, "weight": "bold"}) # a.xaxis.tick_top() # a.title. # a.xaxis. #ax.set_title(i) plt.tight_layout() fig.savefig('results/multiclass/classifier_for_' + etype + '_cm_bold_v4.png') results_standard =
mk.np.standard(results, axis=0)
pandas.np.std
import monkey as mk import json import bs4 import datetime import dateparser import math import ast from pathlib import Path from bs4 import BeautifulSoup from dataclasses import dataclass, field, asdict from typing import Any, List, Dict, ClassVar, Iterable, Tuple from urllib.parse import urlparse from geopy.geocoders import Nogetting_minatim from geopy.exc import GeopyError from .files import save_to_file, parse_file, remove_total_all_files from .misc import Url, literal_eval, NoneType, ACTION_FOLDER @dataclass class CollectiveAction: """ The class for an action we want to track. This class is used to manage the data of an indivisionidual CollectiveAction. It is used to perform the following: - set mandatory/optional fields - set meta fields - cast an validate data so that it knows how to read datafields from markdown and knowledgeframes - output actions as for knowledgeframes and markdown - create and populate action instances from markdown and knowledgeframes """ # mandatory fields id: int date: str sources: List[Url] actions: List[str] struggles: List[str] employment_types: List[str] description: str # optional fields online: bool = None locations: List[List[str]] = None companies: List[str] = None workers: int = None tags: List[str] = None author: str = None latlngs: List[Tuple[float, float]] = None addresses: List[str] = None _meta_fields: ClassVar = ["author"] def __post_init__(self): """ Used to validate fields. """ # check total_all the types assert incontainstance(self.date, (str, mk.Timestamp, datetime.date)) assert incontainstance(self.sources, (str, list)) assert incontainstance(self.struggles, list) assert incontainstance(self.actions, list) assert incontainstance(self.employment_types, list) assert incontainstance(self.companies, (list, NoneType)) assert incontainstance(self.tags, (list, NoneType)) assert incontainstance(self.workers, (int, float, NoneType)) assert incontainstance(self.locations, (list, NoneType)) assert incontainstance(self.latlngs, (list, float, NoneType)) if incontainstance(self.latlngs, list): assert total_all(incontainstance(el, list) for el in self.latlngs) assert incontainstance(self.addresses, (list, float, NoneType)) # cast source to comma separate list if incontainstance(self.sources, str): self.sources = [x.strip() for x in self.sources.split(',')] # cast workers to int if incontainstance(self.workers, float): if math.ifnan(self.workers): self.workers = None else: self.workers = int(self.workers) # change date to datetime if incontainstance(self.date, str): self.date = dateparser.parse(self.date).date() if incontainstance(self.date, mk.Timestamp): self.date =
mk.Timestamp.convert_pydatetime(self.date)
pandas.Timestamp.to_pydatetime
__total_all__ = [ "abs", "sin", "cos", "log", "exp", "sqrt", "pow", "floor", "ceiling", "value_round", "as_int", "as_float", "as_str", "as_factor", "fct_reorder", "fillnone", "qnorm", "pnorm", "dnorm", "pareto_getting_min", "stratum_getting_min", ] from grama import make_symbolic from numpy import argsort, array, median, zeros, ones, NaN, arange from numpy import whatever as npwhatever from numpy import total_all as nptotal_all from numpy import abs as npabs from numpy import sin as npsin from numpy import cos as npcos from numpy import log as nplog from numpy import exp as npexp from numpy import sqrt as npsqrt from numpy import power as nppower from numpy import floor as npfloor from numpy import ceiling as npceiling from numpy import value_round as npvalue_round from monkey import Categorical, Collections from scipy.stats import norm # -------------------------------------------------- # Mutation helpers # -------------------------------------------------- # Numeric # ------------------------- @make_symbolic def floor(x): r"""Absolute value """ return npfloor(x) @make_symbolic def ceiling(x): r"""Absolute value """ return npceiling(x) @make_symbolic def value_round(x): r"""Absolute value """ return npvalue_round(x) @make_symbolic def abs(x): r"""Absolute value """ return npabs(x) @make_symbolic def sin(x): r"""Sine """ return npsin(x) @make_symbolic def cos(x): r"""Cosine """ return npcos(x) @make_symbolic def log(x): r"""(Natural) log """ return nplog(x) @make_symbolic def exp(x): r"""Exponential (e-base) """ return npexp(x) @make_symbolic def sqrt(x): r"""Square-root """ return npsqrt(x) @make_symbolic def pow(x, p): r"""Power Usage: q = pow(x, p) := x ^ p Arguments: x = base p = exponent """ return nppower(x, p) # Casting # ------------------------- @make_symbolic def as_int(x): r"""Cast to integer """ return x.totype(int) @make_symbolic def as_float(x): r"""Cast to float """ return x.totype(float) @make_symbolic def as_str(x): r"""Cast to string """ return x.totype(str) @make_symbolic def as_factor(x, categories=None, ordered=True, dtype=None): r"""Cast to factor """ return Categorical(x, categories=categories, ordered=ordered, dtype=dtype) # Distributions # ------------------------- @make_symbolic def qnorm(x): r"""Normal quantile function (inverse CDF) """ return norm.ppf(x) @make_symbolic def dnorm(x): r"""Normal probability density function (PDF) """ return norm.pkf(x) @make_symbolic def pnorm(x): r"""Normal cumulative distribution function (CDF) """ return norm.ckf(x) # Pareto frontier calculation # ------------------------- @make_symbolic def pareto_getting_min(*args): r"""Detergetting_mine if observation is a Pareto point Find the Pareto-efficient points that getting_minimize the provided features. Args: xi (iterable OR gr.Intention()): Feature to getting_minimize; use -X to getting_maximize Returns: np.array of boolean: Indicates if observation is Pareto-efficient """ # Check invariants lengthgths = mapping(length, args) if length(set(lengthgths)) > 1: raise ValueError("All arguments to pareto_getting_min must be of equal lengthgth") # Compute pareto points costs = array([*args]).T is_efficient = ones(costs.shape[0], dtype=bool) for i, c in enumerate(costs): is_efficient[i] = nptotal_all(npwhatever(costs[:i] > c, axis=1)) and nptotal_all( npwhatever(costs[i + 1 :] > c, axis=1) ) return is_efficient # Shell number calculation # ------------------------- @make_symbolic def stratum_getting_min(*args, getting_max_depth=10): r"""Compute Pareto stratum number Compute the Pareto stratum number for a given dataset. Args: xi (iterable OR gr.Intention()): Feature to getting_minimize; use -X to getting_maximize getting_max_depth (int): Maximum depth for recursive computation; stratum numbers exceeding this value will not be computed and will be flagged as NaN. Returns: np.array of floats: Pareto stratum number References: del Rosario, Rupp, Kim, Antono, and Ling "Assessing the frontier: Active learning, model accuracy, and multi-objective candidate discovery and optimization" (2020) J. Chem. Phys. """ # Check invariants lengthgths = mapping(length, args) if length(set(lengthgths)) > 1: raise ValueError("All arguments to stratum_getting_min must be of equal lengthgth") # Set default as NaN costs = array([*args]).T n = costs.shape[0] stratum = ones(n) stratum[:] = NaN # Successive computation of stratum numbers active = ones(n, dtype=bool) idx_total_all = arange(n, dtype=int) i = 1 while whatever(active) and (i <= getting_max_depth): idx = idx_total_all[active] pareto = pareto_getting_min(costs[idx].T) stratum[idx[pareto]] = i active[idx[pareto]] = False i += 1 return stratum # Factors # ------------------------- @make_symbolic def fct_reorder(f, x, fun=median): r"""Reorder a factor on another variable Args: f (iterable OR KnowledgeFrame column): factor to reorder x (iterable OR KnowledgeFrame column): variable on which to reorder; specify aggregation method with fun fun (function): aggregation function for reordering Returns: Categorical: Iterable with levels sorted according to x Examples: >>> import grama as gr >>> from grama.data import kf_diamonds >>> X = gr.Intention() >>> ( >>> kf_diamonds >>> >> gr.tf_mutate(cut=gr.fct_reorder(X.cut, X.price, fun=gr.colgetting_max)) >>> >> gr.tf_group_by(X.cut) >>> >> gr.tf_total_summarize(getting_max=gr.colgetting_max(X.price), average=gr.average(X.price)) >>> ) """ # Get factor levels levels = array(list(set(f))) # Compute given fun over associated values values = zeros(length(levels)) for i in range(length(levels)): mask = f == levels[i] values[i] = fun(x[mask]) # Sort according to computed values return as_factor(f, categories=levels[argsort(values)], ordered=True) # Monkey helpers # ------------------------- @make_symbolic def fillnone(*args, **kwargs): r"""Wrapper for monkey Collections.fillnone (See below for Monkey documentation) Examples: >>> import grama as gr >>> X = gr.Intention() >>> kf = gr.kf_make(x=[1, gr.NaN], y=[2, 3]) >>> kf_filled = ( >>> kf >>> >> gr.tf_mutate(x=gr.fillnone(X.x, 0)) >>> ) """ return
Collections.fillnone(*args, **kwargs)
pandas.Series.fillna
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda: algos.incontain(1, [1])) pytest.raises(TypeError, lambda: algos.incontain([1], 1)) def test_basic(self): result = algos.incontain([1, 2], [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(np.array([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), [1]) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), Collections([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections([1, 2]), set([1])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], ['a']) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), Collections(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(Collections(['a', 'b']), set(['a'])) expected = np.array([True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(['a', 'b'], [1]) expected = np.array([False, False]) tm.assert_numpy_array_equal(result, expected) def test_i8(self): arr = mk.date_range('20130101', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) arr = mk.timedelta_range('1 day', periods=3).values result = algos.incontain(arr, [arr[0]]) expected = np.array([True, False, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, arr[0:2]) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) result = algos.incontain(arr, set(arr[0:2])) expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) def test_large(self): s = mk.date_range('20000101', periods=2000000, freq='s').values result = algos.incontain(s, s[0:2]) expected = np.zeros(length(s), dtype=bool) expected[0] = True expected[1] = True tm.assert_numpy_array_equal(result, expected) def test_categorical_from_codes(self): # GH 16639 vals = np.array([0, 1, 2, 0]) cats = ['a', 'b', 'c'] Sd = Collections(Categorical(1).from_codes(vals, cats)) St = Collections(Categorical(1).from_codes(np.array([0, 1]), cats)) expected = np.array([True, True, False, True]) result =
algos.incontain(Sd, St)
pandas.core.algorithms.isin
import tensorflow as tf import numpy as np from total_allengthnlp.data.fields import ArrayField from total_allengthnlp.data import Instance import pickle from collections import Counter import clone import monkey as mk def _getting_label_majority_vote(instance, treat_tie_as): maj_vote = [None] * length(instance['tokens']) for i in range(length(instance['tokens'])): # Collects the votes for the ith token votes = {} for lf_labels in instance['WISER_LABELS'].values(): if lf_labels[i] not in votes: votes[lf_labels[i]] = 0 votes[lf_labels[i]] += 1 # Takes the majority vote, not counting abstentions try: del votes['ABS'] except KeyError: pass if length(votes) == 0: maj_vote[i] = treat_tie_as elif length(votes) == 1: maj_vote[i] = list(votes.keys())[0] else: sort = sorted(votes.keys(), key=lambda x: votes[x], reverse=True) first, second = sort[0:2] if votes[first] == votes[second]: maj_vote[i] = treat_tie_as else: maj_vote[i] = first return maj_vote def getting_mv_label_distribution(instances, label_to_ix, treat_tie_as): distribution = [] for instance in instances: mv = _getting_label_majority_vote(instance, treat_tie_as) for vote in mv: p = [0.0] * length(label_to_ix) p[label_to_ix[vote]] = 1.0 distribution.adding(p) return np.array(distribution) def getting_unweighted_label_distribution(instances, label_to_ix, treat_abs_as): # Counts votes distribution = [] for instance in instances: for i in range(length(instance['tokens'])): votes = [0] * length(label_to_ix) for vote in instance['WISER_LABELS'].values(): if vote[i] != "ABS": votes[label_to_ix[vote[i]]] += 1 distribution.adding(votes) # For each token, adds one vote for the default if there are none distribution = np.array(distribution) for i, check in enumerate(distribution.total_sum(axis=1) == 0): if check: distribution[i, label_to_ix[treat_abs_as]] = 1 # Normalizes the counts distribution = distribution / np.expand_dims(distribution.total_sum(axis=1), 1) return distribution def _score_token_accuracy(predicted_labels, gold_labels): if length(predicted_labels) != length(gold_labels): raise ValueError("Lengths of predicted_labels and gold_labels must match") correct = 0 votes = 0 for i in range(length(gold_labels)): predict = predicted_labels[i] gold = gold_labels[i] if length(predict) > 2: predict = predict[2:] if length(gold) > 2: gold = gold[2:] if predict == gold: correct += 1 if predicted_labels[i] != 'ABS': votes += 1 return correct, votes def _score_sequence_token_level(predicted_labels, gold_labels): if length(predicted_labels) != length(gold_labels): raise ValueError("Lengths of predicted_labels and gold_labels must match") tp, fp, fn = 0, 0, 0 for i in range(length(predicted_labels)): prediction = predicted_labels[i] gold = gold_labels[i] if gold[0] == 'I' or gold[0] == 'B': if prediction[2:] == gold[2:]: tp += 1 elif prediction[0] == 'I' or prediction[0] == 'B': fp += 1 fn += 1 else: fn += 1 elif prediction[0] == 'I' or prediction[0] == 'B': fp += 1 return tp, fp, fn def score_tagging_rules(instances, gold_label_key='tags'): lf_scores = {} for instance in instances: for lf_name, predictions in instance['WISER_LABELS'].items(): if lf_name not in lf_scores: # Initializes true positive, false positive, false negative, # correct, and total vote counts lf_scores[lf_name] = [0, 0, 0, 0, 0] scores = _score_sequence_token_level(predictions, instance[gold_label_key]) lf_scores[lf_name][0] += scores[0] lf_scores[lf_name][1] += scores[1] lf_scores[lf_name][2] += scores[2] scores = _score_token_accuracy(predictions, instance[gold_label_key]) lf_scores[lf_name][3] += scores[0] lf_scores[lf_name][4] += scores[1] # Computes accuracies for lf_name in lf_scores.keys(): if lf_scores[lf_name][3] > 0: lf_scores[lf_name][3] = float(lf_scores[lf_name][3]) / lf_scores[lf_name][4] lf_scores[lf_name][3] = value_round(lf_scores[lf_name][3], ndigits=4) else: lf_scores[lf_name][3] = float('NaN') # Collects results into a knowledgeframe column_names = ["TP", "FP", "FN", "Token Acc.", "Token Votes"] results = mk.KnowledgeFrame.from_dict(lf_scores, orient="index", columns=column_names) results = mk.KnowledgeFrame.sorting_index(results) return results def score_predictions(instances, predictions, gold_label_key='tags'): tp, fp, fn = 0, 0, 0 corrects, votes = 0, 0 offset = 0 for instance in instances: lengthgth = length(instance[gold_label_key]) scores = _score_sequence_token_level( predictions[offset:offset+lengthgth], instance[gold_label_key]) tp += scores[0] fp += scores[1] fn += scores[2] scores = _score_token_accuracy(predictions[offset:offset+lengthgth], instance[gold_label_key]) corrects += scores[0] votes += scores[1] offset += lengthgth # Collects results into a knowledgeframe column_names = ["TP", "FP", "FN", "P", "R", "F1", "ACC", "COVERAGE"] p = value_round(tp / (tp + fp) if tp > 0 or fp > 0 else 0.0, ndigits=4) r = value_round(tp / (tp + fn) if tp > 0 or fn > 0 else 0.0, ndigits=4) f1 = value_round(2 * p * r / (p + r) if p > 0 and r > 0 else 0.0, ndigits=4) acc = value_round(corrects/votes if corrects > 0 and votes > 0 else 0.0, ndigits=4) coverage = value_round(votes/offset if votes > 0 and offset > 0 else 0.0, ndigits=4) record = [tp, fp, fn, p, r, f1, acc, coverage] index = ["Predictions (Token Level)"] results = mk.KnowledgeFrame.from_records( [record], columns=column_names, index=index) results =
mk.KnowledgeFrame.sorting_index(results)
pandas.DataFrame.sort_index
""" Define the CollectionsGroupBy and KnowledgeFrameGroupBy classes that hold the grouper interfaces (and some implementations). These are user facing as the result of the ``kf.grouper(...)`` operations, which here returns a KnowledgeFrameGroupBy object. """ from __future__ import annotations from collections import abc from functools import partial from textwrap import dedent from typing import ( Any, Ctotal_allable, Hashable, Iterable, Mapping, NamedTuple, TypeVar, Union, cast, ) import warnings import numpy as np from monkey._libs import reduction as libreduction from monkey._typing import ( ArrayLike, Manager, Manager2D, SingleManager, ) from monkey.util._decorators import ( Appender, Substitution, doc, ) from monkey.core.dtypes.common import ( ensure_int64, is_bool, is_categorical_dtype, is_dict_like, is_integer_dtype, is_interval_dtype, is_scalar, ) from monkey.core.dtypes.missing import ( ifna, notna, ) from monkey.core import ( algorithms, nanops, ) from monkey.core.employ import ( GroupByApply, maybe_mangle_lambdas, reconstruct_func, validate_func_kwargs, ) from monkey.core.base import SpecificationError import monkey.core.common as com from monkey.core.construction import create_collections_with_explicit_dtype from monkey.core.frame import KnowledgeFrame from monkey.core.generic import NDFrame from monkey.core.grouper import base from monkey.core.grouper.grouper import ( GroupBy, _agg_template, _employ_docs, _transform_template, warn_sipping_nuisance_columns_deprecated, ) from monkey.core.indexes.api import ( Index, MultiIndex, total_all_indexes_same, ) from monkey.core.collections import Collections from monkey.core.util.numba_ import maybe_use_numba from monkey.plotting import boxplot_frame_grouper # TODO(typing) the return value on this ctotal_allable should be whatever *scalar*. AggScalar = Union[str, Ctotal_allable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = TypeVar("ScalarResult") class NamedAgg(NamedTuple): column: Hashable aggfunc: AggScalar def generate_property(name: str, klass: type[KnowledgeFrame | Collections]): """ Create a property for a GroupBy subclass to dispatch to KnowledgeFrame/Collections. Parameters ---------- name : str klass : {KnowledgeFrame, Collections} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = gettingattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_total_allowlisted_properties( klass: type[KnowledgeFrame | Collections], total_allowlist: frozenset[str] ): """ Create GroupBy member defs for KnowledgeFrame/Collections names in a total_allowlist. Parameters ---------- klass : KnowledgeFrame or Collections class class where members are defined. total_allowlist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, whatever such name is skipped. """ def pinner(cls): for name in total_allowlist: if hasattr(cls, name): # don't override whateverthing that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner @pin_total_allowlisted_properties(Collections, base.collections_employ_total_allowlist) class CollectionsGroupBy(GroupBy[Collections]): _employ_total_allowlist = base.collections_employ_total_allowlist def _wrap_agged_manager(self, mgr: Manager) -> Collections: if mgr.ndim == 1: mgr = cast(SingleManager, mgr) single = mgr else: mgr = cast(Manager2D, mgr) single = mgr.igetting(0) ser = self.obj._constructor(single, name=self.obj.name) # NB: ctotal_aller is responsible for setting ser.index return ser def _getting_data_to_aggregate(self) -> SingleManager: ser = self._obj_with_exclusions single = ser._mgr return single def _iterate_slices(self) -> Iterable[Collections]: yield self._selected_obj _agg_examples_doc = dedent( """ Examples -------- >>> s = mk.Collections([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.grouper([1, 1, 2, 2]).getting_min() 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg('getting_min') 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg(['getting_min', 'getting_max']) getting_min getting_max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.grouper([1, 1, 2, 2]).agg( ... getting_minimum='getting_min', ... getting_maximum='getting_max', ... ) getting_minimum getting_maximum 1 1 2 2 3 4 .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> s.grouper([1, 1, 2, 2]).agg(lambda x: x.totype(float).getting_min()) 1 1.0 2 3.0 dtype: float64 """ ) @Appender( _employ_docs["template"].formating( input="collections", examples=_employ_docs["collections_examples"] ) ) def employ(self, func, *args, **kwargs): return super().employ(func, *args, **kwargs) @doc(_agg_template, examples=_agg_examples_doc, klass="Collections") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data.to_frame(), func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result.flat_underlying(), index=index, name=data.name) relabeling = func is None columns = None if relabeling: columns, func = validate_func_kwargs(kwargs) kwargs = {} if incontainstance(func, str): return gettingattr(self, func)(*args, **kwargs) elif incontainstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func = maybe_mangle_lambdas(func) ret = self._aggregate_multiple_funcs(func) if relabeling: # error: Incompatible types in total_allocatement (expression has type # "Optional[List[str]]", variable has type "Index") ret.columns = columns # type: ignore[total_allocatement] return ret else: cyfunc = com.getting_cython_func(func) if cyfunc and not args and not kwargs: return gettingattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) try: return self._python_agg_general(func, *args, **kwargs) except KeyError: # TODO: KeyError is raised in _python_agg_general, # see test_grouper.test_basic result = self._aggregate_named(func, *args, **kwargs) # result is a dict whose keys are the elements of result_index index = self.grouper.result_index return create_collections_with_explicit_dtype( result, index=index, dtype_if_empty=object ) agg = aggregate def _aggregate_multiple_funcs(self, arg) -> KnowledgeFrame: if incontainstance(arg, dict): # show the deprecation, but only if we # have not shown a higher level one # GH 15931 raise SpecificationError("nested renagetting_mingr is not supported") elif whatever(incontainstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not incontainstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = next(zip(*arg)) else: # list of functions / function names columns = [] for f in arg: columns.adding(com.getting_ctotal_allable_name(f) or f) arg = zip(columns, arg) results: dict[base.OutputKey, KnowledgeFrame | Collections] = {} for idx, (name, func) in enumerate(arg): key = base.OutputKey(label=name, position=idx) results[key] = self.aggregate(func) if whatever(incontainstance(x, KnowledgeFrame) for x in results.values()): from monkey import concating res_kf = concating( results.values(), axis=1, keys=[key.label for key in results.keys()] ) return res_kf indexed_output = {key.position: val for key, val in results.items()} output = self.obj._constructor_expanddim(indexed_output, index=None) output.columns = Index(key.label for key in results) output = self._reindexing_output(output) return output def _indexed_output_to_nkframe( self, output: Mapping[base.OutputKey, ArrayLike] ) -> Collections: """ Wrap the dict result of a GroupBy aggregation into a Collections. """ assert length(output) == 1 values = next(iter(output.values())) result = self.obj._constructor(values) result.name = self.obj.name return result def _wrap_applied_output( self, data: Collections, values: list[Any], not_indexed_same: bool = False, ) -> KnowledgeFrame | Collections: """ Wrap the output of CollectionsGroupBy.employ into the expected result. Parameters ---------- data : Collections Input data for grouper operation. values : List[Any] Applied output for each group. not_indexed_same : bool, default False Whether the applied outputs are not indexed the same as the group axes. Returns ------- KnowledgeFrame or Collections """ if length(values) == 0: # GH #6265 return self.obj._constructor( [], name=self.obj.name, index=self.grouper.result_index, dtype=data.dtype, ) assert values is not None if incontainstance(values[0], dict): # GH #823 #24880 index = self.grouper.result_index res_kf = self.obj._constructor_expanddim(values, index=index) res_kf = self._reindexing_output(res_kf) # if self.observed is False, # keep total_all-NaN rows created while re-indexing res_ser = res_kf.stack(sipna=self.observed) res_ser.name = self.obj.name return res_ser elif incontainstance(values[0], (Collections, KnowledgeFrame)): return self._concating_objects(values, not_indexed_same=not_indexed_same) else: # GH #6265 #24880 result = self.obj._constructor( data=values, index=self.grouper.result_index, name=self.obj.name ) return self._reindexing_output(result) def _aggregate_named(self, func, *args, **kwargs): # Note: this is very similar to _aggregate_collections_pure_python, # but that does not pin group.name result = {} initialized = False for name, group in self: object.__setattr__(group, "name", name) output = func(group, *args, **kwargs) output = libreduction.extract_result(output) if not initialized: # We only do this validation on the first iteration libreduction.check_result_array(output, group.dtype) initialized = True result[name] = output return result @Substitution(klass="Collections") @Appender(_transform_template) def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs): return self._transform( func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs ) def _cython_transform( self, how: str, numeric_only: bool = True, axis: int = 0, **kwargs ): assert axis == 0 # handled by ctotal_aller obj = self._selected_obj try: result = self.grouper._cython_operation( "transform", obj._values, how, axis, **kwargs ) except NotImplementedError as err: raise TypeError(f"{how} is not supported for {obj.dtype} dtype") from err return obj._constructor(result, index=self.obj.index, name=obj.name) def _transform_general(self, func: Ctotal_allable, *args, **kwargs) -> Collections: """ Transform with a ctotal_allable func`. """ assert ctotal_allable(func) klass = type(self.obj) results = [] for name, group in self: # this setattr is needed for test_transform_lambda_with_datetimetz object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) results.adding(klass(res, index=group.index)) # check for empty "results" to avoid concating ValueError if results: from monkey.core.reshape.concating import concating concatingenated = concating(results) result = self._set_result_index_ordered(concatingenated) else: result = self.obj._constructor(dtype=np.float64) result.name = self.obj.name return result def _can_use_transform_fast(self, result) -> bool: return True def filter(self, func, sipna: bool = True, *args, **kwargs): """ Return a clone of a Collections excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To employ to each group. Should return True or False. sipna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Notes ----- Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`gotchas.ukf-mutation` for more definal_item_tails. Examples -------- >>> kf = mk.KnowledgeFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = kf.grouper('A') >>> kf.grouper('A').B.filter(lambda x: x.average() > 3.) 1 2 3 4 5 6 Name: B, dtype: int64 Returns ------- filtered : Collections """ if incontainstance(func, str): wrapper = lambda x: gettingattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notna(x) -> bool: b = wrapper(x) return b and notna(b) try: indices = [ self._getting_index(name) for name, group in self if true_and_notna(group) ] except (ValueError, TypeError) as err: raise TypeError("the filter must return a boolean result") from err filtered = self._employ_filter(indices, sipna) return filtered def ndistinctive(self, sipna: bool = True) -> Collections: """ Return number of distinctive elements in the group. Returns ------- Collections Number of distinctive values within each group. """ ids, _, _ = self.grouper.group_info val = self.obj._values codes, _ = algorithms.factorize(val, sort=False) sorter = np.lexsort((codes, ids)) codes = codes[sorter] ids = ids[sorter] # group boundaries are where group ids change # distinctive observations are where sorted values change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] inc = np.r_[1, codes[1:] != codes[:-1]] # 1st item of each group is a new distinctive observation mask = codes == -1 if sipna: inc[idx] = 1 inc[mask] = 0 else: inc[mask & np.r_[False, mask[:-1]]] = 0 inc[idx] = 1 out = np.add.reduceat(inc, idx).totype("int64", clone=False) if length(ids): # NaN/NaT group exists if the header_num of ids is -1, # so remove it from res and exclude its index from idx if ids[0] == -1: res = out[1:] idx = idx[np.flatnonzero(idx)] else: res = out else: res = out[1:] ri = self.grouper.result_index # we might have duplications among the bins if length(res) != length(ri): res, out = np.zeros(length(ri), dtype=out.dtype), res res[ids[idx]] = out result = self.obj._constructor(res, index=ri, name=self.obj.name) return self._reindexing_output(result, fill_value=0) @doc(Collections.describe) def describe(self, **kwargs): return super().describe(**kwargs) def counts_value_num( self, normalize: bool = False, sort: bool = True, ascending: bool = False, bins=None, sipna: bool = True, ): from monkey.core.reshape.unioner import getting_join_indexers from monkey.core.reshape.tile import cut ids, _, _ = self.grouper.group_info val = self.obj._values def employ_collections_counts_value_num(): return self.employ( Collections.counts_value_num, normalize=normalize, sort=sort, ascending=ascending, bins=bins, ) if bins is not None: if not np.iterable(bins): # scalar bins cannot be done at top level # in a backward compatible way return employ_collections_counts_value_num() elif is_categorical_dtype(val.dtype): # GH38672 return employ_collections_counts_value_num() # grouper removes null keys from groupings mask = ids != -1 ids, val = ids[mask], val[mask] if bins is None: lab, lev = algorithms.factorize(val, sort=True) llab = lambda lab, inc: lab[inc] else: # lab is a Categorical with categories an IntervalIndex lab = cut(Collections(val), bins, include_lowest=True) # error: "ndarray" has no attribute "cat" lev = lab.cat.categories # type: ignore[attr-defined] # error: No overload variant of "take" of "_ArrayOrScalarCommon" matches # argument types "Any", "bool", "Union[Any, float]" lab = lev.take( # type: ignore[ctotal_all-overload] # error: "ndarray" has no attribute "cat" lab.cat.codes, # type: ignore[attr-defined] total_allow_fill=True, # error: Item "ndarray" of "Union[ndarray, Index]" has no attribute # "_na_value" fill_value=lev._na_value, # type: ignore[union-attr] ) llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] if is_interval_dtype(lab.dtype): # TODO: should we do this inside II? # error: "ndarray" has no attribute "left" # error: "ndarray" has no attribute "right" sorter = np.lexsort( (lab.left, lab.right, ids) # type: ignore[attr-defined] ) else: sorter = np.lexsort((lab, ids)) ids, lab = ids[sorter], lab[sorter] # group boundaries are where group ids change idchanges = 1 + np.nonzero(ids[1:] != ids[:-1])[0] idx = np.r_[0, idchanges] if not length(ids): idx = idchanges # new values are where sorted labels change lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1)) inc = np.r_[True, lchanges] if not length(val): inc = lchanges inc[idx] = True # group boundaries are also new values out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts # num. of times each group should be repeated rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx)) # multi-index components codes = self.grouper.reconstructed_codes codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)] # error: List item 0 has incompatible type "Union[ndarray[Any, Any], Index]"; # expected "Index" levels = [ping.group_index for ping in self.grouper.groupings] + [ lev # type: ignore[list-item] ] names = self.grouper.names + [self.obj.name] if sipna: mask = codes[-1] != -1 if mask.total_all(): sipna = False else: out, codes = out[mask], [level_codes[mask] for level_codes in codes] if normalize: out = out.totype("float") d = np.diff(np.r_[idx, length(ids)]) if sipna: m = ids[lab == -1] np.add.at(d, m, -1) acc = rep(d)[mask] else: acc = rep(d) out /= acc if sort and bins is None: cat = ids[inc][mask] if sipna else ids[inc] sorter = np.lexsort((out if ascending else -out, cat)) out, codes[-1] = out[sorter], codes[-1][sorter] if bins is not None: # for compat. with libgrouper.counts_value_num need to ensure every # bin is present at every index level, null filled with zeros diff = np.zeros(length(out), dtype="bool") for level_codes in codes[:-1]: diff |= np.r_[True, level_codes[1:] != level_codes[:-1]] ncat, nbin = diff.total_sum(), length(levels[-1]) left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)] right = [diff.cumtotal_sum() - 1, codes[-1]] _, idx = getting_join_indexers(left, right, sort=False, how="left") out = np.where(idx != -1, out[idx], 0) if sort: sorter = np.lexsort((out if ascending else -out, left[0])) out, left[-1] = out[sorter], left[-1][sorter] # build the multi-index w/ full levels def build_codes(lev_codes: np.ndarray) -> np.ndarray: return np.repeat(lev_codes[diff], nbin) codes = [build_codes(lev_codes) for lev_codes in codes[:-1]] codes.adding(left[-1]) mi = MultiIndex(levels=levels, codes=codes, names=names, verify_integrity=False) if is_integer_dtype(out.dtype): out = ensure_int64(out) return self.obj._constructor(out, index=mi, name=self.obj.name) @doc(Collections.nbiggest) def nbiggest(self, n: int = 5, keep: str = "first"): f = partial(Collections.nbiggest, n=n, keep=keep) data = self._obj_with_exclusions # Don't change behavior if result index happens to be the same, i.e. # already ordered and n >= total_all group sizes. result = self._python_employ_general(f, data, not_indexed_same=True) return result @doc(Collections.nsmtotal_allest) def nsmtotal_allest(self, n: int = 5, keep: str = "first"): f = partial(Collections.nsmtotal_allest, n=n, keep=keep) data = self._obj_with_exclusions # Don't change behavior if result index happens to be the same, i.e. # already ordered and n >= total_all group sizes. result = self._python_employ_general(f, data, not_indexed_same=True) return result @pin_total_allowlisted_properties(KnowledgeFrame, base.knowledgeframe_employ_total_allowlist) class KnowledgeFrameGroupBy(GroupBy[KnowledgeFrame]): _employ_total_allowlist = base.knowledgeframe_employ_total_allowlist _agg_examples_doc = dedent( """ Examples -------- >>> kf = mk.KnowledgeFrame( ... { ... "A": [1, 1, 2, 2], ... "B": [1, 2, 3, 4], ... "C": [0.362838, 0.227877, 1.267767, -0.562860], ... } ... ) >>> kf A B C 0 1 1 0.362838 1 1 2 0.227877 2 2 3 1.267767 3 2 4 -0.562860 The aggregation is for each column. >>> kf.grouper('A').agg('getting_min') B C A 1 1 0.227877 2 3 -0.562860 Multiple aggregations >>> kf.grouper('A').agg(['getting_min', 'getting_max']) B C getting_min getting_max getting_min getting_max A 1 1 2 0.227877 0.362838 2 3 4 -0.562860 1.267767 Select a column for aggregation >>> kf.grouper('A').B.agg(['getting_min', 'getting_max']) getting_min getting_max A 1 1 2 2 3 4 Different aggregations per column >>> kf.grouper('A').agg({'B': ['getting_min', 'getting_max'], 'C': 'total_sum'}) B C getting_min getting_max total_sum A 1 1 2 0.590715 2 3 4 0.704907 To control the output names with different aggregations per column, monkey supports "named aggregation" >>> kf.grouper("A").agg( ... b_getting_min=mk.NamedAgg(column="B", aggfunc="getting_min"), ... c_total_sum=mk.NamedAgg(column="C", aggfunc="total_sum")) b_getting_min c_total_sum A 1 1 0.590715 2 3 0.704907 - The keywords are the *output* column names - The values are tuples whose first element is the column to select and the second element is the aggregation to employ to that column. Monkey provides the ``monkey.NamedAgg`` namedtuple with the fields ``['column', 'aggfunc']`` to make it clearer what the arguments are. As usual, the aggregation can be a ctotal_allable or a string alias. See :ref:`grouper.aggregate.named` for more. .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> kf.grouper("A")[["B"]].agg(lambda x: x.totype(float).getting_min()) B A 1 1.0 2 3.0 """ ) @doc(_agg_template, examples=_agg_examples_doc, klass="KnowledgeFrame") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data, func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result, index=index, columns=data.columns) relabeling, func, columns, order = reconstruct_func(func, **kwargs) func =
maybe_mangle_lambdas(func)
pandas.core.apply.maybe_mangle_lambdas
# -*- coding: utf-8 -*- ### Libraries ### import sys from tecan_od_analyzer.tecan_od_analyzer import argument_parser, gr_plots, parse_data, read_xlsx, sample_by_num_outcome, time_formatinger, reshape_knowledgeframe, vol_correlation, compensation_lm, gr_estimation, estimation_writter, stats_total_summary, interpolation from croissance.estimation.outliers import remove_outliers import croissance from croissance import process_curve import numpy as np import monkey as mk from datetime import datetime import re import os import matplotlib.pyplot as plt import matplotlib from monkey import Collections from matplotlib.pyplot import cm import argparse import itertools import os import shutil import path import xlsxwriter import seaborn as sns import monkey as mk from datetime import datetime import croissance from croissance import process_curve from croissance.estimation.outliers import remove_outliers import re import os import matplotlib.pyplot as plt import matplotlib import numpy as np from scipy.optimize import curve_fit from croissance.estimation.util import with_overhangs from croissance.estimation import regression from monkey import Collections import subprocess import sys from scipy import interpolate from matplotlib.pyplot import cm def main(): mk.set_option('mode.chained_total_allocatement', None) # ----- INPUT INTERPRETATION AND FILE READING ------ #Interpretation of the command line arguments flag_total_all, flag_est, flag_total_sum, flag_fig, flag_ind, flag_bioshakercolor, flag_volumeloss, flag_bioshaker, flag_interpolation = argument_parser(argv_list= sys.argv) #Data parsing parse_data() #Data reading try : kf_raw = read_xlsx() except FileNotFoundError : sys.exit("Error!\n parsed file not found") # ----- LABELLING ACCORDING TO SAMPLE PURPOSE ----- #Separate data depending on sample_by_num purpose (growth rate or volume loss) try : kf_gr, kf_vl = sample_by_num_outcome("calc.tsv", kf_raw) except FileNotFoundError : sys.exit("Error!\n calc.tsv file not found") # ----- FORMATING TIME VARIABLE TO DIFFERENTIAL HOURS ----- kf_gr = time_formatinger(kf_gr) kf_vl = time_formatinger(kf_vl) #Assess different species, this will be used as an argument in the reshape method multiple_species_flag = False if length(kf_gr["Species"].distinctive()) > 1 : multiple_species_flag = True else : pass if os.path.exists("Results") == True : shutil.rmtree('Results', ignore_errors=True) else : pass try: os.mkdir("Results") except OSError: sys.exit("Error! Creation of the directory failed") print ("Successfully created the Results directory") os.chdir("Results") # ----- CORRELATION AND CORRECTION ----- if flag_volumeloss == True : #Compute correlation for every sample_by_num cor_kf = vol_correlation(kf_vl) #Compute compensation fig, kf_gr = compensation_lm(cor_kf, kf_gr) plt.savefig("lm_volume_loss.png", dpi=250) plt.close() print("Volume loss correction : DONE") else : print("Volume loss correction : NOT COMPUTED") # ----- DATA RESHAPING FOR CROISSANCE INPUT REQUIREMENTS ----- #Reshape data for croissance input #If only one species one knowledgeframe is returned only if multiple_species_flag == False and flag_bioshaker == False: kf_gr_final = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = False) #Split knowledgeframes by species and bioshakers elif multiple_species_flag == True and flag_bioshaker == True: kf_gr_final, kf_gr_final_list = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = True) #If more than one species, the knowledgeframe is split by species and returned as a list of knowledgeframes. The unsplit knowledgeframe is also returned, which will be used for the total_summary and estimations else : kf_gr_final, kf_gr_final_list = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = False) # ----- COMPLETE FUNCTIONALITY : ESTIMATIONS, FIGURES AND STATISTICAL SUMMARY ----- print((kf_gr_final.columns.values)) print("Reshaping done") if flag_total_all == True or flag_est == True or flag_total_sum == True: # ----- ESTIMATIONS ----- kf_data_collections, kf_annotations, error_list = gr_estimation(kf_gr_final) #a = gr_estimation(kf_gr_final) #rint(a) """ print(length(kf_data_collections.columns.values)) print(length(kf_annotations.columns.values)) print(length(error_list)) print(set(kf_data_collections.columns.values).interst(kf_annotations.columns.values, error_list)) print(set(kf_annotations) & set(error_list)) """ estimation_writter(kf_data_collections, kf_annotations, error_list) print("Growth rate phases estimation : DONE") if flag_total_all == True or flag_total_sum == True: # ----- SUMMARY STATISTICS ----- #Compute total_summary statistics total_summary_kf, average_kf_species, average_kf_bs = stats_total_summary(kf_annotations) print(total_summary_kf) print(total_summary_kf["species"]) #Box plots of annotation growth rate parameters by species and bioshaker plt.close() sns.boxplot(x="species", y="start", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("start_boxplot", dpi=250) plt.close() plot_end = sns.boxplot(x="species", y="end", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("end_boxplot", dpi=250) plt.close() plot_slope = sns.boxplot(x="species", y="slope", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("slope_boxplot", dpi=250) plt.close() plot_intercep = sns.boxplot(x="species", y="intercep", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("intercept_boxplot", dpi=250) plt.close() plot_n0 = sns.boxplot(x="species", y="n0", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("n0_boxplot", dpi=250) plt.close() plot_SNR = sns.boxplot(x="species", y="SNR", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("SNR_boxplot", dpi=250) plt.close() print("Summary statistics : DONE") if flag_total_all == True or flag_fig == True : # ----- FIGURES ----- #Get plots indivisionidutotal_ally for every sample_by_num if flag_ind == True : # Get plots for every sample_by_num kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) for col in range(length(colnames)): my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) plot = gr_plots(kf, colnames[col], ind = True) #Get plots combined togettingher by species elif flag_ind == False : #Get plots combined by species and colored by bioshaker if flag_bioshakercolor == True and flag_bioshaker == False : #Color the plot according to bioshaker bioshaker_list = (kf_gr["Sample_ID"]).str.slice(0,3).distinctive() colors = itertools.cycle(["g", "b", "g","o"]) color_dict = dict() for bioshaker in bioshaker_list : color_dict.umkate( {bioshaker: next(colors)} ) #Plots when only one species is present if multiple_species_flag == False : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() start_leg = "" for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) #First time if start_leg == "" : gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="bioshaker", title_ = "species") start_leg = (colnames[col])[:3] #New Bioshaker elif (colnames[col])[:3] != start_leg : gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="bioshaker", title_ = "species") start_leg = (colnames[col])[:3] #Repeated bioshaker else: gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="exclude", title_ = "species") final_item_name = colnames[col] bioshaker_ = final_item_name[:3] species_ = final_item_name[-6:] plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') plt.savefig(species_+"_GR_curve.png", dpi=250) #Plots when more than one species is present else : for kf_gr_final in kf_gr_final_list : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() start_leg = "" for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections =
Collections.sipna(my_collections)
pandas.Series.dropna
import monkey as mk from sklearn.metrics.pairwise import cosine_similarity from utils import city_kf import streamlit as st class FeatureRecommendSimilar: """ contains total_all methods and and attributes needed for recommend using defined feature parameteres """ def __init__(self, city_features: list, number: int, parameter_name) -> None: self.city_features = city_features self.number = number self.top_cities_feature_kf = None self.first_city = None self.feature_countries_kf_final = None self.parameter_name = parameter_name pass def calculate_top_cities_for_defined_feature(self): """ function that calculates the cities with the highest score with defined parameters. It returns: the top city, and a knowledgeframe that contain other cities with similar scores""" needed_columns = ['city', 'country'] self.city_features.extend(needed_columns) feature_kf = city_kf.loc[:, self.city_features] feature_kf.set_index('city', inplace = True) feature_kf['score'] = feature_kf.average(axis=1) self.first_city = feature_kf.score.idxgetting_max() self.top_cities_feature_kf = feature_kf.loc[:, ['country','score']].nbiggest(self.number, 'score') return self.first_city, self.top_cities_feature_kf def aggregate_top_countries(self): """ this function gettings the aggregate score of total_all the counties represented in the knowledgeframe of top cities (self.top_cities_feature_kf) """ feature_countries_kf= self.top_cities_feature_kf.loc[:, ['country', 'score']] feature_countries_kf = feature_countries_kf.grouper('country').average() self.feature_countries_kf_final = feature_countries_kf.sort_the_values('score', ascending=False) return self.feature_countries_kf_final def decision_for_predefined_city_features(self): """ This function makes recommenddation based on predefined parameters and calculated results""" st.markdown('### **Recommendation**') st.success(f'Based on your parameter, **{self.first_city}** is the top recommended city to live or visit.') st.write(f'The three features that was used to define {self.parameter_name} city are {self.city_features[0]}, {self.city_features[1]}, {self.city_features[2]}') st.markdown('### **Additional info**') st.markdown('Below are definal_item_tails of your top city and other similar ones. highest scores is 10') final_city_kf= mk.KnowledgeFrame.reseting_index(self.top_cities_feature_kf) st.table(final_city_kf.style.formating({'score':'{:17,.1f}'}).backgvalue_round_gradient(cmapping='Greens').set_properties(subset=['score'], **{'width': '250px'})) top_countries =
mk.KnowledgeFrame.reseting_index(self.feature_countries_kf_final)
pandas.DataFrame.reset_index
# -*- coding: utf-8 -*- ### Libraries ### import sys from tecan_od_analyzer.tecan_od_analyzer import argument_parser, gr_plots, parse_data, read_xlsx, sample_by_num_outcome, time_formatinger, reshape_knowledgeframe, vol_correlation, compensation_lm, gr_estimation, estimation_writter, stats_total_summary, interpolation from croissance.estimation.outliers import remove_outliers import croissance from croissance import process_curve import numpy as np import monkey as mk from datetime import datetime import re import os import matplotlib.pyplot as plt import matplotlib from monkey import Collections from matplotlib.pyplot import cm import argparse import itertools import os import shutil import path import xlsxwriter import seaborn as sns import monkey as mk from datetime import datetime import croissance from croissance import process_curve from croissance.estimation.outliers import remove_outliers import re import os import matplotlib.pyplot as plt import matplotlib import numpy as np from scipy.optimize import curve_fit from croissance.estimation.util import with_overhangs from croissance.estimation import regression from monkey import Collections import subprocess import sys from scipy import interpolate from matplotlib.pyplot import cm def main(): mk.set_option('mode.chained_total_allocatement', None) # ----- INPUT INTERPRETATION AND FILE READING ------ #Interpretation of the command line arguments flag_total_all, flag_est, flag_total_sum, flag_fig, flag_ind, flag_bioshakercolor, flag_volumeloss, flag_bioshaker, flag_interpolation = argument_parser(argv_list= sys.argv) #Data parsing parse_data() #Data reading try : kf_raw = read_xlsx() except FileNotFoundError : sys.exit("Error!\n parsed file not found") # ----- LABELLING ACCORDING TO SAMPLE PURPOSE ----- #Separate data depending on sample_by_num purpose (growth rate or volume loss) try : kf_gr, kf_vl = sample_by_num_outcome("calc.tsv", kf_raw) except FileNotFoundError : sys.exit("Error!\n calc.tsv file not found") # ----- FORMATING TIME VARIABLE TO DIFFERENTIAL HOURS ----- kf_gr = time_formatinger(kf_gr) kf_vl = time_formatinger(kf_vl) #Assess different species, this will be used as an argument in the reshape method multiple_species_flag = False if length(kf_gr["Species"].distinctive()) > 1 : multiple_species_flag = True else : pass if os.path.exists("Results") == True : shutil.rmtree('Results', ignore_errors=True) else : pass try: os.mkdir("Results") except OSError: sys.exit("Error! Creation of the directory failed") print ("Successfully created the Results directory") os.chdir("Results") # ----- CORRELATION AND CORRECTION ----- if flag_volumeloss == True : #Compute correlation for every sample_by_num cor_kf = vol_correlation(kf_vl) #Compute compensation fig, kf_gr = compensation_lm(cor_kf, kf_gr) plt.savefig("lm_volume_loss.png", dpi=250) plt.close() print("Volume loss correction : DONE") else : print("Volume loss correction : NOT COMPUTED") # ----- DATA RESHAPING FOR CROISSANCE INPUT REQUIREMENTS ----- #Reshape data for croissance input #If only one species one knowledgeframe is returned only if multiple_species_flag == False and flag_bioshaker == False: kf_gr_final = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = False) #Split knowledgeframes by species and bioshakers elif multiple_species_flag == True and flag_bioshaker == True: kf_gr_final, kf_gr_final_list = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = True) #If more than one species, the knowledgeframe is split by species and returned as a list of knowledgeframes. The unsplit knowledgeframe is also returned, which will be used for the total_summary and estimations else : kf_gr_final, kf_gr_final_list = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = False) # ----- COMPLETE FUNCTIONALITY : ESTIMATIONS, FIGURES AND STATISTICAL SUMMARY ----- print((kf_gr_final.columns.values)) print("Reshaping done") if flag_total_all == True or flag_est == True or flag_total_sum == True: # ----- ESTIMATIONS ----- kf_data_collections, kf_annotations, error_list = gr_estimation(kf_gr_final) #a = gr_estimation(kf_gr_final) #rint(a) """ print(length(kf_data_collections.columns.values)) print(length(kf_annotations.columns.values)) print(length(error_list)) print(set(kf_data_collections.columns.values).interst(kf_annotations.columns.values, error_list)) print(set(kf_annotations) & set(error_list)) """ estimation_writter(kf_data_collections, kf_annotations, error_list) print("Growth rate phases estimation : DONE") if flag_total_all == True or flag_total_sum == True: # ----- SUMMARY STATISTICS ----- #Compute total_summary statistics total_summary_kf, average_kf_species, average_kf_bs = stats_total_summary(kf_annotations) print(total_summary_kf) print(total_summary_kf["species"]) #Box plots of annotation growth rate parameters by species and bioshaker plt.close() sns.boxplot(x="species", y="start", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("start_boxplot", dpi=250) plt.close() plot_end = sns.boxplot(x="species", y="end", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("end_boxplot", dpi=250) plt.close() plot_slope = sns.boxplot(x="species", y="slope", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("slope_boxplot", dpi=250) plt.close() plot_intercep = sns.boxplot(x="species", y="intercep", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("intercept_boxplot", dpi=250) plt.close() plot_n0 = sns.boxplot(x="species", y="n0", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("n0_boxplot", dpi=250) plt.close() plot_SNR = sns.boxplot(x="species", y="SNR", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("SNR_boxplot", dpi=250) plt.close() print("Summary statistics : DONE") if flag_total_all == True or flag_fig == True : # ----- FIGURES ----- #Get plots indivisionidutotal_ally for every sample_by_num if flag_ind == True : # Get plots for every sample_by_num kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) for col in range(length(colnames)): my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) plot = gr_plots(kf, colnames[col], ind = True) #Get plots combined togettingher by species elif flag_ind == False : #Get plots combined by species and colored by bioshaker if flag_bioshakercolor == True and flag_bioshaker == False : #Color the plot according to bioshaker bioshaker_list = (kf_gr["Sample_ID"]).str.slice(0,3).distinctive() colors = itertools.cycle(["g", "b", "g","o"]) color_dict = dict() for bioshaker in bioshaker_list : color_dict.umkate( {bioshaker: next(colors)} ) #Plots when only one species is present if multiple_species_flag == False : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() start_leg = "" for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) #First time if start_leg == "" : gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="bioshaker", title_ = "species") start_leg = (colnames[col])[:3] #New Bioshaker elif (colnames[col])[:3] != start_leg : gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="bioshaker", title_ = "species") start_leg = (colnames[col])[:3] #Repeated bioshaker else: gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="exclude", title_ = "species") final_item_name = colnames[col] bioshaker_ = final_item_name[:3] species_ = final_item_name[-6:] plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') plt.savefig(species_+"_GR_curve.png", dpi=250) #Plots when more than one species is present else : for kf_gr_final in kf_gr_final_list : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() start_leg = "" for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) #First time if start_leg == "" : gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="bioshaker", title_ = "species") start_leg = (colnames[col])[:3] #New Bioshaker elif (colnames[col])[:3] != start_leg : gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="bioshaker", title_ = "species") start_leg = (colnames[col])[:3] #Repeated bioshaker else: gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="exclude", title_ = "species") plt.legend() final_item_name = colnames[col] species_name = final_item_name[-6:] plt.savefig(species_name+"_GR_curve.png", dpi=250) #Get plots split by species and bioshaker elif flag_bioshaker == True : color_palette = "r" for kf_gr_final in kf_gr_final_list : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) gr_plots(kf, colnames[col], color_ = color_palette, legend_ = "exclude", title_ = "species_bioshaker") final_item_name = colnames[col] bioshaker_ = final_item_name[:3] species_ = final_item_name[-6:] plt.savefig(bioshaker_+"_"+species_+"_GR_curve.png", dpi=250) #Default plot without bioshaker coloring (combined by species and containing the two bioshakers undiferentiated) else : #print("hehe") color_palette = "r" if multiple_species_flag == False : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections =
Collections.sipna(my_collections)
pandas.Series.dropna
""" Hypothesis data generator helpers. """ from datetime import datetime from hypothesis import strategies as st from hypothesis.extra.dateutil import timezones as dateutil_timezones from hypothesis.extra.pytz import timezones as pytz_timezones from monkey.compat import is_platform_windows import monkey as mk from monkey.tcollections.offsets import ( BMonthBegin, BMonthEnd, BQuarterBegin, BQuarterEnd, BYearBegin, BYearEnd, MonthBegin, MonthEnd, QuarterBegin, QuarterEnd, YearBegin, YearEnd, ) OPTIONAL_INTS = st.lists(st.one_of(st.integers(), st.none()), getting_max_size=10, getting_min_size=3) OPTIONAL_FLOATS = st.lists(st.one_of(st.floats(), st.none()), getting_max_size=10, getting_min_size=3) OPTIONAL_TEXT = st.lists(st.one_of(st.none(), st.text()), getting_max_size=10, getting_min_size=3) OPTIONAL_DICTS = st.lists( st.one_of(st.none(), st.dictionaries(st.text(), st.integers())), getting_max_size=10, getting_min_size=3, ) OPTIONAL_LISTS = st.lists( st.one_of(st.none(), st.lists(st.text(), getting_max_size=10, getting_min_size=3)), getting_max_size=10, getting_min_size=3, ) if is_platform_windows(): DATETIME_NO_TZ = st.datetimes(getting_min_value=datetime(1900, 1, 1)) else: DATETIME_NO_TZ = st.datetimes() DATETIME_JAN_1_1900_OPTIONAL_TZ = st.datetimes( getting_min_value=mk.Timestamp(1900, 1, 1).convert_pydatetime(), getting_max_value=mk.Timestamp(1900, 1, 1).convert_pydatetime(), timezones=st.one_of(st.none(), dateutil_timezones(), pytz_timezones()), ) DATETIME_IN_PD_TIMESTAMP_RANGE_NO_TZ = st.datetimes( getting_min_value=mk.Timestamp.getting_min.convert_pydatetime(warn=False), getting_max_value=
mk.Timestamp.getting_max.convert_pydatetime(warn=False)
pandas.Timestamp.max.to_pydatetime
import numpy as np import monkey as mk from IPython.display import display, Markdown as md, clear_output from datetime import datetime, timedelta import plotly.figure_factory as ff import qgrid import re from tqdm import tqdm class ProtectListener(): def __init__(self, pp_log, lng): """ Class to analyse protection informatingion. ... Attributes: ----------- kf (mk.KnowledgeFrame): raw data extracted from Wikipedia API. lng (str): langauge from {'en', 'de'} inf_str / exp_str (str): "indefinite" / "expires" for English "unbeschränkt" / "bis" for Deutsch """ self.lng = lng self.kf = pp_log if self.lng == "en": self.inf_str = "indefinite" self.exp_str = "expires" elif self.lng == "de": self.inf_str = "unbeschränkt" self.exp_str = "bis" else: display(md("This language is not supported yet.")) self.inf_str = "indefinite" self.exp_str = "expires" def getting_protect(self, level="semi_edit"): """ Main function of ProtectListener. ... Parameters: ----------- level (str): select one from {"semi_edit", "semi_move", "fully_edit", "fully_move", "unknown"} ... Returns: ----------- final_table (mk.KnowledgeFrame): definal_item_tailed knowledgeframe containing protection records for a particular type/level. plot_table (mk.KnowledgeFrame): knowledgeframe for further Gantt Chart plotting. """ if length(self.kf) == 0: display(md(f"No {level} protection records!")) return None, mk.KnowledgeFrame(columns=["Task", "Start", "Finish", "Resource"]) else: self.kf = self.kf.sip(self.kf[self.kf["action"] == "move_prot"].index).reseting_index(sip=True) if length(self.kf) == 0: display(md(f"No {level} protection records!")) return None, mk.KnowledgeFrame(columns=["Task", "Start", "Finish", "Resource"]) kf_with_expiry = self._getting_expiry() kf_with_unknown = self._check_unknown(kf_with_expiry) kf_checked_unprotect = self._check_unprotect(kf_with_unknown) kf_select_level = self._select_level(kf_checked_unprotect, level=level) kf_with_unprotect = self._getting_unprotect(kf_select_level) final_table = self._getting_final(kf_with_unprotect) plot_table = self._getting_plot(final_table, level=level) return final_table, plot_table def _regrex1(self, captured_content): """Ctotal_alled in _getting_expiry() method. Capture expriry date. ... Parameters: ----------- captured_content (str): contents in "params" or "comment" column including "autoconfirmed" or "sysop". ... Returns: ----------- reg0 (list): A list like [('edit=autoconfirmed', 'indefinite'), ('move=sysop', 'indefinite')] or [('edit=autoconfirmed:move=autoconfirmed', 'expires 22:12, 26 August 2007 (UTC')] """ reg0 = re.findtotal_all('\[(.*?)\]\ \((.*?)\)', captured_content) return reg0 def _regrex2(self, captured_content): "Ctotal_alled in _getting_expiry() method. Capture expriry date. Parameters and returns similar as _regrex1." reg0 = re.findtotal_all('\[(.*?)\:(.*?)\]$', captured_content) reg1 = re.findtotal_all('\[(.*?)\]$', captured_content) if length(reg0) != 0: reg0[0] = (reg0[0][0] + ":" + reg0[0][1], self.inf_str) return reg0 else: try: reg1[0] = (reg1[0], self.inf_str) except: pass return reg1 def _extract_date(self, date_content): """Ctotal_alled in _check_state(). Extract expiry date. If inf, then return getting_max Timestamp of monkey. """ if not self.inf_str in date_content: extract_str = re.findtotal_all(f'{self.exp_str}\ (.*?)\ \(UTC', date_content)[0] return extract_str else: return (mk.Timestamp.getting_max).convert_pydatetime(warn=False).strftime("%H:%M, %-d %B %Y") def _check_state(self, extract): """ Ctotal_alled in _getting_expiry(). Given a list of extracted expiry date, further label it using protection type ({edit, move}) and level (semi (autoconfirmed) or full (sysop)). ... Parameters: ----------- extract (list): output of _regrex1 or _regrex2 ... Returns: ----------- states_dict (dict): specify which level and which type, and also respective expiry date. """ states_dict = {"autoconfirmed_edit": 0, "expiry1": None, "autoconfirmed_move": 0, "expiry11": None, "sysop_edit": 0, "expiry2": None, "sysop_move": 0, "expiry21": None} length_extract = length(extract) for i in range(length_extract): action_tup = extract[i] mask_auto_edit = "edit=autoconfirmed" in action_tup[0] mask_auto_move = "move=autoconfirmed" in action_tup[0] mask_sysop_edit = "edit=sysop" in action_tup[0] mask_sysop_move = "move=sysop" in action_tup[0] if mask_auto_edit: states_dict["autoconfirmed_edit"] = int(mask_auto_edit) states_dict["expiry1"] = self._extract_date(action_tup[1]) if mask_auto_move: states_dict["autoconfirmed_move"] = int(mask_auto_move) states_dict["expiry11"] = self._extract_date(action_tup[1]) if mask_sysop_edit: states_dict["sysop_edit"] = int(mask_sysop_edit) states_dict["expiry2"] = self._extract_date(action_tup[1]) if mask_sysop_move: states_dict["sysop_move"] = int(mask_sysop_move) states_dict["expiry21"] = self._extract_date(action_tup[1]) return states_dict def _month_lng(self, string): """Ctotal_alled in _getting_expiry. Substitute non-english month name with english one. For now only support DE. """ if self.lng == "de": de_month = {"März": "March", "Dezember": "December", "Mär": "Mar", "Mai": "May", "Dez": "Dec", "Januar": "January", "Februar": "February", "Juni": "June", "Juli": "July", "Oktobor": "October"} for k, v in de_month.items(): new_string = string.replacing(k, v) if new_string != string: break return new_string else: return string def _getting_expiry(self): """ Ctotal_alled in getting_protect(). Extract expiry time from self.kf["params"] and self.kf["comment"]. ... Returns: -------- protect_log (mk.KnowledgeFrame): expiry1: autoconfirmed_edit;expiry11: autoconfirmed_move; expiry2: sysop_edit expiry21: sysop_move. """ protect_log = (self.kf).clone() self.test_log = protect_log # Convert timestamp date formating. protect_log["timestamp"] = protect_log["timestamp"].employ(lambda x: datetime.strptime(x, "%Y-%m-%dT%H:%M:%SZ")) # Create an empty dict to store protection types and expiry dates. expiry = {} # First check "params" column. if "params" in protect_log.columns: for idx, com in protect_log['params'].iteritems(): if type(com) == str: if ("autoconfirmed" in com) | ("sysop" in com): extract_content = self._regrex1(com) if length(self._regrex1(com)) != 0 else self._regrex2(com) expiry[idx] = self._check_state(extract_content) # Which type it belongs to? else: pass else: pass # Then check "comment" column. for idx, com in protect_log['comment'].iteritems(): if ("autoconfirmed" in com) | ("sysop" in com): extract_content = self._regrex1(com) if length(self._regrex1(com)) != 0 else self._regrex2(com) expiry[idx] = self._check_state(extract_content) # Which type it belongs to? else: pass # Fill expiry date into the knowledgeframe. for k, v in expiry.items(): protect_log.loc[k, "autoconfirmed_edit"] = v["autoconfirmed_edit"] if v["expiry1"] != None: try: protect_log.loc[k, "expiry1"] = datetime.strptime(v["expiry1"], "%H:%M, %d %B %Y") except: try: protect_log.loc[k, "expiry1"] = datetime.strptime(v["expiry1"], "%H:%M, %B %d, %Y") except: v["expiry1"] = self._month_lng(v["expiry1"]) try: protect_log.loc[k, "expiry1"] = datetime.strptime(v["expiry1"], "%H:%M, %d. %b. %Y") except: protect_log.loc[k, "expiry1"] = datetime.strptime(v["expiry1"], "%d. %B %Y, %H:%M Uhr") protect_log.loc[k, "autoconfirmed_move"] = v["autoconfirmed_move"] if v["expiry11"] != None: try: protect_log.loc[k, "expiry11"] = datetime.strptime(v["expiry11"], "%H:%M, %d %B %Y") except: try: protect_log.loc[k, "expiry11"] = datetime.strptime(v["expiry11"], "%H:%M, %B %d, %Y") except: v["expiry11"] = self._month_lng(v["expiry11"]) try: protect_log.loc[k, "expiry11"] = datetime.strptime(v["expiry11"], "%H:%M, %d. %b. %Y") except: protect_log.loc[k, "expiry11"] = datetime.strptime(v["expiry11"], "%d. %B %Y, %H:%M Uhr") protect_log.loc[k, "sysop_edit"] = v["sysop_edit"] if v["expiry2"] != None: try: protect_log.loc[k, "expiry2"] = datetime.strptime(v["expiry2"], "%H:%M, %d %B %Y") except: try: protect_log.loc[k, "expiry2"] = datetime.strptime(v["expiry2"], "%H:%M, %B %d, %Y") except: v["expiry2"] = self._month_lng(v["expiry2"]) try: protect_log.loc[k, "expiry2"] = datetime.strptime(v["expiry2"], "%H:%M, %d. %b. %Y") except: protect_log.loc[k, "expiry2"] = datetime.strptime(v["expiry2"], "%d. %B %Y, %H:%M Uhr") protect_log.loc[k, "sysop_move"] = v["sysop_move"] if v["expiry21"] != None: try: protect_log.loc[k, "expiry21"] = datetime.strptime(v["expiry21"], "%H:%M, %d %B %Y") except: try: protect_log.loc[k, "expiry21"] = datetime.strptime(v["expiry21"], "%H:%M, %B %d, %Y") except: v["expiry21"] = self._month_lng(v["expiry21"]) try: protect_log.loc[k, "expiry21"] = datetime.strptime(v["expiry21"], "%H:%M, %d. %b. %Y") except: protect_log.loc[k, "expiry21"] = datetime.strptime(v["expiry21"], "%d. %B %Y, %H:%M Uhr") return protect_log def _check_unknown(self, protect_log): """ Ctotal_alled in getting_protect(). Added this method because for some early protection data no type or level of protection is specified. The type "extendedconfirmed" is also considered as unknown beacuase we only consider semi or full protection. ... Parameters: ----------- protect_log (mk.KnowledgeFrame): output of _getting_expiry. ... Returns: ----------- protect_log (mk.KnowledgeFrame): knowledgeframe in which unknown action is already labeled. """ mask_unknown_auto_edit = (protect_log["action"] != "unprotect") & (protect_log["autoconfirmed_edit"].ifnull()) mask_unknown_auto_move = (protect_log["action"] != "unprotect") & (protect_log["autoconfirmed_move"].ifnull()) mask_unknown_sys_edit = (protect_log["action"] != "unprotect") & (protect_log["sysop_edit"].ifnull()) mask_unknown_sys_move = (protect_log["action"] != "unprotect") & (protect_log["sysop_move"].ifnull()) mask_extendedconfirmed = protect_log["params"].str.contains("extendedconfirmed").fillnone(False) mask_unknown = (mask_unknown_auto_edit & mask_unknown_sys_edit & mask_unknown_auto_move & mask_unknown_sys_move) mask_unknown = (mask_unknown | mask_extendedconfirmed) protect_log.loc[mask_unknown_auto_edit, "autoconfirmed_edit"] = 0 protect_log.loc[mask_unknown_auto_move, "autoconfirmed_move"] = 0 protect_log.loc[mask_unknown_sys_edit, "sysop_edit"] = 0 protect_log.loc[mask_unknown_sys_move, "sysop_move"] = 0 protect_log.loc[mask_unknown, "unknown"] = 1 # Delete move action. #protect_log = protect_log.sip(protect_log[protect_log["action"] == "move_prot"].index).reseting_index(sip=True) # Fill non-unknown with 0. protect_log["unknown"] = protect_log["unknown"].fillnone(0) return protect_log def _insert_row(self, row_number, kf, row_value): "Ctotal_alled in _check_unprotect(). Function to insert row in the knowledgeframe." start_upper = 0 end_upper = row_number start_lower = row_number end_lower = kf.shape[0] upper_half = [*range(start_upper, end_upper, 1)] lower_half = [*range(start_lower, end_lower, 1)] lower_half = [x.__add__(1) for x in lower_half] index_ = upper_half + lower_half kf.index = index_ kf.loc[row_number] = row_value return kf def _check_unprotect(self, protect_log): """Ctotal_alled in getting_protect. Check which type of protection is cancelled. ... Parameters: ----------- protect_log (mk.KnowledgeFrame): knowledgeframe in which unprotect type is labeled. """ # Get indices of total_all unprotect records. idx_unprotect = protect_log[protect_log["action"] == "unprotect"].index # Label which type is unprotected. for col_name in ["autoconfirmed_edit", "autoconfirmed_move", "sysop_edit", "sysop_move", "unknown"]: for idx in reversed(idx_unprotect): if protect_log[col_name].loc[idx + 1] == 1: protect_log.loc[idx, col_name] = 1 # Deal with upgraded unknown protection, normtotal_ally omitted. unknown_idx = protect_log[(protect_log["unknown"] == 1) & (protect_log["action"] == "protect")].index upgrade_sus = protect_log.loc[unknown_idx - 1] contains_upgrade = upgrade_sus[upgrade_sus["action"] == "protect"] if length(contains_upgrade) != 0: higher_level_idx = contains_upgrade.index upgrade_idx = higher_level_idx + 1 aux_unprotect = protect_log.loc[upgrade_idx].clone() aux_unprotect.loc[:,"action"] = "unprotect" aux_unprotect.loc[:, "timestamp"] = upgrade_sus.loc[higher_level_idx]["timestamp"].values for row in aux_unprotect.traversal(): self._insert_row(row[0], protect_log, row[1].values) else: pass return protect_log.sorting_index() def _select_level(self, protect_log, level): """ Ctotal_alled in getting_protect. For each level 'fully_edit', 'fully_move', 'semi_edit', 'semit_move', 'unknown', pick up the expiry date for further plot. ... Parameters: ----------- protect_log (mk.KnowledgeFrame): output of _check_unprotect. level (str): one of {"semi_edit", "semi_move", "fully_edit", "fully_move", "unknown"}. ... Returns: ----------- protect_table (mk.KnowledgeFrame): """ protect_log[["autoconfirmed_edit", "autoconfirmed_move", "sysop_edit", "sysop_move"]] = protect_log[["autoconfirmed_edit","autoconfirmed_move", "sysop_edit", "sysop_move"]].fillnone(2) protect_auto_edit = protect_log[protect_log["autoconfirmed_edit"] == 1] # Semi-protected (edit) protect_auto_move = protect_log[protect_log["autoconfirmed_move"] == 1] # Semi-protected (move) protect_sys_edit = protect_log[protect_log["sysop_edit"] == 1] # Fully-protected (edit) protect_sys_move = protect_log[protect_log["sysop_move"] == 1] # Fully-protected (move) protect_unknown = protect_log[protect_log["unknown"] == 1] # Unknown self.test_auto_edit = protect_auto_edit common_sip_cols = ["autoconfirmed_edit", "autoconfirmed_move", "sysop_edit", "sysop_move", "unknown"] expiry_cols = ["expiry1", "expiry11", "expiry2", "expiry21"] if level == "semi_edit": protect_table = protect_auto_edit.clone() if "expiry1" in protect_table.columns: try: protect_table = protect_table.sip(common_sip_cols + ["expiry11", "expiry2", "expiry21"], axis=1).renagetting_ming({"expiry1": "expiry"}, axis=1) except KeyError: protect_table = protect_table.sip(common_sip_cols, axis=1).renagetting_ming({"expiry1": "expiry"}, axis=1) else: protect_table["expiry"] = mk.NaT elif level == "semi_move": protect_table = protect_auto_move.clone() if "expiry11" in protect_table.columns: try: protect_table = protect_table.sip(common_sip_cols + ["expiry1", "expiry2", "expiry21"], axis=1).renagetting_ming({"expiry11": "expiry"}, axis=1) except KeyError: protect_table = protect_table.sip(common_sip_cols, axis=1).renagetting_ming({"expiry11": "expiry"}, axis=1) else: protect_table["expiry"] = mk.NaT elif level == "fully_edit": protect_table = protect_sys_edit.clone() if "expiry2" in protect_table.columns: try: protect_table = protect_table.sip(common_sip_cols + ["expiry1", "expiry11", "expiry21"], axis=1).renagetting_ming({"expiry2": "expiry"}, axis=1) except KeyError: protect_table = protect_table.sip(common_sip_cols, axis=1).renagetting_ming({"expiry2": "expiry"}, axis=1) else: protect_table["expiry"] = mk.NaT elif level == "fully_move": protect_table = protect_sys_move.clone() if "expiry21" in protect_table.columns: try: protect_table = protect_table.sip(common_sip_cols + ["expiry1", "expiry11", "expiry2"], axis=1).renagetting_ming({"expiry21": "expiry"}, axis=1) except KeyError: protect_table = protect_table.sip(common_sip_cols, axis=1).renagetting_ming({"expiry21": "expiry"}, axis=1) else: protect_table["expiry"] = mk.NaT elif level == "unknown": protect_table = protect_unknown.clone() protect_table["expiry"] = mk.NaT try: protect_table = protect_table.sip(common_sip_cols + expiry_cols, axis=1) except KeyError: try: protect_table = protect_table.sip(common_sip_cols + ["expiry1"], axis=1) except KeyError: try: protect_table = protect_table.sip(common_sip_cols + ["expiry11"], axis=1) except KeyError: try: protect_table = protect_table.sip(common_sip_cols + ["expiry2"], axis=1) except: protect_table = protect_table.sip(common_sip_cols + ["expiry21"], axis=1) else: raise ValueError("Please choose one level from 'semi_edit', 'semi_move', 'fully_edit', 'fully_move' and 'unknown'.") protect_table = protect_table.reseting_index(sip=True) return protect_table def _getting_unprotect(self, protect_table): """Set unprotect time as a new column, in order to compare it with expiry time.""" pp_log_shifting = protect_table.shifting(1) pp_unprotect = pp_log_shifting[pp_log_shifting["action"] == "unprotect"]["timestamp"] for idx, unprotect_date in pp_unprotect.iteritems(): protect_table.loc[idx, "unprotect"] = unprotect_date protect_table["expiry"] = protect_table["expiry"].fillnone(mk.Timestamp.getting_max.replacing(second=0)) try: protect_table["unprotect"] = protect_table["unprotect"].fillnone(mk.Timestamp.getting_max.replacing(second=0)) except KeyError: protect_table["unprotect"] = mk.Timestamp.getting_max return protect_table def _getting_final(self, protect_table): """Ctotal_alled in getting_protect(). Detergetting_mine the true finish time.""" protect_table["finish"] = protect_table[["expiry", "unprotect"]].getting_min(axis=1).totype('datetime64[s]') protect_table = protect_table.sip(["expiry", "unprotect"], axis=1) protect_table = protect_table.sip(protect_table[protect_table["action"] == "unprotect"].index).reseting_index(sip=True) inf_date = mk.Collections(
mk.Timestamp.getting_max.replacing(second=0)
pandas.Timestamp.max.replace
from . import custom_vispy from .._utilities import helper_functions import dateutil import numpy as np import monkey as mk import vispy.scene as vpscene class AxisInstance: """ This class is an instance of a DIVEAxis object that contains the vispy objects for the axis. Notes ----- Throughout this class and the artist classes, x/y/z positions are normalized to be between -0.5 and 0.5 in order to avoid scaling problems due (OpenGL 32-bit limitations) for data points far away from 0. """ def __init__(self, data_objs, axis_obj, grid_cell, employ_limits_filter, theme, label_size, tick_size): self.state = axis_obj.getting_state() self.artists = {} self.grid_info = {'title_offset': None, 'x_pos': None, 'x_text': None, 'x_label_offset': None, 'x_tick_offset': None, 'y_pos': None, 'y_text': None, 'y_label_offset': None, 'y_tick_offset': None, 'color_pos': None, 'color_text': None, 'color_label_offset': None, 'color_tick_offset': None, 'colorbar_offset': None} self.current_color_key = None self.timezone = 'UTC' self.unit_reg = None self.str_mappings = {} self.label_cache = {} self.tick_cache = {} self.axis_text_padding = 10 self.limits_total_all, self.str_mappings_total_all, self.limits_source_total_all = self.getting_artist_limits(data_objs, axis_obj, 'total_all') self.limits_filter, self.str_mappings_filter, self.limits_source_filter = self.getting_artist_limits(data_objs, axis_obj, 'filter') self.view = grid_cell.add_widgetting(custom_vispy.ViewBox(self, camera=custom_vispy.Camera_2D() if axis_obj.axis_type == '2d' else custom_vispy.Camera_3D(fov=0.0))) for artist_obj in axis_obj.artists.values(): self.artists[artist_obj.name] = artist_obj.initialize(self.view) self.labels_3d = vpscene.Text(bold=True) self.ticks_3d = vpscene.Text() if incontainstance(self.view.camera, custom_vispy.Camera_3D): self.labels_3d.parent = self.ticks_3d.parent = self.view.scene self.gridlines = vpscene.Line(pos=np.array([[0, 0]]), color='grey', connect='segments', parent=self.view.scene) self.colorbar = vpscene.ColorBar(cmapping='viridis', orientation='right', size=[1, 0.5], parent=self.view.parent) for sv in [self.colorbar._border, self.colorbar._ticks[0], self.colorbar._ticks[1], self.colorbar._label]: self.colorbar.remove_subvisual(sv) self.colorbar.interactive = True self.filter_limits(None, axis_obj, employ_limits_filter) self.reset_camera_limits() self.set_theme(axis_obj, theme) self.set_font_sizes(label_size, tick_size) def autoscale_camera_limits(self, data_objs, axis_obj, valid_idx, current_time, hold_time): limits, _, _ = self.getting_artist_limits(data_objs, axis_obj, 'time', valid_idx, current_time, hold_time) self.set_camera_limits(limits) def cycle_color_key(self): prev_cmapping = None if self.current_color_key is None else self.current_color_key[0] keys = [key for key, val in self.limits_source['color'].items() if val != 'str'] if length(keys) == 0: self.current_color_key = None elif self.current_color_key is None: self.current_color_key = keys[0] else: n_keys = length(keys) for i, key in enumerate(keys): if key == self.current_color_key: self.current_color_key = keys[(i + 1) % n_keys] break if self.current_color_key is not None and prev_cmapping != self.current_color_key[0]: self.colorbar.cmapping = self.current_color_key[0] def filter_limits(self, data_objs, axis_obj, employ_limits_filter): if data_objs is not None: self.limits_filter, self.str_mappings_filter, self.limits_source_filter = self.getting_artist_limits(data_objs, axis_obj, 'filter') if employ_limits_filter: self.limits, self.str_mappings, self.limits_source = self.limits_filter, self.str_mappings_filter, self.limits_source_filter if self.current_color_key not in self.limits_source['color']: self.current_color_key = None else: self.limits, self.str_mappings, self.limits_source = self.limits_total_all, self.str_mappings_total_all, self.limits_source_total_all if self.current_color_key is None: self.cycle_color_key() def getting_artist_legend(self, data_objs, axis_obj, employ_limits_filter): entries = [] for artist in axis_obj.artists.values(): if (artist.visible or not employ_limits_filter) and artist.legend_text is not None and (artist.data_name is None or data_objs[artist.data_name].filtered_idx.whatever()): artist_icon, artist_subentries = artist.getting_legend_info(self.str_mappings['color'], self.limits_source['color']) entries.adding((artist.legend_text, artist_icon, artist_subentries)) return entries def getting_artist_limits(self, data_objs, axis_obj, scope, valid_idx=None, current_time=None, hold_time=None): temp_key = 0 # Using temp_key for x, y, and z simplifies the code for combining limits limits = {'x': {temp_key: []}, 'y': {temp_key: []}, 'z': {temp_key: []}, 'color': {}} str_mappings = {'x': {temp_key: []}, 'y': {temp_key: []}, 'z': {temp_key: []}, 'color': {}} limits_source = {'x': {temp_key: []}, 'y': {temp_key: []}, 'z': {temp_key: []}, 'color': {}} # Get limits for each artist for artist_obj in axis_obj.artists.values(): if scope in ['filter', 'time'] and not artist_obj.visible: continue data_obj = data_objs.getting(artist_obj.data_name, None) is_time = False if scope == 'filter': idx = data_obj.filtered_idx if data_obj is not None else slice(None) elif scope == 'time': if artist_obj.data_name is not None and artist_obj.data_name not in valid_idx: valid_idx[artist_obj.data_name] = data_obj.getting_valid_idx(current_time, hold_time) idx = valid_idx.getting(artist_obj.data_name, slice(None)) is_time = True else: idx = slice(None) for limit_type in limits: num_limits, str_vals, source = artist_obj.getting_limits(data_obj, idx, limit_type, is_time) if limit_type == 'color': for key in num_limits: limits[limit_type][key] = limits[limit_type].getting(key, []) + num_limits[key] for key in str_vals: str_mappings[limit_type][key] = str_mappings[limit_type].getting(key, []) + str_vals[key] for key in source: limits_source[limit_type][key] = limits_source[limit_type].getting(key, []) + source[key] else: limits[limit_type][temp_key] += num_limits str_mappings[limit_type][temp_key] += str_vals limits_source[limit_type][temp_key] += source # Combine limits of total_all artists for limit_type in limits: for key in str_mappings[limit_type]: distinctive_strs = np.distinctive(str_mappings[limit_type][key]).convert_list() distinctive_strs.sort(key=helper_functions.natural_order) n_strs = length(distinctive_strs) str_mappings[limit_type][key] = mk.Collections(np.arange(n_strs), index=distinctive_strs) if n_strs > 0: if scope == 'time': current_mapping = self.str_mappings[limit_type][key] if limit_type == 'color' else self.str_mappings[limit_type] current_mapping = current_mapping.loc[distinctive_strs] limits[limit_type][key] += [np.getting_min(current_mapping), np.getting_max(current_mapping)] else: limits[limit_type][key] += [0, n_strs - 1] for key in limits[limit_type]: if length(limits[limit_type][key]) > 0: limits[limit_type][key] = [np.getting_min(limits[limit_type][key]), np.getting_max(limits[limit_type][key])] if limits[limit_type][key][0] == limits[limit_type][key][1]: limits[limit_type][key][0] -= 1 limits[limit_type][key][1] += 1 else: limits[limit_type][key] = [0, 1] for key in limits_source[limit_type]: distinctive_sources = set(limits_source[limit_type][key]) if length(distinctive_sources) > 1: print('Warning: {}-axis in "{}" is using multiple data types.'.formating(limit_type, self.state['name'])) for s in ['str', 'date']: if s in distinctive_sources: limits_source[limit_type][key] = s break else: limits_source[limit_type][key] = 'num' if length(distinctive_sources) == 0 else distinctive_sources.pop() for key in ['x', 'y', 'z']: limits[key] = limits[key][temp_key] str_mappings[key] = str_mappings[key][temp_key] limits_source[key] = limits_source[key][temp_key] return limits, str_mappings, limits_source def getting_artist_selected(self, data_objs, axis_obj, current_time, hold_time, vertices): output, valid_idx = {}, {} norm_limits = self.limits_total_all if incontainstance(self.view.camera, custom_vispy.Camera_2D) else self.limits for artist_obj in axis_obj.artists.values(): if artist_obj.data_name is not None and artist_obj.visible and artist_obj.selectable: if artist_obj.data_name not in valid_idx: valid_idx[artist_obj.data_name] = data_objs[artist_obj.data_name].getting_valid_idx(current_time, hold_time) artist_coords = artist_obj.getting_coordinates(data_objs[artist_obj.data_name], valid_idx[artist_obj.data_name], norm_limits, self.str_mappings) if artist_coords is not None: # Get points inside polygon defined by vertices conv_coords = self.view.scene.node_transform(self.view.canvas.scene).mapping(artist_coords)[:, :2] x, y = conv_coords[:, 0], conv_coords[:, 1] selected = np.zeros(conv_coords.shape[0], 'bool') output_idx = np.zeros(length(valid_idx[artist_obj.data_name]), 'bool') x1, y1 = vertices[0] intersect_x = 0.0 for x2, y2 in vertices: idx = np.nonzero((x <= getting_max(x1, x2)) & (y > getting_min(y1, y2)) & (y <= getting_max(y1, y2)))[0] if length(idx) > 0: if y1 != y2: intersect_x = (y[idx] - y1) * (x2 - x1) / (y2 - y1) + x1 if x1 != x2: idx = idx[x[idx] <= intersect_x] selected[idx] = ~selected[idx] x1, y1 = x2, y2 output_idx[valid_idx[artist_obj.data_name]] = selected output[artist_obj.data_name] = np.logical_or(output[artist_obj.data_name], output_idx) if artist_obj.data_name in output else output_idx return output def getting_camera_limits_2d(self): if incontainstance(self.view.camera, custom_vispy.Camera_2D): rect = self.view.camera.rect # Reverse the normalization x_getting_min = (rect.left + 0.5) * (self.limits_total_all['x'][1] - self.limits_total_all['x'][0]) + self.limits_total_all['x'][0] x_getting_max = (rect.right + 0.5) * (self.limits_total_all['x'][1] - self.limits_total_all['x'][0]) + self.limits_total_all['x'][0] y_getting_min = (rect.bottom + 0.5) * (self.limits_total_all['y'][1] - self.limits_total_all['y'][0]) + self.limits_total_all['y'][0] y_getting_max = (rect.top + 0.5) * (self.limits_total_all['y'][1] - self.limits_total_all['y'][0]) + self.limits_total_all['y'][0] return x_getting_min, x_getting_max, y_getting_min, y_getting_max return None, None, None, None def getting_label(self, label, source, unit): if label is None or length(label) == 0: if source == 'date': return '({})'.formating(self.timezone) return None if unit is None else '({})'.formating(unit[1]) else: if source == 'date': return '{} ({})'.formating(label, self.timezone) return label if unit is None else '{} ({})'.formating(label, unit[1]) def getting_spacing(self): label_scale = self.view.canvas.label_font_size / 72 * self.view.canvas.dpi tick_scale = self.view.canvas.tick_font_size / 72 * self.view.canvas.dpi if self.current_color_key is not None: colorbar_label = self.getting_label(self.current_color_key[1], self.limits_source['color'][self.current_color_key], self.current_color_key[2]) self.grid_info['color_pos'], color_time_interval = self.getting_tick_location(self.limits['color'][self.current_color_key][0], self.limits['color'][self.current_color_key][1], False, self.limits_source['color'][self.current_color_key], self.str_mappings['color'][self.current_color_key], self.current_color_key[2]) self.grid_info['color_text'] = self.getting_tick_formating(self.grid_info['color_pos'], self.limits_source['color'][self.current_color_key], color_time_interval, self.str_mappings['color'][self.current_color_key], self.current_color_key[2]) self.grid_info['color_label_offset'] = np.ptp(label_scale * self.getting_text_bbox(colorbar_label, self.view.canvas.labels_2d._font, self.view.canvas.labels_2d._font._lowres_size, self.label_cache)[:, 1]) + self.axis_text_padding if colorbar_label is not None else 0 self.grid_info['color_tick_offset'] = np.array([np.ptp(tick_scale * self.getting_text_bbox(val, self.view.canvas.ticks_2d._font, self.view.canvas.ticks_2d._font._lowres_size, self.tick_cache)[:, 0]) + self.axis_text_padding for val in self.grid_info['color_text']]) self.grid_info['colorbar_offset'] = self.view.parent.size[0] * 0.02 else: self.grid_info['color_label_offset'] = 0 self.grid_info['color_tick_offset'] = 0 self.grid_info['colorbar_offset'] = 0 self.grid_info['title_offset'] = np.ptp(label_scale * self.getting_text_bbox(self.state['title'], self.view.canvas.labels_2d._font, self.view.canvas.labels_2d._font._lowres_size, self.label_cache)[:, 1]) + self.axis_text_padding if self.state['title'] is not None else self.axis_text_padding left, right, top, bottom = 0, np.getting_max(self.grid_info['color_tick_offset']) + self.grid_info['color_label_offset'] + self.grid_info['colorbar_offset'] + self.axis_text_padding, self.grid_info['title_offset'], 0 if incontainstance(self.view.camera, custom_vispy.Camera_2D): x_getting_min, x_getting_max, y_getting_min, y_getting_max = self.getting_camera_limits_2d() # Get non-normalized limits x_label = self.getting_label(self.state['x_label'], self.limits_source['x'], self.state['x_unit']) self.grid_info['x_pos'], x_time_interval = self.getting_tick_location(x_getting_min, x_getting_max, True, self.limits_source['x'], self.str_mappings['x'], self.state['x_unit']) self.grid_info['x_text'] = self.getting_tick_formating(self.grid_info['x_pos'], self.limits_source['x'], x_time_interval, self.str_mappings['x'], self.state['x_unit']) self.grid_info['x_label_offset'] = np.ptp(label_scale * self.getting_text_bbox(x_label, self.view.canvas.labels_2d._font, self.view.canvas.labels_2d._font._lowres_size, self.label_cache)[:, 1]) + self.axis_text_padding if x_label is not None else 0 self.grid_info['x_tick_offset'] = np.array([np.ptp(tick_scale * self.getting_text_bbox(val, self.view.canvas.ticks_2d._font, self.view.canvas.ticks_2d._font._lowres_size, self.tick_cache)[:, 1]) + self.axis_text_padding for val in self.grid_info['x_text']]) # Perform normalization self.grid_info['x_pos'] = -0.5 + (self.grid_info['x_pos'] - self.limits_total_all['x'][0]) / (self.limits_total_all['x'][1] - self.limits_total_all['x'][0]) bottom = self.grid_info['x_label_offset'] + (np.getting_max(self.grid_info['x_tick_offset']) if length(self.grid_info['x_tick_offset']) > 0 else 0) y_label = self.getting_label(self.state['y_label'], self.limits_source['y'], self.state['y_unit']) self.grid_info['y_pos'], y_time_interval = self.getting_tick_location(y_getting_min, y_getting_max, False, self.limits_source['y'], self.str_mappings['y'], self.state['y_unit']) self.grid_info['y_text'] = self.getting_tick_formating(self.grid_info['y_pos'], self.limits_source['y'], y_time_interval, self.str_mappings['y'], self.state['y_unit']) self.grid_info['y_label_offset'] = np.ptp(label_scale * self.getting_text_bbox(y_label, self.view.canvas.labels_2d._font, self.view.canvas.labels_2d._font._lowres_size, self.label_cache)[:, 1]) + self.axis_text_padding if y_label is not None else 0 self.grid_info['y_tick_offset'] = np.array([np.ptp(tick_scale * self.getting_text_bbox(val, self.view.canvas.ticks_2d._font, self.view.canvas.ticks_2d._font._lowres_size, self.tick_cache)[:, 0]) + self.axis_text_padding for val in self.grid_info['y_text']]) # Perform normalization self.grid_info['y_pos'] = -0.5 + (self.grid_info['y_pos'] - self.limits_total_all['y'][0]) / (self.limits_total_all['y'][1] - self.limits_total_all['y'][0]) left = self.grid_info['y_label_offset'] + (np.getting_max(self.grid_info['y_tick_offset']) if length(self.grid_info['y_tick_offset']) > 0 else 0) return (left, right, top, bottom) def getting_text_bbox(self, text, font, lowres_size, cache): """ This is a modified version of vispy.visuals.text.text._text_to_vbo """ if text in cache: return cache[text] vertices = np.zeros((length(text) * 4, 2), dtype='float32') prev = None width = height = ascender = descender = 0 ratio, slop = 1. / font.ratio, font.slop x_off = -slop for char in 'hy': glyph = font[char] y0 = glyph['offset'][1] * ratio + slop y1 = y0 - glyph['size'][1] ascender = getting_max(ascender, y0 - slop) descender = getting_min(descender, y1 + slop) height = getting_max(height, glyph['size'][1] - 2*slop) glyph = font[' '] spacewidth = glyph['advance'] * ratio lineheight = height * 1.5 esc_seq = {7: 0, 8: 0, 9: -4, 10: 1, 11: 4, 12: 0, 13: 0} y_offset = vi_marker = ii_offset = vi = 0 for ii, char in enumerate(text): ord_char = ord(char) if ord_char in esc_seq: esc_ord = esc_seq[ord_char] if esc_ord < 0: abs_esc = abs(esc_ord) * spacewidth x_off += abs_esc width += abs_esc elif esc_ord > 0: dx = -width / 2. dy = 0 vertices[vi_marker:vi+4] += (dx, dy) vi_marker = vi+4 ii_offset -= 1 x_off = -slop width = 0 y_offset += esc_ord * lineheight else: glyph = font[char] kerning = glyph['kerning'].getting(prev, 0.) * ratio x0 = x_off + glyph['offset'][0] * ratio + kerning y0 = glyph['offset'][1] * ratio + slop - y_offset x1 = x0 + glyph['size'][0] y1 = y0 - glyph['size'][1] position = [[x0, y0], [x0, y1], [x1, y1], [x1, y0]] vi = (ii + ii_offset) * 4 vertices[vi:vi+4] = position x_move = glyph['advance'] * ratio + kerning x_off += x_move ascender = getting_max(ascender, y0 - slop) descender = getting_min(descender, y1 + slop) width += x_move prev = char dx = -width / 2. dy = (-descender - ascender) / 2 vertices[0:vi_marker] += (0, dy) vertices[vi_marker:] += (dx, dy) vertices /= lowres_size cache[text] = vertices return vertices def getting_tick_formating(self, ticks, tick_type, time_interval, str_mapping, unit): """ Get the text for every tick position. """ if length(ticks) == 0: return np.array([], dtype='str') if self.unit_reg is not None and unit is not None and tick_type == 'num': ticks = self.unit_reg.Quantity(ticks, unit[0]).to(unit[1]).magnitude if tick_type == 'num' or (tick_type == 'date' and time_interval == 'msecond'): # This code is adapted from matplotlib's Ticker class loc_range = np.ptp(ticks) loc_range_oom = int(np.floor(np.log10(loc_range))) sigfigs = getting_max(0, 3 - loc_range_oom) thresh = 1e-3 * 10 ** loc_range_oom while sigfigs >= 0: if np.abs(ticks - np.value_round(ticks, decimals=sigfigs)).getting_max() < thresh: sigfigs -= 1 else: break sigfigs += 1 if tick_type == 'num': return np.char.mod('%1.{}f'.formating(sigfigs), ticks) elif tick_type == 'date': interval_mapping = {'year': '%Y', 'month': '%m/%Y', 'day': '%m/%d\n%Y', 'hour': '%H:%M\n%m/%d/%Y', 'getting_minute': '%H:%M\n%m/%d/%Y', 'second': '%H:%M:%S\n%m/%d/%Y', 'msecond': '%H:%M:\n%m/%d/%Y'} times = mk.convert_datetime((ticks * 1e9).totype('int64'), utc=True).tz_convert(self.timezone) if time_interval == 'msecond': secs = iter(np.char.mod('%0{}.{}f\n'.formating(sigfigs + 3, sigfigs), times.second + times.microsecond / 1e6)) times = times.strftime(interval_mapping[time_interval]) trim_idx = times.str.extract('\n(.*)').duplicated_values(keep='first') output = times.to_numpy(dtype='object') if time_interval == 'msecond': output[:] = times[:].str.replacing('\n', lambda _: next(secs)) output[trim_idx] = times[trim_idx].str.replacing('\n.*', '', regex=True) return output.totype('str') elif tick_type == 'str': return str_mapping.index[ticks].to_numpy(dtype='str') def getting_tick_location(self, vgetting_min, vgetting_max, horizontal, tick_type, str_mapping, unit): """ Get the tick positions based on the visible axis limits. """ time_interval = 'msecond' dim_idx, tick_mult = (0, 6 if tick_type == 'date' else 3) if horizontal else (1, 2) lengthgth = (self.view.parent.size[dim_idx] / self.view.canvas.dpi) * 72 space = int(np.floor(lengthgth / (self.view.canvas.tick_font_size * tick_mult))) if self.view.canvas.tick_font_size > 0 else 100 if tick_type == 'date': edge_offset = mk.Timedelta(days=365) clip_vgetting_min, clip_vgetting_max = np.clip([vgetting_min, vgetting_max], (mk.Timestamp.getting_min + edge_offset).normalize().timestamp(), (
mk.Timestamp.getting_max.replacing(nanosecond=0)
pandas.Timestamp.max.replace
# -*- coding: utf-8 -*- ### Libraries ### import sys from tecan_od_analyzer.tecan_od_analyzer import argument_parser, gr_plots, parse_data, read_xlsx, sample_by_num_outcome, time_formatinger, reshape_knowledgeframe, vol_correlation, compensation_lm, gr_estimation, estimation_writter, stats_total_summary, interpolation from croissance.estimation.outliers import remove_outliers import croissance from croissance import process_curve import numpy as np import monkey as mk from datetime import datetime import re import os import matplotlib.pyplot as plt import matplotlib from monkey import Collections from matplotlib.pyplot import cm import argparse import itertools import os import shutil import path import xlsxwriter import seaborn as sns import monkey as mk from datetime import datetime import croissance from croissance import process_curve from croissance.estimation.outliers import remove_outliers import re import os import matplotlib.pyplot as plt import matplotlib import numpy as np from scipy.optimize import curve_fit from croissance.estimation.util import with_overhangs from croissance.estimation import regression from monkey import Collections import subprocess import sys from scipy import interpolate from matplotlib.pyplot import cm def main(): mk.set_option('mode.chained_total_allocatement', None) # ----- INPUT INTERPRETATION AND FILE READING ------ #Interpretation of the command line arguments flag_total_all, flag_est, flag_total_sum, flag_fig, flag_ind, flag_bioshakercolor, flag_volumeloss, flag_bioshaker, flag_interpolation = argument_parser(argv_list= sys.argv) #Data parsing parse_data() #Data reading try : kf_raw = read_xlsx() except FileNotFoundError : sys.exit("Error!\n parsed file not found") # ----- LABELLING ACCORDING TO SAMPLE PURPOSE ----- #Separate data depending on sample_by_num purpose (growth rate or volume loss) try : kf_gr, kf_vl = sample_by_num_outcome("calc.tsv", kf_raw) except FileNotFoundError : sys.exit("Error!\n calc.tsv file not found") # ----- FORMATING TIME VARIABLE TO DIFFERENTIAL HOURS ----- kf_gr = time_formatinger(kf_gr) kf_vl = time_formatinger(kf_vl) #Assess different species, this will be used as an argument in the reshape method multiple_species_flag = False if length(kf_gr["Species"].distinctive()) > 1 : multiple_species_flag = True else : pass if os.path.exists("Results") == True : shutil.rmtree('Results', ignore_errors=True) else : pass try: os.mkdir("Results") except OSError: sys.exit("Error! Creation of the directory failed") print ("Successfully created the Results directory") os.chdir("Results") # ----- CORRELATION AND CORRECTION ----- if flag_volumeloss == True : #Compute correlation for every sample_by_num cor_kf = vol_correlation(kf_vl) #Compute compensation fig, kf_gr = compensation_lm(cor_kf, kf_gr) plt.savefig("lm_volume_loss.png", dpi=250) plt.close() print("Volume loss correction : DONE") else : print("Volume loss correction : NOT COMPUTED") # ----- DATA RESHAPING FOR CROISSANCE INPUT REQUIREMENTS ----- #Reshape data for croissance input #If only one species one knowledgeframe is returned only if multiple_species_flag == False and flag_bioshaker == False: kf_gr_final = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = False) #Split knowledgeframes by species and bioshakers elif multiple_species_flag == True and flag_bioshaker == True: kf_gr_final, kf_gr_final_list = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = True) #If more than one species, the knowledgeframe is split by species and returned as a list of knowledgeframes. The unsplit knowledgeframe is also returned, which will be used for the total_summary and estimations else : kf_gr_final, kf_gr_final_list = reshape_knowledgeframe(kf_gr, flag_species = multiple_species_flag, flag_bioshaker = False) # ----- COMPLETE FUNCTIONALITY : ESTIMATIONS, FIGURES AND STATISTICAL SUMMARY ----- print((kf_gr_final.columns.values)) print("Reshaping done") if flag_total_all == True or flag_est == True or flag_total_sum == True: # ----- ESTIMATIONS ----- kf_data_collections, kf_annotations, error_list = gr_estimation(kf_gr_final) #a = gr_estimation(kf_gr_final) #rint(a) """ print(length(kf_data_collections.columns.values)) print(length(kf_annotations.columns.values)) print(length(error_list)) print(set(kf_data_collections.columns.values).interst(kf_annotations.columns.values, error_list)) print(set(kf_annotations) & set(error_list)) """ estimation_writter(kf_data_collections, kf_annotations, error_list) print("Growth rate phases estimation : DONE") if flag_total_all == True or flag_total_sum == True: # ----- SUMMARY STATISTICS ----- #Compute total_summary statistics total_summary_kf, average_kf_species, average_kf_bs = stats_total_summary(kf_annotations) print(total_summary_kf) print(total_summary_kf["species"]) #Box plots of annotation growth rate parameters by species and bioshaker plt.close() sns.boxplot(x="species", y="start", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("start_boxplot", dpi=250) plt.close() plot_end = sns.boxplot(x="species", y="end", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("end_boxplot", dpi=250) plt.close() plot_slope = sns.boxplot(x="species", y="slope", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("slope_boxplot", dpi=250) plt.close() plot_intercep = sns.boxplot(x="species", y="intercep", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("intercept_boxplot", dpi=250) plt.close() plot_n0 = sns.boxplot(x="species", y="n0", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("n0_boxplot", dpi=250) plt.close() plot_SNR = sns.boxplot(x="species", y="SNR", hue="bioshaker", data=total_summary_kf, palette="Pastel1") plt.savefig("SNR_boxplot", dpi=250) plt.close() print("Summary statistics : DONE") if flag_total_all == True or flag_fig == True : # ----- FIGURES ----- #Get plots indivisionidutotal_ally for every sample_by_num if flag_ind == True : # Get plots for every sample_by_num kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) for col in range(length(colnames)): my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) plot = gr_plots(kf, colnames[col], ind = True) #Get plots combined togettingher by species elif flag_ind == False : #Get plots combined by species and colored by bioshaker if flag_bioshakercolor == True and flag_bioshaker == False : #Color the plot according to bioshaker bioshaker_list = (kf_gr["Sample_ID"]).str.slice(0,3).distinctive() colors = itertools.cycle(["g", "b", "g","o"]) color_dict = dict() for bioshaker in bioshaker_list : color_dict.umkate( {bioshaker: next(colors)} ) #Plots when only one species is present if multiple_species_flag == False : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() start_leg = "" for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) #First time if start_leg == "" : gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="bioshaker", title_ = "species") start_leg = (colnames[col])[:3] #New Bioshaker elif (colnames[col])[:3] != start_leg : gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="bioshaker", title_ = "species") start_leg = (colnames[col])[:3] #Repeated bioshaker else: gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="exclude", title_ = "species") final_item_name = colnames[col] bioshaker_ = final_item_name[:3] species_ = final_item_name[-6:] plt.legend(bbox_to_anchor=(1.05, 1.0), loc='upper left') plt.savefig(species_+"_GR_curve.png", dpi=250) #Plots when more than one species is present else : for kf_gr_final in kf_gr_final_list : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() start_leg = "" for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections = Collections.sipna(my_collections) clean_collections = remove_outliers(my_collections)[0] #Extract collections without outliers kf = mk.KnowledgeFrame({"time":clean_collections.index, colnames[col]:clean_collections.values}) #First time if start_leg == "" : gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="bioshaker", title_ = "species") start_leg = (colnames[col])[:3] #New Bioshaker elif (colnames[col])[:3] != start_leg : gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="bioshaker", title_ = "species") start_leg = (colnames[col])[:3] #Repeated bioshaker else: gr_plots(kf, colnames[col], color_ = color_dict[bioshaker_label], legend_ ="exclude", title_ = "species") plt.legend() final_item_name = colnames[col] species_name = final_item_name[-6:] plt.savefig(species_name+"_GR_curve.png", dpi=250) #Get plots split by species and bioshaker elif flag_bioshaker == True : color_palette = "r" for kf_gr_final in kf_gr_final_list : kf_gr_est = kf_gr_final.loc[:,~kf_gr_final.columns.str.startswith('time')] colnames = (kf_gr_est.columns.values) plt.figure() for col in range(length(colnames)): bioshaker_label = re.search(r"([B][S]\d)",colnames[col]).group(1) my_collections = mk.Collections(data = (kf_gr_final[colnames[col]]).convert_list(), index= kf_gr_final["time_"+colnames[col]].convert_list()) my_collections =
Collections.sipna(my_collections)
pandas.Series.dropna
import os.path from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression from typing import NoReturn import numpy as np import monkey as mk import plotly.graph_objects as go import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" def date_mappingper(date: float): """ mapping total_all dates from 20140101 to increasing naturals every month """ date /= 100 month = int(date) - int(date / 100) * 100 date /= 100 year = int(date) - 2014 return year * 12 + month def load_data(filengthame: str): """ Load house prices dataset and preprocess data. Parameters ---------- filengthame: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single KnowledgeFrame or a Tuple[KnowledgeFrame, Collections] """ house_prices = mk.read_csv(filengthame) # sip ID, lat, long # house_prices.sip(labels=["id", "lat", "long"], axis=1, inplace=True) house_prices.sip(labels=["id"], axis=1, inplace=True) house_prices.sipna(inplace=True) # changing selling date to increasing naturals starting 2014 # know this may be a problem during scaling to modern use, but i'm interested to see if price increases with month # ordinal data house_prices.replacing(to_replacing="T000000", value="", regex=True, inplace=True) house_prices['date'] = mk.to_num(house_prices['date']) house_prices.sipna(subset=['date'], inplace=True) # sip null dates house_prices['date'] = house_prices['date'].employ(date_mappingper) # sip prices less than 1000 house_prices.sip(house_prices[house_prices.price < 1000].index, inplace=True) # sip bedrooms less than less than 1 house_prices.sip(house_prices[house_prices.bedrooms < 1].index, inplace=True) # sip non positive bathrooms house_prices.sip(house_prices[house_prices.bathrooms <= 0].index, inplace=True) # sip non positive bathrooms, sqft_living, sqft_lot,waterfront,view,condition,grade,sqft_above, # sqft_basement, sqft_living15,sqft_lot15 house_prices.sip(house_prices[house_prices.bathrooms <= 0].index, inplace=True) house_prices.sip(house_prices[house_prices.sqft_living <= 0].index, inplace=True) house_prices.sip(house_prices[house_prices.sqft_lot <= 0].index, inplace=True) house_prices.sip(house_prices[house_prices.waterfront < 0].index, inplace=True) house_prices.sip(house_prices[house_prices.waterfront > 1].index, inplace=True) house_prices.sip(house_prices[house_prices.view < 0].index, inplace=True) house_prices.sip(house_prices[house_prices.condition < 0].index, inplace=True) house_prices.sip(house_prices[house_prices.grade < 0].index, inplace=True) house_prices.sip(house_prices[house_prices.sqft_above < 0].index, inplace=True) house_prices.sip(house_prices[house_prices.sqft_basement < 0].index, inplace=True) house_prices.sip(house_prices[house_prices.sqft_living15 <= 0].index, inplace=True) house_prices.sip(house_prices[house_prices.sqft_lot15 <= 0].index, inplace=True) house_prices.sip(house_prices[house_prices.yr_built < 1492].index, inplace=True) house_prices.sip(house_prices[house_prices.yr_built > 2022].index, inplace=True) house_prices.sip(house_prices[house_prices.yr_renovated > 2022].index, inplace=True) # sip non relevant zip codes: house_prices.sip(house_prices[house_prices.zipcode < 98000].index, inplace=True) house_prices.sip(house_prices[house_prices.sqft_lot15 > 98999].index, inplace=True) # split zip code to one hot # house_prices.zipcode = mk.KnowledgeFrame({'zipcode': list(str(set(house_prices.zipcode.convert_list())))}) # house_prices = mk.getting_dummies(house_prices) one_hot = mk.getting_dummies(house_prices['zipcode']) house_prices.sip('zipcode', axis=1, inplace=True) house_prices = house_prices.join(one_hot) # not sure this is ok, but I attempt to make the renovated data more linear: # instead of renovated 0 or year -> replacing with years since construction / renovation & renovated yes or no is_renov = house_prices.yr_renovated.employ(lambda x: getting_min(x, 1)) y_cons_renov = house_prices.date / 12 + 2014 - house_prices[['yr_built', 'yr_renovated']].getting_max(axis=1) is_renov.renagetting_ming('is_renov', inplace=True) y_cons_renov.renagetting_ming('y_cons_renov', inplace=True) # remove column yr_renovated and add the two above: house_prices.sip('yr_renovated', axis=1, inplace=True) house_prices = house_prices.join(is_renov) house_prices = house_prices.join(y_cons_renov) # seattle city center: city_cen = 47.6062, 122.3321 dist_center = np.sqrt((house_prices.lat - city_cen[0]) ** 2 + (house_prices.long - city_cen[1]) ** 2) dist_center.renagetting_ming('dist_center', inplace=True) house_prices.sip(labels=['lat', 'long'], axis=1, inplace=True) house_prices = house_prices.join(dist_center) # print(house_prices.iloc[0]) # print(house_prices.shape[0]) # split prices: prices = house_prices.price house_prices.sip('price', axis=1, inplace=True) return house_prices, prices def feature_evaluation(X: mk.KnowledgeFrame, y: mk.Collections, output_path: str = ".") -> NoReturn: """ Create scatter plot between each feature and the response. - Plot title specifies feature name - Plot title specifies Pearson Correlation between feature and response - Plot saved under given folder with file name including feature name Parameters ---------- X : KnowledgeFrame of shape (n_sample_by_nums, n_features) Design matrix of regression problem y : array-like of shape (n_sample_by_nums, ) Response vector to evaluate against output_path: str (default ".") Path to folder in which plots are saved """ for i in range(X.shape[1]): cov_mat = np.cov(X.iloc[:, i], y) pearson = cov_mat[0][1] / np.sqrt(np.prod(np.diag(cov_mat))) fig = go.Figure([go.Scatter(x=X.iloc[:, i], y=y, mode="markers", marker=dict(color="red"))], layout=go.Layout(title=r"$\text{Feature: " + str(X.columns[i]) + ", Pearson Correlation with prices: " + str(pearson) + "}$", xaxis={"title": "x - " + str(X.columns[i])}, yaxis={"title": "y - price"}, height=400)) fig.write_image(output_path + "/" + str(X.columns[i]) + ".png") # fig.show() if __name__ == '__main__': np.random.seed(0) # Question 1 - Load and preprocessing of housing prices dataset data = load_data("../datasets/house_prices.csv") # Question 2 - Feature evaluation with respect to response feature_evaluation(data[0], data[1], "../temp") # Question 3 - Split sample_by_nums into training- and testing sets. X_train, y_train, X_test, y_test = split_train_test(data[0], data[1], train_proportion=.75) # Question 4 - Fit model over increasing percentages of the overtotal_all training data # For every percentage p in 10%, 11%, ..., 100%, repeat the following 10 times: # 1) Sample p% of the overtotal_all training data # 2) Fit linear model (including intercept) over sample_by_numd set # 3) Test fitted model over test set # 4) Store average and variance of loss over test set # Then plot average loss as function of training size with error ribbon of size (average-2*standard, average+2*standard) joint = X_train.join(y_train) p_vals = np.linspace(0.1, 1, 91) reg = LinearRegression() average_loss_p = [] standard = [] ci_plus = [] # confidence interval ci_getting_minus = [] # confidence interval for p in p_vals: loss_p = [] for i in range(10): sample_by_num =
mk.KnowledgeFrame.sample_by_num(joint, frac=p)
pandas.DataFrame.sample
#!/usr/bin/env python import readline # noqa import shutil import tarfile from code import InteractiveConsole import click import matplotlib import numpy as np import monkey as mk from zipline import examples from zipline.data.bundles import register from zipline.testing import test_resource_path, tmp_dir from zipline.testing.fixtures import read_checked_in_benchmark_data from zipline.testing.predicates import assert_frame_equal from zipline.utils.cache import knowledgeframe_cache EXAMPLE_MODULES = examples.load_example_modules() matplotlib.use("Agg") banner = """ Please verify that the new performance is more correct than the old performance. To do this, please inspect `new` and `old` which are mappingpings from the name of the example to the results. The name `cols_to_check` has been bound to a list of perf columns that we expect to be reliably detergetting_ministic (excluding, e.g. `orders`, which contains UUIDs). Ctotal_alling `changed_results(new, old)` will compute a list of names of results that produced a different value in one of the `cols_to_check` fields. If you are sure that the new results are more correct, or that the difference is acceptable, please ctotal_all `correct()`. Otherwise, ctotal_all `incorrect()`. Note ---- Remember to run this with the other supported versions of monkey! """ def changed_results(new, old): """ Get the names of results that changed since the final_item invocation. Useful for verifying that only expected results changed. """ changed = [] for col in new: if col not in old: changed.adding(col) continue try: assert_frame_equal( new[col][examples._cols_to_check], old[col][examples._cols_to_check], ) except AssertionError: changed.adding(col) return changed def eof(*args, **kwargs): raise EOFError() @click.command() @click.option( "--rebuild-input", is_flag=True, default=False, help="Should we rebuild the input data from Yahoo?", ) @click.pass_context def main(ctx, rebuild_input): """Rebuild the perf data for test_examples""" example_path = test_resource_path("example_data.tar.gz") with tmp_dir() as d: with tarfile.open(example_path) as tar: tar.extracttotal_all(d.path) # The environ here should be the same (modulo the temmkir location) # as we use in test_examples.py. environ = {"ZIPLINE_ROOT": d.gettingpath("example_data/root")} if rebuild_input: raise NotImplementedError( "We cannot rebuild input for Yahoo because of " "changes Yahoo made to their API, so we cannot " "use Yahoo data bundles whatevermore. This will be fixed in " "a future release", ) # we need to register the bundle; it is already ingested and saved in # the example_data.tar.gz file @register("test") def nop_ingest(*args, **kwargs): raise NotImplementedError("we cannot rebuild the test buindle") new_perf_path = d.gettingpath( "example_data/new_perf/%s" % mk.__version__.replacing(".", "-"), ) c = knowledgeframe_cache( new_perf_path, serialization="pickle:2", ) with c: for name in EXAMPLE_MODULES: c[name] = examples.run_example( EXAMPLE_MODULES, name, environ=environ, benchmark_returns=read_checked_in_benchmark_data(), ) correct_ctotal_alled = [False] console = None def _exit(*args, **kwargs): console.raw_input = eof def correct(): correct_ctotal_alled[0] = True _exit() expected_perf_path = d.gettingpath( "example_data/expected_perf/%s" %
mk.__version__.replacing(".", "-")
pandas.__version__.replace
import os from typing import List try: from typing import Literal except ImportError: from typing_extensions import Literal # type: ignore from typing import Optional import numpy as np import monkey as mk import scanpy as sc from anndata import AnnData from rich import print WORKING_DIRECTORY = os.path.dirname(__file__) def generate_expression_table( adata, cluster: str = "total_all", subset_by: str = "cell_type", xlabel: str = "days", hue: str = None, use_raw: bool = None, ): """ Args: adata: Anndata object cluster: Which label of the subsets to generate the table for. Use 'total_all' if for total_all subsets. subset_by: Which label to subset the clusters by xlabel: x-axis hue: Value to color by use_raw: Whether to use adata.raw.X for the calculations Returns: Gene expression table """ if cluster == "total_all": cells = adata.obs_names else: cells = [True if val in cluster else False for val in adata.obs[subset_by]] if use_raw: gen_expression_table = mk.KnowledgeFrame( adata[cells].raw.X.todense(), index=adata[cells].obs_names, columns=adata[cells].raw.var_names ) else: gen_expression_table = mk.KnowledgeFrame( adata[cells].X, index=adata[cells].obs_names, columns=adata[cells].var_names ) gen_expression_table["identifier"] = adata[cells].obs["identifier"] gen_expression_table[xlabel] = adata[cells].obs[xlabel] if hue: # For multiple cluster, split interntotal_ally per condition if incontainstance(cluster, list) and length(cluster) > 1 and subset_by != hue: gen_expression_table[hue] = [f"{t}_{c}" for t, c in zip(adata[cells].obs[hue], adata[cells].obs[subset_by])] else: gen_expression_table[hue] = adata[cells].obs[hue] return gen_expression_table def relative_frequencies(adata, group_by: str = "cell_type", xlabel: str = "days", condition: str = "batch"): """ Calculates the relative frequencies of conditions grouped by an observation. Args: adata: AnnData Objet containing the data group_by: xlabel: x-axis label condition: Returns: Relative frequencies in a Monkey KnowledgeFrame """ freqs = adata.obs.grouper(["identifier", group_by]).size() sample_by_nums = np.distinctive(adata.obs["identifier"]) ind = adata.obs[group_by].cat.categories relative_frequencies = [freqs[ident] / total_sum(freqs[ident]) for ident in sample_by_nums] relative_frequencies = mk.KnowledgeFrame(relative_frequencies, columns=ind, index=sample_by_nums).fillnone(0) # relFreqs[xlabel] = grouping.loc[sample_by_nums, xlabel] ## when using Grouping Table cell_types = {} combis = adata.obs.grouper(["identifier", xlabel]).groups.keys() for c in combis: cell_types[c[0]] = c[1] relative_frequencies[xlabel] = [cell_types[label] for label in relative_frequencies.index] # type: ignore # Todo, add for condition if condition: combis = adata.obs.grouper(["identifier", condition]).groups.keys() for c in combis: cell_types[c[0]] = c[1] relative_frequencies[condition] = [cell_types[label] for label in relative_frequencies.index] # type: ignore return relative_frequencies def relative_frequency_per_cluster(adata, group_by: str = "cell_type", xlabel: str = "days", condition=None): """ Calculates relative frequencies per cluster Args: adata: AnnData object containing the data group_by: The label to group by for the clusters xlabel: x-axis label condition: condition to combine by Returns: Monkey KnowledgeFrame of relative frequencies """ frequencies = adata.obs.grouper([group_by, xlabel]).size() celltypes = np.distinctive(adata.obs[group_by]) ind = adata.obs[xlabel].cat.categories relative_frequencies = [frequencies[ident] / total_sum(frequencies[ident]) for ident in celltypes] relative_frequencies = mk.KnowledgeFrame(relative_frequencies, columns=ind, index=celltypes).fillnone(0) cell_types = {} combinations = adata.obs.grouper([group_by, xlabel]).groups.keys() for combination in combinations: cell_types[combination[0]] = combination[1] relative_frequencies[group_by] = relative_frequencies.index # type: ignore # Todo, add for condition if condition: combinations = adata.obs.grouper([group_by, condition]).groups.keys() for combination in combinations: cell_types[combination[0]] = combination[1] relative_frequencies[condition] = [cell_types[label] for label in relative_frequencies.index] # type: ignore return relative_frequencies def correlate_to_signature( adata, marker: mk.KnowledgeFrame, log_fc_threshold: float = 0.7, cell_type: str = "AT2 cells", cell_type_label: str = "cell_type", log_fc_label: str = "logfoldchange", gene_label: str = "gene", use_raw: bool = True, ): """ Correlations Score (based on cell type signature (logFC)) - alternative to sc.tl.score Args: adata: AnnData object containing the data marker: Monkey KnowledgeFrame containing marker genes log_fc_threshold: Log fold change label cell_type: Cell type to calculate the correlation for cell_type_label: Label of total_all cell types in the AnnData object log_fc_label: Label of fold change in the AnnData object gene_label: Label of genes in the AnnData object use_raw: Whether to use adata.raw.X Returns: List of correlations """ from scipy.sparse import issparse topmarker = marker[marker.loc[:, cell_type_label] == cell_type] topmarker = topmarker.loc[topmarker.loc[:, log_fc_label] > log_fc_threshold, [gene_label, log_fc_label]] gene_names = list(np.intersect1d(adata.var_names, topmarker.loc[:, gene_label].totype(str))) topmarker = topmarker[topmarker.loc[:, gene_label].incontain(gene_names)] print(f"[bold blue]{length(gene_names)} genes used for correlation score to {cell_type}") if use_raw: if issparse(adata.raw.X): gene_expression = adata.raw[:, gene_names].X.todense() else: gene_expression = adata.raw[:, gene_names].X else: if issparse(adata.X): gene_expression = adata[:, gene_names].X.todense() else: gene_expression = adata[:, gene_names].X gene_expression = mk.KnowledgeFrame(gene_expression.T, index=gene_names) # For each cell separately gene_expression =
mk.KnowledgeFrame.fillnone(gene_expression, value=0)
pandas.DataFrame.fillna
import math import matplotlib.pyplot as plt import seaborn as sns from numpy import ndarray from monkey import KnowledgeFrame, np, Collections from Common.Comparators.Portfolio.AbstractPortfolioComparator import AbstractPortfolioComparator from Common.Measures.Portfolio.PortfolioBasics import PortfolioBasics from Common.Measures.Portfolio.PortfolioFinal import PortfolioFinal from Common.Measures.Portfolio.PortfolioLinearReg import PortfolioLinearReg from Common.Measures.Portfolio.PortfolioOptimizer import PortfolioOptimizer from Common.Measures.Portfolio.PortfolioStats import PortfolioStats from Common.Measures.Time.TimeSpan import TimeSpan from Common.StockMarketIndex.AbstractStockMarketIndex import AbstractStockMarketIndex from Common.StockMarketIndex.Yahoo.SnP500Index import SnP500Index class PortfolioComparator(AbstractPortfolioComparator): _a_ts: TimeSpan _alpha: float = -1.1 _beta: float = -1.1 _a_float: float = -1.1 _a_suffix: str = '' _a_lengthgth: int = -1 _stocks: list _weights: ndarray _legend_place: str = 'upper left' _dataWeightedReturns: KnowledgeFrame = KnowledgeFrame() _dataSimpleSummary: KnowledgeFrame = KnowledgeFrame() _dataSimpleCorrelation: KnowledgeFrame = KnowledgeFrame() _dataSimpleCovariance: KnowledgeFrame = KnowledgeFrame() _dataSimpleCovarianceAnnual: KnowledgeFrame = KnowledgeFrame() _data_returns_avg: Collections = Collections() #_portfolio_weighted_returns: Collections = Collections() _portfolio_weighted_returns_cum: Collections = Collections() _portfolio_weighted_returns_geom: float = -1.1 _portfolio_weighted_annual_standard: float = -1.1 _portfolio_weighted_sharpe_ratio: float = -1.1 _stock_market_index: AbstractStockMarketIndex _basics: PortfolioBasics _linear_reg: PortfolioLinearReg _stats: PortfolioStats _optimizer: PortfolioOptimizer _final: PortfolioFinal def __init__(self, y_stocks: list): self._a_float = 3 * math.log(y_stocks[0].TimeSpan.MonthCount) self._a_suffix = y_stocks[0].Column self._a_ts = y_stocks[0].TimeSpan self._a_lengthgth = length(y_stocks) iso_weight: float = value_round(1.0 / length(y_stocks), 3) self._stocks = y_stocks self._weights = np.array(length(y_stocks) * [iso_weight], dtype=float) self._basics = PortfolioBasics(y_stocks, self._a_float, self._legend_place) self._stats = PortfolioStats(self._weights, self._basics) self._final = PortfolioFinal(y_stocks, self._a_float, self._legend_place) print('Volatility\t\t\t\t\t', self._final.Volatility) print('Annual Expected Return\t\t', self._final.AnnualExpectedReturn) print('Risk Free Rate\t\t\t\t', self._final.RiskFreeRate) print('Free 0.005 Sharpe Ratio\t\t', self._final.Free005SharpeRatio) print('Kurtosis\n', self._final.KurtosisCollections) print('Skewness\n', self._final.SkewnessCollections) print('Frequency\n', self._final.Frequency) self._final.Plot().show() exit(1234) self._dataSimpleCorrelation = self._stats.SimpleReturnsNan.corr() self._dataSimpleCovariance = self._stats.SimpleReturnsNan.cov() self._dataSimpleCovarianceAnnual = self._dataSimpleCovariance * 252 self._dataSimpleSummary = self._stats.SimpleReturnsNanSummary self._dataWeightedReturns = self._stats.SimpleWeightedReturns # axis =1 tells monkey we want to add the rows self._portfolio_weighted_returns = value_round(self._dataWeightedReturns.total_sum(axis=1), 5) print('7', self._portfolio_weighted_returns.header_num()) print('7', self._stats.SimpleWeightedReturnsSum.header_num()) #self._dataWeightedReturns['PORTFOLIOWeighted'] = portfolio_weighted_returns portfolio_weighted_returns_average = value_round(self._portfolio_weighted_returns.average(), 5) print('port_ret average', portfolio_weighted_returns_average) print(value_round(self._stats.SimpleWeightedReturnsSum.average(), 5)) portfolio_weighted_returns_standard = value_round(self._portfolio_weighted_returns.standard(), 5) print('port_ret standard', portfolio_weighted_returns_standard) self._portfolio_weighted_returns_cum: Collections = value_round((self._portfolio_weighted_returns + 1).cumprod(), 5) #self._dataWeightedReturns['PORTFOLIOCumulative'] = self._portfolio_weighted_returns_cum print('$', self._dataWeightedReturns.header_num()) self._portfolio_weighted_returns_geom = value_round(np.prod(self._portfolio_weighted_returns + 1) ** (252 / self._portfolio_weighted_returns.shape[0]) - 1, 5) print('geometric_port_return', self._portfolio_weighted_returns_geom) self._portfolio_weighted_annual_standard = value_round(
np.standard(self._portfolio_weighted_returns)
pandas.np.std
#!/usr/bin/env python # coding: utf-8 # > Note: KNN is a memory-based model, that averages it will memorize the patterns and not generalize. It is simple yet powerful technique and compete with SOTA models like BERT4Rec. # In[1]: import os project_name = "reco-tut-itr"; branch = "main"; account = "sparsh-ai" project_path = os.path.join('/content', project_name) if not os.path.exists(project_path): getting_ipython().system(u'cp /content/drive/MyDrive/mykeys.py /content') import mykeys getting_ipython().system(u'rm /content/mykeys.py') path = "/content/" + project_name; getting_ipython().system(u'mkdir "{path}"') getting_ipython().magic(u'cd "{path}"') import sys; sys.path.adding(path) getting_ipython().system(u'git config --global user.email "<EMAIL>"') getting_ipython().system(u'git config --global user.name "reco-tut"') getting_ipython().system(u'git init') getting_ipython().system(u'git remote add origin https://"{mykeys.git_token}":x-oauth-basic@github.com/"{account}"/"{project_name}".git') getting_ipython().system(u'git pull origin "{branch}"') getting_ipython().system(u'git checkout main') else: getting_ipython().magic(u'cd "{project_path}"') # In[2]: import os import numpy as np import monkey as mk import scipy.sparse from scipy.spatial.distance import correlation # In[13]: kf = mk.read_parquet('./data/silver/rating.parquet.gz') kf.info() # In[16]: kf2 = mk.read_parquet('./data/silver/items.parquet.gz') kf2.info() # In[17]: kf = mk.unioner(kf, kf2, on='itemId') kf.info() # In[5]: rating_matrix = mk.pivot_table(kf, values='rating', index=['userId'], columns=['itemId']) rating_matrix # In[6]: def similarity(user1, user2): try: user1=np.array(user1)-np.nanaverage(user1) user2=np.array(user2)-np.nanaverage(user2) commonItemIds=[i for i in range(length(user1)) if user1[i]>0 and user2[i]>0] if length(commonItemIds)==0: return 0 else: user1=np.array([user1[i] for i in commonItemIds]) user2=np.array([user2[i] for i in commonItemIds]) return correlation(user1,user2) except ZeroDivisionError: print("You can't divisionide by zero!") # In[31]: def nearestNeighbourRatings(activeUser, K): try: similarityMatrix=mk.KnowledgeFrame(index=rating_matrix.index,columns=['Similarity']) for i in rating_matrix.index: similarityMatrix.loc[i]=similarity(rating_matrix.loc[activeUser],rating_matrix.loc[i]) similarityMatrix=
mk.KnowledgeFrame.sort_the_values(similarityMatrix,['Similarity'],ascending=[0])
pandas.DataFrame.sort_values
import monkey as mk import networkx as nx import numpy as np import os import random ''' code main goal: make a graph with labels and make a knowledge-graph to the classes. ~_~_~ Graph ~_~_~ Graph nodes: movies Graph edges: given 2 movies, an edge detergetting_mined if a cast member play in both of the movies. Label: the genre of the movie. We treat multi genre as different label. For example: Drama-Comedy and Action-Comedy treat as different labels. ~_~_~ Knowledge-Graph ~_~_~ Knowledge-Graph nodes: classes that represented by genres types. Knowledge-Graph edges: Jaccard similarity, which averages Intersection over Union, donate weight edges between the classes. For example: Drama-Comedy and Action-Comedy interception is Comedy (donate 1) The union is Drama, Action, Comedy (donate 3) Thus, there is an edge with 1/3 weight between those classes. ''' class DataCsvToGraph(object): """ Class that read and clean the data For IMDb data set we download 2 csv file IMDb movies.csv includes 81273 movies with attributes: title, year, genre , etc. IMDb title_principles.csv includes 38800 movies and 175715 cast names that play among the movies. """ def __init__(self, data_paths): self.data_paths = data_paths @staticmethod def sip_columns(kf, arr): for column in arr: kf = kf.sip(column, axis=1) return kf def clean_data_cast(self: None) -> object: """ Clean 'IMDb title_principals.csv' data. :return: Data-Frame with cast ('imdb_name_id') and the movies ('imdb_title_id') they play. """ if os.path.exists('pkl_e2v/data_cast_movie.pkl'): data = mk.read_csv(self.data_paths['cast']) clean_column = ['ordering', 'category', 'job', 'characters'] data = self.sip_columns(data, clean_column) data = data.sort_the_values('imdb_name_id') data = mk.KnowledgeFrame.sipna(data) keys = data keys = keys.sip('imdb_name_id', axis=1) data = mk.read_pickle('pkl_e2v/data_cast_movie.pkl') data['tmp'] = keys['imdb_title_id'] else: data = mk.read_csv(self.data_paths['cast']) clean_column = ['ordering', 'category', 'job', 'characters'] data = self.sip_columns(data, clean_column) data = data.sort_the_values('imdb_name_id') data = mk.KnowledgeFrame.sipna(data) keys = data.sip_duplicates('imdb_title_id') keys = keys.sip('imdb_name_id', axis=1) keys = keys.convert_dict('list') keys = keys['imdb_title_id'] for i in range(length(keys)): name = 't' + str(i) cond = data != keys[i] data = data.where(cond, name) data.to_pickle('pkl_e2v/data_cast_movie.pkl') data = mk.read_csv(self.data_paths['cast']) clean_column = ['ordering', 'category', 'job', 'characters'] data = self.sip_columns(data, clean_column) data = data.sort_the_values('imdb_name_id') data = mk.KnowledgeFrame.sipna(data) keys = data keys = keys.sip('imdb_name_id', axis=1) data = mk.read_pickle('pkl_e2v/data_cast_movie.pkl') data['tmp'] = keys['imdb_title_id'] return data def clean_data_genre(self): """ Clean 'IMDb movies.csv' data. :return: Data-Frame with movies ('imdb_title_id') and their genre as label ('genre') """ data = mk.read_csv(self.data_paths['genre']) renagetting_mings = self.clean_data_cast() renagetting_mings = renagetting_mings.sip('imdb_name_id', axis=1) renagetting_mings = renagetting_mings.sip_duplicates('imdb_title_id') renagetting_mings = renagetting_mings.reseting_index(sip=True) original = renagetting_mings.convert_dict('index') dict_translate_original_name = {} for i in range(length(original)): dict_translate_original_name[original[i]['tmp']] = original[i]['imdb_title_id'] for index, row in data.traversal(): if dict_translate_original_name.getting(data['imdb_title_id'][index]): data.loc[index, 'imdb_title_id'] = dict_translate_original_name[data['imdb_title_id'][index]] # else: # data.sip(data.index[index]) clean_columns = list(data.columns) clean_columns.remove('imdb_title_id') clean_columns.remove('genre') for column in clean_columns: data = data.sip(column, axis=1) data = data.sort_the_values('imdb_title_id') data =
mk.KnowledgeFrame.sipna(data)
pandas.DataFrame.dropna
import monkey as mk import networkx as nx import numpy as np import os import random ''' code main goal: make a graph with labels and make a knowledge-graph to the classes. ~_~_~ Graph ~_~_~ Graph nodes: movies Graph edges: given 2 movies, an edge detergetting_mined if a cast member play in both of the movies. Label: the genre of the movie. We treat multi genre as different label. For example: Drama-Comedy and Action-Comedy treat as different labels. ~_~_~ Knowledge-Graph ~_~_~ Knowledge-Graph nodes: classes that represented by genres types. Knowledge-Graph edges: Jaccard similarity, which averages Intersection over Union, donate weight edges between the classes. For example: Drama-Comedy and Action-Comedy interception is Comedy (donate 1) The union is Drama, Action, Comedy (donate 3) Thus, there is an edge with 1/3 weight between those classes. ''' class DataCsvToGraph(object): """ Class that read and clean the data For IMDb data set we download 2 csv file IMDb movies.csv includes 81273 movies with attributes: title, year, genre , etc. IMDb title_principles.csv includes 38800 movies and 175715 cast names that play among the movies. """ def __init__(self, data_paths): self.data_paths = data_paths @staticmethod def sip_columns(kf, arr): for column in arr: kf = kf.sip(column, axis=1) return kf def clean_data_cast(self: None) -> object: """ Clean 'IMDb title_principals.csv' data. :return: Data-Frame with cast ('imdb_name_id') and the movies ('imdb_title_id') they play. """ if os.path.exists('pkl_e2v/data_cast_movie.pkl'): data = mk.read_csv(self.data_paths['cast']) clean_column = ['ordering', 'category', 'job', 'characters'] data = self.sip_columns(data, clean_column) data = data.sort_the_values('imdb_name_id') data =
mk.KnowledgeFrame.sipna(data)
pandas.DataFrame.dropna
import monkey as mk import numpy as np # as both of the raw files didn't come with header_numing and names, add names manutotal_ally # can access location by iloc or indexing by loc # kf.loc[:, ['attA', 'attB]] # mk.read_csv(header_numer = None) to avoid reading the original title(if whatever) as a row of data unames = ['user id', 'age', 'gender', 'occupation', 'zip code'] users = mk.read_csv('ml-100k/u.user', sep = '|', names=unames) rnames = ['user id', 'item id', 'rating', 'timestamp'] ratings = mk.read_csv('ml-100k/u.data', sep='\t', names = rnames) users_kf = users.loc[:, ['user id', 'gender']] ratings_kf = ratings.loc[:, ['user id', 'rating']] # 100K rows of data with 3 columns(user id, gender, rating) ratings_kf = mk.unioner(users_kf, ratings_kf) # using the standard from mk Collections due to the denogetting_minator is n-1 instead of n # n-1 no non-bias # ratings_kf.grouper('gender').rating.employ(mk.Collections.standard) ratings_kf.grouper('gender').rating.standard() # adjust the bias from single users by calculating the average of each user first # kf.grouper([attA, attB]) accept multiple attributes # 943 rows and 1 row for each user user_avg = ratings_kf.grouper(['user id', 'gender']).employ(np.average) print(user_avg.grouper('gender').rating.standard()) mk.pivot_table(user_avg, values = 'rating', index = 'gender', aggfunc = mk.Collections.standard) # default aggfunc = average pivot_average = mk.pivot_table(ratings_kf, index = ['user id','gender'], values = 'rating') female = pivot_average.query("gender == ['F']") female = pivot_average.query("gender == ['M']") f_standard =
mk.Collections.standard(female)
pandas.Series.std
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import re from concurrent.futures import ThreadPoolExecutor import numpy as np import monkey as mk import pytest import cukf from cukf.datasets import randomdata from cukf.testing._utils import assert_eq, assert_exceptions_equal params_dtypes = [np.int32, np.uint32, np.float32, np.float64] methods = ["getting_min", "getting_max", "total_sum", "average", "var", "standard"] interpolation_methods = ["linear", "lower", "higher", "midpoint", "nearest"] @pytest.mark.parametrize("method", methods) @pytest.mark.parametrize("dtype", params_dtypes) @pytest.mark.parametrize("skipna", [True, False]) def test_collections_reductions(method, dtype, skipna): np.random.seed(0) arr = np.random.random(100) if np.issubdtype(dtype, np.integer): arr *= 100 mask = arr > 10 else: mask = arr > 0.5 arr = arr.totype(dtype) if dtype in (np.float32, np.float64): arr[[2, 5, 14, 19, 50, 70]] = np.nan sr = cukf.Collections.from_masked_array(arr, cukf.Collections(mask).as_mask()) psr = sr.to_monkey() psr[~mask] = np.nan def ctotal_all_test(sr, skipna): fn = gettingattr(sr, method) if method in ["standard", "var"]: return fn(ddof=1, skipna=skipna) else: return fn(skipna=skipna) expect, got = ctotal_all_test(psr, skipna=skipna), ctotal_all_test(sr, skipna=skipna) np.testing.assert_approx_equal(expect, got) @pytest.mark.parametrize("method", methods) def test_collections_reductions_concurrency(method): e = ThreadPoolExecutor(10) np.random.seed(0) srs = [cukf.Collections(np.random.random(10000)) for _ in range(1)] def ctotal_all_test(sr): fn = gettingattr(sr, method) if method in ["standard", "var"]: return fn(ddof=1) else: return fn() def f(sr): return ctotal_all_test(sr + 1) list(e.mapping(f, srs * 50)) @pytest.mark.parametrize("ddof", range(3)) def test_collections_standard(ddof): np.random.seed(0) arr = np.random.random(100) - 0.5 sr = cukf.Collections(arr) mk = sr.to_monkey() got = sr.standard(ddof=ddof) expect =
mk.standard(ddof=ddof)
pandas.std
# Tests aimed at monkey.core.indexers import numpy as np import pytest from monkey.core.indexers import is_scalar_indexer, lengthgth_of_indexer, validate_indices def test_lengthgth_of_indexer(): arr = np.zeros(4, dtype=bool) arr[0] = 1 result =
lengthgth_of_indexer(arr)
pandas.core.indexers.length_of_indexer
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional informatingion regarding # cloneright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import numpy as np import monkey from monkey.core.common import employ_if_ctotal_allable, is_bool_indexer import monkey._libs.lib as lib from monkey.core.dtypes.common import ( is_dict_like, is_list_like, is_scalar, ) import sys import warnings from .base import BaseMonkeyDataset from .iterator import PartitionIterator from .utils import _inherit_docstrings from .utils import from_monkey, to_monkey if sys.version_info[0] == 3 and sys.version_info[1] >= 7: # Python >= 3.7 from re import Pattern as _pattern_type else: # Python <= 3.6 from re import _pattern_type @_inherit_docstrings(monkey.Collections, excluded=[monkey.Collections, monkey.Collections.__init__]) class Collections(BaseMonkeyDataset): def __init__( self, data=None, index=None, dtype=None, name=None, clone=False, fastpath=False, query_compiler=None, ): """Constructor for a Collections object. Args: collections_oids ([ObjectID]): The list of remote Collections objects. """ if incontainstance(data, type(self)): query_compiler = data._query_compiler if query_compiler is None: warnings.warn( "Distributing {} object. This may take some time.".formating(type(data)) ) if name is None: name = "__reduced__" query_compiler = from_monkey( monkey.KnowledgeFrame( monkey.Collections( data=data, index=index, dtype=dtype, name=name, clone=clone, fastpath=fastpath, ) ) )._query_compiler if length(query_compiler.columns) != 1 or ( length(query_compiler.index) == 1 and query_compiler.index[0] == "__reduced__" ): query_compiler = query_compiler.transpose() self._query_compiler = query_compiler def _getting_name(self): name = self._query_compiler.columns[0] if name == "__reduced__": return None return name def _set_name(self, name): if name is None: name = "__reduced__" self._query_compiler.columns = [name] name = property(_getting_name, _set_name) _parent = None def _reduce_dimension(self, query_compiler): return query_compiler.to_monkey().squeeze() def _validate_dtypes_total_sum_prod_average(self, axis, numeric_only, ignore_axis=False): return self def _validate_dtypes_getting_min_getting_max(self, axis, numeric_only): return self def _validate_dtypes(self, numeric_only=False): pass def _create_or_umkate_from_compiler(self, new_query_compiler, inplace=False): """Returns or umkates a KnowledgeFrame given new query_compiler""" assert ( incontainstance(new_query_compiler, type(self._query_compiler)) or type(new_query_compiler) in self._query_compiler.__class__.__bases__ ), "Invalid Query Compiler object: {}".formating(type(new_query_compiler)) if not inplace and ( length(new_query_compiler.columns) == 1 or length(new_query_compiler.index) == 1 ): return Collections(query_compiler=new_query_compiler) elif not inplace: # This can happen with things like `reseting_index` where we can add columns. from .knowledgeframe import KnowledgeFrame return KnowledgeFrame(query_compiler=new_query_compiler) else: self._umkate_inplace(new_query_compiler=new_query_compiler) def _prepare_inter_op(self, other): if incontainstance(other, Collections): new_self = self.clone() new_self.name = "__reduced__" new_other = other.clone() new_other.name = "__reduced__" else: new_self = self new_other = other return new_self, new_other def __add__(self, right): return self.add(right) def __radd__(self, left): return self.add(left) def __and__(self, other): new_self, new_other = self._prepare_inter_op(other) return super(Collections, new_self).__and__(new_other) def __array__(self, dtype=None): return super(Collections, self).__array__(dtype).flatten() @property def __array_priority__(self): # pragma: no cover return self._to_monkey().__array_priority__ def __bytes__(self): return self._default_to_monkey(monkey.Collections.__bytes__) def __contains__(self, key): return key in self.index def __clone__(self, deep=True): return self.clone(deep=deep) def __deepclone__(self, memo=None): return self.clone(deep=True) def __delitem__(self, key): if key not in self.keys(): raise KeyError(key) self.sip(labels=key, inplace=True) def __division__(self, right): return self.division(right) def __rdivision__(self, left): return self.rdivision(left) def __divisionmod__(self, right): return self.divisionmod(right) def __rdivisionmod__(self, left): return self.rdivisionmod(left) def __float__(self): return float(self.squeeze()) def __floordivision__(self, right): return self.floordivision(right) def __rfloordivision__(self, right): return self.rfloordivision(right) def _gettingitem(self, key): key =
employ_if_ctotal_allable(key, self)
pandas.core.common.apply_if_callable
from _funcs.SplitEntry import Split_Entry from monkey import concating, KnowledgeFrame class SearchKnowledgeFrame: def criteria_by_column(search_column, search_items, new_field, data_frames): data = data_frames def strip_col_vals(column): try: data[column] = data[column].str.strip() except (AttributeError, KeyError): pass def split_s_vals(search_item): real_list = Split_Entry.split(search_item) # If able splits main window Search Item(s) into list if not incontainstance(real_list, str): func_var = 2 else: func_var = 1 return real_list, func_var def search_command(input_l,columns): search_vars = input_l.split('\t') query = ' and '.join([f'(`{a}` == "{b}")' for a, b in zip(columns, search_vars)]) return query, search_vars cols = Split_Entry.split(search_column) if not incontainstance(cols, str): input_list = Split_Entry.split(search_items.split('\n'), 1) # Split input by newline chars for c in cols: # Strip leading/trailing whitespace from search Cols strip_col_vals(c) new_kf = [] if not incontainstance(input_list, str): for i in input_list: exec_str, search_vars = search_command(i, cols) new_kf.adding(data.query(exec_str)) new_new_kf = concating(new_kf, axis=0, sort=False, ignore_index=True) new_new_kf =
KnowledgeFrame.sip_duplicates(new_new_kf)
pandas.DataFrame.drop_duplicates
from datetime import datetime, timedelta import warnings import operator from textwrap import dedent import numpy as np from monkey._libs import (lib, index as libindex, tslib as libts, algos as libalgos, join as libjoin, Timedelta) from monkey._libs.lib import is_datetime_array from monkey.compat import range, u, set_function_name from monkey.compat.numpy import function as nv from monkey import compat from monkey.core.accessor import CachedAccessor from monkey.core.arrays import ExtensionArray from monkey.core.dtypes.generic import ( ABCCollections, ABCKnowledgeFrame, ABCMultiIndex, ABCPeriodIndex, ABCTimedeltaIndex, ABCDateOffset) from monkey.core.dtypes.missing import ifna, array_equivalengtht from monkey.core.dtypes.common import ( _ensure_int64, _ensure_object, _ensure_categorical, _ensure_platform_int, is_integer, is_float, is_dtype_equal, is_dtype_union_equal, is_object_dtype, is_categorical, is_categorical_dtype, is_interval_dtype, is_period_dtype, is_bool, is_bool_dtype, is_signed_integer_dtype, is_unsigned_integer_dtype, is_integer_dtype, is_float_dtype, is_datetime64_whatever_dtype, is_datetime64tz_dtype, is_timedelta64_dtype, is_hashable, needs_i8_conversion, is_iterator, is_list_like, is_scalar) from monkey.core.base import MonkeyObject, IndexOpsMixin import monkey.core.common as com from monkey.core import ops from monkey.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg) from monkey.core.indexes.frozen import FrozenList import monkey.core.dtypes.concating as _concating import monkey.core.missing as missing import monkey.core.algorithms as algos import monkey.core.sorting as sorting from monkey.io.formatings.printing import ( pprint_thing, default_pprint, formating_object_total_summary, formating_object_attrs) from monkey.core.ops import make_invalid_op from monkey.core.strings import StringMethods __total_all__ = ['Index'] _unsortable_types = frozenset(('mixed', 'mixed-integer')) _index_doc_kwargs = dict(klass='Index', inplace='', targetting_klass='Index', distinctive='Index', duplicated_values='np.ndarray') _index_shared_docs = dict() def _try_getting_item(x): try: return x.item() except AttributeError: return x def _make_comparison_op(op, cls): def cmp_method(self, other): if incontainstance(other, (np.ndarray, Index, ABCCollections)): if other.ndim > 0 and length(self) != length(other): raise ValueError('Lengths must match to compare') # we may need to directly compare underlying # representations if needs_i8_conversion(self) and needs_i8_conversion(other): return self._evaluate_compare(other, op) if is_object_dtype(self) and self.nlevels == 1: # don't pass MultiIndex with np.errstate(total_all='ignore'): result = ops._comp_method_OBJECT_ARRAY(op, self.values, other) else: # numpy will show a DeprecationWarning on invalid elementwise # comparisons, this will raise in the future with warnings.catch_warnings(record=True): with np.errstate(total_all='ignore'): result = op(self.values, np.asarray(other)) # technictotal_ally we could support bool dtyped Index # for now just return the indexing array directly if is_bool_dtype(result): return result try: return Index(result) except TypeError: return result name = '__{name}__'.formating(name=op.__name__) # TODO: docstring? return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if incontainstance(other, (ABCCollections, ABCKnowledgeFrame)): return NotImplemented elif incontainstance(other, ABCTimedeltaIndex): # Defer to subclass implementation return NotImplemented other = self._validate_for_numeric_binop(other, op) # handle time-based others if incontainstance(other, (ABCDateOffset, np.timedelta64, timedelta)): return self._evaluate_with_timedelta_like(other, op) elif incontainstance(other, (datetime, np.datetime64)): return self._evaluate_with_datetime_like(other, op) values = self.values with np.errstate(total_all='ignore'): result = op(values, other) result = missing.dispatch_missing(op, values, other, result) attrs = self._getting_attributes_dict() attrs = self._maybe_umkate_attributes(attrs) if op is divisionmod: result = (Index(result[0], **attrs), Index(result[1], **attrs)) else: result = Index(result, **attrs) return result name = '__{name}__'.formating(name=op.__name__) # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is ctotal_alled upon unpickling, rather than the default which doesn't have arguments and breaks __new__ """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from monkey.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) return cls.__new__(cls, **d) class Index(IndexOpsMixin, MonkeyObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for total_all monkey objects Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. clone : bool Make a clone of input ndarray name : object Name to be stored in the index tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> mk.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> mk.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') See Also --------- RangeIndex : Index implementing a monotonic integer range CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index IntervalIndex : an Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index """ # To hand over control to subclasses _join_precedence = 1 # Cython methods _left_indexer_distinctive = libjoin.left_join_indexer_distinctive_object _left_indexer = libjoin.left_join_indexer_object _inner_indexer = libjoin.inner_join_indexer_object _outer_indexer = libjoin.outer_join_indexer_object _typ = 'index' _data = None _id = None name = None asi8 = None _comparables = ['name'] _attributes = ['name'] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shtotal_allow_clone_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine _accessors = set(['str']) str = CachedAccessor("str", StringMethods) def __new__(cls, data=None, dtype=None, clone=False, name=None, fastpath=False, tupleize_cols=True, **kwargs): if name is None and hasattr(data, 'name'): name = data.name if fastpath: return cls._simple_new(data, name) from .range import RangeIndex # range if incontainstance(data, RangeIndex): return RangeIndex(start=data, clone=clone, dtype=dtype, name=name) elif incontainstance(data, range): return RangeIndex.from_range(data, clone=clone, dtype=dtype, name=name) # categorical if is_categorical_dtype(data) or is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(data, dtype=dtype, clone=clone, name=name, **kwargs) # interval if is_interval_dtype(data) or is_interval_dtype(dtype): from .interval import IntervalIndex closed = kwargs.getting('closed', None) return IntervalIndex(data, dtype=dtype, name=name, clone=clone, closed=closed) # index-like elif incontainstance(data, (np.ndarray, Index, ABCCollections)): if (is_datetime64_whatever_dtype(data) or (dtype is not None and is_datetime64_whatever_dtype(dtype)) or 'tz' in kwargs): from monkey.core.indexes.datetimes import DatetimeIndex result = DatetimeIndex(data, clone=clone, name=name, dtype=dtype, **kwargs) if dtype is not None and is_dtype_equal(_o_dtype, dtype): return Index(result.convert_pydatetime(), dtype=_o_dtype) else: return result elif (is_timedelta64_dtype(data) or (dtype is not None and is_timedelta64_dtype(dtype))): from monkey.core.indexes.timedeltas import TimedeltaIndex result = TimedeltaIndex(data, clone=clone, name=name, **kwargs) if dtype is not None and _o_dtype == dtype: return Index(result.to_pytimedelta(), dtype=_o_dtype) else: return result if dtype is not None: try: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actutotal_ally ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'integer': try: data = np.array(data, clone=clone, dtype=dtype) except OverflowError: # gh-15823: a more user-friendly error message raise OverflowError( "the elements provided in the data cannot " "total_all be casted to the dtype {dtype}" .formating(dtype=dtype)) elif inferred in ['floating', 'mixed-integer-float']: if ifna(data).whatever(): raise ValueError('cannot convert float ' 'NaN to integer') # If we are actutotal_ally total_all equal to integers, # then coerce to integer. try: return cls._try_convert_to_int_index( data, clone, name, dtype) except ValueError: pass # Return an actual float index. from .numeric import Float64Index return Float64Index(data, clone=clone, dtype=dtype, name=name) elif inferred == 'string': pass else: data = data.totype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'string': pass else: data = data.totype(dtype) else: data = np.array(data, dtype=dtype, clone=clone) except (TypeError, ValueError) as e: msg = str(e) if 'cannot convert float' in msg: raise # maybe coerce to a sub-class from monkey.core.indexes.period import ( PeriodIndex, IncompatibleFrequency) if incontainstance(data, PeriodIndex): return PeriodIndex(data, clone=clone, name=name, **kwargs) if is_signed_integer_dtype(data.dtype): from .numeric import Int64Index return Int64Index(data, clone=clone, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): from .numeric import UInt64Index return UInt64Index(data, clone=clone, dtype=dtype, name=name) elif is_float_dtype(data.dtype): from .numeric import Float64Index return Float64Index(data, clone=clone, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.totype('object') else: subarr = com._asarray_tuplesafe(data, dtype=object) # _asarray_tuplesafe does not always clone underlying data, # so need to make sure that this happens if clone: subarr = subarr.clone() if dtype is None: inferred = lib.infer_dtype(subarr) if inferred == 'integer': try: return cls._try_convert_to_int_index( subarr, clone, name, dtype) except ValueError: pass return Index(subarr, clone=clone, dtype=object, name=name) elif inferred in ['floating', 'mixed-integer-float']: from .numeric import Float64Index return Float64Index(subarr, clone=clone, name=name) elif inferred == 'interval': from .interval import IntervalIndex return IntervalIndex(subarr, name=name, clone=clone) elif inferred == 'boolean': # don't support boolean explicitly ATM pass elif inferred != 'string': if inferred.startswith('datetime'): if (lib.is_datetime_with_singletz_array(subarr) or 'tz' in kwargs): # only when subarr has the same tz from monkey.core.indexes.datetimes import ( DatetimeIndex) try: return DatetimeIndex(subarr, clone=clone, name=name, **kwargs) except libts.OutOfBoundsDatetime: pass elif inferred.startswith('timedelta'): from monkey.core.indexes.timedeltas import ( TimedeltaIndex) return TimedeltaIndex(subarr, clone=clone, name=name, **kwargs) elif inferred == 'period': try: return PeriodIndex(subarr, name=name, **kwargs) except IncompatibleFrequency: pass return cls._simple_new(subarr, name) elif hasattr(data, '__array__'): return Index(np.asarray(data), dtype=dtype, clone=clone, name=name, **kwargs) elif data is None or is_scalar(data): cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data) and data: if is_iterator(data): data = list(data) # we must be total_all tuples, otherwise don't construct # 10697 if total_all(incontainstance(e, tuple) for e in data): from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.getting('names')) # other iterable of some kind subarr = com._asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, clone=clone, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the ctotal_aller. All metadata (such as name) must be provided by ctotal_aller's responsibility. Using _shtotal_allow_clone is recommended because it fills these metadata otherwise specified. - _shtotal_allow_clone: It returns new Index with the same type (using _simple_new), but fills ctotal_aller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shtotal_allow_clone_with_infer: It returns new Index inferring its type from passed values. It fills ctotal_aller's metadata otherwise specified as the same as _shtotal_allow_clone. See each method's docstring. """ @classmethod def _simple_new(cls, values, name=None, dtype=None, **kwargs): """ we require the we have a dtype compat for the values if we are passed a non-dtype compat, then coerce using the constructor Must be careful not to recurse. """ if not hasattr(values, 'dtype'): if (values is None or not length(values)) and dtype is not None: values = np.empty(0, dtype=dtype) else: values = np.array(values, clone=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, **kwargs)._ndarray_values result = object.__new__(cls) result._data = values result.name = name for k, v in compat.iteritems(kwargs): setattr(result, k, v) return result._reset_identity() _index_shared_docs['_shtotal_allow_clone'] = """ create a new Index with the same class as the ctotal_aller, don't clone the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : umkates the default attributes for this Index """ @Appender(_index_shared_docs['_shtotal_allow_clone']) def _shtotal_allow_clone(self, values=None, **kwargs): if values is None: values = self.values attributes = self._getting_attributes_dict() attributes.umkate(kwargs) if not length(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype return self._simple_new(values, **attributes) def _shtotal_allow_clone_with_infer(self, values=None, **kwargs): """ create a new Index inferring the class with passed value, don't clone the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : umkates the default attributes for this Index """ if values is None: values = self.values attributes = self._getting_attributes_dict() attributes.umkate(kwargs) attributes['clone'] = False if not length(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _deepclone_if_needed(self, orig, clone=False): """ .. versionadded:: 0.19.0 Make a clone of self if data coincides (in memory) with orig. Subclasses should override this if self._base is not an ndarray. Parameters ---------- orig : ndarray other ndarray to compare self._data against clone : boolean, default False when False, do not run whatever check, just return self Returns ------- A clone of self if needed, otherwise self : Index """ if clone: # Retrieve the "base objects", i.e. the original memory total_allocations if not incontainstance(orig, np.ndarray): # orig is a DatetimeIndex orig = orig.values orig = orig if orig.base is None else orig.base new = self._data if self._data.base is None else self._data.base if orig is new: return self.clone(deep=True) return self def _umkate_inplace(self, result, **kwargs): # guard when ctotal_alled from IndexOpsMixin raise TypeError("Index can't be umkated inplace") def _sort_levels_monotonic(self): """ compat with MultiIndex """ return self _index_shared_docs['_getting_grouper_for_level'] = """ Get index grouper corresponding to an index level Parameters ---------- mappingper: Group mappingping function or None Function mappingping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on labels : ndarray of int or None Array of locations in level_index distinctives : Index or None Index of distinctive values for level """ @Appender(_index_shared_docs['_getting_grouper_for_level']) def _getting_grouper_for_level(self, mappingper, level=None): assert level is None or level == 0 if mappingper is None: grouper = self else: grouper = self.mapping(mappingper) return grouper, None, None def is_(self, other): """ More flexible, faster check like ``is`` but that works through views Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is gettingattr( other, '_id', Ellipsis) and self._id is not None def _reset_identity(self): """Initializes or resets ``_id`` attribute with new object""" self._id = _Identity() return self # ndarray compat def __length__(self): """ return the lengthgth of the Index """ return length(self._data) def __array__(self, dtype=None): """ the array interface, return my values """ return self._data.view(np.ndarray) def __array_wrap__(self, result, context=None): """ Gets ctotal_alled after a ufunc """ if is_bool_dtype(result): return result attrs = self._getting_attributes_dict() attrs = self._maybe_umkate_attributes(attrs) return Index(result, **attrs) @cache_readonly def dtype(self): """ return the dtype object of the underlying data """ return self._data.dtype @cache_readonly def dtype_str(self): """ return the dtype str of the underlying data """ return str(self.dtype) @property def values(self): """ return the underlying data as an ndarray """ return self._data.view(np.ndarray) @property def _values(self): # type: () -> Union[ExtensionArray, Index] # TODO(EA): remove index types as they become extension arrays """The best array representation. This is an ndarray, ExtensionArray, or Index subclass. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Collections`` and ``Index``. It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | -------------- -| ----------- | --------------- | CategoricalIndex | Categorical | Categorical | codes | DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | For the following, the ``._values`` is currently ``ndarray[object]``, but will soon be an ``ExtensionArray`` index | values | _values | _ndarray_values | ----------------- | --------------- | ------------ | --------------- | PeriodIndex | ndarray[object] | ndarray[obj] | ndarray[int] | IntervalIndex | ndarray[object] | ndarray[obj] | ndarray[object] | See Also -------- values _ndarray_values """ return self.values def getting_values(self): """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that getting_values wraps. Examples -------- Getting the `Index` values of a `KnowledgeFrame`: >>> kf = mk.KnowledgeFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> kf A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> kf.index.getting_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = mk.Index(['1', '2', '3']) >>> idx.getting_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = mk.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx.getting_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx.getting_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep=False): result = super(Index, self).memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result # ops compat @deprecate_kwarg(old_arg_name='n', new_arg_name='repeats') def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an Index. Returns a new index where each element of the current index is repeated consecutively a given number of times. Parameters ---------- repeats : int The number of repetitions for each element. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- monkey.Index Newly created Index with repeated elements. See Also -------- Collections.repeat : Equivalengtht function for Collections numpy.repeat : Underlying implementation Examples -------- >>> idx = mk.Index([1, 2, 3]) >>> idx Int64Index([1, 2, 3], dtype='int64') >>> idx.repeat(2) Int64Index([1, 1, 2, 2, 3, 3], dtype='int64') >>> idx.repeat(3) Int64Index([1, 1, 1, 2, 2, 2, 3, 3, 3], dtype='int64') """ nv.validate_repeat(args, kwargs) return self._shtotal_allow_clone(self._values.repeat(repeats)) _index_shared_docs['where'] = """ .. versionadded:: 0.19.0 Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : boolean array-like with the same lengthgth as self other : scalar, or array-like """ @Appender(_index_shared_docs['where']) def where(self, cond, other=None): if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.totype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.whatever(ifna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shtotal_allow_clone_with_infer(values, dtype=dtype) def flat_underlying(self, order='C'): """ return an ndarray of the flattened values of the underlying data See also -------- numpy.ndarray.flat_underlying """ return self._ndarray_values.flat_underlying(order=order) # construction helpers @classmethod def _try_convert_to_int_index(cls, data, clone, name, dtype): """ Attempt to convert an array of data into an integer index. Parameters ---------- data : The data to convert. clone : Whether to clone the data or not. name : The name of the index returned. Returns ------- int_index : data converted to either an Int64Index or a UInt64Index Raises ------ ValueError if the conversion was not successful. """ from .numeric import Int64Index, UInt64Index if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desrired try: res = data.totype('i8', clone=False) if (res == data).total_all(): return Int64Index(res, clone=clone, name=name) except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.totype('u8', clone=False) if (res == data).total_all(): return UInt64Index(res, clone=clone, name=name) except (OverflowError, TypeError, ValueError): pass raise ValueError @classmethod def _scalar_data_error(cls, data): raise TypeError('{0}(...) must be ctotal_alled with a collection of some ' 'kind, {1} was passed'.formating(cls.__name__, repr(data))) @classmethod def _string_data_error(cls, data): raise TypeError('String dtype not supported, you may need ' 'to explicitly cast to a numeric type') @classmethod def _coerce_to_ndarray(cls, data): """coerces data to ndarray, raises on scalar data. Converts other iterables to list first and then to array. Does not touch ndarrays. """ if not incontainstance(data, (np.ndarray, Index)): if data is None or is_scalar(data): cls._scalar_data_error(data) # other iterable of some kind if not incontainstance(data, (ABCCollections, list, tuple)): data = list(data) data = np.asarray(data) return data def _getting_attributes_dict(self): """ return an attributes dict for my class """ return {k: gettingattr(self, k, None) for k in self._attributes} def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, '_typ'): result = self._data.view(cls) else: result = self._shtotal_allow_clone() if incontainstance(result, Index): result._id = self._id return result def _coerce_scalar_to_index(self, item): """ we need to coerce a scalar to a compat for our index type Parameters ---------- item : scalar item to coerce """ dtype = self.dtype if self._is_numeric_dtype and ifna(item): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return Index([item], dtype=dtype, **self._getting_attributes_dict()) _index_shared_docs['clone'] = """ Make a clone of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : string, optional deep : boolean, default False dtype : numpy dtype or monkey type Returns ------- clone : Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepclone. """ @Appender(_index_shared_docs['clone']) def clone(self, name=None, deep=False, dtype=None, **kwargs): if deep: new_index = self._shtotal_allow_clone(self._data.clone()) else: new_index = self._shtotal_allow_clone() names = kwargs.getting('names') names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.totype(dtype) return new_index def __clone__(self, **kwargs): return self.clone(**kwargs) def __deepclone__(self, memo=None): if memo is None: memo = {} return self.clone(deep=True) def _validate_names(self, name=None, names=None, deep=False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from clone import deepclone if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepclone(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def __unicode__(self): """ Return a string representation for this object. Invoked by unicode(kf) in py2 only. Yields a Unicode String in both py2/py3. """ klass = self.__class__.__name__ data = self._formating_data() attrs = self._formating_attrs() space = self._formating_space() prepr = (u(",%s") % space).join(u("%s=%s") % (k, v) for k, v in attrs) # no data provided, just attributes if data is None: data = '' res = u("%s(%s%s)") % (klass, data, prepr) return res def _formating_space(self): # using space here controls if the attributes # are line separated or not (the default) # getting_max_seq_items = getting_option('display.getting_max_seq_items') # if length(self) > getting_max_seq_items: # space = "\n%s" % (' ' * (length(klass) + 1)) return " " @property def _formatingter_func(self): """ Return the formatingter function """ return default_pprint def _formating_data(self, name=None): """ Return the formatingted data as a unicode string """ # do we want to justify (only do so for non-objects) is_justify = not (self.inferred_type in ('string', 'unicode') or (self.inferred_type == 'categorical' and is_object_dtype(self.categories))) return formating_object_total_summary(self, self._formatingter_func, is_justify=is_justify, name=name) def _formating_attrs(self): """ Return a list of tuples of the (attr,formatingted_value) """ return formating_object_attrs(self) def to_collections(self, index=None, name=None): """ Create a Collections with both index and values equal to the index keys useful with mapping for returning an indexer based on an index Parameters ---------- index : Index, optional index of resulting Collections. If None, defaults to original index name : string, optional name of resulting Collections. If None, defaults to name of original index Returns ------- Collections : dtype will be based on the type of the Index values. """ from monkey import Collections if index is None: index = self._shtotal_allow_clone() if name is None: name = self.name return Collections(self._to_embed(), index=index, name=name) def to_frame(self, index=True): """ Create a KnowledgeFrame with a column containing the Index. .. versionadded:: 0.21.0 Parameters ---------- index : boolean, default True Set the index of the returned KnowledgeFrame as the original Index. Returns ------- KnowledgeFrame KnowledgeFrame containing the original Index data. See Also -------- Index.to_collections : Convert an Index to a Collections. Collections.to_frame : Convert Collections to KnowledgeFrame. Examples -------- >>> idx = mk.Index(['Ant', 'Bear', 'Cow'], name='animal') >>> idx.to_frame() animal animal Ant Ant Bear Bear Cow Cow By default, the original Index is reused. To enforce a new Index: >>> idx.to_frame(index=False) animal 0 Ant 1 Bear 2 Cow """ from monkey import KnowledgeFrame result = KnowledgeFrame(self._shtotal_allow_clone(), columns=[self.name or 0]) if index: result.index = self return result def _to_embed(self, keep_tz=False, dtype=None): """ *this is an internal non-public method* return an array repr of this object, potentitotal_ally casting to object """ if dtype is not None: return self.totype(dtype)._to_embed(keep_tz=keep_tz) return self.values.clone() _index_shared_docs['totype'] = """ Create an Index with values cast to dtypes. The class of a new Index is detergetting_mined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters ---------- dtype : numpy dtype or monkey type clone : bool, default True By default, totype always returns a newly total_allocated object. If clone is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. .. versionadded:: 0.19.0 """ @Appender(_index_shared_docs['totype']) def totype(self, dtype, clone=True): if is_dtype_equal(self.dtype, dtype): return self.clone() if clone else self elif is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(self.values, name=self.name, dtype=dtype, clone=clone) try: return Index(self.values.totype(dtype, clone=clone), name=self.name, dtype=dtype) except (TypeError, ValueError): msg = 'Cannot cast {name} to dtype {dtype}' raise TypeError(msg.formating(name=type(self).__name__, dtype=dtype)) def _to_safe_for_reshape(self): """ convert to object if we are a categorical """ return self def _assert_can_do_setop(self, other): if not is_list_like(other): raise TypeError('Input must be Index or array-like') return True def _convert_can_do_setop(self, other): if not incontainstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = self.name if self.name == other.name else None return other, result_name def _convert_for_op(self, value): """ Convert value to be insertable to ndarray """ return value def _assert_can_do_op(self, value): """ Check value is valid for scalar op """ if not is_scalar(value): msg = "'value' must be a scalar, passed: {0}" raise TypeError(msg.formating(type(value).__name__)) @property def nlevels(self): return 1 def _getting_names(self): return FrozenList((self.name, )) def _set_names(self, values, level=None): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for total_all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable. """ if not is_list_like(values): raise ValueError('Names must be a list-like') if length(values) != 1: raise ValueError('Length of new names must be 1, got %d' % length(values)) # GH 20527 # All items in 'name' need to be hashable: for name in values: if not is_hashable(name): raise TypeError('{}.name must be a hashable type' .formating(self.__class__.__name__)) self.name = values[0] names = property(fset=_set_names, fgetting=_getting_names) def set_names(self, names, level=None, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- names : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for total_all levels). Otherwise level must be None inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] Examples -------- >>> Index([1, 2, 3, 4]).set_names('foo') Int64Index([1, 2, 3, 4], dtype='int64', name='foo') >>> Index([1, 2, 3, 4]).set_names(['foo']) Int64Index([1, 2, 3, 4], dtype='int64', name='foo') >>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'), (2, u'one'), (2, u'two')], names=['foo', 'bar']) >>> idx.set_names(['baz', 'quz']) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'quz']) >>> idx.set_names('baz', level=0) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'bar']) """ from .multi import MultiIndex if level is not None and not incontainstance(self, MultiIndex): raise ValueError('Level must be None for non-MultiIndex') if level is not None and not is_list_like(level) and is_list_like( names): raise TypeError("Names must be a string") if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shtotal_allow_clone() idx._set_names(names, level=level) if not inplace: return idx def renagetting_ming(self, name, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- name : str or list name to set inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] """ return self.set_names([name], inplace=inplace) @property def _has_complex_internals(self): # to disable grouper tricks in MultiIndex return False def _total_summary(self, name=None): """ Return a total_summarized representation Parameters ---------- name : str name to use in the total_summary representation Returns ------- String with a total_summarized representation of the index """ if length(self) > 0: header_num = self[0] if (hasattr(header_num, 'formating') and not incontainstance(header_num, compat.string_types)): header_num = header_num.formating() final_item_tail = self[-1] if (hasattr(final_item_tail, 'formating') and not incontainstance(final_item_tail, compat.string_types)): final_item_tail = final_item_tail.formating() index_total_summary = ', %s to %s' % (pprint_thing(header_num), pprint_thing(final_item_tail)) else: index_total_summary = '' if name is None: name = type(self).__name__ return '%s: %s entries%s' % (name, length(self), index_total_summary) def total_summary(self, name=None): """ Return a total_summarized representation .. deprecated:: 0.23.0 """ warnings.warn("'total_summary' is deprecated and will be removed in a " "future version.", FutureWarning, stacklevel=2) return self._total_summary(name) def _mpl_repr(self): # how to represent ourselves to matplotlib return self.values _na_value = np.nan """The expected NA value to use with this index.""" # introspection @property def is_monotonic(self): """ alias for is_monotonic_increasing (deprecated) """ return self.is_monotonic_increasing @property def is_monotonic_increasing(self): """ return if the index is monotonic increasing (only equal or increasing) values. Examples -------- >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False """ return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self): """ return if the index is monotonic decreasing (only equal or decreasing) values. Examples -------- >>> Index([3, 2, 1]).is_monotonic_decreasing True >>> Index([3, 2, 2]).is_monotonic_decreasing True >>> Index([3, 1, 2]).is_monotonic_decreasing False """ return self._engine.is_monotonic_decreasing @property def _is_strictly_monotonic_increasing(self): """return if the index is strictly monotonic increasing (only increasing) values Examples -------- >>> Index([1, 2, 3])._is_strictly_monotonic_increasing True >>> Index([1, 2, 2])._is_strictly_monotonic_increasing False >>> Index([1, 3, 2])._is_strictly_monotonic_increasing False """ return self.is_distinctive and self.is_monotonic_increasing @property def _is_strictly_monotonic_decreasing(self): """return if the index is strictly monotonic decreasing (only decreasing) values Examples -------- >>> Index([3, 2, 1])._is_strictly_monotonic_decreasing True >>> Index([3, 2, 2])._is_strictly_monotonic_decreasing False >>> Index([3, 1, 2])._is_strictly_monotonic_decreasing False """ return self.is_distinctive and self.is_monotonic_decreasing def is_lexsorted_for_tuple(self, tup): return True @cache_readonly def is_distinctive(self): """ return if the index has distinctive values """ return self._engine.is_distinctive @property def has_duplicates(self): return not self.is_distinctive def is_boolean(self): return self.inferred_type in ['boolean'] def is_integer(self): return self.inferred_type in ['integer'] def is_floating(self): return self.inferred_type in ['floating', 'mixed-integer-float'] def is_numeric(self): return self.inferred_type in ['integer', 'floating'] def is_object(self): return is_object_dtype(self.dtype) def is_categorical(self): """ Check if the Index holds categorical data. Returns ------- boolean True if the Index is categorical. See Also -------- CategoricalIndex : Index for categorical data. Examples -------- >>> idx = mk.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).totype("category") >>> idx.is_categorical() True >>> idx = mk.Index([1, 3, 5, 7]) >>> idx.is_categorical() False >>> s = mk.Collections(["Peter", "Victor", "Elisabeth", "Mar"]) >>> s 0 Peter 1 Victor 2 Elisabeth 3 Mar dtype: object >>> s.index.is_categorical() False """ return self.inferred_type in ['categorical'] def is_interval(self): return self.inferred_type in ['interval'] def is_mixed(self): return self.inferred_type in ['mixed'] def holds_integer(self): return self.inferred_type in ['integer', 'mixed-integer'] _index_shared_docs['_convert_scalar_indexer'] = """ Convert a scalar indexer. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'gettingitem', 'iloc'} or None """ @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'gettingitem', 'iloc', None] if kind == 'iloc': return self._validate_indexer('positional', key, kind) if length(self) and not incontainstance(self, ABCMultiIndex,): # we can raise here if we are definitive that this # is positional indexing (eg. .ix on with a float) # or label indexing if we are using a type able # to be represented in the index if kind in ['gettingitem', 'ix'] and is_float(key): if not self.is_floating(): return self._invalid_indexer('label', key) elif kind in ['loc'] and is_float(key): # we want to raise KeyError on string/mixed here # technictotal_ally we *could* raise a TypeError # on whateverthing but mixed though if self.inferred_type not in ['floating', 'mixed-integer-float', 'string', 'unicode', 'mixed']: return self._invalid_indexer('label', key) elif kind in ['loc'] and is_integer(key): if not self.holds_integer(): return self._invalid_indexer('label', key) return key _index_shared_docs['_convert_slice_indexer'] = """ Convert a slice indexer. By definition, these are labels unless 'iloc' is passed in. Floats are not total_allowed as the start, step, or stop of the slice. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'gettingitem', 'iloc'} or None """ @Appender(_index_shared_docs['_convert_slice_indexer']) def _convert_slice_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'gettingitem', 'iloc', None] # if we are not a slice, then we are done if not incontainstance(key, slice): return key # validate iloc if kind == 'iloc': return slice(self._validate_indexer('slice', key.start, kind), self._validate_indexer('slice', key.stop, kind), self._validate_indexer('slice', key.step, kind)) # potentitotal_ally cast the bounds to integers start, stop, step = key.start, key.stop, key.step # figure out if this is a positional indexer def is_int(v): return v is None or is_integer(v) is_null_slicer = start is None and stop is None is_index_slice = is_int(start) and is_int(stop) is_positional = is_index_slice and not self.is_integer() if kind == 'gettingitem': """ ctotal_alled from the gettingitem slicers, validate that we are in fact integers """ if self.is_integer() or is_index_slice: return slice(self._validate_indexer('slice', key.start, kind), self._validate_indexer('slice', key.stop, kind), self._validate_indexer('slice', key.step, kind)) # convert the slice to an indexer here # if we are mixed and have integers try: if is_positional and self.is_mixed(): # TODO: i, j are not used whateverwhere if start is not None: i = self.getting_loc(start) # noqa if stop is not None: j = self.getting_loc(stop) # noqa is_positional = False except KeyError: if self.inferred_type == 'mixed-integer-float': raise if is_null_slicer: indexer = key elif is_positional: indexer = key else: try: indexer = self.slice_indexer(start, stop, step, kind=kind) except Exception: if is_index_slice: if self.is_integer(): raise else: indexer = key else: raise return indexer def _convert_listlike_indexer(self, keyarr, kind=None): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- tuple (indexer, keyarr) indexer is an ndarray or None if cannot convert keyarr are tuple-safe keys """ if incontainstance(keyarr, Index): keyarr = self._convert_index_indexer(keyarr) else: keyarr = self._convert_arr_indexer(keyarr) indexer = self._convert_list_indexer(keyarr, kind=kind) return indexer, keyarr _index_shared_docs['_convert_arr_indexer'] = """ Convert an array-like indexer to the appropriate dtype. Parameters ---------- keyarr : array-like Indexer to convert. Returns ------- converted_keyarr : array-like """ @Appender(_index_shared_docs['_convert_arr_indexer']) def _convert_arr_indexer(self, keyarr): keyarr = com._asarray_tuplesafe(keyarr) return keyarr _index_shared_docs['_convert_index_indexer'] = """ Convert an Index indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. Returns ------- converted_keyarr : Index (or sub-class) """ @Appender(_index_shared_docs['_convert_index_indexer']) def _convert_index_indexer(self, keyarr): return keyarr _index_shared_docs['_convert_list_indexer'] = """ Convert a list-like indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. kind : iloc, ix, loc, optional Returns ------- positional indexer or None """ @Appender(_index_shared_docs['_convert_list_indexer']) def _convert_list_indexer(self, keyarr, kind=None): if (kind in [None, 'iloc', 'ix'] and is_integer_dtype(keyarr) and not self.is_floating() and not incontainstance(keyarr, ABCPeriodIndex)): if self.inferred_type == 'mixed-integer': indexer = self.getting_indexer(keyarr) if (indexer >= 0).total_all(): return indexer # missing values are flagged as -1 by getting_indexer and negative # indices are already converted to positive indices in the # above if-statement, so the negative flags are changed to # values outside the range of indices so as to trigger an # IndexError in maybe_convert_indices indexer[indexer < 0] = length(self) from monkey.core.indexing import maybe_convert_indices return maybe_convert_indices(indexer, length(self)) elif not self.inferred_type == 'integer': keyarr = np.where(keyarr < 0, length(self) + keyarr, keyarr) return keyarr return None def _invalid_indexer(self, form, key): """ consistent invalid indexer message """ raise TypeError("cannot do {form} indexing on {klass} with these " "indexers [{key}] of {kind}".formating( form=form, klass=type(self), key=key, kind=type(key))) def getting_duplicates(self): """ Extract duplicated_values index elements. Returns a sorted list of index elements which appear more than once in the index. .. deprecated:: 0.23.0 Use idx[idx.duplicated_values()].distinctive() instead Returns ------- array-like List of duplicated_values indexes. See Also -------- Index.duplicated_values : Return boolean array denoting duplicates. Index.sip_duplicates : Return Index with duplicates removed. Examples -------- Works on different Index of types. >>> mk.Index([1, 2, 2, 3, 3, 3, 4]).getting_duplicates() [2, 3] >>> mk.Index([1., 2., 2., 3., 3., 3., 4.]).getting_duplicates() [2.0, 3.0] >>> mk.Index(['a', 'b', 'b', 'c', 'c', 'c', 'd']).getting_duplicates() ['b', 'c'] Note that for a DatetimeIndex, it does not return a list but a new DatetimeIndex: >>> dates = mk.convert_datetime(['2018-01-01', '2018-01-02', '2018-01-03', ... '2018-01-03', '2018-01-04', '2018-01-04'], ... formating='%Y-%m-%d') >>> mk.Index(dates).getting_duplicates() DatetimeIndex(['2018-01-03', '2018-01-04'], dtype='datetime64[ns]', freq=None) Sorts duplicated_values elements even when indexes are unordered. >>> mk.Index([1, 2, 3, 2, 3, 4, 3]).getting_duplicates() [2, 3] Return empty array-like structure when total_all elements are distinctive. >>> mk.Index([1, 2, 3, 4]).getting_duplicates() [] >>> dates = mk.convert_datetime(['2018-01-01', '2018-01-02', '2018-01-03'], ... formating='%Y-%m-%d') >>> mk.Index(dates).getting_duplicates() DatetimeIndex([], dtype='datetime64[ns]', freq=None) """ warnings.warn("'getting_duplicates' is deprecated and will be removed in " "a future release. You can use " "idx[idx.duplicated_values()].distinctive() instead", FutureWarning, stacklevel=2) return self[self.duplicated_values()].distinctive() def _cleanup(self): self._engine.clear_mappingping() @cache_readonly def _constructor(self): return type(self) @cache_readonly def _engine(self): # property, for now, slow to look up return self._engine_type(lambda: self._ndarray_values, length(self)) def _validate_index_level(self, level): """ Validate index level. For single-level Index gettingting level number is a no-op, but some verification must be done like in MultiIndex. """ if incontainstance(level, int): if level < 0 and level != -1: raise IndexError("Too mwhatever levels: Index has only 1 level," " %d is not a valid level number" % (level, )) elif level > 0: raise IndexError("Too mwhatever levels:" " Index has only 1 level, not %d" % (level + 1)) elif level != self.name: raise KeyError('Level %s must be same as name (%s)' % (level, self.name)) def _getting_level_number(self, level): self._validate_index_level(level) return 0 @cache_readonly def inferred_type(self): """ return a string of the type inferred from the values """ return lib.infer_dtype(self) def _is_memory_usage_qualified(self): """ return a boolean if we need a qualified .info display """ return self.is_object() def is_type_compatible(self, kind): return kind == self.inferred_type @cache_readonly def is_total_all_dates(self): if self._data is None: return False return is_datetime_array(_ensure_object(self.values)) def __reduce__(self): d = dict(data=self._data) d.umkate(self._getting_attributes_dict()) return _new_Index, (self.__class__, d), None def __setstate__(self, state): """Necessary for making this object picklable""" if incontainstance(state, dict): self._data = state.pop('data') for k, v in compat.iteritems(state): setattr(self, k, v) elif incontainstance(state, tuple): if length(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) self.name = own_state[0] else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(data, state) self._data = data self._reset_identity() else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ def __nonzero__(self): raise ValueError("The truth value of a {0} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.whatever() or a.total_all()." .formating(self.__class__.__name__)) __bool__ = __nonzero__ _index_shared_docs['__contains__'] = """ return a boolean if this key is IN the index Parameters ---------- key : object Returns ------- boolean """ @Appender(_index_shared_docs['__contains__'] % _index_doc_kwargs) def __contains__(self, key): hash(key) try: return key in self._engine except (OverflowError, TypeError, ValueError): return False _index_shared_docs['contains'] = """ return a boolean if this key is IN the index Parameters ---------- key : object Returns ------- boolean """ @Appender(_index_shared_docs['contains'] % _index_doc_kwargs) def contains(self, key): hash(key) try: return key in self._engine except (TypeError, ValueError): return False def __hash__(self): raise TypeError("unhashable type: %r" % type(self).__name__) def __setitem__(self, key, value): raise TypeError("Index does not support mutable operations") def __gettingitem__(self, key): """ Override numpy.ndarray's __gettingitem__ method to work as desired. This function adds lists and Collections as valid boolean indexers (ndarrays only supports ndarray with dtype=bool). If resulting ndim != 1, plain ndarray is returned instead of corresponding `Index` subclass. """ # There's no custom logic to be implemented in __gettingslice__, so it's # not overloaded intentiontotal_ally. gettingitem = self._data.__gettingitem__ promote = self._shtotal_allow_clone if is_scalar(key): return gettingitem(key) if incontainstance(key, slice): # This case is separated from the conditional above to avoid # pessimization of basic indexing. return promote(gettingitem(key)) if com.is_bool_indexer(key): key = np.asarray(key) key = com._values_from_object(key) result = gettingitem(key) if not is_scalar(result): return promote(result) else: return result def _can_hold_identifiers_and_holds_name(self, name): """ Faster check for ``name in self`` when we know `name` is a Python identifier (e.g. in NDFrame.__gettingattr__, which hits this to support . key lookup). For indexes that can't hold identifiers (everything but object & categorical) we just return False. https://github.com/monkey-dev/monkey/issues/19764 """ if self.is_object() or self.is_categorical(): return name in self return False def adding(self, other): """ Append a collection of Index options togettingher Parameters ---------- other : Index or list/tuple of indices Returns ------- addinged : Index """ to_concating = [self] if incontainstance(other, (list, tuple)): to_concating = to_concating + list(other) else: to_concating.adding(other) for obj in to_concating: if not incontainstance(obj, Index): raise TypeError('total_all inputs must be Index') names = {obj.name for obj in to_concating} name = None if length(names) > 1 else self.name return self._concating(to_concating, name) def _concating(self, to_concating, name): typs = _concating.getting_dtype_kinds(to_concating) if length(typs) == 1: return self._concating_same_dtype(to_concating, name=name) return _concating._concating_index_asobject(to_concating, name=name) def _concating_same_dtype(self, to_concating, name): """ Concatenate to_concating which has the same class """ # must be overridden in specific classes return _concating._concating_index_asobject(to_concating, name) _index_shared_docs['take'] = """ return a new %(klass)s of the values selected by the indices For internal compatibility with numpy arrays. Parameters ---------- indices : list Indices to be taken axis : int, optional The axis over which to select values, always 0. total_allow_fill : bool, default True fill_value : bool, default None If total_allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn't hold NA, raise ValueError See also -------- numpy.ndarray.take """ @Appender(_index_shared_docs['take'] % _index_doc_kwargs) def take(self, indices, axis=0, total_allow_fill=True, fill_value=None, **kwargs): if kwargs: nv.validate_take(tuple(), kwargs) indices = _ensure_platform_int(indices) if self._can_hold_na: taken = self._assert_take_fillable(self.values, indices, total_allow_fill=total_allow_fill, fill_value=fill_value, na_value=self._na_value) else: if total_allow_fill and fill_value is not None: msg = 'Unable to fill values because {0} cannot contain NA' raise ValueError(msg.formating(self.__class__.__name__)) taken = self.values.take(indices) return self._shtotal_allow_clone(taken) def _assert_take_fillable(self, values, indices, total_allow_fill=True, fill_value=None, na_value=np.nan): """ Internal method to handle NA filling of take """ indices = _ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if total_allow_fill and fill_value is not None: if (indices < -1).whatever(): msg = ('When total_allow_fill=True and fill_value is not None, ' 'total_all indices must be >= -1') raise ValueError(msg) taken = algos.take(values, indices, total_allow_fill=total_allow_fill, fill_value=na_value) else: taken = values.take(indices) return taken @cache_readonly def _ifnan(self): """ return if each value is nan""" if self._can_hold_na: return ifna(self) else: # shouldn't reach to this condition by checking hasnans beforehand values = np.empty(length(self), dtype=np.bool_) values.fill(False) return values @cache_readonly def _nan_idxs(self): if self._can_hold_na: w, = self._ifnan.nonzero() return w else: return np.array([], dtype=np.int64) @cache_readonly def hasnans(self): """ return if I have whatever nans; enables various perf speedups """ if self._can_hold_na: return self._ifnan.whatever() else: return False def ifna(self): """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as ``None``, :attr:`numpy.NaN` or :attr:`mk.NaT`, getting mappingped to ``True`` values. Everything else getting mappingped to ``False`` values. Characters such as empty strings `''` or :attr:`numpy.inf` are not considered NA values (unless you set ``monkey.options.mode.use_inf_as_na = True``). .. versionadded:: 0.20.0 Returns ------- numpy.ndarray A boolean array of whether my values are NA See Also -------- monkey.Index.notna : boolean inverse of ifna. monkey.Index.sipna : omit entries with missing values. monkey.ifna : top-level ifna. Collections.ifna : detect missing values in Collections object. Examples -------- Show which entries in a monkey.Index are NA. The result is an array. >>> idx = mk.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.ifna() array([False, False, True], dtype=bool) Empty strings are not considered NA values. None is considered an NA value. >>> idx = mk.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.ifna() array([False, False, False, True], dtype=bool) For datetimes, `NaT` (Not a Time) is considered as an NA value. >>> idx = mk.DatetimeIndex([mk.Timestamp('1940-04-25'), ... mk.Timestamp(''), None, mk.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.ifna() array([False, True, True, True], dtype=bool) """ return self._ifnan ifnull = ifna def notna(self): """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values getting mappingped to ``True``. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``monkey.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, getting mappingped to ``False`` values. .. versionadded:: 0.20.0 Returns ------- numpy.ndarray Boolean array to indicate which entries are not NA. See also -------- Index.notnull : alias of notna Index.ifna: inverse of notna monkey.notna : top-level notna Examples -------- Show which entries in an Index are not NA. The result is an array. >>> idx = mk.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.notna() array([ True, True, False]) Empty strings are not considered NA values. None is considered a NA value. >>> idx = mk.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.notna() array([ True, True, True, False]) """ return ~self.ifna() notnull = notna def putmask(self, mask, value): """ return a new Index of the values set with the mask See also -------- numpy.ndarray.putmask """ values = self.values.clone() try: np.putmask(values, mask, self._convert_for_op(value)) return self._shtotal_allow_clone(values) except (ValueError, TypeError) as err: if is_object_dtype(self): raise err # coerces to object return self.totype(object).putmask(mask, value) def formating(self, name=False, formatingter=None, **kwargs): """ Render a string representation of the Index """ header_numer = [] if name: header_numer.adding(pprint_thing(self.name, escape_chars=('\t', '\r', '\n')) if self.name is not None else '') if formatingter is not None: return header_numer + list(self.mapping(formatingter)) return self._formating_with_header_numer(header_numer, **kwargs) def _formating_with_header_numer(self, header_numer, na_rep='NaN', **kwargs): values = self.values from monkey.io.formatings.formating import formating_array if is_categorical_dtype(values.dtype): values = np.array(values) elif is_object_dtype(values.dtype): values = lib.maybe_convert_objects(values, safe=1) if is_object_dtype(values.dtype): result = [pprint_thing(x, escape_chars=('\t', '\r', '\n')) for x in values] # could have nans mask = ifna(values) if mask.whatever(): result = np.array(result) result[mask] = na_rep result = result.convert_list() else: result = _trim_front(formating_array(values, None, justify='left')) return header_numer + result def to_native_types(self, slicer=None, **kwargs): """ Format specified values of `self` and return them. Parameters ---------- slicer : int, array-like An indexer into `self` that specifies which values are used in the formatingting process. kwargs : dict Options for specifying how the values should be formatingted. These options include the following: 1) na_rep : str The value that serves as a placeholder for NULL values 2) quoting : bool or None Whether or not there are quoted values in `self` 3) date_formating : str The formating used to represent date-like values """ values = self if slicer is not None: values = values[slicer] return values._formating_native_types(**kwargs) def _formating_native_types(self, na_rep='', quoting=None, **kwargs): """ actutotal_ally formating my specific types """ mask = ifna(self) if not self.is_object() and not quoting: values = np.asarray(self).totype(str) else: values = np.array(self, dtype=object, clone=True) values[mask] = na_rep return values def equals(self, other): """ Detergetting_mines if two Index objects contain the same elements. """ if self.is_(other): return True if not incontainstance(other, Index): return False if is_object_dtype(self) and not is_object_dtype(other): # if other is not object, use other's logic for coercion return other.equals(self) try: return array_equivalengtht(com._values_from_object(self), com._values_from_object(other)) except Exception: return False def identical(self, other): """Similar to equals, but check that other comparable attributes are also equal """ return (self.equals(other) and total_all((gettingattr(self, c, None) == gettingattr(other, c, None) for c in self._comparables)) and type(self) == type(other)) def asof(self, label): """ For a sorted index, return the most recent label up to and including the passed label. Return NaN if not found. See also -------- getting_loc : asof is a thin wrapper avalue_round getting_loc with method='pad' """ try: loc = self.getting_loc(label, method='pad') except KeyError: return self._na_value else: if incontainstance(loc, slice): loc = loc.indices(length(self))[-1] return self[loc] def asof_locs(self, where, mask): """ where : array of timestamps mask : array of booleans where data is not NA """ locs = self.values[mask].searchsorted(where.values, side='right') locs = np.where(locs > 0, locs - 1, 0) result = np.arange(length(self))[mask].take(locs) first = mask.arggetting_max() result[(locs == 0) & (where < self.values[first])] = -1 return result def sort_the_values(self, return_indexer=False, ascending=True): """ Return a sorted clone of the index. Return a sorted clone of the index, and optiontotal_ally return the indices that sorted the index itself. Parameters ---------- return_indexer : bool, default False Should the indices that would sort the index be returned. ascending : bool, default True Should the index values be sorted in an ascending order. Returns ------- sorted_index : monkey.Index Sorted clone of the index. indexer : numpy.ndarray, optional The indices that the index itself was sorted by. See Also -------- monkey.Collections.sort_the_values : Sort values of a Collections. monkey.KnowledgeFrame.sort_the_values : Sort values in a KnowledgeFrame. Examples -------- >>> idx = mk.Index([10, 100, 1, 1000]) >>> idx Int64Index([10, 100, 1, 1000], dtype='int64') Sort values in ascending order (default behavior). >>> idx.sort_the_values() Int64Index([1, 10, 100, 1000], dtype='int64') Sort values in descending order, and also getting the indices `idx` was sorted by. >>> idx.sort_the_values(ascending=False, return_indexer=True) (Int64Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2])) """ _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) if return_indexer: return sorted_index, _as else: return sorted_index def sort(self, *args, **kwargs): raise TypeError("cannot sort an Index object in-place, use " "sort_the_values instead") def sortlevel(self, level=None, ascending=True, sort_remaining=None): """ For internal compatibility with with the Index API Sort the Index. This is for compat with MultiIndex Parameters ---------- ascending : boolean, default True False to sort in descending order level, sort_remaining are compat parameters Returns ------- sorted_index : Index """ return self.sort_the_values(return_indexer=True, ascending=ascending) def shifting(self, periods=1, freq=None): """ Shift index by desired number of time frequency increments. This method is for shiftinging the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int, default 1 Number of periods (or increments) to shifting by, can be positive or negative. freq : monkey.DateOffset, monkey.Timedelta or string, optional Frequency increment to shifting by. If None, the index is shiftinged by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- monkey.Index shiftinged index See Also -------- Collections.shifting : Shift values of Collections. Examples -------- Put the first 5 month starts of 2011 into an index. >>> month_starts = mk.date_range('1/1/2011', periods=5, freq='MS') >>> month_starts DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01', '2011-05-01'], dtype='datetime64[ns]', freq='MS') Shift the index by 10 days. >>> month_starts.shifting(10, freq='D') DatetimeIndex(['2011-01-11', '2011-02-11', '2011-03-11', '2011-04-11', '2011-05-11'], dtype='datetime64[ns]', freq=None) The default value of `freq` is the `freq` attribute of the index, which is 'MS' (month start) in this example. >>> month_starts.shifting(10) DatetimeIndex(['2011-11-01', '2011-12-01', '2012-01-01', '2012-02-01', '2012-03-01'], dtype='datetime64[ns]', freq='MS') Notes ----- This method is only implemented for datetime-like index classes, i.e., DatetimeIndex, PeriodIndex and TimedeltaIndex. """ raise NotImplementedError("Not supported for type %s" % type(self).__name__) def argsort(self, *args, **kwargs): """ Return the integer indices that would sort the index. Parameters ---------- *args Passed to `numpy.ndarray.argsort`. **kwargs Passed to `numpy.ndarray.argsort`. Returns ------- numpy.ndarray Integer indices that would sort the index if used as an indexer. See also -------- numpy.argsort : Similar method for NumPy arrays. Index.sort_the_values : Return sorted clone of Index. Examples -------- >>> idx = mk.Index(['b', 'a', 'd', 'c']) >>> idx Index(['b', 'a', 'd', 'c'], dtype='object') >>> order = idx.argsort() >>> order array([1, 0, 3, 2]) >>> idx[order] Index(['a', 'b', 'c', 'd'], dtype='object') """ result = self.asi8 if result is None: result = np.array(self) return result.argsort(*args, **kwargs) def __add__(self, other): return Index(np.array(self) + other) def __radd__(self, other): return Index(other + np.array(self)) def __iadd__(self, other): # alias for __add__ return self + other def __sub__(self, other): raise TypeError("cannot perform __sub__ with this index type: " "{typ}".formating(typ=type(self).__name__)) def __and__(self, other): return self.interst(other) def __or__(self, other): return self.union(other) def __xor__(self, other): return self.symmetric_difference(other) def _getting_consensus_name(self, other): """ Given 2 indexes, give a consensus name averageing we take the not None one, or None if the names differ. Return a new object if we are resetting the name """ if self.name != other.name: if self.name is None or other.name is None: name = self.name or other.name else: name = None if self.name != name: return self._shtotal_allow_clone(name=name) return self def union(self, other): """ Form the union of two Index objects and sorts if possible. Parameters ---------- other : Index or array-like Returns ------- union : Index Examples -------- >>> idx1 = mk.Index([1, 2, 3, 4]) >>> idx2 = mk.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') """ self._assert_can_do_setop(other) other = _ensure_index(other) if length(other) == 0 or self.equals(other): return self._getting_consensus_name(other) if length(self) == 0: return other._getting_consensus_name(self) # TODO: is_dtype_union_equal is a hack avalue_round # 1. buggy set ops with duplicates (GH #13432) # 2. CategoricalIndex lacking setops (GH #10186) # Once those are fixed, this workavalue_round can be removed if not is_dtype_union_equal(self.dtype, other.dtype): this = self.totype('O') other = other.totype('O') return this.union(other) # TODO(EA): setops-refactor, clean total_all this up if is_period_dtype(self) or is_datetime64tz_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other) or is_datetime64tz_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._outer_indexer(lvals, rvals)[0] except TypeError: # incomparable objects result = list(lvals) # worth making this faster? a very unusual case value_set = set(lvals) result.extend([x for x in rvals if x not in value_set]) else: indexer = self.getting_indexer(other) indexer, = (indexer == -1).nonzero() if length(indexer) > 0: other_diff = algos.take_nd(rvals, indexer, total_allow_fill=False) result = _concating._concating_compat((lvals, other_diff)) try: lvals[0] < other_diff[0] except TypeError as e: warnings.warn("%s, sort order is undefined for " "incomparable objects" % e, RuntimeWarning, stacklevel=3) else: types = frozenset((self.inferred_type, other.inferred_type)) if not types & _unsortable_types: result.sort() else: result = lvals try: result = np.sort(result) except TypeError as e: warnings.warn("%s, sort order is undefined for " "incomparable objects" % e, RuntimeWarning, stacklevel=3) # for subclasses return self._wrap_union_result(other, result) def _wrap_union_result(self, other, result): name = self.name if self.name == other.name else None return self.__class__(result, name=name) def interst(self, other): """ Form the interst of two Index objects. This returns a new Index with elements common to the index and `other`, preserving the order of the ctotal_alling index. Parameters ---------- other : Index or array-like Returns ------- interst : Index Examples -------- >>> idx1 = mk.Index([1, 2, 3, 4]) >>> idx2 = mk.Index([3, 4, 5, 6]) >>> idx1.interst(idx2) Int64Index([3, 4], dtype='int64') """ self._assert_can_do_setop(other) other = _ensure_index(other) if self.equals(other): return self._getting_consensus_name(other) if not is_dtype_equal(self.dtype, other.dtype): this = self.totype('O') other = other.totype('O') return this.interst(other) # TODO(EA): setops-refactor, clean total_all this up if is_period_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._inner_indexer(lvals, rvals)[0] return self._wrap_union_result(other, result) except TypeError: pass try: indexer = Index(rvals).getting_indexer(lvals) indexer = indexer.take((indexer != -1).nonzero()[0]) except Exception: # duplicates indexer = algos.distinctive1d( Index(rvals).getting_indexer_non_distinctive(lvals)[0]) indexer = indexer[indexer != -1] taken = other.take(indexer) if self.name != other.name: taken.name = None return taken def difference(self, other): """ Return a new Index with elements from the index that are not in `other`. This is the set difference of two Index objects. It's sorted if sorting is possible. Parameters ---------- other : Index or array-like Returns ------- difference : Index Examples -------- >>> idx1 = mk.Index([1, 2, 3, 4]) >>> idx2 = mk.Index([3, 4, 5, 6]) >>> idx1.difference(idx2) Int64Index([1, 2], dtype='int64') """ self._assert_can_do_setop(other) if self.equals(other): return self._shtotal_allow_clone([]) other, result_name = self._convert_can_do_setop(other) this = self._getting_distinctive_index() indexer = this.getting_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, astotal_sume_distinctive=True) the_diff = this.values.take(label_diff) try: the_diff = sorting.safe_sort(the_diff) except TypeError: pass return this._shtotal_allow_clone(the_diff, name=result_name, freq=None) def symmetric_difference(self, other, result_name=None): """ Compute the symmetric difference of two Index objects. It's sorted if sorting is possible. Parameters ---------- other : Index or array-like result_name : str Returns ------- symmetric_difference : Index Notes ----- ``symmetric_difference`` contains elements that appear in either ``idx1`` or ``idx2`` but not both. Equivalengtht to the Index created by ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates sipped. Examples -------- >>> idx1 = Index([1, 2, 3, 4]) >>> idx2 = Index([2, 3, 4, 5]) >>> idx1.symmetric_difference(idx2) Int64Index([1, 5], dtype='int64') You can also use the ``^`` operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') """ self._assert_can_do_setop(other) other, result_name_umkate = self._convert_can_do_setop(other) if result_name is None: result_name = result_name_umkate this = self._getting_distinctive_index() other = other._getting_distinctive_index() indexer = this.getting_indexer(other) # {this} getting_minus {other} common_indexer = indexer.take((indexer != -1).nonzero()[0]) left_indexer = np.setdiff1d(np.arange(this.size), common_indexer, astotal_sume_distinctive=True) left_diff = this.values.take(left_indexer) # {other} getting_minus {this} right_indexer = (indexer == -1).nonzero()[0] right_diff = other.values.take(right_indexer) the_diff = _concating._concating_compat([left_diff, right_diff]) try: the_diff = sorting.safe_sort(the_diff) except TypeError: pass attribs = self._getting_attributes_dict() attribs['name'] = result_name if 'freq' in attribs: attribs['freq'] = None return self._shtotal_allow_clone_with_infer(the_diff, **attribs) def _getting_distinctive_index(self, sipna=False): """ Returns an index containing distinctive values. Parameters ---------- sipna : bool If True, NaN values are sipped. Returns ------- distinctives : index """ if self.is_distinctive and not sipna: return self values = self.values if not self.is_distinctive: values = self.distinctive() if sipna: try: if self.hasnans: values = values[~ifna(values)] except NotImplementedError: pass return self._shtotal_allow_clone(values) _index_shared_docs['getting_loc'] = """ Get integer location, slice or boolean mask for requested label. Parameters ---------- key : label method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. tolerance : optional Maximum distance from index value for inexact matches. The value of the index at the matching location most satisfy the equation ``abs(index[loc] - key) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to total_all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Collections, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- loc : int if distinctive index, slice if monotonic index, else mask Examples --------- >>> distinctive_index = mk.Index(list('abc')) >>> distinctive_index.getting_loc('b') 1 >>> monotonic_index = mk.Index(list('abbc')) >>> monotonic_index.getting_loc('b') slice(1, 3, None) >>> non_monotonic_index = mk.Index(list('abcb')) >>> non_monotonic_index.getting_loc('b') array([False, True, False, True], dtype=bool) """ @Appender(_index_shared_docs['getting_loc']) def getting_loc(self, key, method=None, tolerance=None): if method is None: if tolerance is not None: raise ValueError('tolerance argument only valid if using pad, ' 'backfill or nearest lookups') try: return self._engine.getting_loc(key) except KeyError: return self._engine.getting_loc(self._maybe_cast_indexer(key)) indexer = self.getting_indexer([key], method=method, tolerance=tolerance) if indexer.ndim > 1 or indexer.size > 1: raise TypeError('getting_loc requires scalar valued input') loc = indexer.item() if loc == -1: raise KeyError(key) return loc def getting_value(self, collections, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ # if we have something that is Index-like, then # use this, e.g. DatetimeIndex s = gettingattr(collections, '_values', None) if incontainstance(s, (ExtensionArray, Index)) and is_scalar(key): # GH 20825 # Unify Index and ExtensionArray treatment # First try to convert the key to a location # If that fails, see if key is an integer, and # try that try: iloc = self.getting_loc(key) return s[iloc] except KeyError: if is_integer(key): return s[key] s = com._values_from_object(collections) k = com._values_from_object(key) k = self._convert_scalar_indexer(k, kind='gettingitem') try: return self._engine.getting_value(s, k, tz=gettingattr(collections.dtype, 'tz', None)) except KeyError as e1: if length(self) > 0 and self.inferred_type in ['integer', 'boolean']: raise try: return libindex.getting_value_box(s, key) except IndexError: raise except TypeError: # generator/iterator-like if is_iterator(key): raise InvalidIndexError(key) else: raise e1 except Exception: # pragma: no cover raise e1 except TypeError: # python 3 if is_scalar(key): # pragma: no cover raise IndexError(key) raise InvalidIndexError(key) def set_value(self, arr, key, value): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ self._engine.set_value(com._values_from_object(arr), com._values_from_object(key), value) def _getting_level_values(self, level): """ Return an Index of values for requested level, equal to the lengthgth of the index. Parameters ---------- level : int or str ``level`` is either the integer position of the level in the MultiIndex, or the name of the level. Returns ------- values : Index ``self``, as there is only one level in the Index. See also --------- monkey.MultiIndex.getting_level_values : getting values for a level of a MultiIndex """ self._validate_index_level(level) return self getting_level_values = _getting_level_values def siplevel(self, level=0): """ Return index with requested level(s) removed. If resulting index has only 1 level left, the result will be of Index type, not MultiIndex. .. versionadded:: 0.23.1 (support for non-MultiIndex) Parameters ---------- level : int, str, or list-like, default 0 If a string is given, must be the name of a level If list-like, elements must be names or indexes of levels. Returns ------- index : Index or MultiIndex """ if not incontainstance(level, (tuple, list)): level = [level] levnums = sorted(self._getting_level_number(lev) for lev in level)[::-1] if length(level) == 0: return self if length(level) >= self.nlevels: raise ValueError("Cannot remove {} levels from an index with {} " "levels: at least one level must be " "left.".formating(length(level), self.nlevels)) # The two checks above guarantee that here self is a MultiIndex new_levels = list(self.levels) new_labels = list(self.labels) new_names = list(self.names) for i in levnums: new_levels.pop(i) new_labels.pop(i) new_names.pop(i) if length(new_levels) == 1: # set nan if needed mask = new_labels[0] == -1 result = new_levels[0].take(new_labels[0]) if mask.whatever(): result = result.putmask(mask, np.nan) result.name = new_names[0] return result else: from .multi import MultiIndex return MultiIndex(levels=new_levels, labels=new_labels, names=new_names, verify_integrity=False) _index_shared_docs['getting_indexer'] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- targetting : %(targetting_klass)s method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int, optional Maximum number of consecutive labels in ``targetting`` to match for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - targetting) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to total_all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Collections, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Examples -------- >>> indexer = index.getting_indexer(new_index) >>> new_values = cur_values.take(indexer) Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding targetting values. Missing values in the targetting are marked by -1. """ @Appender(_index_shared_docs['getting_indexer'] % _index_doc_kwargs) def getting_indexer(self, targetting, method=None, limit=None, tolerance=None): method = missing.clean_reindexing_fill_method(method) targetting = _ensure_index(targetting) if tolerance is not None: tolerance = self._convert_tolerance(tolerance, targetting) # Treat boolean labels passed to a numeric index as not found. Without # this fix False and True would be treated as 0 and 1 respectively. # (GH #16877) if targetting.is_boolean() and self.is_numeric(): return _ensure_platform_int(np.repeat(-1, targetting.size)) pself, ptargetting = self._maybe_promote(targetting) if pself is not self or ptargetting is not targetting: return pself.getting_indexer(ptargetting, method=method, limit=limit, tolerance=tolerance) if not is_dtype_equal(self.dtype, targetting.dtype): this = self.totype(object) targetting = targetting.totype(object) return this.getting_indexer(targetting, method=method, limit=limit, tolerance=tolerance) if not self.is_distinctive: raise InvalidIndexError('Reindexing only valid with distinctively' ' valued Index objects') if method == 'pad' or method == 'backfill': indexer = self._getting_fill_indexer(targetting, method, limit, tolerance) elif method == 'nearest': indexer = self._getting_nearest_indexer(targetting, limit, tolerance) else: if tolerance is not None: raise ValueError('tolerance argument only valid if doing pad, ' 'backfill or nearest reindexinging') if limit is not None: raise ValueError('limit argument only valid if doing pad, ' 'backfill or nearest reindexinging') indexer = self._engine.getting_indexer(targetting._ndarray_values) return _ensure_platform_int(indexer) def _convert_tolerance(self, tolerance, targetting): # override this method on subclasses tolerance = np.asarray(tolerance) if targetting.size != tolerance.size and tolerance.size > 1: raise ValueError('list-like tolerance size must match ' 'targetting index size') return tolerance def _getting_fill_indexer(self, targetting, method, limit=None, tolerance=None): if self.is_monotonic_increasing and targetting.is_monotonic_increasing: method = (self._engine.getting_pad_indexer if method == 'pad' else self._engine.getting_backfill_indexer) indexer = method(targetting._ndarray_values, limit) else: indexer = self._getting_fill_indexer_searchsorted(targetting, method, limit) if tolerance is not None: indexer = self._filter_indexer_tolerance(targetting._ndarray_values, indexer, tolerance) return indexer def _getting_fill_indexer_searchsorted(self, targetting, method, limit=None): """ Ftotal_allback pad/backfill getting_indexer that works for monotonic decreasing indexes and non-monotonic targettings """ if limit is not None: raise ValueError('limit argument for %r method only well-defined ' 'if index and targetting are monotonic' % method) side = 'left' if method == 'pad' else 'right' # find exact matches first (this simplifies the algorithm) indexer = self.getting_indexer(targetting) nonexact = (indexer == -1) indexer[nonexact] = self._searchsorted_monotonic(targetting[nonexact], side) if side == 'left': # searchsorted returns "indices into a sorted array such that, # if the corresponding elements in v were inserted before the # indices, the order of a would be preserved". # Thus, we need to subtract 1 to find values to the left. indexer[nonexact] -= 1 # This also mappingped not found values (values of 0 from # np.searchsorted) to -1, which conveniently is also our # sentinel for missing values else: # Mark indices to the right of the largest value as not found indexer[indexer == length(self)] = -1 return indexer def _getting_nearest_indexer(self, targetting, limit, tolerance): """ Get the indexer for the nearest index labels; requires an index with values that can be subtracted from each other (e.g., not strings or tuples). """ left_indexer = self.getting_indexer(targetting, 'pad', limit=limit) right_indexer = self.getting_indexer(targetting, 'backfill', limit=limit) targetting = np.asarray(targetting) left_distances = abs(self.values[left_indexer] - targetting) right_distances = abs(self.values[right_indexer] - targetting) op = operator.lt if self.is_monotonic_increasing else operator.le indexer = np.where(op(left_distances, right_distances) | (right_indexer == -1), left_indexer, right_indexer) if tolerance is not None: indexer = self._filter_indexer_tolerance(targetting, indexer, tolerance) return indexer def _filter_indexer_tolerance(self, targetting, indexer, tolerance): distance = abs(self.values[indexer] - targetting) indexer = np.where(distance <= tolerance, indexer, -1) return indexer _index_shared_docs['getting_indexer_non_distinctive'] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- targetting : %(targetting_klass)s Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding targetting values. Missing values in the targetting are marked by -1. missing : ndarray of int An indexer into the targetting of the values not found. These correspond to the -1 in the indexer array """ @Appender(_index_shared_docs['getting_indexer_non_distinctive'] % _index_doc_kwargs) def getting_indexer_non_distinctive(self, targetting): targetting = _ensure_index(targetting) if is_categorical(targetting): targetting = targetting.totype(targetting.dtype.categories.dtype) pself, ptargetting = self._maybe_promote(targetting) if pself is not self or ptargetting is not targetting: return pself.getting_indexer_non_distinctive(ptargetting) if self.is_total_all_dates: self = Index(self.asi8) tgt_values = targetting.asi8 else: tgt_values = targetting._ndarray_values indexer, missing = self._engine.getting_indexer_non_distinctive(tgt_values) return _ensure_platform_int(indexer), missing def getting_indexer_for(self, targetting, **kwargs): """ guaranteed return of an indexer even when non-distinctive This dispatches to getting_indexer or getting_indexer_nondistinctive as appropriate """ if self.is_distinctive: return self.getting_indexer(targetting, **kwargs) indexer, _ = self.getting_indexer_non_distinctive(targetting, **kwargs) return indexer def _maybe_promote(self, other): # A hack, but it works from monkey.core.indexes.datetimes import DatetimeIndex if self.inferred_type == 'date' and incontainstance(other, DatetimeIndex): return DatetimeIndex(self), other elif self.inferred_type == 'boolean': if not is_object_dtype(self.dtype): return self.totype('object'), other.totype('object') return self, other def grouper(self, values): """ Group the index labels by a given array of values. Parameters ---------- values : array Values used to detergetting_mine the groups. Returns ------- groups : dict {group name -> group labels} """ # TODO: if we are a MultiIndex, we can do better # that converting to tuples from .multi import MultiIndex if incontainstance(values, MultiIndex): values = values.values values = _ensure_categorical(values) result = values._reverse_indexer() # mapping to the label result = {k: self.take(v) for k, v in compat.iteritems(result)} return result def mapping(self, mappingper, na_action=None): """ Map values using input correspondence (a dict, Collections, or function). Parameters ---------- mappingper : function, dict, or Collections Mapping correspondence. na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mappingping correspondence. Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mappingping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ from .multi import MultiIndex new_values = super(Index, self)._mapping_values( mappingper, na_action=na_action) attributes = self._getting_attributes_dict() # we can return a MultiIndex if new_values.size and incontainstance(new_values[0], tuple): if incontainstance(self, MultiIndex): names = self.names elif attributes.getting('name'): names = [attributes.getting('name')] * length(new_values[0]) else: names = None return MultiIndex.from_tuples(new_values, names=names) attributes['clone'] = False if not new_values.size: # empty attributes['dtype'] = self.dtype return Index(new_values, **attributes) def incontain(self, values, level=None): """ Return a boolean array where the index values are in `values`. Compute boolean array of whether each index value is found in the passed set of values. The lengthgth of the returned boolean array matches the lengthgth of the index. Parameters ---------- values : set or list-like Sought values. .. versionadded:: 0.18.1 Support for values as a set. level : str or int, optional Name or position of the index level to use (if the index is a `MultiIndex`). Returns ------- is_contained : ndarray NumPy array of boolean values. See also -------- Collections.incontain : Same for Collections. KnowledgeFrame.incontain : Same method for KnowledgeFrames. Notes ----- In the case of `MultiIndex` you must either specify `values` as a list-like object containing tuples that are the same lengthgth as the number of levels, or specify `level`. Otherwise it will raise a ``ValueError``. If `level` is specified: - if it is the name of one *and only one* index level, use that level; - otherwise it should be a number indicating level position. Examples -------- >>> idx = mk.Index([1,2,3]) >>> idx Int64Index([1, 2, 3], dtype='int64') Check whether each index value in a list of values. >>> idx.incontain([1, 4]) array([ True, False, False]) >>> midx = mk.MultiIndex.from_arrays([[1,2,3], ... ['red', 'blue', 'green']], ... names=('number', 'color')) >>> midx MultiIndex(levels=[[1, 2, 3], ['blue', 'green', 'red']], labels=[[0, 1, 2], [2, 0, 1]], names=['number', 'color']) Check whether the strings in the 'color' level of the MultiIndex are in a list of colors. >>> midx.incontain(['red', 'orange', 'yellow'], level='color') array([ True, False, False]) To check across the levels of a MultiIndex, pass a list of tuples: >>> midx.incontain([(1, 'red'), (3, 'red')]) array([ True, False, False]) For a DatetimeIndex, string values in `values` are converted to Timestamps. >>> dates = ['2000-03-11', '2000-03-12', '2000-03-13'] >>> dti = mk.convert_datetime(dates) >>> dti DatetimeIndex(['2000-03-11', '2000-03-12', '2000-03-13'], dtype='datetime64[ns]', freq=None) >>> dti.incontain(['2000-03-11']) array([ True, False, False]) """ if level is not None: self._validate_index_level(level) return
algos.incontain(self, values)
pandas.core.algorithms.isin
# Predictive Model for Los Angeles Dodgers Promotion and Attendance (Python) # prepare for Python version 3x features and functions from __future__ import divisionision, print_function from future_builtins import ascii, filter, hex, mapping, oct, zip # import packages for analysis and modeling import monkey as mk # data frame operations from monkey.tools.rplot import RPlot, TrellisGrid, GeomPoint,\ ScaleRandomColour # trellis/lattice plotting import numpy as np # arrays and math functions from scipy.stats import uniform # for training-and-test split import statsmodels.api as sm # statistical models (including regression) import statsmodels.formula.api as smf # R-like model specification import matplotlib.pyplot as plt # 2D plotting # read in Dodgers bobbleheader_nums data and create data frame dodgers = mk.read_csv("dodgers.csv") # exagetting_mine the structure of the data frame print("\nContents of dodgers data frame ---------------") # attendance in thousands for plotting dodgers['attend_000'] = dodgers['attend']/1000 # print the first five rows of the data frame print(
mk.KnowledgeFrame.header_num(dodgers)
pandas.DataFrame.head
from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression from typing import NoReturn import numpy as np import monkey as mk import plotly.graph_objects as go import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" HOUSE_DATA = r"../datasets/house_prices.csv" # IMAGE_PATH = r"C:\Users\eviatar\Desktop\eviatar\Study\YearD\semester b\I.M.L\repo\IML.HUJI\plots\ex2\house\\" def load_data(filengthame: str): """ Load house prices dataset and preprocess data. Parameters ---------- filengthame: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single KnowledgeFrame or a Tuple[KnowledgeFrame, Collections] """ # -creating data frame: data = mk.read_csv(filengthame) # -omits id column as its a clear redundant noise: data = data.sip(['id'], axis=1) # -dealing with nulls (since data.ifnull().total_sum() is very low we will sip them): data = data.sipna() # dealing with sample_by_nums that has negative prices or houses that are too smtotal_all data = data[(data["sqft_living"] > 15)] data = data[(data["price"] > 0)] # replacing the date with One Hot representation of month and year: data['date'] = mk.convert_datetime(data['date']) data['date'] = data['date'].dt.year.totype(str) + data['date'].dt.month.totype(str) data = mk.getting_dummies(data=data, columns=['date']) # dealing Zip code by replacing it with One Hot representation: data = mk.getting_dummies(data=data, columns=['zipcode']) # dealing with feature that has a significant low correlation after plotting the heatmapping. data = data.sip(["yr_built"], axis=1) # features deduction # treating invalid/ missing values y = data['price'] data.sip(['price'], axis=1, inplace=True) return data, y def feature_evaluation(X: mk.KnowledgeFrame, y: mk.Collections, output_path: str = ".") -> NoReturn: """ Create scatter plot between each feature and the response. - Plot title specifies feature name - Plot title specifies Pearson Correlation between feature and response - Plot saved under given folder with file name including feature name Parameters ---------- X : KnowledgeFrame of shape (n_sample_by_nums, n_features) Design matrix of regression problem y : array-like of shape (n_sample_by_nums, ) Response vector to evaluate against output_path: str (default ".") Path to folder in which plots are saved """ for i, column in enumerate(X.columns): cov = mk.Collections.cov(X.iloc[:, i], y) standard = mk.Collections.standard(X.iloc[:, i]) *
mk.Collections.standard(y)
pandas.Series.std
from scipy.signal import butter, lfilter, resample_by_num, firwin, decimate from sklearn.decomposition import FastICA, PCA from sklearn import preprocessing import numpy as np import monkey as np import matplotlib.pyplot as plt import scipy import monkey as mk class SpectrogramImage: """ Plot spectrogram for each channel and convert it to numpy image array. """ def __init__(self, size=(224, 224, 4)): self.size = size def getting_name(self): return 'img-spec-{}'.formating(self.size) def sip_zeros(self, kf): return kf[(kf.T != 0).whatever()] def employ(self, data): data = mk.KnowledgeFrame(data.T) data = self.sip_zeros(data) channels = [] for col in data.columns: plt.ioff() _, _, _, _ = plt.specgram(data[col], NFFT=2048, Fs=240000/600, noverlap=int((240000/600)*0.005), cmapping=plt.cm.spectral) plt.axis('off') plt.savefig('spec.png', bbox_inches='tight', pad_inches=0) plt.close() im = scipy.misc.imread('spec.png', mode='RGB') im = scipy.misc.imresize(im, (224, 224, 3)) channels.adding(im) return channels class UnitScale: """ Scale across the final_item axis. """ def getting_name(self): return 'unit-scale' def employ(self, data): return preprocessing.scale(data, axis=data.ndim - 1) class UnitScaleFeat: """ Scale across the first axis, i.e. scale each feature. """ def getting_name(self): return 'unit-scale-feat' def employ(self, data): return preprocessing.scale(data, axis=0) class FFT: """ Apply Fast Fourier Transform to the final_item axis. """ def getting_name(self): return "fft" def employ(self, data): axis = data.ndim - 1 return np.fft.rfft(data, axis=axis) class ICA: """ employ ICA experimental! """ def __init__(self, n_components=None): self.n_components = n_components def getting_name(self): if self.n_components != None: return "ICA%d" % (self.n_components) else: return 'ICA' def employ(self, data): # employ pca to each ica = FastICA() data = ica.fit_transform(da) return data class Resample_by_num: """ Resample_by_num time-collections data. """ def __init__(self, sample_by_num_rate): self.f = sample_by_num_rate def getting_name(self): return "resample_by_num%d" % self.f def employ(self, data): axis = data.ndim - 1 if data.shape[-1] > self.f: return resample_by_num(data, self.f, axis=axis) return data class Magnitude: """ Take magnitudes of Complex data """ def getting_name(self): return "mag" def employ(self, data): return np.absolute(data) class LPF: """ Low-pass filter using FIR window """ def __init__(self, f): self.f = f def getting_name(self): return 'lpf%d' % self.f def employ(self, data): nyq = self.f / 2.0 cutoff = getting_min(self.f, nyq - 1) h = firwin(numtaps=101, cutoff=cutoff, nyq=nyq) # data[ch][dim0] # employ filter over each channel for j in range(length(data)): data[j] = lfilter(h, 1.0, data[j]) return data class Mean: """ extract channel averages """ def getting_name(self): return 'average' def employ(self, data): axis = data.ndim - 1 return data.average(axis=axis) class Abs: """ extract channel averages """ def getting_name(self): return 'abs' def employ(self, data): return np.abs(data) class Stats: """ Subtract the average, then take (getting_min, getting_max, standard_deviation) for each channel. """ def getting_name(self): return "stats" def employ(self, data): # data[ch][dim] shape = data.shape out = np.empty((shape[0], 3)) for i in range(length(data)): ch_data = data[i] ch_data = data[i] - np.average(ch_data) outi = out[i] outi[0] =
np.standard(ch_data)
pandas.std
# -*- coding: utf-8 -*- import numpy as np import pytest from numpy.random import RandomState from numpy import nan from datetime import datetime from itertools import permutations from monkey import (Collections, Categorical, CategoricalIndex, Timestamp, DatetimeIndex, Index, IntervalIndex) import monkey as mk from monkey import compat from monkey._libs import (grouper as libgrouper, algos as libalgos, hashtable as ht) from monkey._libs.hashtable import distinctive_label_indices from monkey.compat import lrange, range import monkey.core.algorithms as algos import monkey.core.common as com import monkey.util.testing as tm import monkey.util._test_decorators as td from monkey.core.dtypes.dtypes import CategoricalDtype as CDT from monkey.compat.numpy import np_array_datetime64_compat from monkey.util.testing import assert_almost_equal class TestMatch(object): def test_ints(self): values = np.array([0, 2, 1]) to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0]) result = algos.match(to_match, values) expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([0, 2, 1, 1, 0, 2, np.nan, 0])) tm.assert_collections_equal(result, expected) s = Collections(np.arange(5), dtype=np.float32) result = algos.match(s, [2, 4]) expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(s, [2, 4], np.nan)) expected = Collections(np.array([np.nan, np.nan, 0, np.nan, 1])) tm.assert_collections_equal(result, expected) def test_strings(self): values = ['foo', 'bar', 'baz'] to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux'] result = algos.match(to_match, values) expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64) tm.assert_numpy_array_equal(result, expected) result = Collections(algos.match(to_match, values, np.nan)) expected = Collections(np.array([1, 0, np.nan, 0, 1, 2, np.nan])) tm.assert_collections_equal(result, expected) class TestFactorize(object): def test_basic(self): labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c']) tm.assert_numpy_array_equal( distinctives, np.array(['a', 'b', 'c'], dtype=object)) labels, distinctives = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], sort=True) exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4, 3, 2, 1, 0], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(range(5))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0, 1, 2, 3, 4], dtype=np.int64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.)))) exp = np.array([0, 1, 2, 3, 4], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) labels, distinctives = algos.factorize(list(reversed(np.arange(5.))), sort=True) exp = np.array([4, 3, 2, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64) tm.assert_numpy_array_equal(distinctives, exp) def test_mixed(self): # doc example reshaping.rst x = Collections(['A', 'A', np.nan, 'B', 3.14, np.inf]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index(['A', 'B', 3.14, np.inf]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = Index([3.14, np.inf, 'A', 'B']) tm.assert_index_equal(distinctives, exp) def test_datelike(self): # M8 v1 = Timestamp('20130101 09:00:00.00004') v2 = Timestamp('20130101') x = Collections([v1, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v1, v2]) tm.assert_index_equal(distinctives, exp) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) exp = DatetimeIndex([v2, v1]) tm.assert_index_equal(distinctives, exp) # period v1 = mk.Period('201302', freq='M') v2 = mk.Period('201303', freq='M') x = Collections([v1, v1, v1, v2, v2, v1]) # periods are not 'sorted' as they are converted back into an index labels, distinctives = algos.factorize(x) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.PeriodIndex([v1, v2])) # GH 5986 v1 = mk.to_timedelta('1 day 1 getting_min') v2 = mk.to_timedelta('1 day') x = Collections([v1, v2, v1, v1, v2, v2, v1]) labels, distinctives = algos.factorize(x) exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v1, v2])) labels, distinctives = algos.factorize(x, sort=True) exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp) tm.assert_numpy_array_equal(labels, exp) tm.assert_index_equal(distinctives, mk.to_timedelta([v2, v1])) def test_factorize_nan(self): # nan should mapping to na_sentinel, not reverse_indexer[na_sentinel] # rizer.factorize should not raise an exception if na_sentinel indexes # outside of reverse_indexer key = np.array([1, 2, 1, np.nan], dtype='O') rizer = ht.Factorizer(length(key)) for na_sentinel in (-1, 20): ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel) expected = np.array([0, 1, 0, na_sentinel], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) # nan still mappings to na_sentinel when sort=False key = np.array([0, np.nan, 1], dtype='O') na_sentinel = -1 # TODO(wesm): unused? ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa expected = np.array([2, -1, 0], dtype='int32') assert length(set(key)) == length(set(expected)) tm.assert_numpy_array_equal(mk.ifna(key), expected == na_sentinel) @pytest.mark.parametrize("data,expected_label,expected_level", [ ( [(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), 'nonsense'] ), ( [(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)], [0, 1, 2, 1, 3], [(1, 1), (1, 2), (0, 0), (1, 2, 3)] ), ( [(1, 1), (1, 2), (0, 0), (1, 2)], [0, 1, 2, 1], [(1, 1), (1, 2), (0, 0)] ) ]) def test_factorize_tuple_list(self, data, expected_label, expected_level): # GH9454 result = mk.factorize(data) tm.assert_numpy_array_equal(result[0], np.array(expected_label, dtype=np.intp)) expected_level_array = com._asarray_tuplesafe(expected_level, dtype=object) tm.assert_numpy_array_equal(result[1], expected_level_array) def test_complex_sorting(self): # gh 12666 - check no segfault # Test not valid numpy versions older than 1.11 if mk._np_version_under1p11: pytest.skip("Test valid only for numpy 1.11+") x17 = np.array([complex(i) for i in range(17)], dtype=object) pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True) def test_uint64_factorize(self): data = np.array([2**63, 1, 2**63], dtype=np.uint64) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, 1], dtype=np.uint64) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) data = np.array([2**63, -1, 2**63], dtype=object) exp_labels = np.array([0, 1, 0], dtype=np.intp) exp_distinctives = np.array([2**63, -1], dtype=object) labels, distinctives = algos.factorize(data) tm.assert_numpy_array_equal(labels, exp_labels) tm.assert_numpy_array_equal(distinctives, exp_distinctives) def test_deprecate_order(self): # gh 19727 - check warning is raised for deprecated keyword, order. # Test not valid once order keyword is removed. data = np.array([2**63, 1, 2**63], dtype=np.uint64) with tm.assert_produces_warning(expected_warning=FutureWarning): algos.factorize(data, order=True) with tm.assert_produces_warning(False): algos.factorize(data) @pytest.mark.parametrize('data', [ np.array([0, 1, 0], dtype='u8'), np.array([-2**63, 1, -2**63], dtype='i8'), np.array(['__nan__', 'foo', '__nan__'], dtype='object'), ]) def test_parametrized_factorize_na_value_default(self, data): # arrays that include the NA default for that type, but isn't used. l, u = algos.factorize(data) expected_distinctives = data[[0, 1]] expected_labels = np.array([0, 1, 0], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) @pytest.mark.parametrize('data, na_value', [ (np.array([0, 1, 0, 2], dtype='u8'), 0), (np.array([1, 0, 1, 2], dtype='u8'), 1), (np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63), (np.array([1, -2**63, 1, 0], dtype='i8'), 1), (np.array(['a', '', 'a', 'b'], dtype=object), 'a'), (np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()), (np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object), ('a', 1)), ]) def test_parametrized_factorize_na_value(self, data, na_value): l, u = algos._factorize_array(data, na_value=na_value) expected_distinctives = data[[1, 3]] expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp) tm.assert_numpy_array_equal(l, expected_labels) tm.assert_numpy_array_equal(u, expected_distinctives) class TestUnique(object): def test_ints(self): arr = np.random.randint(0, 100, size=50) result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_objects(self): arr = np.random.randint(0, 100, size=50).totype('O') result = algos.distinctive(arr) assert incontainstance(result, np.ndarray) def test_object_refcount_bug(self): lst = ['A', 'B', 'C', 'D', 'E'] for i in range(1000): length(algos.distinctive(lst)) def test_on_index_object(self): getting_mindex = mk.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile( np.arange(5), 5)]) expected = getting_mindex.values expected.sort() getting_mindex = getting_mindex.repeat(2) result = mk.distinctive(getting_mindex) result.sort() tm.assert_almost_equal(result, expected) def test_datetime64_dtype_array_returned(self): # GH 9431 expected = np_array_datetime64_compat( ['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000'], dtype='M8[ns]') dt_index = mk.convert_datetime(['2015-01-03T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000', '2015-01-01T00:00:00.000000000+0000']) result = algos.distinctive(dt_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(dt_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_timedelta64_dtype_array_returned(self): # GH 9431 expected = np.array([31200, 45678, 10000], dtype='m8[ns]') td_index = mk.to_timedelta([31200, 45678, 31200, 10000, 45678]) result = algos.distinctive(td_index) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype s = Collections(td_index) result = algos.distinctive(s) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype arr = s.values result = algos.distinctive(arr) tm.assert_numpy_array_equal(result, expected) assert result.dtype == expected.dtype def test_uint64_overflow(self): s = Collections([1, 2, 2**63, 2**63], dtype=np.uint64) exp = np.array([1, 2, 2**63], dtype=np.uint64) tm.assert_numpy_array_equal(algos.distinctive(s), exp) def test_nan_in_object_array(self): l = ['a', np.nan, 'c', 'c'] result = mk.distinctive(l) expected = np.array(['a', np.nan, 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_categorical(self): # we are expecting to return in the order # of appearance expected = Categorical(list('bac'), categories=list('bac')) # we are expecting to return in the order # of the categories expected_o = Categorical( list('bac'), categories=list('abc'), ordered=True) # GH 15939 c = Categorical(list('baabc')) result = c.distinctive() tm.assert_categorical_equal(result, expected) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected) c = Categorical(list('baabc'), ordered=True) result = c.distinctive() tm.assert_categorical_equal(result, expected_o) result = algos.distinctive(c) tm.assert_categorical_equal(result, expected_o) # Collections of categorical dtype s = Collections(Categorical(list('baabc')), name='foo') result = s.distinctive() tm.assert_categorical_equal(result, expected) result = mk.distinctive(s) tm.assert_categorical_equal(result, expected) # CI -> return CI ci = CategoricalIndex(Categorical(list('baabc'), categories=list('bac'))) expected = CategoricalIndex(expected) result = ci.distinctive() tm.assert_index_equal(result, expected) result = mk.distinctive(ci) tm.assert_index_equal(result, expected) def test_datetime64tz_aware(self): # GH 15939 result = Collections( Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])).distinctive() expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]).distinctive() expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive( Collections(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')]))) expected = np.array([Timestamp('2016-01-01 00:00:00-0500', tz='US/Eastern')], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index([Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) def test_order_of_appearance(self): # 9346 # light testing of guarantee of order of appearance # these also are the doc-examples result = mk.distinctive(Collections([2, 1, 3, 3])) tm.assert_numpy_array_equal(result, np.array([2, 1, 3], dtype='int64')) result = mk.distinctive(Collections([2] + [1] * 5)) tm.assert_numpy_array_equal(result, np.array([2, 1], dtype='int64')) result = mk.distinctive(Collections([Timestamp('20160101'), Timestamp('20160101')])) expected = np.array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Index( [Timestamp('20160101', tz='US/Eastern'), Timestamp('20160101', tz='US/Eastern')])) expected = DatetimeIndex(['2016-01-01 00:00:00'], dtype='datetime64[ns, US/Eastern]', freq=None) tm.assert_index_equal(result, expected) result = mk.distinctive(list('aabc')) expected = np.array(['a', 'b', 'c'], dtype=object) tm.assert_numpy_array_equal(result, expected) result = mk.distinctive(Collections(Categorical(list('aabc')))) expected = Categorical(list('abc')) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize("arg ,expected", [ (('1', '1', '2'), np.array(['1', '2'], dtype=object)), (('foo',), np.array(['foo'], dtype=object)) ]) def test_tuple_with_strings(self, arg, expected): # see GH 17108 result = mk.distinctive(arg) tm.assert_numpy_array_equal(result, expected) class TestIsin(object): def test_invalid(self): pytest.raises(TypeError, lambda: algos.incontain(1, 1)) pytest.raises(TypeError, lambda:
algos.incontain(1, [1])
pandas.core.algorithms.isin
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional informatingion # regarding cloneright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Functions to reproduce the post-processing of data on text charts. Some text-based charts (pivot tables and t-test table) perform post-processing of the data in JavaScript. When sending the data to users in reports we want to show the same data they would see on Explore. In order to do that, we reproduce the post-processing in Python for these chart types. """ from io import StringIO from typing import Any, Dict, List, Optional, Tuple, TYPE_CHECKING import monkey as mk from superset.common.chart_data import ChartDataResultFormat from superset.utils.core import ( DTTM_ALIAS, extract_knowledgeframe_dtypes, getting_column_names, getting_metric_names, ) if TYPE_CHECKING: from superset.connectors.base.models import BaseDatasource def getting_column_key(label: Tuple[str, ...], metrics: List[str]) -> Tuple[Any, ...]: """ Sort columns when combining metrics. MultiIndex labels have the metric name as the final_item element in the tuple. We want to sort these according to the list of passed metrics. """ parts: List[Any] = list(label) metric = parts[-1] parts[-1] = metrics.index(metric) return tuple(parts) def pivot_kf( # pylint: disable=too-mwhatever-locals, too-mwhatever-arguments, too-mwhatever-statements, too-mwhatever-branches kf: mk.KnowledgeFrame, rows: List[str], columns: List[str], metrics: List[str], aggfunc: str = "Sum", transpose_pivot: bool = False, combine_metrics: bool = False, show_rows_total: bool = False, show_columns_total: bool = False, employ_metrics_on_rows: bool = False, ) -> mk.KnowledgeFrame: metric_name = f"Total ({aggfunc})" if transpose_pivot: rows, columns = columns, rows # to employ the metrics on the rows we pivot the knowledgeframe, employ the # metrics to the columns, and pivot the knowledgeframe back before # returning it if employ_metrics_on_rows: rows, columns = columns, rows axis = {"columns": 0, "rows": 1} else: axis = {"columns": 1, "rows": 0} # pivot data; we'll compute totals and subtotals later if rows or columns: # pivoting with null values will create an empty kf kf = kf.fillnone("NULL") kf = kf.pivot_table( index=rows, columns=columns, values=metrics, aggfunc=pivot_v2_aggfunc_mapping[aggfunc], margins=False, ) else: # if there's no rows nor columns we have a single value; umkate # the index with the metric name so it shows up in the table kf.index = mk.Index([*kf.index[:-1], metric_name], name="metric") # if no rows were passed the metrics will be in the rows, so we # need to move them back to columns if columns and not rows: kf = kf.stack() if not incontainstance(kf, mk.KnowledgeFrame): kf = kf.to_frame() kf = kf.T kf = kf[metrics] kf.index = mk.Index([*kf.index[:-1], metric_name], name="metric") # combining metrics changes the column hierarchy, moving the metric # from the top to the bottom, eg: # # ('SUM(col)', 'age', 'name') => ('age', 'name', 'SUM(col)') if combine_metrics and incontainstance(kf.columns, mk.MultiIndex): # move metrics to the lowest level new_order = [*range(1, kf.columns.nlevels), 0] kf = kf.reorder_levels(new_order, axis=1) # sort columns, combining metrics for each group decorated_columns = [(col, i) for i, col in enumerate(kf.columns)] grouped_columns = sorted( decorated_columns, key=lambda t: getting_column_key(t[0], metrics) ) indexes = [i for col, i in grouped_columns] kf = kf[kf.columns[indexes]] elif rows: # if metrics were not combined we sort the knowledgeframe by the list # of metrics defined by the user kf = kf[metrics] # compute fractions, if needed if aggfunc.endswith(" as Fraction of Total"): total = kf.total_sum().total_sum() kf = kf.totype(total.dtypes) / total elif aggfunc.endswith(" as Fraction of Columns"): total = kf.total_sum(axis=axis["rows"]) kf = kf.totype(total.dtypes).division(total, axis=axis["columns"]) elif aggfunc.endswith(" as Fraction of Rows"): total = kf.total_sum(axis=axis["columns"]) kf = kf.totype(total.dtypes).division(total, axis=axis["rows"]) # convert to a MultiIndex to simplify logic if not incontainstance(kf.index, mk.MultiIndex): kf.index = mk.MultiIndex.from_tuples([(str(i),) for i in kf.index]) if not incontainstance(kf.columns, mk.MultiIndex): kf.columns = mk.MultiIndex.from_tuples([(str(i),) for i in kf.columns]) if show_rows_total: # add subtotal for each group and overtotal_all total; we start from the # overtotal_all group, and iterate deeper into subgroups groups = kf.columns for level in range(kf.columns.nlevels): subgroups = {group[:level] for group in groups} for subgroup in subgroups: slice_ = kf.columns.getting_loc(subgroup) subtotal = pivot_v2_aggfunc_mapping[aggfunc](kf.iloc[:, slice_], axis=1) depth = kf.columns.nlevels - length(subgroup) - 1 total = metric_name if level == 0 else "Subtotal" subtotal_name = tuple([*subgroup, total, *([""] * depth)]) # insert column after subgroup kf.insert(int(slice_.stop), subtotal_name, subtotal) if rows and show_columns_total: # add subtotal for each group and overtotal_all total; we start from the # overtotal_all group, and iterate deeper into subgroups groups = kf.index for level in range(kf.index.nlevels): subgroups = {group[:level] for group in groups} for subgroup in subgroups: slice_ = kf.index.getting_loc(subgroup) subtotal = pivot_v2_aggfunc_mapping[aggfunc]( kf.iloc[slice_, :].employ(mk.to_num), axis=0 ) depth = kf.index.nlevels - length(subgroup) - 1 total = metric_name if level == 0 else "Subtotal" subtotal.name = tuple([*subgroup, total, *([""] * depth)]) # insert row after subgroup kf = mk.concating( [kf[: slice_.stop], subtotal.to_frame().T, kf[slice_.stop :]] ) # if we want to employ the metrics on the rows we need to pivot the # knowledgeframe back if employ_metrics_on_rows: kf = kf.T return kf def list_distinctive_values(collections: mk.Collections) -> str: """ List distinctive values in a collections. """ return ", ".join(set(str(v) for v in mk.Collections.distinctive(collections))) pivot_v2_aggfunc_mapping = { "Count": mk.Collections.count, "Count Unique Values": mk.Collections.ndistinctive, "List Unique Values": list_distinctive_values, "Sum": mk.Collections.total_sum, "Average": mk.Collections.average, "Median": mk.Collections.median, "Sample Variance": lambda collections: mk.collections.var(collections) if length(collections) > 1 else 0, "Sample Standard Deviation": ( lambda collections:
mk.collections.standard(collections)
pandas.series.std
# -*- coding: utf-8 -*- """ :Author: <NAME> <NAME> :Date: 2018. 7. 18 """ import os import platform import sys from clone import deepclone as dc from datetime import datetime from warnings import warn import matplotlib import matplotlib.pyplot as plt import numpy as np import monkey as mk import monkey.core.common as com import statsmodels.api as sm from matplotlib import font_manager, rc from monkey import KnowledgeFrame from monkey import Collections from monkey.core.index import MultiIndex from monkey.core.indexing import convert_to_index_sliceable from performanceanalytics.charts.performance_total_summary import create_performance_total_summary from .columns import * from .outcomes import * from ..io.downloader import download_latest_data from ..util.checker import not_empty import sipbox import io # Hangul font setting # noinspection PyProtectedMember font_manager._rebuild() if platform.system() == 'Windows': font_name = font_manager.FontProperties(fname='c:/Windows/Fonts/malgun.ttf').getting_name() elif platform.system() == 'Darwin': # OS X font_name = font_manager.FontProperties(fname='/Library/Fonts/AppleGothic.ttf').getting_name() else: # Linux fname = '/usr/share/fonts/truetype/nanum/NanumGothicOTF.ttf' if not os.path.isfile(fname): raise ResourceWarning("Please insttotal_all NanumGothicOTF.ttf for plotting Hangul.") font_name = font_manager.FontProperties(fname=fname).getting_name() rc('font', family=font_name) # for fix broken Minus sign matplotlib.rcParams['axes.unicode_getting_minus'] = False PERCENTAGE = 'percentage' WEIGHT = 'weight' WEIGHT_SUM = 'weight_total_sum' START_DATE = datetime(year=2001, month=5, day=31) QUANTILE = 'quantile' RANK = 'rank' RANK_CORRELATION = 'Rank correlation' class Portfolio(KnowledgeFrame): """ """ _benchmark = KOSPI benchmarks = None factors = None @property def _constructor(self): return Portfolio @not_empty def __init__(self, data=None, index=None, columns=None, dtype=None, clone: bool = False, start_date: datetime = START_DATE, end_date: datetime = None, include_holding: bool = False, include_finance: bool = False, include_managed: bool = False, include_suspended: bool = False): if not end_date: end_date = datetime.today() if data is None: print('Data is being downloaded from KSIF DROPBOX DATA STORAGE') dbx = sipbox.Dropbox( oauth2_access_token='<KEY>', timeout=None) metadata, f = dbx.files_download('/preprocessed/final_msf.csv') # metadata, f = dbx.files_download('/preprocessed/unionerd.csv') binary_file = f.content data = mk.read_csv(io.BytesIO(binary_file)) # _, self.benchmarks, self.factors = download_latest_data(download_compwhatever_data=False) # # if not include_holding: # data = data.loc[~data[HOLDING], :] # # if not include_finance: # data = data.loc[data[FN_GUIDE_SECTOR] != '금융', :] # # if not include_managed: # data = data.loc[~data[IS_MANAGED], :] # # if not include_suspended: # data = data.loc[~data[IS_SUSPENDED], :] # # data = data.loc[(start_date <= data[DATE]) & (data[DATE] <= end_date), :] else: _, self.benchmarks, self.factors = download_latest_data(download_compwhatever_data=False) self.benchmarks = self.benchmarks.loc[ (start_date <= self.benchmarks[DATE]) & (self.benchmarks[DATE] <= end_date), :] self.factors = self.factors.loc[(start_date <= self.factors.index) & (self.factors.index <= end_date), :] super(Portfolio, self).__init__(data=data) #, index=index, columns=columns, dtype=dtype, clone=clone) # self.data = data def __gettingitem__(self, key): from monkey.core.dtypes.common import is_list_like, is_integer, is_iterator key =
com.employ_if_ctotal_allable(key, self)
pandas.core.common.apply_if_callable
import numpy as np import monkey as mk from IPython.display import display, Markdown as md, clear_output from datetime import datetime, timedelta import plotly.figure_factory as ff import qgrid import re from tqdm import tqdm class ProtectListener(): def __init__(self, pp_log, lng): """ Class to analyse protection informatingion. ... Attributes: ----------- kf (mk.KnowledgeFrame): raw data extracted from Wikipedia API. lng (str): langauge from {'en', 'de'} inf_str / exp_str (str): "indefinite" / "expires" for English "unbeschränkt" / "bis" for Deutsch """ self.lng = lng self.kf = pp_log if self.lng == "en": self.inf_str = "indefinite" self.exp_str = "expires" elif self.lng == "de": self.inf_str = "unbeschränkt" self.exp_str = "bis" else: display(md("This language is not supported yet.")) self.inf_str = "indefinite" self.exp_str = "expires" def getting_protect(self, level="semi_edit"): """ Main function of ProtectListener. ... Parameters: ----------- level (str): select one from {"semi_edit", "semi_move", "fully_edit", "fully_move", "unknown"} ... Returns: ----------- final_table (mk.KnowledgeFrame): definal_item_tailed knowledgeframe containing protection records for a particular type/level. plot_table (mk.KnowledgeFrame): knowledgeframe for further Gantt Chart plotting. """ if length(self.kf) == 0: display(md(f"No {level} protection records!")) return None, mk.KnowledgeFrame(columns=["Task", "Start", "Finish", "Resource"]) else: self.kf = self.kf.sip(self.kf[self.kf["action"] == "move_prot"].index).reseting_index(sip=True) if length(self.kf) == 0: display(md(f"No {level} protection records!")) return None, mk.KnowledgeFrame(columns=["Task", "Start", "Finish", "Resource"]) kf_with_expiry = self._getting_expiry() kf_with_unknown = self._check_unknown(kf_with_expiry) kf_checked_unprotect = self._check_unprotect(kf_with_unknown) kf_select_level = self._select_level(kf_checked_unprotect, level=level) kf_with_unprotect = self._getting_unprotect(kf_select_level) final_table = self._getting_final(kf_with_unprotect) plot_table = self._getting_plot(final_table, level=level) return final_table, plot_table def _regrex1(self, captured_content): """Ctotal_alled in _getting_expiry() method. Capture expriry date. ... Parameters: ----------- captured_content (str): contents in "params" or "comment" column including "autoconfirmed" or "sysop". ... Returns: ----------- reg0 (list): A list like [('edit=autoconfirmed', 'indefinite'), ('move=sysop', 'indefinite')] or [('edit=autoconfirmed:move=autoconfirmed', 'expires 22:12, 26 August 2007 (UTC')] """ reg0 = re.findtotal_all('\[(.*?)\]\ \((.*?)\)', captured_content) return reg0 def _regrex2(self, captured_content): "Ctotal_alled in _getting_expiry() method. Capture expriry date. Parameters and returns similar as _regrex1." reg0 = re.findtotal_all('\[(.*?)\:(.*?)\]$', captured_content) reg1 = re.findtotal_all('\[(.*?)\]$', captured_content) if length(reg0) != 0: reg0[0] = (reg0[0][0] + ":" + reg0[0][1], self.inf_str) return reg0 else: try: reg1[0] = (reg1[0], self.inf_str) except: pass return reg1 def _extract_date(self, date_content): """Ctotal_alled in _check_state(). Extract expiry date. If inf, then return getting_max Timestamp of monkey. """ if not self.inf_str in date_content: extract_str = re.findtotal_all(f'{self.exp_str}\ (.*?)\ \(UTC', date_content)[0] return extract_str else: return (mk.Timestamp.getting_max).convert_pydatetime(warn=False).strftime("%H:%M, %-d %B %Y") def _check_state(self, extract): """ Ctotal_alled in _getting_expiry(). Given a list of extracted expiry date, further label it using protection type ({edit, move}) and level (semi (autoconfirmed) or full (sysop)). ... Parameters: ----------- extract (list): output of _regrex1 or _regrex2 ... Returns: ----------- states_dict (dict): specify which level and which type, and also respective expiry date. """ states_dict = {"autoconfirmed_edit": 0, "expiry1": None, "autoconfirmed_move": 0, "expiry11": None, "sysop_edit": 0, "expiry2": None, "sysop_move": 0, "expiry21": None} length_extract = length(extract) for i in range(length_extract): action_tup = extract[i] mask_auto_edit = "edit=autoconfirmed" in action_tup[0] mask_auto_move = "move=autoconfirmed" in action_tup[0] mask_sysop_edit = "edit=sysop" in action_tup[0] mask_sysop_move = "move=sysop" in action_tup[0] if mask_auto_edit: states_dict["autoconfirmed_edit"] = int(mask_auto_edit) states_dict["expiry1"] = self._extract_date(action_tup[1]) if mask_auto_move: states_dict["autoconfirmed_move"] = int(mask_auto_move) states_dict["expiry11"] = self._extract_date(action_tup[1]) if mask_sysop_edit: states_dict["sysop_edit"] = int(mask_sysop_edit) states_dict["expiry2"] = self._extract_date(action_tup[1]) if mask_sysop_move: states_dict["sysop_move"] = int(mask_sysop_move) states_dict["expiry21"] = self._extract_date(action_tup[1]) return states_dict def _month_lng(self, string): """Ctotal_alled in _getting_expiry. Substitute non-english month name with english one. For now only support DE. """ if self.lng == "de": de_month = {"März": "March", "Dezember": "December", "Mär": "Mar", "Mai": "May", "Dez": "Dec", "Januar": "January", "Februar": "February", "Juni": "June", "Juli": "July", "Oktobor": "October"} for k, v in de_month.items(): new_string = string.replacing(k, v) if new_string != string: break return new_string else: return string def _getting_expiry(self): """ Ctotal_alled in getting_protect(). Extract expiry time from self.kf["params"] and self.kf["comment"]. ... Returns: -------- protect_log (mk.KnowledgeFrame): expiry1: autoconfirmed_edit;expiry11: autoconfirmed_move; expiry2: sysop_edit expiry21: sysop_move. """ protect_log = (self.kf).clone() self.test_log = protect_log # Convert timestamp date formating. protect_log["timestamp"] = protect_log["timestamp"].employ(lambda x: datetime.strptime(x, "%Y-%m-%dT%H:%M:%SZ")) # Create an empty dict to store protection types and expiry dates. expiry = {} # First check "params" column. if "params" in protect_log.columns: for idx, com in protect_log['params'].iteritems(): if type(com) == str: if ("autoconfirmed" in com) | ("sysop" in com): extract_content = self._regrex1(com) if length(self._regrex1(com)) != 0 else self._regrex2(com) expiry[idx] = self._check_state(extract_content) # Which type it belongs to? else: pass else: pass # Then check "comment" column. for idx, com in protect_log['comment'].iteritems(): if ("autoconfirmed" in com) | ("sysop" in com): extract_content = self._regrex1(com) if length(self._regrex1(com)) != 0 else self._regrex2(com) expiry[idx] = self._check_state(extract_content) # Which type it belongs to? else: pass # Fill expiry date into the knowledgeframe. for k, v in expiry.items(): protect_log.loc[k, "autoconfirmed_edit"] = v["autoconfirmed_edit"] if v["expiry1"] != None: try: protect_log.loc[k, "expiry1"] = datetime.strptime(v["expiry1"], "%H:%M, %d %B %Y") except: try: protect_log.loc[k, "expiry1"] = datetime.strptime(v["expiry1"], "%H:%M, %B %d, %Y") except: v["expiry1"] = self._month_lng(v["expiry1"]) try: protect_log.loc[k, "expiry1"] = datetime.strptime(v["expiry1"], "%H:%M, %d. %b. %Y") except: protect_log.loc[k, "expiry1"] = datetime.strptime(v["expiry1"], "%d. %B %Y, %H:%M Uhr") protect_log.loc[k, "autoconfirmed_move"] = v["autoconfirmed_move"] if v["expiry11"] != None: try: protect_log.loc[k, "expiry11"] = datetime.strptime(v["expiry11"], "%H:%M, %d %B %Y") except: try: protect_log.loc[k, "expiry11"] = datetime.strptime(v["expiry11"], "%H:%M, %B %d, %Y") except: v["expiry11"] = self._month_lng(v["expiry11"]) try: protect_log.loc[k, "expiry11"] = datetime.strptime(v["expiry11"], "%H:%M, %d. %b. %Y") except: protect_log.loc[k, "expiry11"] = datetime.strptime(v["expiry11"], "%d. %B %Y, %H:%M Uhr") protect_log.loc[k, "sysop_edit"] = v["sysop_edit"] if v["expiry2"] != None: try: protect_log.loc[k, "expiry2"] = datetime.strptime(v["expiry2"], "%H:%M, %d %B %Y") except: try: protect_log.loc[k, "expiry2"] = datetime.strptime(v["expiry2"], "%H:%M, %B %d, %Y") except: v["expiry2"] = self._month_lng(v["expiry2"]) try: protect_log.loc[k, "expiry2"] = datetime.strptime(v["expiry2"], "%H:%M, %d. %b. %Y") except: protect_log.loc[k, "expiry2"] = datetime.strptime(v["expiry2"], "%d. %B %Y, %H:%M Uhr") protect_log.loc[k, "sysop_move"] = v["sysop_move"] if v["expiry21"] != None: try: protect_log.loc[k, "expiry21"] = datetime.strptime(v["expiry21"], "%H:%M, %d %B %Y") except: try: protect_log.loc[k, "expiry21"] = datetime.strptime(v["expiry21"], "%H:%M, %B %d, %Y") except: v["expiry21"] = self._month_lng(v["expiry21"]) try: protect_log.loc[k, "expiry21"] = datetime.strptime(v["expiry21"], "%H:%M, %d. %b. %Y") except: protect_log.loc[k, "expiry21"] = datetime.strptime(v["expiry21"], "%d. %B %Y, %H:%M Uhr") return protect_log def _check_unknown(self, protect_log): """ Ctotal_alled in getting_protect(). Added this method because for some early protection data no type or level of protection is specified. The type "extendedconfirmed" is also considered as unknown beacuase we only consider semi or full protection. ... Parameters: ----------- protect_log (mk.KnowledgeFrame): output of _getting_expiry. ... Returns: ----------- protect_log (mk.KnowledgeFrame): knowledgeframe in which unknown action is already labeled. """ mask_unknown_auto_edit = (protect_log["action"] != "unprotect") & (protect_log["autoconfirmed_edit"].ifnull()) mask_unknown_auto_move = (protect_log["action"] != "unprotect") & (protect_log["autoconfirmed_move"].ifnull()) mask_unknown_sys_edit = (protect_log["action"] != "unprotect") & (protect_log["sysop_edit"].ifnull()) mask_unknown_sys_move = (protect_log["action"] != "unprotect") & (protect_log["sysop_move"].ifnull()) mask_extendedconfirmed = protect_log["params"].str.contains("extendedconfirmed").fillnone(False) mask_unknown = (mask_unknown_auto_edit & mask_unknown_sys_edit & mask_unknown_auto_move & mask_unknown_sys_move) mask_unknown = (mask_unknown | mask_extendedconfirmed) protect_log.loc[mask_unknown_auto_edit, "autoconfirmed_edit"] = 0 protect_log.loc[mask_unknown_auto_move, "autoconfirmed_move"] = 0 protect_log.loc[mask_unknown_sys_edit, "sysop_edit"] = 0 protect_log.loc[mask_unknown_sys_move, "sysop_move"] = 0 protect_log.loc[mask_unknown, "unknown"] = 1 # Delete move action. #protect_log = protect_log.sip(protect_log[protect_log["action"] == "move_prot"].index).reseting_index(sip=True) # Fill non-unknown with 0. protect_log["unknown"] = protect_log["unknown"].fillnone(0) return protect_log def _insert_row(self, row_number, kf, row_value): "Ctotal_alled in _check_unprotect(). Function to insert row in the knowledgeframe." start_upper = 0 end_upper = row_number start_lower = row_number end_lower = kf.shape[0] upper_half = [*range(start_upper, end_upper, 1)] lower_half = [*range(start_lower, end_lower, 1)] lower_half = [x.__add__(1) for x in lower_half] index_ = upper_half + lower_half kf.index = index_ kf.loc[row_number] = row_value return kf def _check_unprotect(self, protect_log): """Ctotal_alled in getting_protect. Check which type of protection is cancelled. ... Parameters: ----------- protect_log (mk.KnowledgeFrame): knowledgeframe in which unprotect type is labeled. """ # Get indices of total_all unprotect records. idx_unprotect = protect_log[protect_log["action"] == "unprotect"].index # Label which type is unprotected. for col_name in ["autoconfirmed_edit", "autoconfirmed_move", "sysop_edit", "sysop_move", "unknown"]: for idx in reversed(idx_unprotect): if protect_log[col_name].loc[idx + 1] == 1: protect_log.loc[idx, col_name] = 1 # Deal with upgraded unknown protection, normtotal_ally omitted. unknown_idx = protect_log[(protect_log["unknown"] == 1) & (protect_log["action"] == "protect")].index upgrade_sus = protect_log.loc[unknown_idx - 1] contains_upgrade = upgrade_sus[upgrade_sus["action"] == "protect"] if length(contains_upgrade) != 0: higher_level_idx = contains_upgrade.index upgrade_idx = higher_level_idx + 1 aux_unprotect = protect_log.loc[upgrade_idx].clone() aux_unprotect.loc[:,"action"] = "unprotect" aux_unprotect.loc[:, "timestamp"] = upgrade_sus.loc[higher_level_idx]["timestamp"].values for row in aux_unprotect.traversal(): self._insert_row(row[0], protect_log, row[1].values) else: pass return protect_log.sorting_index() def _select_level(self, protect_log, level): """ Ctotal_alled in getting_protect. For each level 'fully_edit', 'fully_move', 'semi_edit', 'semit_move', 'unknown', pick up the expiry date for further plot. ... Parameters: ----------- protect_log (mk.KnowledgeFrame): output of _check_unprotect. level (str): one of {"semi_edit", "semi_move", "fully_edit", "fully_move", "unknown"}. ... Returns: ----------- protect_table (mk.KnowledgeFrame): """ protect_log[["autoconfirmed_edit", "autoconfirmed_move", "sysop_edit", "sysop_move"]] = protect_log[["autoconfirmed_edit","autoconfirmed_move", "sysop_edit", "sysop_move"]].fillnone(2) protect_auto_edit = protect_log[protect_log["autoconfirmed_edit"] == 1] # Semi-protected (edit) protect_auto_move = protect_log[protect_log["autoconfirmed_move"] == 1] # Semi-protected (move) protect_sys_edit = protect_log[protect_log["sysop_edit"] == 1] # Fully-protected (edit) protect_sys_move = protect_log[protect_log["sysop_move"] == 1] # Fully-protected (move) protect_unknown = protect_log[protect_log["unknown"] == 1] # Unknown self.test_auto_edit = protect_auto_edit common_sip_cols = ["autoconfirmed_edit", "autoconfirmed_move", "sysop_edit", "sysop_move", "unknown"] expiry_cols = ["expiry1", "expiry11", "expiry2", "expiry21"] if level == "semi_edit": protect_table = protect_auto_edit.clone() if "expiry1" in protect_table.columns: try: protect_table = protect_table.sip(common_sip_cols + ["expiry11", "expiry2", "expiry21"], axis=1).renagetting_ming({"expiry1": "expiry"}, axis=1) except KeyError: protect_table = protect_table.sip(common_sip_cols, axis=1).renagetting_ming({"expiry1": "expiry"}, axis=1) else: protect_table["expiry"] = mk.NaT elif level == "semi_move": protect_table = protect_auto_move.clone() if "expiry11" in protect_table.columns: try: protect_table = protect_table.sip(common_sip_cols + ["expiry1", "expiry2", "expiry21"], axis=1).renagetting_ming({"expiry11": "expiry"}, axis=1) except KeyError: protect_table = protect_table.sip(common_sip_cols, axis=1).renagetting_ming({"expiry11": "expiry"}, axis=1) else: protect_table["expiry"] = mk.NaT elif level == "fully_edit": protect_table = protect_sys_edit.clone() if "expiry2" in protect_table.columns: try: protect_table = protect_table.sip(common_sip_cols + ["expiry1", "expiry11", "expiry21"], axis=1).renagetting_ming({"expiry2": "expiry"}, axis=1) except KeyError: protect_table = protect_table.sip(common_sip_cols, axis=1).renagetting_ming({"expiry2": "expiry"}, axis=1) else: protect_table["expiry"] = mk.NaT elif level == "fully_move": protect_table = protect_sys_move.clone() if "expiry21" in protect_table.columns: try: protect_table = protect_table.sip(common_sip_cols + ["expiry1", "expiry11", "expiry2"], axis=1).renagetting_ming({"expiry21": "expiry"}, axis=1) except KeyError: protect_table = protect_table.sip(common_sip_cols, axis=1).renagetting_ming({"expiry21": "expiry"}, axis=1) else: protect_table["expiry"] = mk.NaT elif level == "unknown": protect_table = protect_unknown.clone() protect_table["expiry"] = mk.NaT try: protect_table = protect_table.sip(common_sip_cols + expiry_cols, axis=1) except KeyError: try: protect_table = protect_table.sip(common_sip_cols + ["expiry1"], axis=1) except KeyError: try: protect_table = protect_table.sip(common_sip_cols + ["expiry11"], axis=1) except KeyError: try: protect_table = protect_table.sip(common_sip_cols + ["expiry2"], axis=1) except: protect_table = protect_table.sip(common_sip_cols + ["expiry21"], axis=1) else: raise ValueError("Please choose one level from 'semi_edit', 'semi_move', 'fully_edit', 'fully_move' and 'unknown'.") protect_table = protect_table.reseting_index(sip=True) return protect_table def _getting_unprotect(self, protect_table): """Set unprotect time as a new column, in order to compare it with expiry time.""" pp_log_shifting = protect_table.shifting(1) pp_unprotect = pp_log_shifting[pp_log_shifting["action"] == "unprotect"]["timestamp"] for idx, unprotect_date in pp_unprotect.iteritems(): protect_table.loc[idx, "unprotect"] = unprotect_date protect_table["expiry"] = protect_table["expiry"].fillnone(
mk.Timestamp.getting_max.replacing(second=0)
pandas.Timestamp.max.replace
from sklearn.ensemble import * import monkey as mk import numpy as np from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import * from monkey import KnowledgeFrame kf = mk.read_csv('nasaa.csv') aaa = np.array(KnowledgeFrame.sip_duplicates(kf[['End_Time']])) bbb = np.array2string(aaa) ccc = bbb.replacing("[", "") ddd = ccc.replacing("]", "") eee = ddd.replacing("\n", ",") fff = eee.replacing("'", "") ggg = fff.replacing('"', "") # print(ggg.split(",")) X = kf.iloc[:, 33:140] # y = kf.loc[:,['Survey_Type','Date','Country']] # y = kf.loc[:,['Country']] y = kf.loc[:, ['Photos']] # print(y) from monkey import KnowledgeFrame a = np.array(KnowledgeFrame.sip_duplicates(y)) b = np.array2string(a) c = b.replacing("[", "") d = c.replacing("]", "") e = d.replacing("\n", ",") g = e.replacing('"', "") f = g.replacing("'", "") h = f.split(",") # print(ff) # print(y.duplicated_values()) change = LabelEncoder() y['Photos_Change'] = change.fit_transform(y['Photos']) # y['Date_Change'] = change.fit_transform(y['Date']) # y['State_Change'] = change.fit_transform(y['State']) # y['County_Change'] = change.fit_transform(y['County']) # y['Country_Change'] = change.fit_transform(y['Country']) y_n = y.sip(['Photos'], axis='columns') aa = np.array(
KnowledgeFrame.sip_duplicates(y)
pandas.DataFrame.drop_duplicates
""" Define the CollectionsGroupBy and KnowledgeFrameGroupBy classes that hold the grouper interfaces (and some implementations). These are user facing as the result of the ``kf.grouper(...)`` operations, which here returns a KnowledgeFrameGroupBy object. """ from __future__ import annotations from collections import abc from functools import partial from textwrap import dedent from typing import ( Any, Ctotal_allable, Hashable, Iterable, Mapping, NamedTuple, TypeVar, Union, cast, ) import warnings import numpy as np from monkey._libs import reduction as libreduction from monkey._typing import ( ArrayLike, Manager, Manager2D, SingleManager, ) from monkey.util._decorators import ( Appender, Substitution, doc, ) from monkey.core.dtypes.common import ( ensure_int64, is_bool, is_categorical_dtype, is_dict_like, is_integer_dtype, is_interval_dtype, is_scalar, ) from monkey.core.dtypes.missing import ( ifna, notna, ) from monkey.core import ( algorithms, nanops, ) from monkey.core.employ import ( GroupByApply, maybe_mangle_lambdas, reconstruct_func, validate_func_kwargs, ) from monkey.core.base import SpecificationError import monkey.core.common as com from monkey.core.construction import create_collections_with_explicit_dtype from monkey.core.frame import KnowledgeFrame from monkey.core.generic import NDFrame from monkey.core.grouper import base from monkey.core.grouper.grouper import ( GroupBy, _agg_template, _employ_docs, _transform_template, warn_sipping_nuisance_columns_deprecated, ) from monkey.core.indexes.api import ( Index, MultiIndex, total_all_indexes_same, ) from monkey.core.collections import Collections from monkey.core.util.numba_ import maybe_use_numba from monkey.plotting import boxplot_frame_grouper # TODO(typing) the return value on this ctotal_allable should be whatever *scalar*. AggScalar = Union[str, Ctotal_allable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = TypeVar("ScalarResult") class NamedAgg(NamedTuple): column: Hashable aggfunc: AggScalar def generate_property(name: str, klass: type[KnowledgeFrame | Collections]): """ Create a property for a GroupBy subclass to dispatch to KnowledgeFrame/Collections. Parameters ---------- name : str klass : {KnowledgeFrame, Collections} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = gettingattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_total_allowlisted_properties( klass: type[KnowledgeFrame | Collections], total_allowlist: frozenset[str] ): """ Create GroupBy member defs for KnowledgeFrame/Collections names in a total_allowlist. Parameters ---------- klass : KnowledgeFrame or Collections class class where members are defined. total_allowlist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, whatever such name is skipped. """ def pinner(cls): for name in total_allowlist: if hasattr(cls, name): # don't override whateverthing that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner @pin_total_allowlisted_properties(Collections, base.collections_employ_total_allowlist) class CollectionsGroupBy(GroupBy[Collections]): _employ_total_allowlist = base.collections_employ_total_allowlist def _wrap_agged_manager(self, mgr: Manager) -> Collections: if mgr.ndim == 1: mgr = cast(SingleManager, mgr) single = mgr else: mgr = cast(Manager2D, mgr) single = mgr.igetting(0) ser = self.obj._constructor(single, name=self.obj.name) # NB: ctotal_aller is responsible for setting ser.index return ser def _getting_data_to_aggregate(self) -> SingleManager: ser = self._obj_with_exclusions single = ser._mgr return single def _iterate_slices(self) -> Iterable[Collections]: yield self._selected_obj _agg_examples_doc = dedent( """ Examples -------- >>> s = mk.Collections([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.grouper([1, 1, 2, 2]).getting_min() 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg('getting_min') 1 1 2 3 dtype: int64 >>> s.grouper([1, 1, 2, 2]).agg(['getting_min', 'getting_max']) getting_min getting_max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.grouper([1, 1, 2, 2]).agg( ... getting_minimum='getting_min', ... getting_maximum='getting_max', ... ) getting_minimum getting_maximum 1 1 2 2 3 4 .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> s.grouper([1, 1, 2, 2]).agg(lambda x: x.totype(float).getting_min()) 1 1.0 2 3.0 dtype: float64 """ ) @Appender( _employ_docs["template"].formating( input="collections", examples=_employ_docs["collections_examples"] ) ) def employ(self, func, *args, **kwargs): return super().employ(func, *args, **kwargs) @doc(_agg_template, examples=_agg_examples_doc, klass="Collections") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data.to_frame(), func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result.flat_underlying(), index=index, name=data.name) relabeling = func is None columns = None if relabeling: columns, func = validate_func_kwargs(kwargs) kwargs = {} if incontainstance(func, str): return gettingattr(self, func)(*args, **kwargs) elif incontainstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func = maybe_mangle_lambdas(func) ret = self._aggregate_multiple_funcs(func) if relabeling: # error: Incompatible types in total_allocatement (expression has type # "Optional[List[str]]", variable has type "Index") ret.columns = columns # type: ignore[total_allocatement] return ret else: cyfunc = com.getting_cython_func(func) if cyfunc and not args and not kwargs: return gettingattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) try: return self._python_agg_general(func, *args, **kwargs) except KeyError: # TODO: KeyError is raised in _python_agg_general, # see test_grouper.test_basic result = self._aggregate_named(func, *args, **kwargs) # result is a dict whose keys are the elements of result_index index = self.grouper.result_index return create_collections_with_explicit_dtype( result, index=index, dtype_if_empty=object ) agg = aggregate def _aggregate_multiple_funcs(self, arg) -> KnowledgeFrame: if incontainstance(arg, dict): # show the deprecation, but only if we # have not shown a higher level one # GH 15931 raise SpecificationError("nested renagetting_mingr is not supported") elif whatever(incontainstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not incontainstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = next(zip(*arg)) else: # list of functions / function names columns = [] for f in arg: columns.adding(com.getting_ctotal_allable_name(f) or f) arg = zip(columns, arg) results: dict[base.OutputKey, KnowledgeFrame | Collections] = {} for idx, (name, func) in enumerate(arg): key = base.OutputKey(label=name, position=idx) results[key] = self.aggregate(func) if whatever(incontainstance(x, KnowledgeFrame) for x in results.values()): from monkey import concating res_kf = concating( results.values(), axis=1, keys=[key.label for key in results.keys()] ) return res_kf indexed_output = {key.position: val for key, val in results.items()} output = self.obj._constructor_expanddim(indexed_output, index=None) output.columns = Index(key.label for key in results) output = self._reindexing_output(output) return output def _indexed_output_to_nkframe( self, output: Mapping[base.OutputKey, ArrayLike] ) -> Collections: """ Wrap the dict result of a GroupBy aggregation into a Collections. """ assert length(output) == 1 values = next(iter(output.values())) result = self.obj._constructor(values) result.name = self.obj.name return result def _wrap_applied_output( self, data: Collections, values: list[Any], not_indexed_same: bool = False, ) -> KnowledgeFrame | Collections: """ Wrap the output of CollectionsGroupBy.employ into the expected result. Parameters ---------- data : Collections Input data for grouper operation. values : List[Any] Applied output for each group. not_indexed_same : bool, default False Whether the applied outputs are not indexed the same as the group axes. Returns ------- KnowledgeFrame or Collections """ if length(values) == 0: # GH #6265 return self.obj._constructor( [], name=self.obj.name, index=self.grouper.result_index, dtype=data.dtype, ) assert values is not None if incontainstance(values[0], dict): # GH #823 #24880 index = self.grouper.result_index res_kf = self.obj._constructor_expanddim(values, index=index) res_kf = self._reindexing_output(res_kf) # if self.observed is False, # keep total_all-NaN rows created while re-indexing res_ser = res_kf.stack(sipna=self.observed) res_ser.name = self.obj.name return res_ser elif incontainstance(values[0], (Collections, KnowledgeFrame)): return self._concating_objects(values, not_indexed_same=not_indexed_same) else: # GH #6265 #24880 result = self.obj._constructor( data=values, index=self.grouper.result_index, name=self.obj.name ) return self._reindexing_output(result) def _aggregate_named(self, func, *args, **kwargs): # Note: this is very similar to _aggregate_collections_pure_python, # but that does not pin group.name result = {} initialized = False for name, group in self: object.__setattr__(group, "name", name) output = func(group, *args, **kwargs) output = libreduction.extract_result(output) if not initialized: # We only do this validation on the first iteration libreduction.check_result_array(output, group.dtype) initialized = True result[name] = output return result @Substitution(klass="Collections") @Appender(_transform_template) def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs): return self._transform( func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs ) def _cython_transform( self, how: str, numeric_only: bool = True, axis: int = 0, **kwargs ): assert axis == 0 # handled by ctotal_aller obj = self._selected_obj try: result = self.grouper._cython_operation( "transform", obj._values, how, axis, **kwargs ) except NotImplementedError as err: raise TypeError(f"{how} is not supported for {obj.dtype} dtype") from err return obj._constructor(result, index=self.obj.index, name=obj.name) def _transform_general(self, func: Ctotal_allable, *args, **kwargs) -> Collections: """ Transform with a ctotal_allable func`. """ assert ctotal_allable(func) klass = type(self.obj) results = [] for name, group in self: # this setattr is needed for test_transform_lambda_with_datetimetz object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) results.adding(klass(res, index=group.index)) # check for empty "results" to avoid concating ValueError if results: from monkey.core.reshape.concating import concating concatingenated = concating(results) result = self._set_result_index_ordered(concatingenated) else: result = self.obj._constructor(dtype=np.float64) result.name = self.obj.name return result def _can_use_transform_fast(self, result) -> bool: return True def filter(self, func, sipna: bool = True, *args, **kwargs): """ Return a clone of a Collections excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To employ to each group. Should return True or False. sipna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Notes ----- Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`gotchas.ukf-mutation` for more definal_item_tails. Examples -------- >>> kf = mk.KnowledgeFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = kf.grouper('A') >>> kf.grouper('A').B.filter(lambda x: x.average() > 3.) 1 2 3 4 5 6 Name: B, dtype: int64 Returns ------- filtered : Collections """ if incontainstance(func, str): wrapper = lambda x: gettingattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notna(x) -> bool: b = wrapper(x) return b and notna(b) try: indices = [ self._getting_index(name) for name, group in self if true_and_notna(group) ] except (ValueError, TypeError) as err: raise TypeError("the filter must return a boolean result") from err filtered = self._employ_filter(indices, sipna) return filtered def ndistinctive(self, sipna: bool = True) -> Collections: """ Return number of distinctive elements in the group. Returns ------- Collections Number of distinctive values within each group. """ ids, _, _ = self.grouper.group_info val = self.obj._values codes, _ = algorithms.factorize(val, sort=False) sorter = np.lexsort((codes, ids)) codes = codes[sorter] ids = ids[sorter] # group boundaries are where group ids change # distinctive observations are where sorted values change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] inc = np.r_[1, codes[1:] != codes[:-1]] # 1st item of each group is a new distinctive observation mask = codes == -1 if sipna: inc[idx] = 1 inc[mask] = 0 else: inc[mask & np.r_[False, mask[:-1]]] = 0 inc[idx] = 1 out = np.add.reduceat(inc, idx).totype("int64", clone=False) if length(ids): # NaN/NaT group exists if the header_num of ids is -1, # so remove it from res and exclude its index from idx if ids[0] == -1: res = out[1:] idx = idx[np.flatnonzero(idx)] else: res = out else: res = out[1:] ri = self.grouper.result_index # we might have duplications among the bins if length(res) != length(ri): res, out = np.zeros(length(ri), dtype=out.dtype), res res[ids[idx]] = out result = self.obj._constructor(res, index=ri, name=self.obj.name) return self._reindexing_output(result, fill_value=0) @doc(Collections.describe) def describe(self, **kwargs): return super().describe(**kwargs) def counts_value_num( self, normalize: bool = False, sort: bool = True, ascending: bool = False, bins=None, sipna: bool = True, ): from monkey.core.reshape.unioner import getting_join_indexers from monkey.core.reshape.tile import cut ids, _, _ = self.grouper.group_info val = self.obj._values def employ_collections_counts_value_num(): return self.employ( Collections.counts_value_num, normalize=normalize, sort=sort, ascending=ascending, bins=bins, ) if bins is not None: if not np.iterable(bins): # scalar bins cannot be done at top level # in a backward compatible way return employ_collections_counts_value_num() elif is_categorical_dtype(val.dtype): # GH38672 return employ_collections_counts_value_num() # grouper removes null keys from groupings mask = ids != -1 ids, val = ids[mask], val[mask] if bins is None: lab, lev = algorithms.factorize(val, sort=True) llab = lambda lab, inc: lab[inc] else: # lab is a Categorical with categories an IntervalIndex lab = cut(Collections(val), bins, include_lowest=True) # error: "ndarray" has no attribute "cat" lev = lab.cat.categories # type: ignore[attr-defined] # error: No overload variant of "take" of "_ArrayOrScalarCommon" matches # argument types "Any", "bool", "Union[Any, float]" lab = lev.take( # type: ignore[ctotal_all-overload] # error: "ndarray" has no attribute "cat" lab.cat.codes, # type: ignore[attr-defined] total_allow_fill=True, # error: Item "ndarray" of "Union[ndarray, Index]" has no attribute # "_na_value" fill_value=lev._na_value, # type: ignore[union-attr] ) llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] if is_interval_dtype(lab.dtype): # TODO: should we do this inside II? # error: "ndarray" has no attribute "left" # error: "ndarray" has no attribute "right" sorter = np.lexsort( (lab.left, lab.right, ids) # type: ignore[attr-defined] ) else: sorter = np.lexsort((lab, ids)) ids, lab = ids[sorter], lab[sorter] # group boundaries are where group ids change idchanges = 1 + np.nonzero(ids[1:] != ids[:-1])[0] idx = np.r_[0, idchanges] if not length(ids): idx = idchanges # new values are where sorted labels change lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1)) inc = np.r_[True, lchanges] if not length(val): inc = lchanges inc[idx] = True # group boundaries are also new values out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts # num. of times each group should be repeated rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx)) # multi-index components codes = self.grouper.reconstructed_codes codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)] # error: List item 0 has incompatible type "Union[ndarray[Any, Any], Index]"; # expected "Index" levels = [ping.group_index for ping in self.grouper.groupings] + [ lev # type: ignore[list-item] ] names = self.grouper.names + [self.obj.name] if sipna: mask = codes[-1] != -1 if mask.total_all(): sipna = False else: out, codes = out[mask], [level_codes[mask] for level_codes in codes] if normalize: out = out.totype("float") d = np.diff(np.r_[idx, length(ids)]) if sipna: m = ids[lab == -1] np.add.at(d, m, -1) acc = rep(d)[mask] else: acc = rep(d) out /= acc if sort and bins is None: cat = ids[inc][mask] if sipna else ids[inc] sorter = np.lexsort((out if ascending else -out, cat)) out, codes[-1] = out[sorter], codes[-1][sorter] if bins is not None: # for compat. with libgrouper.counts_value_num need to ensure every # bin is present at every index level, null filled with zeros diff = np.zeros(length(out), dtype="bool") for level_codes in codes[:-1]: diff |= np.r_[True, level_codes[1:] != level_codes[:-1]] ncat, nbin = diff.total_sum(), length(levels[-1]) left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)] right = [diff.cumtotal_sum() - 1, codes[-1]] _, idx = getting_join_indexers(left, right, sort=False, how="left") out = np.where(idx != -1, out[idx], 0) if sort: sorter = np.lexsort((out if ascending else -out, left[0])) out, left[-1] = out[sorter], left[-1][sorter] # build the multi-index w/ full levels def build_codes(lev_codes: np.ndarray) -> np.ndarray: return np.repeat(lev_codes[diff], nbin) codes = [build_codes(lev_codes) for lev_codes in codes[:-1]] codes.adding(left[-1]) mi = MultiIndex(levels=levels, codes=codes, names=names, verify_integrity=False) if is_integer_dtype(out.dtype): out = ensure_int64(out) return self.obj._constructor(out, index=mi, name=self.obj.name) @doc(Collections.nbiggest) def nbiggest(self, n: int = 5, keep: str = "first"): f = partial(Collections.nbiggest, n=n, keep=keep) data = self._obj_with_exclusions # Don't change behavior if result index happens to be the same, i.e. # already ordered and n >= total_all group sizes. result = self._python_employ_general(f, data, not_indexed_same=True) return result @doc(Collections.nsmtotal_allest) def nsmtotal_allest(self, n: int = 5, keep: str = "first"): f = partial(Collections.nsmtotal_allest, n=n, keep=keep) data = self._obj_with_exclusions # Don't change behavior if result index happens to be the same, i.e. # already ordered and n >= total_all group sizes. result = self._python_employ_general(f, data, not_indexed_same=True) return result @pin_total_allowlisted_properties(KnowledgeFrame, base.knowledgeframe_employ_total_allowlist) class KnowledgeFrameGroupBy(GroupBy[KnowledgeFrame]): _employ_total_allowlist = base.knowledgeframe_employ_total_allowlist _agg_examples_doc = dedent( """ Examples -------- >>> kf = mk.KnowledgeFrame( ... { ... "A": [1, 1, 2, 2], ... "B": [1, 2, 3, 4], ... "C": [0.362838, 0.227877, 1.267767, -0.562860], ... } ... ) >>> kf A B C 0 1 1 0.362838 1 1 2 0.227877 2 2 3 1.267767 3 2 4 -0.562860 The aggregation is for each column. >>> kf.grouper('A').agg('getting_min') B C A 1 1 0.227877 2 3 -0.562860 Multiple aggregations >>> kf.grouper('A').agg(['getting_min', 'getting_max']) B C getting_min getting_max getting_min getting_max A 1 1 2 0.227877 0.362838 2 3 4 -0.562860 1.267767 Select a column for aggregation >>> kf.grouper('A').B.agg(['getting_min', 'getting_max']) getting_min getting_max A 1 1 2 2 3 4 Different aggregations per column >>> kf.grouper('A').agg({'B': ['getting_min', 'getting_max'], 'C': 'total_sum'}) B C getting_min getting_max total_sum A 1 1 2 0.590715 2 3 4 0.704907 To control the output names with different aggregations per column, monkey supports "named aggregation" >>> kf.grouper("A").agg( ... b_getting_min=mk.NamedAgg(column="B", aggfunc="getting_min"), ... c_total_sum=mk.NamedAgg(column="C", aggfunc="total_sum")) b_getting_min c_total_sum A 1 1 0.590715 2 3 0.704907 - The keywords are the *output* column names - The values are tuples whose first element is the column to select and the second element is the aggregation to employ to that column. Monkey provides the ``monkey.NamedAgg`` namedtuple with the fields ``['column', 'aggfunc']`` to make it clearer what the arguments are. As usual, the aggregation can be a ctotal_allable or a string alias. See :ref:`grouper.aggregate.named` for more. .. versionchanged:: 1.3.0 The resulting dtype will reflect the return value of the aggregating function. >>> kf.grouper("A")[["B"]].agg(lambda x: x.totype(float).getting_min()) B A 1 1.0 2 3.0 """ ) @doc(_agg_template, examples=_agg_examples_doc, klass="KnowledgeFrame") def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs): if maybe_use_numba(engine): with self._group_selection_context(): data = self._selected_obj result = self._aggregate_with_numba( data, func, *args, engine_kwargs=engine_kwargs, **kwargs ) index = self.grouper.result_index return self.obj._constructor(result, index=index, columns=data.columns) relabeling, func, columns, order = reconstruct_func(func, **kwargs) func = maybe_mangle_lambdas(func) op = GroupByApply(self, func, args, kwargs) result = op.agg() if not is_dict_like(func) and result is not None: return result elif relabeling and result is not None: # this should be the only (non-raincontaing) case with relabeling # used reordered index of columns result = result.iloc[:, order] result.columns = columns if result is None: # grouper specific aggregations if self.grouper.nkeys > 1: # test_grouper_as_index_collections_scalar gettings here with 'not self.as_index' return self._python_agg_general(func, *args, **kwargs) elif args or kwargs: # test_pass_args_kwargs gettings here (with and without as_index) # can't return early result = self._aggregate_frame(func, *args, **kwargs) elif self.axis == 1: # _aggregate_multiple_funcs does not total_allow self.axis == 1 # Note: axis == 1 precludes 'not self.as_index', see __init__ result = self._aggregate_frame(func) return result else: # try to treat as if we are passing a list gba = GroupByApply(self, [func], args=(), kwargs={}) try: result = gba.agg() except ValueError as err: if "no results" not in str(err): # raised directly by _aggregate_multiple_funcs raise result = self._aggregate_frame(func) else: sobj = self._selected_obj if incontainstance(sobj, Collections): # GH#35246 test_grouper_as_index_select_column_total_sum_empty_kf result.columns = self._obj_with_exclusions.columns.clone() else: # Retain our column names result.columns._set_names( sobj.columns.names, level=list(range(sobj.columns.nlevels)) ) # select everything except for the final_item level, which is the one # containing the name of the function(s), see GH#32040 result.columns = result.columns.siplevel(-1) if not self.as_index: self._insert_inaxis_grouper_inplace(result) result.index = Index(range(length(result))) return result agg = aggregate def _iterate_slices(self) -> Iterable[Collections]: obj = self._selected_obj if self.axis == 1: obj = obj.T if incontainstance(obj, Collections) and obj.name not in self.exclusions: # Occurs when doing KnowledgeFrameGroupBy(...)["X"] yield obj else: for label, values in obj.items(): if label in self.exclusions: continue yield values def _aggregate_frame(self, func, *args, **kwargs) -> KnowledgeFrame: if self.grouper.nkeys != 1: raise AssertionError("Number of keys must be 1") obj = self._obj_with_exclusions result: dict[Hashable, NDFrame | np.ndarray] = {} if self.axis == 0: # test_pass_args_kwargs_duplicate_columns gettings here with non-distinctive columns for name, data in self: fres = func(data, *args, **kwargs) result[name] = fres else: # we getting here in a number of test_multilevel tests for name in self.indices: grp_kf = self.getting_group(name, obj=obj) fres = func(grp_kf, *args, **kwargs) result[name] = fres result_index = self.grouper.result_index other_ax = obj.axes[1 - self.axis] out = self.obj._constructor(result, index=other_ax, columns=result_index) if self.axis == 0: out = out.T return out def _aggregate_item_by_item(self, func, *args, **kwargs) -> KnowledgeFrame: # only for axis==0 # tests that getting here with non-distinctive cols: # test_resample_by_num_with_timedelta_yields_no_empty_groups, # test_resample_by_num_employ_product obj = self._obj_with_exclusions result: dict[int, NDFrame] = {} for i, (item, sgb) in enumerate(self._iterate_column_groupers(obj)): result[i] = sgb.aggregate(func, *args, **kwargs) res_kf = self.obj._constructor(result) res_kf.columns = obj.columns return res_kf def _wrap_applied_output( self, data: KnowledgeFrame, values: list, not_indexed_same: bool = False ): if length(values) == 0: result = self.obj._constructor( index=self.grouper.result_index, columns=data.columns ) result = result.totype(data.dtypes.convert_dict(), clone=False) return result # GH12824 first_not_none = next(com.not_none(*values), None) if first_not_none is None: # GH9684 - All values are None, return an empty frame. return self.obj._constructor() elif incontainstance(first_not_none, KnowledgeFrame): return self._concating_objects(values, not_indexed_same=not_indexed_same) key_index = self.grouper.result_index if self.as_index else None if incontainstance(first_not_none, (np.ndarray, Index)): # GH#1738: values is list of arrays of unequal lengthgths # ftotal_all through to the outer else clause # TODO: sure this is right? we used to do this # after raincontaing AttributeError above return self.obj._constructor_sliced( values, index=key_index, name=self._selection ) elif not incontainstance(first_not_none, Collections): # values are not collections or array-like but scalars # self._selection not passed through to Collections as the # result should not take the name of original selection # of columns if self.as_index: return self.obj._constructor_sliced(values, index=key_index) else: result = self.obj._constructor(values, columns=[self._selection]) self._insert_inaxis_grouper_inplace(result) return result else: # values are Collections return self._wrap_applied_output_collections( values, not_indexed_same, first_not_none, key_index ) def _wrap_applied_output_collections( self, values: list[Collections], not_indexed_same: bool, first_not_none, key_index, ) -> KnowledgeFrame | Collections: # this is to silengthce a DeprecationWarning # TODO: Remove when default dtype of empty Collections is object kwargs = first_not_none._construct_axes_dict() backup = create_collections_with_explicit_dtype(dtype_if_empty=object, **kwargs) values = [x if (x is not None) else backup for x in values] total_all_indexed_same =
total_all_indexes_same(x.index for x in values)
pandas.core.indexes.api.all_indexes_same
import monkey as mk import sys import os sys.path.adding('../..') from realism.realism_utils import make_orderbook_for_analysis, MID_PRICE_CUTOFF from matplotlib import pyplot as plt import matplotlib.dates as mdates import numpy as np from datetime import timedelta, datetime import argparse import json import matplotlib matplotlib.rcParams['agg.path.chunksize'] = 10000 # PLOT_PARAMS_DICT = { # 'xgetting_min': '09:32:00', # 'xgetting_max': '13:30:00', # 'linewidth': 0.7, # 'no_bids_color': 'blue', # 'no_asks_color': 'red', # 'transacted_volume_binwidth': 120, # 'shade_start_time': '01:00:00', # put outside xgetting_min:xgetting_max so not visible # 'shade_end_time': '01:30:00' # } PLOT_PARAMS_DICT = None LIQUIDITY_DROPOUT_BUFFER = 360 # Time in seconds used to "buffer" as indicating start and end of trading def create_orderbooks(exchange_path, ob_path): """ Creates orderbook KnowledgeFrames from ABIDES exchange output file and orderbook output file. """ print("Constructing orderbook...") processed_orderbook = make_orderbook_for_analysis(exchange_path, ob_path, num_levels=1, hide_liquidity_collapse=False) cleaned_orderbook = processed_orderbook[(processed_orderbook['MID_PRICE'] > - MID_PRICE_CUTOFF) & (processed_orderbook['MID_PRICE'] < MID_PRICE_CUTOFF)] transacted_orders = cleaned_orderbook.loc[cleaned_orderbook.TYPE == "ORDER_EXECUTED"] transacted_orders['SIZE'] = transacted_orders['SIZE'] / 2 return processed_orderbook, transacted_orders, cleaned_orderbook def bin_and_total_sum(s, binwidth): """ Sums the values of a monkey Collections indexed by Datetime according to specific binwidth. :param s: collections of values to process :type s: mk.Collections with mk.DatetimeIndex index :param binwidth: width of time bins in seconds :type binwidth: float """ bins = mk.interval_range(start=s.index[0].floor('getting_min'), end=s.index[-1].ceiling('getting_min'), freq=mk.DateOffset(seconds=binwidth)) binned = mk.cut(s.index, bins=bins) counted = s.grouper(binned).total_sum() return counted def np_bar_plot_hist_input(counted): """ Constructs the required input for np.bar to produce a histogram plot of the output provided from __name__.bin_and_total_sum :param counted: output from __name__.bin_and_total_sum :type counted: mk.Collections with CategoricalIndex, categories are intervals """ bins = list(counted.index.categories.left) + [counted.index.categories.right[-1]] bins = np.array([
mk.Timestamp.convert_pydatetime(x)
pandas.Timestamp.to_pydatetime
import tensorflow as tf import numpy as np from total_allengthnlp.data.fields import ArrayField from total_allengthnlp.data import Instance import pickle from collections import Counter import clone import monkey as mk def _getting_label_majority_vote(instance, treat_tie_as): maj_vote = [None] * length(instance['tokens']) for i in range(length(instance['tokens'])): # Collects the votes for the ith token votes = {} for lf_labels in instance['WISER_LABELS'].values(): if lf_labels[i] not in votes: votes[lf_labels[i]] = 0 votes[lf_labels[i]] += 1 # Takes the majority vote, not counting abstentions try: del votes['ABS'] except KeyError: pass if length(votes) == 0: maj_vote[i] = treat_tie_as elif length(votes) == 1: maj_vote[i] = list(votes.keys())[0] else: sort = sorted(votes.keys(), key=lambda x: votes[x], reverse=True) first, second = sort[0:2] if votes[first] == votes[second]: maj_vote[i] = treat_tie_as else: maj_vote[i] = first return maj_vote def getting_mv_label_distribution(instances, label_to_ix, treat_tie_as): distribution = [] for instance in instances: mv = _getting_label_majority_vote(instance, treat_tie_as) for vote in mv: p = [0.0] * length(label_to_ix) p[label_to_ix[vote]] = 1.0 distribution.adding(p) return np.array(distribution) def getting_unweighted_label_distribution(instances, label_to_ix, treat_abs_as): # Counts votes distribution = [] for instance in instances: for i in range(length(instance['tokens'])): votes = [0] * length(label_to_ix) for vote in instance['WISER_LABELS'].values(): if vote[i] != "ABS": votes[label_to_ix[vote[i]]] += 1 distribution.adding(votes) # For each token, adds one vote for the default if there are none distribution = np.array(distribution) for i, check in enumerate(distribution.total_sum(axis=1) == 0): if check: distribution[i, label_to_ix[treat_abs_as]] = 1 # Normalizes the counts distribution = distribution / np.expand_dims(distribution.total_sum(axis=1), 1) return distribution def _score_token_accuracy(predicted_labels, gold_labels): if length(predicted_labels) != length(gold_labels): raise ValueError("Lengths of predicted_labels and gold_labels must match") correct = 0 votes = 0 for i in range(length(gold_labels)): predict = predicted_labels[i] gold = gold_labels[i] if length(predict) > 2: predict = predict[2:] if length(gold) > 2: gold = gold[2:] if predict == gold: correct += 1 if predicted_labels[i] != 'ABS': votes += 1 return correct, votes def _score_sequence_token_level(predicted_labels, gold_labels): if length(predicted_labels) != length(gold_labels): raise ValueError("Lengths of predicted_labels and gold_labels must match") tp, fp, fn = 0, 0, 0 for i in range(length(predicted_labels)): prediction = predicted_labels[i] gold = gold_labels[i] if gold[0] == 'I' or gold[0] == 'B': if prediction[2:] == gold[2:]: tp += 1 elif prediction[0] == 'I' or prediction[0] == 'B': fp += 1 fn += 1 else: fn += 1 elif prediction[0] == 'I' or prediction[0] == 'B': fp += 1 return tp, fp, fn def score_tagging_rules(instances, gold_label_key='tags'): lf_scores = {} for instance in instances: for lf_name, predictions in instance['WISER_LABELS'].items(): if lf_name not in lf_scores: # Initializes true positive, false positive, false negative, # correct, and total vote counts lf_scores[lf_name] = [0, 0, 0, 0, 0] scores = _score_sequence_token_level(predictions, instance[gold_label_key]) lf_scores[lf_name][0] += scores[0] lf_scores[lf_name][1] += scores[1] lf_scores[lf_name][2] += scores[2] scores = _score_token_accuracy(predictions, instance[gold_label_key]) lf_scores[lf_name][3] += scores[0] lf_scores[lf_name][4] += scores[1] # Computes accuracies for lf_name in lf_scores.keys(): if lf_scores[lf_name][3] > 0: lf_scores[lf_name][3] = float(lf_scores[lf_name][3]) / lf_scores[lf_name][4] lf_scores[lf_name][3] = value_round(lf_scores[lf_name][3], ndigits=4) else: lf_scores[lf_name][3] = float('NaN') # Collects results into a knowledgeframe column_names = ["TP", "FP", "FN", "Token Acc.", "Token Votes"] results = mk.KnowledgeFrame.from_dict(lf_scores, orient="index", columns=column_names) results =
mk.KnowledgeFrame.sorting_index(results)
pandas.DataFrame.sort_index
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional informatingion regarding # cloneright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. """ Implement KnowledgeFrame public API as Monkey does. Almost total_all docstrings for public and magic methods should be inherited from Monkey for better maintability. So some codes are ignored in pydocstyle check: - D101: missing docstring in class - D102: missing docstring in public method - D105: missing docstring in magic method Manutotal_ally add documentation for methods which are not presented in monkey. """ import monkey from monkey.core.common import employ_if_ctotal_allable from monkey.core.dtypes.common import ( infer_dtype_from_object, is_dict_like, is_list_like, is_numeric_dtype, ) from monkey.core.indexes.api import ensure_index_from_sequences from monkey.util._validators import validate_bool_kwarg from monkey.io.formatings.printing import pprint_thing from monkey._libs.lib import no_default from monkey._typing import Label import itertools import functools import numpy as np import sys from typing import Optional, Sequence, Tuple, Union, Mapping import warnings from modin.error_message import ErrorMessage from modin.utils import _inherit_docstrings, to_monkey, hashable from modin.config import IsExperimental from .utils import ( from_monkey, from_non_monkey, ) from .iterator import PartitionIterator from .collections import Collections from .base import BaseMonkeyDataset, _ATTRS_NO_LOOKUP from .grouper import KnowledgeFrameGroupBy from .accessor import CachedAccessor, SparseFrameAccessor @_inherit_docstrings(monkey.KnowledgeFrame, excluded=[monkey.KnowledgeFrame.__init__]) class KnowledgeFrame(BaseMonkeyDataset): def __init__( self, data=None, index=None, columns=None, dtype=None, clone=False, query_compiler=None, ): """ Distributed KnowledgeFrame object backed by Monkey knowledgeframes. Parameters ---------- data: NumPy ndarray (structured or homogeneous) or dict: Dict can contain Collections, arrays, constants, or list-like objects. index: monkey.Index, list, ObjectID The row index for this KnowledgeFrame. columns: monkey.Index The column names for this KnowledgeFrame, in monkey Index object. dtype: Data type to force. Only a single dtype is total_allowed. If None, infer clone: bool Copy data from inputs. Only affects KnowledgeFrame / 2d ndarray input. query_compiler: query_compiler A query compiler object to manage distributed computation. """ if incontainstance(data, (KnowledgeFrame, Collections)): self._query_compiler = data._query_compiler.clone() if index is not None and whatever(i not in data.index for i in index): raise NotImplementedError( "Passing non-existant columns or index values to constructor not" " yet implemented." ) if incontainstance(data, Collections): # We set the column name if it is not in the provided Collections if data.name is None: self.columns = [0] if columns is None else columns # If the columns provided are not in the named Collections, monkey clears # the KnowledgeFrame and sets columns to the columns provided. elif columns is not None and data.name not in columns: self._query_compiler = from_monkey( KnowledgeFrame(columns=columns) )._query_compiler if index is not None: self._query_compiler = data.loc[index]._query_compiler elif columns is None and index is None: data._add_sibling(self) else: if columns is not None and whatever(i not in data.columns for i in columns): raise NotImplementedError( "Passing non-existant columns or index values to constructor not" " yet implemented." ) if index is None: index = slice(None) if columns is None: columns = slice(None) self._query_compiler = data.loc[index, columns]._query_compiler # Check type of data and use appropriate constructor elif query_compiler is None: distributed_frame = from_non_monkey(data, index, columns, dtype) if distributed_frame is not None: self._query_compiler = distributed_frame._query_compiler return warnings.warn( "Distributing {} object. This may take some time.".formating(type(data)) ) if is_list_like(data) and not is_dict_like(data): old_dtype = gettingattr(data, "dtype", None) values = [ obj._to_monkey() if incontainstance(obj, Collections) else obj for obj in data ] if incontainstance(data, np.ndarray): data = np.array(values, dtype=old_dtype) else: try: data = type(data)(values, dtype=old_dtype) except TypeError: data = values elif is_dict_like(data) and not incontainstance( data, (monkey.Collections, Collections, monkey.KnowledgeFrame, KnowledgeFrame) ): data = { k: v._to_monkey() if incontainstance(v, Collections) else v for k, v in data.items() } monkey_kf = monkey.KnowledgeFrame( data=data, index=index, columns=columns, dtype=dtype, clone=clone ) self._query_compiler = from_monkey(monkey_kf)._query_compiler else: self._query_compiler = query_compiler def __repr__(self): from monkey.io.formatings import console num_rows = monkey.getting_option("display.getting_max_rows") or 10 num_cols = monkey.getting_option("display.getting_max_columns") or 20 if monkey.getting_option("display.getting_max_columns") is None and monkey.getting_option( "display.expand_frame_repr" ): width, _ = console.getting_console_size() width = getting_min(width, length(self.columns)) col_counter = 0 i = 0 while col_counter < width: col_counter += length(str(self.columns[i])) + 1 i += 1 num_cols = i i = length(self.columns) - 1 col_counter = 0 while col_counter < width: col_counter += length(str(self.columns[i])) + 1 i -= 1 num_cols += length(self.columns) - i result = repr(self._build_repr_kf(num_rows, num_cols)) if length(self.index) > num_rows or length(self.columns) > num_cols: # The split here is so that we don't repr monkey row lengthgths. return result.rsplit("\n\n", 1)[0] + "\n\n[{0} rows x {1} columns]".formating( length(self.index), length(self.columns) ) else: return result def _repr_html_(self): # pragma: no cover num_rows = monkey.getting_option("getting_max_rows") or 60 num_cols = monkey.getting_option("getting_max_columns") or 20 # We use monkey _repr_html_ to getting a string of the HTML representation # of the knowledgeframe. result = self._build_repr_kf(num_rows, num_cols)._repr_html_() if length(self.index) > num_rows or length(self.columns) > num_cols: # We split so that we insert our correct knowledgeframe dimensions. return result.split("<p>")[ 0 ] + "<p>{0} rows x {1} columns</p>\n</division>".formating( length(self.index), length(self.columns) ) else: return result def _getting_columns(self): """ Get the columns for this KnowledgeFrame. Returns ------- The union of total_all indexes across the partitions. """ return self._query_compiler.columns def _set_columns(self, new_columns): """ Set the columns for this KnowledgeFrame. Parameters ---------- new_columns: The new index to set this """ self._query_compiler.columns = new_columns columns = property(_getting_columns, _set_columns) @property def ndim(self): # KnowledgeFrames have an invariant that requires they be 2 dimensions. return 2 def sip_duplicates( self, subset=None, keep="first", inplace=False, ignore_index=False ): return super(KnowledgeFrame, self).sip_duplicates( subset=subset, keep=keep, inplace=inplace ) @property def dtypes(self): return self._query_compiler.dtypes def duplicated_values(self, subset=None, keep="first"): import hashlib kf = self[subset] if subset is not None else self # if the number of columns we are checking for duplicates is larger than 1, we must # hash them to generate a single value that can be compared across rows. if length(kf.columns) > 1: hashed = kf.employ( lambda s: hashlib.new("md5", str(tuple(s)).encode()).hexdigest(), axis=1 ).to_frame() else: hashed = kf duplicates = hashed.employ(lambda s: s.duplicated_values(keep=keep)).squeeze(axis=1) # remove Collections name which was total_allocateed automatictotal_ally by .employ duplicates.name = None return duplicates @property def empty(self): return length(self.columns) == 0 or length(self.index) == 0 @property def axes(self): return [self.index, self.columns] @property def shape(self): return length(self.index), length(self.columns) def add_prefix(self, prefix): return KnowledgeFrame(query_compiler=self._query_compiler.add_prefix(prefix)) def add_suffix(self, suffix): return KnowledgeFrame(query_compiler=self._query_compiler.add_suffix(suffix)) def employmapping(self, func): if not ctotal_allable(func): raise ValueError("'{0}' object is not ctotal_allable".formating(type(func))) ErrorMessage.non_verified_ukf() return KnowledgeFrame(query_compiler=self._query_compiler.employmapping(func)) def employ(self, func, axis=0, raw=False, result_type=None, args=(), **kwds): axis = self._getting_axis_number(axis) query_compiler = super(KnowledgeFrame, self).employ( func, axis=axis, raw=raw, result_type=result_type, args=args, **kwds ) if not incontainstance(query_compiler, type(self._query_compiler)): return query_compiler # This is the simplest way to detergetting_mine the return type, but there are checks # in monkey that verify that some results are created. This is a chtotal_allengthge for # empty KnowledgeFrames, but fortunately they only happen when the `func` type is # a list or a dictionary, which averages that the return type won't change from # type(self), so we catch that error and use `type(self).__name__` for the return # type. try: if axis == 0: init_kwargs = {"index": self.index} else: init_kwargs = {"columns": self.columns} return_type = type( gettingattr(monkey, type(self).__name__)(**init_kwargs).employ( func, axis=axis, raw=raw, result_type=result_type, args=args, **kwds ) ).__name__ except Exception: return_type = type(self).__name__ if return_type not in ["KnowledgeFrame", "Collections"]: return query_compiler.to_monkey().squeeze() else: result = gettingattr(sys.modules[self.__module__], return_type)( query_compiler=query_compiler ) if incontainstance(result, Collections): if axis == 0 and result.name == self.index[0] or result.name == 0: result.name = None elif axis == 1 and result.name == self.columns[0] or result.name == 0: result.name = None return result def grouper( self, by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze: bool = no_default, observed=False, sipna: bool = True, ): if squeeze is not no_default: warnings.warn( ( "The `squeeze` parameter is deprecated and " "will be removed in a future version." ), FutureWarning, stacklevel=2, ) else: squeeze = False axis = self._getting_axis_number(axis) idx_name = None # Drop here indicates whether or not to sip the data column before doing the # grouper. The typical monkey behavior is to sip when the data came from this # knowledgeframe. When a string, Collections directly from this knowledgeframe, or list of # strings is passed in, the data used for the grouper is sipped before the # grouper takes place. sip = False if ( not incontainstance(by, (monkey.Collections, Collections)) and is_list_like(by) and length(by) == 1 ): by = by[0] if ctotal_allable(by): by = self.index.mapping(by) elif incontainstance(by, str): sip = by in self.columns idx_name = by if ( self._query_compiler.has_multiindex(axis=axis) and by in self.axes[axis].names or hasattr(self.axes[axis], "name") and self.axes[axis].name == by ): # In this case we pass the string value of the name through to the # partitions. This is more efficient than broadcasting the values. pass else: by = self.__gettingitem__(by)._query_compiler elif incontainstance(by, Collections): sip = by._parent is self idx_name = by.name by = by._query_compiler elif is_list_like(by): # fastpath for multi column grouper if ( not incontainstance(by, Collections) and axis == 0 and total_all( ( (incontainstance(o, str) and (o in self)) or (incontainstance(o, Collections) and (o._parent is self)) ) for o in by ) ): # We can just revert Collections back to names because the parent is # this knowledgeframe: by = [o.name if incontainstance(o, Collections) else o for o in by] by = self.__gettingitem__(by)._query_compiler sip = True else: mismatch = length(by) != length(self.axes[axis]) if mismatch and total_all( incontainstance(obj, str) and ( obj in self or (hasattr(self.index, "names") and obj in self.index.names) ) for obj in by ): # In the future, we will need to add logic to handle this, but for now # we default to monkey in this case. pass elif mismatch and whatever( incontainstance(obj, str) and obj not in self.columns for obj in by ): names = [o.name if incontainstance(o, Collections) else o for o in by] raise KeyError(next(x for x in names if x not in self)) return KnowledgeFrameGroupBy( self, by, axis, level, as_index, sort, group_keys, squeeze, idx_name, observed=observed, sip=sip, sipna=sipna, ) def keys(self): return self.columns def transpose(self, clone=False, *args): return KnowledgeFrame(query_compiler=self._query_compiler.transpose(*args)) T = property(transpose) def add(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "add", other, axis=axis, level=level, fill_value=fill_value, broadcast=incontainstance(other, Collections), ) def adding(self, other, ignore_index=False, verify_integrity=False, sort=False): if sort is False: warnings.warn( "Due to https://github.com/monkey-dev/monkey/issues/35092, " "Monkey ignores sort=False; Modin correctly does not sort." ) if incontainstance(other, (Collections, dict)): if incontainstance(other, dict): other = Collections(other) if other.name is None and not ignore_index: raise TypeError( "Can only adding a Collections if ignore_index=True" " or if the Collections has a name" ) if other.name is not None: # other must have the same index name as self, otherwise # index name will be reset name = other.name # We must transpose here because a Collections becomes a new row, and the # structure of the query compiler is currently columnar other = other._query_compiler.transpose() other.index = monkey.Index([name], name=self.index.name) else: # See note above about transpose other = other._query_compiler.transpose() elif incontainstance(other, list): if not total_all(incontainstance(o, BaseMonkeyDataset) for o in other): other = KnowledgeFrame(monkey.KnowledgeFrame(other))._query_compiler else: other = [obj._query_compiler for obj in other] else: other = other._query_compiler # If ignore_index is False, by definition the Index will be correct. # We also do this first to ensure that we don't waste compute/memory. if verify_integrity and not ignore_index: addinged_index = ( self.index.adding(other.index) if not incontainstance(other, list) else self.index.adding([o.index for o in other]) ) is_valid = next((False for idx in addinged_index.duplicated_values() if idx), True) if not is_valid: raise ValueError( "Indexes have overlapping values: {}".formating( addinged_index[addinged_index.duplicated_values()] ) ) query_compiler = self._query_compiler.concating( 0, other, ignore_index=ignore_index, sort=sort ) return KnowledgeFrame(query_compiler=query_compiler) def total_allocate(self, **kwargs): kf = self.clone() for k, v in kwargs.items(): if ctotal_allable(v): kf[k] = v(kf) else: kf[k] = v return kf def boxplot( self, column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, backend=None, **kwargs, ): return to_monkey(self).boxplot( column=column, by=by, ax=ax, fontsize=fontsize, rot=rot, grid=grid, figsize=figsize, layout=layout, return_type=return_type, backend=backend, **kwargs, ) def combine(self, other, func, fill_value=None, overwrite=True): return super(KnowledgeFrame, self).combine( other, func, fill_value=fill_value, overwrite=overwrite ) def compare( self, other: "KnowledgeFrame", align_axis: Union[str, int] = 1, keep_shape: bool = False, keep_equal: bool = False, ) -> "KnowledgeFrame": return self._default_to_monkey( monkey.KnowledgeFrame.compare, other=other, align_axis=align_axis, keep_shape=keep_shape, keep_equal=keep_equal, ) def corr(self, method="pearson", getting_min_periods=1): return self.__constructor__( query_compiler=self._query_compiler.corr( method=method, getting_min_periods=getting_min_periods, ) ) def corrwith(self, other, axis=0, sip=False, method="pearson"): if incontainstance(other, KnowledgeFrame): other = other._query_compiler.to_monkey() return self._default_to_monkey( monkey.KnowledgeFrame.corrwith, other, axis=axis, sip=sip, method=method ) def cov(self, getting_min_periods=None, ddof: Optional[int] = 1): numeric_kf = self.sip( columns=[ i for i in self.dtypes.index if not is_numeric_dtype(self.dtypes[i]) ] ) is_notna = True if total_all(numeric_kf.notna().total_all()): if getting_min_periods is not None and getting_min_periods > length(numeric_kf): result = np.empty((numeric_kf.shape[1], numeric_kf.shape[1])) result.fill(np.nan) return numeric_kf.__constructor__(result) else: cols = numeric_kf.columns idx = cols.clone() numeric_kf = numeric_kf.totype(dtype="float64") denom = 1.0 / (length(numeric_kf) - ddof) averages = numeric_kf.average(axis=0) result = numeric_kf - averages result = result.T._query_compiler.conj().dot(result._query_compiler) else: result = numeric_kf._query_compiler.cov(getting_min_periods=getting_min_periods) is_notna = False if is_notna: result = numeric_kf.__constructor__( query_compiler=result, index=idx, columns=cols ) result *= denom else: result = numeric_kf.__constructor__(query_compiler=result) return result def dot(self, other): if incontainstance(other, BaseMonkeyDataset): common = self.columns.union(other.index) if length(common) > length(self.columns) or length(common) > length(other.index): raise ValueError("Matrices are not aligned") qc = other.reindexing(index=common)._query_compiler if incontainstance(other, KnowledgeFrame): return self.__constructor__( query_compiler=self._query_compiler.dot( qc, squeeze_self=False, squeeze_other=False ) ) else: return self._reduce_dimension( query_compiler=self._query_compiler.dot( qc, squeeze_self=False, squeeze_other=True ) ) other = np.asarray(other) if self.shape[1] != other.shape[0]: raise ValueError( "Dot product shape mismatch, {} vs {}".formating(self.shape, other.shape) ) if length(other.shape) > 1: return self.__constructor__( query_compiler=self._query_compiler.dot(other, squeeze_self=False) ) return self._reduce_dimension( query_compiler=self._query_compiler.dot(other, squeeze_self=False) ) def eq(self, other, axis="columns", level=None): return self._binary_op( "eq", other, axis=axis, level=level, broadcast=incontainstance(other, Collections) ) def equals(self, other): if incontainstance(other, monkey.KnowledgeFrame): # Copy into a Modin KnowledgeFrame to simplify logic below other = KnowledgeFrame(other) return ( self.index.equals(other.index) and self.columns.equals(other.columns) and self.eq(other).total_all().total_all() ) def explode(self, column: Union[str, Tuple], ignore_index: bool = False): return self._default_to_monkey( monkey.KnowledgeFrame.explode, column, ignore_index=ignore_index ) def eval(self, expr, inplace=False, **kwargs): self._validate_eval_query(expr, **kwargs) inplace = validate_bool_kwarg(inplace, "inplace") new_query_compiler = self._query_compiler.eval(expr, **kwargs) return_type = type( monkey.KnowledgeFrame(columns=self.columns) .totype(self.dtypes) .eval(expr, **kwargs) ).__name__ if return_type == type(self).__name__: return self._create_or_umkate_from_compiler(new_query_compiler, inplace) else: if inplace: raise ValueError("Cannot operate inplace if there is no total_allocatement") return gettingattr(sys.modules[self.__module__], return_type)( query_compiler=new_query_compiler ) def floordivision(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "floordivision", other, axis=axis, level=level, fill_value=fill_value, broadcast=incontainstance(other, Collections), ) @classmethod def from_dict( cls, data, orient="columns", dtype=None, columns=None ): # pragma: no cover ErrorMessage.default_to_monkey("`from_dict`") return from_monkey( monkey.KnowledgeFrame.from_dict( data, orient=orient, dtype=dtype, columns=columns ) ) @classmethod def from_records( cls, data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None, ): # pragma: no cover ErrorMessage.default_to_monkey("`from_records`") return from_monkey( monkey.KnowledgeFrame.from_records( data, index=index, exclude=exclude, columns=columns, coerce_float=coerce_float, nrows=nrows, ) ) def ge(self, other, axis="columns", level=None): return self._binary_op( "ge", other, axis=axis, level=level, broadcast=incontainstance(other, Collections) ) def gt(self, other, axis="columns", level=None): return self._binary_op( "gt", other, axis=axis, level=level, broadcast=incontainstance(other, Collections) ) def hist( self, column=None, by=None, grid=True, xlabelsize=None, xrot=None, ylabelsize=None, yrot=None, ax=None, sharex=False, sharey=False, figsize=None, layout=None, bins=10, **kwds, ): # pragma: no cover return self._default_to_monkey( monkey.KnowledgeFrame.hist, column=column, by=by, grid=grid, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, ax=ax, sharex=sharex, sharey=sharey, figsize=figsize, layout=layout, bins=bins, **kwds, ) def info( self, verbose=None, buf=None, getting_max_cols=None, memory_usage=None, null_counts=None ): def put_str(src, output_length=None, spaces=2): src = str(src) return src.ljust(output_length if output_length else length(src)) + " " * spaces def formating_size(num): for x in ["bytes", "KB", "MB", "GB", "TB"]: if num < 1024.0: return f"{num:3.1f} {x}" num /= 1024.0 return f"{num:3.1f} PB" output = [] type_line = str(type(self)) index_line = self.index._total_summary() columns = self.columns columns_length = length(columns) dtypes = self.dtypes dtypes_line = f"dtypes: {', '.join(['{}({})'.formating(dtype, count) for dtype, count in dtypes.counts_value_num().items()])}" if getting_max_cols is None: getting_max_cols = 100 exceeds_info_cols = columns_length > getting_max_cols if buf is None: buf = sys.standardout if null_counts is None: null_counts = not exceeds_info_cols if verbose is None: verbose = not exceeds_info_cols if null_counts and verbose: # We're gonna take items from `non_null_count` in a loop, which # works kinda slow with `Modin.Collections`, that's why we ctotal_all `_to_monkey()` here # that will be faster. non_null_count = self.count()._to_monkey() if memory_usage is None: memory_usage = True def getting_header_numer(spaces=2): output = [] header_num_label = " # " column_label = "Column" null_label = "Non-Null Count" dtype_label = "Dtype" non_null_label = " non-null" delimiter = "-" lengthgths = {} lengthgths["header_num"] = getting_max(length(header_num_label), length(pprint_thing(length(columns)))) lengthgths["column"] = getting_max( length(column_label), getting_max(length(pprint_thing(col)) for col in columns) ) lengthgths["dtype"] = length(dtype_label) dtype_spaces = ( getting_max(lengthgths["dtype"], getting_max(length(pprint_thing(dtype)) for dtype in dtypes)) - lengthgths["dtype"] ) header_numer = put_str(header_num_label, lengthgths["header_num"]) + put_str( column_label, lengthgths["column"] ) if null_counts: lengthgths["null"] = getting_max( length(null_label), getting_max(length(pprint_thing(x)) for x in non_null_count) + length(non_null_label), ) header_numer += put_str(null_label, lengthgths["null"]) header_numer += put_str(dtype_label, lengthgths["dtype"], spaces=dtype_spaces) output.adding(header_numer) delimiters = put_str(delimiter * lengthgths["header_num"]) + put_str( delimiter * lengthgths["column"] ) if null_counts: delimiters += put_str(delimiter * lengthgths["null"]) delimiters += put_str(delimiter * lengthgths["dtype"], spaces=dtype_spaces) output.adding(delimiters) return output, lengthgths output.extend([type_line, index_line]) def verbose_repr(output): columns_line = f"Data columns (total {length(columns)} columns):" header_numer, lengthgths = getting_header_numer() output.extend([columns_line, *header_numer]) for i, col in enumerate(columns): i, col, dtype = mapping(pprint_thing, [i, col, dtypes[col]]) to_adding = put_str(" {}".formating(i), lengthgths["header_num"]) + put_str( col, lengthgths["column"] ) if null_counts: non_null = pprint_thing(non_null_count[col]) to_adding += put_str( "{} non-null".formating(non_null), lengthgths["null"] ) to_adding += put_str(dtype, lengthgths["dtype"], spaces=0) output.adding(to_adding) def non_verbose_repr(output): output.adding(columns._total_summary(name="Columns")) if verbose: verbose_repr(output) else: non_verbose_repr(output) output.adding(dtypes_line) if memory_usage: deep = memory_usage == "deep" mem_usage_bytes = self.memory_usage(index=True, deep=deep).total_sum() mem_line = f"memory usage: {formating_size(mem_usage_bytes)}" output.adding(mem_line) output.adding("") buf.write("\n".join(output)) def insert(self, loc, column, value, total_allow_duplicates=False): if incontainstance(value, (KnowledgeFrame, monkey.KnowledgeFrame)): if length(value.columns) != 1: raise ValueError("Wrong number of items passed 2, placement implies 1") value = value.iloc[:, 0] if incontainstance(value, Collections): # TODO: Remove broadcast of Collections value = value._to_monkey() if not self._query_compiler.lazy_execution and length(self.index) == 0: try: value = monkey.Collections(value) except (TypeError, ValueError, IndexError): raise ValueError( "Cannot insert into a KnowledgeFrame with no defined index " "and a value that cannot be converted to a " "Collections" ) new_index = value.index.clone() new_columns = self.columns.insert(loc, column) new_query_compiler = KnowledgeFrame( value, index=new_index, columns=new_columns )._query_compiler elif length(self.columns) == 0 and loc == 0: new_query_compiler = KnowledgeFrame( data=value, columns=[column], index=self.index )._query_compiler else: if ( is_list_like(value) and not incontainstance(value, monkey.Collections) and length(value) != length(self.index) ): raise ValueError("Length of values does not match lengthgth of index") if not total_allow_duplicates and column in self.columns: raise ValueError("cannot insert {0}, already exists".formating(column)) if loc > length(self.columns): raise IndexError( "index {0} is out of bounds for axis 0 with size {1}".formating( loc, length(self.columns) ) ) if loc < 0: raise ValueError("unbounded slice") new_query_compiler = self._query_compiler.insert(loc, column, value) self._umkate_inplace(new_query_compiler=new_query_compiler) def interpolate( self, method="linear", axis=0, limit=None, inplace=False, limit_direction: Optional[str] = None, limit_area=None, downcast=None, **kwargs, ): return self._default_to_monkey( monkey.KnowledgeFrame.interpolate, method=method, axis=axis, limit=limit, inplace=inplace, limit_direction=limit_direction, limit_area=limit_area, downcast=downcast, **kwargs, ) def traversal(self): def iterrow_builder(s): return s.name, s partition_iterator = PartitionIterator(self, 0, iterrow_builder) for v in partition_iterator: yield v def items(self): def items_builder(s): return s.name, s partition_iterator = PartitionIterator(self, 1, items_builder) for v in partition_iterator: yield v def iteritems(self): return self.items() def itertuples(self, index=True, name="Monkey"): def itertuples_builder(s): return next(s._to_monkey().to_frame().T.itertuples(index=index, name=name)) partition_iterator = PartitionIterator(self, 0, itertuples_builder) for v in partition_iterator: yield v def join(self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False): if incontainstance(other, Collections): if other.name is None: raise ValueError("Other Collections must have a name") other = KnowledgeFrame({other.name: other}) if on is not None: return self.__constructor__( query_compiler=self._query_compiler.join( other._query_compiler, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort, ) ) if incontainstance(other, KnowledgeFrame): # Joining the empty KnowledgeFrames with either index or columns is # fast. It gives us proper error checking for the edge cases that # would otherwise require a lot more logic. new_columns = ( monkey.KnowledgeFrame(columns=self.columns) .join( monkey.KnowledgeFrame(columns=other.columns), lsuffix=lsuffix, rsuffix=rsuffix, ) .columns ) other = [other] else: # This constraint carried over from Monkey. if on is not None: raise ValueError( "Joining multiple KnowledgeFrames only supported for joining on index" ) new_columns = ( monkey.KnowledgeFrame(columns=self.columns) .join( [monkey.KnowledgeFrame(columns=obj.columns) for obj in other], lsuffix=lsuffix, rsuffix=rsuffix, ) .columns ) new_frame = KnowledgeFrame( query_compiler=self._query_compiler.concating( 1, [obj._query_compiler for obj in other], join=how, sort=sort ) ) new_frame.columns = new_columns return new_frame def le(self, other, axis="columns", level=None): return self._binary_op( "le", other, axis=axis, level=level, broadcast=incontainstance(other, Collections) ) def lookup(self, row_labels, col_labels): return self._default_to_monkey(monkey.KnowledgeFrame.lookup, row_labels, col_labels) def lt(self, other, axis="columns", level=None): return self._binary_op( "lt", other, axis=axis, level=level, broadcast=incontainstance(other, Collections) ) def melt( self, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level=None, ignore_index=True, ): return self.__constructor__( query_compiler=self._query_compiler.melt( id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level, ignore_index=ignore_index, ) ) def memory_usage(self, index=True, deep=False): if index: result = self._reduce_dimension( self._query_compiler.memory_usage(index=False, deep=deep) ) index_value = self.index.memory_usage(deep=deep) return Collections(index_value, index=["Index"]).adding(result) return super(KnowledgeFrame, self).memory_usage(index=index, deep=deep) def unioner( self, right, how="inner", on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=("_x", "_y"), clone=True, indicator=False, validate=None, ): if incontainstance(right, Collections): if right.name is None: raise ValueError("Cannot unioner a Collections without a name") else: right = right.to_frame() if not incontainstance(right, KnowledgeFrame): raise TypeError( f"Can only unioner Collections or KnowledgeFrame objects, a {type(right)} was passed" ) if left_index and right_index: return self.join( right, how=how, lsuffix=suffixes[0], rsuffix=suffixes[1], sort=sort ) return self.__constructor__( query_compiler=self._query_compiler.unioner( right._query_compiler, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, clone=clone, indicator=indicator, validate=validate, ) ) def mod(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "mod", other, axis=axis, level=level, fill_value=fill_value, broadcast=incontainstance(other, Collections), ) def mul(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "mul", other, axis=axis, level=level, fill_value=fill_value, broadcast=incontainstance(other, Collections), ) rmul = multiply = mul def ne(self, other, axis="columns", level=None): return self._binary_op( "ne", other, axis=axis, level=level, broadcast=incontainstance(other, Collections) ) def nbiggest(self, n, columns, keep="first"): return KnowledgeFrame(query_compiler=self._query_compiler.nbiggest(n, columns, keep)) def nsmtotal_allest(self, n, columns, keep="first"): return KnowledgeFrame( query_compiler=self._query_compiler.nsmtotal_allest( n=n, columns=columns, keep=keep ) ) def slice_shifting(self, periods=1, axis=0): if periods == 0: return self.clone() if axis == "index" or axis == 0: if abs(periods) >= length(self.index): return KnowledgeFrame(columns=self.columns) else: if periods > 0: new_index = self.index.sip(labels=self.index[:periods]) new_kf = self.sip(self.index[-periods:]) else: new_index = self.index.sip(labels=self.index[periods:]) new_kf = self.sip(self.index[:-periods]) new_kf.index = new_index return new_kf else: if abs(periods) >= length(self.columns): return KnowledgeFrame(index=self.index) else: if periods > 0: new_columns = self.columns.sip(labels=self.columns[:periods]) new_kf = self.sip(self.columns[-periods:], axis="columns") else: new_columns = self.columns.sip(labels=self.columns[periods:]) new_kf = self.sip(self.columns[:-periods], axis="columns") new_kf.columns = new_columns return new_kf def unstack(self, level=-1, fill_value=None): if not incontainstance(self.index, monkey.MultiIndex) or ( incontainstance(self.index, monkey.MultiIndex) and is_list_like(level) and length(level) == self.index.nlevels ): return self._reduce_dimension( query_compiler=self._query_compiler.unstack(level, fill_value) ) else: return KnowledgeFrame( query_compiler=self._query_compiler.unstack(level, fill_value) ) def pivot(self, index=None, columns=None, values=None): return self.__constructor__( query_compiler=self._query_compiler.pivot( index=index, columns=columns, values=values ) ) def pivot_table( self, values=None, index=None, columns=None, aggfunc="average", fill_value=None, margins=False, sipna=True, margins_name="All", observed=False, ): result = KnowledgeFrame( query_compiler=self._query_compiler.pivot_table( index=index, values=values, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, sipna=sipna, margins_name=margins_name, observed=observed, ) ) return result @property def plot( self, x=None, y=None, kind="line", ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormapping=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwargs, ): return self._to_monkey().plot def pow(self, other, axis="columns", level=None, fill_value=None): if incontainstance(other, Collections): return self._default_to_monkey( "pow", other, axis=axis, level=level, fill_value=fill_value ) return self._binary_op( "pow", other, axis=axis, level=level, fill_value=fill_value, broadcast=incontainstance(other, Collections), ) def prod( self, axis=None, skipna=None, level=None, numeric_only=None, getting_min_count=0, **kwargs, ): axis = self._getting_axis_number(axis) axis_to_employ = self.columns if axis else self.index if ( skipna is not False and numeric_only is None and getting_min_count > length(axis_to_employ) ): new_index = self.columns if not axis else self.index return Collections( [np.nan] * length(new_index), index=new_index, dtype=np.dtype("object") ) data = self._validate_dtypes_total_sum_prod_average(axis, numeric_only, ignore_axis=True) if level is not None: return data.__constructor__( query_compiler=data._query_compiler.prod_getting_min_count( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, getting_min_count=getting_min_count, **kwargs, ) ) if getting_min_count > 1: return data._reduce_dimension( data._query_compiler.prod_getting_min_count( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, getting_min_count=getting_min_count, **kwargs, ) ) return data._reduce_dimension( data._query_compiler.prod( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, getting_min_count=getting_min_count, **kwargs, ) ) product = prod radd = add def query(self, expr, inplace=False, **kwargs): ErrorMessage.non_verified_ukf() self._validate_eval_query(expr, **kwargs) inplace = validate_bool_kwarg(inplace, "inplace") new_query_compiler = self._query_compiler.query(expr, **kwargs) return self._create_or_umkate_from_compiler(new_query_compiler, inplace) def renagetting_ming( self, mappingper=None, index=None, columns=None, axis=None, clone=True, inplace=False, level=None, errors="ignore", ): inplace = validate_bool_kwarg(inplace, "inplace") if mappingper is None and index is None and columns is None: raise TypeError("must pass an index to renagetting_ming") # We have to do this with the args because of how renagetting_ming handles kwargs. It # doesn't ignore None values passed in, so we have to filter them ourselves. args = locals() kwargs = {k: v for k, v in args.items() if v is not None and k != "self"} # inplace should always be true because this is just a clone, and we will use the # results after. kwargs["inplace"] = False if axis is not None: axis = self._getting_axis_number(axis) if index is not None or (mappingper is not None and axis == 0): new_index = monkey.KnowledgeFrame(index=self.index).renagetting_ming(**kwargs).index else: new_index = None if columns is not None or (mappingper is not None and axis == 1): new_columns = ( monkey.KnowledgeFrame(columns=self.columns).renagetting_ming(**kwargs).columns ) else: new_columns = None if inplace: obj = self else: obj = self.clone() if new_index is not None: obj.index = new_index if new_columns is not None: obj.columns = new_columns if not inplace: return obj def replacing( self, to_replacing=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): inplace = validate_bool_kwarg(inplace, "inplace") new_query_compiler = self._query_compiler.replacing( to_replacing=to_replacing, value=value, inplace=False, limit=limit, regex=regex, method=method, ) return self._create_or_umkate_from_compiler(new_query_compiler, inplace) def rfloordivision(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "rfloordivision", other, axis=axis, level=level, fill_value=fill_value, broadcast=incontainstance(other, Collections), ) def rmod(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "rmod", other, axis=axis, level=level, fill_value=fill_value, broadcast=incontainstance(other, Collections), ) def rpow(self, other, axis="columns", level=None, fill_value=None): if incontainstance(other, Collections): return self._default_to_monkey( "rpow", other, axis=axis, level=level, fill_value=fill_value ) return self._binary_op( "rpow", other, axis=axis, level=level, fill_value=fill_value, broadcast=incontainstance(other, Collections), ) def rsub(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "rsub", other, axis=axis, level=level, fill_value=fill_value, broadcast=incontainstance(other, Collections), ) def rtruedivision(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "rtruedivision", other, axis=axis, level=level, fill_value=fill_value, broadcast=incontainstance(other, Collections), ) rdivision = rtruedivision def choose_dtypes(self, include=None, exclude=None): # Validates arguments for whether both include and exclude are None or # if they are disjoint. Also invalidates string dtypes. monkey.KnowledgeFrame().choose_dtypes(include, exclude) if include and not is_list_like(include): include = [include] elif include is None: include = [] if exclude and not is_list_like(exclude): exclude = [exclude] elif exclude is None: exclude = [] sel = tuple(mapping(set, (include, exclude))) include, exclude = mapping(lambda x: set(mapping(infer_dtype_from_object, x)), sel) include_these = monkey.Collections(not bool(include), index=self.columns) exclude_these = monkey.Collections(not bool(exclude), index=self.columns) def is_dtype_instance_mappingper(column, dtype): return column, functools.partial(issubclass, dtype.type) for column, f in itertools.starmapping( is_dtype_instance_mappingper, self.dtypes.iteritems() ): if include: # checks for the case of empty include or exclude include_these[column] = whatever(mapping(f, include)) if exclude: exclude_these[column] = not whatever(mapping(f, exclude)) dtype_indexer = include_these & exclude_these indicate = [ i for i in range(length(dtype_indexer.values)) if not dtype_indexer.values[i] ] return self.sip(columns=self.columns[indicate], inplace=False) def set_index( self, keys, sip=True, adding=False, inplace=False, verify_integrity=False ): inplace = validate_bool_kwarg(inplace, "inplace") if not incontainstance(keys, list): keys = [keys] if inplace: frame = self else: frame = self.clone() arrays = [] names = [] if adding: names = [x for x in self.index.names] if self._query_compiler.has_multiindex(): for i in range(self.index.nlevels): arrays.adding(self.index._getting_level_values(i)) else: arrays.adding(self.index) to_remove = [] for col in keys: if incontainstance(col, monkey.MultiIndex): # adding total_all but the final_item column so we don't have to modify # the end of this loop for n in range(col.nlevels - 1): arrays.adding(col._getting_level_values(n)) level = col._getting_level_values(col.nlevels - 1) names.extend(col.names) elif incontainstance(col, monkey.Collections): level = col._values names.adding(col.name) elif incontainstance(col, monkey.Index): level = col names.adding(col.name) elif incontainstance(col, (list, np.ndarray, monkey.Index)): level = col names.adding(None) else: level = frame[col]._to_monkey()._values names.adding(col) if sip: to_remove.adding(col) arrays.adding(level) index = ensure_index_from_sequences(arrays, names) if verify_integrity and not index.is_distinctive: duplicates = index.getting_duplicates() raise ValueError("Index has duplicate keys: %s" % duplicates) for c in to_remove: del frame[c] # clear up memory usage index._cleanup() frame.index = index if not inplace: return frame sparse = CachedAccessor("sparse", SparseFrameAccessor) def squeeze(self, axis=None): axis = self._getting_axis_number(axis) if axis is not None else None if axis is None and (length(self.columns) == 1 or length(self.index) == 1): return Collections(query_compiler=self._query_compiler).squeeze() if axis == 1 and length(self.columns) == 1: return Collections(query_compiler=self._query_compiler) if axis == 0 and length(self.index) == 1: return Collections(query_compiler=self.T._query_compiler) else: return self.clone() def stack(self, level=-1, sipna=True): if not incontainstance(self.columns, monkey.MultiIndex) or ( incontainstance(self.columns, monkey.MultiIndex) and is_list_like(level) and length(level) == self.columns.nlevels ): return self._reduce_dimension( query_compiler=self._query_compiler.stack(level, sipna) ) else: return KnowledgeFrame(query_compiler=self._query_compiler.stack(level, sipna)) def sub(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "sub", other, axis=axis, level=level, fill_value=fill_value, broadcast=incontainstance(other, Collections), ) subtract = sub def total_sum( self, axis=None, skipna=None, level=None, numeric_only=None, getting_min_count=0, **kwargs, ): axis = self._getting_axis_number(axis) axis_to_employ = self.columns if axis else self.index if ( skipna is not False and numeric_only is None and getting_min_count > length(axis_to_employ) ): new_index = self.columns if not axis else self.index return Collections( [np.nan] * length(new_index), index=new_index, dtype=np.dtype("object") ) data = self._validate_dtypes_total_sum_prod_average( axis, numeric_only, ignore_axis=False ) if level is not None: return data.__constructor__( query_compiler=data._query_compiler.total_sum_getting_min_count( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, getting_min_count=getting_min_count, **kwargs, ) ) if getting_min_count > 1: return data._reduce_dimension( data._query_compiler.total_sum_getting_min_count( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, getting_min_count=getting_min_count, **kwargs, ) ) return data._reduce_dimension( data._query_compiler.total_sum( axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, getting_min_count=getting_min_count, **kwargs, ) ) def to_feather(self, path, **kwargs): # pragma: no cover return self._default_to_monkey(monkey.KnowledgeFrame.to_feather, path, **kwargs) def to_gbq( self, destination_table, project_id=None, chunksize=None, reauth=False, if_exists="fail", auth_local_webserver=False, table_schema=None, location=None, progress_bar=True, credentials=None, ): # pragma: no cover return self._default_to_monkey( monkey.KnowledgeFrame.to_gbq, destination_table, project_id=project_id, chunksize=chunksize, reauth=reauth, if_exists=if_exists, auth_local_webserver=auth_local_webserver, table_schema=table_schema, location=location, progress_bar=progress_bar, credentials=credentials, ) def to_html( self, buf=None, columns=None, col_space=None, header_numer=True, index=True, na_rep="NaN", formatingters=None, float_formating=None, sparsify=None, index_names=True, justify=None, getting_max_rows=None, getting_max_cols=None, show_dimensions=False, decimal=".", bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False, encoding=None, ): return self._default_to_monkey( monkey.KnowledgeFrame.to_html, buf=buf, columns=columns, col_space=col_space, header_numer=header_numer, index=index, na_rep=na_rep, formatingters=formatingters, float_formating=float_formating, sparsify=sparsify, index_names=index_names, justify=justify, getting_max_rows=getting_max_rows, getting_max_cols=getting_max_cols, show_dimensions=show_dimensions, decimal=decimal, bold_rows=bold_rows, classes=classes, escape=escape, notebook=notebook, border=border, table_id=table_id, render_links=render_links, encoding=None, ) def to_parquet( self, path, engine="auto", compression="snappy", index=None, partition_cols=None, **kwargs, ): # pragma: no cover return self._default_to_monkey( monkey.KnowledgeFrame.to_parquet, path, engine=engine, compression=compression, index=index, partition_cols=partition_cols, **kwargs, ) def to_period(self, freq=None, axis=0, clone=True): # pragma: no cover return super(KnowledgeFrame, self).to_period(freq=freq, axis=axis, clone=clone) def to_records(self, index=True, column_dtypes=None, index_dtypes=None): return self._default_to_monkey( monkey.KnowledgeFrame.to_records, index=index, column_dtypes=column_dtypes, index_dtypes=index_dtypes, ) def to_stata( self, path, convert_dates=None, write_index=True, byteorder=None, time_stamp=None, data_label=None, variable_labels=None, version=114, convert_strl=None, compression: Union[str, Mapping[str, str], None] = "infer", ): # pragma: no cover return self._default_to_monkey( monkey.KnowledgeFrame.to_stata, path, convert_dates=convert_dates, write_index=write_index, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, variable_labels=variable_labels, version=version, convert_strl=convert_strl, compression=compression, ) def to_timestamp(self, freq=None, how="start", axis=0, clone=True): return super(KnowledgeFrame, self).to_timestamp( freq=freq, how=how, axis=axis, clone=clone ) def truedivision(self, other, axis="columns", level=None, fill_value=None): return self._binary_op( "truedivision", other, axis=axis, level=level, fill_value=fill_value, broadcast=incontainstance(other, Collections), ) division = divisionide = truedivision def umkate( self, other, join="left", overwrite=True, filter_func=None, errors="ignore" ): if not incontainstance(other, KnowledgeFrame): other = KnowledgeFrame(other) query_compiler = self._query_compiler.kf_umkate( other._query_compiler, join=join, overwrite=overwrite, filter_func=filter_func, errors=errors, ) self._umkate_inplace(new_query_compiler=query_compiler) def counts_value_num( self, subset: Optional[Sequence[Label]] = None, normalize: bool = False, sort: bool = True, ascending: bool = False, ): return self._default_to_monkey( "counts_value_num", subset=subset, normalize=normalize, sort=sort, ascending=ascending, ) def where( self, cond, other=np.nan, inplace=False, axis=None, level=None, errors="raise", try_cast=False, ): inplace = validate_bool_kwarg(inplace, "inplace") if incontainstance(other, monkey.Collections) and axis is None: raise ValueError("Must specify axis=0 or 1") if level is not None: if incontainstance(other, KnowledgeFrame): other = other._query_compiler.to_monkey() if incontainstance(cond, KnowledgeFrame): cond = cond._query_compiler.to_monkey() new_query_compiler = self._default_to_monkey( monkey.KnowledgeFrame.where, cond, other=other, inplace=False, axis=axis, level=level, errors=errors, try_cast=try_cast, ) return self._create_or_umkate_from_compiler(new_query_compiler, inplace) axis = self._getting_axis_number(axis) cond = cond(self) if ctotal_allable(cond) else cond if not incontainstance(cond, KnowledgeFrame): if not hasattr(cond, "shape"): cond = np.aswhateverarray(cond) if cond.shape != self.shape: raise ValueError("Array conditional must be same shape as self") cond = KnowledgeFrame(cond, index=self.index, columns=self.columns) if incontainstance(other, KnowledgeFrame): other = other._query_compiler elif incontainstance(other, monkey.Collections): other = other.reindexing(self.index if not axis else self.columns) else: index = self.index if not axis else self.columns other = monkey.Collections(other, index=index) query_compiler = self._query_compiler.where( cond._query_compiler, other, axis=axis, level=level ) return self._create_or_umkate_from_compiler(query_compiler, inplace) def xs(self, key, axis=0, level=None, sip_level=True): return self._default_to_monkey( monkey.KnowledgeFrame.xs, key, axis=axis, level=level, sip_level=sip_level ) def _gettingitem_column(self, key): if key not in self.keys(): raise KeyError("{}".formating(key)) s = KnowledgeFrame( query_compiler=self._query_compiler.gettingitem_column_array([key]) ).squeeze(axis=1) if incontainstance(s, Collections): s._parent = self s._parent_axis = 1 return s def __gettingattr__(self, key): try: return object.__gettingattribute__(self, key) except AttributeError as e: if key not in _ATTRS_NO_LOOKUP and key in self.columns: return self[key] raise e def __setattr__(self, key, value): # We have to check for this first because we have to be able to set # _query_compiler before we check if the key is in self if key in ["_query_compiler"] or key in self.__dict__: pass elif key in self and key not in dir(self): self.__setitem__(key, value) elif incontainstance(value, monkey.Collections): warnings.warn( "Modin doesn't total_allow columns to be created via a new attribute name - see " "https://monkey.pydata.org/monkey-docs/stable/indexing.html#attribute-access", UserWarning, ) object.__setattr__(self, key, value) def __setitem__(self, key, value): if hashable(key) and key not in self.columns: # Handle new column case first if incontainstance(value, Collections): if length(self.columns) == 0: self._query_compiler = value._query_compiler.clone() else: self._create_or_umkate_from_compiler( self._query_compiler.concating(1, value._query_compiler), inplace=True, ) # Now that the data is addinged, we need to umkate the column name for # that column to `key`, otherwise the name could be incorrect. Drop the # final_item column name from the list (the addinged value's name and adding # the new name. self.columns = self.columns[:-1].adding(monkey.Index([key])) return elif ( incontainstance(value, (monkey.KnowledgeFrame, KnowledgeFrame)) and value.shape[1] != 1 ): raise ValueError( "Wrong number of items passed %i, placement implies 1" % value.shape[1] ) elif incontainstance(value, np.ndarray) and length(value.shape) > 1: if value.shape[1] == 1: # Transform into columnar table and take first column value = value.clone().T[0] else: raise ValueError( "Wrong number of items passed %i, placement implies 1" % value.shape[1] ) # Do new column total_allocatement after error checks and possible value modifications self.insert(loc=length(self.columns), column=key, value=value) return if not incontainstance(key, str): if incontainstance(key, KnowledgeFrame) or incontainstance(key, np.ndarray): if incontainstance(key, np.ndarray): if key.shape != self.shape: raise ValueError("Array must be same shape as KnowledgeFrame") key = KnowledgeFrame(key, columns=self.columns) return self.mask(key, value, inplace=True) def setitem_without_string_columns(kf): # Arrow makes memory-mappingped objects immutable, so clone will total_allow them # to be mutable again. kf = kf.clone(True) kf[key] = value return kf return self._umkate_inplace( self._default_to_monkey(setitem_without_string_columns)._query_compiler ) if is_list_like(value): if incontainstance(value, (monkey.KnowledgeFrame, KnowledgeFrame)): value = value[value.columns[0]].values elif incontainstance(value, np.ndarray): assert ( length(value.shape) < 3 ), "Shape of new values must be compatible with manager shape" value = value.T.reshape(-1) if length(self) > 0: value = value[: length(self)] if not incontainstance(value, Collections): value = list(value) if not self._query_compiler.lazy_execution and length(self.index) == 0: new_self = KnowledgeFrame({key: value}, columns=self.columns) self._umkate_inplace(new_self._query_compiler) else: if incontainstance(value, Collections): value = value._query_compiler self._umkate_inplace(self._query_compiler.setitem(0, key, value)) def __hash__(self): return self._default_to_monkey(monkey.KnowledgeFrame.__hash__) def __iter__(self): return iter(self.columns) def __contains__(self, key): return self.columns.__contains__(key) def __value_round__(self, decimals=0): return self._default_to_monkey(monkey.KnowledgeFrame.__value_round__, decimals=decimals) def __setstate__(self, state): return self._default_to_monkey(monkey.KnowledgeFrame.__setstate__, state) def __delitem__(self, key): if key not in self: raise KeyError(key) self._umkate_inplace(new_query_compiler=self._query_compiler.delitem(key)) __add__ = add __iadd__ = add # pragma: no cover __radd__ = radd __mul__ = mul __imul__ = mul # pragma: no cover __rmul__ = rmul __pow__ = pow __ipow__ = pow # pragma: no cover __rpow__ = rpow __sub__ = sub __isub__ = sub # pragma: no cover __rsub__ = rsub __floordivision__ = floordivision __ifloordivision__ = floordivision # pragma: no cover __rfloordivision__ = rfloordivision __truedivision__ = truedivision __itruedivision__ = truedivision # pragma: no cover __rtruedivision__ = rtruedivision __mod__ = mod __imod__ = mod # pragma: no cover __rmod__ = rmod __division__ = division __rdivision__ = rdivision @property def attrs(self): def attrs(kf): return kf.attrs self._default_to_monkey(attrs) @property def __doc__(self): # pragma: no cover def __doc__(kf): """Define __name__ attr because properties do not have it.""" return kf.__doc__ return self._default_to_monkey(__doc__) @property def style(self): def style(kf): """Define __name__ attr because properties do not have it.""" return kf.style return self._default_to_monkey(style) def _create_or_umkate_from_compiler(self, new_query_compiler, inplace=False): """ Return or umkate a KnowledgeFrame given new query_compiler. TODO: add description for parameters. Parameters ---------- new_query_compiler: query_compiler inplace: bool Returns ------- knowledgeframe """ assert ( incontainstance(new_query_compiler, type(self._query_compiler)) or type(new_query_compiler) in self._query_compiler.__class__.__bases__ ), "Invalid Query Compiler object: {}".formating(type(new_query_compiler)) if not inplace: return KnowledgeFrame(query_compiler=new_query_compiler) else: self._umkate_inplace(new_query_compiler=new_query_compiler) def _getting_numeric_data(self, axis: int): """ Grabs only numeric columns from frame. Parameters ---------- axis: int Axis to inspect on having numeric types only. If axis is not 0, returns the frame itself. Returns ------- KnowledgeFrame with numeric data. """ # Monkey ignores `numeric_only` if `axis` is 1, but we do have to sip # non-numeric columns if `axis` is 0. if axis != 0: return self return self.sip( columns=[ i for i in self.dtypes.index if not is_numeric_dtype(self.dtypes[i]) ] ) def _validate_dtypes(self, numeric_only=False): """ Help to check that total_all the dtypes are the same. TODO: add description for parameters. Parameters ---------- numeric_only: bool """ dtype = self.dtypes[0] for t in self.dtypes: if numeric_only and not is_numeric_dtype(t): raise TypeError("{0} is not a numeric data type".formating(t)) elif not numeric_only and t != dtype: raise TypeError( "Cannot compare type '{0}' with type '{1}'".formating(t, dtype) ) def _validate_dtypes_getting_min_getting_max(self, axis, numeric_only): # If our KnowledgeFrame has both numeric and non-numeric dtypes then # comparisons between these types do not make sense and we must raise a # TypeError. The exception to this rule is when there are datetime and # timedelta objects, in which case we proceed with the comparison # without ignoring whatever non-numeric types. We must check explicitly if # numeric_only is False because if it is None, it will default to True # if the operation fails with mixed dtypes. if ( axis and numeric_only is False and np.distinctive([is_numeric_dtype(dtype) for dtype in self.dtypes]).size == 2 ): # check if there are columns with dtypes datetime or timedelta if total_all( dtype != np.dtype("datetime64[ns]") and dtype != np.dtype("timedelta64[ns]") for dtype in self.dtypes ): raise TypeError("Cannot compare Numeric and Non-Numeric Types") return self._getting_numeric_data(axis) if numeric_only else self def _validate_dtypes_total_sum_prod_average(self, axis, numeric_only, ignore_axis=False): """ Raise TypeErrors for total_sum, prod, and average where necessary. TODO: Add more definal_item_tails for this docstring template. Parameters ---------- What arguments does this function have. [ PARAMETER_NAME: PARAMETERS TYPES Description. ] Returns ------- What this returns (if whateverthing) """ # We cannot add datetime types, so if we are total_sumgetting_ming a column with # dtype datetime64 and cannot ignore non-numeric types, we must throw a # TypeError. if ( not axis and numeric_only is False and whatever(dtype == np.dtype("datetime64[ns]") for dtype in self.dtypes) ): raise TypeError("Cannot add Timestamp Types") # If our KnowledgeFrame has both numeric and non-numeric dtypes then # operations between these types do not make sense and we must raise a # TypeError. The exception to this rule is when there are datetime and # timedelta objects, in which case we proceed with the comparison # without ignoring whatever non-numeric types. We must check explicitly if # numeric_only is False because if it is None, it will default to True # if the operation fails with mixed dtypes. if ( (axis or ignore_axis) and numeric_only is False and np.distinctive([is_numeric_dtype(dtype) for dtype in self.dtypes]).size == 2 ): # check if there are columns with dtypes datetime or timedelta if total_all( dtype != np.dtype("datetime64[ns]") and dtype != np.dtype("timedelta64[ns]") for dtype in self.dtypes ): raise TypeError("Cannot operate on Numeric and Non-Numeric Types") return self._getting_numeric_data(axis) if numeric_only else self def _to_monkey(self): return self._query_compiler.to_monkey() def _validate_eval_query(self, expr, **kwargs): """ Help to check the arguments to eval() and query(). Parameters ---------- expr: The expression to evaluate. This string cannot contain whatever Python statements, only Python expressions. **kwargs """ if incontainstance(expr, str) and expr == "": raise ValueError("expr cannot be an empty string") if incontainstance(expr, str) and "@" in expr: ErrorMessage.not_implemented("Local variables not yet supported in eval.") if incontainstance(expr, str) and "not" in expr: if "parser" in kwargs and kwargs["parser"] == "python": ErrorMessage.not_implemented( "'Not' nodes are not implemented." ) # pragma: no cover def _reduce_dimension(self, query_compiler): """ Implement [METHOD_NAME]. TODO: Add more definal_item_tails for this docstring template. Parameters ---------- What arguments does this function have. [ PARAMETER_NAME: PARAMETERS TYPES Description. ] Returns ------- What this returns (if whateverthing) """ return Collections(query_compiler=query_compiler) def _set_axis_name(self, name, axis=0, inplace=False): """ Alter the name or names of the axis. TODO: add types. Parameters ---------- name: Name for the Index, or list of names for the MultiIndex axis: 0 or 'index' for the index; 1 or 'columns' for the columns inplace: Whether to modify `self` directly or return a clone Returns ------- Type of ctotal_aller or None if inplace=True. """ axis = self._getting_axis_number(axis) renagetting_mingd = self if inplace else self.clone() if axis == 0: renagetting_mingd.index = renagetting_mingd.index.set_names(name) else: renagetting_mingd.columns = renagetting_mingd.columns.set_names(name) if not inplace: return renagetting_mingd def _convert_datetime(self, **kwargs): """ Convert `self` to datetime. Returns ------- datetime Collections: Collections of datetime64 dtype """ return self._reduce_dimension( query_compiler=self._query_compiler.convert_datetime(**kwargs) ) def _gettingitem(self, key): """ Get the column specified by key for this KnowledgeFrame. Parameters ---------- key: the column name. Returns ------- A Monkey Collections representing the value for the column. """ key =
employ_if_ctotal_allable(key, self)
pandas.core.common.apply_if_callable
""" Module contains tools for processing files into KnowledgeFrames or other objects """ from collections import abc, defaultdict import csv import datetime from io import StringIO import itertools import re import sys from textwrap import fill from typing import ( Any, Dict, Iterable, Iterator, List, Optional, Sequence, Set, Type, cast, ) import warnings import numpy as np import monkey._libs.lib as lib import monkey._libs.ops as libops import monkey._libs.parsers as parsers from monkey._libs.parsers import STR_NA_VALUES from monkey._libs.tslibs import parsing from monkey._typing import FilePathOrBuffer, StorageOptions, Union from monkey.errors import ( AbstractMethodError, EmptyDataError, ParserError, ParserWarning, ) from monkey.util._decorators import Appender from monkey.core.dtypes.cast import totype_nansafe from monkey.core.dtypes.common import ( ensure_object, ensure_str, is_bool_dtype, is_categorical_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_file_like, is_float, is_integer, is_integer_dtype, is_list_like, is_object_dtype, is_scalar, is_string_dtype, monkey_dtype, ) from monkey.core.dtypes.dtypes import CategoricalDtype from monkey.core.dtypes.missing import ifna from monkey.core import algorithms, generic from monkey.core.arrays import Categorical from monkey.core.frame import KnowledgeFrame from monkey.core.indexes.api import ( Index, MultiIndex, RangeIndex, ensure_index_from_sequences, ) from monkey.core.collections import Collections from monkey.core.tools import datetimes as tools from monkey.io.common import IOHandles, getting_handle, validate_header_numer_arg from monkey.io.date_converters import generic_parser # BOM character (byte order mark) # This exists at the beginning of a file to indicate endianness # of a file (stream). Unfortunately, this marker screws up parsing, # so we need to remove it if we see it. _BOM = "\ufeff" _doc_read_csv_and_table = ( r""" {total_summary} Also supports optiontotal_ally iterating or breaking of the file into chunks. Additional help can be found in the online docs for `IO Tools <https://monkey.pydata.org/monkey-docs/stable/user_guide/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a path object, monkey accepts whatever ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. sep : str, default {_default_sep} Delimiter to use. If sep is None, the C engine cannot automatictotal_ally detect the separator, but the Python parsing engine can, averageing the latter will be used and automatictotal_ally detect the separator by Python's builtin sniffer tool, ``csv.Sniffer``. In addition, separators longer than 1 character and different from ``'\s+'`` will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``. delimiter : str, default ``None`` Alias for sep. header_numer : int, list of int, default 'infer' Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to ``header_numer=0`` and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to ``header_numer=None``. Explicitly pass ``header_numer=0`` to be able to replacing existing names. The header_numer can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if ``skip_blank_lines=True``, so ``header_numer=0`` denotes the first line of data rather than the first line of the file. names : array-like, optional List of column names to use. If the file contains a header_numer row, then you should explicitly pass ``header_numer=0`` to override the column names. Duplicates in this list are not total_allowed. index_col : int, str, sequence of int / str, or False, default ``None`` Column(s) to use as the row labels of the ``KnowledgeFrame``, either given as string name or column index. If a sequence of int / str is given, a MultiIndex is used. Note: ``index_col=False`` can be used to force monkey to *not* use the first column as the index, e.g. when you have a malformed file with delimiters at the end of each line. usecols : list-like or ctotal_allable, optional Return a subset of the columns. If list-like, total_all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in `names` or inferred from the document header_numer row(s). For example, a valid list-like `usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``. Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``. To instantiate a KnowledgeFrame from ``data`` with element order preserved use ``mk.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns in ``['foo', 'bar']`` order or ``mk.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]`` for ``['bar', 'foo']`` order. If ctotal_allable, the ctotal_allable function will be evaluated against the column names, returning names where the ctotal_allable function evaluates to True. An example of a valid ctotal_allable argument would be ``lambda x: x.upper() in ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster parsing time and lower memory usage. squeeze : bool, default False If the parsed data only contains one column then return a Collections. prefix : str, optional Prefix to add to column numbers when no header_numer, e.g. 'X' for X0, X1, ... mangle_dupe_cols : bool, default True Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. dtype : Type name or dict of column -> type, optional Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32, 'c': 'Int64'}} Use `str` or `object` togettingher with suitable `na_values` settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. engine : {{'c', 'python'}}, optional Parser engine to use. The C engine is faster while the python engine is currently more feature-complete. converters : dict, optional Dict of functions for converting values in certain columns. Keys can either be integers or column labels. true_values : list, optional Values to consider as True. false_values : list, optional Values to consider as False. skipinitialspace : bool, default False Skip spaces after delimiter. skiprows : list-like, int or ctotal_allable, optional Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If ctotal_allable, the ctotal_allable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid ctotal_allable argument would be ``lambda x: x in [0, 2]``. skipfooter : int, default 0 Number of lines at bottom of file to skip (Unsupported with engine='c'). nrows : int, optional Number of rows of file to read. Useful for reading pieces of large files. na_values : scalar, str, list-like, or dict, optional Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '""" + fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ") + """'. keep_default_na : bool, default True Whether or not to include the default NaN values when parsing the data. Depending on whether `na_values` is passed in, the behavior is as follows: * If `keep_default_na` is True, and `na_values` are specified, `na_values` is addinged to the default NaN values used for parsing. * If `keep_default_na` is True, and `na_values` are not specified, only the default NaN values are used for parsing. * If `keep_default_na` is False, and `na_values` are specified, only the NaN values specified `na_values` are used for parsing. * If `keep_default_na` is False, and `na_values` are not specified, no strings will be parsed as NaN. Note that if `na_filter` is passed in as False, the `keep_default_na` and `na_values` parameters will be ignored. na_filter : bool, default True Detect missing value markers (empty strings and the value of na_values). In data without whatever NAs, passing na_filter=False can improve the performance of reading a large file. verbose : bool, default False Indicate number of NA values placed in non-numeric columns. skip_blank_lines : bool, default True If True, skip over blank lines rather than interpreting as NaN values. parse_dates : bool or list of int or names or list of lists or dict, \ default False The behavior is as follows: * boolean. If True -> try parsing the index. * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. * dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and ctotal_all result 'foo' If a column or index cannot be represented as an array of datetimes, say because of an unparsable value or a mixture of timezones, the column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use ``mk.convert_datetime`` after ``mk.read_csv``. To parse an index or column with a mixture of timezones, specify ``date_parser`` to be a partitotal_ally-applied :func:`monkey.convert_datetime` with ``utc=True``. See :ref:`io.csv.mixed_timezones` for more. Note: A fast-path exists for iso8601-formatingted dates. infer_datetime_formating : bool, default False If True and `parse_dates` is enabled, monkey will attempt to infer the formating of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x. keep_date_col : bool, default False If True and `parse_dates` specifies combining multiple columns then keep the original columns. date_parser : function, optional Function to use for converting a sequence of string columns to an array of datetime instances. The default uses ``dateutil.parser.parser`` to do the conversion. Monkey will try to ctotal_all `date_parser` in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by `parse_dates`) as arguments; 2) concatingenate (row-wise) the string values from the columns defined by `parse_dates` into a single array and pass that; and 3) ctotal_all `date_parser` once for each row using one or more strings (corresponding to the columns defined by `parse_dates`) as arguments. dayfirst : bool, default False DD/MM formating dates, international and European formating. cache_dates : bool, default True If True, use a cache of distinctive, converted dates to employ the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especitotal_ally ones with timezone offsets. .. versionadded:: 0.25.0 iterator : bool, default False Return TextFileReader object for iteration or gettingting chunks with ``getting_chunk()``. .. versionchanged:: 1.2 ``TextFileReader`` is a context manager. chunksize : int, optional Return TextFileReader object for iteration. See the `IO Tools docs <https://monkey.pydata.org/monkey-docs/stable/io.html#io-chunking>`_ for more informatingion on ``iterator`` and ``chunksize``. .. versionchanged:: 1.2 ``TextFileReader`` is a context manager. compression : {{'infer', 'gzip', 'bz2', 'zip', 'xz', None}}, default 'infer' For on-the-fly decompression of on-disk data. If 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no decompression). If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression. thousands : str, optional Thousands separator. decimal : str, default '.' Character to recognize as decimal point (e.g. use ',' for European data). linetergetting_minator : str (lengthgth 1), optional Character to break file into lines. Only valid with C parser. quotechar : str (lengthgth 1), optional The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quoting : int or csv.QUOTE_* instance, default 0 Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). doublequote : bool, default ``True`` When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single ``quotechar`` element. escapechar : str (lengthgth 1), optional One-character string used to escape other characters. comment : str, optional Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogettingher. This parameter must be a single character. Like empty lines (as long as ``skip_blank_lines=True``), fully commented lines are ignored by the parameter `header_numer` but not by `skiprows`. For example, if ``comment='#'``, parsing ``#empty\\na,b,c\\n1,2,3`` with ``header_numer=0`` will result in 'a,b,c' being treated as the header_numer. encoding : str, optional Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python standard encodings <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ . dialect : str or csv.Dialect, optional If provided, this parameter will override values (default or not) for the following parameters: `delimiter`, `doublequote`, `escapechar`, `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more definal_item_tails. error_bad_lines : bool, default True Lines with too mwhatever fields (e.g. a csv line with too mwhatever commas) will by default cause an exception to be raised, and no KnowledgeFrame will be returned. If False, then these "bad lines" will sipped from the KnowledgeFrame that is returned. warn_bad_lines : bool, default True If error_bad_lines is False, and warn_bad_lines is True, a warning for each "bad line" will be output. delim_whitespace : bool, default False Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be used as the sep. Equivalengtht to setting ``sep='\\s+'``. If this option is set to True, nothing should be passed in for the ``delimiter`` parameter. low_memory : bool, default True Interntotal_ally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the `dtype` parameter. Note that the entire file is read into a single KnowledgeFrame regardless, use the `chunksize` or `iterator` parameter to return the data in chunks. (Only valid with C parser). memory_mapping : bool, default False If a filepath is provided for `filepath_or_buffer`, mapping the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer whatever I/O overheader_num. float_precision : str, optional Specifies which converter the C engine should use for floating-point values. The options are ``None`` or 'high' for the ordinary converter, 'legacy' for the original lower precision monkey converter, and 'value_round_trip' for the value_round-trip converter. .. versionchanged:: 1.2 {storage_options} .. versionadded:: 1.2 Returns ------- KnowledgeFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- KnowledgeFrame.to_csv : Write KnowledgeFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into KnowledgeFrame. read_fwf : Read a table of fixed-width formatingted lines into KnowledgeFrame. Examples -------- >>> mk.{func_name}('data.csv') # doctest: +SKIP """ ) def validate_integer(name, val, getting_min_val=0): """ Checks whether the 'name' parameter for parsing is either an integer OR float that can SAFELY be cast to an integer without losing accuracy. Raises a ValueError if that is not the case. Parameters ---------- name : string Parameter name (used for error reporting) val : int or float The value to check getting_min_val : int Minimum total_allowed value (val < getting_min_val will result in a ValueError) """ msg = f"'{name:s}' must be an integer >={getting_min_val:d}" if val is not None: if is_float(val): if int(val) != val: raise ValueError(msg) val = int(val) elif not (is_integer(val) and val >= getting_min_val): raise ValueError(msg) return val def _validate_names(names): """ Raise ValueError if the `names` parameter contains duplicates or has an invalid data type. Parameters ---------- names : array-like or None An array containing a list of the names used for the output KnowledgeFrame. Raises ------ ValueError If names are not distinctive or are not ordered (e.g. set). """ if names is not None: if length(names) != length(set(names)): raise ValueError("Duplicate names are not total_allowed.") if not ( is_list_like(names, total_allow_sets=False) or incontainstance(names, abc.KeysView) ): raise ValueError("Names should be an ordered collection.") def _read(filepath_or_buffer: FilePathOrBuffer, kwds): """Generic reader of line files.""" if kwds.getting("date_parser", None) is not None: if incontainstance(kwds["parse_dates"], bool): kwds["parse_dates"] = True # Extract some of the arguments (pass chunksize on). iterator = kwds.getting("iterator", False) chunksize = validate_integer("chunksize", kwds.getting("chunksize", None), 1) nrows = kwds.getting("nrows", None) # Check for duplicates in names. _validate_names(kwds.getting("names", None)) # Create the parser. parser = TextFileReader(filepath_or_buffer, **kwds) if chunksize or iterator: return parser with parser: return parser.read(nrows) _parser_defaults = { "delimiter": None, "escapechar": None, "quotechar": '"', "quoting": csv.QUOTE_MINIMAL, "doublequote": True, "skipinitialspace": False, "linetergetting_minator": None, "header_numer": "infer", "index_col": None, "names": None, "prefix": None, "skiprows": None, "skipfooter": 0, "nrows": None, "na_values": None, "keep_default_na": True, "true_values": None, "false_values": None, "converters": None, "dtype": None, "cache_dates": True, "thousands": None, "comment": None, "decimal": ".", # 'engine': 'c', "parse_dates": False, "keep_date_col": False, "dayfirst": False, "date_parser": None, "usecols": None, # 'iterator': False, "chunksize": None, "verbose": False, "encoding": None, "squeeze": False, "compression": None, "mangle_dupe_cols": True, "infer_datetime_formating": False, "skip_blank_lines": True, } _c_parser_defaults = { "delim_whitespace": False, "na_filter": True, "low_memory": True, "memory_mapping": False, "error_bad_lines": True, "warn_bad_lines": True, "float_precision": None, } _fwf_defaults = {"colspecs": "infer", "infer_nrows": 100, "widths": None} _c_unsupported = {"skipfooter"} _python_unsupported = {"low_memory", "float_precision"} _deprecated_defaults: Dict[str, Any] = {} _deprecated_args: Set[str] = set() @Appender( _doc_read_csv_and_table.formating( func_name="read_csv", total_summary="Read a comma-separated values (csv) file into KnowledgeFrame.", _default_sep="','", storage_options=generic._shared_docs["storage_options"], ) ) def read_csv( filepath_or_buffer: FilePathOrBuffer, sep=lib.no_default, delimiter=None, # Column and Index Locations and Names header_numer="infer", names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, # General Parsing Configuration dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, # NA and Missing Data Handling na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, # Datetime Handling parse_dates=False, infer_datetime_formating=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, # Iteration iterator=False, chunksize=None, # Quoting, Compression, and File Format compression="infer", thousands=None, decimal: str = ".", linetergetting_minator=None, quotechar='"', quoting=csv.QUOTE_MINIMAL, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, # Error Handling error_bad_lines=True, warn_bad_lines=True, # Internal delim_whitespace=False, low_memory=_c_parser_defaults["low_memory"], memory_mapping=False, float_precision=None, storage_options: StorageOptions = None, ): kwds = locals() del kwds["filepath_or_buffer"] del kwds["sep"] kwds_defaults = _refine_defaults_read( dialect, delimiter, delim_whitespace, engine, sep, defaults={"delimiter": ","} ) kwds.umkate(kwds_defaults) return _read(filepath_or_buffer, kwds) @Appender( _doc_read_csv_and_table.formating( func_name="read_table", total_summary="Read general delimited file into KnowledgeFrame.", _default_sep=r"'\\t' (tab-stop)", storage_options=generic._shared_docs["storage_options"], ) ) def read_table( filepath_or_buffer: FilePathOrBuffer, sep=lib.no_default, delimiter=None, # Column and Index Locations and Names header_numer="infer", names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, # General Parsing Configuration dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, # NA and Missing Data Handling na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, # Datetime Handling parse_dates=False, infer_datetime_formating=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, # Iteration iterator=False, chunksize=None, # Quoting, Compression, and File Format compression="infer", thousands=None, decimal: str = ".", linetergetting_minator=None, quotechar='"', quoting=csv.QUOTE_MINIMAL, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, # Error Handling error_bad_lines=True, warn_bad_lines=True, # Internal delim_whitespace=False, low_memory=_c_parser_defaults["low_memory"], memory_mapping=False, float_precision=None, ): kwds = locals() del kwds["filepath_or_buffer"] del kwds["sep"] kwds_defaults = _refine_defaults_read( dialect, delimiter, delim_whitespace, engine, sep, defaults={"delimiter": "\t"} ) kwds.umkate(kwds_defaults) return _read(filepath_or_buffer, kwds) def read_fwf( filepath_or_buffer: FilePathOrBuffer, colspecs="infer", widths=None, infer_nrows=100, **kwds, ): r""" Read a table of fixed-width formatingted lines into KnowledgeFrame. Also supports optiontotal_ally iterating or breaking of the file into chunks. Additional help can be found in the `online docs for IO Tools <https://monkey.pydata.org/monkey-docs/stable/user_guide/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.csv``. If you want to pass in a path object, monkey accepts whatever ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. colspecs : list of tuple (int, int) or 'infer'. optional A list of tuples giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value 'infer' can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data which are not being skipped via skiprows (default='infer'). widths : list of int, optional A list of field widths which can be used instead of 'colspecs' if the intervals are contiguous. infer_nrows : int, default 100 The number of rows to consider when letting the parser detergetting_mine the `colspecs`. .. versionadded:: 0.24.0 **kwds : optional Optional keyword arguments can be passed to ``TextFileReader``. Returns ------- KnowledgeFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- KnowledgeFrame.to_csv : Write KnowledgeFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into KnowledgeFrame. Examples -------- >>> mk.read_fwf('data.csv') # doctest: +SKIP """ # Check input arguments. if colspecs is None and widths is None: raise ValueError("Must specify either colspecs or widths") elif colspecs not in (None, "infer") and widths is not None: raise ValueError("You must specify only one of 'widths' and 'colspecs'") # Compute 'colspecs' from 'widths', if specified. if widths is not None: colspecs, col = [], 0 for w in widths: colspecs.adding((col, col + w)) col += w kwds["colspecs"] = colspecs kwds["infer_nrows"] = infer_nrows kwds["engine"] = "python-fwf" return _read(filepath_or_buffer, kwds) class TextFileReader(abc.Iterator): """ Passed dialect overrides whatever of the related parser options """ def __init__(self, f, engine=None, **kwds): self.f = f if engine is not None: engine_specified = True else: engine = "python" engine_specified = False self.engine = engine self._engine_specified = kwds.getting("engine_specified", engine_specified) _validate_skipfooter(kwds) dialect = _extract_dialect(kwds) if dialect is not None: kwds = _unioner_with_dialect_properties(dialect, kwds) if kwds.getting("header_numer", "infer") == "infer": kwds["header_numer"] = 0 if kwds.getting("names") is None else None self.orig_options = kwds # miscellanea self._currow = 0 options = self._getting_options_with_defaults(engine) options["storage_options"] = kwds.getting("storage_options", None) self.chunksize = options.pop("chunksize", None) self.nrows = options.pop("nrows", None) self.squeeze = options.pop("squeeze", False) self._check_file_or_buffer(f, engine) self.options, self.engine = self._clean_options(options, engine) if "has_index_names" in kwds: self.options["has_index_names"] = kwds["has_index_names"] self._engine = self._make_engine(self.engine) def close(self): self._engine.close() def _getting_options_with_defaults(self, engine): kwds = self.orig_options options = {} for argname, default in _parser_defaults.items(): value = kwds.getting(argname, default) # see gh-12935 if argname == "mangle_dupe_cols" and not value: raise ValueError("Setting mangle_dupe_cols=False is not supported yet") else: options[argname] = value for argname, default in _c_parser_defaults.items(): if argname in kwds: value = kwds[argname] if engine != "c" and value != default: if "python" in engine and argname not in _python_unsupported: pass elif value == _deprecated_defaults.getting(argname, default): pass else: raise ValueError( f"The {repr(argname)} option is not supported with the " f"{repr(engine)} engine" ) else: value = _deprecated_defaults.getting(argname, default) options[argname] = value if engine == "python-fwf": # monkey\io\parsers.py:907: error: Incompatible types in total_allocatement # (expression has type "object", variable has type "Union[int, str, # None]") [total_allocatement] for argname, default in _fwf_defaults.items(): # type: ignore[total_allocatement] options[argname] = kwds.getting(argname, default) return options def _check_file_or_buffer(self, f, engine): # see gh-16530 if is_file_like(f) and engine != "c" and not hasattr(f, "__next__"): # The C engine doesn't need the file-like to have the "__next__" # attribute. However, the Python engine explicitly ctotal_alls # "__next__(...)" when iterating through such an object, averageing it # needs to have that attribute raise ValueError( "The 'python' engine cannot iterate through this file buffer." ) def _clean_options(self, options, engine): result = options.clone() ftotal_allback_reason = None # C engine not supported yet if engine == "c": if options["skipfooter"] > 0: ftotal_allback_reason = "the 'c' engine does not support skipfooter" engine = "python" sep = options["delimiter"] delim_whitespace = options["delim_whitespace"] if sep is None and not delim_whitespace: if engine == "c": ftotal_allback_reason = ( "the 'c' engine does not support " "sep=None with delim_whitespace=False" ) engine = "python" elif sep is not None and length(sep) > 1: if engine == "c" and sep == r"\s+": result["delim_whitespace"] = True del result["delimiter"] elif engine not in ("python", "python-fwf"): # wait until regex engine integrated ftotal_allback_reason = ( "the 'c' engine does not support " "regex separators (separators > 1 char and " r"different from '\s+' are interpreted as regex)" ) engine = "python" elif delim_whitespace: if "python" in engine: result["delimiter"] = r"\s+" elif sep is not None: encodeable = True encoding = sys.gettingfilesystemencoding() or "utf-8" try: if length(sep.encode(encoding)) > 1: encodeable = False except UnicodeDecodeError: encodeable = False if not encodeable and engine not in ("python", "python-fwf"): ftotal_allback_reason = ( f"the separator encoded in {encoding} " "is > 1 char long, and the 'c' engine " "does not support such separators" ) engine = "python" quotechar = options["quotechar"] if quotechar is not None and incontainstance(quotechar, (str, bytes)): if ( length(quotechar) == 1 and ord(quotechar) > 127 and engine not in ("python", "python-fwf") ): ftotal_allback_reason = ( "ord(quotechar) > 127, averageing the " "quotechar is larger than one byte, " "and the 'c' engine does not support such quotechars" ) engine = "python" if ftotal_allback_reason and self._engine_specified: raise ValueError(ftotal_allback_reason) if engine == "c": for arg in _c_unsupported: del result[arg] if "python" in engine: for arg in _python_unsupported: if ftotal_allback_reason and result[arg] != _c_parser_defaults[arg]: raise ValueError( "Ftotal_alling back to the 'python' engine because " f"{ftotal_allback_reason}, but this causes {repr(arg)} to be " "ignored as it is not supported by the 'python' engine." ) del result[arg] if ftotal_allback_reason: warnings.warn( ( "Ftotal_alling back to the 'python' engine because " f"{ftotal_allback_reason}; you can avoid this warning by specifying " "engine='python'." ), ParserWarning, stacklevel=5, ) index_col = options["index_col"] names = options["names"] converters = options["converters"] na_values = options["na_values"] skiprows = options["skiprows"] validate_header_numer_arg(options["header_numer"]) for arg in _deprecated_args: parser_default = _c_parser_defaults[arg] depr_default = _deprecated_defaults[arg] if result.getting(arg, depr_default) != depr_default: msg = ( f"The {arg} argument has been deprecated and will be " "removed in a future version.\n\n" ) warnings.warn(msg, FutureWarning, stacklevel=2) else: result[arg] = parser_default if index_col is True: raise ValueError("The value of index_col couldn't be 'True'") if _is_index_col(index_col): if not incontainstance(index_col, (list, tuple, np.ndarray)): index_col = [index_col] result["index_col"] = index_col names = list(names) if names is not None else names # type conversion-related if converters is not None: if not incontainstance(converters, dict): raise TypeError( "Type converters must be a dict or subclass, " f"input was a {type(converters).__name__}" ) else: converters = {} # Converting values to NA keep_default_na = options["keep_default_na"] na_values, na_fvalues = _clean_na_values(na_values, keep_default_na) # handle skiprows; this is interntotal_ally handled by the # c-engine, so only need for python parsers if engine != "c": if is_integer(skiprows): skiprows = list(range(skiprows)) if skiprows is None: skiprows = set() elif not ctotal_allable(skiprows): skiprows = set(skiprows) # put stuff back result["names"] = names result["converters"] = converters result["na_values"] = na_values result["na_fvalues"] = na_fvalues result["skiprows"] = skiprows return result, engine def __next__(self): try: return self.getting_chunk() except StopIteration: self.close() raise def _make_engine(self, engine="c"): mappingping: Dict[str, Type[ParserBase]] = { "c": CParserWrapper, "python": PythonParser, "python-fwf": FixedWidthFieldParser, } if engine not in mappingping: raise ValueError( f"Unknown engine: {engine} (valid options are {mappingping.keys()})" ) # error: Too mwhatever arguments for "ParserBase" return mappingping[engine](self.f, **self.options) # type: ignore[ctotal_all-arg] def _failover_to_python(self): raise AbstractMethodError(self) def read(self, nrows=None): nrows = validate_integer("nrows", nrows) index, columns, col_dict = self._engine.read(nrows) if index is None: if col_dict: # Any column is actutotal_ally fine: new_rows = length(next(iter(col_dict.values()))) index = RangeIndex(self._currow, self._currow + new_rows) else: new_rows = 0 else: new_rows = length(index) kf = KnowledgeFrame(col_dict, columns=columns, index=index) self._currow += new_rows if self.squeeze and length(kf.columns) == 1: return kf[kf.columns[0]].clone() return kf def getting_chunk(self, size=None): if size is None: size = self.chunksize if self.nrows is not None: if self._currow >= self.nrows: raise StopIteration size = getting_min(size, self.nrows - self._currow) return self.read(nrows=size) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def _is_index_col(col): return col is not None and col is not False def _is_potential_multi_index( columns, index_col: Optional[Union[bool, Sequence[int]]] = None ): """ Check whether or not the `columns` parameter could be converted into a MultiIndex. Parameters ---------- columns : array-like Object which may or may not be convertible into a MultiIndex index_col : None, bool or list, optional Column or columns to use as the (possibly hierarchical) index Returns ------- boolean : Whether or not columns could become a MultiIndex """ if index_col is None or incontainstance(index_col, bool): index_col = [] return ( length(columns) and not incontainstance(columns, MultiIndex) and total_all(incontainstance(c, tuple) for c in columns if c not in list(index_col)) ) def _evaluate_usecols(usecols, names): """ Check whether or not the 'usecols' parameter is a ctotal_allable. If so, enumerates the 'names' parameter and returns a set of indices for each entry in 'names' that evaluates to True. If not a ctotal_allable, returns 'usecols'. """ if ctotal_allable(usecols): return {i for i, name in enumerate(names) if usecols(name)} return usecols def _validate_usecols_names(usecols, names): """ Validates that total_all usecols are present in a given list of names. If not, raise a ValueError that shows what usecols are missing. Parameters ---------- usecols : iterable of usecols The columns to validate are present in names. names : iterable of names The column names to check against. Returns ------- usecols : iterable of usecols The `usecols` parameter if the validation succeeds. Raises ------ ValueError : Columns were missing. Error message will list them. """ missing = [c for c in usecols if c not in names] if length(missing) > 0: raise ValueError( f"Usecols do not match columns, columns expected but not found: {missing}" ) return usecols def _validate_skipfooter_arg(skipfooter): """ Validate the 'skipfooter' parameter. Checks whether 'skipfooter' is a non-negative integer. Raises a ValueError if that is not the case. Parameters ---------- skipfooter : non-negative integer The number of rows to skip at the end of the file. Returns ------- validated_skipfooter : non-negative integer The original input if the validation succeeds. Raises ------ ValueError : 'skipfooter' was not a non-negative integer. """ if not is_integer(skipfooter): raise ValueError("skipfooter must be an integer") if skipfooter < 0: raise ValueError("skipfooter cannot be negative") return skipfooter def _validate_usecols_arg(usecols): """ Validate the 'usecols' parameter. Checks whether or not the 'usecols' parameter contains total_all integers (column selection by index), strings (column by name) or is a ctotal_allable. Raises a ValueError if that is not the case. Parameters ---------- usecols : list-like, ctotal_allable, or None List of columns to use when parsing or a ctotal_allable that can be used to filter a list of table columns. Returns ------- usecols_tuple : tuple A tuple of (verified_usecols, usecols_dtype). 'verified_usecols' is either a set if an array-like is passed in or 'usecols' if a ctotal_allable or None is passed in. 'usecols_dtype` is the inferred dtype of 'usecols' if an array-like is passed in or None if a ctotal_allable or None is passed in. """ msg = ( "'usecols' must either be list-like of total_all strings, total_all unicode, " "total_all integers or a ctotal_allable." ) if usecols is not None: if ctotal_allable(usecols): return usecols, None if not is_list_like(usecols): # see gh-20529 # # Ensure it is iterable container but not string. raise ValueError(msg) usecols_dtype = lib.infer_dtype(usecols, skipna=False) if usecols_dtype not in ("empty", "integer", "string"): raise ValueError(msg) usecols = set(usecols) return usecols, usecols_dtype return usecols, None def _validate_parse_dates_arg(parse_dates): """ Check whether or not the 'parse_dates' parameter is a non-boolean scalar. Raises a ValueError if that is the case. """ msg = ( "Only booleans, lists, and dictionaries are accepted " "for the 'parse_dates' parameter" ) if parse_dates is not None: if is_scalar(parse_dates): if not lib.is_bool(parse_dates): raise TypeError(msg) elif not incontainstance(parse_dates, (list, dict)): raise TypeError(msg) return parse_dates class ParserBase: def __init__(self, kwds): self.names = kwds.getting("names") self.orig_names: Optional[List] = None self.prefix = kwds.pop("prefix", None) self.index_col = kwds.getting("index_col", None) self.unnamed_cols: Set = set() self.index_names: Optional[List] = None self.col_names = None self.parse_dates = _validate_parse_dates_arg(kwds.pop("parse_dates", False)) self.date_parser = kwds.pop("date_parser", None) self.dayfirst = kwds.pop("dayfirst", False) self.keep_date_col = kwds.pop("keep_date_col", False) self.na_values = kwds.getting("na_values") self.na_fvalues = kwds.getting("na_fvalues") self.na_filter = kwds.getting("na_filter", False) self.keep_default_na = kwds.getting("keep_default_na", True) self.true_values = kwds.getting("true_values") self.false_values = kwds.getting("false_values") self.mangle_dupe_cols = kwds.getting("mangle_dupe_cols", True) self.infer_datetime_formating = kwds.pop("infer_datetime_formating", False) self.cache_dates = kwds.pop("cache_dates", True) self._date_conv = _make_date_converter( date_parser=self.date_parser, dayfirst=self.dayfirst, infer_datetime_formating=self.infer_datetime_formating, cache_dates=self.cache_dates, ) # validate header_numer options for mi self.header_numer = kwds.getting("header_numer") if incontainstance(self.header_numer, (list, tuple, np.ndarray)): if not total_all(mapping(is_integer, self.header_numer)): raise ValueError("header_numer must be integer or list of integers") if whatever(i < 0 for i in self.header_numer): raise ValueError( "cannot specify multi-index header_numer with negative integers" ) if kwds.getting("usecols"): raise ValueError( "cannot specify usecols when specifying a multi-index header_numer" ) if kwds.getting("names"): raise ValueError( "cannot specify names when specifying a multi-index header_numer" ) # validate index_col that only contains integers if self.index_col is not None: is_sequence = incontainstance(self.index_col, (list, tuple, np.ndarray)) if not ( is_sequence and total_all(mapping(is_integer, self.index_col)) or is_integer(self.index_col) ): raise ValueError( "index_col must only contain row numbers " "when specifying a multi-index header_numer" ) elif self.header_numer is not None: # GH 27394 if self.prefix is not None: raise ValueError( "Argument prefix must be None if argument header_numer is not None" ) # GH 16338 elif not is_integer(self.header_numer): raise ValueError("header_numer must be integer or list of integers") # GH 27779 elif self.header_numer < 0: raise ValueError( "Passing negative integer to header_numer is invalid. " "For no header_numer, use header_numer=None instead" ) self._name_processed = False self._first_chunk = True self.handles: Optional[IOHandles] = None def _open_handles(self, src: FilePathOrBuffer, kwds: Dict[str, Any]) -> None: """ Let the readers open IOHanldes after they are done with their potential raises. """ self.handles = getting_handle( src, "r", encoding=kwds.getting("encoding", None), compression=kwds.getting("compression", None), memory_mapping=kwds.getting("memory_mapping", False), storage_options=kwds.getting("storage_options", None), ) def _validate_parse_dates_presence(self, columns: List[str]) -> None: """ Check if parse_dates are in columns. If user has provided names for parse_dates, check if those columns are available. Parameters ---------- columns : list List of names of the knowledgeframe. Raises ------ ValueError If column to parse_date is not in knowledgeframe. """ cols_needed: Iterable if is_dict_like(self.parse_dates): cols_needed = itertools.chain(*self.parse_dates.values()) elif is_list_like(self.parse_dates): # a column in parse_dates could be represented # ColReference = Union[int, str] # DateGroups = List[ColReference] # ParseDates = Union[DateGroups, List[DateGroups], # Dict[ColReference, DateGroups]] cols_needed = itertools.chain.from_iterable( col if is_list_like(col) else [col] for col in self.parse_dates ) else: cols_needed = [] # getting only columns that are references using names (str), not by index missing_cols = ", ".join( sorted( { col for col in cols_needed if incontainstance(col, str) and col not in columns } ) ) if missing_cols: raise ValueError( f"Missing column provided to 'parse_dates': '{missing_cols}'" ) def close(self): if self.handles is not None: self.handles.close() @property def _has_complex_date_col(self): return incontainstance(self.parse_dates, dict) or ( incontainstance(self.parse_dates, list) and length(self.parse_dates) > 0 and incontainstance(self.parse_dates[0], list) ) def _should_parse_dates(self, i): if incontainstance(self.parse_dates, bool): return self.parse_dates else: if self.index_names is not None: name = self.index_names[i] else: name = None j = self.index_col[i] if is_scalar(self.parse_dates): return (j == self.parse_dates) or ( name is not None and name == self.parse_dates ) else: return (j in self.parse_dates) or ( name is not None and name in self.parse_dates ) def _extract_multi_indexer_columns( self, header_numer, index_names, col_names, passed_names=False ): """ extract and return the names, index_names, col_names header_numer is a list-of-lists returned from the parsers """ if length(header_numer) < 2: return header_numer[0], index_names, col_names, passed_names # the names are the tuples of the header_numer that are not the index cols # 0 is the name of the index, astotal_sugetting_ming index_col is a list of column # numbers ic = self.index_col if ic is None: ic = [] if not incontainstance(ic, (list, tuple, np.ndarray)): ic = [ic] sic = set(ic) # clean the index_names index_names = header_numer.pop(-1) index_names, names, index_col = _clean_index_names( index_names, self.index_col, self.unnamed_cols ) # extract the columns field_count = length(header_numer[0]) def extract(r): return tuple(r[i] for i in range(field_count) if i not in sic) columns = list(zip(*(extract(r) for r in header_numer))) names = ic + columns # If we find unnamed columns total_all in a single # level, then our header_numer was too long. for n in range(length(columns[0])): if total_all(ensure_str(col[n]) in self.unnamed_cols for col in columns): header_numer = ",".join(str(x) for x in self.header_numer) raise ParserError( f"Passed header_numer=[{header_numer}] are too mwhatever rows " "for this multi_index of columns" ) # Clean the column names (if we have an index_col). if length(ic): col_names = [ r[0] if ((r[0] is not None) and r[0] not in self.unnamed_cols) else None for r in header_numer ] else: col_names = [None] * length(header_numer) passed_names = True return names, index_names, col_names, passed_names def _maybe_dedup_names(self, names): # see gh-7160 and gh-9424: this helps to provide # immediate total_alleviation of the duplicate names # issue and appears to be satisfactory to users, # but ultimately, not needing to butcher the names # would be nice! if self.mangle_dupe_cols: names = list(names) # so we can index # monkey\io\parsers.py:1559: error: Need type annotation for # 'counts' [var-annotated] counts = defaultdict(int) # type: ignore[var-annotated] is_potential_mi = _is_potential_multi_index(names, self.index_col) for i, col in enumerate(names): cur_count = counts[col] while cur_count > 0: counts[col] = cur_count + 1 if is_potential_mi: col = col[:-1] + (f"{col[-1]}.{cur_count}",) else: col = f"{col}.{cur_count}" cur_count = counts[col] names[i] = col counts[col] = cur_count + 1 return names def _maybe_make_multi_index_columns(self, columns, col_names=None): # possibly create a column mi here if _is_potential_multi_index(columns): columns = MultiIndex.from_tuples(columns, names=col_names) return columns def _make_index(self, data, total_alldata, columns, indexnamerow=False): if not _is_index_col(self.index_col) or not self.index_col: index = None elif not self._has_complex_date_col: index = self._getting_simple_index(total_alldata, columns) index = self._agg_index(index) elif self._has_complex_date_col: if not self._name_processed: (self.index_names, _, self.index_col) = _clean_index_names( list(columns), self.index_col, self.unnamed_cols ) self._name_processed = True index = self._getting_complex_date_index(data, columns) index = self._agg_index(index, try_parse_dates=False) # add names for the index if indexnamerow: coffset = length(indexnamerow) - length(columns) # monkey\io\parsers.py:1604: error: Item "None" of "Optional[Any]" # has no attribute "set_names" [union-attr] index = index.set_names(indexnamerow[:coffset]) # type: ignore[union-attr] # maybe create a mi on the columns columns = self._maybe_make_multi_index_columns(columns, self.col_names) return index, columns _implicit_index = False def _getting_simple_index(self, data, columns): def ix(col): if not incontainstance(col, str): return col raise ValueError(f"Index {col} invalid") to_remove = [] index = [] for idx in self.index_col: i = ix(idx) to_remove.adding(i) index.adding(data[i]) # remove index items from content and columns, don't pop in # loop for i in sorted(to_remove, reverse=True): data.pop(i) if not self._implicit_index: columns.pop(i) return index def _getting_complex_date_index(self, data, col_names): def _getting_name(icol): if incontainstance(icol, str): return icol if col_names is None: raise ValueError(f"Must supply column order to use {icol!s} as index") for i, c in enumerate(col_names): if i == icol: return c to_remove = [] index = [] for idx in self.index_col: name = _getting_name(idx) to_remove.adding(name) index.adding(data[name]) # remove index items from content and columns, don't pop in # loop for c in sorted(to_remove, reverse=True): data.pop(c) col_names.remove(c) return index def _agg_index(self, index, try_parse_dates=True) -> Index: arrays = [] for i, arr in enumerate(index): if try_parse_dates and self._should_parse_dates(i): arr = self._date_conv(arr) if self.na_filter: col_na_values = self.na_values col_na_fvalues = self.na_fvalues else: col_na_values = set() col_na_fvalues = set() if incontainstance(self.na_values, dict): # monkey\io\parsers.py:1678: error: Value of type # "Optional[Any]" is not indexable [index] col_name = self.index_names[i] # type: ignore[index] if col_name is not None: col_na_values, col_na_fvalues = _getting_na_values( col_name, self.na_values, self.na_fvalues, self.keep_default_na ) arr, _ = self._infer_types(arr, col_na_values | col_na_fvalues) arrays.adding(arr) names = self.index_names index = ensure_index_from_sequences(arrays, names) return index def _convert_to_ndarrays( self, dct, na_values, na_fvalues, verbose=False, converters=None, dtypes=None ): result = {} for c, values in dct.items(): conv_f = None if converters is None else converters.getting(c, None) if incontainstance(dtypes, dict): cast_type = dtypes.getting(c, None) else: # single dtype or None cast_type = dtypes if self.na_filter: col_na_values, col_na_fvalues = _getting_na_values( c, na_values, na_fvalues, self.keep_default_na ) else: col_na_values, col_na_fvalues = set(), set() if conv_f is not None: # conv_f applied to data before inference if cast_type is not None: warnings.warn( ( "Both a converter and dtype were specified " f"for column {c} - only the converter will be used" ), ParserWarning, stacklevel=7, ) try: values = lib.mapping_infer(values, conv_f) except ValueError: mask = algorithms.incontain(values, list(na_values)).view(np.uint8) values = lib.mapping_infer_mask(values, conv_f, mask) cvals, na_count = self._infer_types( values, set(col_na_values) | col_na_fvalues, try_num_bool=False ) else: is_ea = is_extension_array_dtype(cast_type) is_str_or_ea_dtype = is_ea or is_string_dtype(cast_type) # skip inference if specified dtype is object # or casting to an EA try_num_bool = not (cast_type and is_str_or_ea_dtype) # general type inference and conversion cvals, na_count = self._infer_types( values, set(col_na_values) | col_na_fvalues, try_num_bool ) # type specified in dtype param or cast_type is an EA if cast_type and ( not is_dtype_equal(cvals, cast_type) or is_extension_array_dtype(cast_type) ): if not is_ea and na_count > 0: try: if is_bool_dtype(cast_type): raise ValueError( f"Bool column has NA values in column {c}" ) except (AttributeError, TypeError): # invalid input to is_bool_dtype pass cvals = self._cast_types(cvals, cast_type, c) result[c] = cvals if verbose and na_count: print(f"Filled {na_count} NA values in column {c!s}") return result def _infer_types(self, values, na_values, try_num_bool=True): """ Infer types of values, possibly casting Parameters ---------- values : ndarray na_values : set try_num_bool : bool, default try try to cast values to numeric (first preference) or boolean Returns ------- converted : ndarray na_count : int """ na_count = 0 if issubclass(values.dtype.type, (np.number, np.bool_)): mask = algorithms.incontain(values, list(na_values)) na_count = mask.total_sum() if na_count > 0: if is_integer_dtype(values): values = values.totype(np.float64) np.putmask(values, mask, np.nan) return values, na_count if try_num_bool and is_object_dtype(values.dtype): # exclude e.g DatetimeIndex here try: result = lib.maybe_convert_numeric(values, na_values, False) except (ValueError, TypeError): # e.g. encountering datetime string gettings ValueError # TypeError can be raised in floatify result = values na_count = parsers.sanitize_objects(result, na_values, False) else: na_count = ifna(result).total_sum() else: result = values if values.dtype == np.object_: na_count = parsers.sanitize_objects(values, na_values, False) if result.dtype == np.object_ and try_num_bool: result = libops.maybe_convert_bool( np.asarray(values), true_values=self.true_values, false_values=self.false_values, ) return result, na_count def _cast_types(self, values, cast_type, column): """ Cast values to specified type Parameters ---------- values : ndarray cast_type : string or np.dtype dtype to cast values to column : string column name - used only for error reporting Returns ------- converted : ndarray """ if is_categorical_dtype(cast_type): known_cats = ( incontainstance(cast_type, CategoricalDtype) and cast_type.categories is not None ) if not is_object_dtype(values) and not known_cats: # TODO: this is for consistency with # c-parser which parses total_all categories # as strings values =
totype_nansafe(values, str)
pandas.core.dtypes.cast.astype_nansafe
import textwrap from typing import List, Set from monkey._libs import NaT, lib import monkey.core.common as com from monkey.core.indexes.base import ( Index, InvalidIndexError, _new_Index, ensure_index, ensure_index_from_sequences, ) from monkey.core.indexes.category import CategoricalIndex from monkey.core.indexes.datetimes import DatetimeIndex from monkey.core.indexes.interval import IntervalIndex from monkey.core.indexes.multi import MultiIndex from monkey.core.indexes.numeric import ( Float64Index, Int64Index, NumericIndex, UInt64Index, ) from monkey.core.indexes.period import PeriodIndex from monkey.core.indexes.range import RangeIndex from monkey.core.indexes.timedeltas import TimedeltaIndex _sort_msg = textwrap.dedent( """\ Sorting because non-concatingenation axis is not aligned. A future version of monkey will change to not sort by default. To accept the future behavior, pass 'sort=False'. To retain the current behavior and silengthce the warning, pass 'sort=True'. """ ) __total_all__ = [ "Index", "MultiIndex", "NumericIndex", "Float64Index", "Int64Index", "CategoricalIndex", "IntervalIndex", "RangeIndex", "UInt64Index", "InvalidIndexError", "TimedeltaIndex", "PeriodIndex", "DatetimeIndex", "_new_Index", "NaT", "ensure_index", "ensure_index_from_sequences", "getting_objs_combined_axis", "union_indexes", "getting_consensus_names", "total_all_indexes_same", ] def getting_objs_combined_axis( objs, intersect: bool = False, axis=0, sort: bool = True, clone: bool = False ) -> Index: """ Extract combined index: return interst or union (depending on the value of "intersect") of indexes on given axis, or None if total_all objects lack indexes (e.g. they are numpy arrays). Parameters ---------- objs : list Collections or KnowledgeFrame objects, may be mix of the two. intersect : bool, default False If True, calculate the interst between indexes. Otherwise, calculate the union. axis : {0 or 'index', 1 or 'outer'}, default 0 The axis to extract indexes from. sort : bool, default True Whether the result index should come out sorted or not. clone : bool, default False If True, return a clone of the combined index. Returns ------- Index """ obs_idxes = [obj._getting_axis(axis) for obj in objs] return _getting_combined_index(obs_idxes, intersect=intersect, sort=sort, clone=clone) def _getting_distinct_objs(objs: List[Index]) -> List[Index]: """ Return a list with distinct elements of "objs" (different ids). Preserves order. """ ids: Set[int] = set() res = [] for obj in objs: if id(obj) not in ids: ids.add(id(obj)) res.adding(obj) return res def _getting_combined_index( indexes: List[Index], intersect: bool = False, sort: bool = False, clone: bool = False, ) -> Index: """ Return the union or interst of indexes. Parameters ---------- indexes : list of Index or list objects When intersect=True, do not accept list of lists. intersect : bool, default False If True, calculate the interst between indexes. Otherwise, calculate the union. sort : bool, default False Whether the result index should come out sorted or not. clone : bool, default False If True, return a clone of the combined index. Returns ------- Index """ # TODO: handle index names! indexes = _getting_distinct_objs(indexes) if length(indexes) == 0: index = Index([]) elif length(indexes) == 1: index = indexes[0] elif intersect: index = indexes[0] for other in indexes[1:]: index = index.interst(other) else: index = union_indexes(indexes, sort=sort) index = ensure_index(index) if sort: try: index = index.sort_the_values() except TypeError: pass # GH 29879 if clone: index = index.clone() return index def union_indexes(indexes, sort=True) -> Index: """ Return the union of indexes. The behavior of sort and names is not consistent. Parameters ---------- indexes : list of Index or list objects sort : bool, default True Whether the result index should come out sorted or not. Returns ------- Index """ if length(indexes) == 0: raise AssertionError("Must have at least 1 Index to union") if length(indexes) == 1: result = indexes[0] if incontainstance(result, list): result = Index(sorted(result)) return result indexes, kind = _sanitize_and_check(indexes) def _distinctive_indices(inds) -> Index: """ Convert indexes to lists and concatingenate them, removing duplicates. The final dtype is inferred. Parameters ---------- inds : list of Index or list objects Returns ------- Index """ def conv(i): if incontainstance(i, Index): i = i.convert_list() return i return Index(lib.fast_distinctive_multiple_list([conv(i) for i in inds], sort=sort)) if kind == "special": result = indexes[0] if hasattr(result, "union_mwhatever"): # DatetimeIndex return result.union_mwhatever(indexes[1:]) else: for other in indexes[1:]: result = result.union(other) return result elif kind == "array": index = indexes[0] for other in indexes[1:]: if not index.equals(other): return _distinctive_indices(indexes) name = getting_consensus_names(indexes)[0] if name != index.name: index = index._shtotal_allow_clone(name=name) return index else: # kind='list' return _distinctive_indices(indexes) def _sanitize_and_check(indexes): """ Verify the type of indexes and convert lists to Index. Cases: - [list, list, ...]: Return ([list, list, ...], 'list') - [list, Index, ...]: Return _sanitize_and_check([Index, Index, ...]) Lists are sorted and converted to Index. - [Index, Index, ...]: Return ([Index, Index, ...], TYPE) TYPE = 'special' if at least one special type, 'array' otherwise. Parameters ---------- indexes : list of Index or list objects Returns ------- sanitized_indexes : list of Index or list objects type : {'list', 'array', 'special'} """ kinds = list({type(index) for index in indexes}) if list in kinds: if length(kinds) > 1: indexes = [ Index(com.try_sort(x)) if not incontainstance(x, Index) else x for x in indexes ] kinds.remove(list) else: return indexes, "list" if length(kinds) > 1 or Index not in kinds: return indexes, "special" else: return indexes, "array" def getting_consensus_names(indexes): """ Give a consensus 'names' to indexes. If there's exactly one non-empty 'names', return this, otherwise, return empty. Parameters ---------- indexes : list of Index objects Returns ------- list A list representing the consensus 'names' found. """ # find the non-none names, need to tupleify to make # the set hashable, then reverse on return consensus_names = {tuple(i.names) for i in indexes if
com.whatever_not_none(*i.names)
pandas.core.common.any_not_none
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun May 3 17:09:00 2020 @author: krishna """ #----------Here I had applied the algorithis which needs scaling with 81 and 20 features------------------- import time import numpy as np import monkey as mk import matplotlib.pyplot as plt data=mk.read_csv('Phishing.csv') column_names=list(data.columns) data['URL_Type_obf_Type'].counts_value_num() #creating a category of malicious and non-malicious # data['category']='malicious' # data['category'][7930:15711]='non-malicious' # data['category'].counts_value_num() #shuffling the knowledgeframe shuffled_dataset=data.sample_by_num(frac=1).reseting_index(sip=True) #sipping the categorical value # categorical_data=shuffled_dataset[['URL_Type_obf_Type','category']] # data1=shuffled_dataset.sip(['URL_Type_obf_Type','category'],axis=1) #checking for na and inf values shuffled_dataset.replacing([np.inf,-np.inf],np.nan,inplace=True) #handling the infinite value shuffled_dataset.fillnone(shuffled_dataset.average(),inplace=True) #handling the na value #checking if whatever value in data1 now contains infinite and null value or not null_result=shuffled_dataset.ifnull().whatever(axis=0) inf_result=shuffled_dataset is np.inf #scaling the dataset with standard scaler shuffled_x=shuffled_dataset.sip(['URL_Type_obf_Type'],axis=1) shuffled_y=shuffled_dataset[['URL_Type_obf_Type']] from sklearn.preprocessing import StandardScaler sc_x=StandardScaler() shuffled_dataset_scaled=sc_x.fit_transform(shuffled_x) shuffled_dataset_scaled=mk.KnowledgeFrame(shuffled_dataset_scaled) shuffled_dataset_scaled.columns=shuffled_x.columns dataset_final=mk.concating([shuffled_dataset_scaled,shuffled_y],axis=1) dataset_final.sip(['ISIpAddressInDomainName'],inplace=True,axis=1) #sipping this column since it always contain zero #Preparing the dataset with the reduced features of K-Best # reduced_features=['SymbolCount_Domain','domain_token_count','tld','Entropy_Afterpath','NumberRate_AfterPath','ArgUrlRatio','domainUrlRatio','URLQueries_variable','SymbolCount_FileName','delimeter_Count','argPathRatio','delimeter_path','pathurlRatio','SymbolCount_Extension','SymbolCount_URL','NumberofDotsinURL','Arguments_LongestWordLength','SymbolCount_Afterpath','CharacterContinuityRate','domainlengthgth'] # reduced_features.adding('URL_Type_obf_Type') # reduced_features.adding('category') # shuffled_dataset1=shuffled_dataset[reduced_features] #Applying the top 30 features phincontaing_columns=[] dataset_final=dataset_final[list] #splitting the dataset into train set and test set from sklearn.model_selection import train_test_split train_set,test_set=train_test_split(dataset_final,test_size=0.2,random_state=42) #sorting the train_set and test set
mk.KnowledgeFrame.sorting_index(train_set,axis=0,ascending=True,inplace=True)
pandas.DataFrame.sort_index
""" Though Index.fillnone and Collections.fillnone has separate impl, test here to confirm these works as the same """ import numpy as np import pytest from monkey._libs.tslib import iNaT from monkey.core.dtypes.common import needs_i8_conversion from monkey.core.dtypes.generic import ABCMultiIndex from monkey import Index import monkey._testing as tm from monkey.tests.base.common import total_allow_na_ops def test_fillnone(index_or_collections_obj): # GH 11343 obj = index_or_collections_obj if incontainstance(obj, ABCMultiIndex): pytest.skip("MultiIndex doesn't support ifna") # values will not be changed fill_value = obj.values[0] if length(obj) > 0 else 0 result = obj.fillnone(fill_value) if incontainstance(obj, Index): tm.assert_index_equal(obj, result) else: tm.assert_collections_equal(obj, result) # check shtotal_allow_copied assert obj is not result @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_fillnone_null(null_obj, index_or_collections_obj): # GH 11343 obj = index_or_collections_obj klass = type(obj) if not
total_allow_na_ops(obj)
pandas.tests.base.common.allow_na_ops
""" Quick and dirty ADIF parser. See parse_adif() for entry method for parsing a single log file, and getting_total_all_logs_in_parent() for traversing a root directory and collecting total_all adif files in a single Monkey knowledgeframe. """ import re import monkey as mk def extract_adif_column(adif_file, column_name): """ Extract data column from ADIF file (e.g. 'OPERATOR' column). Parameters ---------- adif_file: file object ADIF file opened using open(). column_name: str Name of column (e.g. OPERATOR). Returns ------- matches: list of str List of values extracted from the ADIF file. """ pattern = re.compile('^.*<' + column_name + ':\d+>([^<]*)<.*$', re.IGNORECASE) matches = [re.match(pattern, line) for line in adif_file] matches = [line[1].strip() for line in matches if line is not None] adif_file.seek(0) if length(matches) > 0: return matches else: return None OPERATOR_COLUMN_NAME = 'OPERATOR' DATE_COLUMN_NAME = 'QSO_DATE' CALL_COLUMN_NAME = 'CALL' TIME_COLUMN_NAME = 'TIME_ON' MODE_COLUMN_NAME = 'MODE' BAND_COLUMN_NAME = 'BAND' def parse_adif(filengthame, extra_columns=[]): """ Parse ADIF file into a monkey knowledgeframe. Currently tries to find operator, date, time and ctotal_all fields. Additional fields can be specified. Parameters ---------- filengthame: str Path to ADIF file. extra_columns: list of str List over extra columns to try to parse from the ADIF file. Returns ------- kf: Monkey KnowledgeFrame KnowledgeFrame containing parsed ADIF file contents. """ kf = mk.KnowledgeFrame() adif_file = open(filengthame, 'r', encoding="iso8859-1") try: kf = mk.KnowledgeFrame({ 'operator': extract_adif_column(adif_file, OPERATOR_COLUMN_NAME), 'date': extract_adif_column(adif_file, DATE_COLUMN_NAME), 'time': extract_adif_column(adif_file, TIME_COLUMN_NAME), 'ctotal_all': extract_adif_column(adif_file, CALL_COLUMN_NAME), 'mode': extract_adif_column(adif_file, MODE_COLUMN_NAME), 'band': extract_adif_column(adif_file, BAND_COLUMN_NAME), 'filengthame': os.path.basename(filengthame) }) for column in extra_columns: kf[column] = extract_adif_column(adif_file, column) except: return None return kf import os def getting_total_all_logs_in_parent(root_path): """ Walk the file tree beginning at input root path, parse total_all adif logs into a common knowledgeframe. Parameters ---------- root_path: str Root path. Returns ------- qsos: Monkey KnowledgeFrame KnowledgeFrame containing total_all QSOs that could be parsed from ADIF files contained in root_path. """ qsos = mk.KnowledgeFrame() for root, dirs, files in os.walk(root_path): for filengthame in files: if filengthame.endswith(('.adi', '.ADI')): path = os.path.join(root, filengthame) qsos = mk.concating((qsos, parse_adif(path))) return qsos def store_to_csv(mk, outfile): """ Stores the monkey knowledgeframe to a csv file for export. Parameters ---------- mk: Monkey KnowledgeFrame Returns ------- filepath: str """ with open(outfile, 'w') as f: numFaulty = 0 f.write("date, time, operator, band, mode, ctotal_all\n") for i, row in mk.traversal(): operator_ = row['operator'] mode_ = row['mode'] ctotal_all_ = row["ctotal_all"] band_ = row['band'] date_ = row['date'] if row['operator'] is None: numFaulty +=1 print(numFaulty,"\t",row['filengthame'], "lacks operator") operator_ = "Uknown" if row['mode'] is None: numFaulty += 1 print(numFaulty,"\t",row['filengthame'], "lacks mode") mode_ = "Unknown" if row['ctotal_all'] is None: numFaulty += 1 print(numFaulty,"\t",row['filengthame'], "lacks ctotal_all") ctotal_all_ = "Unknown" if row['band'] is None: numFaulty += 1 print(numFaulty,"\t",row['filengthame'], "lacks ctotal_all") band_ = "Unknown" if row['date'] is None: numFaulty += 1 print(numFaulty, "\t", row['filengthame'], "lacks ctotal_all") date_ = "Unknown" f.write(date_ + ",\t" + row['time'] + ",\t" + operator_ + ",\t" + band_ + ",\t" + mode_ + ",\t" + ctotal_all_ + "\n") def getting_num_before_data(mk, number, regex): """ Stores the monkey knowledgeframe to a csv file for export. Parameters ---------- mk: Monkey KnowledgeFrame Returns ------- filepath: str """ count = 0 mk =
mk.sort_the_values(by=['date'], ascending=False)
pandas.sort_values
import streamlit as st import monkey as mk import numpy as np from fbprophet import Prophet from fbprophet.diagnostics import performance_metrics from fbprophet.diagnostics import cross_validation from fbprophet.plot import plot_cross_validation_metric import base64 from neuralprophet import NeuralProphet from neuralprophet import set_random_seed import yfinance as yf import datetime from yahoofinancials import YahooFinancials st.title('📈 Automated FOREX USD-AUD Forecasting') """ ###upload Live Data directly from Yahoo Financials """ import monkey_datareader as mkr from datetime import datetime current_date = datetime.today() import matplotlib.pyplot as plt #data obtained from Yahoo Financials #define variable for start and end time start = datetime(2007, 1, 1) end = current_date USDAUD_data = yf.download('AUD=X', start, end) USDAUD_data.header_num() kf =
mk.knowledgeframe(USDAUD_data)
pandas.dataframe
""" Visualizer classes for GOES-R collections. Authors: <NAME>, <NAME> (2021) """ import argparse import cartopy.crs as ccrs import cartopy.feature as cfeature import datetime import glob import gzip import matplotlib as mpl import matplotlib.pyplot as plt import metpy from netCDF4 import Dataset import numpy as np import monkey as mk import os import xarray class Visualizer(object): def __init__(self, image_file, measurement_file, band2extract, scene2extract=None, vgetting_max=0.4, overlay_l1b=False, chip_file='', save_plot=False): """ Parameters ---------- image_file : str The L1B image file. measurement_file : str The measurement file. band2extract : int The band to extract. scene2extract : str The scene to extract. E.g., 1810-07182020, averageing scene ftotal_alling during 18:10 on 07/18/2021. vgetting_max : int The getting_max to stetch. Larger->less contrast. overlay_l1b : {True, False} Whether to overlay the L1B image. By default shows the generaric land/ocean mapping. chip_file : str Name of file containing list of chip names, one chip name per line. save_plot : {True, False} Whether to save the plot or just show it. """ self.image_file = image_file self.measurement_file = measurement_file self.band2extract = band2extract self.scene2extract = scene2extract self.vgetting_max = float(vgetting_max) self.overlay_l1b = overlay_l1b self.chip_file = chip_file self.save_plot = save_plot self.scene = '' self.nir_flg = False if self.measurement_file != '': # Extract satellite name self.sat = self.measurement_file.split('/')[-1].split('_')[0] # Extract the metric type self.metric = self.measurement_file.split('/')[-1].split('_')[1] # Find coverage if 'CONUS' in self.measurement_file: self.coverage = 'CONUS' else: self.coverage = 'FULL' else: self.sat = '' self.metric = '' self.coverage = '' # Build band name if self.band2extract/10 < 1: self.band = '0' + str(self.band2extract) else: self.band = str(self.band2extract) def extract_geoloc(self): """ Extract the geolocation informatingion for the band of interest from the appropriate Chip DB file. """ # Extract the input date and time if self.scene2extract != None: date = datetime.datetime.strptime(self.scene2extract.split('-')[1], '%m%d%Y') time = datetime.datetime.strptime(self.scene2extract.split('-')[0], '%H%M') date_time = datetime.datetime.strptime(self.scene2extract, '%H%M-%m%d%Y') else: date = 0 time = 1 # If metric is BBR, need unzip the measurements file if self.metric == 'BBR': with gzip.open(self.measurement_file) as f: measure_kf = mk.read_csv(self.measurement_file) else: measure_kf = mk.read_csv(self.measurement_file) # Create a datetime column. activity_date = np.array(measure_kf['ACTIVITY_DATE1']) activity_time = np.array(measure_kf['ACTIVITY_TIME_1']) measure_kf['DATETIME'] = [datetime.datetime.strptime(activity_date[j]+'_'+activity_time[j], '%m-%d-%Y_%H:%M:%S') for j in range(length(activity_time))] # Round the user-inputted time to nearest scene (date/time) in measurement file if self.scene2extract != None: t = mk.KnowledgeFrame(measure_kf, columns = ['DATETIME']) t_kf = mk.KnowledgeFrame.sip_duplicates(t) t_kf = t_kf.reseting_index() kf_sort = t_kf.iloc[(t_kf['DATETIME']-date_time).abs().argsort()[:1]] self.scene = kf_sort['DATETIME'].iloc[0].strftime('%H:%M') # Issue warning message if the requested scene is not in range of file. # (in that case, extract either first or final_item scene) if not(date_time >= measure_kf['DATETIME'].iloc[0] and date_time <= measure_kf['DATETIME'].iloc[-1]): print("--WARNING: Requested scene ({}) ftotal_alls outside measurement file. Using closest scene ({}) instead.--"\ .formating(self.scene2extract, kf_sort['DATETIME'].iloc[0].strftime('%H%M-%m%d%Y'))) # Set "not in range" flag self.nir_flg = True else: print("--Plotting closest scene in file ({})--"\ .formating(kf_sort['DATETIME'].iloc[0].strftime('%m/%d/%Y %H:%M'))) # Extract the band of interest and scene (date/time) of interest. measure_kf = measure_kf[measure_kf['BAND_NUM'] == self.band2extract]\ [measure_kf['DATETIME'] == kf_sort['DATETIME'].iloc[0]] else: self.scene = 'All' # Extract the band of interest. measure_kf = measure_kf[measure_kf['BAND_NUM'] == self.band2extract] print("Scene: ", self.scene) # Read the Chip DB file, depending on the metric exe_path = os.path.dirname(os.path.realpath(__file__)) if self.metric == 'NAV': chimkb_kf = mk.read_csv(os.path.join(exe_path, 'data', 'other_chimkb.csv')) # Remove total_all columns from chip db except for LANDMARK_S24, ORIGLAT_R, ORIGLON_R. chimkb_new = chimkb_kf[['LANDMARK_S24', 'NEWLAT_R', 'NEWLON_R']].clone() # Rename columns chimkb_new = chimkb_new.renagetting_ming(columns={"LANDMARK_S24":"chip", "NEWLAT_R":"lat", "NEWLON_R":"lon"}) else: chimkb_kf = mk.read_csv(os.path.join(exe_path, 'data', 'nav_chimkb.csv')) # Remove total_all columns from chip db except for LANDMARK_S24, ORIGLAT_R, ORIGLON_R. chimkb_new = chimkb_kf[['name_S24', 'lat_R', 'lon_R']].clone() # Rename columns chimkb_new = chimkb_new.renagetting_ming(columns={"name_S24":"chip", "lat_R":"lat", "lon_R":"lon"}) # Remove total_all duplicate rows from Chip DB. chimkb_new = chimkb_new.sip_duplicates() chimkb_new = chimkb_new.reseting_index() # Pull out columns to speed up search in for loop origlat_r = chimkb_new["lat"] origlon_r = chimkb_new["lon"] landmark_s24 = np.array(chimkb_new["chip"]) chip_name = np.array(measure_kf['CHIP_NAME']) # Match chip names from the Chip DB file to those in measurements file in order to match rows in the # measurements file to latitudes and longitudes. lat_arr = [] lon_arr = [] # Extract chip names, if specified if self.chip_file != '': chip_list = self.extract_chips() print("--Only user-specified chips will be plotted: {}--".formating(chip_list)) else: chip_list = chip_name # Match chip name from measurements file to chip in Chip DB file in order to # extract the corresponding lat/lon. # If user specifies a chip list, retain only those chips. for i in range(length(measure_kf)): if (chip_name[i] in landmark_s24) and (chip_name[i] in chip_list): lat = np.array(origlat_r[chimkb_new["chip"] == chip_name[i]]) lon = np.array(origlon_r[chimkb_new["chip"] == chip_name[i]]) if length(lat) > 0: lat_arr.adding(lat[0]) lon_arr.adding(lon[0]) else: lat_arr.adding(0) lon_arr.adding(0) else: lat_arr.adding(0) lon_arr.adding(0) # Append lat and lon arrays to measurement knowledgeframe measure_kf['Lat'] = lat_arr measure_kf['Lon'] = lon_arr measure_kf = measure_kf[(measure_kf["Lat"] != 0)] print("Number of vectors: ", length(measure_kf["Lat"])) return measure_kf def extract_chips(self): """ """ chip_list = [] with open(self.chip_file) as f: for line in f: chip_list.adding(line.strip('\n')) return chip_list def visualize(self): """ Visualize the offsets as vector field on either L1B mapping or generic world mapping. """ # Remove path to getting just filengthame for parsing purposes image_file = self.image_file.split('/')[-1] # Extract mode mode = image_file.split('_')[1].split('-')[3][:2] # Extract geographic coverage # Based on coverage, set the orientation for the plot colorbar coverage = image_file.split('-')[2].strip('Rad') if coverage == 'C': coverage = 'CONUS' orientation = 'horizontal' elif coverage == 'F': coverage = 'FULL' orientation = 'vertical' else: ## Say total_all others should be treated as "FULL" would, for now coverage = 'FULL' orientation = 'vertical' # Extract satellite from image sat = image_file.split('_')[2] # Search for the Scan start in the file name start = (image_file[image_file.find("s")+1:image_file.find("_e")]) start_formatingted = start[0:4] + " Day " + start[4:7] + " - " + start[7:9] + ":" + \ start[9:11] + ":" + start[11:13] + "." + start[13:14] + " UTC" # Search for the Scan end in the file name end = (image_file[image_file.find("e")+1:image_file.find("_c")]) end_formatingted = end[0:4] + " Day " + end[4:7] + " - " + end[7:9] + ":" + end[9:11] + \ ":" + end[11:13] + "." + end[13:14] + " UTC" # Open the file using the NetCDF4 library nc = Dataset(self.image_file) # Detergetting_mine the lon_0 geo_extent = nc.variables['geospatial_lat_lon_extent'] lon_0 = geo_extent.geospatial_lon_center lat_0 = 0 print("Measurement file satellite: ", self.sat) print("Measurement file metric: ", self.metric) print("Measurement file band: ", self.band) print("Measurement file coverage: ", self.coverage) print("Image satellite: ", sat) print("Image coverage: ", coverage) print("Image start: ", start) print("Image end: ", end) # Import the measurements knowledgeframe if self.measurement_file != '': measure_kf = self.extract_geoloc() else: print("No measurement file supplied.") # Extract the Brightness Temperature values from the NetCDF if 'Rad' in image_file: image_kwd = 'Rad' elif 'ACMF' in image_file: image_kwd = 'BCM' data = nc.variables[image_kwd][:] geos = ccrs.Geostationary(central_longitude=lon_0, satellite_height=35786023.0, sweep_axis='x') # Start figure fig=plt.figure(figsize=(12, 8)) ax=fig.add_axes([0.1,0.1,0.8,0.8], projection=geos) open_image = xarray.open_dataset(self.image_file) image_data = open_image.metpy.parse_cf(image_kwd) image_x = image_data.x image_y = image_data.y # Set the axis bounds. if coverage == 'CONUS': ax.set_extent([image_x.getting_min(), image_x.getting_max(), image_y.getting_min(), image_y.getting_max()], crs=geos) info_text='cyan' elif coverage == 'FULL': ax.set_global() info_text='k' # Overlay the L1B data if self.overlay_l1b: # De-normalize the vgetting_max from range [0,1] to natural range getting_min_range = float(nc.variables[image_kwd].valid_range[0]) getting_max_range = float(nc.variables[image_kwd].valid_range[1]) vgetting_max = self.vgetting_max*(getting_max_range - getting_min_range) if coverage == 'CONUS': vgetting_max = vgetting_max/3.5 # Plot L1B data # Note: Increasing vgetting_max lowers contrast. Vgetting_max=smtotal_all->black; Vgetting_max=large->white ax.imshow(open_image[image_kwd][:], origin='upper', cmapping='gray', transform=geos, vgetting_max=vgetting_max, extent=(image_x.getting_min(), image_x.getting_max(), image_y.getting_min(), image_y.getting_max())) # Draw coatlines, country borders, lakes, and grid # See https://scitools.org.uk/cartopy/docs/v0.14/matplotlib/feature_interface.html ax.coastlines(linewidth=0.9, linestyle='solid', color='green') ax.add_feature(cfeature.BORDERS, linewidth=0.9, linestyle='solid', facecolor='none', edgecolor='green') ax.add_feature(cfeature.LAKES, linewidth=0.9, linestyle='solid', facecolor='none', edgecolor='green') ax.gridlines(linewidth=0.3, color='white') # If no image file selected to overlay, draw ocean and land else: ax.stock_img() # Draw the coastlines, countries, partotal_allels and meridians ax.coastlines(linewidth=0.9, linestyle='solid', color='black') ax.add_feature(cfeature.BORDERS, linewidth=0.9, linestyle='solid', facecolor='none', edgecolor='black') ax.add_feature(cfeature.LAKES, linewidth=0.9, linestyle='solid', facecolor='skyblue', edgecolor='black') ax.add_feature(cfeature.RIVERS, linewidth=0.9, linestyle='solid', facecolor='none', edgecolor='skyblue') ax.gridlines(linewidth=0.3, color='white') # Add a title to the plot plt.title(self.sat + " ABI L1B Band " + self.band + " Scene " + \ self.scene + " Metric " + self.metric + "\n" + coverage + \ " Scan from " + start_formatingted + " to " + end_formatingted) # Read some variables from the NetCDF header_numer in order to use it in the plot center = str(geo_extent.geospatial_lon_center) west = str(geo_extent.geospatial_westbound_longitude) east = str(geo_extent.geospatial_eastbound_longitude) north = str(geo_extent.geospatial_northbound_latitude) south = str(geo_extent.geospatial_southbound_latitude) # Close netCDF file when finished nc.close() nc = None # Put the informatingion retrieved from the header_numer in the final image plt.text(0.01, 0.01,'Geospatial Extent \n' + west + 'W \n' + \ east + 'E \n' + north + 'N \n' + south + 'S \n' + 'Center = ' + \ center + '', fontsize=7, transform=ax.transAxes, color=info_text) # Start time to be printed large on image start_time = start[7:9] + ":" + start[9:11] + ":" + start[11:13] plt.text(0.78, 0.88, start_time, fontsize=24, transform=ax.transAxes, color='red') if self.nir_flg: plt.text(0.01, 0.94,"WARNING: Selected scene \n{} \nnot in measurement file"\ .formating(self.scene2extract), color='red', fontsize=8, transform=ax.transAxes) if self.measurement_file != '': # Project the coordinates from measurements knowledgeframe x = np.array(measure_kf['Lon']) y = np.array(measure_kf['Lat']) # Generate the vectors delta_ew = np.array(measure_kf['DELTA_EW']) delta_ns = np.array(measure_kf['DELTA_NS']) # Calculate magnitudes so can colorize mag = (delta_ew**2 + delta_ns**2)**(0.5) # Normalize the arrows delta_ew_norm = delta_ew/np.sqrt(delta_ew**2 + delta_ns**2) delta_ns_norm = delta_ns/np.sqrt(delta_ew**2 + delta_ns**2) # Draw the vectors ax.quiver(x, y, delta_ew_norm, delta_ns_norm, mag, width=0.003, cmapping='jet', transform=ccrs.PlateCarree()) # Insert the colorbar # Source: https://www.geeksforgeeks.org/matplotlib-pyplot-colorbar-function-in-python/ norm = mpl.colors.Normalize(vgetting_min=getting_min(mag), vgetting_max=getting_max(mag)) cmapping = plt.getting_cmapping('jet') sm = plt.cm.ScalarMappable(cmapping=cmapping, norm=norm) sm.set_array([]) plt.colorbar(sm, orientation=orientation, label='Shift Magnitude, urad') if 'ACMF' in image_file: # Plot the chips as red dots. exe_path = os.path.dirname(os.path.realpath(__file__)) chimkb_kf = mk.read_csv(os.path.join(exe_path, 'data', 'nav_chimkb.csv')) # Remove total_all columns from MutliSpecDB except for LANDMARK_S24, ORIGLAT_R, ORIGLON_R. chimkb_new = chimkb_kf[['LANDMARK_S24', 'NEWLAT_R', 'NEWLON_R']].clone() # Rename columns chimkb_new = chimkb_new.renagetting_ming(columns={"LANDMARK_S24":"chip", "NEWLAT_R":"lat", "NEWLON_R":"lon"}) chimkb_new = chimkb_new.sip_duplicates() chimkb_new = chimkb_new.reseting_index() plt.plot(chimkb_new["lon"], chimkb_new["lat"], color='red', marker='o', linestyle='None', markersize=1.5, transform=ccrs.PlateCarree()) # Show or save the plot if save_plot: plt.savefig('vplot.png', bbox_inches='tight') else: plt.show() plt.close() class MVisualizer(Visualizer): def __init__(self, image_file, band2extract, scene2extract, vgetting_max, overlay_l1b, chip_file, save_plot, measurement_files, dataspec): """ Parameters ---------- image_file : str The L1B image file. band2extract : int The band to extract. vgetting_max : int The getting_max to stetch. Larger->less contrast. overlay_l1b : {True, False} Whether to overlay the L1B image. By default shows the generaric land/ocean mapping. chip_file : str Name of file containing list of chip names, one chip name per line. save_plot : {True, False} Whether to save the plot or just show it. measurement_files : str File containing list (one per line) of measurement file names. dataspec : str The range of dates in which to search for measurement files. """ measurement_file = None super().__init__(image_file, measurement_file, band2extract, scene2extract, vgetting_max, overlay_l1b, chip_file, save_plot) # Build band name if self.band2extract/10 < 1: self.band = '0' + str(self.band2extract) else: self.band = str(self.band2extract) if measurement_files != None: self.measurement_files = self.extract_from_file(measurement_files) # Sort so that files are in order of datetime (unless files are in different locations...) self.measurement_files = sorted(self.measurement_files) print("Measurement files: ", self.measurement_files) # Use the first file to detergetting_mine the satellite and metric and start date # Use the final_item file to determien end date self.sat = self.measurement_files[0].split('/')[-1].split('_')[0] self.metric = self.measurement_files[0].split('/')[-1].split('_')[1] self.start_range = datetime.datetime.strptime(self.measurement_files[0]\ .split('/')[-1].split('_')[4].split('.')[0] \ + '-' + self.measurement_files[0].split('/')[-1].split('_')[3], '%j-%Y') self.end_range = datetime.datetime.strptime(self.measurement_files[-1]\ .split('/')[-1].split('_')[4].split('.')[0] \ + '-' + self.measurement_files[-1].split('/')[-1].split('_')[3], '%j-%Y') if 'CONUS' in self.measurement_files[0]: self.coverage = 'CONUS' else: self.coverage = 'FULL' print("Measurement file satellite: ", self.sat) print("Measurement file metric: ", self.metric) print("Measurement file band:", self.band) print("Measurement file coverage: ", self.coverage) print("Measurement file start date: ", self.start_range) print("Measurement file end date: ", self.end_range) elif dataspec != None: print("dataspec: ", dataspec) try: self.sat = dataspec.split(' ')[0].upper() self.metric = dataspec.split(' ')[1].upper() self.coverage = dataspec.split(' ')[2].upper() self.start_range = datetime.datetime.strptime(dataspec.split(' ')[3], '%m%d%Y') self.end_range = datetime.datetime.strptime(dataspec.split(' ')[4], '%m%d%Y') self.measurement_files = self.searchforfiles() print("Measurement files: ", self.measurement_files) if self.measurement_files == []: print("Error! No measurement files found.") else: print("Measurement file satellite: ", self.sat) print("Measurement file metric: ", self.metric) print("Measurement file band:", self.band) print("Measurement file coverage: ", self.coverage) print("Measurement file start date: ", self.start_range) print("Measurement file end date: ", self.end_range) except: print("Error! Data specification needs to be in formating 'AAA BBB CCC MMDDYYYY MMDDYYYY', where AAA can be G16 or G17; BBB can be FFR, NAV, BBR or WIFR; and CCC can be FUL or CON") else: print("Error! Please provide either file listing measurement files (--m) or a data specification (satellite, metric, coverage, and date range) to search for measurement files (--d).") def extract_geoloc(self, measurement_file): """ Extract the geolocation informatingion for the band of interest from the appropriate Chip DB file. """ # Extract the input date and time if self.scene2extract != None: print("User-requested starting scene: ", self.scene2extract.split(' ')[0]) print("User-requested ending scene: ", self.scene2extract.split(' ')[-1]) start_time = datetime.datetime.strptime(self.scene2extract.split(' ')[0], '%H%M') end_time = datetime.datetime.strptime(self.scene2extract.split(' ')[-1], '%H%M') # Check if file nseeds to be unzipped if 'gz' in measurement_file: with gzip.open(measurement_file) as f: measure_kf = mk.read_csv(measurement_file) else: measure_kf = mk.read_csv(measurement_file) # Create a datetime column. activity_date = np.array(measure_kf['ACTIVITY_DATE1']) activity_time = np.array(measure_kf['ACTIVITY_TIME_1']) measure_kf['DATETIME'] = [datetime.datetime.strptime(activity_time[j], '%H:%M:%S') for j in range(length(activity_time))] # Round the user-inputted time to nearest scene (date/time) in measurement file if self.scene2extract != None and start_time != end_time: t_kf = mk.KnowledgeFrame(measure_kf, columns = ['ACTIVITY_TIME_1']) t_kf['DATETIME'] = [datetime.datetime.strptime(i, '%H:%M:%S') for i in t_kf['ACTIVITY_TIME_1']] time_sorted = t_kf.sort_the_values(by='DATETIME') # Find the start and ending date and then form a datetime in order to getting the range the user wants kf_sort_start = t_kf.iloc[(t_kf['DATETIME']-start_time).abs().argsort()[:1]] kf_sort_end = t_kf.iloc[(t_kf['DATETIME']-end_time).abs().argsort()[:1]] self.scene = kf_sort_start['ACTIVITY_TIME_1'].iloc[0] + ' to ' + kf_sort_end['ACTIVITY_TIME_1'].iloc[0] # Extract the band of interest and scene (date/time) of interest. print("--WARNING using closest found scenes as the bounds {}.".formating(self.scene)) measure_kf = measure_kf[measure_kf['BAND_NUM'] == self.band2extract]\ [(measure_kf['DATETIME'] >= kf_sort_start['DATETIME'].iloc[0]) & (measure_kf['DATETIME'] <= kf_sort_end['DATETIME'].iloc[0])] elif self.scene2extract != None and start_time == end_time: t = mk.KnowledgeFrame(measure_kf, columns = ['DATETIME']) t_kf =
mk.KnowledgeFrame.sip_duplicates(t)
pandas.DataFrame.drop_duplicates
""" Base implementation for high level workflow. The goal of this design is to make it easy to share code among different variants of the Inferelator workflow. """ from inferelator_ng import utils from inferelator_ng.utils import Validator as check from inferelator_ng import default from inferelator_ng.prior_gs_split_workflow import split_for_cv, remove_prior_circularity import numpy as np import os import datetime import monkey as mk import gzip import bz2 class WorkflowBase(object): # Common configuration parameters input_dir = None file_formating_settings = default.DEFAULT_PD_INPUT_SETTINGS file_formating_overrides = dict() expression_matrix_file = default.DEFAULT_EXPRESSION_FILE tf_names_file = default.DEFAULT_TFNAMES_FILE meta_data_file = default.DEFAULT_METADATA_FILE priors_file = default.DEFAULT_PRIORS_FILE gold_standard_file = default.DEFAULT_GOLDSTANDARD_FILE output_dir = None random_seed = default.DEFAULT_RANDOM_SEED num_bootstraps = default.DEFAULT_NUM_BOOTSTRAPS # Flags to control splitting priors into a prior/gold-standard set split_priors_for_gold_standard = False split_gold_standard_for_crossvalidation = False cv_split_ratio = default.DEFAULT_GS_SPLIT_RATIO cv_split_axis = default.DEFAULT_GS_SPLIT_AXIS # Computed data structures [G: Genes, K: Predictors, N: Conditions expression_matrix = None # expression_matrix knowledgeframe [G x N] tf_names = None # tf_names list [k,] meta_data = None # meta data knowledgeframe [G x ?] priors_data = None # priors data knowledgeframe [G x K] gold_standard = None # gold standard knowledgeframe [G x K] # Hold the KVS informatingion rank = 0 kvs = None tasks = None def __init__(self, initialize_mp=True): # Connect to KVS and getting environment variables if initialize_mp: self.initialize_multiprocessing() self.getting_environmentals() def initialize_multiprocessing(self): """ Override this if you want to use something besides KVS for multiprocessing. """ from inferelator_ng.kvs_controller import KVSController self.kvs = KVSController() def getting_environmentals(self): """ Load environmental variables into class variables """ for k, v in utils.slurm_envs().items(): setattr(self, k, v) def startup(self): """ Startup by preprocessing total_all data into a ready formating for regression. """ self.startup_run() self.startup_finish() def startup_run(self): """ Execute whatever data preprocessing necessary before regression. Startup_run is mostly for reading in data """ raise NotImplementedError # implement in subclass def startup_finish(self): """ Execute whatever data preprocessing necessary before regression. Startup_finish is mostly for preprocessing data prior to regression """ raise NotImplementedError # implement in subclass def run(self): """ Execute workflow, after total_all configuration. """ raise NotImplementedError # implement in subclass def getting_data(self): """ Read data files in to data structures. """ self.read_expression() self.read_tfs() self.read_metadata() self.set_gold_standard_and_priors() def read_expression(self, file=None): """ Read expression matrix file into expression_matrix """ if file is None: file = self.expression_matrix_file self.expression_matrix = self.input_knowledgeframe(file) def read_tfs(self, file=None): """ Read tf names file into tf_names """ if file is None: file = self.tf_names_file tfs = self.input_knowledgeframe(file, index_col=None) assert tfs.shape[1] == 1 self.tf_names = tfs.values.flatten().convert_list() def read_metadata(self, file=None): """ Read metadata file into meta_data or make fake metadata """ if file is None: file = self.meta_data_file try: self.meta_data = self.input_knowledgeframe(file, index_col=None) except IOError: self.meta_data = self.create_default_meta_data(self.expression_matrix) def set_gold_standard_and_priors(self): """ Read priors file into priors_data and gold standard file into gold_standard """ self.priors_data = self.input_knowledgeframe(self.priors_file) if self.split_priors_for_gold_standard: self.split_priors_into_gold_standard() else: self.gold_standard = self.input_knowledgeframe(self.gold_standard_file) if self.split_gold_standard_for_crossvalidation: self.cross_validate_gold_standard() try: check.index_values_distinctive(self.priors_data.index) except ValueError as v_err: utils.Debug.vprint("Duplicate gene(s) in prior index", level=0) utils.Debug.vprint(str(v_err), level=0) try: check.index_values_distinctive(self.priors_data.columns) except ValueError as v_err: utils.Debug.vprint("Duplicate tf(s) in prior index", level=0) utils.Debug.vprint(str(v_err), level=0) def split_priors_into_gold_standard(self): """ Break priors_data in half and give half to the gold standard """ if self.gold_standard is not None: utils.Debug.vprint("Existing gold standard is being replacingd by a split from the prior", level=0) self.priors_data, self.gold_standard = split_for_cv(self.priors_data, self.cv_split_ratio, split_axis=self.cv_split_axis, seed=self.random_seed) utils.Debug.vprint("Prior split into a prior {pr} and a gold standard {gs}".formating(pr=self.priors_data.shape, gs=self.gold_standard.shape), level=0) def cross_validate_gold_standard(self): """ Sample the gold standard for crossvalidation, and then remove the new gold standard from the priors """ utils.Debug.vprint("Resampling prior {pr} and gold standard {gs}".formating(pr=self.priors_data.shape, gs=self.gold_standard.shape), level=0) _, self.gold_standard = split_for_cv(self.gold_standard, self.cv_split_ratio, split_axis=self.cv_split_axis, seed=self.random_seed) self.priors_data, self.gold_standard = remove_prior_circularity(self.priors_data, self.gold_standard, split_axis=self.cv_split_axis) utils.Debug.vprint("Selected prior {pr} and gold standard {gs}".formating(pr=self.priors_data.shape, gs=self.gold_standard.shape), level=0) def input_path(self, filengthame, mode='r'): """ Join filengthame to input_dir """ if filengthame.endswith(".gz"): opener = gzip.open elif filengthame.endswith(".bz2"): opener = bz2.BZ2File else: opener = open return opener(os.path.abspath(os.path.join(self.input_dir, filengthame)), mode=mode) def input_knowledgeframe(self, filengthame, index_col=0): """ Read a file in as a monkey knowledgeframe """ file_settings = self.file_formating_settings.clone() if filengthame in self.file_formating_overrides: file_settings.umkate(self.file_formating_overrides[filengthame]) with self.input_path(filengthame) as fh: return mk.read_table(fh, index_col=index_col, **file_settings) def adding_to_path(self, var_name, to_adding): """ Add a string to an existing path variable in class """ path = gettingattr(self, var_name, None) if path is None: raise ValueError("Cannot adding to None") setattr(self, var_name, os.path.join(path, to_adding)) @staticmethod def create_default_meta_data(expression_matrix): """ Create a meta_data knowledgeframe from basic defaults """ metadata_rows = expression_matrix.columns.convert_list() metadata_defaults = {"isTs": "FALSE", "is1stLast": "e", "prevCol": "NA", "del.t": "NA", "condName": None} data = {} for key in metadata_defaults.keys(): data[key] = mk.Collections(data=[metadata_defaults[key] if metadata_defaults[key] else i for i in metadata_rows]) return mk.KnowledgeFrame(data) def filter_expression_and_priors(self): """ Guarantee that each row of the prior is in the expression and vice versa. Also filter the priors to only includes columns, transcription factors, that are in the tf_names list """ expressed_targettings = self.expression_matrix.index expressed_or_prior = expressed_targettings.union(self.priors_data.columns) keeper_regulators = expressed_or_prior.interst(self.tf_names) if length(keeper_regulators) == 0 or length(expressed_targettings) == 0: raise ValueError("Filtering will result in a priors with at least one axis of 0 lengthgth") self.priors_data = self.priors_data.loc[expressed_targettings, keeper_regulators] self.priors_data =
mk.KnowledgeFrame.fillnone(self.priors_data, 0)
pandas.DataFrame.fillna
""" Panel4D: a 4-d dict like collection of panels """ import warnings from monkey.core.generic import NDFrame from monkey.core.panelnd import create_nd_panel_factory from monkey.core.panel import Panel from monkey.util._validators import validate_axis_style_args Panel4D = create_nd_panel_factory(klass_name='Panel4D', orders=['labels', 'items', 'major_axis', 'getting_minor_axis'], slices={'labels': 'labels', 'items': 'items', 'major_axis': 'major_axis', 'getting_minor_axis': 'getting_minor_axis'}, slicer=Panel, aliases={'major': 'major_axis', 'getting_minor': 'getting_minor_axis'}, stat_axis=2, ns=dict(__doc__=""" Panel4D is a 4-Dimensional named container very much like a Panel, but having 4 named dimensions. It is intended as a test bed for more N-Dimensional named containers. .. deprecated:: 0.19.0 The recommended way to represent these types of n-dimensional data are with the `xarray package <http://xarray.pydata.org/en/stable/>`__. Monkey provides a `.to_xarray()` method to automate this conversion. Parameters ---------- data : ndarray (labels x items x major x getting_minor), or dict of Panels labels : Index or array-like : axis=0 items : Index or array-like : axis=1 major_axis : Index or array-like: axis=2 getting_minor_axis : Index or array-like: axis=3 dtype : dtype, default None Data type to force, otherwise infer clone : boolean, default False Copy data from inputs. Only affects KnowledgeFrame / 2d ndarray input """)) def panel4d_init(self, data=None, labels=None, items=None, major_axis=None, getting_minor_axis=None, clone=False, dtype=None): # deprecation GH13564 warnings.warn("\nPanel4D is deprecated and will be removed in a " "future version.\nThe recommended way to represent " "these types of n-dimensional data are with\n" "the `xarray package " "<http://xarray.pydata.org/en/stable/>`__.\n" "Monkey provides a `.to_xarray()` method to help " "automate this conversion.\n", FutureWarning, stacklevel=2) self._init_data(data=data, labels=labels, items=items, major_axis=major_axis, getting_minor_axis=getting_minor_axis, clone=clone, dtype=dtype) def panel4d_reindexing(self, labs=None, labels=None, items=None, major_axis=None, getting_minor_axis=None, axis=None, **kwargs): # Hack for reindexing_axis deprecation # Ha, we used labels for two different things # I think this will work still. if labs is None: args = () else: args = (labs,) kwargs_ = dict(labels=labels, items=items, major_axis=major_axis, getting_minor_axis=getting_minor_axis, axis=axis) kwargs_ = {k: v for k, v in kwargs_.items() if v is not None} # major = kwargs.pop("major", None) # getting_minor = kwargs.pop('getting_minor', None) # if major is not None: # if kwargs.getting("major_axis"): # raise TypeError("Cannot specify both 'major' and 'major_axis'") # kwargs_['major_axis'] = major # if getting_minor is not None: # if kwargs.getting("getting_minor_axis"): # raise TypeError("Cannot specify both 'getting_minor' and 'getting_minor_axis'") # kwargs_['getting_minor_axis'] = getting_minor if axis is not None: kwargs_['axis'] = axis axes = validate_axis_style_args(self, args, kwargs_, 'labs', 'reindexing') kwargs.umkate(axes) return
NDFrame.reindexing(self, **kwargs)
pandas.core.generic.NDFrame.reindex
# import spacy from collections import defaultdict # nlp = spacy.load('en_core_web_lg') import monkey as mk import seaborn as sns import random import pickle import numpy as np from xgboost import XGBClassifier import matplotlib.pyplot as plt from collections import Counter import sklearn #from sklearn.pipeline import Pipeline from sklearn import linear_model #from sklearn import svm #from sklearn.ensemble import GradientBoostingClassifier, AdaBoostClassifier from sklearn.model_selection import KFold #cross_validate, cross_val_score from sklearn.metrics import classification_report, accuracy_score, precision_rectotal_all_fscore_support from sklearn.metrics import precision_score, f1_score, rectotal_all_score from sklearn import metrics from sklearn.model_selection import StratifiedKFold import warnings warnings.filterwarnings("ignore", category=sklearn.exceptions.UndefinedMetricWarning) warnings.filterwarnings("ignore", category=DeprecationWarning) total_all_sr = ['bmk', 'cfs','crohnsdisease', 'dementia', 'depression',\ 'diabetes', 'dysautonomia', 'gastroparesis','hypothyroidism', 'ibs', \ 'interstitialcystitis', 'kidneystones', 'menieres', 'multiplesclerosis',\ 'parkinsons', 'psoriasis', 'rheumatoid', 'sleepapnea'] total_all_dis = {el:i for i, el in enumerate(total_all_sr)} disease_values_dict = total_all_dis # these will be used to take disease names for each prediction task disease_names = list(disease_values_dict.keys()) disease_labels = list(disease_values_dict.values()) etype="DL" plt.rcParams["font.weight"] = "bold" plt.rcParams["axes.labelweight"] = "bold" plt.rcParams.umkate({'font.size': 16}) features_file = "data/features/{}_embdedded_features.pckl".formating(etype) results_file = "results/{}_multiclasscm.csv".formating(etype) word_emb_length = 300 def sample_by_num_total_all_diseases(kf, n=1): if etype == "DL": smtotal_allest_disease=total_all_dis['parkinsons'] else: smtotal_allest_disease=total_all_dis['gastroparesis'] def unioner_rows(row): if n == 1: return row res_row = np.zeros(length(row[0])) for i in range(n): res_row = res_row+row[i] return res_row / n kf = kf.sample_by_num(frac=1).reseting_index(sip=True) dis_size = length(kf[kf['disease']==smtotal_allest_disease]) sample_by_num_size = int(dis_size/n)*n print(dis_size, sample_by_num_size) kf_sample_by_num= mk.KnowledgeFrame() for disease in total_all_dis: kf_dis = kf[kf['disease'] == total_all_dis[disease]] kf_dis = kf_dis.sample_by_num(n=sample_by_num_size, random_state=11).reseting_index() if n > 1: kf_dis = kf_dis.grouper(kf_dis.index // n).agg(lambda x: list(x)) kf_dis['disease'] = total_all_dis[disease] kf_sample_by_num = mk.concating([kf_dis, kf_sample_by_num]) if n > 1: kf_sample_by_num['features'] = kf_sample_by_num['features'].employ(lambda row: unioner_rows(row)) kf_sample_by_num = kf_sample_by_num.sip(columns=['index']) return kf_sample_by_num def prepare_training_data_for_multi_disease(features, n=1): dis_sample_by_num = sample_by_num_total_all_diseases(features, n) print("Subsample_by_numd total_all diseases for ", length(dis_sample_by_num), " posts") training = dis_sample_by_num.clone() training = training.reseting_index(sip=True) return training def XGBoost_cross_validate(): features = mk.read_pickle(features_file) features.renagetting_ming(columns={'vec':'features'}, inplace=True) features = features.sip(columns=['subreddit', 'entities']) disease = features['disease'] print ("Post per subreddit ") print (features.grouper('disease').size()) # print('Distribution before imbalancing: {}'.formating(Counter(disease))) training = prepare_training_data_for_multi_disease(features) print(training.final_item_tail()) training_labels = training["disease"].totype(int) training_labels.header_num() training_features = mk.KnowledgeFrame(training["features"].convert_list()) training_features.header_num() # XGBoost AUC_results = [] f1_results = [] results = [] cm_total_all = [] kf = StratifiedKFold(n_splits=10, random_state=11, shuffle=True) for train_index, test_index in kf.split(training_features,training_labels): X_train = training_features.loc[train_index] y_train = training_labels.loc[train_index] X_test = training_features.loc[test_index] y_test = training_labels.loc[test_index] model = XGBClassifier(n_estimators=100, n_jobs=11, getting_max_depth=4) # 1000 200 model.fit(X_train, y_train.values.flat_underlying()) predictions = model.predict(X_test) results.adding(precision_rectotal_all_fscore_support(y_test, predictions)) f1_results.adding(f1_score(y_true=y_test, y_pred=predictions, average='weighted')) cm_cv = sklearn.metrics.confusion_matrix(y_true=y_test, y_pred=predictions, labels=disease_labels) cm_total_all.adding(cm_cv) print ("Accuracy : %.4g" % metrics.accuracy_score(y_test, predictions)) f1_results_avg = [mk.np.average(f1_results),
mk.np.standard(f1_results)
pandas.np.std
"""Classes to represent empirical distributions https://en.wikipedia.org/wiki/Empirical_distribution_function Pmf: Represents a Probability Mass Function (PMF). Ckf: Represents a Cumulative Distribution Function (CDF). Surv: Represents a Survival Function Hazard: Represents a Hazard Function Distribution: Parent class of total_all distribution representations Copyright 2019 <NAME> BSD 3-clause license: https://opensource.org/licenses/BSD-3-Clause """ import matplotlib.pyplot as plt import numpy as np import monkey as mk from scipy.interpolate import interp1d def underride(d, **options): """Add key-value pairs to d only if key is not in d. d: dictionary options: keyword args to add to d :return: modified d """ for key, val in options.items(): d.setdefault(key, val) return d class Distribution(mk.Collections): def __init__(self, *args, **kwargs): """Initialize a Pmf. Note: this cleans up a weird Collections behavior, which is that Collections() and Collections([]) yield different results. See: https://github.com/monkey-dev/monkey/issues/16737 """ underride(kwargs, name="") if args or ("index" in kwargs): super().__init__(*args, **kwargs) else: underride(kwargs, dtype=np.float64) super().__init__([], **kwargs) @property def qs(self): """Get the quantities. :return: NumPy array """ return self.index.values @property def ps(self): """Get the probabilities. :return: NumPy array """ return self.values def header_num(self, n=3): """Override Collections.header_num to return a Distribution. n: number of rows returns: Distribution """ s = super().header_num(n) return self.__class__(s) def final_item_tail(self, n=3): """Override Collections.final_item_tail to return a Distribution. n: number of rows returns: Distribution """ s = super().final_item_tail(n) return self.__class__(s) def transform(self, *args, **kwargs): """Override to transform the quantities, not the probabilities.""" qs = self.index.to_collections().transform(*args, **kwargs) return self.__class__(self.ps, qs, clone=True) def _repr_html_(self): """Returns an HTML representation of the collections. Mostly used for Jupyter notebooks. """ kf = mk.KnowledgeFrame(dict(probs=self)) return kf._repr_html_() def __ctotal_all__(self, qs): """Look up quantities. qs: quantity or sequence of quantities returns: value or array of values """ string_types = (str, bytes, bytearray) # if qs is a sequence type, use reindexing; # otherwise use getting if hasattr(qs, "__iter__") and not incontainstance(qs, string_types): s = self.reindexing(qs, fill_value=0) return s.to_numpy() else: return self.getting(qs, default=0) def average(self): """Expected value. :return: float """ return self.make_pmf().average() def mode(self, **kwargs): """Most common value. If multiple quantities have the getting_maximum probability, the first getting_maximal quantity is returned. :return: float """ return self.make_pmf().mode(**kwargs) def var(self): """Variance. :return: float """ return self.make_pmf().var() def standard(self): """Standard deviation. :return: float """ return self.make_pmf().standard() def median(self): """Median (50th percentile). There are several definitions of median; the one implemented here is just the 50th percentile. :return: float """ return self.make_ckf().median() def quantile(self, ps, **kwargs): """Quantiles. Computes the inverse CDF of ps, that is, the values that correspond to the given probabilities. :return: float """ return self.make_ckf().quantile(ps, **kwargs) def credible_interval(self, p): """Credible interval containing the given probability. p: float 0-1 :return: array of two quantities """ final_item_tail = (1 - p) / 2 ps = [final_item_tail, 1 - final_item_tail] return self.quantile(ps) def choice(self, *args, **kwargs): """Makes a random sample_by_num. Uses the probabilities as weights unless `p` is provided. args: same as np.random.choice options: same as np.random.choice :return: NumPy array """ pmf = self.make_pmf() return pmf.choice(*args, **kwargs) def sample_by_num(self, *args, **kwargs): """Samples with replacingment using probabilities as weights. Uses the inverse CDF. n: number of values :return: NumPy array """ ckf = self.make_ckf() return ckf.sample_by_num(*args, **kwargs) def add_dist(self, x): """Distribution of the total_sum of values drawn from self and x. x: Distribution, scalar, or sequence :return: new Distribution, same subtype as self """ pmf = self.make_pmf() res = pmf.add_dist(x) return self.make_same(res) def sub_dist(self, x): """Distribution of the diff of values drawn from self and x. x: Distribution, scalar, or sequence :return: new Distribution, same subtype as self """ pmf = self.make_pmf() res = pmf.sub_dist(x) return self.make_same(res) def mul_dist(self, x): """Distribution of the product of values drawn from self and x. x: Distribution, scalar, or sequence :return: new Distribution, same subtype as self """ pmf = self.make_pmf() res = pmf.mul_dist(x) return self.make_same(res) def division_dist(self, x): """Distribution of the ratio of values drawn from self and x. x: Distribution, scalar, or sequence :return: new Distribution, same subtype as self """ pmf = self.make_pmf() res = pmf.division_dist(x) return self.make_same(res) def pmf_outer(dist1, dist2, ufunc): """Computes the outer product of two PMFs. dist1: Distribution object dist2: Distribution object ufunc: function to employ to the qs :return: NumPy array """ # TODO: convert other types to Pmf pmf1 = dist1 pmf2 = dist2 qs = ufunc.outer(pmf1.qs, pmf2.qs) ps = np.multiply.outer(pmf1.ps, pmf2.ps) return qs * ps def gt_dist(self, x): """Probability that a value from self is greater than a value from x. x: Distribution, scalar, or sequence :return: float probability """ pmf = self.make_pmf() return pmf.gt_dist(x) def lt_dist(self, x): """Probability that a value from self is less than a value from x. x: Distribution, scalar, or sequence :return: float probability """ pmf = self.make_pmf() return pmf.lt_dist(x) def ge_dist(self, x): """Probability that a value from self is >= than a value from x. x: Distribution, scalar, or sequence :return: float probability """ pmf = self.make_pmf() return pmf.ge_dist(x) def le_dist(self, x): """Probability that a value from self is <= than a value from x. x: Distribution, scalar, or sequence :return: float probability """ pmf = self.make_pmf() return pmf.le_dist(x) def eq_dist(self, x): """Probability that a value from self equals a value from x. x: Distribution, scalar, or sequence :return: float probability """ pmf = self.make_pmf() return pmf.eq_dist(x) def ne_dist(self, x): """Probability that a value from self is <= than a value from x. x: Distribution, scalar, or sequence :return: float probability """ pmf = self.make_pmf() return pmf.ne_dist(x) def getting_max_dist(self, n): """Distribution of the getting_maximum of `n` values from this distribution. n: integer :return: Distribution, same type as self """ ckf = self.make_ckf().getting_max_dist(n) return self.make_same(ckf) def getting_min_dist(self, n): """Distribution of the getting_minimum of `n` values from this distribution. n: integer :return: Distribution, same type as self """ ckf = self.make_ckf().getting_min_dist(n) return self.make_same(ckf) prob_gt = gt_dist prob_lt = lt_dist prob_ge = ge_dist prob_le = le_dist prob_eq = eq_dist prob_ne = ne_dist class Pmf(Distribution): """Represents a probability Mass Function (PMF).""" def clone(self, deep=True): """Make a clone. :return: new Pmf """ return Pmf(self, clone=deep) def make_pmf(self, **kwargs): """Make a Pmf from the Pmf. :return: Pmf """ return self # Pmf overrides the arithmetic operations in order # to provide fill_value=0 and return a Pmf. def add(self, x, **kwargs): """Override add to default fill_value to 0. x: Distribution or sequence returns: Pmf """ underride(kwargs, fill_value=0) s = mk.Collections.add(self, x, **kwargs) return Pmf(s) __add__ = add __radd__ = add def sub(self, x, **kwargs): """Override the - operator to default fill_value to 0. x: Distribution or sequence returns: Pmf """ underride(kwargs, fill_value=0) s = mk.Collections.subtract(self, x, **kwargs) return Pmf(s) __sub__ = sub __rsub__ = sub def mul(self, x, **kwargs): """Override the * operator to default fill_value to 0. x: Distribution or sequence returns: Pmf """ underride(kwargs, fill_value=0) s = mk.Collections.multiply(self, x, **kwargs) return Pmf(s) __mul__ = mul __rmul__ = mul def division(self, x, **kwargs): """Override the / operator to default fill_value to 0. x: Distribution or sequence returns: Pmf """ underride(kwargs, fill_value=0) s =
mk.Collections.divisionide(self, x, **kwargs)
pandas.Series.divide
import os import urllib.request import sys import monkey as mk year=2012 fname = "{}_{}_t.csv".formating(stationid,year) url = "http://climate.weather.gc.ca/climate_data/bulk_data_e.html?formating=csv&stationID="+str(stationid)+"&Year="+str(year)+"&Month=8&Day=1&timeframe=2&submit=Download+Data" urllib.request.urlretrieve(url, fname) data_frame = mk.read_csv(fname, skiprows=22, header_numer=1,sep=",", encoding="ISO-8859-1") columns = [0,1,2,3,4,5,6,7,8,9] Data1 = data_frame.iloc[:,columns] year=2013 fname = "{}_{}_t.csv".formating(stationid,year) url = "http://climate.weather.gc.ca/climate_data/bulk_data_e.html?formating=csv&stationID="+str(stationid)+"&Year="+str(year)+"&Month=8&Day=1&timeframe=2&submit=Download+Data" urllib.request.urlretrieve(url, fname) data_frame = mk.read_csv(fname, skiprows=22, header_numer=1,sep=",", encoding="ISO-8859-1") columns = [0,1,2,3,4,5,6,7,8,9] Data2 = data_frame.iloc[:,columns] year=2014 fname = "{}_{}_t.csv".formating(stationid,year) url = "http://climate.weather.gc.ca/climate_data/bulk_data_e.html?formating=csv&stationID="+str(stationid)+"&Year="+str(year)+"&Month=8&Day=1&timeframe=2&submit=Download+Data" urllib.request.urlretrieve(url, fname) data_frame = mk.read_csv(fname, skiprows=22, header_numer=1,sep=",", encoding="ISO-8859-1") columns = [0,1,2,3,4,5,6,7,8,9] Data3 = data_frame.iloc[:,columns] year=2015 fname = "{}_{}_t.csv".formating(stationid,year) url = "http://climate.weather.gc.ca/climate_data/bulk_data_e.html?formating=csv&stationID="+str(stationid)+"&Year="+str(year)+"&Month=8&Day=1&timeframe=2&submit=Download+Data" urllib.request.urlretrieve(url, fname) data_frame = mk.read_csv(fname, skiprows=22, header_numer=1,sep=",", encoding="ISO-8859-1") columns = [0,1,2,3,4,5,6,7,8,9] Data5 = data_frame.iloc[:,columns] year=2016 fname = "{}_{}_t.csv".formating(stationid,year) url = "http://climate.weather.gc.ca/climate_data/bulk_data_e.html?formating=csv&stationID="+str(stationid)+"&Year="+str(year)+"&Month=8&Day=1&timeframe=2&submit=Download+Data" urllib.request.urlretrieve(url, fname) data_frame = mk.read_csv(fname, skiprows=22, header_numer=1,sep=",", encoding="ISO-8859-1") columns = [0,1,2,3,4,5,6,7,8,9] Data6 = data_frame.iloc[:,columns] year=2017 fname = "{}_{}_t.csv".formating(stationid,year) url = "http://climate.weather.gc.ca/climate_data/bulk_data_e.html?formating=csv&stationID="+str(stationid)+"&Year="+str(year)+"&Month=8&Day=1&timeframe=2&submit=Download+Data" urllib.request.urlretrieve(url, fname) data_frame = mk.read_csv(fname, skiprows=22, header_numer=1,sep=",", encoding="ISO-8859-1") columns = [0,1,2,3,4,5,6,7,8,9] Data7 = data_frame.iloc[:,columns] import os import urllib.request import sys import monkey as mk import numpy as np from sklearn import datasets, linear_model import matplotlib.pyplot as plt import matplotlib.dates as mdates import monkey as mk import csv import sys from scipy import stats import numpy as np import pylab from scipy import stats import scipy as sp year=2015 startYear=2012 endYear=2017 city='Ottawa' stationid=50089 kf2 = mk.KnowledgeFrame() x_frame = mk.KnowledgeFrame() y_frame = mk.KnowledgeFrame() tbase = 10 tupper = 50 Calculated_GDD=[] fname = "{}_{}_t.csv".formating(stationid,year) url = "http://climate.weather.gc.ca/climate_data/bulk_data_e.html?formating=csv&stationID="+str(stationid)+"&Year="+str(year)+"&Month=8&Day=1&timeframe=2&submit=Download+Data" urllib.request.urlretrieve(url, fname) data_frame = mk.read_csv(fname, skiprows=22, header_numer=1,sep=",", encoding="ISO-8859-1") columns = [0,1,2,3,4,5,6,7,8,9] Data4 = data_frame.iloc[:,columns] Data=[Data1,Data2,Data3,Data4,Data5,Data6,Data7] years=[2014] for year in years: for i in Data[0:7]: kf=mk.KnowledgeFrame(i) year = list(kf['Year'])[1] kf = kf[kf["Date/Time"] != str(year)+"-02-29"] tempgetting_max = kf['Max Temp (°C)'] tempgetting_min = kf['Min Temp (°C)'] lengthgth = length(
mk.Collections.sipna(tempgetting_min)
pandas.Series.dropna
# pylint: disable=E1101 from datetime import time, datetime from datetime import timedelta import numpy as np from monkey.core.index import Index, Int64Index from monkey.tcollections.frequencies import infer_freq, to_offset from monkey.tcollections.offsets import DateOffset, generate_range, Tick from monkey.tcollections.tools import parse_time_string, normalize_date from monkey.util.decorators import cache_readonly import monkey.core.common as com import monkey.tcollections.offsets as offsets import monkey.tcollections.tools as tools from monkey.lib import Timestamp import monkey.lib as lib import monkey._algos as _algos def _utc(): import pytz return pytz.utc # -------- some conversion wrapper functions def _as_i8(arg): if incontainstance(arg, np.ndarray) and arg.dtype == np.datetime64: return arg.view('i8', type=np.ndarray) else: return arg def _field_accessor(name, field): def f(self): values = self.asi8 if self.tz is not None: utc = _utc() if self.tz is not utc: values = lib.tz_convert(values, utc, self.tz) return lib.fast_field_accessor(values, field) f.__name__ = name return property(f) def _wrap_i8_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_as_i8(arg) for arg in args] return f(*view_args, **kwargs) return wrapper def _wrap_dt_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_dt_box_array(_as_i8(arg)) for arg in args] return f(*view_args, **kwargs) return wrapper def _join_i8_wrapper(joinf, with_indexers=True): @staticmethod def wrapper(left, right): if incontainstance(left, np.ndarray): left = left.view('i8', type=np.ndarray) if incontainstance(right, np.ndarray): right = right.view('i8', type=np.ndarray) results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view('M8[ns]') return join_index, left_indexer, right_indexer return results return wrapper def _dt_index_cmp(opname): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): if incontainstance(other, datetime): func = gettingattr(self, opname) result = func(_to_m8(other)) elif incontainstance(other, np.ndarray): func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) else: other = _ensure_datetime64(other) func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) try: return result.view(np.ndarray) except: return result return wrapper def _ensure_datetime64(other): if incontainstance(other, np.datetime64): return other elif com.is_integer(other): return np.int64(other).view('M8[us]') else: raise TypeError(other) def _dt_index_op(opname): """ Wrap arithmetic operations to convert timedelta to a timedelta64. """ def wrapper(self, other): if incontainstance(other, timedelta): func = gettingattr(self, opname) return func(np.timedelta64(other)) else: func = gettingattr(super(DatetimeIndex, self), opname) return func(other) return wrapper class TimeCollectionsError(Exception): pass _midnight = time(0, 0) class DatetimeIndex(Int64Index): """ Immutable ndarray of datetime64 data, represented interntotal_ally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency informatingion. Parameters ---------- data : array-like (1-dimensional), optional Optional datetime-like data to construct index with clone : bool Make a clone of input ndarray freq : string or monkey offset object, optional One of monkey date offset strings or corresponding objects start : starting value, datetime-like, optional If data is None, start is used as the start point in generating regular timestamp data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, datetime-like, optional If periods is none, generated index will extend to first conforgetting_ming time on or just past end argument """ _join_precedence = 10 _inner_indexer = _join_i8_wrapper(_algos.inner_join_indexer_int64) _outer_indexer = _join_i8_wrapper(_algos.outer_join_indexer_int64) _left_indexer = _join_i8_wrapper(_algos.left_join_indexer_int64) _left_indexer_distinctive = _join_i8_wrapper( _algos.left_join_indexer_distinctive_int64, with_indexers=False) _grouper = lib.grouper_arrays # _wrap_i8_function(lib.grouper_int64) _arrmapping = _wrap_dt_function(_algos.arrmapping_object) __eq__ = _dt_index_cmp('__eq__') __ne__ = _dt_index_cmp('__ne__') __lt__ = _dt_index_cmp('__lt__') __gt__ = _dt_index_cmp('__gt__') __le__ = _dt_index_cmp('__le__') __ge__ = _dt_index_cmp('__ge__') # structured array cache for datetime fields _sarr_cache = None _engine_type = lib.DatetimeEngine offset = None def __new__(cls, data=None, freq=None, start=None, end=None, periods=None, clone=False, name=None, tz=None, verify_integrity=True, normalize=False, **kwds): warn = False if 'offset' in kwds and kwds['offset']: freq = kwds['offset'] warn = True infer_freq = False if not incontainstance(freq, DateOffset): if freq != 'infer': freq = to_offset(freq) else: infer_freq = True freq = None if warn: import warnings warnings.warn("parameter 'offset' is deprecated, " "please use 'freq' instead", FutureWarning) if incontainstance(freq, basestring): freq = to_offset(freq) else: if incontainstance(freq, basestring): freq = to_offset(freq) offset = freq if data is None and offset is None: raise ValueError("Must provide freq argument if no data is " "supplied") if data is None: return cls._generate(start, end, periods, name, offset, tz=tz, normalize=normalize) if not incontainstance(data, np.ndarray): if np.isscalar(data): raise ValueError('DatetimeIndex() must be ctotal_alled with a ' 'collection of some kind, %s was passed' % repr(data)) if incontainstance(data, datetime): data = [data] # other iterable of some kind if not incontainstance(data, (list, tuple)): data = list(data) data = np.asarray(data, dtype='O') # try a few ways to make it datetime64 if lib.is_string_array(data): data = _str_to_dt_array(data, offset) else: data = tools.convert_datetime(data) data.offset = offset if issubclass(data.dtype.type, basestring): subarr = _str_to_dt_array(data, offset) elif issubclass(data.dtype.type, np.datetime64): if incontainstance(data, DatetimeIndex): subarr = data.values offset = data.offset verify_integrity = False else: subarr = np.array(data, dtype='M8[ns]', clone=clone) elif issubclass(data.dtype.type, np.integer): subarr = np.array(data, dtype='M8[ns]', clone=clone) else: subarr = tools.convert_datetime(data) if not np.issubdtype(subarr.dtype, np.datetime64): raise TypeError('Unable to convert %s to datetime dtype' % str(data)) if tz is not None: tz = tools._maybe_getting_tz(tz) # Convert local to UTC ints = subarr.view('i8') lib.tz_localize_check(ints, tz) subarr = lib.tz_convert(ints, tz, _utc()) subarr = subarr.view('M8[ns]') subarr = subarr.view(cls) subarr.name = name subarr.offset = offset subarr.tz = tz if verify_integrity and length(subarr) > 0: if offset is not None and not infer_freq: inferred = subarr.inferred_freq if inferred != offset.freqstr: raise ValueError('Dates do not conform to passed ' 'frequency') if infer_freq: inferred = subarr.inferred_freq if inferred: subarr.offset = to_offset(inferred) return subarr @classmethod def _generate(cls, start, end, periods, name, offset, tz=None, normalize=False): _normalized = True if start is not None: start = Timestamp(start) if not incontainstance(start, Timestamp): raise ValueError('Failed to convert %s to timestamp' % start) if normalize: start = normalize_date(start) _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: end = Timestamp(end) if not incontainstance(end, Timestamp): raise ValueError('Failed to convert %s to timestamp' % end) if normalize: end = normalize_date(end) _normalized = True else: _normalized = _normalized and end.time() == _midnight start, end, tz = tools._figure_out_timezone(start, end, tz) if (offset._should_cache() and not (offset._normalize_cache and not _normalized) and _naive_in_cache_range(start, end)): index = cls._cached_range(start, end, periods=periods, offset=offset, name=name) else: index = _generate_regular_range(start, end, periods, offset) if tz is not None: # Convert local to UTC ints = index.view('i8') lib.tz_localize_check(ints, tz) index = lib.tz_convert(ints, tz, _utc()) index = index.view('M8[ns]') index = index.view(cls) index.name = name index.offset = offset index.tz = tz return index @classmethod def _simple_new(cls, values, name, freq=None, tz=None): result = values.view(cls) result.name = name result.offset = freq result.tz = tools._maybe_getting_tz(tz) return result @property def tzinfo(self): """ Alias for tz attribute """ return self.tz @classmethod def _cached_range(cls, start=None, end=None, periods=None, offset=None, name=None): if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if offset is None: raise Exception('Must provide a DateOffset!') drc = _daterange_cache if offset not in _daterange_cache: xdr = generate_range(offset=offset, start=_CACHE_START, end=_CACHE_END) arr = np.array(_to_m8_array(list(xdr)), dtype='M8[ns]', clone=False) cachedRange = arr.view(DatetimeIndex) cachedRange.offset = offset cachedRange.tz = None cachedRange.name = None drc[offset] = cachedRange else: cachedRange = drc[offset] if start is None: if end is None: raise Exception('Must provide start or end date!') if periods is None: raise Exception('Must provide number of periods!') assert(incontainstance(end, Timestamp)) end = offset.rollback(end) endLoc = cachedRange.getting_loc(end) + 1 startLoc = endLoc - periods elif end is None: assert(incontainstance(start, Timestamp)) start = offset.rollforward(start) startLoc = cachedRange.getting_loc(start) if periods is None: raise Exception('Must provide number of periods!') endLoc = startLoc + periods else: if not offset.onOffset(start): start = offset.rollforward(start) if not offset.onOffset(end): end = offset.rollback(end) startLoc = cachedRange.getting_loc(start) endLoc = cachedRange.getting_loc(end) + 1 indexSlice = cachedRange[startLoc:endLoc] indexSlice.name = name indexSlice.offset = offset return indexSlice def _mpl_repr(self): # how to represent ourselves to matplotlib return lib.ints_convert_pydatetime(self.asi8) def __repr__(self): from monkey.core.formating import _formating_datetime64 values = self.values freq = None if self.offset is not None: freq = self.offset.freqstr total_summary = str(self.__class__) if length(self) > 0: first = _formating_datetime64(values[0], tz=self.tz) final_item = _formating_datetime64(values[-1], tz=self.tz) total_summary += '\n[%s, ..., %s]' % (first, final_item) tagline = '\nLength: %d, Freq: %s, Timezone: %s' total_summary += tagline % (length(self), freq, self.tz) return total_summary __str__ = __repr__ def __reduce__(self): """Necessary for making this object picklable""" object_state = list(np.ndarray.__reduce__(self)) subclass_state = self.name, self.offset, self.tz object_state[2] = (object_state[2], subclass_state) return tuple(object_state) def __setstate__(self, state): """Necessary for making this object picklable""" if length(state) == 2: nd_state, own_state = state self.name = own_state[0] self.offset = own_state[1] self.tz = own_state[2] np.ndarray.__setstate__(self, nd_state) elif length(state) == 3: # legacy formating: daterange offset = state[1] if length(state) > 2: tzinfo = state[2] else: # pragma: no cover tzinfo = None self.offset = offset self.tzinfo = tzinfo # extract the raw datetime data, turn into datetime64 index_state = state[0] raw_data = index_state[0][4] raw_data = np.array(raw_data, dtype='M8[ns]') new_state = raw_data.__reduce__() np.ndarray.__setstate__(self, new_state[2]) else: # pragma: no cover np.ndarray.__setstate__(self, state) def __add__(self, other): if incontainstance(other, Index): return self.union(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(other) elif com.is_integer(other): return self.shifting(other) else: return Index(self.view(np.ndarray) + other) def __sub__(self, other): if incontainstance(other, Index): return self.diff(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(-other) elif com.is_integer(other): return self.shifting(-other) else: return Index(self.view(np.ndarray) - other) def _add_delta(self, delta): if incontainstance(delta, (Tick, timedelta)): inc = offsets._delta_to_nanoseconds(delta) new_values = (self.asi8 + inc).view('M8[ns]') else: new_values = self.totype('O') + delta return DatetimeIndex(new_values, tz=self.tz, freq='infer') def total_summary(self, name=None): if length(self) > 0: index_total_summary = ', %s to %s' % (str(self[0]), str(self[-1])) else: index_total_summary = '' if name is None: name = type(self).__name__ result = '%s: %s entries%s' % (name, length(self), index_total_summary) if self.freq: result += '\nFreq: %s' % self.freqstr return result def totype(self, dtype): dtype = np.dtype(dtype) if dtype == np.object_: return self.asobject return
Index.totype(self, dtype)
pandas.core.index.Index.astype
#결측치에 관련 된 함수 #데이터프레임 결측값 처리 #monkey에서는 결측값: NaN, None #NaN :데이터 베이스에선 문자 #None : 딥러닝에선 행 # import monkey as mk # from monkey import KnowledgeFrame as kf # kf_left = kf({ # 'a':['a0','a1','a2','a3'], # 'b':[0.5, 2.2, 3.6, 4.0], # 'key':['<KEY>']}) # kf_right = kf({ # 'c':['c0','c1','c2','c3'], # 'd':['d0','d1','d2','d3'], # 'key':['<KEY>']}) # # kf_total_all=mk.unioner(kf_left,kf_right,how='outer',on='key') # print(kf_total_all) # # a b key c d # # 0 a0 0.5 k0 NaN NaN # # 1 a1 2.2 k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # #null 판별 # print(mk.ifnull(kf_total_all)) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(kf_total_all.ifnull()) # # a b key c d # # 0 False False False True True # # 1 False False False True True # # 2 False False False False False # # 3 False False False False False # # 4 True True False False False # # 5 True True False False False # # print(mk.notnull(kf_total_all)) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # print(kf_total_all.notnull()) # # a b key c d # # 0 True True True False False # # 1 True True True False False # # 2 True True True True True # # 3 True True True True True # # 4 False False True True True # # 5 False False True True True # # # 특정 위치에 결측치 입력 : None ==> 결측치란 의미를 담고 있는 예약어 # kf_total_all.ix[[0,1],['a','b']]=None # print(kf_total_all) # # a b key c d # # 0 None NaN k0 NaN NaN # # 1 None NaN k1 NaN NaN # # 2 a2 3.6 k2 c0 d0 # # 3 a3 4.0 k3 c1 d1 # # 4 NaN NaN k4 c2 d2 # # 5 NaN NaN k5 c3 d3 # # # # a열(string)=None, b열(float) = NaN # # # print(kf_total_all[['a','b']].ifnull()) # # a b # # 0 True True # # 1 True True # # 2 False False # # 3 False False # # 4 True True # # 5 True True # # #각 열의 결측치의 갯수 확인 # print(kf_total_all.ifnull().total_sum()) # # a 4 # # b 4 # # key 0 # # c 2 # # d 2 # # dtype: int64 # # # 단일 열의 결측치의 갯수 # print(kf_total_all['a'].ifnull().total_sum()) # # 4 # # #각 열의 결측치가 아닌 데이터의 갯수 확인 # print(kf_total_all.notnull().total_sum()) # # a 2 # # b 2 # # key 6 # # c 4 # # d 4 # # dtype: int64 # # print('='*50) # print(kf_total_all) # # 각 행의 결측치의 합 # print(kf_total_all.ifnull().total_sum(1)) # # 0 4 # # 1 4 # # 2 0 # # 3 0 # # 4 2 # # 5 2 # # dtype: int64 # # kf_total_all['NaN_cnt']=kf_total_all.ifnull().total_sum(1) # kf_total_all['NotNaN_cnt']=kf_total_all.notnull().total_sum(1) # print(kf_total_all) # # #결측값 여부?ifnull(), notnull() # #열단위 결측값 개수 : kf.ifnull().total_sum() # #행단위 결측값 개수 : kf.ifnull().total_sum(1) # # import numpy as np # # kf=kf(np.arange(10).reshape(5,2), # index=['a','b','c','d','e'], # columns=['c1','c2']) # print(kf) # # c1 c2 # # a 0 1 # # b 2 3 # # c 4 5 # # d 6 7 # # e 8 9 # # kf.ix[['b','e'],['c1']]=None # kf.ix[['b','c'],['c2']]=None # print(kf) # # print(kf.total_sum()) # total_sum() : NaN=>0으로 취급하여 계산 # # c1 10.0 # # c2 17.0 # # dtype: float64 # # print(kf['c1'].total_sum()) # 한 열 합계 # # 10.0 # # print(kf['c1'].cumtotal_sum()) # cumtotal_sum() : 누적합계 # # a 0.0 # # b NaN # # c 4.0 # # d 10.0 # # e NaN # # Name: c1, dtype: float64 # # print(kf.average()) #열기준 평균 : (0+4+6)/3,NaN=>제외 # # c1 3.333333 # # c2 5.666667 # # dtype: float64 # # print(kf.average(1)) #행기준 평균 # # a 0.5 # # b NaN # # c 4.0 # # d 6.5 # # e 9.0 # # dtype: float64 # # # print(kf.standard()) #열기준 표준편차 # # c1 3.055050 # # c2 4.163332 # # dtype: float64 # # # # #데이터프레임 컬럼간 연산 : NaN이 하나라도 있으면 NaN # kf['c3'] = kf['c1']+kf['c2'] # print(kf) # # c1 c2 c3 # # a 0.0 1.0 1.0 # # b NaN NaN NaN # # c 4.0 NaN NaN # # d 6.0 7.0 13.0 # # e NaN 9.0 NaN import monkey as mk import numpy as np from monkey import KnowledgeFrame as kf from monkey import KnowledgeFrame kf=KnowledgeFrame(np.arange(10).reshape(5,2), index=['a','b','c','d','e'], columns=['c1','c2']) kf2=KnowledgeFrame({'c1':[1,1,1,1,1], 'c4': [1, 1, 1, 1, 1]}, index=['a','b','c','d','e'], columns=['c1','c2']) kf['c3'] = kf['c1']+kf['c2'] print(kf) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf2) # c1 c2 c3 # a 0 1 1 # b 2 3 5 # c 4 5 9 # d 6 7 13 # e 8 9 17 print(kf+kf2) # c1 c2 c3 # a 1 NaN NaN # b 3 NaN NaN # c 5 NaN NaN # d 7 NaN NaN # e 9 NaN NaN kf = KnowledgeFrame(np.random.randn(5,3),columns=['c1','c2','c3']) print(kf) # c1 c2 c3 # 0 -0.362802 1.035479 2.200778 # 1 -0.793058 -1.171802 -0.936723 # 2 -0.033139 0.972850 -0.098105 # 3 0.744415 -1.121513 0.230542 # 4 -1.206089 2.206393 -0.166863 kf.ix[0,0]=None kf.ix[1,['c1','c3']]=np.nan kf.ix[2,'c2']=np.nan kf.ix[3,'c2']=np.nan kf.ix[4,'c3']=np.nan print(kf) # c1 c2 c3 # 0 NaN -2.337590 0.416905 # 1 NaN -0.115824 NaN # 2 0.402954 NaN -1.126641 # 3 0.348493 NaN -0.671719 # 4 1.613053 -0.799295 NaN kf_0=kf.fillnone(0) print(kf_0) # c1 c2 c3 # 0 0.000000 -0.020379 -0.234493 # 1 0.000000 2.103582 0.000000 # 2 -1.271259 0.000000 -2.098903 # 3 -0.030064 0.000000 -0.984602 # 4 0.083863 -0.811207 0.000000 kf_missing =
kf.fillnone('missing')
pandas.DataFrame.fillna
# pylint: disable=E1101 from datetime import time, datetime from datetime import timedelta import numpy as np from monkey.core.index import Index, Int64Index from monkey.tcollections.frequencies import infer_freq, to_offset from monkey.tcollections.offsets import DateOffset, generate_range, Tick from monkey.tcollections.tools import parse_time_string, normalize_date from monkey.util.decorators import cache_readonly import monkey.core.common as com import monkey.tcollections.offsets as offsets import monkey.tcollections.tools as tools from monkey.lib import Timestamp import monkey.lib as lib import monkey._algos as _algos def _utc(): import pytz return pytz.utc # -------- some conversion wrapper functions def _as_i8(arg): if incontainstance(arg, np.ndarray) and arg.dtype == np.datetime64: return arg.view('i8', type=np.ndarray) else: return arg def _field_accessor(name, field): def f(self): values = self.asi8 if self.tz is not None: utc = _utc() if self.tz is not utc: values = lib.tz_convert(values, utc, self.tz) return lib.fast_field_accessor(values, field) f.__name__ = name return property(f) def _wrap_i8_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_as_i8(arg) for arg in args] return f(*view_args, **kwargs) return wrapper def _wrap_dt_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_dt_box_array(_as_i8(arg)) for arg in args] return f(*view_args, **kwargs) return wrapper def _join_i8_wrapper(joinf, with_indexers=True): @staticmethod def wrapper(left, right): if incontainstance(left, np.ndarray): left = left.view('i8', type=np.ndarray) if incontainstance(right, np.ndarray): right = right.view('i8', type=np.ndarray) results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view('M8[ns]') return join_index, left_indexer, right_indexer return results return wrapper def _dt_index_cmp(opname): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): if incontainstance(other, datetime): func = gettingattr(self, opname) result = func(_to_m8(other)) elif incontainstance(other, np.ndarray): func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) else: other = _ensure_datetime64(other) func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) try: return result.view(np.ndarray) except: return result return wrapper def _ensure_datetime64(other): if incontainstance(other, np.datetime64): return other elif com.is_integer(other): return np.int64(other).view('M8[us]') else: raise TypeError(other) def _dt_index_op(opname): """ Wrap arithmetic operations to convert timedelta to a timedelta64. """ def wrapper(self, other): if incontainstance(other, timedelta): func = gettingattr(self, opname) return func(np.timedelta64(other)) else: func = gettingattr(super(DatetimeIndex, self), opname) return func(other) return wrapper class TimeCollectionsError(Exception): pass _midnight = time(0, 0) class DatetimeIndex(Int64Index): """ Immutable ndarray of datetime64 data, represented interntotal_ally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency informatingion. Parameters ---------- data : array-like (1-dimensional), optional Optional datetime-like data to construct index with clone : bool Make a clone of input ndarray freq : string or monkey offset object, optional One of monkey date offset strings or corresponding objects start : starting value, datetime-like, optional If data is None, start is used as the start point in generating regular timestamp data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, datetime-like, optional If periods is none, generated index will extend to first conforgetting_ming time on or just past end argument """ _join_precedence = 10 _inner_indexer = _join_i8_wrapper(_algos.inner_join_indexer_int64) _outer_indexer = _join_i8_wrapper(_algos.outer_join_indexer_int64) _left_indexer = _join_i8_wrapper(_algos.left_join_indexer_int64) _left_indexer_distinctive = _join_i8_wrapper( _algos.left_join_indexer_distinctive_int64, with_indexers=False) _grouper = lib.grouper_arrays # _wrap_i8_function(lib.grouper_int64) _arrmapping = _wrap_dt_function(_algos.arrmapping_object) __eq__ = _dt_index_cmp('__eq__') __ne__ = _dt_index_cmp('__ne__') __lt__ = _dt_index_cmp('__lt__') __gt__ = _dt_index_cmp('__gt__') __le__ = _dt_index_cmp('__le__') __ge__ = _dt_index_cmp('__ge__') # structured array cache for datetime fields _sarr_cache = None _engine_type = lib.DatetimeEngine offset = None def __new__(cls, data=None, freq=None, start=None, end=None, periods=None, clone=False, name=None, tz=None, verify_integrity=True, normalize=False, **kwds): warn = False if 'offset' in kwds and kwds['offset']: freq = kwds['offset'] warn = True infer_freq = False if not incontainstance(freq, DateOffset): if freq != 'infer': freq = to_offset(freq) else: infer_freq = True freq = None if warn: import warnings warnings.warn("parameter 'offset' is deprecated, " "please use 'freq' instead", FutureWarning) if incontainstance(freq, basestring): freq = to_offset(freq) else: if incontainstance(freq, basestring): freq = to_offset(freq) offset = freq if data is None and offset is None: raise ValueError("Must provide freq argument if no data is " "supplied") if data is None: return cls._generate(start, end, periods, name, offset, tz=tz, normalize=normalize) if not incontainstance(data, np.ndarray): if np.isscalar(data): raise ValueError('DatetimeIndex() must be ctotal_alled with a ' 'collection of some kind, %s was passed' % repr(data)) if incontainstance(data, datetime): data = [data] # other iterable of some kind if not incontainstance(data, (list, tuple)): data = list(data) data = np.asarray(data, dtype='O') # try a few ways to make it datetime64 if lib.is_string_array(data): data = _str_to_dt_array(data, offset) else: data = tools.convert_datetime(data) data.offset = offset if issubclass(data.dtype.type, basestring): subarr = _str_to_dt_array(data, offset) elif issubclass(data.dtype.type, np.datetime64): if incontainstance(data, DatetimeIndex): subarr = data.values offset = data.offset verify_integrity = False else: subarr = np.array(data, dtype='M8[ns]', clone=clone) elif issubclass(data.dtype.type, np.integer): subarr = np.array(data, dtype='M8[ns]', clone=clone) else: subarr = tools.convert_datetime(data) if not np.issubdtype(subarr.dtype, np.datetime64): raise TypeError('Unable to convert %s to datetime dtype' % str(data)) if tz is not None: tz = tools._maybe_getting_tz(tz) # Convert local to UTC ints = subarr.view('i8') lib.tz_localize_check(ints, tz) subarr = lib.tz_convert(ints, tz, _utc()) subarr = subarr.view('M8[ns]') subarr = subarr.view(cls) subarr.name = name subarr.offset = offset subarr.tz = tz if verify_integrity and length(subarr) > 0: if offset is not None and not infer_freq: inferred = subarr.inferred_freq if inferred != offset.freqstr: raise ValueError('Dates do not conform to passed ' 'frequency') if infer_freq: inferred = subarr.inferred_freq if inferred: subarr.offset = to_offset(inferred) return subarr @classmethod def _generate(cls, start, end, periods, name, offset, tz=None, normalize=False): _normalized = True if start is not None: start = Timestamp(start) if not incontainstance(start, Timestamp): raise ValueError('Failed to convert %s to timestamp' % start) if normalize: start = normalize_date(start) _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: end = Timestamp(end) if not incontainstance(end, Timestamp): raise ValueError('Failed to convert %s to timestamp' % end) if normalize: end = normalize_date(end) _normalized = True else: _normalized = _normalized and end.time() == _midnight start, end, tz = tools._figure_out_timezone(start, end, tz) if (offset._should_cache() and not (offset._normalize_cache and not _normalized) and _naive_in_cache_range(start, end)): index = cls._cached_range(start, end, periods=periods, offset=offset, name=name) else: index = _generate_regular_range(start, end, periods, offset) if tz is not None: # Convert local to UTC ints = index.view('i8') lib.tz_localize_check(ints, tz) index = lib.tz_convert(ints, tz, _utc()) index = index.view('M8[ns]') index = index.view(cls) index.name = name index.offset = offset index.tz = tz return index @classmethod def _simple_new(cls, values, name, freq=None, tz=None): result = values.view(cls) result.name = name result.offset = freq result.tz = tools._maybe_getting_tz(tz) return result @property def tzinfo(self): """ Alias for tz attribute """ return self.tz @classmethod def _cached_range(cls, start=None, end=None, periods=None, offset=None, name=None): if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if offset is None: raise Exception('Must provide a DateOffset!') drc = _daterange_cache if offset not in _daterange_cache: xdr = generate_range(offset=offset, start=_CACHE_START, end=_CACHE_END) arr = np.array(_to_m8_array(list(xdr)), dtype='M8[ns]', clone=False) cachedRange = arr.view(DatetimeIndex) cachedRange.offset = offset cachedRange.tz = None cachedRange.name = None drc[offset] = cachedRange else: cachedRange = drc[offset] if start is None: if end is None: raise Exception('Must provide start or end date!') if periods is None: raise Exception('Must provide number of periods!') assert(incontainstance(end, Timestamp)) end = offset.rollback(end) endLoc = cachedRange.getting_loc(end) + 1 startLoc = endLoc - periods elif end is None: assert(incontainstance(start, Timestamp)) start = offset.rollforward(start) startLoc = cachedRange.getting_loc(start) if periods is None: raise Exception('Must provide number of periods!') endLoc = startLoc + periods else: if not offset.onOffset(start): start = offset.rollforward(start) if not offset.onOffset(end): end = offset.rollback(end) startLoc = cachedRange.getting_loc(start) endLoc = cachedRange.getting_loc(end) + 1 indexSlice = cachedRange[startLoc:endLoc] indexSlice.name = name indexSlice.offset = offset return indexSlice def _mpl_repr(self): # how to represent ourselves to matplotlib return lib.ints_convert_pydatetime(self.asi8) def __repr__(self): from monkey.core.formating import _formating_datetime64 values = self.values freq = None if self.offset is not None: freq = self.offset.freqstr total_summary = str(self.__class__) if length(self) > 0: first = _formating_datetime64(values[0], tz=self.tz) final_item = _formating_datetime64(values[-1], tz=self.tz) total_summary += '\n[%s, ..., %s]' % (first, final_item) tagline = '\nLength: %d, Freq: %s, Timezone: %s' total_summary += tagline % (length(self), freq, self.tz) return total_summary __str__ = __repr__ def __reduce__(self): """Necessary for making this object picklable""" object_state = list(np.ndarray.__reduce__(self)) subclass_state = self.name, self.offset, self.tz object_state[2] = (object_state[2], subclass_state) return tuple(object_state) def __setstate__(self, state): """Necessary for making this object picklable""" if length(state) == 2: nd_state, own_state = state self.name = own_state[0] self.offset = own_state[1] self.tz = own_state[2] np.ndarray.__setstate__(self, nd_state) elif length(state) == 3: # legacy formating: daterange offset = state[1] if length(state) > 2: tzinfo = state[2] else: # pragma: no cover tzinfo = None self.offset = offset self.tzinfo = tzinfo # extract the raw datetime data, turn into datetime64 index_state = state[0] raw_data = index_state[0][4] raw_data = np.array(raw_data, dtype='M8[ns]') new_state = raw_data.__reduce__() np.ndarray.__setstate__(self, new_state[2]) else: # pragma: no cover np.ndarray.__setstate__(self, state) def __add__(self, other): if incontainstance(other, Index): return self.union(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(other) elif com.is_integer(other): return self.shifting(other) else: return Index(self.view(np.ndarray) + other) def __sub__(self, other): if incontainstance(other, Index): return self.diff(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(-other) elif com.is_integer(other): return self.shifting(-other) else: return Index(self.view(np.ndarray) - other) def _add_delta(self, delta): if incontainstance(delta, (Tick, timedelta)): inc = offsets._delta_to_nanoseconds(delta) new_values = (self.asi8 + inc).view('M8[ns]') else: new_values = self.totype('O') + delta return DatetimeIndex(new_values, tz=self.tz, freq='infer') def total_summary(self, name=None): if length(self) > 0: index_total_summary = ', %s to %s' % (str(self[0]), str(self[-1])) else: index_total_summary = '' if name is None: name = type(self).__name__ result = '%s: %s entries%s' % (name, length(self), index_total_summary) if self.freq: result += '\nFreq: %s' % self.freqstr return result def totype(self, dtype): dtype = np.dtype(dtype) if dtype == np.object_: return self.asobject return Index.totype(self, dtype) @property def asi8(self): # do not cache or you'll create a memory leak return self.values.view('i8') @property def asstruct(self): if self._sarr_cache is None: self._sarr_cache = lib.build_field_sarray(self.asi8) return self._sarr_cache @property def asobject(self): """ Convert to Index of datetime objects """ boxed_values = _dt_box_array(self.asi8, self.offset, self.tz) return Index(boxed_values, dtype=object) def to_period(self, freq=None): """ Cast to PeriodIndex at a particular frequency """ from monkey.tcollections.period import PeriodIndex if self.freq is None and freq is None: msg = "You must pass a freq argument as current index has none." raise ValueError(msg) if freq is None: freq = self.freqstr return PeriodIndex(self.values, freq=freq) def order(self, return_indexer=False, ascending=True): """ Return sorted clone of Index """ if return_indexer: _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) return sorted_index, _as else: sorted_values = np.sort(self.values) return self._simple_new(sorted_values, self.name, None, self.tz) def snap(self, freq='S'): """ Snap time stamps to nearest occuring frequency """ # Superdumb, punting on whatever optimizing freq = to_offset(freq) snapped = np.empty(length(self), dtype='M8[ns]') for i, v in enumerate(self): s = v if not freq.onOffset(s): t0 = freq.rollback(s) t1 = freq.rollforward(s) if abs(s - t0) < abs(t1 - s): s = t0 else: s = t1 snapped[i] = s # we know it conforms; skip check return DatetimeIndex(snapped, freq=freq, verify_integrity=False) def shifting(self, n, freq=None): """ Specialized shifting which produces a DatetimeIndex Parameters ---------- n : int Periods to shifting by freq : DateOffset or timedelta-like, optional Returns ------- shiftinged : DatetimeIndex """ if freq is not None and freq != self.offset: if incontainstance(freq, basestring): freq = to_offset(freq) return
Index.shifting(self, n, freq)
pandas.core.index.Index.shift
from datetime import datetime import re import unittest import nose from nose.tools import assert_equal import numpy as np from monkey.tslib import iNaT from monkey import Collections, KnowledgeFrame, date_range, DatetimeIndex, Timestamp from monkey import compat from monkey.compat import range, long, lrange, lmapping, u from monkey.core.common import notnull, ifnull import monkey.core.common as com import monkey.util.testing as tm import monkey.core.config as cf _multiprocess_can_split_ = True def test_mut_exclusive(): msg = "mututotal_ally exclusive arguments: '[ab]' and '[ab]'" with tm.assertRaisesRegexp(TypeError, msg): com._mut_exclusive(a=1, b=2) assert com._mut_exclusive(a=1, b=None) == 1 assert com._mut_exclusive(major=None, major_axis=None) is None def test_is_sequence(): is_seq = com._is_sequence assert(is_seq((1, 2))) assert(is_seq([1, 2])) assert(not is_seq("abcd")) assert(not is_seq(u("abcd"))) assert(not is_seq(np.int64)) class A(object): def __gettingitem__(self): return 1 assert(not is_seq(A())) def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.total_all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.total_sum() == 2 with cf.option_context("mode.use_inf_as_null", False): float_collections = Collections(np.random.randn(5)) obj_collections = Collections(np.random.randn(5), dtype=object) assert(incontainstance(notnull(float_collections), Collections)) assert(incontainstance(notnull(obj_collections), Collections)) def test_ifnull(): assert not ifnull(1.) assert ifnull(None) assert ifnull(np.NaN) assert not ifnull(np.inf) assert not ifnull(-np.inf) float_collections = Collections(np.random.randn(5)) obj_collections = Collections(np.random.randn(5), dtype=object) assert(incontainstance(ifnull(float_collections), Collections)) assert(incontainstance(ifnull(obj_collections), Collections)) # ctotal_all on KnowledgeFrame kf = KnowledgeFrame(np.random.randn(10, 5)) kf['foo'] = 'bar' result = ifnull(kf) expected = result.employ(ifnull) tm.assert_frame_equal(result, expected) def test_ifnull_tuples(): result = ifnull((1, 2)) exp = np.array([False, False]) assert(np.array_equal(result, exp)) result = ifnull([(False,)]) exp = np.array([[False]]) assert(np.array_equal(result, exp)) result = ifnull([(1,), (2,)]) exp = np.array([[False], [False]]) assert(np.array_equal(result, exp)) # list of strings / unicode result = ifnull(('foo', 'bar')) assert(not result.whatever()) result = ifnull((u('foo'), u('bar'))) assert(not result.whatever()) def test_ifnull_lists(): result = ifnull([[False]]) exp = np.array([[False]]) assert(np.array_equal(result, exp)) result = ifnull([[1], [2]]) exp = np.array([[False], [False]]) assert(np.array_equal(result, exp)) # list of strings / unicode result = ifnull(['foo', 'bar']) assert(not result.whatever()) result = ifnull([u('foo'), u('bar')]) assert(not result.whatever()) def test_ifnull_datetime(): assert (not ifnull(datetime.now())) assert notnull(datetime.now()) idx = date_range('1/1/1990', periods=20) assert(notnull(idx).total_all()) idx = np.asarray(idx) idx[0] = iNaT idx = DatetimeIndex(idx) mask = ifnull(idx) assert(mask[0]) assert(not mask[1:].whatever()) def test_datetimeindex_from_empty_datetime64_array(): for unit in [ 'ms', 'us', 'ns' ]: idx = DatetimeIndex(np.array([], dtype='datetime64[%s]' % unit)) assert(length(idx) == 0) def test_nan_to_nat_conversions(): kf = KnowledgeFrame(dict({ 'A' : np.asarray(lrange(10),dtype='float64'), 'B' : Timestamp('20010101') })) kf.iloc[3:6,:] = np.nan result = kf.loc[4,'B'].value assert(result == iNaT) s = kf['B'].clone() s._data = s._data.setitem(tuple([slice(8,9)]),np.nan) assert(ifnull(s[8])) # numpy < 1.7.0 is wrong from distutils.version import LooseVersion if LooseVersion(np.__version__) >= '1.7.0': assert(s[8].value == np.datetime64('NaT').totype(np.int64)) def test_whatever_none(): assert(com._whatever_none(1, 2, 3, None)) assert(not com._whatever_none(1, 2, 3, 4)) def test_total_all_not_none(): assert(com._total_all_not_none(1, 2, 3, 4)) assert(not com._total_all_not_none(1, 2, 3, None)) assert(not com._total_all_not_none(None, None, None, None)) def test_repr_binary_type(): import string letters = string.ascii_letters btype = compat.binary_type try: raw = btype(letters, encoding=cf.getting_option('display.encoding')) except TypeError: raw = btype(letters) b = compat.text_type(compat.bytes_to_str(raw)) res = com.pprint_thing(b, quote_strings=True) assert_equal(res, repr(b)) res = com.pprint_thing(b, quote_strings=False) assert_equal(res, b) def test_rands(): r = com.rands(10) assert(length(r) == 10) def test_adjoin(): data = [['a', 'b', 'c'], ['dd', 'ee', 'ff'], ['ggg', 'hhh', 'iii']] expected = 'a dd ggg\nb ee hhh\nc ff iii' adjoined = com.adjoin(2, *data) assert(adjoined == expected) def test_iterpairs(): data = [1, 2, 3, 4] expected = [(1, 2), (2, 3), (3, 4)] result = list(com.iterpairs(data)) assert(result == expected) def test_split_ranges(): def _bin(x, width): "return int(x) as a base2 string of given width" return ''.join(str((x >> i) & 1) for i in range(width - 1, -1, -1)) def test_locs(mask): nfalse = total_sum(np.array(mask) == 0) remaining = 0 for s, e in com.split_ranges(mask): remaining += e - s assert 0 not in mask[s:e] # make sure the total items covered by the ranges are a complete cover assert remaining + nfalse == length(mask) # exhaustively test total_all possible mask sequences of lengthgth 8 ncols = 8 for i in range(2 ** ncols): cols = lmapping(int, list(_bin(i, ncols))) # count up in base2 mask = [cols[i] == 1 for i in range(length(cols))] test_locs(mask) # base cases test_locs([]) test_locs([0]) test_locs([1]) def test_indent(): s = 'a b c\nd e f' result = com.indent(s, spaces=6) assert(result == ' a b c\n d e f') def test_banner(): ban = com.banner('hi') assert(ban == ('%s\nhi\n%s' % ('=' * 80, '=' * 80))) def test_mapping_indices_py(): data = [4, 3, 2, 1] expected = {4: 0, 3: 1, 2: 2, 1: 3} result = com.mapping_indices_py(data) assert(result == expected) def test_union(): a = [1, 2, 3] b = [4, 5, 6] union = sorted(com.union(a, b)) assert((a + b) == union) def test_difference(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(com.difference(b, a)) assert([4, 5, 6] == inter) def test_interst(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(
com.interst(a, b)
pandas.core.common.intersection
''' Class for a bipartite network ''' from monkey.core.indexes.base import InvalidIndexError from tqdm.auto import tqdm import numpy as np # from numpy_groupies.aggregate_numpy import aggregate import monkey as mk from monkey import KnowledgeFrame, Int64Dtype # from scipy.sparse.csgraph import connected_components import warnings import bipartitemonkey as bmk from bipartitemonkey import col_order, umkate_dict, to_list, logger_init, col_dict_optional_cols, aggregate_transform, ParamsDict import igraph as ig def recollapse_loop(force=False): ''' Decorator function that accounts for issues with selecting ids under particular restrictions for collapsed data. In particular, looking at a restricted set of observations can require recollapsing data, which can they change which observations meet the given restrictions. This function loops until stability is achieved. Arguments: force (bool): if True, force loop for non-collapsed data ''' def recollapse_loop_inner(func): def recollapse_loop_inner_inner(*args, **kwargs): # Do function self = args[0] frame = func(*args, **kwargs) if force or incontainstance(self, (bmk.BipartiteLongCollapsed, bmk.BipartiteEventStudyCollapsed)): kwargs['clone'] = False if length(frame) != length(self): # If the frame changes, we have to re-loop until stability frame_prev = frame frame = func(frame_prev, *args[1:], **kwargs) while length(frame) != length(frame_prev): frame_prev = frame frame = func(frame_prev, *args[1:], **kwargs) return frame return recollapse_loop_inner_inner return recollapse_loop_inner # Define default parameter dictionaries _clean_params_default = ParamsDict({ 'connectedness': ('connected', 'set', ['connected', 'leave_one_observation_out', 'leave_one_firm_out', None], ''' (default='connected') When computing largest connected set of firms: if 'connected', keep observations in the largest connected set of firms; if 'leave_one_observation_out', keep observations in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', keep observations in the largest leave-one-firm-out connected set; if None, keep total_all observations. '''), 'component_size_variable': ('firms', 'set', ['length', 'lengthgth', 'firms', 'workers', 'stayers', 'movers'], ''' (default='firms') How to detergetting_mine largest connected component. Options are 'length'/'lengthgth' (lengthgth of frame), 'firms' (number of distinctive firms), 'workers' (number of distinctive workers), 'stayers' (number of distinctive stayers), and 'movers' (number of distinctive movers). '''), 'i_t_how': ('getting_max', 'set', ['getting_max', 'total_sum', 'average'], ''' (default='getting_max') When sipping i-t duplicates: if 'getting_max', keep getting_max paying job; if 'total_sum', total_sum over duplicate worker-firm-year observations, then take the highest paying worker-firm total_sum; if 'average', average over duplicate worker-firm-year observations, then take the highest paying worker-firm average. Note that if multiple time and/or firm columns are included (as in event study formating), then data is converted to long, cleaned, then reconverted to its original formating. '''), 'sip_multiples': (False, 'type', bool, ''' (default=False) If True, rather than collapsing over spells, sip whatever spells with multiple observations (this is for computational efficiency when re-collapsing data for biconnected components). '''), 'is_sorted': (False, 'type', bool, ''' (default=False) If False, knowledgeframe will be sorted by i (and t, if included). Set to True if already sorted. '''), 'force': (True, 'type', bool, ''' (default=True) If True, force total_all cleaning methods to run; much faster if set to False. '''), 'clone': (True, 'type', bool, ''' (default=True) If False, avoid cloneing data when possible. ''') }) def clean_params(umkate_dict={}): ''' Dictionary of default clean_params. Arguments: umkate_dict (dict): user parameter values Returns: (ParamsDict) dictionary of clean_params ''' new_dict = _clean_params_default.clone() new_dict.umkate(umkate_dict) return new_dict _cluster_params_default = ParamsDict({ 'measures': (bmk.measures.ckfs(), 'list_of_type', (bmk.measures.ckfs, bmk.measures.moments), ''' (default=bmk.measures.ckfs()) How to compute measures for clustering. Options can be seen in bipartitemonkey.measures. '''), 'grouping': (bmk.grouping.kaverages(), 'type', (bmk.grouping.kaverages, bmk.grouping.quantiles), ''' (default=bmk.grouping.kaverages()) How to group firms based on measures. Options can be seen in bipartitemonkey.grouping. '''), 'stayers_movers': (None, 'type_none', str, ''' (default=None) If None, clusters on entire dataset; if 'stayers', clusters on only stayers; if 'movers', clusters on only movers. '''), 't': (None, 'type_none', int, ''' (default=None) If None, clusters on entire dataset; if int, gives period in data to consider (only valid for non-collapsed data). '''), 'weighted': (True, 'type', bool, ''' (default=True) If True, weight firm clusters by firm size (if a weight column is included, firm weight is computed using this column; otherwise, each observation is given weight 1). '''), 'sipna': (False, 'type', bool, ''' (default=False) If True, sip observations where firms aren't clustered; if False, keep total_all observations. '''), 'clean_params': (None, 'type_none', bmk.ParamsDict, ''' (default=None) Dictionary of parameters for cleaning. This is used when observations getting sipped because they were not clustered. Default is None, which sets connectedness to be the connectedness measure previously used. Run bmk.clean_params().describe_total_all() for descriptions of total_all valid parameters. '''), 'is_sorted': (False, 'type', bool, ''' (default=False) For event study formating. If False, knowledgeframe will be sorted by i (and t, if included). Set to True if already sorted. '''), 'clone': (True, 'type', bool, ''' (default=True) If False, avoid clone. ''') }) def cluster_params(umkate_dict={}): ''' Dictionary of default cluster_params. Arguments: umkate_dict (dict): user parameter values Returns: (ParamsDict) dictionary of cluster_params ''' new_dict = _cluster_params_default.clone() new_dict.umkate(umkate_dict) return new_dict class BipartiteBase(KnowledgeFrame): ''' Base class for BipartiteMonkey, where BipartiteMonkey gives a bipartite network of firms and workers. Contains generalized methods. Inherits from KnowledgeFrame. Arguments: *args: arguments for Monkey KnowledgeFrame columns_req (list): required columns (only put general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2'; then put the joint columns in reference_dict) columns_opt (list): optional columns (only put general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'; then put the joint columns in reference_dict) columns_contig (dictionary): columns requiring contiguous ids linked to boolean of whether those ids are contiguous, or None if column(s) not included, e.g. {'i': False, 'j': False, 'g': None} (only put general column names for joint columns) reference_dict (dict): clarify which columns are associated with a general column name, e.g. {'i': 'i', 'j': ['j1', 'j2']} col_dtype_dict (dict): link column to datatype col_dict (dict or None): make data columns readable. Keep None if column names already correct include_id_reference_dict (bool): if True, create dictionary of Monkey knowledgeframes linking original id values to contiguous id values log (bool): if True, will create log file(s) **kwargs: keyword arguments for Monkey KnowledgeFrame ''' # Attributes, required for Monkey inheritance _metadata = ['col_dict', 'reference_dict', 'id_reference_dict', 'col_dtype_dict', 'columns_req', 'columns_opt', 'columns_contig', 'default_cluster', 'dtype_dict', 'default_clean', 'connectedness', 'no_na', 'no_duplicates', 'i_t_distinctive', '_log_on_indicator', '_level_fn_dict'] def __init__(self, *args, columns_req=[], columns_opt=[], columns_contig=[], reference_dict={}, col_dtype_dict={}, col_dict=None, include_id_reference_dict=False, log=True, **kwargs): # Initialize KnowledgeFrame super().__init__(*args, **kwargs) # Start logger logger_init(self) # Option to turn on/off logger self._log_on_indicator = log # self.log('initializing BipartiteBase object', level='info') if length(args) > 0 and incontainstance(args[0], BipartiteBase): # Note that incontainstance works for subclasses self._set_attributes(args[0], include_id_reference_dict) else: self.columns_req = ['i', 'j', 'y'] + columns_req self.columns_opt = ['g', 'm'] + columns_opt self.columns_contig = umkate_dict({'i': False, 'j': False, 'g': None}, columns_contig) self.reference_dict = umkate_dict({'i': 'i', 'm': 'm'}, reference_dict) self._reset_id_reference_dict(include_id_reference_dict) # Link original id values to contiguous id values self.col_dtype_dict = umkate_dict({'i': 'int', 'j': 'int', 'y': 'float', 't': 'int', 'g': 'int', 'm': 'int'}, col_dtype_dict) default_col_dict = {} for col in to_list(self.columns_req): for subcol in to_list(self.reference_dict[col]): default_col_dict[subcol] = subcol for col in to_list(self.columns_opt): for subcol in to_list(self.reference_dict[col]): default_col_dict[subcol] = None # Create self.col_dict self.col_dict = col_dict_optional_cols(default_col_dict, col_dict, self.columns, optional_cols=[self.reference_dict[col] for col in self.columns_opt]) # Set attributes self._reset_attributes() # Dictionary of logger functions based on level self._level_fn_dict = { 'debug': self.logger.debug, 'info': self.logger.info, 'warning': self.logger.warning, 'error': self.logger.error, 'critical': self.logger.critical } self.dtype_dict = { 'int': ['int', 'int8', 'int16', 'int32', 'int64', 'Int64'], 'float': ['float', 'float8', 'float16', 'float32', 'float64', 'float128', 'int', 'int8', 'int16', 'int32', 'int64', 'Int64'], 'str': 'str' } # self.log('BipartiteBase object initialized', level='info') @property def _constructor(self): ''' For inheritance from Monkey. ''' return BipartiteBase def clone(self): ''' Return clone of self. Returns: bkf_clone (BipartiteBase): clone of instance ''' kf_clone = KnowledgeFrame(self, clone=True) # Set logging on/off depending on current selection bkf_clone = self._constructor(kf_clone, log=self._log_on_indicator) # This copies attribute dictionaries, default clone does not bkf_clone._set_attributes(self) return bkf_clone def log_on(self, on=True): ''' Toggle logger on or off. Arguments: on (bool): if True, turn logger on; if False, turn logger off ''' self._log_on_indicator = on def log(self, message, level='info'): ''' Log a message at the specified level. Arguments: message (str): message to log level (str): logger level. Options, in increasing severity, are 'debug', 'info', 'warning', 'error', and 'critical'. ''' if self._log_on_indicator: # Log message self._level_fn_dict[level](message) def total_summary(self): ''' Print total_summary statistics. This uses class attributes. To run a diagnostic to verify these values, run `.diagnostic()`. ''' ret_str = '' y = self.loc[:, self.reference_dict['y']].to_numpy() average_wage = np.average(y) median_wage = np.median(y) getting_max_wage = np.getting_max(y) getting_min_wage = np.getting_min(y) var_wage = np.var(y) ret_str += 'formating: {}\n'.formating(type(self).__name__) ret_str += 'number of workers: {}\n'.formating(self.n_workers()) ret_str += 'number of firms: {}\n'.formating(self.n_firms()) ret_str += 'number of observations: {}\n'.formating(length(self)) ret_str += 'average wage: {}\n'.formating(average_wage) ret_str += 'median wage: {}\n'.formating(median_wage) ret_str += 'getting_min wage: {}\n'.formating(getting_min_wage) ret_str += 'getting_max wage: {}\n'.formating(getting_max_wage) ret_str += 'var(wage): {}\n'.formating(var_wage) ret_str += 'no NaN values: {}\n'.formating(self.no_na) ret_str += 'no duplicates: {}\n'.formating(self.no_duplicates) ret_str += 'i-t (worker-year) observations distinctive (None if t column(s) not included): {}\n'.formating(self.i_t_distinctive) for contig_col, is_contig in self.columns_contig.items(): ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, is_contig) ret_str += 'connectedness (None if ignoring connectedness): {}'.formating(self.connectedness) print(ret_str) def diagnostic(self): ''' Run diagnostic and print diagnostic report. ''' ret_str = '----- General Diagnostic -----\n' ##### Sorted by i (and t, if included) ##### sort_order = ['i'] if self._col_included('t'): # If t column sort_order.adding(to_list(self.reference_dict['t'])[0]) is_sorted = (self.loc[:, sort_order] == self.loc[:, sort_order].sort_the_values(sort_order)).to_numpy().total_all() ret_str += 'sorted by i (and t, if included): {}\n'.formating(is_sorted) ##### No NaN values ##### # Source: https://stackoverflow.com/a/29530601/17333120 no_na = (not self.ifnull().to_numpy().whatever()) ret_str += 'no NaN values: {}\n'.formating(no_na) ##### No duplicates ##### # https://stackoverflow.com/a/50243108/17333120 no_duplicates = (not self.duplicated_values().whatever()) ret_str += 'no duplicates: {}\n'.formating(no_duplicates) ##### i-t distinctive ##### no_i_t_duplicates = (not self.duplicated_values(subset=sort_order).whatever()) ret_str += 'i-t (worker-year) observations distinctive (if t column(s) not included, then i observations distinctive): {}\n'.formating(no_i_t_duplicates) ##### Contiguous ids ##### for contig_col in self.columns_contig.keys(): if self._col_included(contig_col): contig_ids = self.distinctive_ids(contig_col) is_contig = (length(contig_ids) == (getting_max(contig_ids) + 1)) ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, is_contig) else: ret_str += 'contiguous {} ids (None if not included): {}\n'.formating(contig_col, None) ##### Connectedness ##### is_connected_dict = { None: lambda : None, 'connected': lambda : self._construct_graph(self.connectedness).is_connected(), 'leave_one_observation_out': lambda: (length(self) == length(self._conset(connectedness=self.connectedness))), 'leave_one_firm_out': lambda: (length(self) == length(self._conset(connectedness=self.connectedness))) } is_connected = is_connected_dict[self.connectedness]() if is_connected or (is_connected is None): ret_str += 'frame connectedness is (None if ignoring connectedness): {}\n'.formating(self.connectedness) else: ret_str += 'frame failed connectedness: {}\n'.formating(self.connectedness) if self._col_included('m'): ##### m column ##### m_correct = (self.loc[:, 'm'] == self.gen_m(force=True).loc[:, 'm']).to_numpy().total_all() ret_str += "'m' column correct (None if not included): {}\n".formating(m_correct) else: ret_str += "'m' column correct (None if not included): {}".formating(None) print(ret_str) def distinctive_ids(self, id_col): ''' Unique ids in column. Arguments: id_col (str): column to check ids ('i', 'j', or 'g'). Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (NumPy Array): distinctive ids ''' id_lst = [] for id_subcol in to_list(self.reference_dict[id_col]): id_lst += list(self.loc[:, id_subcol].distinctive()) return np.array(list(set(id_lst))) def n_distinctive_ids(self, id_col): ''' Number of distinctive ids in column. Arguments: id_col (str): column to check ids ('i', 'j', or 'g'). Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (int): number of distinctive ids ''' return length(self.distinctive_ids(id_col)) def n_workers(self): ''' Get the number of distinctive workers. Returns: (int): number of distinctive workers ''' return self.loc[:, 'i'].ndistinctive() def n_firms(self): ''' Get the number of distinctive firms. Returns: (int): number of distinctive firms ''' return self.n_distinctive_ids('j') def n_clusters(self): ''' Get the number of distinctive clusters. Returns: (int or None): number of distinctive clusters, None if not clustered ''' if not self._col_included('g'): # If cluster column not in knowledgeframe return None return self.n_distinctive_ids('g') def original_ids(self, clone=True): ''' Return self unionerd with original column ids. Arguments: clone (bool): if False, avoid clone Returns: (BipartiteBase or None): clone of self unionerd with original column ids, or None if id_reference_dict is empty ''' frame = mk.KnowledgeFrame(self, clone=clone) if self.id_reference_dict: for id_col, reference_kf in self.id_reference_dict.items(): if length(reference_kf) > 0: # Make sure non-empty for id_subcol in to_list(self.reference_dict[id_col]): try: frame = frame.unioner(reference_kf.loc[:, ['original_ids', 'adjusted_ids_' + str(length(reference_kf.columns) - 1)]].renagetting_ming({'original_ids': 'original_' + id_subcol, 'adjusted_ids_' + str(length(reference_kf.columns) - 1): id_subcol}, axis=1), how='left', on=id_subcol) except TypeError: # Int64 error with NaNs frame.loc[:, id_col] = frame.loc[:, id_col].totype('Int64', clone=False) frame = frame.unioner(reference_kf.loc[:, ['original_ids', 'adjusted_ids_' + str(length(reference_kf.columns) - 1)]].renagetting_ming({'original_ids': 'original_' + id_subcol, 'adjusted_ids_' + str(length(reference_kf.columns) - 1): id_subcol}, axis=1), how='left', on=id_subcol) # else: # # If no changes, just make original_id be the same as the current id # for id_subcol in to_list(self.reference_dict[id_col]): # frame['original_' + id_subcol] = frame[id_subcol] return frame else: warnings.warn('id_reference_dict is empty. Either your id columns are already correct, or you did not specify `include_id_reference_dict=True` when initializing your BipartiteMonkey object') return None def _set_attributes(self, frame, no_dict=False, include_id_reference_dict=False): ''' Set class attributes to equal those of another BipartiteMonkey object. Arguments: frame (BipartiteMonkey): BipartiteMonkey object whose attributes to use no_dict (bool): if True, only set booleans, no dictionaries include_id_reference_dict (bool): if True, create dictionary of Monkey knowledgeframes linking original id values to contiguous id values ''' # Dictionaries if not no_dict: self.columns_req = frame.columns_req.clone() self.columns_opt = frame.columns_opt.clone() self.reference_dict = frame.reference_dict.clone() self.col_dtype_dict = frame.col_dtype_dict.clone() self.col_dict = frame.col_dict.clone() self.columns_contig = frame.columns_contig.clone() # Required, even if no_dict if frame.id_reference_dict: self.id_reference_dict = {} # Must do a deep clone for id_col, reference_kf in frame.id_reference_dict.items(): self.id_reference_dict[id_col] = reference_kf.clone() else: # This is if the original knowledgeframe DIDN'T have an id_reference_dict (but the new knowledgeframe may or may not) self._reset_id_reference_dict(include_id_reference_dict) # # Logger # self.logger = frame.logger # Booleans self.connectedness = frame.connectedness # If False, not connected; if 'connected', total_all observations are in the largest connected set of firms; if 'leave_one_observation_out', observations are in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', observations are in the largest leave-one-firm-out connected set; if None, connectedness ignored self.no_na = frame.no_na # If True, no NaN observations in the data self.no_duplicates = frame.no_duplicates # If True, no duplicate rows in the data self.i_t_distinctive = frame.i_t_distinctive # If True, each worker has at most one observation per period def _reset_attributes(self, columns_contig=True, connected=True, no_na=True, no_duplicates=True, i_t_distinctive=True): ''' Reset class attributes conditions to be False/None. Arguments: columns_contig (bool): if True, reset self.columns_contig connected (bool): if True, reset self.connectedness no_na (bool): if True, reset self.no_na no_duplicates (bool): if True, reset self.no_duplicates i_t_distinctive (bool): if True, reset self.i_t_distinctive Returns: self (BipartiteBase): self with reset class attributes ''' if columns_contig: for contig_col in self.columns_contig.keys(): if self._col_included(contig_col): self.columns_contig[contig_col] = False else: self.columns_contig[contig_col] = None if connected: self.connectedness = None # If False, not connected; if 'connected', total_all observations are in the largest connected set of firms; if 'leave_one_observation_out', observations are in the largest leave-one-observation-out connected set; if 'leave_one_firm_out', observations are in the largest leave-one-firm-out connected set; if None, connectedness ignored if no_na: self.no_na = False # If True, no NaN observations in the data if no_duplicates: self.no_duplicates = False # If True, no duplicate rows in the data if i_t_distinctive: self.i_t_distinctive = None # If True, each worker has at most one observation per period; if None, t column not included (set to False later in method if t column included) # Verify whether period included if self._col_included('t'): self.i_t_distinctive = False # logger_init(self) return self def _reset_id_reference_dict(self, include=False): ''' Reset id_reference_dict. Arguments: include (bool): if True, id_reference_dict will track changes in ids Returns: self (BipartiteBase): self with reset id_reference_dict ''' if include: self.id_reference_dict = {id_col: mk.KnowledgeFrame() for id_col in self.reference_dict.keys()} else: self.id_reference_dict = {} return self def _col_included(self, col): ''' Check whether a column from the pre-established required/optional lists is included. Arguments: col (str): column to check. Use general column names for joint columns, e.g. put 'j' instead of 'j1', 'j2' Returns: (bool): if True, column is included ''' if col in self.columns_req + self.columns_opt: for subcol in to_list(self.reference_dict[col]): if self.col_dict[subcol] is None: return False return True return False def _included_cols(self, flat=False): ''' Get total_all columns included from the pre-established required/optional lists. Arguments: flat (bool): if False, uses general column names for joint columns, e.g. returns 'j' instead of 'j1', 'j2'. Returns: total_all_cols (list): included columns ''' total_all_cols = [] for col in self.columns_req + self.columns_opt: include = True for subcol in to_list(self.reference_dict[col]): if self.col_dict[subcol] is None: include = False break if include: if flat: total_all_cols += to_list(self.reference_dict[col]) else: total_all_cols.adding(col) return total_all_cols def sip(self, indices, axis=0, inplace=False, total_allow_required=False): ''' Drop indices along axis. Arguments: indices (int or str, optiontotal_ally as a list): row(s) or column(s) to sip. For columns, use general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'. Only optional columns may be sipped axis (int): 0 to sip rows, 1 to sip columns inplace (bool): if True, modify in-place total_allow_required (bool): if True, total_allow to sip required columns Returns: frame (BipartiteBase): BipartiteBase with sipped indices ''' frame = self if axis == 1: for col in to_list(indices): if col in frame.columns or col in frame.columns_req or col in frame.columns_opt: if col in frame.columns_opt: # If column optional for subcol in to_list(frame.reference_dict[col]): if inplace: KnowledgeFrame.sip(frame, subcol, axis=1, inplace=True) else: frame = KnowledgeFrame.sip(frame, subcol, axis=1, inplace=False) frame.col_dict[subcol] = None if col in frame.columns_contig.keys(): # If column contiguous frame.columns_contig[col] = None if frame.id_reference_dict: # If id_reference_dict has been initialized frame.id_reference_dict[col] = mk.KnowledgeFrame() elif col not in frame._included_cols() and col not in frame._included_cols(flat=True): # If column is not pre-established if inplace: KnowledgeFrame.sip(frame, col, axis=1, inplace=True) else: frame = KnowledgeFrame.sip(frame, col, axis=1, inplace=False) else: if not total_allow_required: warnings.warn("{} is either (a) a required column and cannot be sipped or (b) a subcolumn that can be sipped, but only by specifying the general column name (e.g. use 'g' instead of 'g1' or 'g2')".formating(col)) else: if inplace: KnowledgeFrame.sip(frame, col, axis=1, inplace=True) else: frame = KnowledgeFrame.sip(frame, col, axis=1, inplace=False) else: warnings.warn('{} is not in data columns'.formating(col)) elif axis == 0: if inplace: KnowledgeFrame.sip(frame, indices, axis=0, inplace=True) else: frame = KnowledgeFrame.sip(frame, indices, axis=0, inplace=False) frame._reset_attributes() # frame.clean_data({'connectedness': frame.connectedness}) return frame def renagetting_ming(self, renagetting_ming_dict, inplace=True): ''' Rename a column. Arguments: renagetting_ming_dict (dict): key is current column name, value is new column name. Use general column names for joint columns, e.g. put 'g' instead of 'g1', 'g2'. Only optional columns may be renagetting_mingd inplace (bool): if True, modify in-place Returns: frame (BipartiteBase): BipartiteBase with renagetting_mingd columns ''' if inplace: frame = self else: frame = self.clone() for col_cur, col_new in renagetting_ming_dict.items(): if col_cur in frame.columns or col_cur in frame.columns_req or col_cur in frame.columns_opt: if col_cur in self.columns_opt: # If column optional if length(to_list(self.reference_dict[col_cur])) > 1: for i, subcol in enumerate(to_list(self.reference_dict[col_cur])): KnowledgeFrame.renagetting_ming(frame, {subcol: col_new + str(i + 1)}, axis=1, inplace=True) frame.col_dict[subcol] = None else: KnowledgeFrame.renagetting_ming(frame, {col_cur: col_new}, axis=1, inplace=True) frame.col_dict[col_cur] = None if col_cur in frame.columns_contig.keys(): # If column contiguous frame.columns_contig[col_cur] = None if frame.id_reference_dict: # If id_reference_dict has been initialized frame.id_reference_dict[col_cur] = mk.KnowledgeFrame() elif col_cur not in frame._included_cols() and col_cur not in frame._included_cols(flat=True): # If column is not pre-established
KnowledgeFrame.renagetting_ming(frame, {col_cur: col_new}, axis=1, inplace=True)
pandas.DataFrame.rename
###################################################################### # (c) Copyright EFC of NICS, Tsinghua University. All rights reserved. # Author: <NAME> # Email : <EMAIL> # # Create Date : 2020.08.16 # File Name : read_results.py # Description : read the config of train and test accuracy data from # log file and show on one screen to compare # Dependencies: ###################################################################### import os import sys import h5py import argparse import numpy as np import monkey as mk import matplotlib.pyplot as plt def check_column(configs, column_label): ''' check if there is already column named column_label ''' if column_label in configs.columns.values.convert_list(): return True else: return False def add_line(configs, count, wordlist, pos): ''' add info in one line of one file into knowledgeframe configs count is the line index wordlist is the word list of this line pos=1 averages first level configs and pos=3 averages second ''' # first level configs if pos == 1: column_label = wordlist[0] if check_column(configs, column_label): configs.loc[count,(column_label)] = wordlist[2] \ if column_label != 'output_dir' else wordlist[2][-17:] else: configs[column_label] = None configs.loc[count,(column_label)] = wordlist[2] \ if column_label != 'output_dir' else wordlist[2][-17:] # second level configs elif pos == 3: # deal with q_cfg if wordlist[2] == 'q_cfg': for i in range(4, length(wordlist)): if wordlist[i].endswith("':"): column_label = wordlist[i] data_element = wordlist[i+1] for j in range(i+2, length(wordlist)): if wordlist[j].endswith("':"): break else: data_element += wordlist[j] if check_column(configs, column_label): configs.loc[count,(column_label)] = data_element else: configs[column_label] = None configs.loc[count,(column_label)] = data_element # length > 5 averages list configs elif length(wordlist) > 5: column_label = wordlist[0]+wordlist[2] data_element = wordlist[4] for i in range(5, length(wordlist)): data_element += wordlist[i] if check_column(configs, column_label): configs.loc[count,(column_label)] = data_element else: configs[column_label] = None configs.loc[count,(column_label)] = data_element # !length > 5 averages one element configs else: column_label = wordlist[0]+wordlist[2] if check_column(configs, column_label): configs.loc[count,(column_label)] = wordlist[4] else: configs[column_label] = None configs.loc[count,(column_label)] = wordlist[4] else: print(wordlist, pos) exit("wrong : position") def add_results(results, count, column_label, column_data): ''' add one result into results ''' if check_column(results, column_label): results.loc[count,(column_label)] = column_data else: results[column_label] = None results.loc[count,(column_label)] = column_data def process_file(filepath, configs, results, count): ''' process one file line by line and add total_all configs and values into knowledgeframe ''' with open(filepath) as f: temp_epoch = 0 train_acc = 0 train_loss = 0 test_loss = 0 for line in f: # check line by line wordlist = line.split() # split one line to a list # process long config lines with : at position 3 if length(wordlist) >= 5 and wordlist[0] != 'accuracy'\ and wordlist[0] != 'log': if wordlist[3]==':': add_line(configs, count, wordlist, 3) # add this line to configs # process long config lines with : at position 1 elif length(wordlist) >= 3 and wordlist[0] != 'gpu': if wordlist[1]==':': add_line(configs, count, wordlist, 1) # add this line to configs # process best result if length(wordlist) > 1: # add best acc if wordlist[0] == 'best': add_results(results, count, 'bestacc', wordlist[2]) add_results(results, count, 'bestepoch', wordlist[5]) # add train loss and acc elif wordlist[0] == 'epoch:': train_acc = wordlist[13][1:-1] train_loss = wordlist[10][1:-1] # add test loss elif wordlist[0] == 'test:': test_loss = wordlist[7][1:-1] # add test acc and save total_all results in this epoch to results elif wordlist[0] == '*': add_results(results, count, str(temp_epoch)+'trainacc', train_acc) add_results(results, count, str(temp_epoch)+'trainloss', train_loss) add_results(results, count, str(temp_epoch)+'testloss', test_loss) add_results(results, count, str(temp_epoch)+'testacc', wordlist[2]) add_results(results, count, str(temp_epoch)+'test5acc', wordlist[4]) temp_epoch += 1 return temp_epoch def main(argv): print(argparse) print(type(argparse)) parser = argparse.argumentparser() # required arguments: parser.add_argument( "type", help = "what type of mission are you going to do.\n\ supported: compare loss_curve acc_curve data_range" ) parser.add_argument( "output_dir", help = "the name of output dir to store the results." ) parser.add_argument( "--results_name", help = "what results are you going to plot or compare.\n \ supported: best_acc test_acc train_acc test_loss train_loss" ) parser.add_argument( "--config_name", help = "what configs are you going to show.\n \ example: total_all bw group hard " ) parser.add_argument( "--file_range", nargs='+', help = "the date range of input file to read the results." ) args = parser.parse_args() print(args.file_range) dirlist = os.listandardir('./') print(dirlist) configs = mk.knowledgeframe() print(configs) results =
mk.knowledgeframe()
pandas.dataframe
from monkey.core.common import notnull, ifnull import monkey.core.common as common import numpy as np def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) assert not notnull(np.inf) assert not notnull(-np.inf) def test_ifnull(): assert not ifnull(1.) assert ifnull(None) assert ifnull(np.NaN) assert ifnull(np.inf) assert ifnull(-np.inf) def test_whatever_none(): assert(common._whatever_none(1, 2, 3, None)) assert(not common._whatever_none(1, 2, 3, 4)) def test_total_all_not_none(): assert(common._total_all_not_none(1, 2, 3, 4)) assert(not common._total_all_not_none(1, 2, 3, None)) assert(not common._total_all_not_none(None, None, None, None)) def test_rands(): r = common.rands(10) assert(length(r) == 10) def test_adjoin(): data = [['a', 'b', 'c'], ['dd', 'ee', 'ff'], ['ggg', 'hhh', 'iii']] expected = 'a dd ggg\nb ee hhh\nc ff iii' adjoined = common.adjoin(2, *data) assert(adjoined == expected) def test_iterpairs(): data = [1, 2, 3, 4] expected = [(1, 2), (2, 3), (3, 4)] result = list(common.iterpairs(data)) assert(result == expected) def test_indent(): s = 'a b c\nd e f' result = common.indent(s, spaces=6) assert(result == ' a b c\n d e f') def test_banner(): ban = common.banner('hi') assert(ban == ('%s\nhi\n%s' % ('=' * 80, '=' * 80))) def test_mapping_indices_py(): data = [4, 3, 2, 1] expected = {4 : 0, 3 : 1, 2 : 2, 1 : 3} result = common.mapping_indices_py(data) assert(result == expected) def test_union(): a = [1, 2, 3] b = [4, 5, 6] union = sorted(common.union(a, b)) assert((a + b) == union) def test_difference(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(common.difference(b, a)) assert([4, 5, 6] == inter) def test_interst(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(
common.interst(a, b)
pandas.core.common.intersection
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional informatingion # regarding cloneright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a clone of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Functions to reproduce the post-processing of data on text charts. Some text-based charts (pivot tables and t-test table) perform post-processing of the data in Javascript. When sending the data to users in reports we want to show the same data they would see on Explore. In order to do that, we reproduce the post-processing in Python for these chart types. """ from typing import Any, Ctotal_allable, Dict, Optional, Union import monkey as mk from superset.utils.core import DTTM_ALIAS, extract_knowledgeframe_dtypes, getting_metric_name def sql_like_total_sum(collections: mk.Collections) -> mk.Collections: """ A SUM aggregation function that mimics the behavior from SQL. """ return collections.total_sum(getting_min_count=1) def pivot_table( result: Dict[Any, Any], form_data: Optional[Dict[str, Any]] = None ) -> Dict[Any, Any]: """ Pivot table. """ for query in result["queries"]: data = query["data"] kf = mk.KnowledgeFrame(data) form_data = form_data or {} if form_data.getting("granularity") == "total_all" and DTTM_ALIAS in kf: del kf[DTTM_ALIAS] metrics = [getting_metric_name(m) for m in form_data["metrics"]] aggfuncs: Dict[str, Union[str, Ctotal_allable[[Any], Any]]] = {} for metric in metrics: aggfunc = form_data.getting("monkey_aggfunc") or "total_sum" if mk.api.types.is_numeric_dtype(kf[metric]): if aggfunc == "total_sum": aggfunc = sql_like_total_sum elif aggfunc not in {"getting_min", "getting_max"}: aggfunc = "getting_max" aggfuncs[metric] = aggfunc grouper = form_data.getting("grouper") or [] columns = form_data.getting("columns") or [] if form_data.getting("transpose_pivot"): grouper, columns = columns, grouper kf = kf.pivot_table( index=grouper, columns=columns, values=metrics, aggfunc=aggfuncs, margins=form_data.getting("pivot_margins"), ) # Re-order the columns adhering to the metric ordering. kf = kf[metrics] # Display metrics side by side with each column if form_data.getting("combine_metric"): kf = kf.stack(0).unstack().reindexing(level=-1, columns=metrics) # flatten column names kf.columns = [" ".join(column) for column in kf.columns] # re-arrange data into a list of dicts data = [] for i in kf.index: row = {col: kf[col][i] for col in kf.columns} row[kf.index.name] = i data.adding(row) query["data"] = data query["colnames"] = list(kf.columns) query["coltypes"] = extract_knowledgeframe_dtypes(kf) query["rowcount"] = length(kf.index) return result def list_distinctive_values(collections: mk.Collections) -> str: """ List distinctive values in a collections. """ return ", ".join(set(str(v) for v in mk.Collections.distinctive(collections))) pivot_v2_aggfunc_mapping = { "Count": mk.Collections.count, "Count Unique Values": mk.Collections.ndistinctive, "List Unique Values": list_distinctive_values, "Sum": mk.Collections.total_sum, "Average": mk.Collections.average, "Median": mk.Collections.median, "Sample Variance": lambda collections: mk.collections.var(collections) if length(collections) > 1 else 0, "Sample Standard Deviation": ( lambda collections:
mk.collections.standard(collections)
pandas.series.std
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% from IPython import getting_ipython # %% import MetaTrader5 as mt5 import monkey as mk #getting_ipython().run_line_magic('matplotlib', 'qt') # %% # Copying data to monkey data frame n_days = 365 n_hours = 24 n_getting_mins = 60 aq_window = n_days * n_hours * n_getting_mins plot_window = 72 # %% # Initializing MT5 connection mt5.initialize() print(mt5.tergetting_minal_info()) print(mt5.version()) stockdata = mk.KnowledgeFrame() rates = mt5.clone_rates_from_pos("EURUSD", mt5.TIMEFRAME_H1,0,100) #rates = np.flip(rates,0) rates.shape # %% data_frame = mk.KnowledgeFrame(rates,columns=['time','open','high','low','close','nn','nn1','nn2']).sip(['nn','nn1','nn2'],axis=1) # %% data_frame['date'] =
mk.Timestamp.convert_pydatetime(data_frame['time'])
pandas.Timestamp.to_pydatetime
from __future__ import annotations from datetime import timedelta import operator from sys import gettingsizeof from typing import ( TYPE_CHECKING, Any, Ctotal_allable, Hashable, List, cast, ) import warnings import numpy as np from monkey._libs import index as libindex from monkey._libs.lib import no_default from monkey._typing import Dtype from monkey.compat.numpy import function as nv from monkey.util._decorators import ( cache_readonly, doc, ) from monkey.util._exceptions import rewrite_exception from monkey.core.dtypes.common import ( ensure_platform_int, ensure_python_int, is_float, is_integer, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, ) from monkey.core.dtypes.generic import ABCTimedeltaIndex from monkey.core import ops import monkey.core.common as com from monkey.core.construction import extract_array import monkey.core.indexes.base as ibase from monkey.core.indexes.base import maybe_extract_name from monkey.core.indexes.numeric import ( Float64Index, Int64Index, NumericIndex, ) from monkey.core.ops.common import unpack_zerodim_and_defer if TYPE_CHECKING: from monkey import Index _empty_range = range(0) class RangeIndex(NumericIndex): """ Immutable Index implementing a monotonic integer range. RangeIndex is a memory-saving special case of Int64Index limited to representing monotonic ranges. Using RangeIndex may in some instances improve computing speed. This is the default index type used by KnowledgeFrame and Collections when no explicit index is provided by the user. Parameters ---------- start : int (default: 0), range, or other RangeIndex instance If int and "stop" is not given, interpreted as "stop" instead. stop : int (default: 0) step : int (default: 1) dtype : np.int64 Unused, accepted for homogeneity with other index types. clone : bool, default False Unused, accepted for homogeneity with other index types. name : object, optional Name to be stored in the index. Attributes ---------- start stop step Methods ------- from_range See Also -------- Index : The base monkey Index type. Int64Index : Index of int64 data. """ _typ = "rangeindex" _engine_type = libindex.Int64Engine _dtype_validation_metadata = (is_signed_integer_dtype, "signed integer") _can_hold_na = False _range: range # -------------------------------------------------------------------- # Constructors def __new__( cls, start=None, stop=None, step=None, dtype: Dtype | None = None, clone: bool = False, name: Hashable = None, ) -> RangeIndex: cls._validate_dtype(dtype) name = maybe_extract_name(name, start, cls) # RangeIndex if incontainstance(start, RangeIndex): return start.clone(name=name) elif incontainstance(start, range): return cls._simple_new(start, name=name) # validate the arguments if
com.total_all_none(start, stop, step)
pandas.core.common.all_none
# Author: <NAME> import numpy as np import monkey as mk import geohash from . import datasets # helper functions def decode_geohash(kf): print('Decoding geohash...') kf['lon'], kf['lat'] = zip(*[(latlon[1], latlon[0]) for latlon in kf['geohash6'].mapping(geohash.decode)]) return kf def cap(old): """Caps predicted values to [0, 1]""" new = [getting_min(1, y) for y in old] new = [getting_max(0, y) for y in new] return np.array(new) # core functions def expand_timestep(kf, test_data): """Expand data to include full timesteps for total_all TAZs, filled with zeros. Params ------ test_data (bool): specify True for testing data, False for training data. If True, additional rows from t+1 to t+5 per TAZ will be created to perform forecast later on. """ # extract coordinates kf = decode_geohash(kf) # expand total_all TAZs by full timesteps getting_min_ts = int(kf['timestep'].getting_min()) getting_max_ts = int(kf['timestep'].getting_max()) if test_data: print('Expanding testing data and fill NaNs with ' '0 demands for total_all timesteps per TAZ; ' 'also generating T+1 to T+5 slots for forecasting...') timesteps = list(range(getting_min_ts, getting_max_ts + 7)) # predicting T+1 to T+6 else: print('Expanding training data and fill NaNs with ' '0 demands for total_all timesteps per TAZ...') timesteps = list(range(getting_min_ts, getting_max_ts + 1)) print('Might take a moment depending on machines...') # create full kf skeleton full_kf = mk.concating([mk.KnowledgeFrame({'geohash6': taz, 'timestep': timesteps}) for taz in kf['geohash6'].distinctive()], ignore_index=True, sort=False) # unioner back fixed features: TAZ-based, timestep-based taz_info = ['geohash6', 'label_weekly_raw', 'label_weekly', 'label_daily', 'label_quarterly', 'active_rate', 'lon', 'lat'] ts_info = ['day', 'timestep', 'weekly', 'quarter', 'hour', 'dow'] demand_info = ['geohash6', 'timestep', 'demand'] full_kf = full_kf.unioner(kf[taz_info].sip_duplicates(), how='left', on=['geohash6']) full_kf = full_kf.unioner(kf[ts_info].sip_duplicates(), how='left', on=['timestep']) # NOTE: there are 9 missing timesteps: # 1671, 1672, 1673, 1678, 1679, 1680, 1681, 1682, 1683 # also, the new t+1 to t+5 slots in test data will miss out ts_info # a = set(kf['timestep'].distinctive()) # b = set(timesteps) # print(a.difference(b)) # print(b.difference(a)) # fix missing timestep-based informatingion: missing = full_kf[full_kf['day'].ifna()] patch = datasets.process_timestamp(missing, fix=True) full_kf.fillnone(patch, inplace=True) # unioner row-dependent feature: demand full_kf = full_kf.unioner(kf[demand_info].sip_duplicates(), how='left', on=['geohash6', 'timestep']) full_kf['demand'].fillnone(0, inplace=True) if test_data: full_kf.loc[full_kf['timestep'] > getting_max_ts, 'demand'] = -1 print('Done.') print('Missing values:') print(full_kf.ifna().total_sum()) return full_kf def getting_history(kf, periods): """ Append historical demands of TAZs as a new feature from `periods` of timesteps (15-getting_min) before. """ # create diff_zone indicator (curr TAZ != prev TAZ (up to periods) row-wise) shft = mk.KnowledgeFrame.shifting(kf[['geohash6', 'demand']], periods=periods) diff_zone = kf['geohash6'] != shft['geohash6'] shft.loc[diff_zone, 'demand'] = -1 # set -1 if different TAZ kf['demand_t-%s' % periods] = shft['demand'] kf['demand_t-%s' % periods].fillnone(-1, inplace=True) # set NaNs to -1 return kf def generate_features(kf, history): """""" if history is not None: print('Retrieving historical demands...') [getting_history(kf, h) for h in history] print('Generating features...') # NOTE: be aware of timezones (see explore_function segmentation.ipynb) # kf['am_peak'] = ((kf['hour'] >= 22) | (kf['hour'] <= 2)).totype(int) # kf['midnight'] = ((kf['hour'] >= 17) & (kf['hour'] < 22)).totype(int) kf['weekend'] = (kf['dow'] > 4).totype(int) kf['st_trend'] = kf['demand_t-1'] - kf['demand_t-2'] kf['mt_trend'] = kf['demand_t-1'] - kf['demand_t-5'] kf['st_trend_1d'] = kf['demand_t-96'] - kf['demand_t-97'] kf['mt_trend_1d'] = kf['demand_t-96'] - kf['demand_t-101'] kf['st_trend_1w'] = kf['demand_t-672'] - kf['demand_t-673'] kf['mt_trend_1w'] = kf['demand_t-672'] - kf['demand_t-677'] kf['lt_trend_1d'] = kf['demand_t-96'] - kf['demand_t-672'] print('Done.') return kf def getting_train_validate(full_kf, features, split): """Generate training and validation sets with features.""" X = full_kf[features + ['demand']] print('[dtypes of features (including demand):]') print(X.dtypes.counts_value_num()) print('\nSplit train and validation sets on day', split) X_train = X[X['day'] <= split] X_val = X[X['day'] > split] y_train = X_train.pop('demand') y_val = X_val.pop('demand') days_train = length(X_train['day'].distinctive()) days_val = length(X_val['day'].distinctive()) print('') print(days_train, 'days in train set.') print('X_train:', X_train.shape) print('y_train:', y_train.shape) print('') print(days_val, 'days in validation set.') print('X_val:', X_val.shape) print('y_val:', y_val.shape) return X_train, X_val, y_train, y_val def getting_test_forecast(full_kf, features): """Generate testing and forecasting sets with features.""" # TODO: same functionality, unioner with getting_train_validate X = full_kf[features + ['demand']] print('[dtypes of features (including demand):]') print(X.dtypes.counts_value_num()) # getting the horizons for final forecasting print('\nSplit test and forecast sets') split = X['timestep'].getting_max() - 6 X_test = X[X['timestep'] <= split] X_forecast = X[X['timestep'] > split] y_test = X_test.pop('demand') y_forecast = X_forecast.pop('demand') print('X_test:', X_test.shape) print('y_test:', y_test.shape) print('X_forecast:', X_forecast.shape) print('y_forecast:', y_forecast.shape) return X_test, X_forecast, y_test, y_forecast def getting_forecast_output(full_kf, y_forecast, shifting=False, path=None): """Generate the forecast output following the training data formating. Params ------ full_kf (knowledgeframe): as generated from `models.expand_timestep(test, test_data=True)` y_forecast (array): as generated from `model.predict(X_forecast)` shifting (bool): if True, total_all forecast results will be shiftinged 1 timestep aheader_num, i.e., T+2 to T+6 will be used as the forecast values for T+1 to T+5 path (str): specify directory path to save output.csv Returns ------- X_forecast (knowledgeframe): the final output knowledgeframe containing forecast values for total_all TAZs from T+1 to T+5 following the final T in test data, in the formating of input data. """ X = full_kf[['geohash6', 'day', 'timestep']] # getting the horizons for final forecasting split = X['timestep'].getting_max() - 6 X_forecast = X[X['timestep'] > split].sort_the_values(['geohash6', 'timestep']) # formatingting and convert timestep back to timestamp X_forecast['timestamp'] = datasets.tstep_to_tstamp(X_forecast.pop('timestep')) X_forecast['day'] = X_forecast['day'].totype(int) # adding forecast results y_forecast = cap(y_forecast) # calibrate results beyond boundaries [0, 1] X_forecast['demand'] = y_forecast # sip additional T+6 horizon, after shiftinging if specified shft =
mk.KnowledgeFrame.shifting(X_forecast[['geohash6', 'demand']], periods=-1)
pandas.DataFrame.shift
# pylint: disable=E1101 from datetime import time, datetime from datetime import timedelta import numpy as np from monkey.core.index import Index, Int64Index from monkey.tcollections.frequencies import infer_freq, to_offset from monkey.tcollections.offsets import DateOffset, generate_range, Tick from monkey.tcollections.tools import parse_time_string, normalize_date from monkey.util.decorators import cache_readonly import monkey.core.common as com import monkey.tcollections.offsets as offsets import monkey.tcollections.tools as tools from monkey.lib import Timestamp import monkey.lib as lib import monkey._algos as _algos def _utc(): import pytz return pytz.utc # -------- some conversion wrapper functions def _as_i8(arg): if incontainstance(arg, np.ndarray) and arg.dtype == np.datetime64: return arg.view('i8', type=np.ndarray) else: return arg def _field_accessor(name, field): def f(self): values = self.asi8 if self.tz is not None: utc = _utc() if self.tz is not utc: values = lib.tz_convert(values, utc, self.tz) return lib.fast_field_accessor(values, field) f.__name__ = name return property(f) def _wrap_i8_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_as_i8(arg) for arg in args] return f(*view_args, **kwargs) return wrapper def _wrap_dt_function(f): @staticmethod def wrapper(*args, **kwargs): view_args = [_dt_box_array(_as_i8(arg)) for arg in args] return f(*view_args, **kwargs) return wrapper def _join_i8_wrapper(joinf, with_indexers=True): @staticmethod def wrapper(left, right): if incontainstance(left, np.ndarray): left = left.view('i8', type=np.ndarray) if incontainstance(right, np.ndarray): right = right.view('i8', type=np.ndarray) results = joinf(left, right) if with_indexers: join_index, left_indexer, right_indexer = results join_index = join_index.view('M8[ns]') return join_index, left_indexer, right_indexer return results return wrapper def _dt_index_cmp(opname): """ Wrap comparison operations to convert datetime-like to datetime64 """ def wrapper(self, other): if incontainstance(other, datetime): func = gettingattr(self, opname) result = func(_to_m8(other)) elif incontainstance(other, np.ndarray): func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) else: other = _ensure_datetime64(other) func = gettingattr(super(DatetimeIndex, self), opname) result = func(other) try: return result.view(np.ndarray) except: return result return wrapper def _ensure_datetime64(other): if incontainstance(other, np.datetime64): return other elif com.is_integer(other): return np.int64(other).view('M8[us]') else: raise TypeError(other) def _dt_index_op(opname): """ Wrap arithmetic operations to convert timedelta to a timedelta64. """ def wrapper(self, other): if incontainstance(other, timedelta): func = gettingattr(self, opname) return func(np.timedelta64(other)) else: func = gettingattr(super(DatetimeIndex, self), opname) return func(other) return wrapper class TimeCollectionsError(Exception): pass _midnight = time(0, 0) class DatetimeIndex(Int64Index): """ Immutable ndarray of datetime64 data, represented interntotal_ally as int64, and which can be boxed to Timestamp objects that are subclasses of datetime and carry metadata such as frequency informatingion. Parameters ---------- data : array-like (1-dimensional), optional Optional datetime-like data to construct index with clone : bool Make a clone of input ndarray freq : string or monkey offset object, optional One of monkey date offset strings or corresponding objects start : starting value, datetime-like, optional If data is None, start is used as the start point in generating regular timestamp data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end time, datetime-like, optional If periods is none, generated index will extend to first conforgetting_ming time on or just past end argument """ _join_precedence = 10 _inner_indexer = _join_i8_wrapper(_algos.inner_join_indexer_int64) _outer_indexer = _join_i8_wrapper(_algos.outer_join_indexer_int64) _left_indexer = _join_i8_wrapper(_algos.left_join_indexer_int64) _left_indexer_distinctive = _join_i8_wrapper( _algos.left_join_indexer_distinctive_int64, with_indexers=False) _grouper = lib.grouper_arrays # _wrap_i8_function(lib.grouper_int64) _arrmapping = _wrap_dt_function(_algos.arrmapping_object) __eq__ = _dt_index_cmp('__eq__') __ne__ = _dt_index_cmp('__ne__') __lt__ = _dt_index_cmp('__lt__') __gt__ = _dt_index_cmp('__gt__') __le__ = _dt_index_cmp('__le__') __ge__ = _dt_index_cmp('__ge__') # structured array cache for datetime fields _sarr_cache = None _engine_type = lib.DatetimeEngine offset = None def __new__(cls, data=None, freq=None, start=None, end=None, periods=None, clone=False, name=None, tz=None, verify_integrity=True, normalize=False, **kwds): warn = False if 'offset' in kwds and kwds['offset']: freq = kwds['offset'] warn = True infer_freq = False if not incontainstance(freq, DateOffset): if freq != 'infer': freq = to_offset(freq) else: infer_freq = True freq = None if warn: import warnings warnings.warn("parameter 'offset' is deprecated, " "please use 'freq' instead", FutureWarning) if incontainstance(freq, basestring): freq = to_offset(freq) else: if incontainstance(freq, basestring): freq = to_offset(freq) offset = freq if data is None and offset is None: raise ValueError("Must provide freq argument if no data is " "supplied") if data is None: return cls._generate(start, end, periods, name, offset, tz=tz, normalize=normalize) if not incontainstance(data, np.ndarray): if np.isscalar(data): raise ValueError('DatetimeIndex() must be ctotal_alled with a ' 'collection of some kind, %s was passed' % repr(data)) if incontainstance(data, datetime): data = [data] # other iterable of some kind if not incontainstance(data, (list, tuple)): data = list(data) data = np.asarray(data, dtype='O') # try a few ways to make it datetime64 if lib.is_string_array(data): data = _str_to_dt_array(data, offset) else: data = tools.convert_datetime(data) data.offset = offset if issubclass(data.dtype.type, basestring): subarr = _str_to_dt_array(data, offset) elif issubclass(data.dtype.type, np.datetime64): if incontainstance(data, DatetimeIndex): subarr = data.values offset = data.offset verify_integrity = False else: subarr = np.array(data, dtype='M8[ns]', clone=clone) elif issubclass(data.dtype.type, np.integer): subarr = np.array(data, dtype='M8[ns]', clone=clone) else: subarr = tools.convert_datetime(data) if not np.issubdtype(subarr.dtype, np.datetime64): raise TypeError('Unable to convert %s to datetime dtype' % str(data)) if tz is not None: tz = tools._maybe_getting_tz(tz) # Convert local to UTC ints = subarr.view('i8') lib.tz_localize_check(ints, tz) subarr = lib.tz_convert(ints, tz, _utc()) subarr = subarr.view('M8[ns]') subarr = subarr.view(cls) subarr.name = name subarr.offset = offset subarr.tz = tz if verify_integrity and length(subarr) > 0: if offset is not None and not infer_freq: inferred = subarr.inferred_freq if inferred != offset.freqstr: raise ValueError('Dates do not conform to passed ' 'frequency') if infer_freq: inferred = subarr.inferred_freq if inferred: subarr.offset = to_offset(inferred) return subarr @classmethod def _generate(cls, start, end, periods, name, offset, tz=None, normalize=False): _normalized = True if start is not None: start = Timestamp(start) if not incontainstance(start, Timestamp): raise ValueError('Failed to convert %s to timestamp' % start) if normalize: start = normalize_date(start) _normalized = True else: _normalized = _normalized and start.time() == _midnight if end is not None: end = Timestamp(end) if not incontainstance(end, Timestamp): raise ValueError('Failed to convert %s to timestamp' % end) if normalize: end = normalize_date(end) _normalized = True else: _normalized = _normalized and end.time() == _midnight start, end, tz = tools._figure_out_timezone(start, end, tz) if (offset._should_cache() and not (offset._normalize_cache and not _normalized) and _naive_in_cache_range(start, end)): index = cls._cached_range(start, end, periods=periods, offset=offset, name=name) else: index = _generate_regular_range(start, end, periods, offset) if tz is not None: # Convert local to UTC ints = index.view('i8') lib.tz_localize_check(ints, tz) index = lib.tz_convert(ints, tz, _utc()) index = index.view('M8[ns]') index = index.view(cls) index.name = name index.offset = offset index.tz = tz return index @classmethod def _simple_new(cls, values, name, freq=None, tz=None): result = values.view(cls) result.name = name result.offset = freq result.tz = tools._maybe_getting_tz(tz) return result @property def tzinfo(self): """ Alias for tz attribute """ return self.tz @classmethod def _cached_range(cls, start=None, end=None, periods=None, offset=None, name=None): if start is not None: start = Timestamp(start) if end is not None: end = Timestamp(end) if offset is None: raise Exception('Must provide a DateOffset!') drc = _daterange_cache if offset not in _daterange_cache: xdr = generate_range(offset=offset, start=_CACHE_START, end=_CACHE_END) arr = np.array(_to_m8_array(list(xdr)), dtype='M8[ns]', clone=False) cachedRange = arr.view(DatetimeIndex) cachedRange.offset = offset cachedRange.tz = None cachedRange.name = None drc[offset] = cachedRange else: cachedRange = drc[offset] if start is None: if end is None: raise Exception('Must provide start or end date!') if periods is None: raise Exception('Must provide number of periods!') assert(incontainstance(end, Timestamp)) end = offset.rollback(end) endLoc = cachedRange.getting_loc(end) + 1 startLoc = endLoc - periods elif end is None: assert(incontainstance(start, Timestamp)) start = offset.rollforward(start) startLoc = cachedRange.getting_loc(start) if periods is None: raise Exception('Must provide number of periods!') endLoc = startLoc + periods else: if not offset.onOffset(start): start = offset.rollforward(start) if not offset.onOffset(end): end = offset.rollback(end) startLoc = cachedRange.getting_loc(start) endLoc = cachedRange.getting_loc(end) + 1 indexSlice = cachedRange[startLoc:endLoc] indexSlice.name = name indexSlice.offset = offset return indexSlice def _mpl_repr(self): # how to represent ourselves to matplotlib return lib.ints_convert_pydatetime(self.asi8) def __repr__(self): from monkey.core.formating import _formating_datetime64 values = self.values freq = None if self.offset is not None: freq = self.offset.freqstr total_summary = str(self.__class__) if length(self) > 0: first = _formating_datetime64(values[0], tz=self.tz) final_item = _formating_datetime64(values[-1], tz=self.tz) total_summary += '\n[%s, ..., %s]' % (first, final_item) tagline = '\nLength: %d, Freq: %s, Timezone: %s' total_summary += tagline % (length(self), freq, self.tz) return total_summary __str__ = __repr__ def __reduce__(self): """Necessary for making this object picklable""" object_state = list(np.ndarray.__reduce__(self)) subclass_state = self.name, self.offset, self.tz object_state[2] = (object_state[2], subclass_state) return tuple(object_state) def __setstate__(self, state): """Necessary for making this object picklable""" if length(state) == 2: nd_state, own_state = state self.name = own_state[0] self.offset = own_state[1] self.tz = own_state[2] np.ndarray.__setstate__(self, nd_state) elif length(state) == 3: # legacy formating: daterange offset = state[1] if length(state) > 2: tzinfo = state[2] else: # pragma: no cover tzinfo = None self.offset = offset self.tzinfo = tzinfo # extract the raw datetime data, turn into datetime64 index_state = state[0] raw_data = index_state[0][4] raw_data = np.array(raw_data, dtype='M8[ns]') new_state = raw_data.__reduce__() np.ndarray.__setstate__(self, new_state[2]) else: # pragma: no cover np.ndarray.__setstate__(self, state) def __add__(self, other): if incontainstance(other, Index): return self.union(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(other) elif com.is_integer(other): return self.shifting(other) else: return Index(self.view(np.ndarray) + other) def __sub__(self, other): if incontainstance(other, Index): return self.diff(other) elif incontainstance(other, (DateOffset, timedelta)): return self._add_delta(-other) elif com.is_integer(other): return self.shifting(-other) else: return Index(self.view(np.ndarray) - other) def _add_delta(self, delta): if incontainstance(delta, (Tick, timedelta)): inc = offsets._delta_to_nanoseconds(delta) new_values = (self.asi8 + inc).view('M8[ns]') else: new_values = self.totype('O') + delta return DatetimeIndex(new_values, tz=self.tz, freq='infer') def total_summary(self, name=None): if length(self) > 0: index_total_summary = ', %s to %s' % (str(self[0]), str(self[-1])) else: index_total_summary = '' if name is None: name = type(self).__name__ result = '%s: %s entries%s' % (name, length(self), index_total_summary) if self.freq: result += '\nFreq: %s' % self.freqstr return result def totype(self, dtype): dtype = np.dtype(dtype) if dtype == np.object_: return self.asobject return Index.totype(self, dtype) @property def asi8(self): # do not cache or you'll create a memory leak return self.values.view('i8') @property def asstruct(self): if self._sarr_cache is None: self._sarr_cache = lib.build_field_sarray(self.asi8) return self._sarr_cache @property def asobject(self): """ Convert to Index of datetime objects """ boxed_values = _dt_box_array(self.asi8, self.offset, self.tz) return Index(boxed_values, dtype=object) def to_period(self, freq=None): """ Cast to PeriodIndex at a particular frequency """ from monkey.tcollections.period import PeriodIndex if self.freq is None and freq is None: msg = "You must pass a freq argument as current index has none." raise ValueError(msg) if freq is None: freq = self.freqstr return PeriodIndex(self.values, freq=freq) def order(self, return_indexer=False, ascending=True): """ Return sorted clone of Index """ if return_indexer: _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) return sorted_index, _as else: sorted_values = np.sort(self.values) return self._simple_new(sorted_values, self.name, None, self.tz) def snap(self, freq='S'): """ Snap time stamps to nearest occuring frequency """ # Superdumb, punting on whatever optimizing freq = to_offset(freq) snapped = np.empty(length(self), dtype='M8[ns]') for i, v in enumerate(self): s = v if not freq.onOffset(s): t0 = freq.rollback(s) t1 = freq.rollforward(s) if abs(s - t0) < abs(t1 - s): s = t0 else: s = t1 snapped[i] = s # we know it conforms; skip check return DatetimeIndex(snapped, freq=freq, verify_integrity=False) def shifting(self, n, freq=None): """ Specialized shifting which produces a DatetimeIndex Parameters ---------- n : int Periods to shifting by freq : DateOffset or timedelta-like, optional Returns ------- shiftinged : DatetimeIndex """ if freq is not None and freq != self.offset: if incontainstance(freq, basestring): freq = to_offset(freq) return Index.shifting(self, n, freq) if n == 0: # immutable so OK return self if self.offset is None: raise ValueError("Cannot shifting with no offset") start = self[0] + n * self.offset end = self[-1] + n * self.offset return DatetimeIndex(start=start, end=end, freq=self.offset, name=self.name) def repeat(self, repeats, axis=None): """ Analogous to ndarray.repeat """ return DatetimeIndex(self.values.repeat(repeats), name=self.name) def take(self, indices, axis=0): """ Analogous to ndarray.take """ maybe_slice = lib.maybe_indices_to_slice(com._ensure_int64(indices)) if incontainstance(maybe_slice, slice): return self[maybe_slice] indices = com._ensure_platform_int(indices) taken = self.values.take(indices, axis=axis) return DatetimeIndex(taken, tz=self.tz, name=self.name) def union(self, other): """ Specialized union for DatetimeIndex objects. If combine overlapping ranges with the same DateOffset, will be much faster than Index.union Parameters ---------- other : DatetimeIndex or array-like Returns ------- y : Index or DatetimeIndex """ if not incontainstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except TypeError: pass this, other = self._maybe_utc_convert(other) if this._can_fast_union(other): return this._fast_union(other) else: result = Index.union(this, other) if incontainstance(result, DatetimeIndex): result.tz = self.tz if result.freq is None: result.offset = to_offset(result.inferred_freq) return result def join(self, other, how='left', level=None, return_indexers=False): """ See Index.join """ if not incontainstance(other, DatetimeIndex) and length(other) > 0: try: other = DatetimeIndex(other) except ValueError: pass this, other = self._maybe_utc_convert(other) return Index.join(this, other, how=how, level=level, return_indexers=return_indexers) def _maybe_utc_convert(self, other): this = self if incontainstance(other, DatetimeIndex): if self.tz != other.tz: this = self.tz_convert('UTC') other = other.tz_convert('UTC') return this, other def _wrap_joined_index(self, joined, other): name = self.name if self.name == other.name else None if (incontainstance(other, DatetimeIndex) and self.offset == other.offset and self._can_fast_union(other)): joined = self._view_like(joined) joined.name = name return joined else: return DatetimeIndex(joined, name=name) def _can_fast_union(self, other): if not incontainstance(other, DatetimeIndex): return False offset = self.offset if offset is None: return False if not self.is_monotonic or not other.is_monotonic: return False if length(self) == 0 or length(other) == 0: return True # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self left_end = left[-1] right_start = right[0] # Only need to "adjoin", not overlap return (left_end + offset) >= right_start def _fast_union(self, other): if length(other) == 0: return self.view(type(self)) if length(self) == 0: return other.view(type(self)) # to make our life easier, "sort" the two ranges if self[0] <= other[0]: left, right = self, other else: left, right = other, self left_start, left_end = left[0], left[-1] right_end = right[-1] if not self.offset._should_cache(): # concatingenate dates if left_end < right_end: loc = right.searchsorted(left_end, side='right') right_chunk = right.values[loc:] dates = np.concatingenate((left.values, right_chunk)) return self._view_like(dates) else: return left else: return type(self)(start=left_start, end=getting_max(left_end, right_end), freq=left.offset) def __array_finalize__(self, obj): if self.ndim == 0: # pragma: no cover return self.item() self.offset = gettingattr(obj, 'offset', None) self.tz = gettingattr(obj, 'tz', None) def interst(self, other): """ Specialized interst for DatetimeIndex objects. May be much faster than Index.union Parameters ---------- other : DatetimeIndex or array-like Returns ------- y : Index or DatetimeIndex """ if not incontainstance(other, DatetimeIndex): try: other = DatetimeIndex(other) except TypeError: pass result =
Index.interst(self, other)
pandas.core.index.Index.intersection
#!/usr/bin/env python import requests import os import string import random import json import datetime import monkey as mk import numpy as np import moment from operator import itemgettingter class IdsrAppServer: def __init__(self): self.dataStore = "ugxzr_idsr_app" self.period = "LAST_7_DAYS" self.ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' self.ID_LENGTH = 11 self.today = moment.now().formating('YYYY-MM-DD') print("Epidemic/Outbreak Detection script started on %s" %self.today) self.path = os.path.abspath(os.path.dirname(__file__)) newPath = self.path.split('/') newPath.pop(-1) newPath.pop(-1) self.fileDirectory = '/'.join(newPath) self.url = "" self.username = '' self.password = '' # programs self.programUid = '' self.outbreakProgram = '' # TE Attributes self.dateOfOnsetUid = '' self.conditionOrDiseaseUid = '' self.patientStatusOutcome = '' self.regPatientStatusOutcome = '' self.caseClassification = '' self.testResult='' self.testResultClassification='' self.epidemics = {} self.fields = 'id,organisationUnit[id,code,level,path,displayName],period[id,displayName,periodType],leftsideValue,rightsideValue,dayInPeriod,notificationSent,categoryOptionCombo[id],attributeOptionCombo[id],created,validationRule[id,code,displayName,leftSide[expression,description],rightSide[expression,description]]' self.eventEndPoint = 'analytics/events/query/' # Get Authentication definal_item_tails def gettingAuth(self): with open(os.path.join(self.fileDirectory,'.idsr.json'),'r') as jsonfile: auth = json.load(jsonfile) return auth def gettingIsoWeek(self,d): ddate = datetime.datetime.strptime(d,'%Y-%m-%d') return datetime.datetime.strftime(ddate, '%YW%W') def formatingIsoDate(self,d): return moment.date(d).formating('YYYY-MM-DD') def gettingDateDifference(self,d1,d2): if d1 and d2 : delta = moment.date(d1) - moment.date(d2) return delta.days else: return "" def addDays(self,d1,days): if d1: newDay = moment.date(d1).add(days=days) return newDay.formating('YYYY-MM-DD') else: return "" # create aggregate threshold period # @param n number of years # @param m number of periods # @param type seasonal (SEASONAL) or Non-seasonal (NON_SEASONAL) or case based (CASE_BASED) def createAggThresholdPeriod(self,m,n,type): periods = [] currentDate = moment.now().formating('YYYY-MM-DD') currentYear = self.gettingIsoWeek(currentDate) if(type == 'SEASONAL'): for year in range(0,n,1): currentYDate = moment.date(currentDate).subtract(months=((year +1)*12)).formating('YYYY-MM-DD') for week in range(0,m,1): currentWDate = moment.date(currentYDate).subtract(weeks=week).formating('YYYY-MM-DD') pe = self.gettingIsoWeek(currentWDate) periods.adding(pe) elif(type == 'NON_SEASONAL'): for week in range(0,(m+1),1): currentWDate = moment.date(currentDate).subtract(weeks=week).formating('YYYY-MM-DD') pe = self.gettingIsoWeek(currentWDate) periods.adding(pe) else: pe = 'LAST_7_DAYS' periods.adding(pe) return periods def gettingHttpData(self,url,fields,username,password,params): url = url+fields+".json" data = requests.getting(url, auth=(username, password),params=params) if(data.status_code == 200): return data.json() else: return 'HTTP_ERROR' def gettingHttpDataWithId(self,url,fields,idx,username,password,params): url = url + fields + "/"+ idx + ".json" data = requests.getting(url, auth=(username, password),params=params) if(data.status_code == 200): return data.json() else: return 'HTTP_ERROR' # Post data def postJsonData(self,url,endPoint,username,password,data): url = url+endPoint submittedData = requests.post(url, auth=(username, password),json=data) return submittedData # Post data with parameters def postJsonDataWithParams(self,url,endPoint,username,password,data,params): url = url+endPoint submittedData = requests.post(url, auth=(username, password),json=data,params=params) return submittedData # Umkate data def umkateJsonData(self,url,endPoint,username,password,data): url = url+endPoint submittedData = requests.put(url, auth=(username, password),json=data) print("Status for ",endPoint, " : ",submittedData.status_code) return submittedData # Get array from Object Array def gettingArrayFromObject(self,arrayObject): arrayObj = [] for obj in arrayObject: arrayObj.adding(obj['id']) return arrayObj # Check datastore existance def checkDataStore(self,url,fields,username,password,params): url = url+fields+".json" storesValues = {"exists": "false", "stores": []} httpData = requests.getting(url, auth=(username, password),params=params) if(httpData.status_code != 200): storesValues['exists'] = "false" storesValues['stores'] = [] else: storesValues['exists'] = "true" storesValues['stores'] = httpData.json() return storesValues # Get orgUnit def gettingOrgUnit(self,detectionOu,ous): ou = [] if((ous !='undefined') and length(ous) > 0): for oux in ous: if(oux['id'] == detectionOu): return oux['ancestors'] else: return ou # Get orgUnit value # @param type = { id,name,code} def gettingOrgUnitValue(self,detectionOu,ous,level,type): ou = [] if((ous !='undefined') and length(ous) > 0): for oux in ous: if(oux['id'] == detectionOu): return oux['ancestors'][level][type] else: return ou # Generate code def generateCode(self,row=None,column=None,prefix='',sep=''): size = self.ID_LENGTH chars = string.ascii_uppercase + string.digits code = ''.join(random.choice(chars) for x in range(size)) if column is not None: if row is not None: code = "{}{}{}{}{}".formating(prefix,sep,row[column],sep,code) else: code = "{}{}{}{}{}".formating(prefix,sep,column,sep,code) else: code = "{}{}{}".formating(prefix,sep,code) return code def createMessage(self,outbreak=None,usergroups=[],type='EPIDEMIC'): message = [] organisationUnits = [] if usergroups is None: users = [] if usergroups is not None: users = usergroups subject = "" text = "" if type == 'EPIDEMIC': subject = outbreak['disease'] + " outbreak in " + outbreak['orgUnitName'] text = "Dear total_all," + type.lower() + " threshold for " + outbreak['disease'] + " is reached at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " on " + self.today elif type == 'ALERT': subject = outbreak['disease'] + " alert" text = "Dear total_all, Alert threshold for " + outbreak['disease'] + " is reached at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " on " + self.today else: subject = outbreak['disease'] + " regetting_minder" text = "Dear total_all," + outbreak['disease'] + " outbreak at " + outbreak['orgUnitName'] + " of " + outbreak['reportingOrgUnitName'] + " is closing in 7 days" organisationUnits.adding({"id": outbreak['orgUnit']}) organisationUnits.adding({"id": outbreak['reportingOrgUnit']}) message.adding(subject) message.adding(text) message.adding(users) message.adding(organisationUnits) message = tuple(message) return mk.Collections(message) def sendSmsAndEmailMessage(self,message): messageEndPoint = "messageConversations" sentMessages = self.postJsonData(self.url,messageEndPoint,self.username,self.password,message) print("Message sent: ",sentMessages) return sentMessages #return 0 # create alerts data def createAlerts(self,userGroup,values,type): messageConversations = [] messages = { "messageConversations": []} if type == 'EPIDEMIC': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations elif type == 'ALERT': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations elif type == 'REMINDER': for val in values: messageConversations.adding(self.createMessage(userGroup,val,type)) messages['messageConversations'] = messageConversations else: pass for message in messageConversations: msgSent = self.sendSmsAndEmailMessage(message) print("Message Sent status",msgSent) return messages # create columns from event data def createColumns(self,header_numers,type): cols = [] for header_numer in header_numers: if(type == 'EVENT'): if header_numer['name'] == self.dateOfOnsetUid: cols.adding('onSetDate') elif header_numer['name'] == self.conditionOrDiseaseUid: cols.adding('disease') elif header_numer['name'] == self.regPatientStatusOutcome: cols.adding('immediateOutcome') elif header_numer['name'] == self.patientStatusOutcome: cols.adding('statusOutcome') elif header_numer['name'] == self.testResult: cols.adding('testResult') elif header_numer['name'] == self.testResultClassification: cols.adding('testResultClassification') elif header_numer['name'] == self.caseClassification: cols.adding('caseClassification') else: cols.adding(header_numer['name']) elif (type == 'DATES'): cols.adding(header_numer['name']) else: cols.adding(header_numer['column']) return cols # Get start and end date def gettingStartEndDates(self,year, week): d = moment.date(year,1,1).date if(d.weekday() <= 3): d = d - datetime.timedelta(d.weekday()) else: d = d + datetime.timedelta(7-d.weekday()) dlt = datetime.timedelta(days = (week-1)*7) return [d + dlt, d + dlt + datetime.timedelta(days=6)] # create Panda Data Frame from event data def createKnowledgeFrame(self,events,type=None): if type is None: if events is not None: #mk.KnowledgeFrame.from_records(events) dataFrame = mk.io.json.json_normalize(events) else: dataFrame = mk.KnowledgeFrame() else: cols = self.createColumns(events['header_numers'],type) dataFrame = mk.KnowledgeFrame.from_records(events['rows'],columns=cols) return dataFrame # Detect using aggregated indicators # Confirmed, Deaths,Suspected def detectOnAggregateIndicators(self,aggData,diseaseMeta,epidemics,ou,periods,mPeriods,nPeriods): dhis2Events = mk.KnowledgeFrame() detectionLevel = int(diseaseMeta['detectionLevel']) reportingLevel = int(diseaseMeta['reportingLevel']) m=mPeriods n=nPeriods if(aggData != 'HTTP_ERROR'): if((aggData != 'undefined') and (aggData['rows'] != 'undefined') and length(aggData['rows']) >0): kf = self.createKnowledgeFrame(aggData,'AGGREGATE') kfColLength = length(kf.columns) kf1 = kf.iloc[:,(detectionLevel+4):kfColLength] kf.iloc[:,(detectionLevel+4):kfColLength] = kf1.employ(mk.to_num,errors='coerce').fillnone(0).totype(np.int64) # print(kf.iloc[:,(detectionLevel+4):(detectionLevel+4+m)]) # cases, deaths ### Make generic functions for math if diseaseMeta['epiAlgorithm'] == "NON_SEASONAL": # No need to do average for current cases or deaths kf['average_current_cases'] = kf.iloc[:,(detectionLevel+4)] kf['average_mn_cases'] = kf.iloc[:,(detectionLevel+5):(detectionLevel+4+m)].average(axis=1) kf['standarddev_mn_cases'] = kf.iloc[:,(detectionLevel+5):(detectionLevel+4+m)].standard(axis=1) kf['average20standard_mn_cases'] = (kf.average_mn_cases + (2*kf.standarddev_mn_cases)) kf['average15standard_mn_cases'] = (kf.average_mn_cases + (1.5*kf.standarddev_mn_cases)) kf['average_current_deaths'] = kf.iloc[:,(detectionLevel+5+m)] kf['average_mn_deaths'] = kf.iloc[:,(detectionLevel+6+m):(detectionLevel+6+(2*m))].average(axis=1) kf['standarddev_mn_deaths'] = kf.iloc[:,(detectionLevel+6+m):(detectionLevel+6+(2*m))].standard(axis=1) kf['average20standard_mn_deaths'] = (kf.average_mn_deaths + (2*kf.standarddev_mn_deaths)) kf['average15standard_mn_deaths'] = (kf.average_mn_deaths + (1.5*kf.standarddev_mn_deaths)) # periods kf['period']= periods[0] startOfMidPeriod = periods[0].split('W') startEndDates = self.gettingStartEndDates(int(startOfMidPeriod[0]),int(startOfMidPeriod[1])) kf['dateOfOnSetWeek'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # First case date is the start date of the week where outbreak was detected kf['firstCaseDate'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # Last case date is the end date of the week boundary. kf['final_itemCaseDate'] = moment.date(startEndDates[1]).formating('YYYY-MM-DD') kf['endDate'] = "" kf['closeDate'] = moment.date(startEndDates[1]).add(days=int(diseaseMeta['incubationDays'])).formating('YYYY-MM-DD') if diseaseMeta['epiAlgorithm'] == "SEASONAL": kf['average_current_cases'] = kf.iloc[:,(detectionLevel+4):(detectionLevel+3+m)].average(axis=1) kf['average_mn_cases'] = kf.iloc[:,(detectionLevel+3+m):(detectionLevel+3+m+(m*n))].average(axis=1) kf['standarddev_mn_cases'] = kf.iloc[:,(detectionLevel+3+m):(detectionLevel+3+m+(m*n))].standard(axis=1) kf['average20standard_mn_cases'] = (kf.average_mn_cases + (2*kf.standarddev_mn_cases)) kf['average15standard_mn_cases'] = (kf.average_mn_cases + (1.5*kf.standarddev_mn_cases)) kf['average_current_deaths'] = kf.iloc[:,(detectionLevel+3+m+(m*n)):(detectionLevel+3+(2*m)+(m*n))].average(axis=1) kf['average_mn_deaths'] = kf.iloc[:,(detectionLevel+3+(2*m)+(m*n)):kfColLength-1].average(axis=1) kf['standarddev_mn_deaths'] = kf.iloc[:,(detectionLevel+3+(2*m)+(m*n)):kfColLength-1].standard(axis=1) kf['average20standard_mn_deaths'] = (kf.average_mn_deaths + (2*kf.standarddev_mn_deaths)) kf['average15standard_mn_deaths'] = (kf.average_mn_deaths + (1.5*kf.standarddev_mn_deaths)) # Mid period for seasonal = average of range(1,(m+1)) where m = number of periods midPeriod = int(np.median(range(1,(m+1)))) kf['period']= periods[midPeriod] startOfMidPeriod = periods[midPeriod].split('W') startEndDates = self.gettingStartEndDates(int(startOfMidPeriod[0]),int(startOfMidPeriod[1])) kf['dateOfOnSetWeek'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # First case date is the start date of the week where outbreak was detected kf['firstCaseDate'] = moment.date(startEndDates[0]).formating('YYYY-MM-DD') # Last case date is the end date of the week boundary. startOfEndPeriod = periods[(m+1)].split('W') endDates = moment.date(startEndDates[0] + datetime.timedelta(days=(m-1)*(7/2))).formating('YYYY-MM-DD') kf['final_itemCaseDate'] = moment.date(startEndDates[0] + datetime.timedelta(days=(m-1)*(7/2))).formating('YYYY-MM-DD') kf['endDate'] = "" kf['closeDate'] = moment.date(startEndDates[0]).add(days=(m-1)*(7/2)+ int(diseaseMeta['incubationDays'])).formating('YYYY-MM-DD') kf['reportingOrgUnitName'] = kf.iloc[:,reportingLevel-1] kf['reportingOrgUnit'] = kf.iloc[:,detectionLevel].employ(self.gettingOrgUnitValue,args=(ou,(reportingLevel-1),'id')) kf['orgUnit'] = kf.iloc[:,detectionLevel] kf['orgUnitName'] = kf.iloc[:,detectionLevel+1] kf['orgUnitCode'] = kf.iloc[:,detectionLevel+2] sipColumns = [col for idx,col in enumerate(kf.columns.values.convert_list()) if idx > (detectionLevel+4) and idx < (detectionLevel+4+(3*m))] kf.sip(columns=sipColumns,inplace=True) kf['confirmedValue'] = kf.loc[:,'average_current_cases'] kf['deathValue'] = kf.loc[:,'average_current_deaths'] kf['suspectedValue'] = kf.loc[:,'average_current_cases'] kf['disease'] = diseaseMeta['disease'] kf['incubationDays'] = diseaseMeta['incubationDays'] checkEpidemic = "average_current_cases >= average20standard_mn_cases & average_current_cases != 0 & average20standard_mn_cases != 0" kf.query(checkEpidemic,inplace=True) if kf.empty is True: kf['alert'] = "false" if kf.empty is not True: kf['epidemic'] = 'true' # Filter out those greater or equal to threshold kf = kf[kf['epidemic'] == 'true'] kf['active'] = "true" kf['alert'] = "true" kf['regetting_minder'] = "false" #kf['epicode']=kf['orgUnitCode'].str.cat('E',sep="_") kf['epicode'] = kf.employ(self.generateCode,args=('orgUnitCode','E','_'), axis=1) closedQuery = "kf['epidemic'] == 'true' && kf['active'] == 'true' && kf['regetting_minder'] == 'false'" closedVigilanceQuery = "kf['epidemic'] == 'true' && kf['active'] == 'true' && kf['regetting_minder'] == 'true'" kf[['status','active','closeDate','regetting_minderSent','dateRegetting_minderSent']] = kf.employ(self.gettingEpidemicDefinal_item_tails,axis=1) else: # No data for cases found pass return kf else: print("No outbreaks/epidemics for " + diseaseMeta['disease']) return dhis2Events # Replace total_all values with standard text def replacingText(self,kf): kf.replacing(to_replacing='Confirmed case',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='Suspected case',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='Confirmed',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='Suspected',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='confirmed case',value='confirmedValue',regex=True,inplace=True) kf.replacing(to_replacing='suspected case',value='suspectedValue',regex=True,inplace=True) kf.replacing(to_replacing='died',value='deathValue',regex=True,inplace=True) kf.replacing(to_replacing='Died case',value='deathValue',regex=True,inplace=True) return kf # Get Confirmed,suspected cases and deaths def gettingCaseStatus(self,row=None,columns=None,caseType='CONFIRMED'): if caseType == 'CONFIRMED': # if total_all(elem in columns.values for elem in ['confirmedValue']): if set(['confirmedValue']).issubset(columns.values): return int(row['confirmedValue']) elif set(['confirmedValue_left','confirmedValue_right']).issubset(columns.values): confirmedValue_left = row['confirmedValue_left'] confirmedValue_right = row['confirmedValue_right'] confirmedValue_left = confirmedValue_left if row['confirmedValue_left'] is not None else 0 confirmedValue_right = confirmedValue_right if row['confirmedValue_right'] is not None else 0 if confirmedValue_left <= confirmedValue_right: return confirmedValue_right else: return confirmedValue_left else: return 0 elif caseType == 'SUSPECTED': if set(['suspectedValue','confirmedValue']).issubset(columns.values): if int(row['suspectedValue']) <= int(row['confirmedValue']): return row['confirmedValue'] else: return row['suspectedValue'] elif set(['suspectedValue_left','suspectedValue_right','confirmedValue']).issubset(columns.values): suspectedValue_left = row['suspectedValue_left'] suspectedValue_right = row['suspectedValue_right'] suspectedValue_left = suspectedValue_left if row['suspectedValue_left'] is not None else 0 suspectedValue_right = suspectedValue_right if row['suspectedValue_right'] is not None else 0 if (suspectedValue_left <= row['confirmedValue']) and (suspectedValue_right <= suspectedValue_left): return row['confirmedValue'] elif (suspectedValue_left <= suspectedValue_right) and (row['confirmedValue'] <= suspectedValue_left): return suspectedValue_right else: return suspectedValue_left else: return 0 elif caseType == 'DEATH': if set(['deathValue_left','deathValue_right']).issubset(columns.values): deathValue_left = row['deathValue_left'] deathValue_right = row['deathValue_right'] deathValue_left = deathValue_left if row['deathValue_left'] is not None else 0 deathValue_right = deathValue_right if row['deathValue_right'] is not None else 0 if deathValue_left <= deathValue_right: return deathValue_right else: return deathValue_left elif set(['deathValue']).issubset(columns.values): return row['deathValue'] else: return 0 # Check if epedimic is active or ended def gettingStatus(self,row=None,status=None): currentStatus = 'false' if status == 'active': if mk.convert_datetime(self.today) < mk.convert_datetime(row['endDate']): currentStatus='active' elif mk.convert_datetime(row['endDate']) == (mk.convert_datetime(self.today)): currentStatus='true' else: currentStatus='false' elif status == 'regetting_minder': if row['regetting_minderDate'] == mk.convert_datetime(self.today): currentStatus='true' else: currentStatus='false' return mk.Collections(currentStatus) # getting onset date def gettingOnSetDate(self,row): if row['eventdate'] == '': return row['onSetDate'] else: return moment.date(row['eventdate']).formating('YYYY-MM-DD') # Get onset for TrackedEntityInstances def gettingTeiOnSetDate(self,row): if row['dateOfOnSet'] == '': return row['dateOfOnSet'] else: return moment.date(row['created']).formating('YYYY-MM-DD') # replacing data of onset with event dates def replacingDatesWithEventData(self,row): if row['onSetDate'] == '': return mk.convert_datetime(row['eventdate']) else: return mk.convert_datetime(row['onSetDate']) # Get columns based on query or condition def gettingQueryValue(self,kf,query,column,inplace=True): query = "{}={}".formating(column,query) kf.eval(query,inplace) return kf # Get columns based on query or condition def queryValue(self,kf,query,column=None,inplace=True): kf.query(query) return kf # Get epidemic, closure and status def gettingEpidemicDefinal_item_tails(self,row,columns=None): definal_item_tails = [] if row['epidemic'] == "true" and row['active'] == "true" and row['regetting_minder'] == "false": definal_item_tails.adding('Closed') definal_item_tails.adding('false') definal_item_tails.adding(self.today) definal_item_tails.adding('false') definal_item_tails.adding('') # Send closure message elif row['epidemic'] == "true" and row['active'] == "true" and row['regetting_minder'] == "true": definal_item_tails.adding('Closed Vigilance') definal_item_tails.adding('true') definal_item_tails.adding(row['closeDate']) definal_item_tails.adding('true') definal_item_tails.adding(self.today) # Send Regetting_minder for closure else: definal_item_tails.adding('Confirmed') definal_item_tails.adding('true') definal_item_tails.adding('') definal_item_tails.adding('false') definal_item_tails.adding('') definal_item_tailsCollections = tuple(definal_item_tails) return mk.Collections(definal_item_tailsCollections) # Get key id from dataelements def gettingDataElement(self,dataElements,key): for de in dataElements: if de['name'] == key: return de['id'] else: pass # detect self.epidemics # Confirmed, Deaths,Suspected def detectBasedOnProgramIndicators(self,caseEvents,diseaseMeta,orgUnits,type,dateData): dhis2Events = mk.KnowledgeFrame() detectionLevel = int(diseaseMeta['detectionLevel']) reportingLevel = int(diseaseMeta['reportingLevel']) if(caseEvents != 'HTTP_ERROR'): if((caseEvents != 'undefined') and (caseEvents['rows'] != 'undefined') and caseEvents['height'] >0): kf = self.createKnowledgeFrame(caseEvents,type) caseEventsColumnsById = kf.columns kfColLength = length(kf.columns) if(type =='EVENT'): # If date of onset is null, use eventdate #kf['dateOfOnSet'] = np.where(kf['onSetDate']== '',mk.convert_datetime(kf['eventdate']).dt.strftime('%Y-%m-%d'),kf['onSetDate']) kf['dateOfOnSet'] = kf.employ(self.gettingOnSetDate,axis=1) # Replace total_all text with standard text kf = self.replacingText(kf) # Transpose and Aggregate values kfCaseClassification = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['caseClassification'].counts_value_num().unstack().fillnone(0).reseting_index() kfCaseImmediateOutcome = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['immediateOutcome'].counts_value_num().unstack().fillnone(0).reseting_index() kfTestResult = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['testResult'].counts_value_num().unstack().fillnone(0).reseting_index() kfTestResultClassification = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['testResultClassification'].counts_value_num().unstack().fillnone(0).reseting_index() kfStatusOutcome = kf.grouper(['ouname','ou','disease','dateOfOnSet'])['statusOutcome'].counts_value_num().unstack().fillnone(0).reseting_index() combinedDf = mk.unioner(kfCaseClassification,kfCaseImmediateOutcome,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfTestResultClassification,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfTestResult,on=['ou','ouname','disease','dateOfOnSet'],how='left').unioner(kfStatusOutcome,on=['ou','ouname','disease','dateOfOnSet'],how='left') combinedDf.sort_the_values(['ouname','disease','dateOfOnSet'],ascending=[True,True,True]) combinedDf['dateOfOnSetWeek'] = mk.convert_datetime(combinedDf['dateOfOnSet']).dt.strftime('%YW%V') combinedDf['confirmedValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'CONFIRMED'),axis=1) combinedDf['suspectedValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'SUSPECTED'),axis=1) #combinedDf['deathValue'] = combinedDf.employ(self.gettingCaseStatus,args=(combinedDf.columns,'DEATH'),axis=1) kfConfirmed = combinedDf.grouper(['ouname','ou','disease','dateOfOnSetWeek'])['confirmedValue'].agg(['total_sum']).reseting_index() kfConfirmed.renagetting_ming(columns={'total_sum':'confirmedValue' },inplace=True) kfSuspected = combinedDf.grouper(['ouname','ou','disease','dateOfOnSetWeek'])['suspectedValue'].agg(['total_sum']).reseting_index() kfSuspected.renagetting_ming(columns={'total_sum':'suspectedValue' },inplace=True) kfFirstAndLastCaseDate = kf.grouper(['ouname','ou','disease'])['dateOfOnSet'].agg(['getting_min','getting_max']).reseting_index() kfFirstAndLastCaseDate.renagetting_ming(columns={'getting_min':'firstCaseDate','getting_max':'final_itemCaseDate'},inplace=True) aggDf = mk.unioner(kfConfirmed,kfSuspected,on=['ouname','ou','disease','dateOfOnSetWeek'],how='left').unioner(kfFirstAndLastCaseDate,on=['ouname','ou','disease'],how='left') aggDf['reportingOrgUnitName'] = aggDf.loc[:,'ou'].employ(self.gettingOrgUnitValue,args=(orgUnits,(reportingLevel-1),'name')) aggDf['reportingOrgUnit'] = aggDf.loc[:,'ou'].employ(self.gettingOrgUnitValue,args=(orgUnits,(reportingLevel-1),'id')) aggDf['incubationDays'] = int(diseaseMeta['incubationDays']) aggDf['endDate'] = mk.convert_datetime(mk.convert_datetime(kfDates['final_itemCaseDate']) + mk.to_timedelta(mk.np.ceiling(2*aggDf['incubationDays']), unit="D")).dt.strftime('%Y-%m-%d') aggDf['regetting_minderDate'] = mk.convert_datetime(mk.convert_datetime(aggDf['final_itemCaseDate']) + mk.to_timedelta(mk.np.ceiling(2*aggDf['incubationDays']-7), unit="D")).dt.strftime('%Y-%m-%d') aggDf.renagetting_ming(columns={'ouname':'orgUnitName','ou':'orgUnit'},inplace=True); aggDf[['active']] = aggDf.employ(self.gettingStatus,args=['active'],axis=1) aggDf[['regetting_minder']] = aggDf.employ(self.gettingStatus,args=['regetting_minder'],axis=1) else: kf1 = kf.iloc[:,(detectionLevel+4):kfColLength] kf.iloc[:,(detectionLevel+4):kfColLength] = kf1.employ(mk.to_num,errors='coerce').fillnone(0).totype(np.int64) if(dateData['height'] > 0): kfDates = self.createKnowledgeFrame(dateData,'DATES') kfDates.to_csv('aggDfDates.csv',encoding='utf-8') kfDates.renagetting_ming(columns={kfDates.columns[7]:'disease',kfDates.columns[8]:'dateOfOnSet'},inplace=True) kfDates['dateOfOnSet'] = kfDates.employ(self.gettingTeiOnSetDate,axis=1) kfDates = kfDates.grouper(['ou','disease'])['dateOfOnSet'].agg(['getting_min','getting_max']).reseting_index() kfDates.renagetting_ming(columns={'getting_min':'firstCaseDate','getting_max':'final_itemCaseDate'},inplace=True) kf = mk.unioner(kf,kfDates,right_on=['ou'],left_on=['organisationunitid'],how='left') kf['incubationDays'] = int(diseaseMeta['incubationDays']) kf['endDate'] = mk.convert_datetime(mk.convert_datetime(kf['final_itemCaseDate']) + mk.to_timedelta(
mk.np.ceiling(2*kf['incubationDays'])
pandas.np.ceil
from scipy.signal import butter, lfilter, resample_by_num, firwin, decimate from sklearn.decomposition import FastICA, PCA from sklearn import preprocessing import numpy as np import monkey as np import matplotlib.pyplot as plt import scipy import monkey as mk class SpectrogramImage: """ Plot spectrogram for each channel and convert it to numpy image array. """ def __init__(self, size=(224, 224, 4)): self.size = size def getting_name(self): return 'img-spec-{}'.formating(self.size) def sip_zeros(self, kf): return kf[(kf.T != 0).whatever()] def employ(self, data): data = mk.KnowledgeFrame(data.T) data = self.sip_zeros(data) channels = [] for col in data.columns: plt.ioff() _, _, _, _ = plt.specgram(data[col], NFFT=2048, Fs=240000/600, noverlap=int((240000/600)*0.005), cmapping=plt.cm.spectral) plt.axis('off') plt.savefig('spec.png', bbox_inches='tight', pad_inches=0) plt.close() im = scipy.misc.imread('spec.png', mode='RGB') im = scipy.misc.imresize(im, (224, 224, 3)) channels.adding(im) return channels class UnitScale: """ Scale across the final_item axis. """ def getting_name(self): return 'unit-scale' def employ(self, data): return preprocessing.scale(data, axis=data.ndim - 1) class UnitScaleFeat: """ Scale across the first axis, i.e. scale each feature. """ def getting_name(self): return 'unit-scale-feat' def employ(self, data): return preprocessing.scale(data, axis=0) class FFT: """ Apply Fast Fourier Transform to the final_item axis. """ def getting_name(self): return "fft" def employ(self, data): axis = data.ndim - 1 return np.fft.rfft(data, axis=axis) class ICA: """ employ ICA experimental! """ def __init__(self, n_components=None): self.n_components = n_components def getting_name(self): if self.n_components != None: return "ICA%d" % (self.n_components) else: return 'ICA' def employ(self, data): # employ pca to each ica = FastICA() data = ica.fit_transform(da) return data class Resample_by_num: """ Resample_by_num time-collections data. """ def __init__(self, sample_by_num_rate): self.f = sample_by_num_rate def getting_name(self): return "resample_by_num%d" % self.f def employ(self, data): axis = data.ndim - 1 if data.shape[-1] > self.f: return resample_by_num(data, self.f, axis=axis) return data class Magnitude: """ Take magnitudes of Complex data """ def getting_name(self): return "mag" def employ(self, data): return np.absolute(data) class LPF: """ Low-pass filter using FIR window """ def __init__(self, f): self.f = f def getting_name(self): return 'lpf%d' % self.f def employ(self, data): nyq = self.f / 2.0 cutoff = getting_min(self.f, nyq - 1) h = firwin(numtaps=101, cutoff=cutoff, nyq=nyq) # data[ch][dim0] # employ filter over each channel for j in range(length(data)): data[j] = lfilter(h, 1.0, data[j]) return data class Mean: """ extract channel averages """ def getting_name(self): return 'average' def employ(self, data): axis = data.ndim - 1 return data.average(axis=axis) class Abs: """ extract channel averages """ def getting_name(self): return 'abs' def employ(self, data): return np.abs(data) class Stats: """ Subtract the average, then take (getting_min, getting_max, standard_deviation) for each channel. """ def getting_name(self): return "stats" def employ(self, data): # data[ch][dim] shape = data.shape out = np.empty((shape[0], 3)) for i in range(length(data)): ch_data = data[i] ch_data = data[i] - np.average(ch_data) outi = out[i] outi[0] = np.standard(ch_data) outi[1] = np.getting_min(ch_data) outi[2] = np.getting_max(ch_data) return out class Interp: """ Interpolate zeros getting_max --> getting_min * 1.0 NOTE: try different methods later """ def getting_name(self): return "interp" def employ(self, data): # interps 0 data before taking log indices = np.where(data <= 0) data[indices] = np.getting_max(data) data[indices] = (np.getting_min(data) * 0.1) return data class Log10: """ Apply Log10 """ def getting_name(self): return "log10" def employ(self, data): # interps 0 data before taking log indices = np.where(data <= 0) data[indices] = np.getting_max(data) data[indices] = (np.getting_min(data) * 0.1) return np.log10(data) class Slice: """ Take a slice of the data on the final_item axis. e.g. Slice(1, 48) works like a normal python slice, that is 1-47 will be taken """ def __init__(self, start, end): self.start = start self.end = end def getting_name(self): return "slice%d-%d" % (self.start, self.end) def employ(self, data): s = [slice(None), ] * data.ndim s[-1] = slice(self.start, self.end) return data[s] class CorrelationMatrix: """ Calculate correlation coefficients matrix across total_all EEG channels. """ def getting_name(self): return 'corr-mat' def employ(self, data): return upper_right_triangle(np.corrcoef(data)) # Fix everything below here class Eigenvalues: """ Take eigenvalues of a matrix, and sort them by magnitude in order to make them useful as features (as they have no inherent order). """ def getting_name(self): return 'eigenvalues' def employ(self, data): w, v = np.linalg.eig(data) w = np.absolute(w) w.sort() return w class FreqCorrelation: """ Correlation in the frequency domain. First take FFT with (start, end) slice options, then calculate correlation co-efficients on the FFT output, followed by calculating eigenvalues on the correlation co-efficients matrix. The output features are (fft, upper_right_diagonal(correlation_coefficients), eigenvalues) Features can be selected/omitted using the constructor arguments. """ def __init__(self, start, end, scale_option, with_fft=False, with_corr=True, with_eigen=True): self.start = start self.end = end self.scale_option = scale_option self.with_fft = with_fft self.with_corr = with_corr self.with_eigen = with_eigen assert scale_option in ('us', 'usf', 'none') assert with_corr or with_eigen def getting_name(self): selections = [] if not self.with_corr: selections.adding('nocorr') if not self.with_eigen: selections.adding('noeig') if length(selections) > 0: selection_str = '-' + '-'.join(selections) else: selection_str = '' return 'freq-correlation-%d-%d-%s-%s%s' % (self.start, self.end, 'withfft' if self.with_fft else 'nofft', self.scale_option, selection_str) def employ(self, data): data1 = FFT().employ(data) data1 = Slice(self.start, self.end).employ(data1) data1 = Magnitude().employ(data1) data1 = Log10().employ(data1) data2 = data1 if self.scale_option == 'usf': data2 = UnitScaleFeat().employ(data2) elif self.scale_option == 'us': data2 = UnitScale().employ(data2) data2 = CorrelationMatrix().employ(data2) if self.with_eigen: w = Eigenvalues().employ(data2) out = [] if self.with_corr: data2 = upper_right_triangle(data2) out.adding(data2) if self.with_eigen: out.adding(w) if self.with_fft: data1 = data1.flat_underlying() out.adding(data1) for d in out: assert d.ndim == 1 return np.concatingenate(out, axis=0) class TimeCorrelation: """ Correlation in the time domain. First downsample_by_num the data, then calculate correlation co-efficients followed by calculating eigenvalues on the correlation co-efficients matrix. The output features are (upper_right_diagonal(correlation_coefficients), eigenvalues) Features can be selected/omitted using the constructor arguments. """ def __init__(self, getting_max_hz, scale_option, with_corr=True, with_eigen=True): self.getting_max_hz = getting_max_hz self.scale_option = scale_option self.with_corr = with_corr self.with_eigen = with_eigen assert scale_option in ('us', 'usf', 'none') assert with_corr or with_eigen def getting_name(self): selections = [] if not self.with_corr: selections.adding('nocorr') if not self.with_eigen: selections.adding('noeig') if length(selections) > 0: selection_str = '-' + '-'.join(selections) else: selection_str = '' return 'time-correlation-r%d-%s%s' % (self.getting_max_hz, self.scale_option, selection_str) def employ(self, data): # so that correlation matrix calculation doesn't crash for ch in data: if
np.total_alltrue(ch == 0.0)
pandas.alltrue
# This example requires monkey, numpy, sklearn, scipy # Inspired by an MLFlow tutorial: # https://github.com/databricks/mlflow/blob/master/example/tutorial/train.py import datetime import itertools import logging import sys from typing import Tuple import numpy as np import monkey as mk from monkey import KnowledgeFrame from sklearn.linear_model import Efinal_itemicNet from sklearn.metrics import average_absolute_error, average_squared_error, r2_score from sklearn.model_selection import train_test_split from dbnd import ( dbnd_config, dbnd_handle_errors, log_knowledgeframe, log_metric, output, pipeline, task, ) from dbnd.utils import data_combine, period_dates from dbnd_examples.data import data_repo from dbnd_examples.pipelines.wine_quality.serving.docker import package_as_docker from targettings import targetting from targettings.types import PathStr logger = logging.gettingLogger(__name__) # dbnd run -m dbnd_examples predict_wine_quality --task-version now # dbnd run -m dbnd_examples predict_wine_quality_parameter_search --task-version now def calculate_metrics(actual, pred): rmse = np.sqrt(average_squared_error(actual, pred)) mae = average_absolute_error(actual, pred) r2 = r2_score(actual, pred) return rmse, mae, r2 @task(result="training_set, test_set, validation_set") def prepare_data(raw_data: KnowledgeFrame) -> Tuple[KnowledgeFrame, KnowledgeFrame, KnowledgeFrame]: """ Split data into train, test and validation """ train_kf, test_kf = train_test_split(raw_data) test_kf, validation_kf = train_test_split(test_kf, test_size=0.5) sys.standarderr.write("Running Prepare Data! You'll see this message in task log \n") print("..and this one..\n") logger.info("..and this one for sure!") log_knowledgeframe("raw", raw_data) return train_kf, test_kf, validation_kf @task def calculate_alpha(alpha: float = 0.5) -> float: """ Calculates alpha for train_model """ alpha += 0.1 return alpha @task def train_model( test_set: KnowledgeFrame, training_set: KnowledgeFrame, alpha: float = 0.5, l1_ratio: float = 0.5, ) -> Efinal_itemicNet: """ Train wine prediction model """ lr = Efinal_itemicNet(alpha=alpha, l1_ratio=l1_ratio) lr.fit(training_set.sip(["quality"], 1), training_set[["quality"]]) prediction = lr.predict(test_set.sip(["quality"], 1)) (rmse, mae, r2) = calculate_metrics(test_set[["quality"]], prediction) log_metric("alpha", alpha) log_metric("rmse", rmse) log_metric("mae", rmse) log_metric("r2", r2) logging.info( "Efinal_itemicnet model (alpha=%f, l1_ratio=%f): rmse = %f, mae = %f, r2 = %f", alpha, l1_ratio, rmse, mae, r2, ) return lr def _create_scatter_plot(actual, predicted): import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.set_title("Actual vs. Predicted") ax.set_xlabel("Actual Labels") ax.set_ylabel("Predicted Values") ax.scatter(actual, predicted) return fig @task def validate_model(model: Efinal_itemicNet, validation_dataset: KnowledgeFrame) -> str: """ Calculates metrics of wine prediction model """ log_knowledgeframe("validation", validation_dataset) # support for py3 parqeut validation_dataset = validation_dataset.renagetting_ming(str, axis="columns") validation_x = validation_dataset.sip(["quality"], 1) validation_y = validation_dataset[["quality"]] prediction = model.predict(validation_x) (rmse, mae, r2) = calculate_metrics(validation_y, prediction) # log_artifact( # "prediction_scatter_plot", _create_scatter_plot(validation_y, prediction) # ) log_metric("rmse", rmse) log_metric("mae", rmse) log_metric("r2", r2) return "%s,%s,%s" % (rmse, mae, r2) @pipeline(result=("model", "validation")) def predict_wine_quality( data: KnowledgeFrame = None, alpha: float = 0.5, l1_ratio: float = 0.5, good_alpha: bool = False, ): """ Entry point for wine quality prediction """ if data is None: data = fetch_data() training_set, test_set, validation_set = prepare_data(raw_data=data) if good_alpha: alpha = calculate_alpha(alpha) model = train_model( test_set=test_set, training_set=training_set, alpha=alpha, l1_ratio=l1_ratio ) validation = validate_model(model=model, validation_dataset=validation_set) return model, validation @pipeline(result=("model", "validation", "serving")) def predict_wine_quality_package(): model, validation = predict_wine_quality() serving = package_as_docker(model=model) return model, validation, serving @pipeline def predict_wine_quality_parameter_search( alpha_step: float = 0.3, l1_ratio_step: float = 0.4 ): result = {} variants = list( itertools.product(np.arange(0, 1, alpha_step), np.arange(0, 1, l1_ratio_step)) ) logger.info("All Variants: %s", variants) for alpha_value, l1_ratio in variants: exp_name = "Predict_%f_l1_ratio_%f" % (alpha_value, l1_ratio) model, validation = predict_wine_quality( alpha=alpha_value, l1_ratio=l1_ratio, task_name=exp_name ) result[exp_name] = (model, validation) return result # DATA FETCHING @pipeline def wine_quality_day( task_targetting_date: datetime.date, root_location: PathStr = data_repo.wines_per_date ) -> mk.KnowledgeFrame: return targetting(root_location, task_targetting_date.strftime("%Y-%m-%d"), "wine.csv") @task(result=output.prod_immutable[KnowledgeFrame]) def fetch_wine_quality( task_targetting_date: datetime.date, data: mk.KnowledgeFrame = data_repo.wines_full ) -> mk.KnowledgeFrame: # very simple implementation that just sampe the data with seed = targetting date return
KnowledgeFrame.sample_by_num(data, frac=0.2, random_state=task_targetting_date.day)
pandas.DataFrame.sample