code
stringlengths
22
1.05M
apis
sequencelengths
1
3.31k
extract_api
stringlengths
75
3.25M
import logging """ Formatter """ formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d:%H:%M:%S') """ Set Flask logger """ logger = logging.getLogger('FLASK_LOG') logger.setLevel(logging.DEBUG) stream_log = logging.StreamHandler() stream_log.setFormatter(formatter) logger.addHandler(stream_log) # if disabled # logger.disabled = True
[ "logging.getLogger", "logging.Formatter", "logging.StreamHandler" ]
[((50, 156), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s - %(name)s - %(levelname)s - %(message)s"""'], {'datefmt': '"""%Y-%m-%d:%H:%M:%S"""'}), "('%(asctime)s - %(name)s - %(levelname)s - %(message)s',\n datefmt='%Y-%m-%d:%H:%M:%S')\n", (67, 156), False, 'import logging\n'), ((193, 223), 'logging.getLogger', 'logging.getLogger', (['"""FLASK_LOG"""'], {}), "('FLASK_LOG')\n", (210, 223), False, 'import logging\n'), ((268, 291), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (289, 291), False, 'import logging\n')]
#!/usr/bin/python3 import os import sys import socket CURRENT_DIR = os.path.dirname(__file__) NEWSBLUR_DIR = ''.join([CURRENT_DIR, '/../../']) sys.path.insert(0, NEWSBLUR_DIR) os.environ['DJANGO_SETTINGS_MODULE'] = 'newsblur_web.settings' import threading class ProgressPercentage(object): def __init__(self, filename): self._filename = filename self._size = float(os.path.getsize(filename)) self._seen_so_far = 0 self._lock = threading.Lock() def __call__(self, bytes_amount): # To simplify, assume this is hooked up to a single filename with self._lock: self._seen_so_far += bytes_amount percentage = (self._seen_so_far / self._size) * 100 sys.stdout.write( "\r%s %s / %s (%.2f%%)" % ( self._filename, self._seen_so_far, self._size, percentage)) sys.stdout.flush() import time import boto3 from django.conf import settings BACKUP_DIR = '/srv/newsblur/backup/' s3 = boto3.client('s3', aws_access_key_id=settings.S3_ACCESS_KEY, aws_secret_access_key=settings.S3_SECRET) hostname = socket.gethostname().replace('-','_') s3_object_name = f'backup_{hostname}/backup_{hostname}_{time.strftime("%Y-%m-%d-%H-%M")}.sql' path = os.listdir(BACKUP_DIR)[0] full_path = os.path.join(BACKUP_DIR, path) print('Uploading %s to %s on S3 bucket %s' % (full_path, s3_object_name, settings.S3_BACKUP_BUCKET)) s3.upload_file(full_path, settings.S3_BACKUP_BUCKET, s3_object_name, Callback=ProgressPercentage(full_path)) os.remove(full_path)
[ "os.path.getsize", "sys.path.insert", "boto3.client", "os.listdir", "threading.Lock", "time.strftime", "os.path.join", "sys.stdout.write", "os.path.dirname", "sys.stdout.flush", "socket.gethostname", "os.remove" ]
[((69, 94), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (84, 94), False, 'import os\n'), ((144, 176), 'sys.path.insert', 'sys.path.insert', (['(0)', 'NEWSBLUR_DIR'], {}), '(0, NEWSBLUR_DIR)\n', (159, 176), False, 'import sys\n'), ((1037, 1143), 'boto3.client', 'boto3.client', (['"""s3"""'], {'aws_access_key_id': 'settings.S3_ACCESS_KEY', 'aws_secret_access_key': 'settings.S3_SECRET'}), "('s3', aws_access_key_id=settings.S3_ACCESS_KEY,\n aws_secret_access_key=settings.S3_SECRET)\n", (1049, 1143), False, 'import boto3\n'), ((1330, 1360), 'os.path.join', 'os.path.join', (['BACKUP_DIR', 'path'], {}), '(BACKUP_DIR, path)\n', (1342, 1360), False, 'import os\n'), ((1571, 1591), 'os.remove', 'os.remove', (['full_path'], {}), '(full_path)\n', (1580, 1591), False, 'import os\n'), ((1292, 1314), 'os.listdir', 'os.listdir', (['BACKUP_DIR'], {}), '(BACKUP_DIR)\n', (1302, 1314), False, 'import os\n'), ((467, 483), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (481, 483), False, 'import threading\n'), ((1153, 1173), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (1171, 1173), False, 'import socket\n'), ((1247, 1278), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d-%H-%M"""'], {}), "('%Y-%m-%d-%H-%M')\n", (1260, 1278), False, 'import time\n'), ((389, 414), 'os.path.getsize', 'os.path.getsize', (['filename'], {}), '(filename)\n', (404, 414), False, 'import os\n'), ((739, 849), 'sys.stdout.write', 'sys.stdout.write', (["('\\r%s %s / %s (%.2f%%)' % (self._filename, self._seen_so_far, self._size,\n percentage))"], {}), "('\\r%s %s / %s (%.2f%%)' % (self._filename, self.\n _seen_so_far, self._size, percentage))\n", (755, 849), False, 'import sys\n'), ((915, 933), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (931, 933), False, 'import sys\n')]
from typing import Tuple import numpy as np import rasterio.warp from opensfm import features from .orthophoto_manager import OrthoPhotoManager from .view import View class OrthoPhotoView(View): def __init__( self, main_ui, path: str, init_lat: float, init_lon: float, is_geo_reference: bool = False, ): """[summary] Args: main_ui (GUI.Gui) path (str): path containing geotiffs """ self.image_manager = OrthoPhotoManager(path, 100.0) self.images_in_list = self.image_manager.image_keys self.zoom_window_size_px = 500 self.is_geo_reference = is_geo_reference self.size = 50 # TODO add widget for zoom level super(OrthoPhotoView, self).__init__(main_ui, False) self.refocus(init_lat, init_lon) self.populate_image_list() if self.images_in_list: self.bring_new_image(self.images_in_list[0]) self.set_title() def get_image(self, new_image): crop, image_window, geot = self.image_manager.read_image_around_latlon( new_image, self.center_lat, self.center_lon, self.size ) self.image_window = image_window self.geot = geot return crop def get_candidate_images(self): return self.image_manager.get_candidate_images( self.center_lat, self.center_lon, self.size ) def pixel_to_latlon(self, x: float, y: float): """ From pixels (in the viewing window) to latlon """ if not self.is_geo_reference: return None # Pixel to whatever crs the image is in # pyre-fixme[16]: `OrthoPhotoView` has no attribute `geot`. x, y = self.geot.xy(y, x) # And then to WSG84 (lat/lon) lons, lats = rasterio.warp.transform(self.geot.crs, "EPSG:4326", [x], [y]) return lats[0], lons[0] def gcp_to_pixel_coordinates(self, x: float, y: float) -> Tuple[float, float]: """ Transforms from normalized coordinates (in the whole geotiff) to pixels (in the viewing window) """ h, w = self.image_manager.get_image_size(self.current_image) px = features.denormalized_image_coordinates(np.array([[x, y]]), w, h)[0] # pyre-fixme[16]: `OrthoPhotoView` has no attribute `image_window`. x = px[0] - self.image_window.col_off y = px[1] - self.image_window.row_off # pyre-fixme[7]: Expected `Tuple[float, float]` but got `List[typing.Any]`. return [x, y] def pixel_to_gcp_coordinates(self, x: float, y: float) -> Tuple[float, float]: """ Transforms from pixels (in the viewing window) to normalized coordinates (in the whole geotiff) """ # pyre-fixme[16]: `OrthoPhotoView` has no attribute `image_window`. x += self.image_window.col_off y += self.image_window.row_off h, w = self.image_manager.get_image_size(self.current_image) coords = features.normalized_image_coordinates(np.array([[x, y]]), w, h)[0] return coords.tolist() def refocus(self, lat, lon): self.center_lat = lat self.center_lon = lon self.populate_image_list() if self.images_in_list: if self.current_image not in self.images_in_list: self.bring_new_image(self.images_in_list[0]) else: self.bring_new_image(self.current_image) self.set_title() def bring_new_image(self, new_image): super(OrthoPhotoView, self).bring_new_image(new_image, force=True) xlim = self.ax.get_xlim() ylim = self.ax.get_ylim() artists = self.ax.plot(np.mean(xlim), np.mean(ylim), "rx") self.plt_artists.extend(artists) self.canvas.draw_idle() def set_title(self): lat, lon = self.center_lat, self.center_lon if self.images_in_list: t = "Images covering lat:{:.4f}, lon:{:.4f}".format(lat, lon) shot = self.current_image seq_ix = self.images_in_list.index(shot) title = f"{t} [{seq_ix+1}/{len(self.images_in_list)}]: {shot}" else: title = f"No orthophotos around {lat}, {lon}" self.current_image = None self.ax.clear() self.ax.axis("off") self.canvas.draw_idle() self.window.title(title)
[ "numpy.mean", "numpy.array" ]
[((3748, 3761), 'numpy.mean', 'np.mean', (['xlim'], {}), '(xlim)\n', (3755, 3761), True, 'import numpy as np\n'), ((3763, 3776), 'numpy.mean', 'np.mean', (['ylim'], {}), '(ylim)\n', (3770, 3776), True, 'import numpy as np\n'), ((2286, 2304), 'numpy.array', 'np.array', (['[[x, y]]'], {}), '([[x, y]])\n', (2294, 2304), True, 'import numpy as np\n'), ((3087, 3105), 'numpy.array', 'np.array', (['[[x, y]]'], {}), '([[x, y]])\n', (3095, 3105), True, 'import numpy as np\n')]
""" The model file for a Memo """ import re import os import shutil import json from datetime import datetime from flask import current_app from memos import db from memos.models.User import User from memos.models.MemoState import MemoState from memos.models.MemoFile import MemoFile from memos.models.MemoSignature import MemoSignature from memos.models.MemoReference import MemoReference from memos.models.MemoHistory import MemoHistory from memos.models.MemoActivity import MemoActivity from memos.revletter import b10_to_rev, rev_to_b10 class Memo(db.Model): """This class is the single interface to a "memo" and all of the "memos" """ id = db.Column(db.Integer, primary_key=True) number = db.Column(db.Integer) # Memo Number version = db.Column(db.String) # A,B,..Z,AA,AB,...AZ,BA confidential = db.Column(db.Boolean, default=False) # if true only author, signer, distribution can read distribution = db.Column(db.String(128), default='') # user names on the distribution keywords = db.Column(db.String(128), default='') # any keyword title = db.Column(db.String(128), nullable=False, default='') # The title of the memo num_files = db.Column(db.Integer, default=0) # The number of files attached to the memo action_date = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) # The last time anything happened create_date = db.Column(db.DateTime) # when the memo was created submit_date = db.Column(db.DateTime) # when the memo was most recently submitted (from created) active_date = db.Column(db.DateTime) # when the memo was moved to active state (from submitted) obsolete_date = db.Column(db.DateTime) # when the memo was moved to obsolete state (from active) user_id = db.Column(db.String(120), db.ForeignKey('user.username'),nullable=False) # The key of the user who owns the memo _signers = db.Column(db.String(128),default='') # the hidden list of signer usernames _references = db.Column(db.String(128),default='') # The hidden list of references memo_state = db.Column(db.Enum(MemoState)) # Draft, Signoff, Active, Obsolete def __init__(self, **kwargs): super().__init__(**kwargs) # do custom initialization here def __repr__(self): return f"{self.user.username}-{self.number}{self.version}" def __str__(self): return f"{self.user.username}-{self.number}{self.version}" ######################################## # Permission Functions ######################################## @staticmethod def can_create(owner=None, delegate=None): """Will return true if the delegate can create a memo for the owner""" if owner is None: return False if delegate is None: delegate = owner return owner.is_delegate(delegate=delegate) def can_revise(self, delegate=None): """Is the delgate allowed to update "this" memo?""" if delegate is None: return False if not self.user.is_delegate(delegate): return False if self.memo_state == MemoState.Active or self.memo_state == MemoState.Obsolete: return True def can_sign(self, signer=None, delegate=None): """Can this memo be signed by delegate for the signers""" if signer is None or delegate is None: return False if self.memo_state != MemoState.Signoff: return False if not signer.is_delegate(delegate=delegate): return False # The list of signers and if they have signed are kept in the MemoSignature table status = MemoSignature.is_signer(self.id,signer) return status['is_signer'] and not status['status'] def can_unsign(self, signer=None, delegate=None): """Can this memo be unsigned by delegate for the signer """ if signer is None or delegate is None: return False if self.memo_state != MemoState.Signoff: return False if not signer.is_delegate(delegate=delegate): return False status = MemoSignature.is_signer(self.id,signer) return status['is_signer'] and status['status'] def can_obsolete(self, delegate=None): """ Can this memo be obsoleted by the delegate? Only active memos can be obsoleted """ if delegate is None: return False if not self.user.is_delegate(delegate): return False if self.memo_state == MemoState.Active: return True return False def can_cancel(self, delegate=None): """ can this memo be cancled by the delegate. Only drafts memos can be canceled""" if delegate is None: return False if self.memo_state != MemoState.Draft: return False if not self.user.is_delegate(delegate=delegate): return False return True def can_reject(self, signer=None, delegate=None): """ can this memo be rejected by the delegate. Only memos in signoff can be rejected""" if signer is None or delegate is None: return False if self.memo_state != MemoState.Signoff: return False if not signer.is_delegate(delegate): return False status = MemoSignature.is_signer(memo_id=self.id,signer=signer) # if you are a signer you can reject.. even if you have already signed return status['is_signer'] def has_access(self, user=None): """This function will return True of the "username" has access to self""" # if it is not confidential than anyone can access if self.confidential == False: return True # at this point we know it is confidential so ... they must provide a username if user is None: return False # you alway have access to your own memo's if self.user.username == user.username: return True if user.admin: return True if user.readAll: return True # if the username is in the distribution list then provide access TODO: ARH do something better if user.username in re.split('\s|\,|\t|\;|\:',self.distribution): return True return False ######################################## # ??? Functions ######################################## def get_fullpath(self): """ This function gives the os path to a file """ path = os.path.join(current_app.root_path,"static","memos",f"{self.user_id}",f"{self.number}",f"{self.version}") return path def get_relpath(self): """ Return the relative path of this memo """ path = os.path.join("/static","memos",f"{self.user_id}",f"{self.number}",f"{self.version}") return path def get_files(self): """ Return a list of the files attached to this memo""" memo_list = MemoFile.query.filter_by(memo_id=self.id).all() return memo_list def saveJson(self): """ Create the JSON file which is a copy of all of the meta data """ js = {} js['title']=self.title js['number']=self.number js['version']=self.version js['confidential']=self.confidential js['distribution']=self.distribution js['keywords']=self.keywords js['userid']=self.user_id js['memo_state']=f"{self.memo_state}" js['keywords']= self.keywords js['signers']=self.signers['signers'] js['references']= self.references['ref_string'] js['files']=[] for file in self.get_files(): js['files'].append(file.filename) path = os.path.join(self.get_fullpath()) #current_app.logger.info(f"Making Directory {path}") os.makedirs(path,exist_ok=True) #current_app.logger.info(f"Making Succeeded {path}") path = os.path.join(path,f"meta-{self.user_id}-{self.number}-{self.version}.json") f = open(path,"w") json.dump(js,f) f.close() @property def signers(self): # get the signers from the signing table and turn it back to a string and a list siglist = MemoSignature.get_signers(self) for sig in siglist: sig.signer = User.find(username=sig.signer_id) sig.delegate = User.find(username=sig.delegate_id) return {'signers':self._signers,'siglist':siglist} @signers.setter def signers(self,signer_names): self._signers = signer_names MemoSignature.delete_signers(self) users = User.valid_usernames(signer_names) for signer in users['valid_users']: MemoSignature.add_signer(memo=self,signer=signer) ###################################################################### # References ###################################################################### @staticmethod def parse_reference(reference): parts = re.split(r'-',reference) if len(parts) == 2: parts.append(None) return parts @staticmethod def valid_references(references): current_app.logger.info(f'references ={references}') valid_memos = [] valid_refs = [] invalid = [] for memo_ref in re.split(r'\s|\,|\t|\;|\:',references): if memo_ref == '': continue parts = Memo.parse_reference(memo_ref) if len(parts) > 3 or len(parts) < 2: invalid.append(memo_ref) current_app.logger.info(f"INVALID length append {memo_ref} valid={valid_memos} invalid {invalid}") continue username = parts[0] memo_number = parts[1] memo_version = parts[2] memo = Memo.find(username=username,memo_number=memo_number,memo_version=memo_version) current_app.logger.info(f"Memo = {memo}") if memo != None and (memo.memo_state == MemoState.Active or memo.memo_state == MemoState.Obsolete): valid_memos.append(memo) valid_refs.append(memo_ref) else: invalid.append(memo_ref) rval = {'valid_refs':valid_refs, 'valid_memos' : valid_memos,'invalid':invalid} return rval @property def references(self): # this function will return a list of refeference objects + a string of the references refs = MemoReference.get_refs(self) rval = [] for ref in refs: userid=ref[0] memo = Memo.find(username=userid,memo_number=ref[1],memo_version=ref[2]) if ref[2] == None: refstring=f"{userid}-{ref[1]}" else: refstring=f"{userid}-{ref[1]}-{ref[2]}" rval.append((refstring,memo)) return {'reflist':rval,'ref_string':self._references} @references.setter def references(self,references): self._references = references refs = Memo.valid_references(references) for i in range(len(refs['valid_refs'])): parsed_ref = Memo.parse_reference(refs['valid_refs'][i]) user = User.find(username=parsed_ref[0]) MemoReference.add_ref(self.id,ref_user_id=user.username,ref_memo_number=parsed_ref[1],ref_memo_version=parsed_ref[2]) @property def backrefs(self): return MemoReference.get_back_refs(self) ###################################################################### # ###################################################################### def get_next_version(self): memo = Memo.query.join(User).filter(Memo.number == self.number)\ .order_by(Memo.version.desc()).first() current_app.logger.info(f"get_next_version {memo.id} {memo.number} {memo.version}") if memo: return b10_to_rev(rev_to_b10(memo.version)+1) return b10_to_rev(1) # also known as 'A' def save(self): db.session.add(self) db.session.commit() self.saveJson() ################################################################################ # functions used to process the state # these function would classiavally be called private ################################################################################ def obsolete_previous(self,acting=None): prev_list = Memo.query.join(User).filter(Memo.number == self.number,Memo.version != self.version).all() for memo in prev_list: if memo.memo_state == MemoState.Active: memo.memo_state = MemoState.Obsolete MemoHistory.activity(memo=memo,memo_activity=MemoActivity.Obsolete,user=acting) memo.save() # This function is called when: # 1- a valid draft is created # 2- a signature happens # 3- an unsign happens def process_state(self,acting=None): if self.memo_state == MemoState.Draft: if MemoSignature.status(self.id) == False: self.memo_state = MemoState.Signoff self.submit_date = datetime.utcnow() MemoHistory.activity(memo=self,memo_activity=MemoActivity.Signoff,user=acting) self.notify_signers(f"memo {self.user.username}-{self.number}-{self.version} has gone into signoff") else: self.memo_state = MemoState.Active self.active_date = datetime.utcnow() MemoHistory.activity(memo=self,memo_activity=MemoActivity.Activate,user=acting) self.obsolete_previous(acting=acting) self.notify_distribution(f"memo {self.user.username}-{self.number}-{self.version} has been published") if self.memo_state == MemoState.Signoff: if MemoSignature.status(self.id): self.memo_state = MemoState.Active self.active_date = datetime.utcnow() self.notify_distribution(f"memo {self.user.username}-{self.number}-{self.version} has been published") MemoHistory.activity(memo=self,memo_activity=MemoActivity.Activate,user=acting) self.obsolete_previous(acting=acting) else: current_app.logger.info(f"Signatures Still Required") self.action_date = datetime.utcnow() self.save() # TODO: ARH def notify_distribution(self,message): current_app.logger.info(F"Notify Distribution {self.distribution} {message}") # TODO: ARH def notify_signers(self,message): current_app.logger.info(F"Notify signers {message}") ################################################################################ # State machine functions called by the viewcontroller ################################################################################ # Owner Function @staticmethod def create_revise(owner=None,delegate=None,memo_number=None): """ This function will return None or a new Memo if the owner/delgate and revise this memo """ assert owner != None and delegate != None if owner == None or delegate == None: return None if owner.is_delegate(delegate) != True: return None memo = Memo.query.join(User).filter(User.username==owner.username,Memo.number==memo_number).order_by(Memo.version.desc()).first() # create a new memo (i.e. not a new version of an existing memo) if memo_number == None or memo==None: memo_number = Memo.get_next_number(owner) new_memo = Memo(number = memo_number,\ version = 'A',\ confidential = False,\ distribution = '',\ keywords = '',\ title = '',\ num_files = 0,\ user_id = owner.username,\ memo_state = MemoState.Draft,\ action_date = datetime.utcnow(),\ create_date = datetime.utcnow(),\ signers = '' ) new_memo.save() MemoHistory.activity(memo=new_memo,memo_activity=MemoActivity.Create,user=delegate) current_app.logger.info(f"Creating new memo {new_memo}") return new_memo if memo.memo_state == MemoState.Draft: current_app.logger.info(f"Found a draft memo {memo}") return memo # revise an existing memo new_memo = Memo(number = memo_number,\ version = memo.get_next_version(),\ confidential = memo.confidential,\ distribution = memo.distribution,\ keywords = memo.keywords,\ title = memo.title,\ num_files = 0,\ user_id = memo.user_id,\ memo_state = MemoState.Draft,\ action_date = datetime.utcnow(),\ create_date = datetime.utcnow(),\ ) new_memo.save() new_memo.references = memo.references['ref_string'] # cannot be done until there is an id assigned by the save new_memo.signers = memo._signers # cannot be done until there is an id assigned by the save new_memo.save() MemoHistory.activity(memo=new_memo,memo_activity=MemoActivity.Create,user=delegate) return new_memo # signer function def sign(self,signer=None,delegate=None): current_app.logger.info(f"signer = {signer} delegate={delegate}") if not self.can_sign(signer,delegate): current_app.logger.info("NOT!!@ allowed to sign") return False current_app.logger.info("allowed to sign") MemoSignature.sign(self.id,signer,delegate) MemoHistory.activity(memo=self,user=delegate,memo_activity=MemoActivity.Sign) self.process_state(acting=delegate) return True # signer function def unsign(self,signer=None,delegate=None): if not self.can_unsign(signer,delegate): return False MemoSignature.unsign(self.id,signer,delegate) MemoHistory.activity(memo=self,user=delegate,memo_activity=MemoActivity.Unsign) self.process_state(acting=delegate) return True # Owner Function def obsolete(self,delegate=None): current_app.logger.info(f"Obsolete: {self} Delegate={delegate}") if not self.can_obsolete(delegate=delegate): return False self.memo_state = MemoState.Obsolete self.action_date = datetime.utcnow() self.obsolete_date = datetime.utcnow() MemoHistory.activity(memo=self,user=delegate,memo_activity=MemoActivity.Obsolete) self.save() return True # Owner Function def cancel(self,delegate=None): current_app.logger.info(f"Cancel: {self} Delegate={delegate}") memostring = f"{self}" if not self.can_cancel(delegate=delegate): return False MemoFile.delete(self) # delete all of the files in that directory & the directory shutil.rmtree(self.get_fullpath()) MemoReference.delete(self) MemoSignature.delete_signers(self) MemoHistory.activity(memo=self,user=delegate,memo_activity=MemoActivity.Cancel) db.session.delete(self) db.session.commit() current_app.logger.info(f"Canceling") return True # signer function def reject(self,signer=None,delegate=None): current_app.logger.info(f"signer = {signer} delegate={delegate}") if not self.can_reject(signer,delegate): return False self.memo_state = MemoState.Draft self.action_date = datetime.utcnow() self.submit_date = None self.active_date = None self.obsolete_date = None MemoHistory.activity(memo=self,memo_activity=MemoActivity.Reject,user=delegate) MemoSignature.unsign_all(self) self.save() self.notify_signers(f"Memo {self.user.username}-{self.number}-{self.version} has been rejected for {signer.username} by {delegate.username}") return True ################################################################################ # End of State machine functions ################################################################################ @staticmethod def find(memo_id=None,username=None,memo_number=None,memo_version=None): if memo_id != None: return Memo.query.filter_by(id=memo_id).first() current_app.logger.debug(f"FIND: Looking for {username}/{memo_number}/{memo_version}") memoQry = Memo.query.filter_by(user_id=username,number=memo_number) if memo_version != None: memoQry.filter_by(version=memo_version) memo = memoQry.first() current_app.logger.debug(f"Found Memo id={memo}") return memo @staticmethod def get_memo_list(username=None,memo_number=None,memo_version=None,page=1,pagesize=None): if memo_version: memo_list = Memo.query.join(User).filter(User.username==username,\ Memo.number==memo_number,\ Memo.version==memo_version)\ .paginate(page = page,per_page=pagesize) elif memo_number: memo_list = Memo.query.join(User).filter(User.username==username,Memo.number==memo_number)\ .order_by(Memo.action_date.desc()).paginate(page = page,per_page=pagesize) elif username: memo_list = Memo.query.join(User).filter(User.username==username,Memo.memo_state == MemoState.Active)\ .order_by(Memo.action_date.desc()).paginate(page = page,per_page=pagesize) else: memo_list = Memo.query.join(User).filter(Memo.memo_state == MemoState.Active)\ .order_by(Memo.action_date.desc()).paginate(page = page,per_page=pagesize) return memo_list @staticmethod def search(title=None,keywords=None,page=1,pagesize=None): current_app.logger.info(f"Search title={title}") if title != None: memo_list = Memo.query.filter(Memo.title.like(f"%{title}%")).order_by(Memo.action_date.desc()).paginate(page = page,per_page=pagesize) if keywords != None: memo_list = Memo.query.filter(Memo.keywords.like(f"%{keywords}%")).order_by(Memo.action_date.desc()).paginate(page = page,per_page=pagesize) return memo_list @staticmethod def get_next_number(user=None): assert user!=None memo_list = Memo.query.join(User).filter(User.username==user.username)\ .order_by(Memo.number.desc()).first() if memo_list == None: return 1 return memo_list.number+1 @staticmethod def get_inbox(user=None,page=1,pagesize=None): assert user!=None,"User must not be none" if user == None: return None msigs = MemoSignature.get_signatures(user,signed=False) memolist = Memo.query.join(User).filter(Memo.memo_state==MemoState.Signoff,Memo.id.in_(msigs)).order_by(Memo.action_date.desc()).paginate(page = page,per_page=pagesize) current_app.logger.info(f"Inbox for {user.username} = Items={len(memolist.items)} {memolist}") return memolist @staticmethod def get_drafts(user=None,page=1,pagesize=None): assert user!=None,"User must not be none" if user == None: return None memolist = Memo.query.join(User).filter(Memo.memo_state==MemoState.Draft,User.username==user.username).order_by(Memo.action_date.desc()).paginate(page = page,per_page=pagesize) return memolist
[ "flask.current_app.logger.debug", "memos.models.MemoSignature.MemoSignature.unsign_all", "memos.models.MemoHistory.MemoHistory.activity", "memos.db.String", "memos.models.MemoSignature.MemoSignature.sign", "memos.models.MemoSignature.MemoSignature.is_signer", "re.split", "memos.models.MemoReference.MemoReference.get_back_refs", "memos.models.MemoSignature.MemoSignature.get_signatures", "flask.current_app.logger.info", "memos.models.MemoFile.MemoFile.delete", "memos.models.MemoReference.MemoReference.delete", "memos.models.MemoSignature.MemoSignature.delete_signers", "memos.models.MemoSignature.MemoSignature.add_signer", "memos.models.User.User.find", "memos.models.MemoSignature.MemoSignature.unsign", "memos.db.session.delete", "memos.revletter.b10_to_rev", "memos.models.MemoSignature.MemoSignature.status", "memos.models.MemoReference.MemoReference.get_refs", "memos.db.ForeignKey", "memos.models.User.User.valid_usernames", "memos.db.session.add", "memos.db.Column", "memos.revletter.rev_to_b10", "os.makedirs", "memos.models.MemoSignature.MemoSignature.get_signers", "datetime.datetime.utcnow", "memos.models.MemoReference.MemoReference.add_ref", "os.path.join", "memos.db.session.commit", "memos.db.Enum", "memos.models.MemoFile.MemoFile.query.filter_by", "json.dump" ]
[((661, 700), 'memos.db.Column', 'db.Column', (['db.Integer'], {'primary_key': '(True)'}), '(db.Integer, primary_key=True)\n', (670, 700), False, 'from memos import db\n'), ((714, 735), 'memos.db.Column', 'db.Column', (['db.Integer'], {}), '(db.Integer)\n', (723, 735), False, 'from memos import db\n'), ((801, 821), 'memos.db.Column', 'db.Column', (['db.String'], {}), '(db.String)\n', (810, 821), False, 'from memos import db\n'), ((903, 939), 'memos.db.Column', 'db.Column', (['db.Boolean'], {'default': '(False)'}), '(db.Boolean, default=False)\n', (912, 939), False, 'from memos import db\n'), ((1312, 1344), 'memos.db.Column', 'db.Column', (['db.Integer'], {'default': '(0)'}), '(db.Integer, default=0)\n', (1321, 1344), False, 'from memos import db\n'), ((1430, 1493), 'memos.db.Column', 'db.Column', (['db.DateTime'], {'nullable': '(False)', 'default': 'datetime.utcnow'}), '(db.DateTime, nullable=False, default=datetime.utcnow)\n', (1439, 1493), False, 'from memos import db\n'), ((1547, 1569), 'memos.db.Column', 'db.Column', (['db.DateTime'], {}), '(db.DateTime)\n', (1556, 1569), False, 'from memos import db\n'), ((1619, 1641), 'memos.db.Column', 'db.Column', (['db.DateTime'], {}), '(db.DateTime)\n', (1628, 1641), False, 'from memos import db\n'), ((1723, 1745), 'memos.db.Column', 'db.Column', (['db.DateTime'], {}), '(db.DateTime)\n', (1732, 1745), False, 'from memos import db\n'), ((1828, 1850), 'memos.db.Column', 'db.Column', (['db.DateTime'], {}), '(db.DateTime)\n', (1837, 1850), False, 'from memos import db\n'), ((1038, 1052), 'memos.db.String', 'db.String', (['(128)'], {}), '(128)\n', (1047, 1052), False, 'from memos import db\n'), ((1139, 1153), 'memos.db.String', 'db.String', (['(128)'], {}), '(128)\n', (1148, 1153), False, 'from memos import db\n'), ((1222, 1236), 'memos.db.String', 'db.String', (['(128)'], {}), '(128)\n', (1231, 1236), False, 'from memos import db\n'), ((1939, 1953), 'memos.db.String', 'db.String', (['(120)'], {}), '(120)\n', (1948, 1953), False, 'from memos import db\n'), ((1955, 1985), 'memos.db.ForeignKey', 'db.ForeignKey', (['"""user.username"""'], {}), "('user.username')\n", (1968, 1985), False, 'from memos import db\n'), ((2074, 2088), 'memos.db.String', 'db.String', (['(128)'], {}), '(128)\n', (2083, 2088), False, 'from memos import db\n'), ((2199, 2213), 'memos.db.String', 'db.String', (['(128)'], {}), '(128)\n', (2208, 2213), False, 'from memos import db\n'), ((2314, 2332), 'memos.db.Enum', 'db.Enum', (['MemoState'], {}), '(MemoState)\n', (2321, 2332), False, 'from memos import db\n'), ((3945, 3985), 'memos.models.MemoSignature.MemoSignature.is_signer', 'MemoSignature.is_signer', (['self.id', 'signer'], {}), '(self.id, signer)\n', (3968, 3985), False, 'from memos.models.MemoSignature import MemoSignature\n'), ((4413, 4453), 'memos.models.MemoSignature.MemoSignature.is_signer', 'MemoSignature.is_signer', (['self.id', 'signer'], {}), '(self.id, signer)\n', (4436, 4453), False, 'from memos.models.MemoSignature import MemoSignature\n'), ((5625, 5680), 'memos.models.MemoSignature.MemoSignature.is_signer', 'MemoSignature.is_signer', ([], {'memo_id': 'self.id', 'signer': 'signer'}), '(memo_id=self.id, signer=signer)\n', (5648, 5680), False, 'from memos.models.MemoSignature import MemoSignature\n'), ((6837, 6951), 'os.path.join', 'os.path.join', (['current_app.root_path', '"""static"""', '"""memos"""', 'f"""{self.user_id}"""', 'f"""{self.number}"""', 'f"""{self.version}"""'], {}), "(current_app.root_path, 'static', 'memos', f'{self.user_id}',\n f'{self.number}', f'{self.version}')\n", (6849, 6951), False, 'import os\n'), ((7060, 7152), 'os.path.join', 'os.path.join', (['"""/static"""', '"""memos"""', 'f"""{self.user_id}"""', 'f"""{self.number}"""', 'f"""{self.version}"""'], {}), "('/static', 'memos', f'{self.user_id}', f'{self.number}',\n f'{self.version}')\n", (7072, 7152), False, 'import os\n'), ((8138, 8170), 'os.makedirs', 'os.makedirs', (['path'], {'exist_ok': '(True)'}), '(path, exist_ok=True)\n', (8149, 8170), False, 'import os\n'), ((8247, 8323), 'os.path.join', 'os.path.join', (['path', 'f"""meta-{self.user_id}-{self.number}-{self.version}.json"""'], {}), "(path, f'meta-{self.user_id}-{self.number}-{self.version}.json')\n", (8259, 8323), False, 'import os\n'), ((8358, 8374), 'json.dump', 'json.dump', (['js', 'f'], {}), '(js, f)\n', (8367, 8374), False, 'import json\n'), ((8537, 8568), 'memos.models.MemoSignature.MemoSignature.get_signers', 'MemoSignature.get_signers', (['self'], {}), '(self)\n', (8562, 8568), False, 'from memos.models.MemoSignature import MemoSignature\n'), ((8880, 8914), 'memos.models.MemoSignature.MemoSignature.delete_signers', 'MemoSignature.delete_signers', (['self'], {}), '(self)\n', (8908, 8914), False, 'from memos.models.MemoSignature import MemoSignature\n'), ((8932, 8966), 'memos.models.User.User.valid_usernames', 'User.valid_usernames', (['signer_names'], {}), '(signer_names)\n', (8952, 8966), False, 'from memos.models.User import User\n'), ((9301, 9325), 're.split', 're.split', (['"""-"""', 'reference'], {}), "('-', reference)\n", (9309, 9325), False, 'import re\n'), ((9483, 9535), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""references ={references}"""'], {}), "(f'references ={references}')\n", (9506, 9535), False, 'from flask import current_app\n'), ((9630, 9673), 're.split', 're.split', (['"""\\\\s|\\\\,|\\\\t|\\\\;|\\\\:"""', 'references'], {}), "('\\\\s|\\\\,|\\\\t|\\\\;|\\\\:', references)\n", (9638, 9673), False, 'import re\n'), ((10799, 10827), 'memos.models.MemoReference.MemoReference.get_refs', 'MemoReference.get_refs', (['self'], {}), '(self)\n', (10821, 10827), False, 'from memos.models.MemoReference import MemoReference\n'), ((11746, 11779), 'memos.models.MemoReference.MemoReference.get_back_refs', 'MemoReference.get_back_refs', (['self'], {}), '(self)\n', (11773, 11779), False, 'from memos.models.MemoReference import MemoReference\n'), ((12100, 12188), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""get_next_version {memo.id} {memo.number} {memo.version}"""'], {}), "(\n f'get_next_version {memo.id} {memo.number} {memo.version}')\n", (12123, 12188), False, 'from flask import current_app\n'), ((12275, 12288), 'memos.revletter.b10_to_rev', 'b10_to_rev', (['(1)'], {}), '(1)\n', (12285, 12288), False, 'from memos.revletter import b10_to_rev, rev_to_b10\n'), ((12338, 12358), 'memos.db.session.add', 'db.session.add', (['self'], {}), '(self)\n', (12352, 12358), False, 'from memos import db\n'), ((12367, 12386), 'memos.db.session.commit', 'db.session.commit', ([], {}), '()\n', (12384, 12386), False, 'from memos import db\n'), ((14677, 14694), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (14692, 14694), False, 'from datetime import datetime\n'), ((14784, 14861), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""Notify Distribution {self.distribution} {message}"""'], {}), "(f'Notify Distribution {self.distribution} {message}')\n", (14807, 14861), False, 'from flask import current_app\n'), ((14925, 14977), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""Notify signers {message}"""'], {}), "(f'Notify signers {message}')\n", (14948, 14977), False, 'from flask import current_app\n'), ((17922, 18012), 'memos.models.MemoHistory.MemoHistory.activity', 'MemoHistory.activity', ([], {'memo': 'new_memo', 'memo_activity': 'MemoActivity.Create', 'user': 'delegate'}), '(memo=new_memo, memo_activity=MemoActivity.Create, user\n =delegate)\n', (17942, 18012), False, 'from memos.models.MemoHistory import MemoHistory\n'), ((18104, 18169), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""signer = {signer} delegate={delegate}"""'], {}), "(f'signer = {signer} delegate={delegate}')\n", (18127, 18169), False, 'from flask import current_app\n'), ((18321, 18363), 'flask.current_app.logger.info', 'current_app.logger.info', (['"""allowed to sign"""'], {}), "('allowed to sign')\n", (18344, 18363), False, 'from flask import current_app\n'), ((18372, 18417), 'memos.models.MemoSignature.MemoSignature.sign', 'MemoSignature.sign', (['self.id', 'signer', 'delegate'], {}), '(self.id, signer, delegate)\n', (18390, 18417), False, 'from memos.models.MemoSignature import MemoSignature\n'), ((18424, 18503), 'memos.models.MemoHistory.MemoHistory.activity', 'MemoHistory.activity', ([], {'memo': 'self', 'user': 'delegate', 'memo_activity': 'MemoActivity.Sign'}), '(memo=self, user=delegate, memo_activity=MemoActivity.Sign)\n', (18444, 18503), False, 'from memos.models.MemoHistory import MemoHistory\n'), ((18738, 18785), 'memos.models.MemoSignature.MemoSignature.unsign', 'MemoSignature.unsign', (['self.id', 'signer', 'delegate'], {}), '(self.id, signer, delegate)\n', (18758, 18785), False, 'from memos.models.MemoSignature import MemoSignature\n'), ((18792, 18878), 'memos.models.MemoHistory.MemoHistory.activity', 'MemoHistory.activity', ([], {'memo': 'self', 'user': 'delegate', 'memo_activity': 'MemoActivity.Unsign'}), '(memo=self, user=delegate, memo_activity=MemoActivity.\n Unsign)\n', (18812, 18878), False, 'from memos.models.MemoHistory import MemoHistory\n'), ((19023, 19087), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""Obsolete: {self} Delegate={delegate}"""'], {}), "(f'Obsolete: {self} Delegate={delegate}')\n", (19046, 19087), False, 'from flask import current_app\n'), ((19256, 19273), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (19271, 19273), False, 'from datetime import datetime\n'), ((19303, 19320), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (19318, 19320), False, 'from datetime import datetime\n'), ((19329, 19417), 'memos.models.MemoHistory.MemoHistory.activity', 'MemoHistory.activity', ([], {'memo': 'self', 'user': 'delegate', 'memo_activity': 'MemoActivity.Obsolete'}), '(memo=self, user=delegate, memo_activity=MemoActivity.\n Obsolete)\n', (19349, 19417), False, 'from memos.models.MemoHistory import MemoHistory\n'), ((19513, 19575), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""Cancel: {self} Delegate={delegate}"""'], {}), "(f'Cancel: {self} Delegate={delegate}')\n", (19536, 19575), False, 'from flask import current_app\n'), ((19723, 19744), 'memos.models.MemoFile.MemoFile.delete', 'MemoFile.delete', (['self'], {}), '(self)\n', (19738, 19744), False, 'from memos.models.MemoFile import MemoFile\n'), ((19882, 19908), 'memos.models.MemoReference.MemoReference.delete', 'MemoReference.delete', (['self'], {}), '(self)\n', (19902, 19908), False, 'from memos.models.MemoReference import MemoReference\n'), ((19917, 19951), 'memos.models.MemoSignature.MemoSignature.delete_signers', 'MemoSignature.delete_signers', (['self'], {}), '(self)\n', (19945, 19951), False, 'from memos.models.MemoSignature import MemoSignature\n'), ((19960, 20046), 'memos.models.MemoHistory.MemoHistory.activity', 'MemoHistory.activity', ([], {'memo': 'self', 'user': 'delegate', 'memo_activity': 'MemoActivity.Cancel'}), '(memo=self, user=delegate, memo_activity=MemoActivity.\n Cancel)\n', (19980, 20046), False, 'from memos.models.MemoHistory import MemoHistory\n'), ((20049, 20072), 'memos.db.session.delete', 'db.session.delete', (['self'], {}), '(self)\n', (20066, 20072), False, 'from memos import db\n'), ((20081, 20100), 'memos.db.session.commit', 'db.session.commit', ([], {}), '()\n', (20098, 20100), False, 'from memos import db\n'), ((20116, 20153), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""Canceling"""'], {}), "(f'Canceling')\n", (20139, 20153), False, 'from flask import current_app\n'), ((20259, 20324), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""signer = {signer} delegate={delegate}"""'], {}), "(f'signer = {signer} delegate={delegate}')\n", (20282, 20324), False, 'from flask import current_app\n'), ((20486, 20503), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (20501, 20503), False, 'from datetime import datetime\n'), ((20610, 20696), 'memos.models.MemoHistory.MemoHistory.activity', 'MemoHistory.activity', ([], {'memo': 'self', 'memo_activity': 'MemoActivity.Reject', 'user': 'delegate'}), '(memo=self, memo_activity=MemoActivity.Reject, user=\n delegate)\n', (20630, 20696), False, 'from memos.models.MemoHistory import MemoHistory\n'), ((20698, 20728), 'memos.models.MemoSignature.MemoSignature.unsign_all', 'MemoSignature.unsign_all', (['self'], {}), '(self)\n', (20722, 20728), False, 'from memos.models.MemoSignature import MemoSignature\n'), ((21336, 21427), 'flask.current_app.logger.debug', 'current_app.logger.debug', (['f"""FIND: Looking for {username}/{memo_number}/{memo_version}"""'], {}), "(\n f'FIND: Looking for {username}/{memo_number}/{memo_version}')\n", (21360, 21427), False, 'from flask import current_app\n'), ((21641, 21690), 'flask.current_app.logger.debug', 'current_app.logger.debug', (['f"""Found Memo id={memo}"""'], {}), "(f'Found Memo id={memo}')\n", (21665, 21690), False, 'from flask import current_app\n'), ((22966, 23014), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""Search title={title}"""'], {}), "(f'Search title={title}')\n", (22989, 23014), False, 'from flask import current_app\n'), ((23954, 24002), 'memos.models.MemoSignature.MemoSignature.get_signatures', 'MemoSignature.get_signatures', (['user'], {'signed': '(False)'}), '(user, signed=False)\n', (23982, 24002), False, 'from memos.models.MemoSignature import MemoSignature\n'), ((6539, 6588), 're.split', 're.split', (['"""\\\\s|\\\\,|\t|\\\\;|\\\\:"""', 'self.distribution'], {}), "('\\\\s|\\\\,|\\t|\\\\;|\\\\:', self.distribution)\n", (6547, 6588), False, 'import re\n'), ((8622, 8655), 'memos.models.User.User.find', 'User.find', ([], {'username': 'sig.signer_id'}), '(username=sig.signer_id)\n', (8631, 8655), False, 'from memos.models.User import User\n'), ((8683, 8718), 'memos.models.User.User.find', 'User.find', ([], {'username': 'sig.delegate_id'}), '(username=sig.delegate_id)\n', (8692, 8718), False, 'from memos.models.User import User\n'), ((9024, 9074), 'memos.models.MemoSignature.MemoSignature.add_signer', 'MemoSignature.add_signer', ([], {'memo': 'self', 'signer': 'signer'}), '(memo=self, signer=signer)\n', (9048, 9074), False, 'from memos.models.MemoSignature import MemoSignature\n'), ((10221, 10262), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""Memo = {memo}"""'], {}), "(f'Memo = {memo}')\n", (10244, 10262), False, 'from flask import current_app\n'), ((11528, 11561), 'memos.models.User.User.find', 'User.find', ([], {'username': 'parsed_ref[0]'}), '(username=parsed_ref[0])\n', (11537, 11561), False, 'from memos.models.User import User\n'), ((11574, 11699), 'memos.models.MemoReference.MemoReference.add_ref', 'MemoReference.add_ref', (['self.id'], {'ref_user_id': 'user.username', 'ref_memo_number': 'parsed_ref[1]', 'ref_memo_version': 'parsed_ref[2]'}), '(self.id, ref_user_id=user.username, ref_memo_number=\n parsed_ref[1], ref_memo_version=parsed_ref[2])\n', (11595, 11699), False, 'from memos.models.MemoReference import MemoReference\n'), ((14148, 14177), 'memos.models.MemoSignature.MemoSignature.status', 'MemoSignature.status', (['self.id'], {}), '(self.id)\n', (14168, 14177), False, 'from memos.models.MemoSignature import MemoSignature\n'), ((16590, 16680), 'memos.models.MemoHistory.MemoHistory.activity', 'MemoHistory.activity', ([], {'memo': 'new_memo', 'memo_activity': 'MemoActivity.Create', 'user': 'delegate'}), '(memo=new_memo, memo_activity=MemoActivity.Create, user\n =delegate)\n', (16610, 16680), False, 'from memos.models.MemoHistory import MemoHistory\n'), ((16699, 16755), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""Creating new memo {new_memo}"""'], {}), "(f'Creating new memo {new_memo}')\n", (16722, 16755), False, 'from flask import current_app\n'), ((16860, 16913), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""Found a draft memo {memo}"""'], {}), "(f'Found a draft memo {memo}')\n", (16883, 16913), False, 'from flask import current_app\n'), ((18229, 18278), 'flask.current_app.logger.info', 'current_app.logger.info', (['"""NOT!!@ allowed to sign"""'], {}), "('NOT!!@ allowed to sign')\n", (18252, 18278), False, 'from flask import current_app\n'), ((7275, 7316), 'memos.models.MemoFile.MemoFile.query.filter_by', 'MemoFile.query.filter_by', ([], {'memo_id': 'self.id'}), '(memo_id=self.id)\n', (7299, 7316), False, 'from memos.models.MemoFile import MemoFile\n'), ((9883, 9986), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""INVALID length append {memo_ref} valid={valid_memos} invalid {invalid}"""'], {}), "(\n f'INVALID length append {memo_ref} valid={valid_memos} invalid {invalid}')\n", (9906, 9986), False, 'from flask import current_app\n'), ((12994, 13080), 'memos.models.MemoHistory.MemoHistory.activity', 'MemoHistory.activity', ([], {'memo': 'memo', 'memo_activity': 'MemoActivity.Obsolete', 'user': 'acting'}), '(memo=memo, memo_activity=MemoActivity.Obsolete, user=\n acting)\n', (13014, 13080), False, 'from memos.models.MemoHistory import MemoHistory\n'), ((13332, 13361), 'memos.models.MemoSignature.MemoSignature.status', 'MemoSignature.status', (['self.id'], {}), '(self.id)\n', (13352, 13361), False, 'from memos.models.MemoSignature import MemoSignature\n'), ((13459, 13476), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (13474, 13476), False, 'from datetime import datetime\n'), ((13493, 13578), 'memos.models.MemoHistory.MemoHistory.activity', 'MemoHistory.activity', ([], {'memo': 'self', 'memo_activity': 'MemoActivity.Signoff', 'user': 'acting'}), '(memo=self, memo_activity=MemoActivity.Signoff, user=acting\n )\n', (13513, 13578), False, 'from memos.models.MemoHistory import MemoHistory\n'), ((13793, 13810), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (13808, 13810), False, 'from datetime import datetime\n'), ((13827, 13913), 'memos.models.MemoHistory.MemoHistory.activity', 'MemoHistory.activity', ([], {'memo': 'self', 'memo_activity': 'MemoActivity.Activate', 'user': 'acting'}), '(memo=self, memo_activity=MemoActivity.Activate, user=\n acting)\n', (13847, 13913), False, 'from memos.models.MemoHistory import MemoHistory\n'), ((14265, 14282), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (14280, 14282), False, 'from datetime import datetime\n'), ((14418, 14504), 'memos.models.MemoHistory.MemoHistory.activity', 'MemoHistory.activity', ([], {'memo': 'self', 'memo_activity': 'MemoActivity.Activate', 'user': 'acting'}), '(memo=self, memo_activity=MemoActivity.Activate, user=\n acting)\n', (14438, 14504), False, 'from memos.models.MemoHistory import MemoHistory\n'), ((14587, 14640), 'flask.current_app.logger.info', 'current_app.logger.info', (['f"""Signatures Still Required"""'], {}), "(f'Signatures Still Required')\n", (14610, 14640), False, 'from flask import current_app\n'), ((17513, 17530), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (17528, 17530), False, 'from datetime import datetime\n'), ((17575, 17592), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (17590, 17592), False, 'from datetime import datetime\n'), ((12231, 12255), 'memos.revletter.rev_to_b10', 'rev_to_b10', (['memo.version'], {}), '(memo.version)\n', (12241, 12255), False, 'from memos.revletter import b10_to_rev, rev_to_b10\n'), ((16412, 16429), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (16427, 16429), False, 'from datetime import datetime\n'), ((16474, 16491), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (16489, 16491), False, 'from datetime import datetime\n')]
import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import random class JuliaSet: def __init__(self): """ Constructor of the JuliaSet class :param size: size in pixels (for both width and height) :param dpi: dots per inch (default 300) """ # Initialize image related parameters self.size = 256 self.dpi = 300 self.norm = True self.mirror = False # Initialize process related parameters self.escrad = 3 self.niter = 250 def param(self, **kwargs): """ Get parameters from input dictionary and set attributes. :param kwargs: a dictionary in the form `{'arg1':value, ..., 'argN': value}` """ # Check if kwargs in not empty if kwargs is not None: # Image related parameters if 'size' in kwargs: self.size = kwargs.pop('size', 256) if 'dpi' in kwargs: self.dpi = kwargs.pop('dpi', 300) if 'norm' in kwargs: self.norm = kwargs.pop('norm', True) if 'mirror' in kwargs: self.mirror = kwargs.pop('mirror', False) # Process related parameters if 'escrad' in kwargs: self.escrad = kwargs.pop('escrad', 3) if 'niter' in kwargs: self.niter = kwargs.pop('niter', 250) # If kwargs is not empty there is some invalid keywords if kwargs: print("{} are invalid keyword arguments!".format(kwargs.keys())) def run(self, show=False, fname='juilaset-output'): """ Run the Julia set generator :param mirror: if True the julia is mirrored horizontally and vertically; each mirror is concatenate with the original to produce a new image :param norm: if true the Julia set is normalized by its absolute maximum value. :param show: if show is `False` th eoutput image will be written as a PNG file named `fname` :param fname: Name of the output PNG file to write on disk """ # Get a complex value among a list of best Julia sets cpxNum = self.getComplexValue() # Get the target area # For more randomness, the target area is a random # subset of a wide one defined with x[-1.5, 1.5] and # y[-1.5, 1.5] xrng, yrng = self.getTargetArea() # Process julia = self.processJulia(cpxNum, xrng, yrng) # Normalization if(self.norm): julia /= np.amax(np.abs(julia)) # Mirroring if(self.mirror): # Horizontal mirroring and concatenate juliamirror = np.flip(julia, axis=1) julia = np.concatenate((julia, juliamirror), axis=1) # Vertical mirroring and concatenate juliamirror = np.flip(julia, axis=0) julia = np.concatenate((julia, juliamirror), axis=0) # Plot the output with a random colormap using matplotlib self.plotJuliaSet(julia, show=show, fname=fname) def getComplexValue(self): """ Random choice in a list of best complex values for Julia sets (real, imag). :return cpxNum: a semi-random complex value """ # Define the list of best complex values cpxList = [ (-0.10, 0.650), (0.00, 0.80), (0.370, 0.100), (0.355, 0.355), (-0.54, 0.54), (0.340, -0.05), (0.37, 0.10), (0.355, 0.355) ] # Randomly choose one cpxTmp = random.choice(cpxList) # Manipulate the base value slightly to make it a little more unique cpxNum = self.twearkComplex(cpxTmp) return cpxNum def twearkComplex(self, cpxTmp): """ Manipulate the base value slightly to make it a little more unique. :param cpxTmp: complex value to modify :param cpxNum: a slightly manipulate version of the input """ # Get the signs for the imaginary parts isign = random.randrange(-1, 1, 2) # Get a value variation for for real and imaginary parts # The possible variation range is fixed at +/- 2% to stay # In the neightborhood of the initial value rsigma = random.uniform(0.98, 1.02) isigma = random.uniform(0.98, 1.02) # Apply modification and return the new complex value realPart = cpxTmp[0] * rsigma imagPart = cpxTmp[1] * isigma * isign return complex(realPart, imagPart) def getTargetArea(self): """ For more randomness, the target area is a random subset of a wide one defined with x[-1.5, 1.5] and y[-1.5, 1.5] :return xrng, yrng: tuples containing (xmin, xmax) and (ymin, ymax) """ # Randomly choose the center of the target area # Possible values are in [-1.0, 1.0] to stay in an # area where there are always pieces of fractals xctr = random.uniform(-1.0,1.0) yctr = random.uniform(-1.0,1.0) # Extend around the center xrng = (xctr-0.5, xctr+0.5) yrng = (yctr-0.5, yctr+0.5) return xrng, yrng def processJulia(self, cpxNum, xrng, yrng): """ Calculate the Julia set for the given input parameters. :param cpxNum: complex value acting as a seed for the Julia set :param xrng: range of values (min, max) for the x-axis :param yrng: range of values (min, max) for the y-axis :param escrad: escape radius :param niter: maximum number of iterations """ # Initialize numpy array of dimensions (size, size) with zeros julia = np.ones((self.size, self.size), dtype=np.float32) # Calculate the width (equal to height) of the image since the # image is defined as a square width = xrng[1] - xrng[0] # xmax - xmin = ymax - ymin # Randomly choose the sign of the shade #ssign = random.randrange(-1, 1, 2) ssign = -1. # Loop over x range for ix in range(self.size): # Get the pixel position in the complex plane # For the real part realPart = float(ix) / self.size * width + xrng[0] # Loop over y range for iy in range(self.size): # Get the pixel position in the complex plane # For the imaginary part imagPart = float(iy) / self.size * width + yrng[0] # Build the complex cpxTmp = complex(realPart, imagPart) # Initialize iteration counter it = 0 # Loop over iterations while(np.abs(cpxTmp) <= self.escrad**2 and it < self.niter): # Quadratic polynomial cpxTmp = cpxTmp**2 + cpxNum # Increment iteration counter it += 1 # Calculate the shade (a cool thing find somewhere on the net) shade = 1. - np.sqrt(it/self.niter) # Fill the outpout array julia[ix][iy] = ssign * shade return julia def plotJuliaSet(self, julia, fname='juilaset-output', show=False): """ Plot the output Julia set and show it in matplotlib window or write it on disk as a png file. :param julia: the Julia set :param show: if show is `False` th eoutput image will be written as a PNG file named `fname` :param fname: Name of the output PNG file to write on disk """ # List of beautiful colormap for Julia sets cmapList = [ cm.Blues, cm.Greens, cm.Purples, cm.hot, cm.inferno, cm.binary, cm.rainbow, cm.twilight_shifted, cm.plasma ] # Randomly chose one colormap cmapName = random.choice(cmapList) # Plot the image with a gaussian interpolation fig = plt.gcf() fig.set_size_inches(3., 3.) plt.imshow(julia, interpolation='gaussian', cmap=cmapName) # Disable axis plt.axis('off') if(show): plt.show() else: # Write on disk fig.savefig(fname+".png", dpi=self.dpi, pad_inches=0.05, bbox_inches='tight') def julia(**kwargs): """ temp """ # Initialize Julia Set instance juliaInstance = JuliaSet() # If kwargs not empty update the attributes if kwargs is not None: juliaInstance.param(**kwargs) return juliaInstance if __name__ == "__main__": # execute only if run as a script genJuliaSet = JuliaSet() genJuliaSet.param() genJuliaSet.run()
[ "matplotlib.pyplot.imshow", "numpy.flip", "random.uniform", "random.choice", "numpy.abs", "numpy.ones", "numpy.sqrt", "random.randrange", "matplotlib.pyplot.gcf", "numpy.concatenate", "matplotlib.pyplot.axis", "matplotlib.pyplot.show" ]
[((3661, 3683), 'random.choice', 'random.choice', (['cpxList'], {}), '(cpxList)\n', (3674, 3683), False, 'import random\n'), ((4146, 4172), 'random.randrange', 'random.randrange', (['(-1)', '(1)', '(2)'], {}), '(-1, 1, 2)\n', (4162, 4172), False, 'import random\n'), ((4374, 4400), 'random.uniform', 'random.uniform', (['(0.98)', '(1.02)'], {}), '(0.98, 1.02)\n', (4388, 4400), False, 'import random\n'), ((4418, 4444), 'random.uniform', 'random.uniform', (['(0.98)', '(1.02)'], {}), '(0.98, 1.02)\n', (4432, 4444), False, 'import random\n'), ((5105, 5130), 'random.uniform', 'random.uniform', (['(-1.0)', '(1.0)'], {}), '(-1.0, 1.0)\n', (5119, 5130), False, 'import random\n'), ((5145, 5170), 'random.uniform', 'random.uniform', (['(-1.0)', '(1.0)'], {}), '(-1.0, 1.0)\n', (5159, 5170), False, 'import random\n'), ((5817, 5866), 'numpy.ones', 'np.ones', (['(self.size, self.size)'], {'dtype': 'np.float32'}), '((self.size, self.size), dtype=np.float32)\n', (5824, 5866), True, 'import numpy as np\n'), ((8018, 8041), 'random.choice', 'random.choice', (['cmapList'], {}), '(cmapList)\n', (8031, 8041), False, 'import random\n'), ((8112, 8121), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (8119, 8121), True, 'import matplotlib.pyplot as plt\n'), ((8166, 8224), 'matplotlib.pyplot.imshow', 'plt.imshow', (['julia'], {'interpolation': '"""gaussian"""', 'cmap': 'cmapName'}), "(julia, interpolation='gaussian', cmap=cmapName)\n", (8176, 8224), True, 'import matplotlib.pyplot as plt\n'), ((8265, 8280), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (8273, 8280), True, 'import matplotlib.pyplot as plt\n'), ((2795, 2817), 'numpy.flip', 'np.flip', (['julia'], {'axis': '(1)'}), '(julia, axis=1)\n', (2802, 2817), True, 'import numpy as np\n'), ((2838, 2882), 'numpy.concatenate', 'np.concatenate', (['(julia, juliamirror)'], {'axis': '(1)'}), '((julia, juliamirror), axis=1)\n', (2852, 2882), True, 'import numpy as np\n'), ((2958, 2980), 'numpy.flip', 'np.flip', (['julia'], {'axis': '(0)'}), '(julia, axis=0)\n', (2965, 2980), True, 'import numpy as np\n'), ((3001, 3045), 'numpy.concatenate', 'np.concatenate', (['(julia, juliamirror)'], {'axis': '(0)'}), '((julia, juliamirror), axis=0)\n', (3015, 3045), True, 'import numpy as np\n'), ((8312, 8322), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8320, 8322), True, 'import matplotlib.pyplot as plt\n'), ((2657, 2670), 'numpy.abs', 'np.abs', (['julia'], {}), '(julia)\n', (2663, 2670), True, 'import numpy as np\n'), ((7187, 7211), 'numpy.sqrt', 'np.sqrt', (['(it / self.niter)'], {}), '(it / self.niter)\n', (7194, 7211), True, 'import numpy as np\n'), ((6838, 6852), 'numpy.abs', 'np.abs', (['cpxTmp'], {}), '(cpxTmp)\n', (6844, 6852), True, 'import numpy as np\n')]
import numpy as np from keras import backend as K import os import sys K.set_image_dim_ordering('tf') def patch_path(path): return os.path.join(os.path.dirname(__file__), path) def main(): sys.path.append(patch_path('..')) data_dir_path = patch_path('very_large_data') model_dir_path = patch_path('models/UCF-101') from keras_video_classifier.library.convolutional import CnnVideoClassifier from keras_video_classifier.library.utility.ucf.UCF101_loader import load_ucf, scan_ucf_with_labels config_file_path = CnnVideoClassifier.get_config_file_path(model_dir_path) weight_file_path = CnnVideoClassifier.get_weight_file_path(model_dir_path) np.random.seed(42) load_ucf(data_dir_path) predictor = CnnVideoClassifier() predictor.load_model(config_file_path, weight_file_path) videos = scan_ucf_with_labels(data_dir_path, [label for (label, label_index) in predictor.labels.items()]) video_file_path_list = np.array([file_path for file_path in videos.keys()]) np.random.shuffle(video_file_path_list) for video_file_path in video_file_path_list: label = videos[video_file_path] predicted_label = predictor.predict(video_file_path) print('predicted: ' + predicted_label + ' actual: ' + label) if __name__ == '__main__': main()
[ "keras_video_classifier.library.utility.ucf.UCF101_loader.load_ucf", "numpy.random.shuffle", "os.path.dirname", "keras_video_classifier.library.convolutional.CnnVideoClassifier.get_weight_file_path", "numpy.random.seed", "keras_video_classifier.library.convolutional.CnnVideoClassifier.get_config_file_path", "keras.backend.set_image_dim_ordering", "keras_video_classifier.library.convolutional.CnnVideoClassifier" ]
[((72, 102), 'keras.backend.set_image_dim_ordering', 'K.set_image_dim_ordering', (['"""tf"""'], {}), "('tf')\n", (96, 102), True, 'from keras import backend as K\n'), ((545, 600), 'keras_video_classifier.library.convolutional.CnnVideoClassifier.get_config_file_path', 'CnnVideoClassifier.get_config_file_path', (['model_dir_path'], {}), '(model_dir_path)\n', (584, 600), False, 'from keras_video_classifier.library.convolutional import CnnVideoClassifier\n'), ((624, 679), 'keras_video_classifier.library.convolutional.CnnVideoClassifier.get_weight_file_path', 'CnnVideoClassifier.get_weight_file_path', (['model_dir_path'], {}), '(model_dir_path)\n', (663, 679), False, 'from keras_video_classifier.library.convolutional import CnnVideoClassifier\n'), ((685, 703), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (699, 703), True, 'import numpy as np\n'), ((709, 732), 'keras_video_classifier.library.utility.ucf.UCF101_loader.load_ucf', 'load_ucf', (['data_dir_path'], {}), '(data_dir_path)\n', (717, 732), False, 'from keras_video_classifier.library.utility.ucf.UCF101_loader import load_ucf, scan_ucf_with_labels\n'), ((750, 770), 'keras_video_classifier.library.convolutional.CnnVideoClassifier', 'CnnVideoClassifier', ([], {}), '()\n', (768, 770), False, 'from keras_video_classifier.library.convolutional import CnnVideoClassifier\n'), ((1029, 1068), 'numpy.random.shuffle', 'np.random.shuffle', (['video_file_path_list'], {}), '(video_file_path_list)\n', (1046, 1068), True, 'import numpy as np\n'), ((151, 176), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (166, 176), False, 'import os\n')]
''' ------------------------------------- Assignment 2 - EE2703 (Jan-May 2020) Done by <NAME> (EE18B122) Created on 18/01/20 Last Modified on 04/02/20 ------------------------------------- ''' # importing necessary libraries import sys import cmath import numpy as np import pandas as pd # To improve readability CIRCUIT_START = ".circuit" CIRCUIT_END = ".end" RESISTOR = "R" CAPACITOR = "C" INDUCTOR = "L" IVS = "V" ICS = "I" VCVS = "E" VCCS = "G" CCVS = "H" CCCS = "F" PI = np.pi # Classes for each circuit component class resistor: def __init__(self, name, n1, n2, val): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 class inductor: def __init__(self, name, n1, n2, val): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 class capacitor: def __init__(self, name, n1, n2, val): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 class voltageSource: def __init__(self, name, n1, n2, val, phase=0): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 self.phase = float(phase) class currentSource: def __init__(self, name, n1, n2, val, phase=0): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 self.phase = float(phase) class vcvs: def __init__(self, name, n1, n2, n3, n4, val): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 self.node3 = n3 self.node4 = n4 class vccs: def __init__(self, name, n1, n2, n3, n4, val): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 self.node3 = n3 self.node4 = n4 class ccvs: def __init__(self, name, n1, n2, vName, val): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 self.vSource = vName class cccs: def __init__(self, name, n1, n2, vName, val): self.name = name self.value = enggToMath(val) self.node1 = n1 self.node2 = n2 self.vSource = vName # Convert a number in engineer's format to math def enggToMath(enggNumber): try: return float(enggNumber) except: lenEnggNumber = len(enggNumber) # Kilo if enggNumber[lenEnggNumber-1] == 'k': base = int(enggNumber[0:lenEnggNumber-1]) return base*1e3 # Milli elif enggNumber[lenEnggNumber-1] == 'm': base = int(enggNumber[0:lenEnggNumber-1]) return base*1e-3 # Micro elif enggNumber[lenEnggNumber-1] == 'u': base = int(enggNumber[0:lenEnggNumber-1]) return base*1e-6 # Nano elif enggNumber[lenEnggNumber-1] == 'n': base = int(enggNumber[0:lenEnggNumber-1]) return base*1e-9 # Mega elif enggNumber[lenEnggNumber-1] == 'M': base = int(enggNumber[0:lenEnggNumber-1]) return base*1e6 else: sys.exit("Please check the component values given. Supported engineer units are: M, k, m, u, n\nYou can also enter values in exponential format (eg. 1e3 = 1000).") if __name__ == "__main__": # checking number of command line arguments if len(sys.argv)!=2 : sys.exit("Invalid number of arguments!") else: try: circuitFile = sys.argv[1] circuitFreq = 1e-100 circuitComponents = { RESISTOR: [], CAPACITOR: [], INDUCTOR: [], IVS: [], ICS: [], VCVS: [], VCCS: [], CCVS: [], CCCS: [] } circuitNodes = [] # checking if given netlist file is of correct type if (not circuitFile.endswith(".netlist")): print("Wrong file type!") else: netlistFileLines = [] with open (circuitFile, "r") as f: for line in f.readlines(): netlistFileLines.append(line.split('#')[0].split('\n')[0]) # Getting frequency, if any if(line[:3] == '.ac'): circuitFreq = float(line.split()[2]) # Setting Angular Frequency w w = 2*PI*circuitFreq try: # Finding the location of the identifiers identifier1 = netlistFileLines.index(CIRCUIT_START) identifier2 = netlistFileLines.index(CIRCUIT_END) circuitBody = netlistFileLines[identifier1+1:identifier2] for line in circuitBody: # Extracting the data from the line lineTokens = line.split() # Appending new nodes to a list try: if lineTokens[1] not in circuitNodes: circuitNodes.append(lineTokens[1]) if lineTokens[2] not in circuitNodes: circuitNodes.append(lineTokens[2]) except IndexError: continue # Resistor if lineTokens[0][0] == RESISTOR: circuitComponents[RESISTOR].append(resistor(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3])) # Capacitor elif lineTokens[0][0] == CAPACITOR: circuitComponents[CAPACITOR].append(capacitor(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3])) # Inductor elif lineTokens[0][0] == INDUCTOR: circuitComponents[INDUCTOR].append(inductor(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3])) # Voltage Source elif lineTokens[0][0] == IVS: if len(lineTokens) == 5: # DC Source circuitComponents[IVS].append(voltageSource(lineTokens[0], lineTokens[1], lineTokens[2], float(lineTokens[4]))) elif len(lineTokens) == 6: # AC Source if circuitFreq == 1e-100: sys.exit("Frequency of AC Source not specified!!") circuitComponents[IVS].append(voltageSource(lineTokens[0], lineTokens[1], lineTokens[2], float(lineTokens[4])/2, lineTokens[5])) # Current Source elif lineTokens[0][0] == ICS: if len(lineTokens) == 5: # DC Source circuitComponents[ICS].append(currentSource(lineTokens[0], lineTokens[1], lineTokens[2], float(lineTokens[4]))) elif len(lineTokens) == 6: # AC Source if circuitFreq == 1e-100: sys.exit("Frequency of AC Source not specified!!") circuitComponents[ICS].append(currentSource(lineTokens[0], lineTokens[1], lineTokens[2], float(lineTokens[4])/2, lineTokens[5])) # VCVS elif lineTokens[0][0] == VCVS: circuitComponents[VCVS].append(vcvs(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3], lineTokens[4], lineTokens[5])) # VCCS elif lineTokens[0][0] == VCCS: circuitComponents[VCCS].append(vcvs(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3], lineTokens[4], lineTokens[5])) # CCVS elif lineTokens[0][0] == CCVS: circuitComponents[CCVS].append(ccvs(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3], lineTokens[4])) # CCCS elif lineTokens[0][0] == CCCS: circuitComponents[CCCS].append(cccs(lineTokens[0], lineTokens[1], lineTokens[2], lineTokens[3], lineTokens[4])) # Erroneous Component Name else: sys.exit("Wrong Component Given. ABORT!") try: circuitNodes.remove('GND') circuitNodes = ['GND'] + circuitNodes except: sys.exit("No ground node specified in the circuit!!") # Creating a dictionary with node names and their numbers (to reduce the time taken by later parts of the program) nodeNumbers = {circuitNodes[i]:i for i in range(len(circuitNodes))} numNodes = len(circuitNodes) numVS = len(circuitComponents[IVS])+len(circuitComponents[VCVS])+len(circuitComponents[CCVS]) # Creating Matrices M and b matrixM = np.zeros((numNodes+numVS, numNodes+numVS), np.complex) matrixB = np.zeros((numNodes+numVS,), np.complex) # GND Equation matrixM[0][0] = 1.0 # Resistor Equations for r in circuitComponents[RESISTOR]: if r.node1 != 'GND': matrixM[nodeNumbers[r.node1]][nodeNumbers[r.node1]] += 1/r.value matrixM[nodeNumbers[r.node1]][nodeNumbers[r.node2]] -= 1/r.value if r.node2 != 'GND': matrixM[nodeNumbers[r.node2]][nodeNumbers[r.node1]] -= 1/r.value matrixM[nodeNumbers[r.node2]][nodeNumbers[r.node2]] += 1/r.value # Capacitor Equations for c in circuitComponents[CAPACITOR]: if c.node1 != 'GND': matrixM[nodeNumbers[c.node1]][nodeNumbers[c.node1]] += complex(0, w*c.value) matrixM[nodeNumbers[c.node1]][nodeNumbers[c.node2]] -= complex(0, w*c.value) if c.node2 != 'GND': matrixM[nodeNumbers[c.node2]][nodeNumbers[c.node1]] -= complex(0, w*c.value) matrixM[nodeNumbers[c.node2]][nodeNumbers[c.node2]] += complex(0, w*c.value) # Inductor Equations for l in circuitComponents[INDUCTOR]: if l.node1 != 'GND': matrixM[nodeNumbers[l.node1]][nodeNumbers[l.node1]] += complex(0, -1.0/(w*l.value)) matrixM[nodeNumbers[l.node1]][nodeNumbers[l.node2]] -= complex(0, -1.0/(w*l.value)) if l.node2 != 'GND': matrixM[nodeNumbers[l.node2]][nodeNumbers[l.node1]] -= complex(0, -1.0/(w*l.value)) matrixM[nodeNumbers[l.node2]][nodeNumbers[l.node2]] += complex(0, -1.0/(w*l.value)) # Voltage Source Equations for i in range(len(circuitComponents[IVS])): # Equation accounting for current through the source if circuitComponents[IVS][i].node1 != 'GND': matrixM[nodeNumbers[circuitComponents[IVS][i].node1]][numNodes+i] = 1.0 if circuitComponents[IVS][i].node2 != 'GND': matrixM[nodeNumbers[circuitComponents[IVS][i].node2]][numNodes+i] = -1.0 # Auxiliary Equations matrixM[numNodes+i][nodeNumbers[circuitComponents[IVS][i].node1]] = -1.0 matrixM[numNodes+i][nodeNumbers[circuitComponents[IVS][i].node2]] = +1.0 matrixB[numNodes+i] = cmath.rect(circuitComponents[IVS][i].value, circuitComponents[IVS][i].phase*PI/180) # Current Source Equations for i in circuitComponents[ICS]: if i.node1 != 'GND': matrixB[nodeNumbers[i.node1]] = -1*i.value if i.node2 != 'GND': matrixB[nodeNumbers[i.node2]] = i.value # VCVS Equations for i in range(len(circuitComponents[VCVS])): # Equation accounting for current through the source if circuitComponents[VCVS][i].node1 != 'GND': matrixM[nodeNumbers[circuitComponents[VCVS][i].node1]][numNodes+len(circuitComponents[IVS])+i] = 1.0 if circuitComponents[VCVS][i].node2 != 'GND': matrixM[nodeNumbers[circuitComponents[VCVS][i].node2]][numNodes+len(circuitComponents[IVS])+i] = -1.0 matrixM[numNodes+len(circuitComponents[IVS])+i][nodeNumbers[circuitComponents[VCVS][i].node1]] = 1.0 matrixM[numNodes+len(circuitComponents[IVS])+i][nodeNumbers[circuitComponents[VCVS][i].node2]] = -1.0 matrixM[numNodes+len(circuitComponents[IVS])+i][nodeNumbers[circuitComponents[VCVS][i].node3]] = -1.0*circuitComponents[VCVS][i].value matrixM[numNodes+len(circuitComponents[IVS])+i][nodeNumbers[circuitComponents[VCVS][i].node4]] = 1.0*circuitComponents[VCVS][i].value # CCVS Equations for i in range(len(circuitComponents[CCVS])): # Equation accounting for current through the source if circuitComponents[VCVS][i].node1 != 'GND': matrixM[nodeNumbers[circuitComponents[CCVS][i].node1]][numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i] = 1.0 if circuitComponents[VCVS][i].node2 != 'GND': matrixM[nodeNumbers[circuitComponents[VCVS][i].node2]][numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i] = -1.0 matrixM[numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i][nodeNumbers[circuitComponents[CCVS][i].node1]] = 1.0 matrixM[numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i][nodeNumbers[circuitComponents[CCVS][i].node2]] = -1.0 matrixM[numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i][numNodes+len(circuitComponents[IVS])+len(circuitComponents[VCVS])+i] = -1.0*circuitComponents[CCVS][i].value # VCCS Equations for vccs in circuitComponents[VCCS]: if vccs.node1 != 'GND': matrixM[nodeNumbers[vccs.node1]][nodeNumbers[vccs.node4]]+=vccs.value matrixM[nodeNumbers[vccs.node1]][nodeNumbers[vccs.node3]]-=vccs.value if vccs.node2 != 'GND': matrixM[nodeNumbers[vccs.node2]][nodeNumbers[vccs.node4]]-=vccs.value matrixM[nodeNumbers[vccs.node3]][nodeNumbers[vccs.node3]]+=vccs.value # CCCS Equations for cccs in circuitComponents[CCCS]: def getIndexIVS(vName): for i in range(len(circuitComponents[IVS])): if circuitComponents[IVS][i].name == vName: return i if cccs.node1 != 'GND': matrixM[nodeNumbers[cccs.node1]][numNodes+getIndexIVS(cccs.vSource)]-=cccs.value if cccs.node2 != 'GND': matrixM[nodeNumbers[cccs.node2]][numNodes+getIndexIVS(cccs.vSource)]+=cccs.value try: x = np.linalg.solve(matrixM, matrixB) circuitCurrents = [] # Formatting Output Data for v in circuitComponents[IVS]: circuitCurrents.append("current in "+v.name) for v in circuitComponents[VCVS]: circuitCurrents.append("current in "+v.name) for v in circuitComponents[CCVS]: circuitCurrents.append("current in "+v.name) # Printing output in table format print(pd.DataFrame(x, circuitNodes+circuitCurrents, columns=['Voltage / Current'])) print("The values given above are AMPLITUDE values and NOT RMS values.") except np.linalg.LinAlgError: sys.exit("Singular Matrix Formed! Please check if you have entered the circuit definition correctly!") except ValueError: sys.exit("Netlist does not abide to given format!") except FileNotFoundError: sys.exit("Given file does not exist!")
[ "numpy.linalg.solve", "cmath.rect", "numpy.zeros", "sys.exit", "pandas.DataFrame" ]
[((3524, 3564), 'sys.exit', 'sys.exit', (['"""Invalid number of arguments!"""'], {}), "('Invalid number of arguments!')\n", (3532, 3564), False, 'import sys\n'), ((17150, 17188), 'sys.exit', 'sys.exit', (['"""Given file does not exist!"""'], {}), "('Given file does not exist!')\n", (17158, 17188), False, 'import sys\n'), ((9213, 9271), 'numpy.zeros', 'np.zeros', (['(numNodes + numVS, numNodes + numVS)', 'np.complex'], {}), '((numNodes + numVS, numNodes + numVS), np.complex)\n', (9221, 9271), True, 'import numpy as np\n'), ((9298, 9339), 'numpy.zeros', 'np.zeros', (['(numNodes + numVS,)', 'np.complex'], {}), '((numNodes + numVS,), np.complex)\n', (9306, 9339), True, 'import numpy as np\n'), ((12036, 12127), 'cmath.rect', 'cmath.rect', (['circuitComponents[IVS][i].value', '(circuitComponents[IVS][i].phase * PI / 180)'], {}), '(circuitComponents[IVS][i].value, circuitComponents[IVS][i].phase *\n PI / 180)\n', (12046, 12127), False, 'import cmath\n'), ((16037, 16070), 'numpy.linalg.solve', 'np.linalg.solve', (['matrixM', 'matrixB'], {}), '(matrixM, matrixB)\n', (16052, 16070), True, 'import numpy as np\n'), ((17052, 17103), 'sys.exit', 'sys.exit', (['"""Netlist does not abide to given format!"""'], {}), "('Netlist does not abide to given format!')\n", (17060, 17103), False, 'import sys\n'), ((8695, 8748), 'sys.exit', 'sys.exit', (['"""No ground node specified in the circuit!!"""'], {}), "('No ground node specified in the circuit!!')\n", (8703, 8748), False, 'import sys\n'), ((16645, 16723), 'pandas.DataFrame', 'pd.DataFrame', (['x', '(circuitNodes + circuitCurrents)'], {'columns': "['Voltage / Current']"}), "(x, circuitNodes + circuitCurrents, columns=['Voltage / Current'])\n", (16657, 16723), True, 'import pandas as pd\n'), ((16894, 17006), 'sys.exit', 'sys.exit', (['"""Singular Matrix Formed! Please check if you have entered the circuit definition correctly!"""'], {}), "(\n 'Singular Matrix Formed! Please check if you have entered the circuit definition correctly!'\n )\n", (16902, 17006), False, 'import sys\n'), ((3250, 3426), 'sys.exit', 'sys.exit', (['"""Please check the component values given. Supported engineer units are: M, k, m, u, n\nYou can also enter values in exponential format (eg. 1e3 = 1000)."""'], {}), '(\n """Please check the component values given. Supported engineer units are: M, k, m, u, n\nYou can also enter values in exponential format (eg. 1e3 = 1000)."""\n )\n', (3258, 3426), False, 'import sys\n'), ((6531, 6581), 'sys.exit', 'sys.exit', (['"""Frequency of AC Source not specified!!"""'], {}), "('Frequency of AC Source not specified!!')\n", (6539, 6581), False, 'import sys\n'), ((7208, 7258), 'sys.exit', 'sys.exit', (['"""Frequency of AC Source not specified!!"""'], {}), "('Frequency of AC Source not specified!!')\n", (7216, 7258), False, 'import sys\n'), ((8463, 8504), 'sys.exit', 'sys.exit', (['"""Wrong Component Given. ABORT!"""'], {}), "('Wrong Component Given. ABORT!')\n", (8471, 8504), False, 'import sys\n')]
import logging logger = logging.getLogger(__name__) print(f"!!!!!!!!!! getEffectiveLevel: {logger.getEffectiveLevel()} !!!!!!!!!!!!!") from dltb.base.observer import Observable, change from network import Network, loader from network.lucid import Network as LucidNetwork # lucid.modelzoo.vision_models: # A module providinge the pretrained networks by name, e.g. # models.AlexNet import lucid.modelzoo.vision_models as models import lucid.modelzoo.nets_factory as nets from lucid.modelzoo.vision_base import Model as LucidModel import lucid.optvis.objectives as objectives import lucid.optvis.param as param import lucid.optvis.render as render import lucid.optvis.transform as transform class Engine(Observable, method='engine_changed', changes={'engine_changed', 'model_changed', 'unit_changed'}): """The Engine is a wrapper around the lucid module. Attributes ---------- _network: LucidNetwork The currently selected lucid network. None if no model is selected. _model: LucidModel The currently selected lucid model. None if no model is selected. """ def __init__(self): super().__init__() self._network = None self._model = None self._layer = None self._unit = None self.image = None self.running = False @property def model(self) -> LucidModel: """The currently selected lucid model. None if no model is selected. """ return self._model @property def model_name(self) -> str: """The name of the currently selected lucid model. None if no model is selected. """ return None if self._network is None else self._network.name @change def load_model(self, name: str) -> LucidModel: """Load the Lucid model with the given name. Returns ------- model: LucidModel A reference to the LucidModel. """ logger.info(f"load_model({name})") try: #self._network = LucidNetwork(name=name) self._network = loader.load_lucid(name) self._model = self._network.model except KeyError as e: self._network = None self._model = None logger.info(f"NAME={name}/{self.model_name} : {self._model}") self._layer = None self._unit = None self.change(model_changed=True, unit_changed=True) return self._model @change def set_layer(self, name: str, unit: int=0) -> None: """Set the currently selected layer. Arguments --------- name: str The name of the layer. unit: int The index of the unit in the layer. """ if name == self.layer: return if self._model is None: return try: self._layer = next(x for x in self._model.layers if x['name'] == name) self._unit = unit except StopIteration: # name not in layer list self._layer = None self._unit = None self.change(unit_changed=True) @property def layer(self) -> str: """The name of the currently selected layer. """ return None if self._layer is None else self._layer['name'] @layer.setter def layer(self, name: str) -> None: """Set the currently selected layer. """ self.set_layer(name) @property def layer_type(self) -> str: """The type of the currently selected layer. """ return None if self._layer is None else self._layer['type'] @property def layer_units(self) -> int: """The number of units in the currently selected layer. """ return None if self._layer is None else self._layer['size'] @change def _set_unit(self, unit: int) -> None: if unit == self.unit: return if unit is None: self._unit = None self.change(unit_changed=True) elif self._layer is None: raise ValueError('Setting unit failed as no layer is selected') elif not 0 <= unit < self._layer['size']: raise ValueError(f"Invalid unit {unit} for current layer" f" of size {self._layer['size']}") else: self._unit = unit self.change(unit_changed=True) @property def unit(self) -> int: """The index of the currently selected unit or None if no unit is selected. """ return None if self._unit is None else self._unit @unit.setter def unit(self, unit: int) -> None: """The index of the currently selected unit or None if no unit is selected. """ self._set_unit(unit) @property def layer_id(self) -> str: """The id of the currently selected layer or None if no unit is selected. """ if self._layer is None: return None if self._layer['type'] == 'conv': return self._layer['name'] + '_pre_relu' return self._layer['name'] @property def unit_id(self) -> str: """The id of the currently selected unit or None if no unit is selected. """ return (None if self._layer is None else self.layer_id + ':' + str(self._unit)) def _doRun(self, running: bool=True) -> None: self.running = running self.notify_observers(EngineChange(engine_changed=True)) def start(self): self.image = None self._doRun(True) obj = objectives.channel(self.layer_id, self.unit) self.image = render.render_vis(self.model, obj) #self.image = render.render_vis(self.model, self.unit_id) self._doRun(False) def stop(self): self._doRun(False) def start_multi(self): self.image = None self._doRun(True) logger.info("!!! running all:") for unit in range(self.layer_units): self.unit = unit self.notify_observers(EngineChange(unit_changed=True)) logger.info(f"!!! running unit {unit}") obj = objectives.channel(self.layer_id, unit) self.image = render.render_vis(self.model, obj) if not self.running: break self._doRun(True) self._doRun(False) # FIXME[old]: this is too make old code happy. New code should use # Engine.Change and Engine.Observer directly. EngineChange = Engine.Change EngineObserver = Engine.Observer
[ "logging.getLogger", "lucid.optvis.objectives.channel", "network.loader.load_lucid", "lucid.optvis.render.render_vis" ]
[((24, 51), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (41, 51), False, 'import logging\n'), ((5696, 5740), 'lucid.optvis.objectives.channel', 'objectives.channel', (['self.layer_id', 'self.unit'], {}), '(self.layer_id, self.unit)\n', (5714, 5740), True, 'import lucid.optvis.objectives as objectives\n'), ((5762, 5796), 'lucid.optvis.render.render_vis', 'render.render_vis', (['self.model', 'obj'], {}), '(self.model, obj)\n', (5779, 5796), True, 'import lucid.optvis.render as render\n'), ((2132, 2155), 'network.loader.load_lucid', 'loader.load_lucid', (['name'], {}), '(name)\n', (2149, 2155), False, 'from network import Network, loader\n'), ((6271, 6310), 'lucid.optvis.objectives.channel', 'objectives.channel', (['self.layer_id', 'unit'], {}), '(self.layer_id, unit)\n', (6289, 6310), True, 'import lucid.optvis.objectives as objectives\n'), ((6336, 6370), 'lucid.optvis.render.render_vis', 'render.render_vis', (['self.model', 'obj'], {}), '(self.model, obj)\n', (6353, 6370), True, 'import lucid.optvis.render as render\n')]
# -*- coding: utf-8 -*- # Copyright 2014-2016 OpenMarket Ltd # Copyright 2018-2019 New Vector Ltd # Copyright 2019 The Matrix.org Foundation C.I.C. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import logging from collections import Counter as c_counter, OrderedDict, deque, namedtuple from functools import wraps from six import iteritems, text_type from six.moves import range from canonicaljson import json from prometheus_client import Counter, Histogram from twisted.internet import defer import synapse.metrics from synapse.api.constants import EventTypes from synapse.api.errors import SynapseError from synapse.events import EventBase # noqa: F401 from synapse.events.snapshot import EventContext # noqa: F401 from synapse.metrics import BucketCollector from synapse.metrics.background_process_metrics import run_as_background_process from synapse.state import StateResolutionStore from synapse.storage.background_updates import BackgroundUpdateStore from synapse.storage.event_federation import EventFederationStore from synapse.storage.events_worker import EventsWorkerStore from synapse.storage.state import StateGroupWorkerStore from synapse.types import RoomStreamToken, get_domain_from_id from synapse.util import batch_iter from synapse.util.async_helpers import ObservableDeferred from synapse.util.caches.descriptors import cached, cachedInlineCallbacks from synapse.util.frozenutils import frozendict_json_encoder from synapse.util.logcontext import PreserveLoggingContext, make_deferred_yieldable from synapse.util.logutils import log_function from synapse.util.metrics import Measure logger = logging.getLogger(__name__) persist_event_counter = Counter("synapse_storage_events_persisted_events", "") event_counter = Counter( "synapse_storage_events_persisted_events_sep", "", ["type", "origin_type", "origin_entity"], ) # The number of times we are recalculating the current state state_delta_counter = Counter("synapse_storage_events_state_delta", "") # The number of times we are recalculating state when there is only a # single forward extremity state_delta_single_event_counter = Counter( "synapse_storage_events_state_delta_single_event", "" ) # The number of times we are reculating state when we could have resonably # calculated the delta when we calculated the state for an event we were # persisting. state_delta_reuse_delta_counter = Counter( "synapse_storage_events_state_delta_reuse_delta", "" ) # The number of forward extremities for each new event. forward_extremities_counter = Histogram( "synapse_storage_events_forward_extremities_persisted", "Number of forward extremities for each new event", buckets=(1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500, "+Inf"), ) # The number of stale forward extremities for each new event. Stale extremities # are those that were in the previous set of extremities as well as the new. stale_forward_extremities_counter = Histogram( "synapse_storage_events_stale_forward_extremities_persisted", "Number of unchanged forward extremities for each new event", buckets=(0, 1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500, "+Inf"), ) def encode_json(json_object): """ Encode a Python object as JSON and return it in a Unicode string. """ out = frozendict_json_encoder.encode(json_object) if isinstance(out, bytes): out = out.decode("utf8") return out class _EventPeristenceQueue(object): """Queues up events so that they can be persisted in bulk with only one concurrent transaction per room. """ _EventPersistQueueItem = namedtuple( "_EventPersistQueueItem", ("events_and_contexts", "backfilled", "deferred") ) def __init__(self): self._event_persist_queues = {} self._currently_persisting_rooms = set() def add_to_queue(self, room_id, events_and_contexts, backfilled): """Add events to the queue, with the given persist_event options. NB: due to the normal usage pattern of this method, it does *not* follow the synapse logcontext rules, and leaves the logcontext in place whether or not the returned deferred is ready. Args: room_id (str): events_and_contexts (list[(EventBase, EventContext)]): backfilled (bool): Returns: defer.Deferred: a deferred which will resolve once the events are persisted. Runs its callbacks *without* a logcontext. """ queue = self._event_persist_queues.setdefault(room_id, deque()) if queue: # if the last item in the queue has the same `backfilled` setting, # we can just add these new events to that item. end_item = queue[-1] if end_item.backfilled == backfilled: end_item.events_and_contexts.extend(events_and_contexts) return end_item.deferred.observe() deferred = ObservableDeferred(defer.Deferred(), consumeErrors=True) queue.append( self._EventPersistQueueItem( events_and_contexts=events_and_contexts, backfilled=backfilled, deferred=deferred, ) ) return deferred.observe() def handle_queue(self, room_id, per_item_callback): """Attempts to handle the queue for a room if not already being handled. The given callback will be invoked with for each item in the queue, of type _EventPersistQueueItem. The per_item_callback will continuously be called with new items, unless the queue becomnes empty. The return value of the function will be given to the deferreds waiting on the item, exceptions will be passed to the deferreds as well. This function should therefore be called whenever anything is added to the queue. If another callback is currently handling the queue then it will not be invoked. """ if room_id in self._currently_persisting_rooms: return self._currently_persisting_rooms.add(room_id) @defer.inlineCallbacks def handle_queue_loop(): try: queue = self._get_drainining_queue(room_id) for item in queue: try: ret = yield per_item_callback(item) except Exception: with PreserveLoggingContext(): item.deferred.errback() else: with PreserveLoggingContext(): item.deferred.callback(ret) finally: queue = self._event_persist_queues.pop(room_id, None) if queue: self._event_persist_queues[room_id] = queue self._currently_persisting_rooms.discard(room_id) # set handle_queue_loop off in the background run_as_background_process("persist_events", handle_queue_loop) def _get_drainining_queue(self, room_id): queue = self._event_persist_queues.setdefault(room_id, deque()) try: while True: yield queue.popleft() except IndexError: # Queue has been drained. pass _EventCacheEntry = namedtuple("_EventCacheEntry", ("event", "redacted_event")) def _retry_on_integrity_error(func): """Wraps a database function so that it gets retried on IntegrityError, with `delete_existing=True` passed in. Args: func: function that returns a Deferred and accepts a `delete_existing` arg """ @wraps(func) @defer.inlineCallbacks def f(self, *args, **kwargs): try: res = yield func(self, *args, **kwargs) except self.database_engine.module.IntegrityError: logger.exception("IntegrityError, retrying.") res = yield func(self, *args, delete_existing=True, **kwargs) defer.returnValue(res) return f # inherits from EventFederationStore so that we can call _update_backward_extremities # and _handle_mult_prev_events (though arguably those could both be moved in here) class EventsStore( StateGroupWorkerStore, EventFederationStore, EventsWorkerStore, BackgroundUpdateStore, ): def __init__(self, db_conn, hs): super(EventsStore, self).__init__(db_conn, hs) self._event_persist_queue = _EventPeristenceQueue() self._state_resolution_handler = hs.get_state_resolution_handler() # Collect metrics on the number of forward extremities that exist. # Counter of number of extremities to count self._current_forward_extremities_amount = c_counter() BucketCollector( "synapse_forward_extremities", lambda: self._current_forward_extremities_amount, buckets=[1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500, "+Inf"], ) # Read the extrems every 60 minutes def read_forward_extremities(): # run as a background process to make sure that the database transactions # have a logcontext to report to return run_as_background_process( "read_forward_extremities", self._read_forward_extremities ) hs.get_clock().looping_call(read_forward_extremities, 60 * 60 * 1000) @defer.inlineCallbacks def _read_forward_extremities(self): def fetch(txn): txn.execute( """ select count(*) c from event_forward_extremities group by room_id """ ) return txn.fetchall() res = yield self.runInteraction("read_forward_extremities", fetch) self._current_forward_extremities_amount = c_counter(list(x[0] for x in res)) @defer.inlineCallbacks def persist_events(self, events_and_contexts, backfilled=False): """ Write events to the database Args: events_and_contexts: list of tuples of (event, context) backfilled (bool): Whether the results are retrieved from federation via backfill or not. Used to determine if they're "new" events which might update the current state etc. Returns: Deferred[int]: the stream ordering of the latest persisted event """ partitioned = {} for event, ctx in events_and_contexts: partitioned.setdefault(event.room_id, []).append((event, ctx)) deferreds = [] for room_id, evs_ctxs in iteritems(partitioned): d = self._event_persist_queue.add_to_queue( room_id, evs_ctxs, backfilled=backfilled ) deferreds.append(d) for room_id in partitioned: self._maybe_start_persisting(room_id) yield make_deferred_yieldable( defer.gatherResults(deferreds, consumeErrors=True) ) max_persisted_id = yield self._stream_id_gen.get_current_token() defer.returnValue(max_persisted_id) @defer.inlineCallbacks @log_function def persist_event(self, event, context, backfilled=False): """ Args: event (EventBase): context (EventContext): backfilled (bool): Returns: Deferred: resolves to (int, int): the stream ordering of ``event``, and the stream ordering of the latest persisted event """ deferred = self._event_persist_queue.add_to_queue( event.room_id, [(event, context)], backfilled=backfilled ) self._maybe_start_persisting(event.room_id) yield make_deferred_yieldable(deferred) max_persisted_id = yield self._stream_id_gen.get_current_token() defer.returnValue((event.internal_metadata.stream_ordering, max_persisted_id)) def _maybe_start_persisting(self, room_id): @defer.inlineCallbacks def persisting_queue(item): with Measure(self._clock, "persist_events"): yield self._persist_events( item.events_and_contexts, backfilled=item.backfilled ) self._event_persist_queue.handle_queue(room_id, persisting_queue) @_retry_on_integrity_error @defer.inlineCallbacks def _persist_events( self, events_and_contexts, backfilled=False, delete_existing=False ): """Persist events to db Args: events_and_contexts (list[(EventBase, EventContext)]): backfilled (bool): delete_existing (bool): Returns: Deferred: resolves when the events have been persisted """ if not events_and_contexts: return if backfilled: stream_ordering_manager = self._backfill_id_gen.get_next_mult( len(events_and_contexts) ) else: stream_ordering_manager = self._stream_id_gen.get_next_mult( len(events_and_contexts) ) with stream_ordering_manager as stream_orderings: for (event, context), stream in zip(events_and_contexts, stream_orderings): event.internal_metadata.stream_ordering = stream chunks = [ events_and_contexts[x : x + 100] for x in range(0, len(events_and_contexts), 100) ] for chunk in chunks: # We can't easily parallelize these since different chunks # might contain the same event. :( # NB: Assumes that we are only persisting events for one room # at a time. # map room_id->list[event_ids] giving the new forward # extremities in each room new_forward_extremeties = {} # map room_id->(type,state_key)->event_id tracking the full # state in each room after adding these events. # This is simply used to prefill the get_current_state_ids # cache current_state_for_room = {} # map room_id->(to_delete, to_insert) where to_delete is a list # of type/state keys to remove from current state, and to_insert # is a map (type,key)->event_id giving the state delta in each # room state_delta_for_room = {} if not backfilled: with Measure(self._clock, "_calculate_state_and_extrem"): # Work out the new "current state" for each room. # We do this by working out what the new extremities are and then # calculating the state from that. events_by_room = {} for event, context in chunk: events_by_room.setdefault(event.room_id, []).append( (event, context) ) for room_id, ev_ctx_rm in iteritems(events_by_room): latest_event_ids = yield self.get_latest_event_ids_in_room( room_id ) new_latest_event_ids = yield self._calculate_new_extremities( room_id, ev_ctx_rm, latest_event_ids ) latest_event_ids = set(latest_event_ids) if new_latest_event_ids == latest_event_ids: # No change in extremities, so no change in state continue # there should always be at least one forward extremity. # (except during the initial persistence of the send_join # results, in which case there will be no existing # extremities, so we'll `continue` above and skip this bit.) assert new_latest_event_ids, "No forward extremities left!" new_forward_extremeties[room_id] = new_latest_event_ids len_1 = ( len(latest_event_ids) == 1 and len(new_latest_event_ids) == 1 ) if len_1: all_single_prev_not_state = all( len(event.prev_event_ids()) == 1 and not event.is_state() for event, ctx in ev_ctx_rm ) # Don't bother calculating state if they're just # a long chain of single ancestor non-state events. if all_single_prev_not_state: continue state_delta_counter.inc() if len(new_latest_event_ids) == 1: state_delta_single_event_counter.inc() # This is a fairly handwavey check to see if we could # have guessed what the delta would have been when # processing one of these events. # What we're interested in is if the latest extremities # were the same when we created the event as they are # now. When this server creates a new event (as opposed # to receiving it over federation) it will use the # forward extremities as the prev_events, so we can # guess this by looking at the prev_events and checking # if they match the current forward extremities. for ev, _ in ev_ctx_rm: prev_event_ids = set(ev.prev_event_ids()) if latest_event_ids == prev_event_ids: state_delta_reuse_delta_counter.inc() break logger.info("Calculating state delta for room %s", room_id) with Measure( self._clock, "persist_events.get_new_state_after_events" ): res = yield self._get_new_state_after_events( room_id, ev_ctx_rm, latest_event_ids, new_latest_event_ids, ) current_state, delta_ids = res # If either are not None then there has been a change, # and we need to work out the delta (or use that # given) if delta_ids is not None: # If there is a delta we know that we've # only added or replaced state, never # removed keys entirely. state_delta_for_room[room_id] = ([], delta_ids) elif current_state is not None: with Measure( self._clock, "persist_events.calculate_state_delta" ): delta = yield self._calculate_state_delta( room_id, current_state ) state_delta_for_room[room_id] = delta # If we have the current_state then lets prefill # the cache with it. if current_state is not None: current_state_for_room[room_id] = current_state yield self.runInteraction( "persist_events", self._persist_events_txn, events_and_contexts=chunk, backfilled=backfilled, delete_existing=delete_existing, state_delta_for_room=state_delta_for_room, new_forward_extremeties=new_forward_extremeties, ) persist_event_counter.inc(len(chunk)) if not backfilled: # backfilled events have negative stream orderings, so we don't # want to set the event_persisted_position to that. synapse.metrics.event_persisted_position.set( chunk[-1][0].internal_metadata.stream_ordering ) for event, context in chunk: if context.app_service: origin_type = "local" origin_entity = context.app_service.id elif self.hs.is_mine_id(event.sender): origin_type = "local" origin_entity = "*client*" else: origin_type = "remote" origin_entity = get_domain_from_id(event.sender) event_counter.labels(event.type, origin_type, origin_entity).inc() for room_id, new_state in iteritems(current_state_for_room): self.get_current_state_ids.prefill((room_id,), new_state) for room_id, latest_event_ids in iteritems(new_forward_extremeties): self.get_latest_event_ids_in_room.prefill( (room_id,), list(latest_event_ids) ) @defer.inlineCallbacks def _calculate_new_extremities(self, room_id, event_contexts, latest_event_ids): """Calculates the new forward extremities for a room given events to persist. Assumes that we are only persisting events for one room at a time. """ # we're only interested in new events which aren't outliers and which aren't # being rejected. new_events = [ event for event, ctx in event_contexts if not event.internal_metadata.is_outlier() and not ctx.rejected and not event.internal_metadata.is_soft_failed() ] latest_event_ids = set(latest_event_ids) # start with the existing forward extremities result = set(latest_event_ids) # add all the new events to the list result.update(event.event_id for event in new_events) # Now remove all events which are prev_events of any of the new events result.difference_update( e_id for event in new_events for e_id in event.prev_event_ids() ) # Remove any events which are prev_events of any existing events. existing_prevs = yield self._get_events_which_are_prevs(result) result.difference_update(existing_prevs) # Finally handle the case where the new events have soft-failed prev # events. If they do we need to remove them and their prev events, # otherwise we end up with dangling extremities. existing_prevs = yield self._get_prevs_before_rejected( e_id for event in new_events for e_id in event.prev_event_ids() ) result.difference_update(existing_prevs) # We only update metrics for events that change forward extremities # (e.g. we ignore backfill/outliers/etc) if result != latest_event_ids: forward_extremities_counter.observe(len(result)) stale = latest_event_ids & result stale_forward_extremities_counter.observe(len(stale)) defer.returnValue(result) @defer.inlineCallbacks def _get_events_which_are_prevs(self, event_ids): """Filter the supplied list of event_ids to get those which are prev_events of existing (non-outlier/rejected) events. Args: event_ids (Iterable[str]): event ids to filter Returns: Deferred[List[str]]: filtered event ids """ results = [] def _get_events_which_are_prevs_txn(txn, batch): sql = """ SELECT prev_event_id, internal_metadata FROM event_edges INNER JOIN events USING (event_id) LEFT JOIN rejections USING (event_id) LEFT JOIN event_json USING (event_id) WHERE prev_event_id IN (%s) AND NOT events.outlier AND rejections.event_id IS NULL """ % ( ",".join("?" for _ in batch), ) txn.execute(sql, batch) results.extend(r[0] for r in txn if not json.loads(r[1]).get("soft_failed")) for chunk in batch_iter(event_ids, 100): yield self.runInteraction( "_get_events_which_are_prevs", _get_events_which_are_prevs_txn, chunk ) defer.returnValue(results) @defer.inlineCallbacks def _get_prevs_before_rejected(self, event_ids): """Get soft-failed ancestors to remove from the extremities. Given a set of events, find all those that have been soft-failed or rejected. Returns those soft failed/rejected events and their prev events (whether soft-failed/rejected or not), and recurses up the prev-event graph until it finds no more soft-failed/rejected events. This is used to find extremities that are ancestors of new events, but are separated by soft failed events. Args: event_ids (Iterable[str]): Events to find prev events for. Note that these must have already been persisted. Returns: Deferred[set[str]] """ # The set of event_ids to return. This includes all soft-failed events # and their prev events. existing_prevs = set() def _get_prevs_before_rejected_txn(txn, batch): to_recursively_check = batch while to_recursively_check: sql = """ SELECT event_id, prev_event_id, internal_metadata, rejections.event_id IS NOT NULL FROM event_edges INNER JOIN events USING (event_id) LEFT JOIN rejections USING (event_id) LEFT JOIN event_json USING (event_id) WHERE event_id IN (%s) AND NOT events.outlier """ % ( ",".join("?" for _ in to_recursively_check), ) txn.execute(sql, to_recursively_check) to_recursively_check = [] for event_id, prev_event_id, metadata, rejected in txn: if prev_event_id in existing_prevs: continue soft_failed = json.loads(metadata).get("soft_failed") if soft_failed or rejected: to_recursively_check.append(prev_event_id) existing_prevs.add(prev_event_id) for chunk in batch_iter(event_ids, 100): yield self.runInteraction( "_get_prevs_before_rejected", _get_prevs_before_rejected_txn, chunk ) defer.returnValue(existing_prevs) @defer.inlineCallbacks def _get_new_state_after_events( self, room_id, events_context, old_latest_event_ids, new_latest_event_ids ): """Calculate the current state dict after adding some new events to a room Args: room_id (str): room to which the events are being added. Used for logging etc events_context (list[(EventBase, EventContext)]): events and contexts which are being added to the room old_latest_event_ids (iterable[str]): the old forward extremities for the room. new_latest_event_ids (iterable[str]): the new forward extremities for the room. Returns: Deferred[tuple[dict[(str,str), str]|None, dict[(str,str), str]|None]]: Returns a tuple of two state maps, the first being the full new current state and the second being the delta to the existing current state. If both are None then there has been no change. If there has been a change then we only return the delta if its already been calculated. Conversely if we do know the delta then the new current state is only returned if we've already calculated it. """ # map from state_group to ((type, key) -> event_id) state map state_groups_map = {} # Map from (prev state group, new state group) -> delta state dict state_group_deltas = {} for ev, ctx in events_context: if ctx.state_group is None: # This should only happen for outlier events. if not ev.internal_metadata.is_outlier(): raise Exception( "Context for new event %s has no state " "group" % (ev.event_id,) ) continue if ctx.state_group in state_groups_map: continue # We're only interested in pulling out state that has already # been cached in the context. We'll pull stuff out of the DB later # if necessary. current_state_ids = ctx.get_cached_current_state_ids() if current_state_ids is not None: state_groups_map[ctx.state_group] = current_state_ids if ctx.prev_group: state_group_deltas[(ctx.prev_group, ctx.state_group)] = ctx.delta_ids # We need to map the event_ids to their state groups. First, let's # check if the event is one we're persisting, in which case we can # pull the state group from its context. # Otherwise we need to pull the state group from the database. # Set of events we need to fetch groups for. (We know none of the old # extremities are going to be in events_context). missing_event_ids = set(old_latest_event_ids) event_id_to_state_group = {} for event_id in new_latest_event_ids: # First search in the list of new events we're adding. for ev, ctx in events_context: if event_id == ev.event_id and ctx.state_group is not None: event_id_to_state_group[event_id] = ctx.state_group break else: # If we couldn't find it, then we'll need to pull # the state from the database missing_event_ids.add(event_id) if missing_event_ids: # Now pull out the state groups for any missing events from DB event_to_groups = yield self._get_state_group_for_events(missing_event_ids) event_id_to_state_group.update(event_to_groups) # State groups of old_latest_event_ids old_state_groups = set( event_id_to_state_group[evid] for evid in old_latest_event_ids ) # State groups of new_latest_event_ids new_state_groups = set( event_id_to_state_group[evid] for evid in new_latest_event_ids ) # If they old and new groups are the same then we don't need to do # anything. if old_state_groups == new_state_groups: defer.returnValue((None, None)) if len(new_state_groups) == 1 and len(old_state_groups) == 1: # If we're going from one state group to another, lets check if # we have a delta for that transition. If we do then we can just # return that. new_state_group = next(iter(new_state_groups)) old_state_group = next(iter(old_state_groups)) delta_ids = state_group_deltas.get((old_state_group, new_state_group), None) if delta_ids is not None: # We have a delta from the existing to new current state, # so lets just return that. If we happen to already have # the current state in memory then lets also return that, # but it doesn't matter if we don't. new_state = state_groups_map.get(new_state_group) defer.returnValue((new_state, delta_ids)) # Now that we have calculated new_state_groups we need to get # their state IDs so we can resolve to a single state set. missing_state = new_state_groups - set(state_groups_map) if missing_state: group_to_state = yield self._get_state_for_groups(missing_state) state_groups_map.update(group_to_state) if len(new_state_groups) == 1: # If there is only one state group, then we know what the current # state is. defer.returnValue((state_groups_map[new_state_groups.pop()], None)) # Ok, we need to defer to the state handler to resolve our state sets. state_groups = {sg: state_groups_map[sg] for sg in new_state_groups} events_map = {ev.event_id: ev for ev, _ in events_context} # We need to get the room version, which is in the create event. # Normally that'd be in the database, but its also possible that we're # currently trying to persist it. room_version = None for ev, _ in events_context: if ev.type == EventTypes.Create and ev.state_key == "": room_version = ev.content.get("room_version", "1") break if not room_version: room_version = yield self.get_room_version(room_id) logger.debug("calling resolve_state_groups from preserve_events") res = yield self._state_resolution_handler.resolve_state_groups( room_id, room_version, state_groups, events_map, state_res_store=StateResolutionStore(self), ) defer.returnValue((res.state, None)) @defer.inlineCallbacks def _calculate_state_delta(self, room_id, current_state): """Calculate the new state deltas for a room. Assumes that we are only persisting events for one room at a time. Returns: tuple[list, dict] (to_delete, to_insert): where to_delete are the type/state_keys to remove from current_state_events and `to_insert` are the updates to current_state_events. """ existing_state = yield self.get_current_state_ids(room_id) to_delete = [key for key in existing_state if key not in current_state] to_insert = { key: ev_id for key, ev_id in iteritems(current_state) if ev_id != existing_state.get(key) } defer.returnValue((to_delete, to_insert)) @log_function def _persist_events_txn( self, txn, events_and_contexts, backfilled, delete_existing=False, state_delta_for_room={}, new_forward_extremeties={}, ): """Insert some number of room events into the necessary database tables. Rejected events are only inserted into the events table, the events_json table, and the rejections table. Things reading from those table will need to check whether the event was rejected. Args: txn (twisted.enterprise.adbapi.Connection): db connection events_and_contexts (list[(EventBase, EventContext)]): events to persist backfilled (bool): True if the events were backfilled delete_existing (bool): True to purge existing table rows for the events from the database. This is useful when retrying due to IntegrityError. state_delta_for_room (dict[str, (list, dict)]): The current-state delta for each room. For each room, a tuple (to_delete, to_insert), being a list of type/state keys to be removed from the current state, and a state set to be added to the current state. new_forward_extremeties (dict[str, list[str]]): The new forward extremities for each room. For each room, a list of the event ids which are the forward extremities. """ all_events_and_contexts = events_and_contexts min_stream_order = events_and_contexts[0][0].internal_metadata.stream_ordering max_stream_order = events_and_contexts[-1][0].internal_metadata.stream_ordering self._update_current_state_txn(txn, state_delta_for_room, min_stream_order) self._update_forward_extremities_txn( txn, new_forward_extremities=new_forward_extremeties, max_stream_order=max_stream_order, ) # Ensure that we don't have the same event twice. events_and_contexts = self._filter_events_and_contexts_for_duplicates( events_and_contexts ) self._update_room_depths_txn( txn, events_and_contexts=events_and_contexts, backfilled=backfilled ) # _update_outliers_txn filters out any events which have already been # persisted, and returns the filtered list. events_and_contexts = self._update_outliers_txn( txn, events_and_contexts=events_and_contexts ) # From this point onwards the events are only events that we haven't # seen before. if delete_existing: # For paranoia reasons, we go and delete all the existing entries # for these events so we can reinsert them. # This gets around any problems with some tables already having # entries. self._delete_existing_rows_txn(txn, events_and_contexts=events_and_contexts) self._store_event_txn(txn, events_and_contexts=events_and_contexts) # Insert into event_to_state_groups. self._store_event_state_mappings_txn(txn, events_and_contexts) # We want to store event_auth mappings for rejected events, as they're # used in state res v2. # This is only necessary if the rejected event appears in an accepted # event's auth chain, but its easier for now just to store them (and # it doesn't take much storage compared to storing the entire event # anyway). self._simple_insert_many_txn( txn, table="event_auth", values=[ { "event_id": event.event_id, "room_id": event.room_id, "auth_id": auth_id, } for event, _ in events_and_contexts for auth_id in event.auth_event_ids() if event.is_state() ], ) # _store_rejected_events_txn filters out any events which were # rejected, and returns the filtered list. events_and_contexts = self._store_rejected_events_txn( txn, events_and_contexts=events_and_contexts ) # From this point onwards the events are only ones that weren't # rejected. self._update_metadata_tables_txn( txn, events_and_contexts=events_and_contexts, all_events_and_contexts=all_events_and_contexts, backfilled=backfilled, ) def _update_current_state_txn(self, txn, state_delta_by_room, stream_id): for room_id, current_state_tuple in iteritems(state_delta_by_room): to_delete, to_insert = current_state_tuple # First we add entries to the current_state_delta_stream. We # do this before updating the current_state_events table so # that we can use it to calculate the `prev_event_id`. (This # allows us to not have to pull out the existing state # unnecessarily). # # The stream_id for the update is chosen to be the minimum of the stream_ids # for the batch of the events that we are persisting; that means we do not # end up in a situation where workers see events before the # current_state_delta updates. # sql = """ INSERT INTO current_state_delta_stream (stream_id, room_id, type, state_key, event_id, prev_event_id) SELECT ?, ?, ?, ?, ?, ( SELECT event_id FROM current_state_events WHERE room_id = ? AND type = ? AND state_key = ? ) """ txn.executemany( sql, ( ( stream_id, room_id, etype, state_key, None, room_id, etype, state_key, ) for etype, state_key in to_delete # We sanity check that we're deleting rather than updating if (etype, state_key) not in to_insert ), ) txn.executemany( sql, ( ( stream_id, room_id, etype, state_key, ev_id, room_id, etype, state_key, ) for (etype, state_key), ev_id in iteritems(to_insert) ), ) # Now we actually update the current_state_events table txn.executemany( "DELETE FROM current_state_events" " WHERE room_id = ? AND type = ? AND state_key = ?", ( (room_id, etype, state_key) for etype, state_key in itertools.chain(to_delete, to_insert) ), ) self._simple_insert_many_txn( txn, table="current_state_events", values=[ { "event_id": ev_id, "room_id": room_id, "type": key[0], "state_key": key[1], } for key, ev_id in iteritems(to_insert) ], ) txn.call_after( self._curr_state_delta_stream_cache.entity_has_changed, room_id, stream_id, ) # Invalidate the various caches # Figure out the changes of membership to invalidate the # `get_rooms_for_user` cache. # We find out which membership events we may have deleted # and which we have added, then we invlidate the caches for all # those users. members_changed = set( state_key for ev_type, state_key in itertools.chain(to_delete, to_insert) if ev_type == EventTypes.Member ) for member in members_changed: txn.call_after( self.get_rooms_for_user_with_stream_ordering.invalidate, (member,) ) self._invalidate_state_caches_and_stream(txn, room_id, members_changed) def _update_forward_extremities_txn( self, txn, new_forward_extremities, max_stream_order ): for room_id, new_extrem in iteritems(new_forward_extremities): self._simple_delete_txn( txn, table="event_forward_extremities", keyvalues={"room_id": room_id} ) txn.call_after(self.get_latest_event_ids_in_room.invalidate, (room_id,)) self._simple_insert_many_txn( txn, table="event_forward_extremities", values=[ {"event_id": ev_id, "room_id": room_id} for room_id, new_extrem in iteritems(new_forward_extremities) for ev_id in new_extrem ], ) # We now insert into stream_ordering_to_exterm a mapping from room_id, # new stream_ordering to new forward extremeties in the room. # This allows us to later efficiently look up the forward extremeties # for a room before a given stream_ordering self._simple_insert_many_txn( txn, table="stream_ordering_to_exterm", values=[ { "room_id": room_id, "event_id": event_id, "stream_ordering": max_stream_order, } for room_id, new_extrem in iteritems(new_forward_extremities) for event_id in new_extrem ], ) @classmethod def _filter_events_and_contexts_for_duplicates(cls, events_and_contexts): """Ensure that we don't have the same event twice. Pick the earliest non-outlier if there is one, else the earliest one. Args: events_and_contexts (list[(EventBase, EventContext)]): Returns: list[(EventBase, EventContext)]: filtered list """ new_events_and_contexts = OrderedDict() for event, context in events_and_contexts: prev_event_context = new_events_and_contexts.get(event.event_id) if prev_event_context: if not event.internal_metadata.is_outlier(): if prev_event_context[0].internal_metadata.is_outlier(): # To ensure correct ordering we pop, as OrderedDict is # ordered by first insertion. new_events_and_contexts.pop(event.event_id, None) new_events_and_contexts[event.event_id] = (event, context) else: new_events_and_contexts[event.event_id] = (event, context) return list(new_events_and_contexts.values()) def _update_room_depths_txn(self, txn, events_and_contexts, backfilled): """Update min_depth for each room Args: txn (twisted.enterprise.adbapi.Connection): db connection events_and_contexts (list[(EventBase, EventContext)]): events we are persisting backfilled (bool): True if the events were backfilled """ depth_updates = {} for event, context in events_and_contexts: # Remove the any existing cache entries for the event_ids txn.call_after(self._invalidate_get_event_cache, event.event_id) if not backfilled: txn.call_after( self._events_stream_cache.entity_has_changed, event.room_id, event.internal_metadata.stream_ordering, ) if not event.internal_metadata.is_outlier() and not context.rejected: depth_updates[event.room_id] = max( event.depth, depth_updates.get(event.room_id, event.depth) ) for room_id, depth in iteritems(depth_updates): self._update_min_depth_for_room_txn(txn, room_id, depth) def _update_outliers_txn(self, txn, events_and_contexts): """Update any outliers with new event info. This turns outliers into ex-outliers (unless the new event was rejected). Args: txn (twisted.enterprise.adbapi.Connection): db connection events_and_contexts (list[(EventBase, EventContext)]): events we are persisting Returns: list[(EventBase, EventContext)] new list, without events which are already in the events table. """ txn.execute( "SELECT event_id, outlier FROM events WHERE event_id in (%s)" % (",".join(["?"] * len(events_and_contexts)),), [event.event_id for event, _ in events_and_contexts], ) have_persisted = {event_id: outlier for event_id, outlier in txn} to_remove = set() for event, context in events_and_contexts: if event.event_id not in have_persisted: continue to_remove.add(event) if context.rejected: # If the event is rejected then we don't care if the event # was an outlier or not. continue outlier_persisted = have_persisted[event.event_id] if not event.internal_metadata.is_outlier() and outlier_persisted: # We received a copy of an event that we had already stored as # an outlier in the database. We now have some state at that # so we need to update the state_groups table with that state. # insert into event_to_state_groups. try: self._store_event_state_mappings_txn(txn, ((event, context),)) except Exception: logger.exception("") raise metadata_json = encode_json(event.internal_metadata.get_dict()) sql = ( "UPDATE event_json SET internal_metadata = ?" " WHERE event_id = ?" ) txn.execute(sql, (metadata_json, event.event_id)) # Add an entry to the ex_outlier_stream table to replicate the # change in outlier status to our workers. stream_order = event.internal_metadata.stream_ordering state_group_id = context.state_group self._simple_insert_txn( txn, table="ex_outlier_stream", values={ "event_stream_ordering": stream_order, "event_id": event.event_id, "state_group": state_group_id, }, ) sql = "UPDATE events SET outlier = ?" " WHERE event_id = ?" txn.execute(sql, (False, event.event_id)) # Update the event_backward_extremities table now that this # event isn't an outlier any more. self._update_backward_extremeties(txn, [event]) return [ec for ec in events_and_contexts if ec[0] not in to_remove] @classmethod def _delete_existing_rows_txn(cls, txn, events_and_contexts): if not events_and_contexts: # nothing to do here return logger.info("Deleting existing") for table in ( "events", "event_auth", "event_json", "event_edges", "event_forward_extremities", "event_reference_hashes", "event_search", "event_to_state_groups", "guest_access", "history_visibility", "local_invites", "room_names", "state_events", "rejections", "redactions", "room_memberships", "topics", ): txn.executemany( "DELETE FROM %s WHERE event_id = ?" % (table,), [(ev.event_id,) for ev, _ in events_and_contexts], ) for table in ("event_push_actions",): txn.executemany( "DELETE FROM %s WHERE room_id = ? AND event_id = ?" % (table,), [(ev.room_id, ev.event_id) for ev, _ in events_and_contexts], ) def _store_event_txn(self, txn, events_and_contexts): """Insert new events into the event and event_json tables Args: txn (twisted.enterprise.adbapi.Connection): db connection events_and_contexts (list[(EventBase, EventContext)]): events we are persisting """ if not events_and_contexts: # nothing to do here return def event_dict(event): d = event.get_dict() d.pop("redacted", None) d.pop("redacted_because", None) return d self._simple_insert_many_txn( txn, table="event_json", values=[ { "event_id": event.event_id, "room_id": event.room_id, "internal_metadata": encode_json( event.internal_metadata.get_dict() ), "json": encode_json(event_dict(event)), "format_version": event.format_version, } for event, _ in events_and_contexts ], ) self._simple_insert_many_txn( txn, table="events", values=[ { "stream_ordering": event.internal_metadata.stream_ordering, "topological_ordering": event.depth, "depth": event.depth, "event_id": event.event_id, "room_id": event.room_id, "type": event.type, "processed": True, "outlier": event.internal_metadata.is_outlier(), "origin_server_ts": int(event.origin_server_ts), "received_ts": self._clock.time_msec(), "sender": event.sender, "contains_url": ( "url" in event.content and isinstance(event.content["url"], text_type) ), } for event, _ in events_and_contexts ], ) def _store_rejected_events_txn(self, txn, events_and_contexts): """Add rows to the 'rejections' table for received events which were rejected Args: txn (twisted.enterprise.adbapi.Connection): db connection events_and_contexts (list[(EventBase, EventContext)]): events we are persisting Returns: list[(EventBase, EventContext)] new list, without the rejected events. """ # Remove the rejected events from the list now that we've added them # to the events table and the events_json table. to_remove = set() for event, context in events_and_contexts: if context.rejected: # Insert the event_id into the rejections table self._store_rejections_txn(txn, event.event_id, context.rejected) to_remove.add(event) return [ec for ec in events_and_contexts if ec[0] not in to_remove] def _update_metadata_tables_txn( self, txn, events_and_contexts, all_events_and_contexts, backfilled ): """Update all the miscellaneous tables for new events Args: txn (twisted.enterprise.adbapi.Connection): db connection events_and_contexts (list[(EventBase, EventContext)]): events we are persisting all_events_and_contexts (list[(EventBase, EventContext)]): all events that we were going to persist. This includes events we've already persisted, etc, that wouldn't appear in events_and_context. backfilled (bool): True if the events were backfilled """ # Insert all the push actions into the event_push_actions table. self._set_push_actions_for_event_and_users_txn( txn, events_and_contexts=events_and_contexts, all_events_and_contexts=all_events_and_contexts, ) if not events_and_contexts: # nothing to do here return for event, context in events_and_contexts: if event.type == EventTypes.Redaction and event.redacts is not None: # Remove the entries in the event_push_actions table for the # redacted event. self._remove_push_actions_for_event_id_txn( txn, event.room_id, event.redacts ) # Remove from relations table. self._handle_redaction(txn, event.redacts) # Update the event_forward_extremities, event_backward_extremities and # event_edges tables. self._handle_mult_prev_events( txn, events=[event for event, _ in events_and_contexts] ) for event, _ in events_and_contexts: if event.type == EventTypes.Name: # Insert into the room_names and event_search tables. self._store_room_name_txn(txn, event) elif event.type == EventTypes.Topic: # Insert into the topics table and event_search table. self._store_room_topic_txn(txn, event) elif event.type == EventTypes.Message: # Insert into the event_search table. self._store_room_message_txn(txn, event) elif event.type == EventTypes.Redaction: # Insert into the redactions table. self._store_redaction(txn, event) elif event.type == EventTypes.RoomHistoryVisibility: # Insert into the event_search table. self._store_history_visibility_txn(txn, event) elif event.type == EventTypes.GuestAccess: # Insert into the event_search table. self._store_guest_access_txn(txn, event) self._handle_event_relations(txn, event) # Insert into the room_memberships table. self._store_room_members_txn( txn, [ event for event, _ in events_and_contexts if event.type == EventTypes.Member ], backfilled=backfilled, ) # Insert event_reference_hashes table. self._store_event_reference_hashes_txn( txn, [event for event, _ in events_and_contexts] ) state_events_and_contexts = [ ec for ec in events_and_contexts if ec[0].is_state() ] state_values = [] for event, context in state_events_and_contexts: vals = { "event_id": event.event_id, "room_id": event.room_id, "type": event.type, "state_key": event.state_key, } # TODO: How does this work with backfilling? if hasattr(event, "replaces_state"): vals["prev_state"] = event.replaces_state state_values.append(vals) self._simple_insert_many_txn(txn, table="state_events", values=state_values) # Prefill the event cache self._add_to_cache(txn, events_and_contexts) def _add_to_cache(self, txn, events_and_contexts): to_prefill = [] rows = [] N = 200 for i in range(0, len(events_and_contexts), N): ev_map = {e[0].event_id: e[0] for e in events_and_contexts[i : i + N]} if not ev_map: break sql = ( "SELECT " " e.event_id as event_id, " " r.redacts as redacts," " rej.event_id as rejects " " FROM events as e" " LEFT JOIN rejections as rej USING (event_id)" " LEFT JOIN redactions as r ON e.event_id = r.redacts" " WHERE e.event_id IN (%s)" ) % (",".join(["?"] * len(ev_map)),) txn.execute(sql, list(ev_map)) rows = self.cursor_to_dict(txn) for row in rows: event = ev_map[row["event_id"]] if not row["rejects"] and not row["redacts"]: to_prefill.append( _EventCacheEntry(event=event, redacted_event=None) ) def prefill(): for cache_entry in to_prefill: self._get_event_cache.prefill((cache_entry[0].event_id,), cache_entry) txn.call_after(prefill) def _store_redaction(self, txn, event): # invalidate the cache for the redacted event txn.call_after(self._invalidate_get_event_cache, event.redacts) txn.execute( "INSERT INTO redactions (event_id, redacts) VALUES (?,?)", (event.event_id, event.redacts), ) @defer.inlineCallbacks def count_daily_messages(self): """ Returns an estimate of the number of messages sent in the last day. If it has been significantly less or more than one day since the last call to this function, it will return None. """ def _count_messages(txn): sql = """ SELECT COALESCE(COUNT(*), 0) FROM events WHERE type = 'm.room.message' AND stream_ordering > ? """ txn.execute(sql, (self.stream_ordering_day_ago,)) count, = txn.fetchone() return count ret = yield self.runInteraction("count_messages", _count_messages) defer.returnValue(ret) @defer.inlineCallbacks def count_daily_sent_messages(self): def _count_messages(txn): # This is good enough as if you have silly characters in your own # hostname then thats your own fault. like_clause = "%:" + self.hs.hostname sql = """ SELECT COALESCE(COUNT(*), 0) FROM events WHERE type = 'm.room.message' AND sender LIKE ? AND stream_ordering > ? """ txn.execute(sql, (like_clause, self.stream_ordering_day_ago)) count, = txn.fetchone() return count ret = yield self.runInteraction("count_daily_sent_messages", _count_messages) defer.returnValue(ret) @defer.inlineCallbacks def count_daily_active_rooms(self): def _count(txn): sql = """ SELECT COALESCE(COUNT(DISTINCT room_id), 0) FROM events WHERE type = 'm.room.message' AND stream_ordering > ? """ txn.execute(sql, (self.stream_ordering_day_ago,)) count, = txn.fetchone() return count ret = yield self.runInteraction("count_daily_active_rooms", _count) defer.returnValue(ret) def get_current_backfill_token(self): """The current minimum token that backfilled events have reached""" return -self._backfill_id_gen.get_current_token() def get_current_events_token(self): """The current maximum token that events have reached""" return self._stream_id_gen.get_current_token() def get_all_new_forward_event_rows(self, last_id, current_id, limit): if last_id == current_id: return defer.succeed([]) def get_all_new_forward_event_rows(txn): sql = ( "SELECT e.stream_ordering, e.event_id, e.room_id, e.type," " state_key, redacts, relates_to_id" " FROM events AS e" " LEFT JOIN redactions USING (event_id)" " LEFT JOIN state_events USING (event_id)" " LEFT JOIN event_relations USING (event_id)" " WHERE ? < stream_ordering AND stream_ordering <= ?" " ORDER BY stream_ordering ASC" " LIMIT ?" ) txn.execute(sql, (last_id, current_id, limit)) new_event_updates = txn.fetchall() if len(new_event_updates) == limit: upper_bound = new_event_updates[-1][0] else: upper_bound = current_id sql = ( "SELECT event_stream_ordering, e.event_id, e.room_id, e.type," " state_key, redacts, relates_to_id" " FROM events AS e" " INNER JOIN ex_outlier_stream USING (event_id)" " LEFT JOIN redactions USING (event_id)" " LEFT JOIN state_events USING (event_id)" " LEFT JOIN event_relations USING (event_id)" " WHERE ? < event_stream_ordering" " AND event_stream_ordering <= ?" " ORDER BY event_stream_ordering DESC" ) txn.execute(sql, (last_id, upper_bound)) new_event_updates.extend(txn) return new_event_updates return self.runInteraction( "get_all_new_forward_event_rows", get_all_new_forward_event_rows ) def get_all_new_backfill_event_rows(self, last_id, current_id, limit): if last_id == current_id: return defer.succeed([]) def get_all_new_backfill_event_rows(txn): sql = ( "SELECT -e.stream_ordering, e.event_id, e.room_id, e.type," " state_key, redacts, relates_to_id" " FROM events AS e" " LEFT JOIN redactions USING (event_id)" " LEFT JOIN state_events USING (event_id)" " LEFT JOIN event_relations USING (event_id)" " WHERE ? > stream_ordering AND stream_ordering >= ?" " ORDER BY stream_ordering ASC" " LIMIT ?" ) txn.execute(sql, (-last_id, -current_id, limit)) new_event_updates = txn.fetchall() if len(new_event_updates) == limit: upper_bound = new_event_updates[-1][0] else: upper_bound = current_id sql = ( "SELECT -event_stream_ordering, e.event_id, e.room_id, e.type," " state_key, redacts, relates_to_id" " FROM events AS e" " INNER JOIN ex_outlier_stream USING (event_id)" " LEFT JOIN redactions USING (event_id)" " LEFT JOIN state_events USING (event_id)" " LEFT JOIN event_relations USING (event_id)" " WHERE ? > event_stream_ordering" " AND event_stream_ordering >= ?" " ORDER BY event_stream_ordering DESC" ) txn.execute(sql, (-last_id, -upper_bound)) new_event_updates.extend(txn.fetchall()) return new_event_updates return self.runInteraction( "get_all_new_backfill_event_rows", get_all_new_backfill_event_rows ) @cached(num_args=5, max_entries=10) def get_all_new_events( self, last_backfill_id, last_forward_id, current_backfill_id, current_forward_id, limit, ): """Get all the new events that have arrived at the server either as new events or as backfilled events""" have_backfill_events = last_backfill_id != current_backfill_id have_forward_events = last_forward_id != current_forward_id if not have_backfill_events and not have_forward_events: return defer.succeed(AllNewEventsResult([], [], [], [], [])) def get_all_new_events_txn(txn): sql = ( "SELECT e.stream_ordering, e.event_id, e.room_id, e.type," " state_key, redacts" " FROM events AS e" " LEFT JOIN redactions USING (event_id)" " LEFT JOIN state_events USING (event_id)" " WHERE ? < stream_ordering AND stream_ordering <= ?" " ORDER BY stream_ordering ASC" " LIMIT ?" ) if have_forward_events: txn.execute(sql, (last_forward_id, current_forward_id, limit)) new_forward_events = txn.fetchall() if len(new_forward_events) == limit: upper_bound = new_forward_events[-1][0] else: upper_bound = current_forward_id sql = ( "SELECT event_stream_ordering, event_id, state_group" " FROM ex_outlier_stream" " WHERE ? > event_stream_ordering" " AND event_stream_ordering >= ?" " ORDER BY event_stream_ordering DESC" ) txn.execute(sql, (last_forward_id, upper_bound)) forward_ex_outliers = txn.fetchall() else: new_forward_events = [] forward_ex_outliers = [] sql = ( "SELECT -e.stream_ordering, e.event_id, e.room_id, e.type," " state_key, redacts" " FROM events AS e" " LEFT JOIN redactions USING (event_id)" " LEFT JOIN state_events USING (event_id)" " WHERE ? > stream_ordering AND stream_ordering >= ?" " ORDER BY stream_ordering DESC" " LIMIT ?" ) if have_backfill_events: txn.execute(sql, (-last_backfill_id, -current_backfill_id, limit)) new_backfill_events = txn.fetchall() if len(new_backfill_events) == limit: upper_bound = new_backfill_events[-1][0] else: upper_bound = current_backfill_id sql = ( "SELECT -event_stream_ordering, event_id, state_group" " FROM ex_outlier_stream" " WHERE ? > event_stream_ordering" " AND event_stream_ordering >= ?" " ORDER BY event_stream_ordering DESC" ) txn.execute(sql, (-last_backfill_id, -upper_bound)) backward_ex_outliers = txn.fetchall() else: new_backfill_events = [] backward_ex_outliers = [] return AllNewEventsResult( new_forward_events, new_backfill_events, forward_ex_outliers, backward_ex_outliers, ) return self.runInteraction("get_all_new_events", get_all_new_events_txn) def purge_history(self, room_id, token, delete_local_events): """Deletes room history before a certain point Args: room_id (str): token (str): A topological token to delete events before delete_local_events (bool): if True, we will delete local events as well as remote ones (instead of just marking them as outliers and deleting their state groups). """ return self.runInteraction( "purge_history", self._purge_history_txn, room_id, token, delete_local_events, ) def _purge_history_txn(self, txn, room_id, token_str, delete_local_events): token = RoomStreamToken.parse(token_str) # Tables that should be pruned: # event_auth # event_backward_extremities # event_edges # event_forward_extremities # event_json # event_push_actions # event_reference_hashes # event_search # event_to_state_groups # events # rejections # room_depth # state_groups # state_groups_state # we will build a temporary table listing the events so that we don't # have to keep shovelling the list back and forth across the # connection. Annoyingly the python sqlite driver commits the # transaction on CREATE, so let's do this first. # # furthermore, we might already have the table from a previous (failed) # purge attempt, so let's drop the table first. txn.execute("DROP TABLE IF EXISTS events_to_purge") txn.execute( "CREATE TEMPORARY TABLE events_to_purge (" " event_id TEXT NOT NULL," " should_delete BOOLEAN NOT NULL" ")" ) # First ensure that we're not about to delete all the forward extremeties txn.execute( "SELECT e.event_id, e.depth FROM events as e " "INNER JOIN event_forward_extremities as f " "ON e.event_id = f.event_id " "AND e.room_id = f.room_id " "WHERE f.room_id = ?", (room_id,), ) rows = txn.fetchall() max_depth = max(row[1] for row in rows) if max_depth < token.topological: # We need to ensure we don't delete all the events from the database # otherwise we wouldn't be able to send any events (due to not # having any backwards extremeties) raise SynapseError( 400, "topological_ordering is greater than forward extremeties" ) logger.info("[purge] looking for events to delete") should_delete_expr = "state_key IS NULL" should_delete_params = () if not delete_local_events: should_delete_expr += " AND event_id NOT LIKE ?" # We include the parameter twice since we use the expression twice should_delete_params += ("%:" + self.hs.hostname, "%:" + self.hs.hostname) should_delete_params += (room_id, token.topological) # Note that we insert events that are outliers and aren't going to be # deleted, as nothing will happen to them. txn.execute( "INSERT INTO events_to_purge" " SELECT event_id, %s" " FROM events AS e LEFT JOIN state_events USING (event_id)" " WHERE (NOT outlier OR (%s)) AND e.room_id = ? AND topological_ordering < ?" % (should_delete_expr, should_delete_expr), should_delete_params, ) # We create the indices *after* insertion as that's a lot faster. # create an index on should_delete because later we'll be looking for # the should_delete / shouldn't_delete subsets txn.execute( "CREATE INDEX events_to_purge_should_delete" " ON events_to_purge(should_delete)" ) # We do joins against events_to_purge for e.g. calculating state # groups to purge, etc., so lets make an index. txn.execute("CREATE INDEX events_to_purge_id" " ON events_to_purge(event_id)") txn.execute("SELECT event_id, should_delete FROM events_to_purge") event_rows = txn.fetchall() logger.info( "[purge] found %i events before cutoff, of which %i can be deleted", len(event_rows), sum(1 for e in event_rows if e[1]), ) logger.info("[purge] Finding new backward extremities") # We calculate the new entries for the backward extremeties by finding # events to be purged that are pointed to by events we're not going to # purge. txn.execute( "SELECT DISTINCT e.event_id FROM events_to_purge AS e" " INNER JOIN event_edges AS ed ON e.event_id = ed.prev_event_id" " LEFT JOIN events_to_purge AS ep2 ON ed.event_id = ep2.event_id" " WHERE ep2.event_id IS NULL" ) new_backwards_extrems = txn.fetchall() logger.info("[purge] replacing backward extremities: %r", new_backwards_extrems) txn.execute( "DELETE FROM event_backward_extremities WHERE room_id = ?", (room_id,) ) # Update backward extremeties txn.executemany( "INSERT INTO event_backward_extremities (room_id, event_id)" " VALUES (?, ?)", [(room_id, event_id) for event_id, in new_backwards_extrems], ) logger.info("[purge] finding redundant state groups") # Get all state groups that are referenced by events that are to be # deleted. We then go and check if they are referenced by other events # or state groups, and if not we delete them. txn.execute( """ SELECT DISTINCT state_group FROM events_to_purge INNER JOIN event_to_state_groups USING (event_id) """ ) referenced_state_groups = set(sg for sg, in txn) logger.info( "[purge] found %i referenced state groups", len(referenced_state_groups) ) logger.info("[purge] finding state groups that can be deleted") _ = self._find_unreferenced_groups_during_purge(txn, referenced_state_groups) state_groups_to_delete, remaining_state_groups = _ logger.info( "[purge] found %i state groups to delete", len(state_groups_to_delete) ) logger.info( "[purge] de-delta-ing %i remaining state groups", len(remaining_state_groups), ) # Now we turn the state groups that reference to-be-deleted state # groups to non delta versions. for sg in remaining_state_groups: logger.info("[purge] de-delta-ing remaining state group %s", sg) curr_state = self._get_state_groups_from_groups_txn(txn, [sg]) curr_state = curr_state[sg] self._simple_delete_txn( txn, table="state_groups_state", keyvalues={"state_group": sg} ) self._simple_delete_txn( txn, table="state_group_edges", keyvalues={"state_group": sg} ) self._simple_insert_many_txn( txn, table="state_groups_state", values=[ { "state_group": sg, "room_id": room_id, "type": key[0], "state_key": key[1], "event_id": state_id, } for key, state_id in iteritems(curr_state) ], ) logger.info("[purge] removing redundant state groups") txn.executemany( "DELETE FROM state_groups_state WHERE state_group = ?", ((sg,) for sg in state_groups_to_delete), ) txn.executemany( "DELETE FROM state_groups WHERE id = ?", ((sg,) for sg in state_groups_to_delete), ) logger.info("[purge] removing events from event_to_state_groups") txn.execute( "DELETE FROM event_to_state_groups " "WHERE event_id IN (SELECT event_id from events_to_purge)" ) for event_id, _ in event_rows: txn.call_after(self._get_state_group_for_event.invalidate, (event_id,)) # Delete all remote non-state events for table in ( "events", "event_json", "event_auth", "event_edges", "event_forward_extremities", "event_reference_hashes", "event_search", "rejections", ): logger.info("[purge] removing events from %s", table) txn.execute( "DELETE FROM %s WHERE event_id IN (" " SELECT event_id FROM events_to_purge WHERE should_delete" ")" % (table,) ) # event_push_actions lacks an index on event_id, and has one on # (room_id, event_id) instead. for table in ("event_push_actions",): logger.info("[purge] removing events from %s", table) txn.execute( "DELETE FROM %s WHERE room_id = ? AND event_id IN (" " SELECT event_id FROM events_to_purge WHERE should_delete" ")" % (table,), (room_id,), ) # Mark all state and own events as outliers logger.info("[purge] marking remaining events as outliers") txn.execute( "UPDATE events SET outlier = ?" " WHERE event_id IN (" " SELECT event_id FROM events_to_purge " " WHERE NOT should_delete" ")", (True,), ) # synapse tries to take out an exclusive lock on room_depth whenever it # persists events (because upsert), and once we run this update, we # will block that for the rest of our transaction. # # So, let's stick it at the end so that we don't block event # persistence. # # We do this by calculating the minimum depth of the backwards # extremities. However, the events in event_backward_extremities # are ones we don't have yet so we need to look at the events that # point to it via event_edges table. txn.execute( """ SELECT COALESCE(MIN(depth), 0) FROM event_backward_extremities AS eb INNER JOIN event_edges AS eg ON eg.prev_event_id = eb.event_id INNER JOIN events AS e ON e.event_id = eg.event_id WHERE eb.room_id = ? """, (room_id,), ) min_depth, = txn.fetchone() logger.info("[purge] updating room_depth to %d", min_depth) txn.execute( "UPDATE room_depth SET min_depth = ? WHERE room_id = ?", (min_depth, room_id), ) # finally, drop the temp table. this will commit the txn in sqlite, # so make sure to keep this actually last. txn.execute("DROP TABLE events_to_purge") logger.info("[purge] done") def _find_unreferenced_groups_during_purge(self, txn, state_groups): """Used when purging history to figure out which state groups can be deleted and which need to be de-delta'ed (due to one of its prev groups being scheduled for deletion). Args: txn state_groups (set[int]): Set of state groups referenced by events that are going to be deleted. Returns: tuple[set[int], set[int]]: The set of state groups that can be deleted and the set of state groups that need to be de-delta'ed """ # Graph of state group -> previous group graph = {} # Set of events that we have found to be referenced by events referenced_groups = set() # Set of state groups we've already seen state_groups_seen = set(state_groups) # Set of state groups to handle next. next_to_search = set(state_groups) while next_to_search: # We bound size of groups we're looking up at once, to stop the # SQL query getting too big if len(next_to_search) < 100: current_search = next_to_search next_to_search = set() else: current_search = set(itertools.islice(next_to_search, 100)) next_to_search -= current_search # Check if state groups are referenced sql = """ SELECT DISTINCT state_group FROM event_to_state_groups LEFT JOIN events_to_purge AS ep USING (event_id) WHERE state_group IN (%s) AND ep.event_id IS NULL """ % ( ",".join("?" for _ in current_search), ) txn.execute(sql, list(current_search)) referenced = set(sg for sg, in txn) referenced_groups |= referenced # We don't continue iterating up the state group graphs for state # groups that are referenced. current_search -= referenced rows = self._simple_select_many_txn( txn, table="state_group_edges", column="prev_state_group", iterable=current_search, keyvalues={}, retcols=("prev_state_group", "state_group"), ) prevs = set(row["state_group"] for row in rows) # We don't bother re-handling groups we've already seen prevs -= state_groups_seen next_to_search |= prevs state_groups_seen |= prevs for row in rows: # Note: Each state group can have at most one prev group graph[row["state_group"]] = row["prev_state_group"] to_delete = state_groups_seen - referenced_groups to_dedelta = set() for sg in referenced_groups: prev_sg = graph.get(sg) if prev_sg and prev_sg in to_delete: to_dedelta.add(sg) return to_delete, to_dedelta @defer.inlineCallbacks def is_event_after(self, event_id1, event_id2): """Returns True if event_id1 is after event_id2 in the stream """ to_1, so_1 = yield self._get_event_ordering(event_id1) to_2, so_2 = yield self._get_event_ordering(event_id2) defer.returnValue((to_1, so_1) > (to_2, so_2)) @cachedInlineCallbacks(max_entries=5000) def _get_event_ordering(self, event_id): res = yield self._simple_select_one( table="events", retcols=["topological_ordering", "stream_ordering"], keyvalues={"event_id": event_id}, allow_none=True, ) if not res: raise SynapseError(404, "Could not find event %s" % (event_id,)) defer.returnValue( (int(res["topological_ordering"]), int(res["stream_ordering"])) ) def get_all_updated_current_state_deltas(self, from_token, to_token, limit): def get_all_updated_current_state_deltas_txn(txn): sql = """ SELECT stream_id, room_id, type, state_key, event_id FROM current_state_delta_stream WHERE ? < stream_id AND stream_id <= ? ORDER BY stream_id ASC LIMIT ? """ txn.execute(sql, (from_token, to_token, limit)) return txn.fetchall() return self.runInteraction( "get_all_updated_current_state_deltas", get_all_updated_current_state_deltas_txn, ) AllNewEventsResult = namedtuple( "AllNewEventsResult", [ "new_forward_events", "new_backfill_events", "forward_ex_outliers", "backward_ex_outliers", ], )
[ "logging.getLogger", "itertools.chain", "synapse.util.logcontext.PreserveLoggingContext", "synapse.api.errors.SynapseError", "synapse.util.frozenutils.frozendict_json_encoder.encode", "synapse.util.metrics.Measure", "canonicaljson.json.loads", "collections.deque", "prometheus_client.Histogram", "twisted.internet.defer.returnValue", "functools.wraps", "synapse.types.get_domain_from_id", "synapse.util.caches.descriptors.cached", "prometheus_client.Counter", "synapse.util.caches.descriptors.cachedInlineCallbacks", "collections.OrderedDict", "collections.namedtuple", "twisted.internet.defer.gatherResults", "synapse.metrics.BucketCollector", "six.iteritems", "twisted.internet.defer.succeed", "itertools.islice", "synapse.types.RoomStreamToken.parse", "synapse.state.StateResolutionStore", "synapse.util.batch_iter", "collections.Counter", "synapse.util.logcontext.make_deferred_yieldable", "synapse.metrics.background_process_metrics.run_as_background_process", "twisted.internet.defer.Deferred" ]
[((2138, 2165), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2155, 2165), False, 'import logging\n'), ((2191, 2245), 'prometheus_client.Counter', 'Counter', (['"""synapse_storage_events_persisted_events"""', '""""""'], {}), "('synapse_storage_events_persisted_events', '')\n", (2198, 2245), False, 'from prometheus_client import Counter, Histogram\n'), ((2262, 2366), 'prometheus_client.Counter', 'Counter', (['"""synapse_storage_events_persisted_events_sep"""', '""""""', "['type', 'origin_type', 'origin_entity']"], {}), "('synapse_storage_events_persisted_events_sep', '', ['type',\n 'origin_type', 'origin_entity'])\n", (2269, 2366), False, 'from prometheus_client import Counter, Histogram\n'), ((2462, 2511), 'prometheus_client.Counter', 'Counter', (['"""synapse_storage_events_state_delta"""', '""""""'], {}), "('synapse_storage_events_state_delta', '')\n", (2469, 2511), False, 'from prometheus_client import Counter, Histogram\n'), ((2645, 2707), 'prometheus_client.Counter', 'Counter', (['"""synapse_storage_events_state_delta_single_event"""', '""""""'], {}), "('synapse_storage_events_state_delta_single_event', '')\n", (2652, 2707), False, 'from prometheus_client import Counter, Histogram\n'), ((2911, 2972), 'prometheus_client.Counter', 'Counter', (['"""synapse_storage_events_state_delta_reuse_delta"""', '""""""'], {}), "('synapse_storage_events_state_delta_reuse_delta', '')\n", (2918, 2972), False, 'from prometheus_client import Counter, Histogram\n'), ((3066, 3255), 'prometheus_client.Histogram', 'Histogram', (['"""synapse_storage_events_forward_extremities_persisted"""', '"""Number of forward extremities for each new event"""'], {'buckets': "(1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500, '+Inf')"}), "('synapse_storage_events_forward_extremities_persisted',\n 'Number of forward extremities for each new event', buckets=(1, 2, 3, 5,\n 7, 10, 15, 20, 50, 100, 200, 500, '+Inf'))\n", (3075, 3255), False, 'from prometheus_client import Counter, Histogram\n'), ((3457, 3666), 'prometheus_client.Histogram', 'Histogram', (['"""synapse_storage_events_stale_forward_extremities_persisted"""', '"""Number of unchanged forward extremities for each new event"""'], {'buckets': "(0, 1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500, '+Inf')"}), "('synapse_storage_events_stale_forward_extremities_persisted',\n 'Number of unchanged forward extremities for each new event', buckets=(\n 0, 1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500, '+Inf'))\n", (3466, 3666), False, 'from prometheus_client import Counter, Histogram\n'), ((7841, 7900), 'collections.namedtuple', 'namedtuple', (['"""_EventCacheEntry"""', "('event', 'redacted_event')"], {}), "('_EventCacheEntry', ('event', 'redacted_event'))\n", (7851, 7900), False, 'from collections import Counter as c_counter, OrderedDict, deque, namedtuple\n'), ((87472, 87602), 'collections.namedtuple', 'namedtuple', (['"""AllNewEventsResult"""', "['new_forward_events', 'new_backfill_events', 'forward_ex_outliers',\n 'backward_ex_outliers']"], {}), "('AllNewEventsResult', ['new_forward_events',\n 'new_backfill_events', 'forward_ex_outliers', 'backward_ex_outliers'])\n", (87482, 87602), False, 'from collections import Counter as c_counter, OrderedDict, deque, namedtuple\n'), ((3801, 3844), 'synapse.util.frozenutils.frozendict_json_encoder.encode', 'frozendict_json_encoder.encode', (['json_object'], {}), '(json_object)\n', (3831, 3844), False, 'from synapse.util.frozenutils import frozendict_json_encoder\n'), ((4114, 4205), 'collections.namedtuple', 'namedtuple', (['"""_EventPersistQueueItem"""', "('events_and_contexts', 'backfilled', 'deferred')"], {}), "('_EventPersistQueueItem', ('events_and_contexts', 'backfilled',\n 'deferred'))\n", (4124, 4205), False, 'from collections import Counter as c_counter, OrderedDict, deque, namedtuple\n'), ((8167, 8178), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (8172, 8178), False, 'from functools import wraps\n'), ((67894, 67928), 'synapse.util.caches.descriptors.cached', 'cached', ([], {'num_args': '(5)', 'max_entries': '(10)'}), '(num_args=5, max_entries=10)\n', (67900, 67928), False, 'from synapse.util.caches.descriptors import cached, cachedInlineCallbacks\n'), ((86284, 86323), 'synapse.util.caches.descriptors.cachedInlineCallbacks', 'cachedInlineCallbacks', ([], {'max_entries': '(5000)'}), '(max_entries=5000)\n', (86305, 86323), False, 'from synapse.util.caches.descriptors import cached, cachedInlineCallbacks\n'), ((7480, 7542), 'synapse.metrics.background_process_metrics.run_as_background_process', 'run_as_background_process', (['"""persist_events"""', 'handle_queue_loop'], {}), "('persist_events', handle_queue_loop)\n", (7505, 7542), False, 'from synapse.metrics.background_process_metrics import run_as_background_process\n'), ((8504, 8526), 'twisted.internet.defer.returnValue', 'defer.returnValue', (['res'], {}), '(res)\n', (8521, 8526), False, 'from twisted.internet import defer\n'), ((9244, 9255), 'collections.Counter', 'c_counter', ([], {}), '()\n', (9253, 9255), True, 'from collections import Counter as c_counter, OrderedDict, deque, namedtuple\n'), ((9265, 9435), 'synapse.metrics.BucketCollector', 'BucketCollector', (['"""synapse_forward_extremities"""', '(lambda : self._current_forward_extremities_amount)'], {'buckets': "[1, 2, 3, 5, 7, 10, 15, 20, 50, 100, 200, 500, '+Inf']"}), "('synapse_forward_extremities', lambda : self.\n _current_forward_extremities_amount, buckets=[1, 2, 3, 5, 7, 10, 15, 20,\n 50, 100, 200, 500, '+Inf'])\n", (9280, 9435), False, 'from synapse.metrics import BucketCollector\n'), ((11126, 11148), 'six.iteritems', 'iteritems', (['partitioned'], {}), '(partitioned)\n', (11135, 11148), False, 'from six import iteritems, text_type\n'), ((11592, 11627), 'twisted.internet.defer.returnValue', 'defer.returnValue', (['max_persisted_id'], {}), '(max_persisted_id)\n', (11609, 11627), False, 'from twisted.internet import defer\n'), ((12360, 12438), 'twisted.internet.defer.returnValue', 'defer.returnValue', (['(event.internal_metadata.stream_ordering, max_persisted_id)'], {}), '((event.internal_metadata.stream_ordering, max_persisted_id))\n', (12377, 12438), False, 'from twisted.internet import defer\n'), ((24714, 24739), 'twisted.internet.defer.returnValue', 'defer.returnValue', (['result'], {}), '(result)\n', (24731, 24739), False, 'from twisted.internet import defer\n'), ((25825, 25851), 'synapse.util.batch_iter', 'batch_iter', (['event_ids', '(100)'], {}), '(event_ids, 100)\n', (25835, 25851), False, 'from synapse.util import batch_iter\n'), ((26001, 26027), 'twisted.internet.defer.returnValue', 'defer.returnValue', (['results'], {}), '(results)\n', (26018, 26027), False, 'from twisted.internet import defer\n'), ((28210, 28236), 'synapse.util.batch_iter', 'batch_iter', (['event_ids', '(100)'], {}), '(event_ids, 100)\n', (28220, 28236), False, 'from synapse.util import batch_iter\n'), ((28384, 28417), 'twisted.internet.defer.returnValue', 'defer.returnValue', (['existing_prevs'], {}), '(existing_prevs)\n', (28401, 28417), False, 'from twisted.internet import defer\n'), ((35202, 35238), 'twisted.internet.defer.returnValue', 'defer.returnValue', (['(res.state, None)'], {}), '((res.state, None))\n', (35219, 35238), False, 'from twisted.internet import defer\n'), ((36016, 36057), 'twisted.internet.defer.returnValue', 'defer.returnValue', (['(to_delete, to_insert)'], {}), '((to_delete, to_insert))\n', (36033, 36057), False, 'from twisted.internet import defer\n'), ((40778, 40808), 'six.iteritems', 'iteritems', (['state_delta_by_room'], {}), '(state_delta_by_room)\n', (40787, 40808), False, 'from six import iteritems, text_type\n'), ((44898, 44932), 'six.iteritems', 'iteritems', (['new_forward_extremities'], {}), '(new_forward_extremities)\n', (44907, 44932), False, 'from six import iteritems, text_type\n'), ((46641, 46654), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (46652, 46654), False, 'from collections import Counter as c_counter, OrderedDict, deque, namedtuple\n'), ((48515, 48539), 'six.iteritems', 'iteritems', (['depth_updates'], {}), '(depth_updates)\n', (48524, 48539), False, 'from six import iteritems, text_type\n'), ((62541, 62563), 'twisted.internet.defer.returnValue', 'defer.returnValue', (['ret'], {}), '(ret)\n', (62558, 62563), False, 'from twisted.internet import defer\n'), ((63296, 63318), 'twisted.internet.defer.returnValue', 'defer.returnValue', (['ret'], {}), '(ret)\n', (63313, 63318), False, 'from twisted.internet import defer\n'), ((63816, 63838), 'twisted.internet.defer.returnValue', 'defer.returnValue', (['ret'], {}), '(ret)\n', (63833, 63838), False, 'from twisted.internet import defer\n'), ((72296, 72328), 'synapse.types.RoomStreamToken.parse', 'RoomStreamToken.parse', (['token_str'], {}), '(token_str)\n', (72317, 72328), False, 'from synapse.types import RoomStreamToken, get_domain_from_id\n'), ((86231, 86277), 'twisted.internet.defer.returnValue', 'defer.returnValue', (['((to_1, so_1) > (to_2, so_2))'], {}), '((to_1, so_1) > (to_2, so_2))\n', (86248, 86277), False, 'from twisted.internet import defer\n'), ((5066, 5073), 'collections.deque', 'deque', ([], {}), '()\n', (5071, 5073), False, 'from collections import Counter as c_counter, OrderedDict, deque, namedtuple\n'), ((5479, 5495), 'twisted.internet.defer.Deferred', 'defer.Deferred', ([], {}), '()\n', (5493, 5495), False, 'from twisted.internet import defer\n'), ((7653, 7660), 'collections.deque', 'deque', ([], {}), '()\n', (7658, 7660), False, 'from collections import Counter as c_counter, OrderedDict, deque, namedtuple\n'), ((9708, 9798), 'synapse.metrics.background_process_metrics.run_as_background_process', 'run_as_background_process', (['"""read_forward_extremities"""', 'self._read_forward_extremities'], {}), "('read_forward_extremities', self.\n _read_forward_extremities)\n", (9733, 9798), False, 'from synapse.metrics.background_process_metrics import run_as_background_process\n'), ((12244, 12277), 'synapse.util.logcontext.make_deferred_yieldable', 'make_deferred_yieldable', (['deferred'], {}), '(deferred)\n', (12267, 12277), False, 'from synapse.util.logcontext import PreserveLoggingContext, make_deferred_yieldable\n'), ((32637, 32668), 'twisted.internet.defer.returnValue', 'defer.returnValue', (['(None, None)'], {}), '((None, None))\n', (32654, 32668), False, 'from twisted.internet import defer\n'), ((64305, 64322), 'twisted.internet.defer.succeed', 'defer.succeed', (['[]'], {}), '([])\n', (64318, 64322), False, 'from twisted.internet import defer\n'), ((66151, 66168), 'twisted.internet.defer.succeed', 'defer.succeed', (['[]'], {}), '([])\n', (66164, 66168), False, 'from twisted.internet import defer\n'), ((74182, 74259), 'synapse.api.errors.SynapseError', 'SynapseError', (['(400)', '"""topological_ordering is greater than forward extremeties"""'], {}), "(400, 'topological_ordering is greater than forward extremeties')\n", (74194, 74259), False, 'from synapse.api.errors import SynapseError\n'), ((86631, 86689), 'synapse.api.errors.SynapseError', 'SynapseError', (['(404)', "('Could not find event %s' % (event_id,))"], {}), "(404, 'Could not find event %s' % (event_id,))\n", (86643, 86689), False, 'from synapse.api.errors import SynapseError\n'), ((11448, 11498), 'twisted.internet.defer.gatherResults', 'defer.gatherResults', (['deferreds'], {'consumeErrors': '(True)'}), '(deferreds, consumeErrors=True)\n', (11467, 11498), False, 'from twisted.internet import defer\n'), ((12572, 12610), 'synapse.util.metrics.Measure', 'Measure', (['self._clock', '"""persist_events"""'], {}), "(self._clock, 'persist_events')\n", (12579, 12610), False, 'from synapse.util.metrics import Measure\n'), ((22314, 22347), 'six.iteritems', 'iteritems', (['current_state_for_room'], {}), '(current_state_for_room)\n', (22323, 22347), False, 'from six import iteritems, text_type\n'), ((22477, 22511), 'six.iteritems', 'iteritems', (['new_forward_extremeties'], {}), '(new_forward_extremeties)\n', (22486, 22511), False, 'from six import iteritems, text_type\n'), ((33523, 33564), 'twisted.internet.defer.returnValue', 'defer.returnValue', (['(new_state, delta_ids)'], {}), '((new_state, delta_ids))\n', (33540, 33564), False, 'from twisted.internet import defer\n'), ((35924, 35948), 'six.iteritems', 'iteritems', (['current_state'], {}), '(current_state)\n', (35933, 35948), False, 'from six import iteritems, text_type\n'), ((35155, 35181), 'synapse.state.StateResolutionStore', 'StateResolutionStore', (['self'], {}), '(self)\n', (35175, 35181), False, 'from synapse.state import StateResolutionStore\n'), ((84177, 84214), 'itertools.islice', 'itertools.islice', (['next_to_search', '(100)'], {}), '(next_to_search, 100)\n', (84193, 84214), False, 'import itertools\n'), ((15059, 15110), 'synapse.util.metrics.Measure', 'Measure', (['self._clock', '"""_calculate_state_and_extrem"""'], {}), "(self._clock, '_calculate_state_and_extrem')\n", (15066, 15110), False, 'from synapse.util.metrics import Measure\n'), ((15643, 15668), 'six.iteritems', 'iteritems', (['events_by_room'], {}), '(events_by_room)\n', (15652, 15668), False, 'from six import iteritems, text_type\n'), ((42890, 42910), 'six.iteritems', 'iteritems', (['to_insert'], {}), '(to_insert)\n', (42899, 42910), False, 'from six import iteritems, text_type\n'), ((43273, 43310), 'itertools.chain', 'itertools.chain', (['to_delete', 'to_insert'], {}), '(to_delete, to_insert)\n', (43288, 43310), False, 'import itertools\n'), ((44387, 44424), 'itertools.chain', 'itertools.chain', (['to_delete', 'to_insert'], {}), '(to_delete, to_insert)\n', (44402, 44424), False, 'import itertools\n'), ((45380, 45414), 'six.iteritems', 'iteritems', (['new_forward_extremities'], {}), '(new_forward_extremities)\n', (45389, 45414), False, 'from six import iteritems, text_type\n'), ((46100, 46134), 'six.iteritems', 'iteritems', (['new_forward_extremities'], {}), '(new_forward_extremities)\n', (46109, 46134), False, 'from six import iteritems, text_type\n'), ((7088, 7112), 'synapse.util.logcontext.PreserveLoggingContext', 'PreserveLoggingContext', ([], {}), '()\n', (7110, 7112), False, 'from synapse.util.logcontext import PreserveLoggingContext, make_deferred_yieldable\n'), ((22150, 22182), 'synapse.types.get_domain_from_id', 'get_domain_from_id', (['event.sender'], {}), '(event.sender)\n', (22168, 22182), False, 'from synapse.types import RoomStreamToken, get_domain_from_id\n'), ((27975, 27995), 'canonicaljson.json.loads', 'json.loads', (['metadata'], {}), '(metadata)\n', (27985, 27995), False, 'from canonicaljson import json\n'), ((43733, 43753), 'six.iteritems', 'iteritems', (['to_insert'], {}), '(to_insert)\n', (43742, 43753), False, 'from six import iteritems, text_type\n'), ((79298, 79319), 'six.iteritems', 'iteritems', (['curr_state'], {}), '(curr_state)\n', (79307, 79319), False, 'from six import iteritems, text_type\n'), ((6955, 6979), 'synapse.util.logcontext.PreserveLoggingContext', 'PreserveLoggingContext', ([], {}), '()\n', (6977, 6979), False, 'from synapse.util.logcontext import PreserveLoggingContext, make_deferred_yieldable\n'), ((19072, 19137), 'synapse.util.metrics.Measure', 'Measure', (['self._clock', '"""persist_events.get_new_state_after_events"""'], {}), "(self._clock, 'persist_events.get_new_state_after_events')\n", (19079, 19137), False, 'from synapse.util.metrics import Measure\n'), ((25766, 25782), 'canonicaljson.json.loads', 'json.loads', (['r[1]'], {}), '(r[1])\n', (25776, 25782), False, 'from canonicaljson import json\n'), ((20209, 20269), 'synapse.util.metrics.Measure', 'Measure', (['self._clock', '"""persist_events.calculate_state_delta"""'], {}), "(self._clock, 'persist_events.calculate_state_delta')\n", (20216, 20269), False, 'from synapse.util.metrics import Measure\n')]
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This file contains a class which acts as a wrapper around the PPR algorithm. This class has the following functionality: 1. Load the KB graph, 2. Given list of seed entities, get topk entities from PPR. 3. Get unique facts between all extracted entities. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from fat.fat_bert_nq.ppr.apr_algo import csr_personalized_pagerank from fat.fat_bert_nq.ppr.apr_algo import csr_topk_fact_extractor from fat.fat_bert_nq.ppr.kb_csr_io import CsrData flags = tf.flags FLAGS = flags.FLAGS flags.DEFINE_bool( 'verbose_logging', False, 'If true, all of the warnings related to data processing will be printed. ' 'A number of warnings are expected for a normal NQ evaluation.') class ApproximatePageRank(object): """APR main lib which is used to wrap functions around ppr algo.""" def __init__(self): self.data = CsrData() self.data.load_csr_data( full_wiki=FLAGS.full_wiki, files_dir=FLAGS.apr_files_dir) def get_topk_extracted_ent(self, seeds, alpha, topk): """Extract topk entities given seeds. Args: seeds: An Ex1 vector with weight on every seed entity alpha: probability for PPR topk: max top entities to extract Returns: extracted_ents: list of selected entities extracted_scores: list of scores of selected entities """ ppr_scores = csr_personalized_pagerank(seeds, self.data.adj_mat_t_csr, alpha) sorted_idx = np.argsort(ppr_scores)[::-1] extracted_ents = sorted_idx[:topk] extracted_scores = ppr_scores[sorted_idx[:topk]] # Check for really low values # Get idx of First value < 1e-6, limit extracted ents till there zero_idx = np.where(ppr_scores[extracted_ents] < 1e-6)[0] if zero_idx.shape[0] > 0: extracted_ents = extracted_ents[:zero_idx[0]] return extracted_ents, extracted_scores def get_facts(self, entities, topk, alpha, seed_weighting=True): """Get subgraph describing a neighbourhood around given entities. Args: entities: A list of Wikidata entities topk: Max entities to extract from PPR alpha: Node probability for PPR seed_weighting: Boolean for performing weighting seeds by freq in passage Returns: unique_facts: A list of unique facts around the seeds. """ if FLAGS.verbose_logging: tf.logging.info('Getting subgraph') entity_ids = [ int(self.data.ent2id[x]) for x in entities if x in self.data.ent2id ] if FLAGS.verbose_logging: tf.logging.info( str([self.data.entity_names['e'][str(x)]['name'] for x in entity_ids ])) freq_dict = {x: entity_ids.count(x) for x in entity_ids} seed = np.zeros((self.data.adj_mat.shape[0], 1)) if not seed_weighting: seed[entity_ids] = 1. / len(set(entity_ids)) else: for x, y in freq_dict.items(): seed[x] = y seed = seed / seed.sum() extracted_ents, extracted_scores = self.get_topk_extracted_ent( seed, alpha, topk) if FLAGS.verbose_logging: tf.logging.info('Extracted ents: ') tf.logging.info( str([ self.data.entity_names['e'][str(x)]['name'] for x in extracted_ents ])) facts = csr_topk_fact_extractor(self.data.adj_mat_t_csr, self.data.rel_dict, freq_dict, self.data.entity_names, extracted_ents, extracted_scores) if FLAGS.verbose_logging: tf.logging.info('Extracted facts: ') tf.logging.info(str(facts)) # Extract 1 unique fact per pair of entities (fact with highest score) # Sort by scores unique_facts = {} for (sub, obj, rel, score) in facts: fwd_dir = (sub, obj) rev_dir = (obj, sub) if fwd_dir in unique_facts and score > unique_facts[fwd_dir][1]: unique_facts[fwd_dir] = (rel, score) elif rev_dir in unique_facts and score > unique_facts[rev_dir][1]: unique_facts[fwd_dir] = (rel, score) del unique_facts[rev_dir] # Remove existing entity pair else: unique_facts[(sub, obj)] = (rel, score) unique_facts = list(unique_facts.items()) return unique_facts
[ "fat.fat_bert_nq.ppr.kb_csr_io.CsrData", "numpy.where", "tensorflow.logging.info", "numpy.argsort", "numpy.zeros", "fat.fat_bert_nq.ppr.apr_algo.csr_personalized_pagerank", "fat.fat_bert_nq.ppr.apr_algo.csr_topk_fact_extractor" ]
[((1590, 1599), 'fat.fat_bert_nq.ppr.kb_csr_io.CsrData', 'CsrData', ([], {}), '()\n', (1597, 1599), False, 'from fat.fat_bert_nq.ppr.kb_csr_io import CsrData\n'), ((2084, 2148), 'fat.fat_bert_nq.ppr.apr_algo.csr_personalized_pagerank', 'csr_personalized_pagerank', (['seeds', 'self.data.adj_mat_t_csr', 'alpha'], {}), '(seeds, self.data.adj_mat_t_csr, alpha)\n', (2109, 2148), False, 'from fat.fat_bert_nq.ppr.apr_algo import csr_personalized_pagerank\n'), ((3459, 3500), 'numpy.zeros', 'np.zeros', (['(self.data.adj_mat.shape[0], 1)'], {}), '((self.data.adj_mat.shape[0], 1))\n', (3467, 3500), True, 'import numpy as np\n'), ((4007, 4148), 'fat.fat_bert_nq.ppr.apr_algo.csr_topk_fact_extractor', 'csr_topk_fact_extractor', (['self.data.adj_mat_t_csr', 'self.data.rel_dict', 'freq_dict', 'self.data.entity_names', 'extracted_ents', 'extracted_scores'], {}), '(self.data.adj_mat_t_csr, self.data.rel_dict,\n freq_dict, self.data.entity_names, extracted_ents, extracted_scores)\n', (4030, 4148), False, 'from fat.fat_bert_nq.ppr.apr_algo import csr_topk_fact_extractor\n'), ((2209, 2231), 'numpy.argsort', 'np.argsort', (['ppr_scores'], {}), '(ppr_scores)\n', (2219, 2231), True, 'import numpy as np\n'), ((2449, 2493), 'numpy.where', 'np.where', (['(ppr_scores[extracted_ents] < 1e-06)'], {}), '(ppr_scores[extracted_ents] < 1e-06)\n', (2457, 2493), True, 'import numpy as np\n'), ((3099, 3134), 'tensorflow.logging.info', 'tf.logging.info', (['"""Getting subgraph"""'], {}), "('Getting subgraph')\n", (3114, 3134), True, 'import tensorflow as tf\n'), ((3809, 3844), 'tensorflow.logging.info', 'tf.logging.info', (['"""Extracted ents: """'], {}), "('Extracted ents: ')\n", (3824, 3844), True, 'import tensorflow as tf\n'), ((4253, 4289), 'tensorflow.logging.info', 'tf.logging.info', (['"""Extracted facts: """'], {}), "('Extracted facts: ')\n", (4268, 4289), True, 'import tensorflow as tf\n')]
import warnings from collections import OrderedDict from distutils.version import LooseVersion from functools import partial from inspect import isclass from typing import Callable, Optional, Dict, Union import numpy as np import torch import tqdm from torch import Tensor, nn from torch.nn import functional as F from adv_lib.distances.lp_norms import l0_distances, l1_distances, l2_distances, linf_distances from adv_lib.utils import ForwardCounter, BackwardCounter, predict_inputs def generate_random_targets(labels: Tensor, num_classes: int) -> Tensor: """ Generates one random target in (num_classes - 1) possibilities for each label that is different from the original label. Parameters ---------- labels: Tensor Original labels. Generated targets will be different from labels. num_classes: int Number of classes to generate the random targets from. Returns ------- targets: Tensor Random target for each label. Has the same shape as labels. """ random = torch.rand(len(labels), num_classes, device=labels.device, dtype=torch.float) random.scatter_(1, labels.unsqueeze(-1), 0) return random.argmax(1) def get_all_targets(labels: Tensor, num_classes: int): """ Generates all possible targets that are different from the original labels. Parameters ---------- labels: Tensor Original labels. Generated targets will be different from labels. num_classes: int Number of classes to generate the random targets from. Returns ------- targets: Tensor Random targets for each label. shape: (len(labels), num_classes - 1). """ all_possible_targets = torch.zeros(len(labels), num_classes - 1, dtype=torch.long) all_classes = set(range(num_classes)) for i in range(len(labels)): this_label = labels[i].item() other_labels = list(all_classes.difference({this_label})) all_possible_targets[i] = torch.tensor(other_labels) return all_possible_targets def run_attack(model: nn.Module, inputs: Tensor, labels: Tensor, attack: Callable, targets: Optional[Tensor] = None, batch_size: Optional[int] = None) -> dict: device = next(model.parameters()).device to_device = lambda tensor: tensor.to(device) targeted, adv_labels = False, labels if targets is not None: targeted, adv_labels = True, targets batch_size = batch_size or len(inputs) # run attack only on non already adversarial samples already_adv = [] chunks = [tensor.split(batch_size) for tensor in [inputs, adv_labels]] for (inputs_chunk, label_chunk) in zip(*chunks): batch_chunk_d, label_chunk_d = [to_device(tensor) for tensor in [inputs_chunk, label_chunk]] preds = model(batch_chunk_d).argmax(1) is_adv = (preds == label_chunk_d) if targeted else (preds != label_chunk_d) already_adv.append(is_adv.cpu()) not_adv = ~torch.cat(already_adv, 0) start, end = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) forward_counter, backward_counter = ForwardCounter(), BackwardCounter() model.register_forward_pre_hook(forward_counter) if LooseVersion(torch.__version__) >= LooseVersion('1.8'): model.register_full_backward_hook(backward_counter) else: model.register_backward_hook(backward_counter) average_forwards, average_backwards = [], [] # number of forward and backward calls per sample advs_chunks = [] chunks = [tensor.split(batch_size) for tensor in [inputs[not_adv], adv_labels[not_adv]]] total_time = 0 for (inputs_chunk, label_chunk) in tqdm.tqdm(zip(*chunks), ncols=80, total=len(chunks[0])): batch_chunk_d, label_chunk_d = [to_device(tensor.clone()) for tensor in [inputs_chunk, label_chunk]] start.record() advs_chunk_d = attack(model, batch_chunk_d, label_chunk_d, targeted=targeted) # performance monitoring end.record() torch.cuda.synchronize() total_time += (start.elapsed_time(end)) / 1000 # times for cuda Events are in milliseconds average_forwards.append(forward_counter.num_samples_called / len(batch_chunk_d)) average_backwards.append(backward_counter.num_samples_called / len(batch_chunk_d)) forward_counter.reset(), backward_counter.reset() advs_chunks.append(advs_chunk_d.cpu()) if isinstance(attack, partial) and (callback := attack.keywords.get('callback')) is not None: callback.reset_windows() adv_inputs = inputs.clone() adv_inputs[not_adv] = torch.cat(advs_chunks, 0) data = { 'inputs': inputs, 'labels': labels, 'targets': adv_labels if targeted else None, 'adv_inputs': adv_inputs, 'time': total_time, 'num_forwards': sum(average_forwards) / len(chunks[0]), 'num_backwards': sum(average_backwards) / len(chunks[0]), } return data _default_metrics = OrderedDict([ ('linf', linf_distances), ('l0', l0_distances), ('l1', l1_distances), ('l2', l2_distances), ]) def compute_attack_metrics(model: nn.Module, attack_data: Dict[str, Union[Tensor, float]], batch_size: Optional[int] = None, metrics: Dict[str, Callable] = _default_metrics) -> Dict[str, Union[Tensor, float]]: inputs, labels, targets, adv_inputs = map(attack_data.get, ['inputs', 'labels', 'targets', 'adv_inputs']) if adv_inputs.min() < 0 or adv_inputs.max() > 1: warnings.warn('Values of produced adversarials are not in the [0, 1] range -> Clipping to [0, 1].') adv_inputs.clamp_(min=0, max=1) device = next(model.parameters()).device to_device = lambda tensor: tensor.to(device) batch_size = batch_size or len(inputs) chunks = [tensor.split(batch_size) for tensor in [inputs, labels, adv_inputs]] all_predictions = [[] for _ in range(6)] distances = {k: [] for k in metrics.keys()} metrics = {k: v().to(device) if (isclass(v.func) if isinstance(v, partial) else False) else v for k, v in metrics.items()} append = lambda list, data: list.append(data.cpu()) for inputs_chunk, labels_chunk, adv_chunk in zip(*chunks): inputs_chunk, adv_chunk = map(to_device, [inputs_chunk, adv_chunk]) clean_preds, adv_preds = [predict_inputs(model, chunk.to(device)) for chunk in [inputs_chunk, adv_chunk]] list(map(append, all_predictions, [*clean_preds, *adv_preds])) for metric, metric_func in metrics.items(): distances[metric].append(metric_func(adv_chunk, inputs_chunk).detach().cpu()) logits, probs, preds, logits_adv, probs_adv, preds_adv = [torch.cat(l) for l in all_predictions] for metric in metrics.keys(): distances[metric] = torch.cat(distances[metric], 0) accuracy_orig = (preds == labels).float().mean().item() if targets is not None: success = (preds_adv == targets) labels = targets else: success = (preds_adv != labels) prob_orig = probs.gather(1, labels.unsqueeze(1)).squeeze(1) prob_adv = probs_adv.gather(1, labels.unsqueeze(1)).squeeze(1) labels_infhot = torch.zeros_like(logits_adv).scatter_(1, labels.unsqueeze(1), float('inf')) real = logits_adv.gather(1, labels.unsqueeze(1)).squeeze(1) other = (logits_adv - labels_infhot).max(1).values diff_vs_max_adv = (real - other) nll = F.cross_entropy(logits, labels, reduction='none') nll_adv = F.cross_entropy(logits_adv, labels, reduction='none') data = { 'time': attack_data['time'], 'num_forwards': attack_data['num_forwards'], 'num_backwards': attack_data['num_backwards'], 'targeted': targets is not None, 'preds': preds, 'adv_preds': preds_adv, 'accuracy_orig': accuracy_orig, 'success': success, 'probs_orig': prob_orig, 'probs_adv': prob_adv, 'logit_diff_adv': diff_vs_max_adv, 'nll': nll, 'nll_adv': nll_adv, 'distances': distances, } return data def print_metrics(metrics: dict) -> None: np.set_printoptions(formatter={'float': '{:0.3f}'.format}, threshold=16, edgeitems=3, linewidth=120) # To print arrays with less precision print('Original accuracy: {:.2%}'.format(metrics['accuracy_orig'])) print('Attack done in: {:.2f}s with {:.4g} forwards and {:.4g} backwards.'.format( metrics['time'], metrics['num_forwards'], metrics['num_backwards'])) success = metrics['success'].numpy() fail = bool(success.mean() != 1) print('Attack success: {:.2%}'.format(success.mean()) + fail * ' - {}'.format(success)) for distance, values in metrics['distances'].items(): data = values.numpy() print('{}: {} - Average: {:.3f} - Median: {:.3f}'.format(distance, data, data.mean(), np.median(data)) + fail * ' | Avg over success: {:.3f}'.format(data[success].mean())) attack_type = 'targets' if metrics['targeted'] else 'correct' print('Logit({} class) - max_Logit(other classes): {} - Average: {:.2f}'.format( attack_type, metrics['logit_diff_adv'].numpy(), metrics['logit_diff_adv'].numpy().mean())) print('NLL of target/pred class: {:.3f}'.format(metrics['nll_adv'].numpy().mean()))
[ "torch.cuda.Event", "collections.OrderedDict", "numpy.median", "inspect.isclass", "torch.cuda.synchronize", "torch.tensor", "torch.zeros_like", "adv_lib.utils.ForwardCounter", "torch.nn.functional.cross_entropy", "adv_lib.utils.BackwardCounter", "distutils.version.LooseVersion", "warnings.warn", "torch.cat", "numpy.set_printoptions" ]
[((5060, 5169), 'collections.OrderedDict', 'OrderedDict', (["[('linf', linf_distances), ('l0', l0_distances), ('l1', l1_distances), (\n 'l2', l2_distances)]"], {}), "([('linf', linf_distances), ('l0', l0_distances), ('l1',\n l1_distances), ('l2', l2_distances)])\n", (5071, 5169), False, 'from collections import OrderedDict\n'), ((4679, 4704), 'torch.cat', 'torch.cat', (['advs_chunks', '(0)'], {}), '(advs_chunks, 0)\n', (4688, 4704), False, 'import torch\n'), ((7563, 7612), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['logits', 'labels'], {'reduction': '"""none"""'}), "(logits, labels, reduction='none')\n", (7578, 7612), True, 'from torch.nn import functional as F\n'), ((7627, 7680), 'torch.nn.functional.cross_entropy', 'F.cross_entropy', (['logits_adv', 'labels'], {'reduction': '"""none"""'}), "(logits_adv, labels, reduction='none')\n", (7642, 7680), True, 'from torch.nn import functional as F\n'), ((8263, 8367), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'formatter': "{'float': '{:0.3f}'.format}", 'threshold': '(16)', 'edgeitems': '(3)', 'linewidth': '(120)'}), "(formatter={'float': '{:0.3f}'.format}, threshold=16,\n edgeitems=3, linewidth=120)\n", (8282, 8367), True, 'import numpy as np\n'), ((1980, 2006), 'torch.tensor', 'torch.tensor', (['other_labels'], {}), '(other_labels)\n', (1992, 2006), False, 'import torch\n'), ((3023, 3048), 'torch.cat', 'torch.cat', (['already_adv', '(0)'], {}), '(already_adv, 0)\n', (3032, 3048), False, 'import torch\n'), ((3067, 3103), 'torch.cuda.Event', 'torch.cuda.Event', ([], {'enable_timing': '(True)'}), '(enable_timing=True)\n', (3083, 3103), False, 'import torch\n'), ((3105, 3141), 'torch.cuda.Event', 'torch.cuda.Event', ([], {'enable_timing': '(True)'}), '(enable_timing=True)\n', (3121, 3141), False, 'import torch\n'), ((3182, 3198), 'adv_lib.utils.ForwardCounter', 'ForwardCounter', ([], {}), '()\n', (3196, 3198), False, 'from adv_lib.utils import ForwardCounter, BackwardCounter, predict_inputs\n'), ((3200, 3217), 'adv_lib.utils.BackwardCounter', 'BackwardCounter', ([], {}), '()\n', (3215, 3217), False, 'from adv_lib.utils import ForwardCounter, BackwardCounter, predict_inputs\n'), ((3278, 3309), 'distutils.version.LooseVersion', 'LooseVersion', (['torch.__version__'], {}), '(torch.__version__)\n', (3290, 3309), False, 'from distutils.version import LooseVersion\n'), ((3313, 3332), 'distutils.version.LooseVersion', 'LooseVersion', (['"""1.8"""'], {}), "('1.8')\n", (3325, 3332), False, 'from distutils.version import LooseVersion\n'), ((4070, 4094), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (4092, 4094), False, 'import torch\n'), ((5649, 5758), 'warnings.warn', 'warnings.warn', (['"""Values of produced adversarials are not in the [0, 1] range -> Clipping to [0, 1]."""'], {}), "(\n 'Values of produced adversarials are not in the [0, 1] range -> Clipping to [0, 1].'\n )\n", (5662, 5758), False, 'import warnings\n'), ((6831, 6843), 'torch.cat', 'torch.cat', (['l'], {}), '(l)\n', (6840, 6843), False, 'import torch\n'), ((6932, 6963), 'torch.cat', 'torch.cat', (['distances[metric]', '(0)'], {}), '(distances[metric], 0)\n', (6941, 6963), False, 'import torch\n'), ((7321, 7349), 'torch.zeros_like', 'torch.zeros_like', (['logits_adv'], {}), '(logits_adv)\n', (7337, 7349), False, 'import torch\n'), ((6140, 6155), 'inspect.isclass', 'isclass', (['v.func'], {}), '(v.func)\n', (6147, 6155), False, 'from inspect import isclass\n'), ((9015, 9030), 'numpy.median', 'np.median', (['data'], {}), '(data)\n', (9024, 9030), True, 'import numpy as np\n')]
#!/usr/bin/env python # Filename: polygons_cd """ introduction: compare two polygons in to shape file authors: <NAME> email:<EMAIL> add time: 26 February, 2020 """ import sys,os from optparse import OptionParser # added path of DeeplabforRS sys.path.insert(0, os.path.expanduser('~/codes/PycharmProjects/DeeplabforRS')) import basic_src.io_function as io_function import basic_src.basic as basic import basic_src.map_projection as map_projection import parameters import polygons_cd_multi import polygons_cd def main(options, args): old_shp_path = args[0] new_shp_path = args[1] # check files do exist assert io_function.is_file_exist(new_shp_path) assert io_function.is_file_exist(old_shp_path) # check projection of the shape file, should be the same old_shp_proj4 = map_projection.get_raster_or_vector_srs_info_proj4(old_shp_path) new_shp_proj4 = map_projection.get_raster_or_vector_srs_info_proj4(new_shp_path) if old_shp_proj4 != new_shp_proj4: raise ValueError('error, projection insistence between %s and %s' % (old_shp_proj4, new_shp_proj4)) main_shp_name = polygons_cd_multi.get_main_shp_name(old_shp_path,new_shp_path) # conduct change detection if options.output is not None: main_shp_name = options.output # get expanding and shrinking parts output_path_expand = 'expand_' + main_shp_name output_path_shrink = 'shrink_' + main_shp_name polygons_cd.polygons_change_detection(old_shp_path, new_shp_path, output_path_expand,output_path_shrink) if __name__ == "__main__": usage = "usage: %prog [options] old_shape_file new_shape_file " parser = OptionParser(usage=usage, version="1.0 2020-02-26") parser.description = 'Introduction: compare two groups of polygons ' parser.add_option("-p", "--para", action="store", dest="para_file", help="the parameters file") parser.add_option('-o', '--output', action="store", dest = 'output', help='the path to save the change detection results') (options, args) = parser.parse_args() if len(sys.argv) < 2: parser.print_help() sys.exit(2) # # set parameters files # if options.para_file is None: # print('error, no parameters file') # parser.print_help() # sys.exit(2) # else: # parameters.set_saved_parafile_path(options.para_file) basic.setlogfile('polygons_changeDetection.log') main(options, args)
[ "sys.exit", "basic_src.io_function.is_file_exist", "polygons_cd_multi.get_main_shp_name", "optparse.OptionParser", "basic_src.basic.setlogfile", "polygons_cd.polygons_change_detection", "basic_src.map_projection.get_raster_or_vector_srs_info_proj4", "os.path.expanduser" ]
[((264, 322), 'os.path.expanduser', 'os.path.expanduser', (['"""~/codes/PycharmProjects/DeeplabforRS"""'], {}), "('~/codes/PycharmProjects/DeeplabforRS')\n", (282, 322), False, 'import sys, os\n'), ((633, 672), 'basic_src.io_function.is_file_exist', 'io_function.is_file_exist', (['new_shp_path'], {}), '(new_shp_path)\n', (658, 672), True, 'import basic_src.io_function as io_function\n'), ((684, 723), 'basic_src.io_function.is_file_exist', 'io_function.is_file_exist', (['old_shp_path'], {}), '(old_shp_path)\n', (709, 723), True, 'import basic_src.io_function as io_function\n'), ((806, 870), 'basic_src.map_projection.get_raster_or_vector_srs_info_proj4', 'map_projection.get_raster_or_vector_srs_info_proj4', (['old_shp_path'], {}), '(old_shp_path)\n', (856, 870), True, 'import basic_src.map_projection as map_projection\n'), ((891, 955), 'basic_src.map_projection.get_raster_or_vector_srs_info_proj4', 'map_projection.get_raster_or_vector_srs_info_proj4', (['new_shp_path'], {}), '(new_shp_path)\n', (941, 955), True, 'import basic_src.map_projection as map_projection\n'), ((1125, 1188), 'polygons_cd_multi.get_main_shp_name', 'polygons_cd_multi.get_main_shp_name', (['old_shp_path', 'new_shp_path'], {}), '(old_shp_path, new_shp_path)\n', (1160, 1188), False, 'import polygons_cd_multi\n'), ((1441, 1550), 'polygons_cd.polygons_change_detection', 'polygons_cd.polygons_change_detection', (['old_shp_path', 'new_shp_path', 'output_path_expand', 'output_path_shrink'], {}), '(old_shp_path, new_shp_path,\n output_path_expand, output_path_shrink)\n', (1478, 1550), False, 'import polygons_cd\n'), ((1657, 1708), 'optparse.OptionParser', 'OptionParser', ([], {'usage': 'usage', 'version': '"""1.0 2020-02-26"""'}), "(usage=usage, version='1.0 2020-02-26')\n", (1669, 1708), False, 'from optparse import OptionParser\n'), ((2460, 2508), 'basic_src.basic.setlogfile', 'basic.setlogfile', (['"""polygons_changeDetection.log"""'], {}), "('polygons_changeDetection.log')\n", (2476, 2508), True, 'import basic_src.basic as basic\n'), ((2204, 2215), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (2212, 2215), False, 'import sys, os\n')]
from django_cron import CronJobBase, Schedule from .models import Link from django.utils import timezone class MyCronJob(CronJobBase): RUN_EVERY_MINS = 1 # every 2 hours schedule = Schedule(run_every_mins=RUN_EVERY_MINS) code = 'basicapp.cron' # a unique code def do(self): current_time = timezone.now() links = Link.objects.all() for obj in links: print("Checking last hit date for: ", obj.shortenURL) delta = current_time - obj.last_hit if delta.days > 2: print('link is older than 2 days, DELETING!') obj.delete() else: print('link was recently hit, Wont Delete.')
[ "django.utils.timezone.now", "django_cron.Schedule" ]
[((191, 230), 'django_cron.Schedule', 'Schedule', ([], {'run_every_mins': 'RUN_EVERY_MINS'}), '(run_every_mins=RUN_EVERY_MINS)\n', (199, 230), False, 'from django_cron import CronJobBase, Schedule\n'), ((319, 333), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (331, 333), False, 'from django.utils import timezone\n')]
from django.shortcuts import render from django.contrib.auth.models import User from django.contrib.auth.decorators import login_required from sesame import utils from django.core.mail import send_mail def login_page(request): if request.method == "POST": email = request.POST.get("emailId") user = User.objects.get(email=email) login_token = utils.get_query_string(user) login_link = "http://127.0.0.1:8000/customers/{}".format(login_token) html_message = """ <p>Hi there,</p> <p>Here is your <a href="{}">magic link</a> </p> <p>Thanks,</p> <p>Django Admin</p> """.format(login_link) send_mail( 'Django Magic Link', html_message, '<EMAIL>', [email], fail_silently=False, html_message = html_message ) return render(request, "login.html", context={"message":"Please check your email for magic link."}) return render(request, "login.html") @login_required def customers_home_page(request): return render(request, "customers/index.html")
[ "django.shortcuts.render", "django.contrib.auth.models.User.objects.get", "sesame.utils.get_query_string", "django.core.mail.send_mail" ]
[((998, 1027), 'django.shortcuts.render', 'render', (['request', '"""login.html"""'], {}), "(request, 'login.html')\n", (1004, 1027), False, 'from django.shortcuts import render\n'), ((1090, 1129), 'django.shortcuts.render', 'render', (['request', '"""customers/index.html"""'], {}), "(request, 'customers/index.html')\n", (1096, 1129), False, 'from django.shortcuts import render\n'), ((321, 350), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'email': 'email'}), '(email=email)\n', (337, 350), False, 'from django.contrib.auth.models import User\n'), ((373, 401), 'sesame.utils.get_query_string', 'utils.get_query_string', (['user'], {}), '(user)\n', (395, 401), False, 'from sesame import utils\n'), ((681, 797), 'django.core.mail.send_mail', 'send_mail', (['"""Django Magic Link"""', 'html_message', '"""<EMAIL>"""', '[email]'], {'fail_silently': '(False)', 'html_message': 'html_message'}), "('Django Magic Link', html_message, '<EMAIL>', [email],\n fail_silently=False, html_message=html_message)\n", (690, 797), False, 'from django.core.mail import send_mail\n'), ((893, 990), 'django.shortcuts.render', 'render', (['request', '"""login.html"""'], {'context': "{'message': 'Please check your email for magic link.'}"}), "(request, 'login.html', context={'message':\n 'Please check your email for magic link.'})\n", (899, 990), False, 'from django.shortcuts import render\n')]
from .custom_check import CustomCheck, CustomCheckError from typing import Any, List import logging logger = logging.getLogger(__name__) class DSSParameterError(Exception): """Exception raised when at least one CustomCheck fails.""" pass class DSSParameter: """Object related to one parameter. It is mainly used for checks to run in backend for custom forms. Attributes: name(str): Name of the parameter value(Any): Value of the parameter checks(list[dict], optional): Checks to run on provided value required(bool, optional): Whether the value can be None """ def __init__( self, name: str, value: Any, checks: List[dict] = None, required: bool = False ): """Initialization method for the DSSParameter class Args: name(str): Name of the parameter value(Any): Value of the parameter checks(list[dict], optional): Checks to run on provided value required(bool, optional): Whether the value can be None """ if checks is None: checks = [] self.name = name self.value = value self.checks = [CustomCheck(**check) for check in checks] if required: self.checks.append(CustomCheck(type="exists")) self.run_checks() def run_checks(self): """Runs all checks provided for this parameter""" errors = [] for check in self.checks: try: check.run(self.value) except CustomCheckError as err: errors.append(err) if errors: self.handle_failure(errors) self.handle_success() def handle_failure(self, errors: List[CustomCheckError]): """Is called when at least one test fails. It will raise an Exception with understandable text Args: errors(list[CustomCheckError]: Errors met when running checks Raises: DSSParameterError: Raises if at least on check fails """ raise DSSParameterError(self.format_failure_message(errors)) def format_failure_message(self, errors: List[CustomCheckError]) -> str: """Format failure text Args: errors(list[CustomCheckError]: Errors met when running checks Returns: str: Formatted error message """ return """ Error for parameter \"{name}\" : {errors} """.format( name=self.name, errors="\n".join(["\t {}".format(e) for e in errors]) ) def handle_success(self): """Called if all checks are successful. Prints a success message""" self.print_success_message() def print_success_message(self): """Formats the succee message""" logger.info("All checks have been successfully done for {}.".format(self.name)) def __repr__(self): return "DSSParameter(name={}, value={})".format(self.name, self.value) def __str__(self): return "DSSParameter(name={}, value={})".format(self.name, self.value)
[ "logging.getLogger" ]
[((111, 138), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (128, 138), False, 'import logging\n')]
#!/usr/bin/env python3 import os import os.path import shutil import subprocess import sys import tempfile import uuid import mgm_utils def main(): (root_dir, input_file, json_file) = sys.argv[1:4] tmpName = str(uuid.uuid4()) tmpdir = "/tmp" temp_input_file = f"{tmpdir}/{tmpName}.dat" temp_output_file = f"{tmpdir}/{tmpName}.json" shutil.copy(input_file, temp_input_file) sif = mgm_utils.get_sif_dir(root_dir) + "/ina_segmentation.sif" r = subprocess.run(["singularity", "run", sif, temp_input_file, temp_output_file]) shutil.copy(temp_output_file, json_file) if os.path.exists(temp_input_file): os.remove(temp_input_file) if os.path.exists(temp_output_file): os.remove(temp_output_file) exit(r.returncode) if __name__ == "__main__": main()
[ "os.path.exists", "subprocess.run", "uuid.uuid4", "os.remove", "shutil.copy", "mgm_utils.get_sif_dir" ]
[((341, 381), 'shutil.copy', 'shutil.copy', (['input_file', 'temp_input_file'], {}), '(input_file, temp_input_file)\n', (352, 381), False, 'import shutil\n'), ((453, 531), 'subprocess.run', 'subprocess.run', (["['singularity', 'run', sif, temp_input_file, temp_output_file]"], {}), "(['singularity', 'run', sif, temp_input_file, temp_output_file])\n", (467, 531), False, 'import subprocess\n'), ((535, 575), 'shutil.copy', 'shutil.copy', (['temp_output_file', 'json_file'], {}), '(temp_output_file, json_file)\n', (546, 575), False, 'import shutil\n'), ((581, 612), 'os.path.exists', 'os.path.exists', (['temp_input_file'], {}), '(temp_input_file)\n', (595, 612), False, 'import os\n'), ((648, 680), 'os.path.exists', 'os.path.exists', (['temp_output_file'], {}), '(temp_output_file)\n', (662, 680), False, 'import os\n'), ((217, 229), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (227, 229), False, 'import uuid\n'), ((390, 421), 'mgm_utils.get_sif_dir', 'mgm_utils.get_sif_dir', (['root_dir'], {}), '(root_dir)\n', (411, 421), False, 'import mgm_utils\n'), ((616, 642), 'os.remove', 'os.remove', (['temp_input_file'], {}), '(temp_input_file)\n', (625, 642), False, 'import os\n'), ((684, 711), 'os.remove', 'os.remove', (['temp_output_file'], {}), '(temp_output_file)\n', (693, 711), False, 'import os\n')]
from concurrent.futures import TimeoutError from google.cloud import pubsub_v1 project_id = "pubsub-testing-331300" subscription_id = "test-sub" # Number of seconds the subscriber should listen for messages timeout = 5.0 subscriber = pubsub_v1.SubscriberClient() # The `subscription_path` method creates a fully qualified identifier # in the form `projects/{project_id}/subscriptions/{subscription_id}` subscription_path = subscriber.subscription_path(project_id, subscription_id) def callback(message: pubsub_v1.subscriber.message.Message) -> None: print(f"Received {message}.") message.ack() streaming_pull_future = subscriber.subscribe(subscription_path, callback=callback) print(f"Listening for messages on {subscription_path}..\n") # Wrap subscriber in a 'with' block to automatically call close() when done. with subscriber: try: # When `timeout` is not set, result() will block indefinitely, # unless an exception is encountered first. streaming_pull_future.result(timeout=timeout) except TimeoutError: streaming_pull_future.cancel() # Trigger the shutdown. streaming_pull_future.result() # Block until the shutdown is complete.
[ "google.cloud.pubsub_v1.SubscriberClient" ]
[((236, 264), 'google.cloud.pubsub_v1.SubscriberClient', 'pubsub_v1.SubscriberClient', ([], {}), '()\n', (262, 264), False, 'from google.cloud import pubsub_v1\n')]
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, fields, models, _ class ResConfigSettings(models.TransientModel): _inherit = "res.config.settings" google_drive_authorization_code = fields.Char(string='Authorization Code', config_parameter='google_drive_authorization_code') google_drive_uri = fields.Char(compute='_compute_drive_uri', string='URI', help="The URL to generate the authorization code from Google") is_google_drive_token_generated = fields.Boolean(string='Refresh Token Generated') @api.depends('google_drive_authorization_code') def _compute_drive_uri(self): google_drive_uri = self.env['google.service']._get_google_token_uri('drive', scope=self.env['google.drive.config'].get_google_scope()) for config in self: config.google_drive_uri = google_drive_uri def get_values(self): res = super(ResConfigSettings, self).get_values() refresh_token = self.env['ir.config_parameter'].sudo().get_param('google_drive_refresh_token', False) res.update(is_google_drive_token_generated=bool(refresh_token)) return res def confirm_setup_token(self): params = self.env['ir.config_parameter'].sudo() authorization_code_before = params.get_param('google_drive_authorization_code') authorization_code = self.google_drive_authorization_code if authorization_code != authorization_code_before: refresh_token = ( self.env['google.service'].generate_refresh_token('drive', authorization_code) if authorization_code else False ) params.set_param('google_drive_refresh_token', refresh_token) def action_setup_token(self): self.ensure_one() template = self.env.ref('google_drive.google_drive_auth_code_wizard') return { 'name': _('Set up refresh token'), 'type': 'ir.actions.act_window', 'res_model': 'res.config.settings', 'views': [(template.id, 'form')], 'target': 'new', }
[ "odoo.api.depends", "odoo._", "odoo.fields.Char", "odoo.fields.Boolean" ]
[((266, 363), 'odoo.fields.Char', 'fields.Char', ([], {'string': '"""Authorization Code"""', 'config_parameter': '"""google_drive_authorization_code"""'}), "(string='Authorization Code', config_parameter=\n 'google_drive_authorization_code')\n", (277, 363), False, 'from odoo import api, fields, models, _\n'), ((382, 505), 'odoo.fields.Char', 'fields.Char', ([], {'compute': '"""_compute_drive_uri"""', 'string': '"""URI"""', 'help': '"""The URL to generate the authorization code from Google"""'}), "(compute='_compute_drive_uri', string='URI', help=\n 'The URL to generate the authorization code from Google')\n", (393, 505), False, 'from odoo import api, fields, models, _\n'), ((539, 587), 'odoo.fields.Boolean', 'fields.Boolean', ([], {'string': '"""Refresh Token Generated"""'}), "(string='Refresh Token Generated')\n", (553, 587), False, 'from odoo import api, fields, models, _\n'), ((594, 640), 'odoo.api.depends', 'api.depends', (['"""google_drive_authorization_code"""'], {}), "('google_drive_authorization_code')\n", (605, 640), False, 'from odoo import api, fields, models, _\n'), ((1931, 1956), 'odoo._', '_', (['"""Set up refresh token"""'], {}), "('Set up refresh token')\n", (1932, 1956), False, 'from odoo import api, fields, models, _\n')]
from dataclasses import dataclass from typing import List from greendoge.types.condition_opcodes import ConditionOpcode from greendoge.util.streamable import Streamable, streamable @dataclass(frozen=True) @streamable class ConditionWithArgs(Streamable): """ This structure is used to store parsed CLVM conditions Conditions in CLVM have either format of (opcode, var1) or (opcode, var1, var2) """ opcode: ConditionOpcode vars: List[bytes]
[ "dataclasses.dataclass" ]
[((185, 207), 'dataclasses.dataclass', 'dataclass', ([], {'frozen': '(True)'}), '(frozen=True)\n', (194, 207), False, 'from dataclasses import dataclass\n')]
"""The nexia integration base entity.""" from aiopvapi.resources.shade import ATTR_TYPE from homeassistant.const import ATTR_MODEL, ATTR_SW_VERSION import homeassistant.helpers.device_registry as dr from homeassistant.helpers.entity import DeviceInfo from homeassistant.helpers.update_coordinator import CoordinatorEntity from .const import ( DEVICE_FIRMWARE, DEVICE_MAC_ADDRESS, DEVICE_MODEL, DEVICE_NAME, DEVICE_SERIAL_NUMBER, DOMAIN, FIRMWARE, FIRMWARE_BUILD, FIRMWARE_REVISION, FIRMWARE_SUB_REVISION, MANUFACTURER, ) class HDEntity(CoordinatorEntity): """Base class for hunter douglas entities.""" def __init__(self, coordinator, device_info, room_name, unique_id): """Initialize the entity.""" super().__init__(coordinator) self._room_name = room_name self._unique_id = unique_id self._device_info = device_info @property def unique_id(self): """Return the unique id.""" return self._unique_id @property def device_info(self) -> DeviceInfo: """Return the device_info of the device.""" firmware = self._device_info[DEVICE_FIRMWARE] sw_version = f"{firmware[FIRMWARE_REVISION]}.{firmware[FIRMWARE_SUB_REVISION]}.{firmware[FIRMWARE_BUILD]}" return DeviceInfo( identifiers={(DOMAIN, self._device_info[DEVICE_SERIAL_NUMBER])}, connections={ (dr.CONNECTION_NETWORK_MAC, self._device_info[DEVICE_MAC_ADDRESS]) }, name=self._device_info[DEVICE_NAME], suggested_area=self._room_name, model=self._device_info[DEVICE_MODEL], sw_version=sw_version, manufacturer=MANUFACTURER, ) class ShadeEntity(HDEntity): """Base class for hunter douglas shade entities.""" def __init__(self, coordinator, device_info, room_name, shade, shade_name): """Initialize the shade.""" super().__init__(coordinator, device_info, room_name, shade.id) self._shade_name = shade_name self._shade = shade @property def device_info(self) -> DeviceInfo: """Return the device_info of the device.""" device_info = DeviceInfo( identifiers={(DOMAIN, self._shade.id)}, name=self._shade_name, suggested_area=self._room_name, manufacturer=MANUFACTURER, model=str(self._shade.raw_data[ATTR_TYPE]), via_device=(DOMAIN, self._device_info[DEVICE_SERIAL_NUMBER]), ) for shade in self._shade.shade_types: if shade.shade_type == device_info[ATTR_MODEL]: device_info[ATTR_MODEL] = shade.description break if FIRMWARE not in self._shade.raw_data: return device_info firmware = self._shade.raw_data[FIRMWARE] sw_version = f"{firmware[FIRMWARE_REVISION]}.{firmware[FIRMWARE_SUB_REVISION]}.{firmware[FIRMWARE_BUILD]}" device_info[ATTR_SW_VERSION] = sw_version return device_info
[ "homeassistant.helpers.entity.DeviceInfo" ]
[((1314, 1646), 'homeassistant.helpers.entity.DeviceInfo', 'DeviceInfo', ([], {'identifiers': '{(DOMAIN, self._device_info[DEVICE_SERIAL_NUMBER])}', 'connections': '{(dr.CONNECTION_NETWORK_MAC, self._device_info[DEVICE_MAC_ADDRESS])}', 'name': 'self._device_info[DEVICE_NAME]', 'suggested_area': 'self._room_name', 'model': 'self._device_info[DEVICE_MODEL]', 'sw_version': 'sw_version', 'manufacturer': 'MANUFACTURER'}), '(identifiers={(DOMAIN, self._device_info[DEVICE_SERIAL_NUMBER])},\n connections={(dr.CONNECTION_NETWORK_MAC, self._device_info[\n DEVICE_MAC_ADDRESS])}, name=self._device_info[DEVICE_NAME],\n suggested_area=self._room_name, model=self._device_info[DEVICE_MODEL],\n sw_version=sw_version, manufacturer=MANUFACTURER)\n', (1324, 1646), False, 'from homeassistant.helpers.entity import DeviceInfo\n')]
# Process the unix command line of the pipeline. import argparse from version import rubra_version def get_cmdline_args(): return parser.parse_args() parser = argparse.ArgumentParser( description='A bioinformatics pipeline system.') parser.add_argument( 'pipeline', metavar='PIPELINE_FILE', type=str, help='Your Ruffus pipeline stages (a Python module)') parser.add_argument( '--config', metavar='CONFIG_FILE', type=str, nargs='+', required=True, help='One or more configuration files (Python modules)') parser.add_argument( '--verbose', type=int, choices=(0, 1, 2), required=False, default=1, help='Output verbosity level: 0 = quiet; 1 = normal; \ 2 = chatty (default is 1)') parser.add_argument( '--style', type=str, choices=('print', 'run', 'flowchart', 'touchfiles'), required=False, default='print', help='Pipeline behaviour: print; run; touchfiles; flowchart (default is print)') parser.add_argument( '--force', metavar='TASKNAME', type=str, required=False, default=[], nargs='+', help='tasks which are forced to be out of date regardless of timestamps') parser.add_argument( '--end', metavar='TASKNAME', type=str, required=False, help='end points (tasks) for the pipeline') parser.add_argument( '--rebuild', type=str, choices=('fromstart', 'fromend'), required=False, default='fromstart', help='rebuild outputs by working back from end tasks or forwards \ from start tasks (default is fromstart)') parser.add_argument( '--version', action='version', version='%(prog)s ' + rubra_version)
[ "argparse.ArgumentParser" ]
[((166, 238), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""A bioinformatics pipeline system."""'}), "(description='A bioinformatics pipeline system.')\n", (189, 238), False, 'import argparse\n')]
import webbrowser import config from Generator import Generator def main(): generator = Generator() latitude, longitude = generator.getCoordinates() webbrowser.open(config.api_request.format(latitude, longitude)) if __name__ == '__main__': main()
[ "Generator.Generator", "config.api_request.format" ]
[((94, 105), 'Generator.Generator', 'Generator', ([], {}), '()\n', (103, 105), False, 'from Generator import Generator\n'), ((180, 226), 'config.api_request.format', 'config.api_request.format', (['latitude', 'longitude'], {}), '(latitude, longitude)\n', (205, 226), False, 'import config\n')]
hiddenimports = ['sip', 'PyQt4.QtGui', 'PyQt4._qt'] from PyInstaller.hooks.hookutils import qt4_plugins_binaries def hook(mod): mod.binaries.extend(qt4_plugins_binaries('phonon_backend')) return mod
[ "PyInstaller.hooks.hookutils.qt4_plugins_binaries" ]
[((155, 193), 'PyInstaller.hooks.hookutils.qt4_plugins_binaries', 'qt4_plugins_binaries', (['"""phonon_backend"""'], {}), "('phonon_backend')\n", (175, 193), False, 'from PyInstaller.hooks.hookutils import qt4_plugins_binaries\n')]
from PyTradier.base import BasePyTradier from typing import Union from datetime import datetime class MarketData(BasePyTradier): """All Methods currently only support string API calls, no datetime, bools, etc """ def quotes(self, symbols: Union[str, list], greeks: bool = False) -> dict: """Get a list of symbols using a keyword lookup on the symbols description. Results are in descending order by average volume of the security. This can be used for simple search functions :param symbols: Comma-delimited list of symbols (equity or option) :type symbols: Union[str, list] :param greeks: Add greeks and volatility information (option only), defaults to False :type greeks: bool, optional :return: quotes for requested symbols :rtype: dict """ symbols = self._symbol_prep(symbols) return self._get( "/v1/markets/quotes", params=self.create_params(locals()), dict_args=("quotes", "quotes"), ) def option_chain( self, symbol: str, expiration: Union[str, datetime], greeks: Union[str, bool] = "false", ) -> dict: """Get all quotes in an option chain. Greek and IV data is included courtesy of ORATS. Please check out their APIs for more in-depth options data. :param symbol: Underlying symbol of the chain :type symbol: str :param expiration: Expiration for the chain :type expiration: Union[str, datetime] :param greeks: Add greeks and volatility information, defaults to "false" :type greeks: Union[str, bool], optional :return: Get all quotes in an option chain :rtype: dict """ return self._get( "/v1/markets/options/chains", params=self.create_params(locals()), dict_args=("options", "option"), ) def option_strike(self, symbol: str, expiration: Union[str, datetime]) -> list: """Get an options strike prices for a specified expiration date. :param symbol: Underlying symbol of the chain :type symbol: str :param expiration: Expiration for the chain :type expiration: Union[str, datetime] :return: [description] :rtype: list """ return self._get( "/v1/markets/options/strikes", params=self.create_params(locals()) ) def option_lookup(self, underlying: str) -> dict: """Get all options symbols for the given underlying. This will include additional option roots (ex. SPXW, RUTW) if applicable. :param underlying: Underlying symbol of the chain :type underlying: str :return: dict {"rootSymbol": underlying, "options": [list of option symbols]} :rtype: dict """ return self._get( "/v1/markets/options/lookup", params=self.create_params(locals()) ) def option_expirations( self, symbol: str, includeAllRoots: Union[str, bool] = "", strikes: Union[str, bool] = "", ) -> list: """Get expiration dates for a particular underlying. Note that some underlying securities use a different symbol for their weekly options (RUT/RUTW, SPX/SPXW). To make sure you see all expirations, make sure to send the includeAllRoots parameter. This will also ensure any unique options due to corporate actions (AAPL1) are returned. :param symbol: Underlying symbol of the chain :type symbol: str :param includeAllRoots: Send expirations related to all option roots, defaults to '' :type includeAllRoots: Union[str, bool], optional :param strikes: Add strike prices to each expiration, defaults to '' :type strikes: Union[str, bool], optional :return: list of expiration dates as str %Y-%m-%d :rtype: list """ response = self._get( "/v1/markets/options/expirations", params=self.create_params(locals()) ) return response def historic_quotes( self, symbol: str, interval: str = "daily", start: str = None, end: str = None ) -> list: """Get historical pricing for a security. This data will usually cover the entire lifetime of the company if sending reasonable start/end times. You can fetch historical pricing for options by passing the OCC option symbol (ex. AAPL220617C00270000) as the symbol. :param symbol: Symbol to query :type symbol: str :param interval: Interval of time per timesale. One of: daily, weekly, monthly, defaults to "daily" :type interval: str, optional :param start: Start date represented as YYYY-MM-DD, defaults to None :type start: str, optional :param end: End date represented as YYYY-MM-DD, defaults to None :type end: str, optional :return: [description] :rtype: list """ return self._get( "/v1/markets/history", params=self.create_params(locals()), dict_args=("history", "day"), ) def time_and_sales( self, symbol: str, start: str, end: str, interval: str = "1min" ) -> list: """Time and Sales (timesales) is typically used for charting purposes. It captures pricing across a time slice at predefined intervals. Tick data is also available through this endpoint. This results in a very large data set for high-volume symbols, so the time slice needs to be much smaller to keep downloads time reasonable.` :param symbol: A single security symbol. :type symbol: str :param start: Start date/time for timesales range represented as YYYY-MM-DD HH:MM :type start: str :param end: Start date/time for timesales range represented as YYYY-MM-DD HH:MM :type end: str :param interval: Interval of time per timesale. One of: tick, 1min, 5min, 15min, defaults to "1min" :type interval: str, optional :return: list of dictionaries containing keys of ['time', 'timestamp', 'price', 'open', 'high', 'close', low', 'volume', 'vwap'] :rtype: list """ return self._get( "/v1/markets/timesales", params=self.create_params(locals()), dict_args=("series", "data"), ) if __name__ == "__main__": from utils import printer data = MarketData() symbol = "AAPL" response = data.option_lookup(symbol) # response = data.option_strike(symbol, dates[0]) printer(response)
[ "utils.printer" ]
[((6561, 6578), 'utils.printer', 'printer', (['response'], {}), '(response)\n', (6568, 6578), False, 'from utils import printer\n')]
""" Services are the heart of RPyC: each side of the connection exposes a *service*, which define the capabilities available to the other side. Note that the services by both parties need not be symmetric, e.g., one side may exposed *service A*, while the other may expose *service B*. As long as the two can interoperate, you're good to go. """ from functools import partial from rpyc.lib import hybridmethod from rpyc.lib.compat import execute, is_py3k from rpyc.core.protocol import Connection class Service(object): """The service base-class. Derive from this class to implement custom RPyC services: * The name of the class implementing the ``Foo`` service should match the pattern ``FooService`` (suffixed by the word 'Service') :: class FooService(Service): pass FooService.get_service_name() # 'FOO' FooService.get_service_aliases() # ['FOO'] * To supply a different name or aliases, use the ``ALIASES`` class attribute :: class Foobar(Service): ALIASES = ["foo", "bar", "lalaland"] Foobar.get_service_name() # 'FOO' Foobar.get_service_aliases() # ['FOO', 'BAR', 'LALALAND'] * Override :func:`on_connect` to perform custom initialization * Override :func:`on_disconnect` to perform custom finalization * To add exposed methods or attributes, simply define them normally, but prefix their name by ``exposed_``, e.g. :: class FooService(Service): def exposed_add(self, x, y): return x + y * All other names (not prefixed by ``exposed_``) are local (not accessible to the other party) .. note:: You can override ``_rpyc_getattr``, ``_rpyc_setattr`` and ``_rpyc_delattr`` to change attribute lookup -- but beware of possible **security implications!** """ __slots__ = () ALIASES = () _protocol = Connection def on_connect(self, conn): """called when the connection is established""" pass def on_disconnect(self, conn): """called when the connection had already terminated for cleanup (must not perform any IO on the connection)""" pass # Using default defined in 'protocol.Connection._access_attr' for: # def _rpyc_getattr(self, name): def _rpyc_delattr(self, name): raise AttributeError("access denied") def _rpyc_setattr(self, name, value): raise AttributeError("access denied") @classmethod def get_service_aliases(cls): """returns a list of the aliases of this service""" if cls.ALIASES: return tuple(str(n).upper() for n in cls.ALIASES) name = cls.__name__.upper() if name.endswith("SERVICE"): name = name[:-7] return (name,) @classmethod def get_service_name(cls): """returns the canonical name of the service (which is its first alias)""" return cls.get_service_aliases()[0] exposed_get_service_aliases = get_service_aliases exposed_get_service_name = get_service_name @hybridmethod def _connect(self, channel, config={}): """Setup a connection via the given channel.""" if isinstance(self, type): # autovivify if accessed as class method self = self() # Note that we are here passing in `self` as root object for backward # compatibility and convenience. You could pass in a different root if # you wanted: conn = self._protocol(self, channel, config) self.on_connect(conn) return conn class VoidService(Service): """void service - an do-nothing service""" __slots__ = () class ModuleNamespace(object): """used by the :class:`SlaveService` to implement the magical 'module namespace'""" __slots__ = ["__getmodule", "__cache", "__weakref__"] def __init__(self, getmodule): self.__getmodule = getmodule self.__cache = {} def __contains__(self, name): try: self[name] except ImportError: return False else: return True def __getitem__(self, name): if type(name) is tuple: name = ".".join(name) if name not in self.__cache: self.__cache[name] = self.__getmodule(name) return self.__cache[name] def __getattr__(self, name): return self[name] class Slave(object): __slots__ = ["_conn", "namespace"] def __init__(self): self._conn = None self.namespace = {} def execute(self, text): """execute arbitrary code (using ``exec``)""" execute(text, self.namespace) def eval(self, text): """evaluate arbitrary code (using ``eval``)""" return eval(text, self.namespace) def getmodule(self, name): """imports an arbitrary module""" return __import__(name, None, None, "*") def getconn(self): """returns the local connection instance to the other side""" return self._conn class SlaveService(Slave, Service): """The SlaveService allows the other side to perform arbitrary imports and execution arbitrary code on the server. This is provided for compatibility with the classic RPyC (2.6) modus operandi. This service is very useful in local, secure networks, but it exposes a **major security risk** otherwise.""" __slots__ = () def on_connect(self, conn): self._conn = conn self._conn._config.update(dict( allow_all_attrs = True, allow_pickle = True, allow_getattr = True, allow_setattr = True, allow_delattr = True, allow_exposed_attrs = False, import_custom_exceptions = True, instantiate_custom_exceptions = True, instantiate_oldstyle_exceptions = True, )) super(SlaveService, self).on_connect(conn) class FakeSlaveService(VoidService): """VoidService that can be used for connecting to peers that operate a :class:`MasterService`, :class:`ClassicService`, or the old ``SlaveService`` (pre v3.5) without exposing any functionality to them.""" __slots__ = () exposed_namespace = None exposed_execute = None exposed_eval = None exposed_getmodule = None exposed_getconn = None class MasterService(Service): """Peer for a new-style (>=v3.5) :class:`SlaveService`. Use this service if you want to connect to a ``SlaveService`` without exposing any functionality to them.""" __slots__ = () def on_connect(self, conn): super(MasterService, self).on_connect(conn) self._install(conn, conn.root) @staticmethod def _install(conn, slave): modules = ModuleNamespace(slave.getmodule) builtin = modules.builtins if is_py3k else modules.__builtin__ conn.modules = modules conn.eval = slave.eval conn.execute = slave.execute conn.namespace = slave.namespace conn.builtin = builtin conn.builtins = builtin from rpyc.utils.classic import teleport_function conn.teleport = partial(teleport_function, conn) class ClassicService(MasterService, SlaveService): """Full duplex master/slave service, i.e. both parties have full control over the other. Must be used by both parties.""" __slots__ = () class ClassicClient(MasterService, FakeSlaveService): """MasterService that can be used for connecting to peers that operate a :class:`MasterService`, :class:`ClassicService` without exposing any functionality to them.""" __slots__ = ()
[ "functools.partial", "rpyc.lib.compat.execute" ]
[((4665, 4694), 'rpyc.lib.compat.execute', 'execute', (['text', 'self.namespace'], {}), '(text, self.namespace)\n', (4672, 4694), False, 'from rpyc.lib.compat import execute, is_py3k\n'), ((7188, 7220), 'functools.partial', 'partial', (['teleport_function', 'conn'], {}), '(teleport_function, conn)\n', (7195, 7220), False, 'from functools import partial\n')]
from django import template from django.template.defaultfilters import stringfilter from django.utils.safestring import SafeString import markdown import urllib register = template.Library() @register.filter def strip_space(value): return value.replace(' ', '') @register.filter @stringfilter def commonmark(value): return markdown.Markdown().convert(value) @register.filter(name="getID") def get_ID(value): if not type(value) is str: return value return value.split('/')[-1] @register.filter(name="getNav") def get_nav(value): return value.split('/')[-2] @register.filter(name="encode_url") def encode_url(value): return urllib.parse.quote(value) @register.filter def get_post_id(url): """ gets the post id from the comment page url """ return urllib.parse.urlparse(url.get_full_path()).path.rsplit('/', 1)[0]
[ "markdown.Markdown", "urllib.parse.quote", "django.template.Library" ]
[((173, 191), 'django.template.Library', 'template.Library', ([], {}), '()\n', (189, 191), False, 'from django import template\n'), ((660, 685), 'urllib.parse.quote', 'urllib.parse.quote', (['value'], {}), '(value)\n', (678, 685), False, 'import urllib\n'), ((334, 353), 'markdown.Markdown', 'markdown.Markdown', ([], {}), '()\n', (351, 353), False, 'import markdown\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.CloudbusUserInfo import CloudbusUserInfo class MetroOdItem(object): def __init__(self): self._dest_geo = None self._od = None self._time = None self._user_info = None self._week_od = None self._work_od = None @property def dest_geo(self): return self._dest_geo @dest_geo.setter def dest_geo(self, value): self._dest_geo = value @property def od(self): return self._od @od.setter def od(self, value): self._od = value @property def time(self): return self._time @time.setter def time(self, value): self._time = value @property def user_info(self): return self._user_info @user_info.setter def user_info(self, value): if isinstance(value, CloudbusUserInfo): self._user_info = value else: self._user_info = CloudbusUserInfo.from_alipay_dict(value) @property def week_od(self): return self._week_od @week_od.setter def week_od(self, value): self._week_od = value @property def work_od(self): return self._work_od @work_od.setter def work_od(self, value): self._work_od = value def to_alipay_dict(self): params = dict() if self.dest_geo: if hasattr(self.dest_geo, 'to_alipay_dict'): params['dest_geo'] = self.dest_geo.to_alipay_dict() else: params['dest_geo'] = self.dest_geo if self.od: if hasattr(self.od, 'to_alipay_dict'): params['od'] = self.od.to_alipay_dict() else: params['od'] = self.od if self.time: if hasattr(self.time, 'to_alipay_dict'): params['time'] = self.time.to_alipay_dict() else: params['time'] = self.time if self.user_info: if hasattr(self.user_info, 'to_alipay_dict'): params['user_info'] = self.user_info.to_alipay_dict() else: params['user_info'] = self.user_info if self.week_od: if hasattr(self.week_od, 'to_alipay_dict'): params['week_od'] = self.week_od.to_alipay_dict() else: params['week_od'] = self.week_od if self.work_od: if hasattr(self.work_od, 'to_alipay_dict'): params['work_od'] = self.work_od.to_alipay_dict() else: params['work_od'] = self.work_od return params @staticmethod def from_alipay_dict(d): if not d: return None o = MetroOdItem() if 'dest_geo' in d: o.dest_geo = d['dest_geo'] if 'od' in d: o.od = d['od'] if 'time' in d: o.time = d['time'] if 'user_info' in d: o.user_info = d['user_info'] if 'week_od' in d: o.week_od = d['week_od'] if 'work_od' in d: o.work_od = d['work_od'] return o
[ "alipay.aop.api.domain.CloudbusUserInfo.CloudbusUserInfo.from_alipay_dict" ]
[((1063, 1103), 'alipay.aop.api.domain.CloudbusUserInfo.CloudbusUserInfo.from_alipay_dict', 'CloudbusUserInfo.from_alipay_dict', (['value'], {}), '(value)\n', (1096, 1103), False, 'from alipay.aop.api.domain.CloudbusUserInfo import CloudbusUserInfo\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # FOGLAMP_BEGIN # See: http://foglamp.readthedocs.io/ # FOGLAMP_END """ fogbench -- a Python script used to test FogLAMP. The objective is to simulate payloads for input, REST and other requests against one or more FogLAMP instances. This version of fogbench is meant to test the CoAP and HTTP plugins interface of FogLAMP southbound services. fogbench [IN] -h --help Print this help -i --interval The interval in seconds between each iteration (default: 0) [IN] -k --keep Do not delete (keep) the running sample (default: no) [IN] -o --output Set the output file for statistics [IN] -p --payload Type of payload and protocol (default: coap) [IN] -t --template Set the template to use [IN] -v --version Display the version and exit [IN] -H --host The FogLAMP host (default: localhost) -I --iterations The number of iterations of the test (default: 1) [IN] -O --occurrences The number of occurrences of the template (default: 1) [IN] -P --port The FogLAMP port. Default depends on payload and protocol [IN] -S --statistic The type of statistics to collect Example: $ cd $FOGLAMP_ROOT/bin $ ./fogbench Help: $ ./fogbench -h * Create reading objects from given template, as per the json file name specified with -t * Save those objects to the file, as per the file name specified with -o * Read those objects * Send those to CoAP or HTTP south plugin server, on specific host and port .. todo:: * Try generators """ import sys import os import random import json from datetime import datetime, timezone import argparse import collections import asyncio import aiohttp from .exceptions import * __author__ = "<NAME>" __copyright__ = "Copyright (c) 2017 OSIsoft, LLC" __license__ = "Apache 2.0" __version__ = "${VERSION}" _FOGBENCH_VERSION = u"0.1.1" _start_time = [] _end_time = [] _tot_msgs_transferred = [] _tot_byte_transferred = [] _num_iterated = 0 """Statistics to be collected""" # _logger = logger.setup(__name__) def local_timestamp(): """ :return: str - current time stamp with microseconds and machine timezone info :example '2018-05-08 14:06:40.517313+05:30' """ return str(datetime.now(timezone.utc).astimezone()) def read_templates(): templates = [] return templates def parse_template_and_prepare_json(_template_file, _write_to_file=None, _occurrences=1): # template_file = os.path.join(os.path.dirname(__file__), "templates/" + _template_file) with open(_template_file) as data_file: data = json.load(data_file) supported_format_types = ["number", "enum"] for _ in range(_occurrences): readings_ = _prepare_sensor_reading(data, supported_format_types) for r in readings_: _write_readings_to_file(_write_to_file, r) def _write_readings_to_file(to_file, r): with open(to_file, 'a') as the_file: json.dump(r, the_file) the_file.write(os.linesep) def _prepare_sensor_reading(data, supported_format_types): readings = [] for d in data: x_sensor_values = dict() _sensor_value_object_formats = d["sensor_values"] for fmt in _sensor_value_object_formats: if fmt["type"] not in supported_format_types: raise InvalidSensorValueObjectTemplateFormat(u"Invalid format, " u"Can not parse type {}".format(fmt["type"])) if fmt["type"] == "number": # check float precision if any precision = fmt.get("precision", None) min_val = fmt.get("min", None) max_val = fmt.get("max", None) if min_val is None or max_val is None: raise InvalidSensorValueObjectTemplateFormat(u"Invalid format, " u"Min and Max values must be defined for type number.") # print(precision) # print(min_val) # print(max_val) reading = round(random.uniform(min_val, max_val), precision) elif fmt["type"] == "enum": reading = random.choice(fmt["list"]) # print(fmt["name"], reading) x_sensor_values[fmt["name"]] = reading # print(d["name"]) sensor_value_object = dict() sensor_value_object["asset"] = d['name'] sensor_value_object["readings"] = x_sensor_values sensor_value_object["timestamp"] = "{!s}".format(local_timestamp()) # print(json.dumps(sensor_value_object)) ord_dict = collections.OrderedDict(sorted(sensor_value_object.items())) readings.append(ord_dict) return readings def read_out_file(_file=None, _keep=False, _iterations=1, _interval=0, send_to='coap'): global _start_time global _end_time global _tot_msgs_transferred global _tot_byte_transferred global _num_iterated # from pprint import pprint import time # _file = os.path.join(os.path.dirname(__file__), "out/{}".format(outfile)) with open(_file) as f: readings_list = [json.loads(line) for line in f] loop = asyncio.get_event_loop() while _iterations > 0: # Pre-calculate the messages and size msg_transferred_itr = 0 # Messages transferred in every iteration byte_transferred_itr = 0 # Bytes transferred in every iteration for r in readings_list: msg_transferred_itr += 1 byte_transferred_itr += sys.getsizeof(r) if send_to == 'coap': _start_time.append(datetime.now()) for r in readings_list: is_sent = loop.run_until_complete(send_to_coap(r)) if not is_sent: break elif send_to == 'http': _start_time.append(datetime.now()) loop.run_until_complete(send_to_http(readings_list)) _end_time.append(datetime.now()) # End time of every iteration _tot_msgs_transferred.append(msg_transferred_itr) _tot_byte_transferred.append(byte_transferred_itr) _iterations -= 1 _num_iterated += 1 if _iterations != 0: # print(u"Iteration {} completed, waiting for {} seconds".format(_iterations, _interval)) time.sleep(_interval) if not _keep: os.remove(_file) async def send_to_coap(payload): """ POST request to: localhost port 5683 (official IANA assigned CoAP port), URI "/other/sensor-values". """ from aiocoap import Context, Message from aiocoap.numbers.codes import Code from cbor2 import dumps context = await Context.create_client_context() request = Message(payload=dumps(payload), code=Code.POST) request.opt.uri_host = arg_host request.opt.uri_port = arg_port request.opt.uri_path = ("other", "sensor-values") response = await context.request(request).response str_res = str(response.code) status_code = str_res[:4] # or str_res.split()[0] if status_code == "4.00" or status_code == "5.00": print("Error: ", str_res) return False return True async def send_to_http(payload): """ POST request to: host localhost port 6683 (default HTTP south plugin port), uri sensor-reading """ headers = {'content-type': 'application/json'} url = 'http://{}:{}/sensor-reading'.format(arg_host, arg_port) async with aiohttp.ClientSession() as session: async with session.post(url, data=json.dumps(payload), headers=headers) as resp: await resp.text() status_code = resp.status if status_code in range(400, 500): print("Bad request error | code:{}, reason: {}".format(status_code, resp.reason)) return False if status_code in range(500, 600): print("Server error | code:{}, reason: {}".format(status_code, resp.reason)) return False return True def get_statistics(_stats_type=None, _out_file=None): stat = '' global _start_time global _end_time global _tot_msgs_transferred global _tot_byte_transferred global _num_iterated if _stats_type == 'total': stat += u"Total Statistics:\n" stat += (u"\nStart Time: {}".format(datetime.strftime(_start_time[0], "%Y-%m-%d %H:%M:%S.%f"))) stat += (u"\nEnd Time: {}\n".format(datetime.strftime(_end_time[-1], "%Y-%m-%d %H:%M:%S.%f"))) stat += (u"\nTotal Messages Transferred: {}".format(sum(_tot_msgs_transferred))) stat += (u"\nTotal Bytes Transferred: {}\n".format(sum(_tot_byte_transferred))) stat += (u"\nTotal Iterations: {}".format(_num_iterated)) stat += (u"\nTotal Messages per Iteration: {}".format(sum(_tot_msgs_transferred)/_num_iterated)) stat += (u"\nTotal Bytes per Iteration: {}\n".format(sum(_tot_byte_transferred)/_num_iterated)) _msg_rate = [] _byte_rate = [] for itr in range(_num_iterated): time_taken = _end_time[itr] - _start_time[itr] _msg_rate.append(_tot_msgs_transferred[itr]/(time_taken.seconds+time_taken.microseconds/1E6)) _byte_rate.append(_tot_byte_transferred[itr] / (time_taken.seconds+time_taken.microseconds/1E6)) stat += (u"\nMin messages/second: {}".format(min(_msg_rate))) stat += (u"\nMax messages/second: {}".format(max(_msg_rate))) stat += (u"\nAvg messages/second: {}\n".format(sum(_msg_rate)/_num_iterated)) stat += (u"\nMin Bytes/second: {}".format(min(_byte_rate))) stat += (u"\nMax Bytes/second: {}".format(max(_byte_rate))) stat += (u"\nAvg Bytes/second: {}".format(sum(_byte_rate)/_num_iterated)) if _out_file: with open(_out_file, 'w') as f: f.write(stat) else: print(stat) # should we also show total time diff? end_time - start_time def check_server(payload_type='coap'): template_str = ">>> Make sure south {} plugin service is running \n & listening on specified host and port \n" if payload_type == 'coap': print(template_str.format("CoAP")) elif payload_type == 'http': print(template_str.format("HTTP")) parser = argparse.ArgumentParser(prog='fogbench') parser.description = '%(prog)s -- a Python script used to test FogLAMP (simulate payloads)' parser.epilog = 'The initial version of %(prog)s is meant to test the south plugin interface of ' \ 'FogLAMP using CoAP or HTTP' parser.add_argument('-v', '--version', action='version', version='%(prog)s {0!s}'.format(_FOGBENCH_VERSION)) parser.add_argument('-k', '--keep', default=False, choices=['y', 'yes', 'n', 'no'], help='Do not delete the running sample (default: no)') parser.add_argument('-t', '--template', required=True, help='Set the template file, json extension') parser.add_argument('-o', '--output', default=None, help='Set the statistics output file') parser.add_argument('-p', '--payload', default='coap', choices=['coap', 'http'], help='Type of payload ' 'and protocol (default: coap)') parser.add_argument('-I', '--iterations', help='The number of iterations of the test (default: 1)') parser.add_argument('-O', '--occurrences', help='The number of occurrences of the template (default: 1)') parser.add_argument('-H', '--host', help='Server host address (default: localhost)') parser.add_argument('-P', '--port', help='The FogLAMP port. (default: 5683)') parser.add_argument('-i', '--interval', default=0, help='The interval in seconds for each iteration (default: 0)') parser.add_argument('-S', '--statistics', default='total', choices=['total'], help='The type of statistics to collect ' '(default: total)') namespace = parser.parse_args(sys.argv[1:]) infile = '{0}'.format(namespace.template if namespace.template else '') statistics_file = os.path.join(os.path.dirname(__file__), "out/{}".format(namespace.output)) if namespace.output else None keep_the_file = True if namespace.keep in ['y', 'yes'] else False # iterations and occurrences arg_iterations = int(namespace.iterations) if namespace.iterations else 1 arg_occurrences = int(namespace.occurrences) if namespace.occurrences else 1 # interval between each iteration arg_interval = int(namespace.interval) if namespace.interval else 0 arg_stats_type = '{0}'.format(namespace.statistics) if namespace.statistics else 'total' if namespace.payload: arg_payload_protocol = namespace.payload arg_host = '{0}'.format(namespace.host) if namespace.host else 'localhost' default_port = 6683 if arg_payload_protocol == 'http' else 5683 arg_port = int(namespace.port) if namespace.port else default_port check_server(arg_payload_protocol) sample_file = os.path.join("/tmp", "foglamp_running_sample.{}".format(os.getpid())) parse_template_and_prepare_json(_template_file=infile, _write_to_file=sample_file, _occurrences=arg_occurrences) read_out_file(_file=sample_file, _keep=keep_the_file, _iterations=arg_iterations, _interval=arg_interval, send_to=arg_payload_protocol) get_statistics(_stats_type=arg_stats_type, _out_file=statistics_file) # TODO: Change below per local_timestamp() values """ Expected output from given template { "timestamp" : "2017-08-04T06:59:57.503Z", "asset" : "TI sensorTag/luxometer", "sensor_values" : { "lux" : 49 } } { "timestamp" : "2017-08-04T06:59:57.863Z", "asset" : "TI sensorTag/pressure", "sensor_values" : { "pressure" : 1021.2 } } { "timestamp" : "2017-08-04T06:59:58.863Z", "asset" : "TI sensorTag/humidity", "sensor_values" : { "humidity" : 71.2, "temperature" : 18.6 } } { "timestamp" : "2017-08-04T06:59:59.863Z", "asset" : "TI sensorTag/temperature", "sensor_values" : { "object" : 18.2, "ambient" : 21.6 } } { "timestamp" : "2017-08-04T07:00:00.863Z", "asset" : "TI sensorTag/accelerometer", "sensor_values" : { "x" : 1.2, "y" : 0.0, "z" : -0.6 } } { "timestamp" : "2017-08-04T07:00:01.863Z", "asset" : "TI sensorTag/gyroscope", "sensor_values" : { "x" : 101.2, "y" : 46.2, "z" : -12.6 } } { "timestamp" : "2017-08-04T07:00:02.863Z", "asset" : "TI sensorTag/magnetometer", "sensor_values" : { "x" : 101.2, "y" : 46.2, "z" : -12.6 } } { "timestamp" : "2017-08-04T07:00:03.863Z", "asset" : "mouse", "sensor_values" : { "button" : "down" } } { "timestamp" : "2017-08-04T07:00:04.863Z", "asset" : "wall clock", "sensor_values" : { "tick" : "tock" } } """
[ "aiohttp.ClientSession", "json.loads", "random.uniform", "random.choice", "aiocoap.Context.create_client_context", "argparse.ArgumentParser", "cbor2.dumps", "sys.getsizeof", "datetime.datetime.strftime", "json.dumps", "time.sleep", "os.path.dirname", "datetime.datetime.now", "os.getpid", "json.load", "asyncio.get_event_loop", "json.dump", "os.remove" ]
[((10450, 10490), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': '"""fogbench"""'}), "(prog='fogbench')\n", (10473, 10490), False, 'import argparse\n'), ((5345, 5369), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (5367, 5369), False, 'import asyncio\n'), ((2690, 2710), 'json.load', 'json.load', (['data_file'], {}), '(data_file)\n', (2699, 2710), False, 'import json\n'), ((3051, 3073), 'json.dump', 'json.dump', (['r', 'the_file'], {}), '(r, the_file)\n', (3060, 3073), False, 'import json\n'), ((6533, 6549), 'os.remove', 'os.remove', (['_file'], {}), '(_file)\n', (6542, 6549), False, 'import os\n'), ((6855, 6886), 'aiocoap.Context.create_client_context', 'Context.create_client_context', ([], {}), '()\n', (6884, 6886), False, 'from aiocoap import Context, Message\n'), ((7646, 7669), 'aiohttp.ClientSession', 'aiohttp.ClientSession', ([], {}), '()\n', (7667, 7669), False, 'import aiohttp\n'), ((12268, 12293), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (12283, 12293), False, 'import os\n'), ((13182, 13193), 'os.getpid', 'os.getpid', ([], {}), '()\n', (13191, 13193), False, 'import os\n'), ((5301, 5317), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (5311, 5317), False, 'import json\n'), ((5699, 5715), 'sys.getsizeof', 'sys.getsizeof', (['r'], {}), '(r)\n', (5712, 5715), False, 'import sys\n'), ((6125, 6139), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (6137, 6139), False, 'from datetime import datetime, timezone\n'), ((6484, 6505), 'time.sleep', 'time.sleep', (['_interval'], {}), '(_interval)\n', (6494, 6505), False, 'import time\n'), ((6918, 6932), 'cbor2.dumps', 'dumps', (['payload'], {}), '(payload)\n', (6923, 6932), False, 'from cbor2 import dumps\n'), ((8525, 8582), 'datetime.datetime.strftime', 'datetime.strftime', (['_start_time[0]', '"""%Y-%m-%d %H:%M:%S.%f"""'], {}), "(_start_time[0], '%Y-%m-%d %H:%M:%S.%f')\n", (8542, 8582), False, 'from datetime import datetime, timezone\n'), ((8631, 8687), 'datetime.datetime.strftime', 'datetime.strftime', (['_end_time[-1]', '"""%Y-%m-%d %H:%M:%S.%f"""'], {}), "(_end_time[-1], '%Y-%m-%d %H:%M:%S.%f')\n", (8648, 8687), False, 'from datetime import datetime, timezone\n'), ((2303, 2329), 'datetime.datetime.now', 'datetime.now', (['timezone.utc'], {}), '(timezone.utc)\n', (2315, 2329), False, 'from datetime import datetime, timezone\n'), ((5778, 5792), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (5790, 5792), False, 'from datetime import datetime, timezone\n'), ((4229, 4261), 'random.uniform', 'random.uniform', (['min_val', 'max_val'], {}), '(min_val, max_val)\n', (4243, 4261), False, 'import random\n'), ((4340, 4366), 'random.choice', 'random.choice', (["fmt['list']"], {}), "(fmt['list'])\n", (4353, 4366), False, 'import random\n'), ((6018, 6032), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (6030, 6032), False, 'from datetime import datetime, timezone\n'), ((7724, 7743), 'json.dumps', 'json.dumps', (['payload'], {}), '(payload)\n', (7734, 7743), False, 'import json\n')]
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ Module for graph representations of crystals. """ import copy import logging import os.path import subprocess import warnings from collections import defaultdict, namedtuple from itertools import combinations from operator import itemgetter import networkx as nx import networkx.algorithms.isomorphism as iso import numpy as np from monty.json import MSONable from monty.os.path import which from networkx.drawing.nx_agraph import write_dot from networkx.readwrite import json_graph from scipy.spatial import KDTree from scipy.stats import describe from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure from pymatgen.core.structure import FunctionalGroups from pymatgen.util.coord import lattice_points_in_supercell from pymatgen.vis.structure_vtk import EL_COLORS try: import igraph IGRAPH_AVAILABLE = True except ImportError: IGRAPH_AVAILABLE = False logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) __author__ = "<NAME>, <NAME>, <NAME>" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" __date__ = "August 2017" ConnectedSite = namedtuple("ConnectedSite", "site, jimage, index, weight, dist") def _compare(g1, g2, i1, i2): """ Helper function called by isomorphic to ensure comparison of node identities. """ return g1.vs[i1]["species"] == g2.vs[i2]["species"] def _igraph_from_nxgraph(graph): """ Helper function that converts a networkx graph object into an igraph graph object. """ nodes = graph.nodes(data=True) new_igraph = igraph.Graph() for node in nodes: new_igraph.add_vertex(name=str(node[0]), species=node[1]["specie"], coords=node[1]["coords"]) new_igraph.add_edges([(str(edge[0]), str(edge[1])) for edge in graph.edges()]) return new_igraph def _isomorphic(frag1, frag2): """ Internal function to check if two graph objects are isomorphic, using igraph if if is available and networkx if it is not. """ f1_nodes = frag1.nodes(data=True) f2_nodes = frag2.nodes(data=True) if len(f1_nodes) != len(f2_nodes): return False f2_edges = frag2.edges() if len(f2_edges) != len(f2_edges): return False f1_comp_dict = {} f2_comp_dict = {} for node in f1_nodes: if node[1]["specie"] not in f1_comp_dict: f1_comp_dict[node[1]["specie"]] = 1 else: f1_comp_dict[node[1]["specie"]] += 1 for node in f2_nodes: if node[1]["specie"] not in f2_comp_dict: f2_comp_dict[node[1]["specie"]] = 1 else: f2_comp_dict[node[1]["specie"]] += 1 if f1_comp_dict != f2_comp_dict: return False if IGRAPH_AVAILABLE: ifrag1 = _igraph_from_nxgraph(frag1) ifrag2 = _igraph_from_nxgraph(frag2) return ifrag1.isomorphic_vf2(ifrag2, node_compat_fn=_compare) nm = iso.categorical_node_match("specie", "ERROR") return nx.is_isomorphic(frag1.to_undirected(), frag2.to_undirected(), node_match=nm) class StructureGraph(MSONable): """ This is a class for annotating a Structure with bond information, stored in the form of a graph. A "bond" does not necessarily have to be a chemical bond, but can store any kind of information that connects two Sites. """ def __init__(self, structure, graph_data=None): """ If constructing this class manually, use the `with_empty_graph` method or `with_local_env_strategy` method (using an algorithm provided by the `local_env` module, such as O'Keeffe). This class that contains connection information: relationships between sites represented by a Graph structure, and an associated structure object. This class uses the NetworkX package to store and operate on the graph itself, but contains a lot of helper methods to make associating a graph with a given crystallographic structure easier. Use cases for this include storing bonding information, NMR J-couplings, Heisenberg exchange parameters, etc. For periodic graphs, class stores information on the graph edges of what lattice image the edge belongs to. :param structure: a Structure object :param graph_data: dict containing graph information in dict format (not intended to be constructed manually, see as_dict method for format) """ if isinstance(structure, StructureGraph): # just make a copy from input graph_data = structure.as_dict()["graphs"] self.structure = structure self.graph = nx.readwrite.json_graph.adjacency_graph(graph_data) # tidy up edge attr dicts, reading to/from json duplicates # information for u, v, k, d in self.graph.edges(keys=True, data=True): if "id" in d: del d["id"] if "key" in d: del d["key"] # ensure images are tuples (conversion to lists happens # when serializing back from json), it's important images # are hashable/immutable if "to_jimage" in d: d["to_jimage"] = tuple(d["to_jimage"]) if "from_jimage" in d: d["from_jimage"] = tuple(d["from_jimage"]) @classmethod def with_empty_graph(cls, structure, name="bonds", edge_weight_name=None, edge_weight_units=None): """ Constructor for StructureGraph, returns a StructureGraph object with an empty graph (no edges, only nodes defined that correspond to Sites in Structure). :param structure (Structure): :param name (str): name of graph, e.g. "bonds" :param edge_weight_name (str): name of edge weights, e.g. "bond_length" or "exchange_constant" :param edge_weight_units (str): name of edge weight units e.g. "Å" or "eV" :return (StructureGraph): """ if edge_weight_name and (edge_weight_units is None): raise ValueError( "Please specify units associated " "with your edge weights. Can be " "empty string if arbitrary or " "dimensionless." ) # construct graph with one node per site # graph attributes don't change behavior of graph, # they're just for book-keeping graph = nx.MultiDiGraph( edge_weight_name=edge_weight_name, edge_weight_units=edge_weight_units, name=name, ) graph.add_nodes_from(range(len(structure))) graph_data = json_graph.adjacency_data(graph) return cls(structure, graph_data=graph_data) @staticmethod def with_edges(structure, edges): """ Constructor for MoleculeGraph, using pre-existing or pre-defined edges with optional edge parameters. :param molecule: Molecule object :param edges: dict representing the bonds of the functional group (format: {(from_index, to_index, from_image, to_image): props}, where props is a dictionary of properties, including weight. Props should be None if no additional properties are to be specified. :return: sg, a StructureGraph """ sg = StructureGraph.with_empty_graph(structure, name="bonds", edge_weight_name="weight", edge_weight_units="") for edge, props in edges.items(): try: from_index = edge[0] to_index = edge[1] from_image = edge[2] to_image = edge[3] except TypeError: raise ValueError("Edges must be given as (from_index, to_index," " from_image, to_image) tuples") if props is not None: if "weight" in props.keys(): weight = props["weight"] del props["weight"] else: weight = None if len(props.items()) == 0: props = None else: weight = None nodes = sg.graph.nodes if not (from_index in nodes and to_index in nodes): raise ValueError( "Edges cannot be added if nodes are not" " present in the graph. Please check your" " indices." ) sg.add_edge( from_index, to_index, from_jimage=from_image, to_jimage=to_image, weight=weight, edge_properties=props, ) sg.set_node_attributes() return sg @staticmethod def with_local_env_strategy(structure, strategy, weights=False): """ Constructor for StructureGraph, using a strategy from :Class: `pymatgen.analysis.local_env`. :param structure: Structure object :param strategy: an instance of a :Class: `pymatgen.analysis.local_env.NearNeighbors` object :param weights: if True, use weights from local_env class (consult relevant class for their meaning) :return: """ if not strategy.structures_allowed: raise ValueError( "Chosen strategy is not designed for use with structures! " "Please choose another strategy." ) sg = StructureGraph.with_empty_graph(structure, name="bonds") for n, neighbors in enumerate(strategy.get_all_nn_info(structure)): for neighbor in neighbors: # local_env will always try to add two edges # for any one bond, one from site u to site v # and another form site v to site u: this is # harmless, so warn_duplicates=False sg.add_edge( from_index=n, from_jimage=(0, 0, 0), to_index=neighbor["site_index"], to_jimage=neighbor["image"], weight=neighbor["weight"] if weights else None, warn_duplicates=False, ) return sg @property def name(self): """ :return: Name of graph """ return self.graph.graph["name"] @property def edge_weight_name(self): """ :return: Name of the edge weight property of graph """ return self.graph.graph["edge_weight_name"] @property def edge_weight_unit(self): """ :return: Units of the edge weight property of graph """ return self.graph.graph["edge_weight_units"] def add_edge( self, from_index, to_index, from_jimage=(0, 0, 0), to_jimage=None, weight=None, warn_duplicates=True, edge_properties=None, ): """ Add edge to graph. Since physically a 'bond' (or other connection between sites) doesn't have a direction, from_index, from_jimage can be swapped with to_index, to_jimage. However, images will always always be shifted so that from_index < to_index and from_jimage becomes (0, 0, 0). :param from_index: index of site connecting from :param to_index: index of site connecting to :param from_jimage (tuple of ints): lattice vector of periodic image, e.g. (1, 0, 0) for periodic image in +x direction :param to_jimage (tuple of ints): lattice vector of image :param weight (float): e.g. bond length :param warn_duplicates (bool): if True, will warn if trying to add duplicate edges (duplicate edges will not be added in either case) :param edge_properties (dict): any other information to store on graph edges, similar to Structure's site_properties :return: """ # this is not necessary for the class to work, but # just makes it neater if to_index < from_index: to_index, from_index = from_index, to_index to_jimage, from_jimage = from_jimage, to_jimage # constrain all from_jimages to be (0, 0, 0), # initial version of this class worked even if # from_jimage != (0, 0, 0), but making this # assumption simplifies logic later if not np.array_equal(from_jimage, (0, 0, 0)): shift = from_jimage from_jimage = np.subtract(from_jimage, shift) to_jimage = np.subtract(to_jimage, shift) # automatic detection of to_jimage if user doesn't specify # will try and detect all equivalent images and add multiple # edges if appropriate if to_jimage is None: # assume we want the closest site warnings.warn("Please specify to_jimage to be unambiguous, " "trying to automatically detect.") dist, to_jimage = self.structure[from_index].distance_and_image(self.structure[to_index]) if dist == 0: # this will happen when from_index == to_index, # typically in primitive single-atom lattices images = [1, 0, 0], [0, 1, 0], [0, 0, 1] dists = [] for image in images: dists.append( self.structure[from_index].distance_and_image(self.structure[from_index], jimage=image)[0] ) dist = min(dists) equiv_sites = self.structure.get_neighbors_in_shell( self.structure[from_index].coords, dist, dist * 0.01, include_index=True ) for nnsite in equiv_sites: to_jimage = np.subtract(nnsite.frac_coords, self.structure[from_index].frac_coords) to_jimage = np.round(to_jimage).astype(int) self.add_edge( from_index=from_index, from_jimage=(0, 0, 0), to_jimage=to_jimage, to_index=nnsite.index, ) return # sanitize types from_jimage, to_jimage = ( tuple(map(int, from_jimage)), tuple(map(int, to_jimage)), ) from_index, to_index = int(from_index), int(to_index) # check we're not trying to add a duplicate edge # there should only ever be at most one edge # between a given (site, jimage) pair and another # (site, jimage) pair existing_edge_data = self.graph.get_edge_data(from_index, to_index) if existing_edge_data: for key, d in existing_edge_data.items(): if d["to_jimage"] == to_jimage: if warn_duplicates: warnings.warn( "Trying to add an edge that already exists from " "site {} to site {} in {}.".format(from_index, to_index, to_jimage) ) return # generic container for additional edge properties, # similar to site properties edge_properties = edge_properties or {} if weight: self.graph.add_edge(from_index, to_index, to_jimage=to_jimage, weight=weight, **edge_properties) else: self.graph.add_edge(from_index, to_index, to_jimage=to_jimage, **edge_properties) def insert_node( self, i, species, coords, coords_are_cartesian=False, validate_proximity=False, site_properties=None, edges=None, ): """ A wrapper around Molecule.insert(), which also incorporates the new site into the MoleculeGraph. :param i: Index at which to insert the new site :param species: Species for the new site :param coords: 3x1 array representing coordinates of the new site :param coords_are_cartesian: Whether coordinates are cartesian. Defaults to False. :param validate_proximity: For Molecule.insert(); if True (default False), distance will be checked to ensure that site can be safely added. :param site_properties: Site properties for Molecule :param edges: List of dicts representing edges to be added to the MoleculeGraph. These edges must include the index of the new site i, and all indices used for these edges should reflect the MoleculeGraph AFTER the insertion, NOT before. Each dict should at least have a "to_index" and "from_index" key, and can also have a "weight" and a "properties" key. :return: """ self.structure.insert( i, species, coords, coords_are_cartesian=coords_are_cartesian, validate_proximity=validate_proximity, properties=site_properties, ) mapping = {} for j in range(len(self.structure) - 1): if j < i: mapping[j] = j else: mapping[j] = j + 1 nx.relabel_nodes(self.graph, mapping, copy=False) self.graph.add_node(i) self.set_node_attributes() if edges is not None: for edge in edges: try: self.add_edge( edge["from_index"], edge["to_index"], from_jimage=(0, 0, 0), to_jimage=edge["to_jimage"], weight=edge.get("weight", None), edge_properties=edge.get("properties", None), ) except KeyError: raise RuntimeError("Some edges are invalid.") def set_node_attributes(self): """ Gives each node a "specie" and a "coords" attribute, updated with the current species and coordinates. :return: """ species = {} coords = {} properties = {} for node in self.graph.nodes(): species[node] = self.structure[node].specie.symbol coords[node] = self.structure[node].coords properties[node] = self.structure[node].properties nx.set_node_attributes(self.graph, species, "specie") nx.set_node_attributes(self.graph, coords, "coords") nx.set_node_attributes(self.graph, properties, "properties") def alter_edge( self, from_index, to_index, to_jimage=None, new_weight=None, new_edge_properties=None, ): """ Alters either the weight or the edge_properties of an edge in the StructureGraph. :param from_index: int :param to_index: int :param to_jimage: tuple :param new_weight: alter_edge does not require that weight be altered. As such, by default, this is None. If weight is to be changed, it should be a float. :param new_edge_properties: alter_edge does not require that edge_properties be altered. As such, by default, this is None. If any edge properties are to be changed, it should be a dictionary of edge properties to be changed. :return: """ existing_edges = self.graph.get_edge_data(from_index, to_index) # ensure that edge exists before attempting to change it if not existing_edges: raise ValueError( "Edge between {} and {} cannot be altered;\ no edge exists between those sites.".format( from_index, to_index ) ) if to_jimage is None: edge_index = 0 else: for i, properties in existing_edges.items(): if properties["to_jimage"] == to_jimage: edge_index = i if new_weight is not None: self.graph[from_index][to_index][edge_index]["weight"] = new_weight if new_edge_properties is not None: for prop in list(new_edge_properties.keys()): self.graph[from_index][to_index][edge_index][prop] = new_edge_properties[prop] def break_edge(self, from_index, to_index, to_jimage=None, allow_reverse=False): """ Remove an edge from the StructureGraph. If no image is given, this method will fail. :param from_index: int :param to_index: int :param to_jimage: tuple :param allow_reverse: If allow_reverse is True, then break_edge will attempt to break both (from_index, to_index) and, failing that, will attempt to break (to_index, from_index). :return: """ # ensure that edge exists before attempting to remove it existing_edges = self.graph.get_edge_data(from_index, to_index) existing_reverse = None if to_jimage is None: raise ValueError("Image must be supplied, to avoid ambiguity.") if existing_edges: for i, properties in existing_edges.items(): if properties["to_jimage"] == to_jimage: edge_index = i self.graph.remove_edge(from_index, to_index, edge_index) else: if allow_reverse: existing_reverse = self.graph.get_edge_data(to_index, from_index) if existing_reverse: for i, properties in existing_reverse.items(): if properties["to_jimage"] == to_jimage: edge_index = i self.graph.remove_edge(to_index, from_index, edge_index) else: raise ValueError( "Edge cannot be broken between {} and {};\ no edge exists between those sites.".format( from_index, to_index ) ) def remove_nodes(self, indices): """ A wrapper for Molecule.remove_sites(). :param indices: list of indices in the current Molecule (and graph) to be removed. :return: """ self.structure.remove_sites(indices) self.graph.remove_nodes_from(indices) mapping = {} for correct, current in enumerate(sorted(self.graph.nodes)): mapping[current] = correct nx.relabel_nodes(self.graph, mapping, copy=False) self.set_node_attributes() def substitute_group( self, index, func_grp, strategy, bond_order=1, graph_dict=None, strategy_params=None, ): """ Builds off of Structure.substitute to replace an atom in self.structure with a functional group. This method also amends self.graph to incorporate the new functional group. NOTE: Care must be taken to ensure that the functional group that is substituted will not place atoms to close to each other, or violate the dimensions of the Lattice. :param index: Index of atom to substitute. :param func_grp: Substituent molecule. There are two options: 1. Providing an actual Molecule as the input. The first atom must be a DummySpecies X, indicating the position of nearest neighbor. The second atom must be the next nearest atom. For example, for a methyl group substitution, func_grp should be X-CH3, where X is the first site and C is the second site. What the code will do is to remove the index site, and connect the nearest neighbor to the C atom in CH3. The X-C bond indicates the directionality to connect the atoms. 2. A string name. The molecule will be obtained from the relevant template in func_groups.json. :param strategy: Class from pymatgen.analysis.local_env. :param bond_order: A specified bond order to calculate the bond length between the attached functional group and the nearest neighbor site. Defaults to 1. :param graph_dict: Dictionary representing the bonds of the functional group (format: {(u, v): props}, where props is a dictionary of properties, including weight. If None, then the algorithm will attempt to automatically determine bonds using one of a list of strategies defined in pymatgen.analysis.local_env. :param strategy_params: dictionary of keyword arguments for strategy. If None, default parameters will be used. :return: """ def map_indices(grp): grp_map = {} # Get indices now occupied by functional group # Subtracting 1 because the dummy atom X should not count atoms = len(grp) - 1 offset = len(self.structure) - atoms for i in range(atoms): grp_map[i] = i + offset return grp_map if isinstance(func_grp, Molecule): func_grp = copy.deepcopy(func_grp) else: try: func_grp = copy.deepcopy(FunctionalGroups[func_grp]) except Exception: raise RuntimeError("Can't find functional group in list. " "Provide explicit coordinate instead") self.structure.substitute(index, func_grp, bond_order=bond_order) mapping = map_indices(func_grp) # Remove dummy atom "X" func_grp.remove_species("X") if graph_dict is not None: for (u, v) in graph_dict.keys(): edge_props = graph_dict[(u, v)] if "to_jimage" in edge_props.keys(): to_jimage = edge_props["to_jimage"] del edge_props["to_jimage"] else: # By default, assume that all edges should stay remain # inside the initial image to_jimage = (0, 0, 0) if "weight" in edge_props.keys(): weight = edge_props["weight"] del edge_props["weight"] self.add_edge( mapping[u], mapping[v], to_jimage=to_jimage, weight=weight, edge_properties=edge_props, ) else: if strategy_params is None: strategy_params = {} strat = strategy(**strategy_params) for site in mapping.values(): neighbors = strat.get_nn_info(self.structure, site) for neighbor in neighbors: self.add_edge( from_index=site, from_jimage=(0, 0, 0), to_index=neighbor["site_index"], to_jimage=neighbor["image"], weight=neighbor["weight"], warn_duplicates=False, ) def get_connected_sites(self, n, jimage=(0, 0, 0)): """ Returns a named tuple of neighbors of site n: periodic_site, jimage, index, weight. Index is the index of the corresponding site in the original structure, weight can be None if not defined. :param n: index of Site in Structure :param jimage: lattice vector of site :return: list of ConnectedSite tuples, sorted by closest first """ connected_sites = set() connected_site_images = set() out_edges = [(u, v, d, "out") for u, v, d in self.graph.out_edges(n, data=True)] in_edges = [(u, v, d, "in") for u, v, d in self.graph.in_edges(n, data=True)] for u, v, d, dir in out_edges + in_edges: to_jimage = d["to_jimage"] if dir == "in": u, v = v, u to_jimage = np.multiply(-1, to_jimage) to_jimage = tuple(map(int, np.add(to_jimage, jimage))) site_d = self.structure[v].as_dict() site_d["abc"] = np.add(site_d["abc"], to_jimage).tolist() site = PeriodicSite.from_dict(site_d) # from_site if jimage arg != (0, 0, 0) relative_jimage = np.subtract(to_jimage, jimage) dist = self.structure[u].distance(self.structure[v], jimage=relative_jimage) weight = d.get("weight", None) if (v, to_jimage) not in connected_site_images: connected_site = ConnectedSite(site=site, jimage=to_jimage, index=v, weight=weight, dist=dist) connected_sites.add(connected_site) connected_site_images.add((v, to_jimage)) # return list sorted by closest sites first connected_sites = list(connected_sites) connected_sites.sort(key=lambda x: x.dist) return connected_sites def get_coordination_of_site(self, n): """ Returns the number of neighbors of site n. In graph terms, simply returns degree of node corresponding to site n. :param n: index of site :return (int): """ number_of_self_loops = sum([1 for n, v in self.graph.edges(n) if n == v]) return self.graph.degree(n) - number_of_self_loops def draw_graph_to_file( self, filename="graph", diff=None, hide_unconnected_nodes=False, hide_image_edges=True, edge_colors=False, node_labels=False, weight_labels=False, image_labels=False, color_scheme="VESTA", keep_dot=False, algo="fdp", ): """ Draws graph using GraphViz. The networkx graph object itself can also be drawn with networkx's in-built graph drawing methods, but note that this might give misleading results for multigraphs (edges are super-imposed on each other). If visualization is difficult to interpret, `hide_image_edges` can help, especially in larger graphs. :param filename: filename to output, will detect filetype from extension (any graphviz filetype supported, such as pdf or png) :param diff (StructureGraph): an additional graph to compare with, will color edges red that do not exist in diff and edges green that are in diff graph but not in the reference graph :param hide_unconnected_nodes: if True, hide unconnected nodes :param hide_image_edges: if True, do not draw edges that go through periodic boundaries :param edge_colors (bool): if True, use node colors to color edges :param node_labels (bool): if True, label nodes with species and site index :param weight_labels (bool): if True, label edges with weights :param image_labels (bool): if True, label edges with their periodic images (usually only used for debugging, edges to periodic images always appear as dashed lines) :param color_scheme (str): "VESTA" or "JMOL" :param keep_dot (bool): keep GraphViz .dot file for later visualization :param algo: any graphviz algo, "neato" (for simple graphs) or "fdp" (for more crowded graphs) usually give good outputs :return: """ if not which(algo): raise RuntimeError("StructureGraph graph drawing requires " "GraphViz binaries to be in the path.") # Developer note: NetworkX also has methods for drawing # graphs using matplotlib, these also work here. However, # a dedicated tool like GraphViz allows for much easier # control over graph appearance and also correctly displays # mutli-graphs (matplotlib can superimpose multiple edges). g = self.graph.copy() g.graph = {"nodesep": 10.0, "dpi": 300, "overlap": "false"} # add display options for nodes for n in g.nodes(): # get label by species name label = "{}({})".format(str(self.structure[n].specie), n) if node_labels else "" # use standard color scheme for nodes c = EL_COLORS[color_scheme].get(str(self.structure[n].specie.symbol), [0, 0, 0]) # get contrasting font color # magic numbers account for perceived luminescence # https://stackoverflow.com/questions/1855884/determine-font-color-based-on-background-color fontcolor = "#000000" if 1 - (c[0] * 0.299 + c[1] * 0.587 + c[2] * 0.114) / 255 < 0.5 else "#ffffff" # convert color to hex string color = "#{:02x}{:02x}{:02x}".format(c[0], c[1], c[2]) g.add_node( n, fillcolor=color, fontcolor=fontcolor, label=label, fontname="Helvetica-bold", style="filled", shape="circle", ) edges_to_delete = [] # add display options for edges for u, v, k, d in g.edges(keys=True, data=True): # retrieve from/to images, set as origin if not defined to_image = d["to_jimage"] # set edge style d["style"] = "solid" if to_image != (0, 0, 0): d["style"] = "dashed" if hide_image_edges: edges_to_delete.append((u, v, k)) # don't show edge directions d["arrowhead"] = "none" # only add labels for images that are not the origin if image_labels: d["headlabel"] = "" if to_image == (0, 0, 0) else "to {}".format((to_image)) d["arrowhead"] = "normal" if d["headlabel"] else "none" # optionally color edges using node colors color_u = g.nodes[u]["fillcolor"] color_v = g.nodes[v]["fillcolor"] d["color_uv"] = "{};0.5:{};0.5".format(color_u, color_v) if edge_colors else "#000000" # optionally add weights to graph if weight_labels: units = g.graph.get("edge_weight_units", "") if d.get("weight"): d["label"] = "{:.2f} {}".format(d["weight"], units) # update edge with our new style attributes g.edges[u, v, k].update(d) # optionally remove periodic image edges, # these can be confusing due to periodic boundaries if hide_image_edges: for edge_to_delete in edges_to_delete: g.remove_edge(*edge_to_delete) # optionally hide unconnected nodes, # these can appear when removing periodic edges if hide_unconnected_nodes: g = g.subgraph([n for n in g.degree() if g.degree()[n] != 0]) # optionally highlight differences with another graph if diff: diff = self.diff(diff, strict=True) green_edges = [] red_edges = [] for u, v, k, d in g.edges(keys=True, data=True): if (u, v, d["to_jimage"]) in diff["self"]: # edge has been deleted red_edges.append((u, v, k)) elif (u, v, d["to_jimage"]) in diff["other"]: # edge has been added green_edges.append((u, v, k)) for u, v, k in green_edges: g.edges[u, v, k].update({"color_uv": "#00ff00"}) for u, v, k in red_edges: g.edges[u, v, k].update({"color_uv": "#ff0000"}) basename, extension = os.path.splitext(filename) extension = extension[1:] write_dot(g, basename + ".dot") with open(filename, "w") as f: args = [algo, "-T", extension, basename + ".dot"] rs = subprocess.Popen(args, stdout=f, stdin=subprocess.PIPE, close_fds=True) rs.communicate() if rs.returncode != 0: raise RuntimeError("{} exited with return code {}.".format(algo, rs.returncode)) if not keep_dot: os.remove(basename + ".dot") @property def types_and_weights_of_connections(self): """ Extract a dictionary summarizing the types and weights of edges in the graph. :return: A dictionary with keys specifying the species involved in a connection in alphabetical order (e.g. string 'Fe-O') and values which are a list of weights for those connections (e.g. bond lengths). """ def get_label(u, v): u_label = self.structure[u].species_string v_label = self.structure[v].species_string return "-".join(sorted((u_label, v_label))) types = defaultdict(list) for u, v, d in self.graph.edges(data=True): label = get_label(u, v) types[label].append(d["weight"]) return dict(types) @property def weight_statistics(self): """ Extract a statistical summary of edge weights present in the graph. :return: A dict with an 'all_weights' list, 'minimum', 'maximum', 'median', 'mean', 'std_dev' """ all_weights = [d.get("weight", None) for u, v, d in self.graph.edges(data=True)] stats = describe(all_weights, nan_policy="omit") return { "all_weights": all_weights, "min": stats.minmax[0], "max": stats.minmax[1], "mean": stats.mean, "variance": stats.variance, } def types_of_coordination_environments(self, anonymous=False): """ Extract information on the different co-ordination environments present in the graph. :param anonymous: if anonymous, will replace specie names with A, B, C, etc. :return: a list of co-ordination environments, e.g. ['Mo-S(6)', 'S-Mo(3)'] """ motifs = set() for idx, site in enumerate(self.structure): centre_sp = site.species_string connected_sites = self.get_connected_sites(idx) connected_species = [connected_site.site.species_string for connected_site in connected_sites] labels = [] for sp in set(connected_species): count = connected_species.count(sp) labels.append((count, sp)) labels = sorted(labels, reverse=True) if anonymous: mapping = {centre_sp: "A"} available_letters = [chr(66 + i) for i in range(25)] for label in labels: sp = label[1] if sp not in mapping: mapping[sp] = available_letters.pop(0) centre_sp = "A" labels = [(label[0], mapping[label[1]]) for label in labels] labels = ["{}({})".format(label[1], label[0]) for label in labels] motif = "{}-{}".format(centre_sp, ",".join(labels)) motifs.add(motif) return sorted(list(motifs)) def as_dict(self): """ As in :Class: `pymatgen.core.Structure` except with using `to_dict_of_dicts` from NetworkX to store graph information. """ d = { "@module": self.__class__.__module__, "@class": self.__class__.__name__, "structure": self.structure.as_dict(), "graphs": json_graph.adjacency_data(self.graph), } return d @classmethod def from_dict(cls, d): """ As in :Class: `pymatgen.core.Structure` except restoring graphs using `from_dict_of_dicts` from NetworkX to restore graph information. """ s = Structure.from_dict(d["structure"]) return cls(s, d["graphs"]) def __mul__(self, scaling_matrix): """ Replicates the graph, creating a supercell, intelligently joining together edges that lie on periodic boundaries. In principle, any operations on the expanded graph could also be done on the original graph, but a larger graph can be easier to visualize and reason about. :param scaling_matrix: same as Structure.__mul__ :return: """ # Developer note: a different approach was also trialed, using # a simple Graph (instead of MultiDiGraph), with node indices # representing both site index and periodic image. Here, the # number of nodes != number of sites in the Structure. This # approach has many benefits, but made it more difficult to # keep the graph in sync with its corresponding Structure. # Broadly, it would be easier to multiply the Structure # *before* generating the StructureGraph, but this isn't # possible when generating the graph using critic2 from # charge density. # Multiplication works by looking for the expected position # of an image node, and seeing if that node exists in the # supercell. If it does, the edge is updated. This is more # computationally expensive than just keeping track of the # which new lattice images present, but should hopefully be # easier to extend to a general 3x3 scaling matrix. # code adapted from Structure.__mul__ scale_matrix = np.array(scaling_matrix, np.int16) if scale_matrix.shape != (3, 3): scale_matrix = np.array(scale_matrix * np.eye(3), np.int16) else: # TODO: test __mul__ with full 3x3 scaling matrices raise NotImplementedError("Not tested with 3x3 scaling matrices yet.") new_lattice = Lattice(np.dot(scale_matrix, self.structure.lattice.matrix)) f_lat = lattice_points_in_supercell(scale_matrix) c_lat = new_lattice.get_cartesian_coords(f_lat) new_sites = [] new_graphs = [] for v in c_lat: # create a map of nodes from original graph to its image mapping = {n: n + len(new_sites) for n in range(len(self.structure))} for idx, site in enumerate(self.structure): s = PeriodicSite( site.species, site.coords + v, new_lattice, properties=site.properties, coords_are_cartesian=True, to_unit_cell=False, ) new_sites.append(s) new_graphs.append(nx.relabel_nodes(self.graph, mapping, copy=True)) new_structure = Structure.from_sites(new_sites) # merge all graphs into one big graph new_g = nx.MultiDiGraph() for new_graph in new_graphs: new_g = nx.union(new_g, new_graph) edges_to_remove = [] # tuple of (u, v, k) edges_to_add = [] # tuple of (u, v, attr_dict) # list of new edges inside supercell # for duplicate checking edges_inside_supercell = [{u, v} for u, v, d in new_g.edges(data=True) if d["to_jimage"] == (0, 0, 0)] new_periodic_images = [] orig_lattice = self.structure.lattice # use k-d tree to match given position to an # existing Site in Structure kd_tree = KDTree(new_structure.cart_coords) # tolerance in Å for sites to be considered equal # this could probably be a lot smaller tol = 0.05 for u, v, k, d in new_g.edges(keys=True, data=True): to_jimage = d["to_jimage"] # for node v # reduce unnecessary checking if to_jimage != (0, 0, 0): # get index in original site n_u = u % len(self.structure) n_v = v % len(self.structure) # get fractional co-ordinates of where atoms defined # by edge are expected to be, relative to original # lattice (keeping original lattice has # significant benefits) v_image_frac = np.add(self.structure[n_v].frac_coords, to_jimage) u_frac = self.structure[n_u].frac_coords # using the position of node u as a reference, # get relative Cartesian co-ordinates of where # atoms defined by edge are expected to be v_image_cart = orig_lattice.get_cartesian_coords(v_image_frac) u_cart = orig_lattice.get_cartesian_coords(u_frac) v_rel = np.subtract(v_image_cart, u_cart) # now retrieve position of node v in # new supercell, and get asgolute Cartesian # co-ordinates of where atoms defined by edge # are expected to be v_expec = new_structure[u].coords + v_rel # now search in new structure for these atoms # query returns (distance, index) v_present = kd_tree.query(v_expec) v_present = v_present[1] if v_present[0] <= tol else None # check if image sites now present in supercell # and if so, delete old edge that went through # periodic boundary if v_present is not None: new_u = u new_v = v_present new_d = d.copy() # node now inside supercell new_d["to_jimage"] = (0, 0, 0) edges_to_remove.append((u, v, k)) # make sure we don't try to add duplicate edges # will remove two edges for everyone one we add if {new_u, new_v} not in edges_inside_supercell: # normalize direction if new_v < new_u: new_u, new_v = new_v, new_u edges_inside_supercell.append({new_u, new_v}) edges_to_add.append((new_u, new_v, new_d)) else: # want to find new_v such that we have # full periodic boundary conditions # so that nodes on one side of supercell # are connected to nodes on opposite side v_expec_frac = new_structure.lattice.get_fractional_coords(v_expec) # find new to_jimage # use np.around to fix issues with finite precision leading to incorrect image v_expec_image = np.around(v_expec_frac, decimals=3) v_expec_image = v_expec_image - v_expec_image % 1 v_expec_frac = np.subtract(v_expec_frac, v_expec_image) v_expec = new_structure.lattice.get_cartesian_coords(v_expec_frac) v_present = kd_tree.query(v_expec) v_present = v_present[1] if v_present[0] <= tol else None if v_present is not None: new_u = u new_v = v_present new_d = d.copy() new_to_jimage = tuple(map(int, v_expec_image)) # normalize direction if new_v < new_u: new_u, new_v = new_v, new_u new_to_jimage = tuple(np.multiply(-1, d["to_jimage"]).astype(int)) new_d["to_jimage"] = new_to_jimage edges_to_remove.append((u, v, k)) if (new_u, new_v, new_to_jimage) not in new_periodic_images: edges_to_add.append((new_u, new_v, new_d)) new_periodic_images.append((new_u, new_v, new_to_jimage)) logger.debug("Removing {} edges, adding {} new edges.".format(len(edges_to_remove), len(edges_to_add))) # add/delete marked edges for edges_to_remove in edges_to_remove: new_g.remove_edge(*edges_to_remove) for (u, v, d) in edges_to_add: new_g.add_edge(u, v, **d) # return new instance of StructureGraph with supercell d = { "@module": self.__class__.__module__, "@class": self.__class__.__name__, "structure": new_structure.as_dict(), "graphs": json_graph.adjacency_data(new_g), } sg = StructureGraph.from_dict(d) return sg def __rmul__(self, other): return self.__mul__(other) @classmethod def _edges_to_string(cls, g): header = "from to to_image " header_line = "---- ---- ------------" edge_weight_name = g.graph["edge_weight_name"] if edge_weight_name: print_weights = ["weight"] edge_label = g.graph["edge_weight_name"] edge_weight_units = g.graph["edge_weight_units"] if edge_weight_units: edge_label += " ({})".format(edge_weight_units) header += " {}".format(edge_label) header_line += " {}".format("-" * max([18, len(edge_label)])) else: print_weights = False s = header + "\n" + header_line + "\n" edges = list(g.edges(data=True)) # sort edges for consistent ordering edges.sort(key=itemgetter(0, 1)) if print_weights: for u, v, data in edges: s += "{:4} {:4} {:12} {:.3e}\n".format( u, v, str(data.get("to_jimage", (0, 0, 0))), data.get("weight", 0) ) else: for u, v, data in edges: s += "{:4} {:4} {:12}\n".format(u, v, str(data.get("to_jimage", (0, 0, 0)))) return s def __str__(self): s = "Structure Graph" s += "\nStructure: \n{}".format(self.structure.__str__()) s += "\nGraph: {}\n".format(self.name) s += self._edges_to_string(self.graph) return s def __repr__(self): s = "Structure Graph" s += "\nStructure: \n{}".format(self.structure.__repr__()) s += "\nGraph: {}\n".format(self.name) s += self._edges_to_string(self.graph) return s def __len__(self): """ :return: length of Structure / number of nodes in graph """ return len(self.structure) def sort(self, key=None, reverse=False): """ Same as Structure.sort(), also remaps nodes in graph. :param key: :param reverse: :return: """ old_structure = self.structure.copy() # sort Structure self.structure._sites = sorted(self.structure._sites, key=key, reverse=reverse) # apply Structure ordering to graph mapping = {idx: self.structure.index(site) for idx, site in enumerate(old_structure)} self.graph = nx.relabel_nodes(self.graph, mapping, copy=True) # normalize directions of edges edges_to_remove = [] edges_to_add = [] for u, v, k, d in self.graph.edges(keys=True, data=True): if v < u: new_v, new_u, new_d = u, v, d.copy() new_d["to_jimage"] = tuple(np.multiply(-1, d["to_jimage"]).astype(int)) edges_to_remove.append((u, v, k)) edges_to_add.append((new_u, new_v, new_d)) # add/delete marked edges for edges_to_remove in edges_to_remove: self.graph.remove_edge(*edges_to_remove) for (u, v, d) in edges_to_add: self.graph.add_edge(u, v, **d) def __copy__(self): return StructureGraph.from_dict(self.as_dict()) def __eq__(self, other): """ Two StructureGraphs are equal if they have equal Structures, and have the same edges between Sites. Edge weights can be different and StructureGraphs can still be considered equal. :param other: StructureGraph :return (bool): """ # sort for consistent node indices # PeriodicSite should have a proper __hash__() value, # using its frac_coords as a convenient key mapping = {tuple(site.frac_coords): self.structure.index(site) for site in other.structure} other_sorted = other.__copy__() other_sorted.sort(key=lambda site: mapping[tuple(site.frac_coords)]) edges = {(u, v, d["to_jimage"]) for u, v, d in self.graph.edges(keys=False, data=True)} edges_other = {(u, v, d["to_jimage"]) for u, v, d in other_sorted.graph.edges(keys=False, data=True)} return (edges == edges_other) and (self.structure == other_sorted.structure) def diff(self, other, strict=True): """ Compares two StructureGraphs. Returns dict with keys 'self', 'other', 'both' with edges that are present in only one StructureGraph ('self' and 'other'), and edges that are present in both. The Jaccard distance is a simple measure of the dissimilarity between two StructureGraphs (ignoring edge weights), and is defined by 1 - (size of the intersection / size of the union) of the sets of edges. This is returned with key 'dist'. Important note: all node indices are in terms of the StructureGraph this method is called from, not the 'other' StructureGraph: there is no guarantee the node indices will be the same if the underlying Structures are ordered differently. :param other: StructureGraph :param strict: if False, will compare bonds from different Structures, with node indices replaced by Species strings, will not count number of occurrences of bonds :return: """ if self.structure != other.structure and strict: return ValueError("Meaningless to compare StructureGraphs if " "corresponding Structures are different.") if strict: # sort for consistent node indices # PeriodicSite should have a proper __hash__() value, # using its frac_coords as a convenient key mapping = {tuple(site.frac_coords): self.structure.index(site) for site in other.structure} other_sorted = other.__copy__() other_sorted.sort(key=lambda site: mapping[tuple(site.frac_coords)]) edges = {(u, v, d["to_jimage"]) for u, v, d in self.graph.edges(keys=False, data=True)} edges_other = {(u, v, d["to_jimage"]) for u, v, d in other_sorted.graph.edges(keys=False, data=True)} else: edges = { (str(self.structure[u].specie), str(self.structure[v].specie)) for u, v, d in self.graph.edges(keys=False, data=True) } edges_other = { (str(other.structure[u].specie), str(other.structure[v].specie)) for u, v, d in other.graph.edges(keys=False, data=True) } if len(edges) == 0 and len(edges_other) == 0: jaccard_dist = 0 # by definition else: jaccard_dist = 1 - len(edges.intersection(edges_other)) / len(edges.union(edges_other)) return { "self": edges - edges_other, "other": edges_other - edges, "both": edges.intersection(edges_other), "dist": jaccard_dist, } def get_subgraphs_as_molecules(self, use_weights=False): """ Retrieve subgraphs as molecules, useful for extracting molecules from periodic crystals. Will only return unique molecules, not any duplicates present in the crystal (a duplicate defined as an isomorphic subgraph). :param use_weights (bool): If True, only treat subgraphs as isomorphic if edges have the same weights. Typically, this means molecules will need to have the same bond lengths to be defined as duplicates, otherwise bond lengths can differ. This is a fairly robust approach, but will treat e.g. enantiomers as being duplicates. :return: list of unique Molecules in Structure """ # creating a supercell is an easy way to extract # molecules (and not, e.g., layers of a 2D crystal) # without adding extra logic if getattr(self, "_supercell_sg", None) is None: self._supercell_sg = supercell_sg = self * (3, 3, 3) # make undirected to find connected subgraphs supercell_sg.graph = nx.Graph(supercell_sg.graph) # find subgraphs all_subgraphs = [supercell_sg.graph.subgraph(c) for c in nx.connected_components(supercell_sg.graph)] # discount subgraphs that lie across *supercell* boundaries # these will subgraphs representing crystals molecule_subgraphs = [] for subgraph in all_subgraphs: intersects_boundary = any(d["to_jimage"] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)) if not intersects_boundary: molecule_subgraphs.append(nx.MultiDiGraph(subgraph)) # add specie names to graph to be able to test for isomorphism for subgraph in molecule_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(supercell_sg.structure[n].specie)) # now define how we test for isomorphism def node_match(n1, n2): return n1["specie"] == n2["specie"] def edge_match(e1, e2): if use_weights: return e1["weight"] == e2["weight"] return True # prune duplicate subgraphs unique_subgraphs = [] for subgraph in molecule_subgraphs: already_present = [ nx.is_isomorphic(subgraph, g, node_match=node_match, edge_match=edge_match) for g in unique_subgraphs ] if not any(already_present): unique_subgraphs.append(subgraph) # get Molecule objects for each subgraph molecules = [] for subgraph in unique_subgraphs: coords = [supercell_sg.structure[n].coords for n in subgraph.nodes()] species = [supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = Molecule(species, coords) # shift so origin is at center of mass molecule = molecule.get_centered_molecule() molecules.append(molecule) return molecules class MolGraphSplitError(Exception): """ Raised when a molecule graph is failed to split into two disconnected subgraphs """ pass class MoleculeGraph(MSONable): """ This is a class for annotating a Molecule with bond information, stored in the form of a graph. A "bond" does not necessarily have to be a chemical bond, but can store any kind of information that connects two Sites. """ def __init__(self, molecule, graph_data=None): """ If constructing this class manually, use the `with_empty_graph` method or `with_local_env_strategy` method (using an algorithm provided by the `local_env` module, such as O'Keeffe). This class that contains connection information: relationships between sites represented by a Graph structure, and an associated structure object. This class uses the NetworkX package to store and operate on the graph itself, but contains a lot of helper methods to make associating a graph with a given molecule easier. Use cases for this include storing bonding information, NMR J-couplings, Heisenberg exchange parameters, etc. :param molecule: Molecule object :param graph_data: dict containing graph information in dict format (not intended to be constructed manually, see as_dict method for format) """ if isinstance(molecule, MoleculeGraph): # just make a copy from input graph_data = molecule.as_dict()["graphs"] self.molecule = molecule self.graph = nx.readwrite.json_graph.adjacency_graph(graph_data) # tidy up edge attr dicts, reading to/from json duplicates # information for u, v, k, d in self.graph.edges(keys=True, data=True): if "id" in d: del d["id"] if "key" in d: del d["key"] # ensure images are tuples (conversion to lists happens # when serializing back from json), it's important images # are hashable/immutable if "to_jimage" in d: d["to_jimage"] = tuple(d["to_jimage"]) if "from_jimage" in d: d["from_jimage"] = tuple(d["from_jimage"]) self.set_node_attributes() @classmethod def with_empty_graph(cls, molecule, name="bonds", edge_weight_name=None, edge_weight_units=None): """ Constructor for MoleculeGraph, returns a MoleculeGraph object with an empty graph (no edges, only nodes defined that correspond to Sites in Molecule). :param molecule (Molecule): :param name (str): name of graph, e.g. "bonds" :param edge_weight_name (str): name of edge weights, e.g. "bond_length" or "exchange_constant" :param edge_weight_units (str): name of edge weight units e.g. "Å" or "eV" :return (MoleculeGraph): """ if edge_weight_name and (edge_weight_units is None): raise ValueError( "Please specify units associated " "with your edge weights. Can be " "empty string if arbitrary or " "dimensionless." ) # construct graph with one node per site # graph attributes don't change behavior of graph, # they're just for book-keeping graph = nx.MultiDiGraph( edge_weight_name=edge_weight_name, edge_weight_units=edge_weight_units, name=name, ) graph.add_nodes_from(range(len(molecule))) graph_data = json_graph.adjacency_data(graph) return cls(molecule, graph_data=graph_data) @staticmethod def with_edges(molecule, edges): """ Constructor for MoleculeGraph, using pre-existing or pre-defined edges with optional edge parameters. :param molecule: Molecule object :param edges: dict representing the bonds of the functional group (format: {(u, v): props}, where props is a dictionary of properties, including weight. Props should be None if no additional properties are to be specified. :return: mg, a MoleculeGraph """ mg = MoleculeGraph.with_empty_graph(molecule, name="bonds", edge_weight_name="weight", edge_weight_units="") for edge, props in edges.items(): try: from_index = edge[0] to_index = edge[1] except TypeError: raise ValueError("Edges must be given as (from_index, to_index)" "tuples") if props is not None: if "weight" in props.keys(): weight = props["weight"] del props["weight"] else: weight = None if len(props.items()) == 0: props = None else: weight = None nodes = mg.graph.nodes if not (from_index in nodes and to_index in nodes): raise ValueError( "Edges cannot be added if nodes are not" " present in the graph. Please check your" " indices." ) mg.add_edge(from_index, to_index, weight=weight, edge_properties=props) mg.set_node_attributes() return mg @staticmethod def with_local_env_strategy(molecule, strategy): """ Constructor for MoleculeGraph, using a strategy from :Class: `pymatgen.analysis.local_env`. :param molecule: Molecule object :param strategy: an instance of a :Class: `pymatgen.analysis.local_env.NearNeighbors` object :return: mg, a MoleculeGraph """ if not strategy.molecules_allowed: raise ValueError( "Chosen strategy is not designed for use with molecules! " "Please choose another strategy." ) extend_structure = strategy.extend_structure_molecules mg = MoleculeGraph.with_empty_graph(molecule, name="bonds", edge_weight_name="weight", edge_weight_units="") # NearNeighbor classes only (generally) work with structures # molecules have to be boxed first coords = molecule.cart_coords if extend_structure: a = max(coords[:, 0]) - min(coords[:, 0]) + 100 b = max(coords[:, 1]) - min(coords[:, 1]) + 100 c = max(coords[:, 2]) - min(coords[:, 2]) + 100 structure = molecule.get_boxed_structure(a, b, c, no_cross=True, reorder=False) else: structure = None for n in range(len(molecule)): if structure is None: neighbors = strategy.get_nn_info(molecule, n) else: neighbors = strategy.get_nn_info(structure, n) for neighbor in neighbors: # all bonds in molecules should not cross # (artificial) periodic boundaries if not np.array_equal(neighbor["image"], [0, 0, 0]): continue if n > neighbor["site_index"]: from_index = neighbor["site_index"] to_index = n else: from_index = n to_index = neighbor["site_index"] mg.add_edge( from_index=from_index, to_index=to_index, weight=neighbor["weight"], warn_duplicates=False, ) duplicates = [] for edge in mg.graph.edges: if edge[2] != 0: duplicates.append(edge) for duplicate in duplicates: mg.graph.remove_edge(duplicate[0], duplicate[1], key=duplicate[2]) mg.set_node_attributes() return mg @property def name(self): """ :return: Name of graph """ return self.graph.graph["name"] @property def edge_weight_name(self): """ :return: Name of the edge weight property of graph """ return self.graph.graph["edge_weight_name"] @property def edge_weight_unit(self): """ :return: Units of the edge weight property of graph """ return self.graph.graph["edge_weight_units"] def add_edge( self, from_index, to_index, weight=None, warn_duplicates=True, edge_properties=None, ): """ Add edge to graph. Since physically a 'bond' (or other connection between sites) doesn't have a direction, from_index, from_jimage can be swapped with to_index, to_jimage. However, images will always always be shifted so that from_index < to_index and from_jimage becomes (0, 0, 0). :param from_index: index of site connecting from :param to_index: index of site connecting to :param weight (float): e.g. bond length :param warn_duplicates (bool): if True, will warn if trying to add duplicate edges (duplicate edges will not be added in either case) :param edge_properties (dict): any other information to store on graph edges, similar to Structure's site_properties :return: """ # this is not necessary for the class to work, but # just makes it neater if to_index < from_index: to_index, from_index = from_index, to_index # sanitize types from_index, to_index = int(from_index), int(to_index) # check we're not trying to add a duplicate edge # there should only ever be at most one edge # between two sites existing_edge_data = self.graph.get_edge_data(from_index, to_index) if existing_edge_data and warn_duplicates: warnings.warn( "Trying to add an edge that already exists from " "site {} to site {}.".format(from_index, to_index) ) return # generic container for additional edge properties, # similar to site properties edge_properties = edge_properties or {} if weight: self.graph.add_edge(from_index, to_index, weight=weight, **edge_properties) else: self.graph.add_edge(from_index, to_index, **edge_properties) def insert_node( self, i, species, coords, validate_proximity=False, site_properties=None, edges=None, ): """ A wrapper around Molecule.insert(), which also incorporates the new site into the MoleculeGraph. :param i: Index at which to insert the new site :param species: Species for the new site :param coords: 3x1 array representing coordinates of the new site :param validate_proximity: For Molecule.insert(); if True (default False), distance will be checked to ensure that site can be safely added. :param site_properties: Site properties for Molecule :param edges: List of dicts representing edges to be added to the MoleculeGraph. These edges must include the index of the new site i, and all indices used for these edges should reflect the MoleculeGraph AFTER the insertion, NOT before. Each dict should at least have a "to_index" and "from_index" key, and can also have a "weight" and a "properties" key. :return: """ self.molecule.insert( i, species, coords, validate_proximity=validate_proximity, properties=site_properties, ) mapping = {} for j in range(len(self.molecule) - 1): if j < i: mapping[j] = j else: mapping[j] = j + 1 nx.relabel_nodes(self.graph, mapping, copy=False) self.graph.add_node(i) self.set_node_attributes() if edges is not None: for edge in edges: try: self.add_edge( edge["from_index"], edge["to_index"], weight=edge.get("weight", None), edge_properties=edge.get("properties", None), ) except KeyError: raise RuntimeError("Some edges are invalid.") def set_node_attributes(self): """ Replicates molecule site properties (specie, coords, etc.) in the MoleculeGraph. :return: """ species = {} coords = {} properties = {} for node in self.graph.nodes(): species[node] = self.molecule[node].specie.symbol coords[node] = self.molecule[node].coords properties[node] = self.molecule[node].properties nx.set_node_attributes(self.graph, species, "specie") nx.set_node_attributes(self.graph, coords, "coords") nx.set_node_attributes(self.graph, properties, "properties") def alter_edge(self, from_index, to_index, new_weight=None, new_edge_properties=None): """ Alters either the weight or the edge_properties of an edge in the MoleculeGraph. :param from_index: int :param to_index: int :param new_weight: alter_edge does not require that weight be altered. As such, by default, this is None. If weight is to be changed, it should be a float. :param new_edge_properties: alter_edge does not require that edge_properties be altered. As such, by default, this is None. If any edge properties are to be changed, it should be a dictionary of edge properties to be changed. :return: """ existing_edge = self.graph.get_edge_data(from_index, to_index) # ensure that edge exists before attempting to change it if not existing_edge: raise ValueError( "Edge between {} and {} cannot be altered;\ no edge exists between those sites.".format( from_index, to_index ) ) # Third index should always be 0 because there should only be one edge between any two nodes if new_weight is not None: self.graph[from_index][to_index][0]["weight"] = new_weight if new_edge_properties is not None: for prop in list(new_edge_properties.keys()): self.graph[from_index][to_index][0][prop] = new_edge_properties[prop] def break_edge(self, from_index, to_index, allow_reverse=False): """ Remove an edge from the MoleculeGraph :param from_index: int :param to_index: int :param allow_reverse: If allow_reverse is True, then break_edge will attempt to break both (from_index, to_index) and, failing that, will attempt to break (to_index, from_index). :return: """ # ensure that edge exists before attempting to remove it existing_edge = self.graph.get_edge_data(from_index, to_index) existing_reverse = None if existing_edge: self.graph.remove_edge(from_index, to_index) else: if allow_reverse: existing_reverse = self.graph.get_edge_data(to_index, from_index) if existing_reverse: self.graph.remove_edge(to_index, from_index) else: raise ValueError( "Edge cannot be broken between {} and {};\ no edge exists between those sites.".format( from_index, to_index ) ) def remove_nodes(self, indices): """ A wrapper for Molecule.remove_sites(). :param indices: list of indices in the current Molecule (and graph) to be removed. :return: """ self.molecule.remove_sites(indices) self.graph.remove_nodes_from(indices) mapping = {} for correct, current in enumerate(sorted(self.graph.nodes)): mapping[current] = correct nx.relabel_nodes(self.graph, mapping, copy=False) self.set_node_attributes() def get_disconnected_fragments(self): """ Determine if the MoleculeGraph is connected. If it is not, separate the MoleculeGraph into different MoleculeGraphs, where each resulting MoleculeGraph is a disconnected subgraph of the original. Currently, this function naively assigns the charge of the total molecule to a single submolecule. A later effort will be to actually accurately assign charge. NOTE: This function does not modify the original MoleculeGraph. It creates a copy, modifies that, and returns two or more new MoleculeGraph objects. :return: list of MoleculeGraphs """ if nx.is_weakly_connected(self.graph): return [copy.deepcopy(self)] original = copy.deepcopy(self) sub_mols = list() # Had to use nx.weakly_connected_components because of deprecation # of nx.weakly_connected_component_subgraphs subgraphs = [original.graph.subgraph(c) for c in nx.weakly_connected_components(original.graph)] for subg in subgraphs: nodes = sorted(list(subg.nodes)) # Molecule indices are essentially list-based, so node indices # must be remapped, incrementing from 0 mapping = {} for i, n in enumerate(nodes): mapping[n] = i # just give charge to whatever subgraph has node with index 0 # TODO: actually figure out how to distribute charge if 0 in nodes: charge = self.molecule.charge else: charge = 0 # relabel nodes in graph to match mapping new_graph = nx.relabel_nodes(subg, mapping) species = nx.get_node_attributes(new_graph, "specie") coords = nx.get_node_attributes(new_graph, "coords") raw_props = nx.get_node_attributes(new_graph, "properties") properties = {} for prop_set in raw_props.values(): for prop in prop_set.keys(): if prop in properties: properties[prop].append(prop_set[prop]) else: properties[prop] = [prop_set[prop]] # Site properties must be present for all atoms in the molecule # in order to be used for Molecule instantiation for k, v in properties.items(): if len(v) != len(species): del properties[k] new_mol = Molecule(species, coords, charge=charge, site_properties=properties) graph_data = json_graph.adjacency_data(new_graph) # create new MoleculeGraph sub_mols.append(MoleculeGraph(new_mol, graph_data=graph_data)) return sub_mols def split_molecule_subgraphs(self, bonds, allow_reverse=False, alterations=None): """ Split MoleculeGraph into two or more MoleculeGraphs by breaking a set of bonds. This function uses MoleculeGraph.break_edge repeatedly to create disjoint graphs (two or more separate molecules). This function does not only alter the graph information, but also changes the underlying Molecules. If the bonds parameter does not include sufficient bonds to separate two molecule fragments, then this function will fail. Currently, this function naively assigns the charge of the total molecule to a single submolecule. A later effort will be to actually accurately assign charge. NOTE: This function does not modify the original MoleculeGraph. It creates a copy, modifies that, and returns two or more new MoleculeGraph objects. :param bonds: list of tuples (from_index, to_index) representing bonds to be broken to split the MoleculeGraph. :param alterations: a dict {(from_index, to_index): alt}, where alt is a dictionary including weight and/or edge properties to be changed following the split. :param allow_reverse: If allow_reverse is True, then break_edge will attempt to break both (from_index, to_index) and, failing that, will attempt to break (to_index, from_index). :return: list of MoleculeGraphs """ self.set_node_attributes() original = copy.deepcopy(self) for bond in bonds: original.break_edge(bond[0], bond[1], allow_reverse=allow_reverse) if nx.is_weakly_connected(original.graph): raise MolGraphSplitError( "Cannot split molecule; \ MoleculeGraph is still connected." ) # alter any bonds before partition, to avoid remapping if alterations is not None: for (u, v) in alterations.keys(): if "weight" in alterations[(u, v)]: weight = alterations[(u, v)]["weight"] del alterations[(u, v)]["weight"] edge_properties = alterations[(u, v)] if len(alterations[(u, v)]) != 0 else None original.alter_edge(u, v, new_weight=weight, new_edge_properties=edge_properties) else: original.alter_edge(u, v, new_edge_properties=alterations[(u, v)]) return original.get_disconnected_fragments() def build_unique_fragments(self): """ Find all possible fragment combinations of the MoleculeGraphs (in other words, all connected induced subgraphs) :return: """ self.set_node_attributes() graph = self.graph.to_undirected() # find all possible fragments, aka connected induced subgraphs frag_dict = {} for ii in range(1, len(self.molecule)): for combination in combinations(graph.nodes, ii): mycomp = [] for idx in combination: mycomp.append(str(self.molecule[idx].specie)) mycomp = "".join(sorted(mycomp)) subgraph = nx.subgraph(graph, combination) if nx.is_connected(subgraph): mykey = mycomp + str(len(subgraph.edges())) if mykey not in frag_dict: frag_dict[mykey] = [copy.deepcopy(subgraph)] else: frag_dict[mykey].append(copy.deepcopy(subgraph)) # narrow to all unique fragments using graph isomorphism unique_frag_dict = {} for key in frag_dict: unique_frags = [] for frag in frag_dict[key]: found = False for f in unique_frags: if _isomorphic(frag, f): found = True break if not found: unique_frags.append(frag) unique_frag_dict[key] = copy.deepcopy(unique_frags) # convert back to molecule graphs unique_mol_graph_dict = {} for key in unique_frag_dict: unique_mol_graph_list = [] for fragment in unique_frag_dict[key]: mapping = {e: i for i, e in enumerate(sorted(fragment.nodes))} remapped = nx.relabel_nodes(fragment, mapping) species = nx.get_node_attributes(remapped, "specie") coords = nx.get_node_attributes(remapped, "coords") edges = {} for from_index, to_index, key in remapped.edges: edge_props = fragment.get_edge_data(from_index, to_index, key=key) edges[(from_index, to_index)] = edge_props unique_mol_graph_list.append( self.with_edges( Molecule(species=species, coords=coords, charge=self.molecule.charge), edges, ) ) frag_key = ( str(unique_mol_graph_list[0].molecule.composition.alphabetical_formula) + " E" + str(len(unique_mol_graph_list[0].graph.edges())) ) unique_mol_graph_dict[frag_key] = copy.deepcopy(unique_mol_graph_list) return unique_mol_graph_dict def substitute_group( self, index, func_grp, strategy, bond_order=1, graph_dict=None, strategy_params=None, ): """ Builds off of Molecule.substitute to replace an atom in self.molecule with a functional group. This method also amends self.graph to incorporate the new functional group. NOTE: using a MoleculeGraph will generally produce a different graph compared with using a Molecule or str (when not using graph_dict). :param index: Index of atom to substitute. :param func_grp: Substituent molecule. There are three options: 1. Providing an actual molecule as the input. The first atom must be a DummySpecies X, indicating the position of nearest neighbor. The second atom must be the next nearest atom. For example, for a methyl group substitution, func_grp should be X-CH3, where X is the first site and C is the second site. What the code will do is to remove the index site, and connect the nearest neighbor to the C atom in CH3. The X-C bond indicates the directionality to connect the atoms. 2. A string name. The molecule will be obtained from the relevant template in func_groups.json. 3. A MoleculeGraph object. :param strategy: Class from pymatgen.analysis.local_env. :param bond_order: A specified bond order to calculate the bond length between the attached functional group and the nearest neighbor site. Defaults to 1. :param graph_dict: Dictionary representing the bonds of the functional group (format: {(u, v): props}, where props is a dictionary of properties, including weight. If None, then the algorithm will attempt to automatically determine bonds using one of a list of strategies defined in pymatgen.analysis.local_env. :param strategy_params: dictionary of keyword arguments for strategy. If None, default parameters will be used. :return: """ def map_indices(grp): grp_map = {} # Get indices now occupied by functional group # Subtracting 1 because the dummy atom X should not count atoms = len(grp) - 1 offset = len(self.molecule) - atoms for i in range(atoms): grp_map[i] = i + offset return grp_map # Work is simplified if a graph is already in place if isinstance(func_grp, MoleculeGraph): self.molecule.substitute(index, func_grp.molecule, bond_order=bond_order) mapping = map_indices(func_grp.molecule) for (u, v) in list(func_grp.graph.edges()): edge_props = func_grp.graph.get_edge_data(u, v)[0] weight = None if "weight" in edge_props.keys(): weight = edge_props["weight"] del edge_props["weight"] self.add_edge(mapping[u], mapping[v], weight=weight, edge_properties=edge_props) else: if isinstance(func_grp, Molecule): func_grp = copy.deepcopy(func_grp) else: try: func_grp = copy.deepcopy(FunctionalGroups[func_grp]) except Exception: raise RuntimeError("Can't find functional group in list. " "Provide explicit coordinate instead") self.molecule.substitute(index, func_grp, bond_order=bond_order) mapping = map_indices(func_grp) # Remove dummy atom "X" func_grp.remove_species("X") if graph_dict is not None: for (u, v) in graph_dict.keys(): edge_props = graph_dict[(u, v)] if "weight" in edge_props.keys(): weight = edge_props["weight"] del edge_props["weight"] self.add_edge( mapping[u], mapping[v], weight=weight, edge_properties=edge_props, ) else: if strategy_params is None: strategy_params = {} strat = strategy(**strategy_params) graph = self.with_local_env_strategy(func_grp, strat) for (u, v) in list(graph.graph.edges()): edge_props = graph.graph.get_edge_data(u, v)[0] weight = None if "weight" in edge_props.keys(): weight = edge_props["weight"] del edge_props["weight"] if 0 not in list(graph.graph.nodes()): # If graph indices have different indexing u, v = (u - 1), (v - 1) self.add_edge( mapping[u], mapping[v], weight=weight, edge_properties=edge_props, ) def replace_group( self, index, func_grp, strategy, bond_order=1, graph_dict=None, strategy_params=None, ): """ Builds off of Molecule.substitute and MoleculeGraph.substitute_group to replace a functional group in self.molecule with a functional group. This method also amends self.graph to incorporate the new functional group. TODO: Figure out how to replace into a ring structure. :param index: Index of atom to substitute. :param func_grp: Substituent molecule. There are three options: 1. Providing an actual molecule as the input. The first atom must be a DummySpecies X, indicating the position of nearest neighbor. The second atom must be the next nearest atom. For example, for a methyl group substitution, func_grp should be X-CH3, where X is the first site and C is the second site. What the code will do is to remove the index site, and connect the nearest neighbor to the C atom in CH3. The X-C bond indicates the directionality to connect the atoms. 2. A string name. The molecule will be obtained from the relevant template in func_groups.json. 3. A MoleculeGraph object. :param strategy: Class from pymatgen.analysis.local_env. :param bond_order: A specified bond order to calculate the bond length between the attached functional group and the nearest neighbor site. Defaults to 1. :param graph_dict: Dictionary representing the bonds of the functional group (format: {(u, v): props}, where props is a dictionary of properties, including weight. If None, then the algorithm will attempt to automatically determine bonds using one of a list of strategies defined in pymatgen.analysis.local_env. :param strategy_params: dictionary of keyword arguments for strategy. If None, default parameters will be used. :return: """ self.set_node_attributes() neighbors = self.get_connected_sites(index) # If the atom at index is terminal if len(neighbors) == 1: self.substitute_group( index, func_grp, strategy, bond_order=bond_order, graph_dict=graph_dict, strategy_params=strategy_params, ) else: rings = self.find_rings(including=[index]) if len(rings) != 0: raise RuntimeError( "Currently functional group replacement" "cannot occur at an atom within a ring" "structure." ) to_remove = set() sizes = dict() disconnected = self.graph.to_undirected() disconnected.remove_node(index) for neighbor in neighbors: sizes[neighbor[2]] = len(nx.descendants(disconnected, neighbor[2])) keep = max(sizes, key=lambda x: sizes[x]) for i in sizes.keys(): if i != keep: to_remove.add(i) self.remove_nodes(list(to_remove)) self.substitute_group( index, func_grp, strategy, bond_order=bond_order, graph_dict=graph_dict, strategy_params=strategy_params, ) def find_rings(self, including=None): """ Find ring structures in the MoleculeGraph. :param including: list of site indices. If including is not None, then find_rings will only return those rings including the specified sites. By default, this parameter is None, and all rings will be returned. :return: dict {index:cycle}. Each entry will be a ring (cycle, in graph theory terms) including the index found in the Molecule. If there is no cycle including an index, the value will be an empty list. """ # Copies self.graph such that all edges (u, v) matched by edges (v, u) undirected = self.graph.to_undirected() directed = undirected.to_directed() cycles_nodes = [] cycles_edges = [] # Remove all two-edge cycles all_cycles = [c for c in nx.simple_cycles(directed) if len(c) > 2] # Using to_directed() will mean that each cycle always appears twice # So, we must also remove duplicates unique_sorted = [] unique_cycles = [] for cycle in all_cycles: if sorted(cycle) not in unique_sorted: unique_sorted.append(sorted(cycle)) unique_cycles.append(cycle) if including is None: cycles_nodes = unique_cycles else: for i in including: for cycle in unique_cycles: if i in cycle and cycle not in cycles_nodes: cycles_nodes.append(cycle) for cycle in cycles_nodes: edges = [] for i, e in enumerate(cycle): edges.append((cycle[i - 1], e)) cycles_edges.append(edges) return cycles_edges def get_connected_sites(self, n): """ Returns a named tuple of neighbors of site n: periodic_site, jimage, index, weight. Index is the index of the corresponding site in the original structure, weight can be None if not defined. :param n: index of Site in Molecule :param jimage: lattice vector of site :return: list of ConnectedSite tuples, sorted by closest first """ connected_sites = set() out_edges = list(self.graph.out_edges(n, data=True)) in_edges = list(self.graph.in_edges(n, data=True)) for u, v, d in out_edges + in_edges: weight = d.get("weight", None) if v == n: site = self.molecule[u] dist = self.molecule[v].distance(self.molecule[u]) connected_site = ConnectedSite(site=site, jimage=(0, 0, 0), index=u, weight=weight, dist=dist) else: site = self.molecule[v] dist = self.molecule[u].distance(self.molecule[v]) connected_site = ConnectedSite(site=site, jimage=(0, 0, 0), index=v, weight=weight, dist=dist) connected_sites.add(connected_site) # return list sorted by closest sites first connected_sites = list(connected_sites) connected_sites.sort(key=lambda x: x.dist) return connected_sites def get_coordination_of_site(self, n): """ Returns the number of neighbors of site n. In graph terms, simply returns degree of node corresponding to site n. :param n: index of site :return (int): """ number_of_self_loops = sum([1 for n, v in self.graph.edges(n) if n == v]) return self.graph.degree(n) - number_of_self_loops def draw_graph_to_file( self, filename="graph", diff=None, hide_unconnected_nodes=False, hide_image_edges=True, edge_colors=False, node_labels=False, weight_labels=False, image_labels=False, color_scheme="VESTA", keep_dot=False, algo="fdp", ): """ Draws graph using GraphViz. The networkx graph object itself can also be drawn with networkx's in-built graph drawing methods, but note that this might give misleading results for multigraphs (edges are super-imposed on each other). If visualization is difficult to interpret, `hide_image_edges` can help, especially in larger graphs. :param filename: filename to output, will detect filetype from extension (any graphviz filetype supported, such as pdf or png) :param diff (StructureGraph): an additional graph to compare with, will color edges red that do not exist in diff and edges green that are in diff graph but not in the reference graph :param hide_unconnected_nodes: if True, hide unconnected nodes :param hide_image_edges: if True, do not draw edges that go through periodic boundaries :param edge_colors (bool): if True, use node colors to color edges :param node_labels (bool): if True, label nodes with species and site index :param weight_labels (bool): if True, label edges with weights :param image_labels (bool): if True, label edges with their periodic images (usually only used for debugging, edges to periodic images always appear as dashed lines) :param color_scheme (str): "VESTA" or "JMOL" :param keep_dot (bool): keep GraphViz .dot file for later visualization :param algo: any graphviz algo, "neato" (for simple graphs) or "fdp" (for more crowded graphs) usually give good outputs :return: """ if not which(algo): raise RuntimeError("StructureGraph graph drawing requires " "GraphViz binaries to be in the path.") # Developer note: NetworkX also has methods for drawing # graphs using matplotlib, these also work here. However, # a dedicated tool like GraphViz allows for much easier # control over graph appearance and also correctly displays # mutli-graphs (matplotlib can superimpose multiple edges). g = self.graph.copy() g.graph = {"nodesep": 10.0, "dpi": 300, "overlap": "false"} # add display options for nodes for n in g.nodes(): # get label by species name label = "{}({})".format(str(self.molecule[n].specie), n) if node_labels else "" # use standard color scheme for nodes c = EL_COLORS[color_scheme].get(str(self.molecule[n].specie.symbol), [0, 0, 0]) # get contrasting font color # magic numbers account for perceived luminescence # https://stackoverflow.com/questions/1855884/determine-font-color-based-on-background-color fontcolor = "#000000" if 1 - (c[0] * 0.299 + c[1] * 0.587 + c[2] * 0.114) / 255 < 0.5 else "#ffffff" # convert color to hex string color = "#{:02x}{:02x}{:02x}".format(c[0], c[1], c[2]) g.add_node( n, fillcolor=color, fontcolor=fontcolor, label=label, fontname="Helvetica-bold", style="filled", shape="circle", ) edges_to_delete = [] # add display options for edges for u, v, k, d in g.edges(keys=True, data=True): # retrieve from/to images, set as origin if not defined if "to_image" in d: to_image = d["to_jimage"] else: to_image = (0, 0, 0) # set edge style d["style"] = "solid" if to_image != (0, 0, 0): d["style"] = "dashed" if hide_image_edges: edges_to_delete.append((u, v, k)) # don't show edge directions d["arrowhead"] = "none" # only add labels for images that are not the origin if image_labels: d["headlabel"] = "" if to_image == (0, 0, 0) else "to {}".format((to_image)) d["arrowhead"] = "normal" if d["headlabel"] else "none" # optionally color edges using node colors color_u = g.node[u]["fillcolor"] color_v = g.node[v]["fillcolor"] d["color_uv"] = "{};0.5:{};0.5".format(color_u, color_v) if edge_colors else "#000000" # optionally add weights to graph if weight_labels: units = g.graph.get("edge_weight_units", "") if d.get("weight"): d["label"] = "{:.2f} {}".format(d["weight"], units) # update edge with our new style attributes g.edges[u, v, k].update(d) # optionally remove periodic image edges, # these can be confusing due to periodic boundaries if hide_image_edges: for edge_to_delete in edges_to_delete: g.remove_edge(*edge_to_delete) # optionally hide unconnected nodes, # these can appear when removing periodic edges if hide_unconnected_nodes: g = g.subgraph([n for n in g.degree() if g.degree()[n] != 0]) # optionally highlight differences with another graph if diff: diff = self.diff(diff, strict=True) green_edges = [] red_edges = [] for u, v, k, d in g.edges(keys=True, data=True): if (u, v, d["to_jimage"]) in diff["self"]: # edge has been deleted red_edges.append((u, v, k)) elif (u, v, d["to_jimage"]) in diff["other"]: # edge has been added green_edges.append((u, v, k)) for u, v, k in green_edges: g.edges[u, v, k].update({"color_uv": "#00ff00"}) for u, v, k in red_edges: g.edges[u, v, k].update({"color_uv": "#ff0000"}) basename, extension = os.path.splitext(filename) extension = extension[1:] write_dot(g, basename + ".dot") with open(filename, "w") as f: args = [algo, "-T", extension, basename + ".dot"] rs = subprocess.Popen(args, stdout=f, stdin=subprocess.PIPE, close_fds=True) rs.communicate() if rs.returncode != 0: raise RuntimeError("{} exited with return code {}.".format(algo, rs.returncode)) if not keep_dot: os.remove(basename + ".dot") def as_dict(self): """ As in :Class: `pymatgen.core.Molecule` except with using `to_dict_of_dicts` from NetworkX to store graph information. """ d = { "@module": self.__class__.__module__, "@class": self.__class__.__name__, "molecule": self.molecule.as_dict(), "graphs": json_graph.adjacency_data(self.graph), } return d @classmethod def from_dict(cls, d): """ As in :Class: `pymatgen.core.Molecule` except restoring graphs using `from_dict_of_dicts` from NetworkX to restore graph information. """ m = Molecule.from_dict(d["molecule"]) return cls(m, d["graphs"]) @classmethod def _edges_to_string(cls, g): header = "from to to_image " header_line = "---- ---- ------------" edge_weight_name = g.graph["edge_weight_name"] if edge_weight_name: print_weights = ["weight"] edge_label = g.graph["edge_weight_name"] edge_weight_units = g.graph["edge_weight_units"] if edge_weight_units: edge_label += " ({})".format(edge_weight_units) header += " {}".format(edge_label) header_line += " {}".format("-" * max([18, len(edge_label)])) else: print_weights = False s = header + "\n" + header_line + "\n" edges = list(g.edges(data=True)) # sort edges for consistent ordering edges.sort(key=itemgetter(0, 1)) if print_weights: for u, v, data in edges: s += "{:4} {:4} {:12} {:.3e}\n".format( u, v, str(data.get("to_jimage", (0, 0, 0))), data.get("weight", 0) ) else: for u, v, data in edges: s += "{:4} {:4} {:12}\n".format(u, v, str(data.get("to_jimage", (0, 0, 0)))) return s def __str__(self): s = "Molecule Graph" s += "\nMolecule: \n{}".format(self.molecule.__str__()) s += "\nGraph: {}\n".format(self.name) s += self._edges_to_string(self.graph) return s def __repr__(self): s = "Molecule Graph" s += "\nMolecule: \n{}".format(self.molecule.__repr__()) s += "\nGraph: {}\n".format(self.name) s += self._edges_to_string(self.graph) return s def __len__(self): """ :return: length of Molecule / number of nodes in graph """ return len(self.molecule) def sort(self, key=None, reverse=False): """ Same as Molecule.sort(), also remaps nodes in graph. :param key: :param reverse: :return: """ old_molecule = self.molecule.copy() # sort Molecule self.molecule._sites = sorted(self.molecule._sites, key=key, reverse=reverse) # apply Molecule ordering to graph mapping = {idx: self.molecule.index(site) for idx, site in enumerate(old_molecule)} self.graph = nx.relabel_nodes(self.graph, mapping, copy=True) # normalize directions of edges edges_to_remove = [] edges_to_add = [] for u, v, k, d in self.graph.edges(keys=True, data=True): if v < u: new_v, new_u, new_d = u, v, d.copy() new_d["to_jimage"] = (0, 0, 0) edges_to_remove.append((u, v, k)) edges_to_add.append((new_u, new_v, new_d)) # add/delete marked edges for edges_to_remove in edges_to_remove: self.graph.remove_edge(*edges_to_remove) for (u, v, d) in edges_to_add: self.graph.add_edge(u, v, **d) def __copy__(self): return MoleculeGraph.from_dict(self.as_dict()) def __eq__(self, other): """ Two MoleculeGraphs are equal if they have equal Molecules, and have the same edges between Sites. Edge weights can be different and MoleculeGraphs can still be considered equal. :param other: MoleculeGraph :return (bool): """ # sort for consistent node indices # PeriodicSite should have a proper __hash__() value, # using its frac_coords as a convenient key try: mapping = {tuple(site.coords): self.molecule.index(site) for site in other.molecule} except ValueError: return False other_sorted = other.__copy__() other_sorted.sort(key=lambda site: mapping[tuple(site.coords)]) edges = {(u, v) for u, v, d in self.graph.edges(keys=False, data=True)} edges_other = {(u, v) for u, v, d in other_sorted.graph.edges(keys=False, data=True)} return (edges == edges_other) and (self.molecule == other_sorted.molecule) def isomorphic_to(self, other): """ Checks if the graphs of two MoleculeGraphs are isomorphic to one another. In order to prevent problems with misdirected edges, both graphs are converted into undirected nx.Graph objects. :param other: MoleculeGraph object to be compared. :return: bool """ if len(self.molecule) != len(other.molecule): return False if self.molecule.composition.alphabetical_formula != other.molecule.composition.alphabetical_formula: return False if len(self.graph.edges()) != len(other.graph.edges()): return False return _isomorphic(self.graph, other.graph) def diff(self, other, strict=True): """ Compares two MoleculeGraphs. Returns dict with keys 'self', 'other', 'both' with edges that are present in only one MoleculeGraph ('self' and 'other'), and edges that are present in both. The Jaccard distance is a simple measure of the dissimilarity between two MoleculeGraphs (ignoring edge weights), and is defined by 1 - (size of the intersection / size of the union) of the sets of edges. This is returned with key 'dist'. Important note: all node indices are in terms of the MoleculeGraph this method is called from, not the 'other' MoleculeGraph: there is no guarantee the node indices will be the same if the underlying Molecules are ordered differently. :param other: MoleculeGraph :param strict: if False, will compare bonds from different Molecules, with node indices replaced by Species strings, will not count number of occurrences of bonds :return: """ if self.molecule != other.molecule and strict: return ValueError("Meaningless to compare MoleculeGraphs if " "corresponding Molecules are different.") if strict: # sort for consistent node indices # PeriodicSite should have a proper __hash__() value, # using its frac_coords as a convenient key mapping = {tuple(site.frac_coords): self.molecule.index(site) for site in other.molecule} other_sorted = other.__copy__() other_sorted.sort(key=lambda site: mapping[tuple(site.frac_coords)]) edges = {(u, v, d.get("to_jimage", (0, 0, 0))) for u, v, d in self.graph.edges(keys=False, data=True)} edges_other = { (u, v, d.get("to_jimage", (0, 0, 0))) for u, v, d in other_sorted.graph.edges(keys=False, data=True) } else: edges = { (str(self.molecule[u].specie), str(self.molecule[v].specie)) for u, v, d in self.graph.edges(keys=False, data=True) } edges_other = { (str(other.structure[u].specie), str(other.structure[v].specie)) for u, v, d in other.graph.edges(keys=False, data=True) } if len(edges) == 0 and len(edges_other) == 0: jaccard_dist = 0 # by definition else: jaccard_dist = 1 - len(edges.intersection(edges_other)) / len(edges.union(edges_other)) return { "self": edges - edges_other, "other": edges_other - edges, "both": edges.intersection(edges_other), "dist": jaccard_dist, }
[ "logging.getLogger", "networkx.readwrite.json_graph.adjacency_graph", "pymatgen.util.coord.lattice_points_in_supercell", "scipy.spatial.KDTree", "pymatgen.core.PeriodicSite", "numpy.array", "networkx.weakly_connected_components", "copy.deepcopy", "operator.itemgetter", "igraph.Graph", "networkx.relabel_nodes", "numpy.multiply", "networkx.algorithms.isomorphism.categorical_node_match", "subprocess.Popen", "networkx.is_connected", "numpy.subtract", "networkx.simple_cycles", "numpy.dot", "networkx.union", "warnings.warn", "networkx.is_weakly_connected", "pymatgen.core.Molecule", "numpy.round", "networkx.readwrite.json_graph.adjacency_data", "networkx.MultiDiGraph", "collections.namedtuple", "numpy.eye", "numpy.add", "pymatgen.core.PeriodicSite.from_dict", "networkx.connected_components", "pymatgen.core.Molecule.from_dict", "networkx.subgraph", "pymatgen.core.Structure.from_dict", "numpy.around", "networkx.descendants", "networkx.is_isomorphic", "monty.os.path.which", "scipy.stats.describe", "networkx.Graph", "itertools.combinations", "collections.defaultdict", "networkx.set_node_attributes", "numpy.array_equal", "networkx.get_node_attributes", "networkx.drawing.nx_agraph.write_dot", "pymatgen.core.Structure.from_sites" ]
[((1010, 1037), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1027, 1037), False, 'import logging\n'), ((1243, 1307), 'collections.namedtuple', 'namedtuple', (['"""ConnectedSite"""', '"""site, jimage, index, weight, dist"""'], {}), "('ConnectedSite', 'site, jimage, index, weight, dist')\n", (1253, 1307), False, 'from collections import defaultdict, namedtuple\n'), ((1684, 1698), 'igraph.Graph', 'igraph.Graph', ([], {}), '()\n', (1696, 1698), False, 'import igraph\n'), ((3004, 3049), 'networkx.algorithms.isomorphism.categorical_node_match', 'iso.categorical_node_match', (['"""specie"""', '"""ERROR"""'], {}), "('specie', 'ERROR')\n", (3030, 3049), True, 'import networkx.algorithms.isomorphism as iso\n'), ((4776, 4827), 'networkx.readwrite.json_graph.adjacency_graph', 'nx.readwrite.json_graph.adjacency_graph', (['graph_data'], {}), '(graph_data)\n', (4815, 4827), True, 'import networkx as nx\n'), ((6565, 6668), 'networkx.MultiDiGraph', 'nx.MultiDiGraph', ([], {'edge_weight_name': 'edge_weight_name', 'edge_weight_units': 'edge_weight_units', 'name': 'name'}), '(edge_weight_name=edge_weight_name, edge_weight_units=\n edge_weight_units, name=name)\n', (6580, 6668), True, 'import networkx as nx\n'), ((6785, 6817), 'networkx.readwrite.json_graph.adjacency_data', 'json_graph.adjacency_data', (['graph'], {}), '(graph)\n', (6810, 6817), False, 'from networkx.readwrite import json_graph\n'), ((17318, 17367), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['self.graph', 'mapping'], {'copy': '(False)'}), '(self.graph, mapping, copy=False)\n', (17334, 17367), True, 'import networkx as nx\n'), ((18480, 18533), 'networkx.set_node_attributes', 'nx.set_node_attributes', (['self.graph', 'species', '"""specie"""'], {}), "(self.graph, species, 'specie')\n", (18502, 18533), True, 'import networkx as nx\n'), ((18542, 18594), 'networkx.set_node_attributes', 'nx.set_node_attributes', (['self.graph', 'coords', '"""coords"""'], {}), "(self.graph, coords, 'coords')\n", (18564, 18594), True, 'import networkx as nx\n'), ((18603, 18663), 'networkx.set_node_attributes', 'nx.set_node_attributes', (['self.graph', 'properties', '"""properties"""'], {}), "(self.graph, properties, 'properties')\n", (18625, 18663), True, 'import networkx as nx\n'), ((22658, 22707), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['self.graph', 'mapping'], {'copy': '(False)'}), '(self.graph, mapping, copy=False)\n', (22674, 22707), True, 'import networkx as nx\n'), ((36080, 36111), 'networkx.drawing.nx_agraph.write_dot', 'write_dot', (['g', "(basename + '.dot')"], {}), "(g, basename + '.dot')\n", (36089, 36111), False, 'from networkx.drawing.nx_agraph import write_dot\n'), ((37176, 37193), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (37187, 37193), False, 'from collections import defaultdict, namedtuple\n'), ((37732, 37772), 'scipy.stats.describe', 'describe', (['all_weights'], {'nan_policy': '"""omit"""'}), "(all_weights, nan_policy='omit')\n", (37740, 37772), False, 'from scipy.stats import describe\n'), ((40196, 40231), 'pymatgen.core.Structure.from_dict', 'Structure.from_dict', (["d['structure']"], {}), "(d['structure'])\n", (40215, 40231), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((41833, 41867), 'numpy.array', 'np.array', (['scaling_matrix', 'np.int16'], {}), '(scaling_matrix, np.int16)\n', (41841, 41867), True, 'import numpy as np\n'), ((42242, 42283), 'pymatgen.util.coord.lattice_points_in_supercell', 'lattice_points_in_supercell', (['scale_matrix'], {}), '(scale_matrix)\n', (42269, 42283), False, 'from pymatgen.util.coord import lattice_points_in_supercell\n'), ((43056, 43087), 'pymatgen.core.Structure.from_sites', 'Structure.from_sites', (['new_sites'], {}), '(new_sites)\n', (43076, 43087), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((43151, 43168), 'networkx.MultiDiGraph', 'nx.MultiDiGraph', ([], {}), '()\n', (43166, 43168), True, 'import networkx as nx\n'), ((43740, 43773), 'scipy.spatial.KDTree', 'KDTree', (['new_structure.cart_coords'], {}), '(new_structure.cart_coords)\n', (43746, 43773), False, 'from scipy.spatial import KDTree\n'), ((51317, 51365), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['self.graph', 'mapping'], {'copy': '(True)'}), '(self.graph, mapping, copy=True)\n', (51333, 51365), True, 'import networkx as nx\n'), ((56983, 57011), 'networkx.Graph', 'nx.Graph', (['supercell_sg.graph'], {}), '(supercell_sg.graph)\n', (56991, 57011), True, 'import networkx as nx\n'), ((60558, 60609), 'networkx.readwrite.json_graph.adjacency_graph', 'nx.readwrite.json_graph.adjacency_graph', (['graph_data'], {}), '(graph_data)\n', (60597, 60609), True, 'import networkx as nx\n'), ((62376, 62479), 'networkx.MultiDiGraph', 'nx.MultiDiGraph', ([], {'edge_weight_name': 'edge_weight_name', 'edge_weight_units': 'edge_weight_units', 'name': 'name'}), '(edge_weight_name=edge_weight_name, edge_weight_units=\n edge_weight_units, name=name)\n', (62391, 62479), True, 'import networkx as nx\n'), ((62595, 62627), 'networkx.readwrite.json_graph.adjacency_data', 'json_graph.adjacency_data', (['graph'], {}), '(graph)\n', (62620, 62627), False, 'from networkx.readwrite import json_graph\n'), ((70932, 70981), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['self.graph', 'mapping'], {'copy': '(False)'}), '(self.graph, mapping, copy=False)\n', (70948, 70981), True, 'import networkx as nx\n'), ((71969, 72022), 'networkx.set_node_attributes', 'nx.set_node_attributes', (['self.graph', 'species', '"""specie"""'], {}), "(self.graph, species, 'specie')\n", (71991, 72022), True, 'import networkx as nx\n'), ((72031, 72083), 'networkx.set_node_attributes', 'nx.set_node_attributes', (['self.graph', 'coords', '"""coords"""'], {}), "(self.graph, coords, 'coords')\n", (72053, 72083), True, 'import networkx as nx\n'), ((72092, 72152), 'networkx.set_node_attributes', 'nx.set_node_attributes', (['self.graph', 'properties', '"""properties"""'], {}), "(self.graph, properties, 'properties')\n", (72114, 72152), True, 'import networkx as nx\n'), ((75360, 75409), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['self.graph', 'mapping'], {'copy': '(False)'}), '(self.graph, mapping, copy=False)\n', (75376, 75409), True, 'import networkx as nx\n'), ((76149, 76183), 'networkx.is_weakly_connected', 'nx.is_weakly_connected', (['self.graph'], {}), '(self.graph)\n', (76171, 76183), True, 'import networkx as nx\n'), ((76246, 76265), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (76259, 76265), False, 'import copy\n'), ((79878, 79897), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (79891, 79897), False, 'import copy\n'), ((80017, 80055), 'networkx.is_weakly_connected', 'nx.is_weakly_connected', (['original.graph'], {}), '(original.graph)\n', (80039, 80055), True, 'import networkx as nx\n'), ((102849, 102880), 'networkx.drawing.nx_agraph.write_dot', 'write_dot', (['g', "(basename + '.dot')"], {}), "(g, basename + '.dot')\n", (102858, 102880), False, 'from networkx.drawing.nx_agraph import write_dot\n'), ((103980, 104013), 'pymatgen.core.Molecule.from_dict', 'Molecule.from_dict', (["d['molecule']"], {}), "(d['molecule'])\n", (103998, 104013), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((106378, 106426), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['self.graph', 'mapping'], {'copy': '(True)'}), '(self.graph, mapping, copy=True)\n', (106394, 106426), True, 'import networkx as nx\n'), ((12553, 12591), 'numpy.array_equal', 'np.array_equal', (['from_jimage', '(0, 0, 0)'], {}), '(from_jimage, (0, 0, 0))\n', (12567, 12591), True, 'import numpy as np\n'), ((12651, 12682), 'numpy.subtract', 'np.subtract', (['from_jimage', 'shift'], {}), '(from_jimage, shift)\n', (12662, 12682), True, 'import numpy as np\n'), ((12707, 12736), 'numpy.subtract', 'np.subtract', (['to_jimage', 'shift'], {}), '(to_jimage, shift)\n', (12718, 12736), True, 'import numpy as np\n'), ((12993, 13095), 'warnings.warn', 'warnings.warn', (['"""Please specify to_jimage to be unambiguous, trying to automatically detect."""'], {}), "(\n 'Please specify to_jimage to be unambiguous, trying to automatically detect.'\n )\n", (13006, 13095), False, 'import warnings\n'), ((25401, 25424), 'copy.deepcopy', 'copy.deepcopy', (['func_grp'], {}), '(func_grp)\n', (25414, 25424), False, 'import copy\n'), ((28499, 28529), 'pymatgen.core.PeriodicSite.from_dict', 'PeriodicSite.from_dict', (['site_d'], {}), '(site_d)\n', (28521, 28529), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((28612, 28642), 'numpy.subtract', 'np.subtract', (['to_jimage', 'jimage'], {}), '(to_jimage, jimage)\n', (28623, 28642), True, 'import numpy as np\n'), ((31781, 31792), 'monty.os.path.which', 'which', (['algo'], {}), '(algo)\n', (31786, 31792), False, 'from monty.os.path import which\n'), ((36232, 36303), 'subprocess.Popen', 'subprocess.Popen', (['args'], {'stdout': 'f', 'stdin': 'subprocess.PIPE', 'close_fds': '(True)'}), '(args, stdout=f, stdin=subprocess.PIPE, close_fds=True)\n', (36248, 36303), False, 'import subprocess\n'), ((39889, 39926), 'networkx.readwrite.json_graph.adjacency_data', 'json_graph.adjacency_data', (['self.graph'], {}), '(self.graph)\n', (39914, 39926), False, 'from networkx.readwrite import json_graph\n'), ((42172, 42223), 'numpy.dot', 'np.dot', (['scale_matrix', 'self.structure.lattice.matrix'], {}), '(scale_matrix, self.structure.lattice.matrix)\n', (42178, 42223), True, 'import numpy as np\n'), ((43226, 43252), 'networkx.union', 'nx.union', (['new_g', 'new_graph'], {}), '(new_g, new_graph)\n', (43234, 43252), True, 'import networkx as nx\n'), ((48799, 48831), 'networkx.readwrite.json_graph.adjacency_data', 'json_graph.adjacency_data', (['new_g'], {}), '(new_g)\n', (48824, 48831), False, 'from networkx.readwrite import json_graph\n'), ((58727, 58752), 'pymatgen.core.Molecule', 'Molecule', (['species', 'coords'], {}), '(species, coords)\n', (58735, 58752), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((77167, 77198), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['subg', 'mapping'], {}), '(subg, mapping)\n', (77183, 77198), True, 'import networkx as nx\n'), ((77222, 77265), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['new_graph', '"""specie"""'], {}), "(new_graph, 'specie')\n", (77244, 77265), True, 'import networkx as nx\n'), ((77287, 77330), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['new_graph', '"""coords"""'], {}), "(new_graph, 'coords')\n", (77309, 77330), True, 'import networkx as nx\n'), ((77355, 77402), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['new_graph', '"""properties"""'], {}), "(new_graph, 'properties')\n", (77377, 77402), True, 'import networkx as nx\n'), ((78004, 78072), 'pymatgen.core.Molecule', 'Molecule', (['species', 'coords'], {'charge': 'charge', 'site_properties': 'properties'}), '(species, coords, charge=charge, site_properties=properties)\n', (78012, 78072), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((78098, 78134), 'networkx.readwrite.json_graph.adjacency_data', 'json_graph.adjacency_data', (['new_graph'], {}), '(new_graph)\n', (78123, 78134), False, 'from networkx.readwrite import json_graph\n'), ((81357, 81386), 'itertools.combinations', 'combinations', (['graph.nodes', 'ii'], {}), '(graph.nodes, ii)\n', (81369, 81386), False, 'from itertools import combinations\n'), ((82444, 82471), 'copy.deepcopy', 'copy.deepcopy', (['unique_frags'], {}), '(unique_frags)\n', (82457, 82471), False, 'import copy\n'), ((83716, 83752), 'copy.deepcopy', 'copy.deepcopy', (['unique_mol_graph_list'], {}), '(unique_mol_graph_list)\n', (83729, 83752), False, 'import copy\n'), ((98463, 98474), 'monty.os.path.which', 'which', (['algo'], {}), '(algo)\n', (98468, 98474), False, 'from monty.os.path import which\n'), ((103001, 103072), 'subprocess.Popen', 'subprocess.Popen', (['args'], {'stdout': 'f', 'stdin': 'subprocess.PIPE', 'close_fds': '(True)'}), '(args, stdout=f, stdin=subprocess.PIPE, close_fds=True)\n', (103017, 103072), False, 'import subprocess\n'), ((103674, 103711), 'networkx.readwrite.json_graph.adjacency_data', 'json_graph.adjacency_data', (['self.graph'], {}), '(self.graph)\n', (103699, 103711), False, 'from networkx.readwrite import json_graph\n'), ((13904, 13975), 'numpy.subtract', 'np.subtract', (['nnsite.frac_coords', 'self.structure[from_index].frac_coords'], {}), '(nnsite.frac_coords, self.structure[from_index].frac_coords)\n', (13915, 13975), True, 'import numpy as np\n'), ((25483, 25524), 'copy.deepcopy', 'copy.deepcopy', (['FunctionalGroups[func_grp]'], {}), '(FunctionalGroups[func_grp])\n', (25496, 25524), False, 'import copy\n'), ((28266, 28292), 'numpy.multiply', 'np.multiply', (['(-1)', 'to_jimage'], {}), '(-1, to_jimage)\n', (28277, 28292), True, 'import numpy as np\n'), ((42642, 42778), 'pymatgen.core.PeriodicSite', 'PeriodicSite', (['site.species', '(site.coords + v)', 'new_lattice'], {'properties': 'site.properties', 'coords_are_cartesian': '(True)', 'to_unit_cell': '(False)'}), '(site.species, site.coords + v, new_lattice, properties=site.\n properties, coords_are_cartesian=True, to_unit_cell=False)\n', (42654, 42778), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((42981, 43029), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['self.graph', 'mapping'], {'copy': '(True)'}), '(self.graph, mapping, copy=True)\n', (42997, 43029), True, 'import networkx as nx\n'), ((44499, 44549), 'numpy.add', 'np.add', (['self.structure[n_v].frac_coords', 'to_jimage'], {}), '(self.structure[n_v].frac_coords, to_jimage)\n', (44505, 44549), True, 'import numpy as np\n'), ((44963, 44996), 'numpy.subtract', 'np.subtract', (['v_image_cart', 'u_cart'], {}), '(v_image_cart, u_cart)\n', (44974, 44996), True, 'import numpy as np\n'), ((49782, 49798), 'operator.itemgetter', 'itemgetter', (['(0)', '(1)'], {}), '(0, 1)\n', (49792, 49798), False, 'from operator import itemgetter\n'), ((57103, 57146), 'networkx.connected_components', 'nx.connected_components', (['supercell_sg.graph'], {}), '(supercell_sg.graph)\n', (57126, 57146), True, 'import networkx as nx\n'), ((58215, 58290), 'networkx.is_isomorphic', 'nx.is_isomorphic', (['subgraph', 'g'], {'node_match': 'node_match', 'edge_match': 'edge_match'}), '(subgraph, g, node_match=node_match, edge_match=edge_match)\n', (58231, 58290), True, 'import networkx as nx\n'), ((76205, 76224), 'copy.deepcopy', 'copy.deepcopy', (['self'], {}), '(self)\n', (76218, 76224), False, 'import copy\n'), ((76478, 76524), 'networkx.weakly_connected_components', 'nx.weakly_connected_components', (['original.graph'], {}), '(original.graph)\n', (76508, 76524), True, 'import networkx as nx\n'), ((81598, 81629), 'networkx.subgraph', 'nx.subgraph', (['graph', 'combination'], {}), '(graph, combination)\n', (81609, 81629), True, 'import networkx as nx\n'), ((81649, 81674), 'networkx.is_connected', 'nx.is_connected', (['subgraph'], {}), '(subgraph)\n', (81664, 81674), True, 'import networkx as nx\n'), ((82783, 82818), 'networkx.relabel_nodes', 'nx.relabel_nodes', (['fragment', 'mapping'], {}), '(fragment, mapping)\n', (82799, 82818), True, 'import networkx as nx\n'), ((82846, 82888), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['remapped', '"""specie"""'], {}), "(remapped, 'specie')\n", (82868, 82888), True, 'import networkx as nx\n'), ((82914, 82956), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['remapped', '"""coords"""'], {}), "(remapped, 'coords')\n", (82936, 82956), True, 'import networkx as nx\n'), ((87142, 87165), 'copy.deepcopy', 'copy.deepcopy', (['func_grp'], {}), '(func_grp)\n', (87155, 87165), False, 'import copy\n'), ((93607, 93633), 'networkx.simple_cycles', 'nx.simple_cycles', (['directed'], {}), '(directed)\n', (93623, 93633), True, 'import networkx as nx\n'), ((104860, 104876), 'operator.itemgetter', 'itemgetter', (['(0)', '(1)'], {}), '(0, 1)\n', (104870, 104876), False, 'from operator import itemgetter\n'), ((28333, 28358), 'numpy.add', 'np.add', (['to_jimage', 'jimage'], {}), '(to_jimage, jimage)\n', (28339, 28358), True, 'import numpy as np\n'), ((28438, 28470), 'numpy.add', 'np.add', (["site_d['abc']", 'to_jimage'], {}), "(site_d['abc'], to_jimage)\n", (28444, 28470), True, 'import numpy as np\n'), ((41960, 41969), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (41966, 41969), True, 'import numpy as np\n'), ((46990, 47025), 'numpy.around', 'np.around', (['v_expec_frac'], {'decimals': '(3)'}), '(v_expec_frac, decimals=3)\n', (46999, 47025), True, 'import numpy as np\n'), ((47132, 47172), 'numpy.subtract', 'np.subtract', (['v_expec_frac', 'v_expec_image'], {}), '(v_expec_frac, v_expec_image)\n', (47143, 47172), True, 'import numpy as np\n'), ((57531, 57556), 'networkx.MultiDiGraph', 'nx.MultiDiGraph', (['subgraph'], {}), '(subgraph)\n', (57546, 57556), True, 'import networkx as nx\n'), ((66010, 66054), 'numpy.array_equal', 'np.array_equal', (["neighbor['image']", '[0, 0, 0]'], {}), "(neighbor['image'], [0, 0, 0])\n", (66024, 66054), True, 'import numpy as np\n'), ((87236, 87277), 'copy.deepcopy', 'copy.deepcopy', (['FunctionalGroups[func_grp]'], {}), '(FunctionalGroups[func_grp])\n', (87249, 87277), False, 'import copy\n'), ((92180, 92221), 'networkx.descendants', 'nx.descendants', (['disconnected', 'neighbor[2]'], {}), '(disconnected, neighbor[2])\n', (92194, 92221), True, 'import networkx as nx\n'), ((14004, 14023), 'numpy.round', 'np.round', (['to_jimage'], {}), '(to_jimage)\n', (14012, 14023), True, 'import numpy as np\n'), ((83310, 83379), 'pymatgen.core.Molecule', 'Molecule', ([], {'species': 'species', 'coords': 'coords', 'charge': 'self.molecule.charge'}), '(species=species, coords=coords, charge=self.molecule.charge)\n', (83318, 83379), False, 'from pymatgen.core import Lattice, Molecule, PeriodicSite, Structure\n'), ((51646, 51677), 'numpy.multiply', 'np.multiply', (['(-1)', "d['to_jimage']"], {}), "(-1, d['to_jimage'])\n", (51657, 51677), True, 'import numpy as np\n'), ((81831, 81854), 'copy.deepcopy', 'copy.deepcopy', (['subgraph'], {}), '(subgraph)\n', (81844, 81854), False, 'import copy\n'), ((81930, 81953), 'copy.deepcopy', 'copy.deepcopy', (['subgraph'], {}), '(subgraph)\n', (81943, 81953), False, 'import copy\n'), ((47824, 47855), 'numpy.multiply', 'np.multiply', (['(-1)', "d['to_jimage']"], {}), "(-1, d['to_jimage'])\n", (47835, 47855), True, 'import numpy as np\n')]
from django.shortcuts import render, redirect from django.http import HttpResponse from .models import Article from django.contrib.auth.decorators import login_required from . import forms def Articles(request): articles = Article.objects.all().order_by('date') return render(request, 'articles/article_list.html', {'articles': articles}) def article_detail(request, slug): # return HttpResponse(slug) article = Article.objects.get(slug=slug) return render(request, 'articles/article_details.html', {'article': article}) @login_required(login_url="/accounts/login") def article_create(request): if request.method == 'POST': form = forms.CreateArticle(request.POST, request.FILES) if form.is_valid(): #save article to DB instance = form.save(commit=False) instance.author = request.user instance.save( ) return redirect ('articles:list') else: form = forms.CreateArticle() return render(request, 'articles/article_create.html', {'form':form})
[ "django.shortcuts.render", "django.shortcuts.redirect", "django.contrib.auth.decorators.login_required" ]
[((548, 591), 'django.contrib.auth.decorators.login_required', 'login_required', ([], {'login_url': '"""/accounts/login"""'}), "(login_url='/accounts/login')\n", (562, 591), False, 'from django.contrib.auth.decorators import login_required\n'), ((278, 347), 'django.shortcuts.render', 'render', (['request', '"""articles/article_list.html"""', "{'articles': articles}"], {}), "(request, 'articles/article_list.html', {'articles': articles})\n", (284, 347), False, 'from django.shortcuts import render, redirect\n'), ((474, 544), 'django.shortcuts.render', 'render', (['request', '"""articles/article_details.html"""', "{'article': article}"], {}), "(request, 'articles/article_details.html', {'article': article})\n", (480, 544), False, 'from django.shortcuts import render, redirect\n'), ((1001, 1064), 'django.shortcuts.render', 'render', (['request', '"""articles/article_create.html"""', "{'form': form}"], {}), "(request, 'articles/article_create.html', {'form': form})\n", (1007, 1064), False, 'from django.shortcuts import render, redirect\n'), ((916, 941), 'django.shortcuts.redirect', 'redirect', (['"""articles:list"""'], {}), "('articles:list')\n", (924, 941), False, 'from django.shortcuts import render, redirect\n')]
# (C) Copyright 2017 Inova Development Inc. # All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Define the base of targets (i.e. systems to be tested) TargetID = Column(Integer(11), primary_key=True) IPAddress = Column(String(15), nullable=False) CompanyID = Column(Integer(11), ForeignKey("Companies.CompanyID")) Namespace = Column(String(30), nullable=False) SMIVersion = Column(String(15), nullable=False) Product = Column(String(30), nullable=False) Principal = Column(String(30), nullable=False) Credential = Column(String(30), nullable=False) CimomVersion = Column(String(30), nullable=False) InteropNamespace = Column(String(30), nullable=False) Notify = Column(Enum('Enabled', 'Disabled'), default='Disabled') NotifyUsers = Column(String(12), nullable=False) ScanEnabled = Column(Enum('Enabled', 'Disabled'), default='Enabled') Protocol = Column(String(10), default='http') Port = Column(String(10), nullable=False) """ # TODO change ip_address to hostname where host name is name : port from __future__ import print_function, absolute_import import os import csv import re from collections import OrderedDict from textwrap import wrap import six from mysql.connector import Error as mysqlerror from ._dbtablebase import DBTableBase from ._mysqldbmixin import MySQLDBMixin from ._common import get_url_str from ._logging import AUDIT_LOGGER_NAME, get_logger from ._companiestable import CompaniesTable __all__ = ['TargetsTable'] class TargetsTable(DBTableBase): """ Class representing the targets db table. This base contains information on the targets, host systems, etc. in the environment. The factory method should be used to construct a new TargetsTable object since that creates the correct object for the defined database type. """ table_name = 'Targets' key_field = 'TargetID' # Fields that are required to create new records required_fields = [ 'IPAddress', 'CompanyID', 'Namespace', 'SMIVersion', 'Product', 'Principal', 'Credential', 'CimomVersion', 'InteropNamespace', 'Notify', 'NotifyUsers', 'ScanEnabled', 'Protocol', 'Port'] # All fields in each record. fields = [key_field] + required_fields join_fields = ['CompanyName'] all_fields = fields + join_fields hints = { 'IPAddress': "Host name or ip address", 'CompanyID': "DB id of company", 'Namespace': "User namespace", 'SMIVersion': "SMI version", 'Product': "Product name", 'Principal': "User Name to access target", 'Credential': "User password to access target", 'CimomVersion': "Version of CIMOM", 'InteropNamespace': "Interop Namespace name", 'Notify': "'Enabled' if users to be notified of issues, else " "'Disabled'", 'NotifyUsers': "List of UserIDs to notify", 'ScanEnabled': "Enabled if this target to be scanned", 'Protocol': '"http" or "https"', 'Port': "Integer defining WBEM server port."} # # Defines each record for the data base and outputs. # # The Name is the database name for the property # # The value tuple is display name and max width for the record table_format_dict = OrderedDict([ ('TargetID', ('ID', 2, int)), ('CompanyName', ('CompanyName', 12, str)), ('Namespace', ('Namespace', 12, str)), ('SMIVersion', ('SMIVersion', 12, str)), ('Product', ('Product', 15, str)), ('Principal', ('Principal', 12, str)), ('Credential', ('Credential', 12, str)), ('CimomVersion', ('CimomVersion', 15, str)), ('IPAddress', ('IPAddress', 12, str)), ('InteropNamespace', ('Interop', 8, str)), ('Notify', ('Notify', 12, str)), ('NotifyUsers', ('NotifyUsers', 12, str)), ('Protocol', ('Prot', 5, str)), ('Port', ('Port', 4, int)), ('ScanEnabled', ('Enabled', 6, str)), ]) # noqa: E123 def __init__(self, db_dict, db_type, verbose, output_format): """Initialize the abstract Targets instance. This controls all other target bases. This defines the common definition of all targets bases including field names, and common methods. Parameters: db_dict (:term: `dictionary') Dictionary containing all of the parameters to open the database defined by the db_dict attribute. db_type (:term: `string`) String defining one of the allowed database types for the target database. verbose (:class:`py:bool`) Boolean. If true detailed info is displayed on the processing of the TargetData class output_format (:term:`string`) String defining one of the legal report output formats. If not provided, the default is a simple report format. """ super(TargetsTable, self).__init__(db_dict, db_type, verbose) self.output_format = output_format # def __str__(self): # # # TODO this and __repr__ do not really match. # # """String info on targetdata. TODO. Put more info here""" # # return ('type=%s db=%s, len=%s' % (self.db_type, self.get_dbdict(), # # # len(self.data_dict))) # def __repr__(self): # # """Rep of target data""" # # return ('Targetdata db_type %s, rep count=%s' % # # # (self.db_type, len(self.data_dict))) def test_fieldnames(self, fields): """Test a list of field names. This test generates an exception, KeyError if a field in fields is not in the table """ for field in fields: self.table_format_dict[field] # pylint: disable=pointless-statement def get_dbdict(self): """Get string for the db_dict""" return '%s' % self.db_dict @classmethod def factory(cls, db_dict, db_type, verbose, output_format='simple'): """Factory method to select subclass based on database type (db_type). Currently the types sql and csv are supported. Returns instance object of the defined provider type. """ inst = None if verbose: print('targetdata factory datafile %s dbtype %s verbose %s' % (db_dict, db_type, verbose)) if db_type == ('csv'): inst = CsvTargetsTable(db_dict, db_type, verbose, output_format=output_format) elif db_type == ('mysql'): inst = MySQLTargetsTable(db_dict, db_type, verbose, output_format=output_format) else: ValueError('Invalid targets factory db_type %s' % db_type) if verbose: print('Resulting targets factory inst %r' % inst) return inst def get_field_list(self): """Return a list of the base table field names in the order defined.""" return list(self.table_format_dict) def get_format_dict(self, name): """Return tuple of display name and length for name.""" return self.table_format_dict[name] def get_enabled_targetids(self): """Get list of target ids that are marked enabled.""" return [x for x in self.data_dict if not self.disabled_target_id(x)] def get_disabled_targetids(self): """Get list of target ids that are marked disabled""" return [x for x in self.data_dict if self.disabled_target_id(x)] # TODO we have multiple of these. See get dict_for_host,get_hostid_list def get_targets_host(self, host_data): """ If an record for `host_data` exists return that record, otherwise return None. There may be multiple ipaddress, port entries for a single ipaddress, port in the database Parameters: host_id(tuple of hostname or ipaddress and port) Returns list of targetdata keys """ # TODO clean up for PY 3 return_list = [] for key, value in self.data_dict.items(): port = value["Port"] # TODO port from database is a string. Should be int internal. if value["IPAddress"] == host_data[0] and int(port) == host_data[1]: return_list.append(key) return return_list def get_target(self, targetid): """ Get the target data for the parameter target_id. This is alternate to using [id] directly. It does an additonal check for correct type for target_id Returns: target as dictionary Exceptions: KeyError if target not in targets dictionary """ if not isinstance(targetid, six.integer_types): targetid = int(targetid) return self.data_dict[targetid] def filter_targets(self, ip_filter=None, company_name_filter=None): """ Filter for match of ip_filter and companyname filter if they exist and return list of any targets that match. The filters are regex strings. """ rtn = OrderedDict() for key, value in self.data_dict.items(): if ip_filter and re.match(ip_filter, value['IPAddress']): rtn[key] = value if company_name_filter and \ re.match(value['CompanyName'], company_name_filter): rtn[key] = value return rtn def build_url(self, targetid): """Get the string representing the url for targetid. Gets the Protocol, IPaddress and port and uses the common get_url_str to create a string. Port info is included only if it is not the WBEM CIM-XML standard definitions. """ target = self[targetid] return get_url_str(target['Protocol'], target['IPAddress'], target['Port']) def get_hostid_list(self, ip_filter=None, company_name_filter=None): """ Get all WBEM Server ipaddresses in the targets base. Returns list of IP addresses:port entries. TODO: Does not include port right now. """ output_list = [] # TODO clean up for python 3 for _id, value in self.data_dict.items(): if self.verbose: print('get_hostid_list value %s' % (value,)) output_list.append(value['IPAddress']) return output_list def tbl_hdr(self, record_list): """Return a list of all the column headers from the record_list.""" hdr = [] for name in record_list: value = self.get_format_dict(name) hdr.append(value[0]) return hdr def get_notifyusers(self, targetid): """ Get list of entries in the notify users field and split into python list and return the list of integers representing the userids. This list stored in db as string of integers separated by commas. Returns None if there is no data in NotifyUsers. """ notify_users = self[targetid]['NotifyUsers'] if notify_users: notify_users_list = notify_users.split(',') notify_users_list = [int(userid) for userid in notify_users_list] return notify_users_list return None def format_record(self, record_id, fields, fold=False): """Return the fields defined in field_list for the record_id in display format. String fields will be folded if their width is greater than the specification in the format_dictionary and fold=True """ # TODO can we make this a std cvt function. target = self.get_target(record_id) line = [] for field_name in fields: field_value = target[field_name] fmt_value = self.get_format_dict(field_name) max_width = fmt_value[1] field_type = fmt_value[2] if isinstance(field_type, six.string_types) and field_value: if max_width < len(field_value): line.append('\n'.join(wrap(field_value, max_width))) else: line.append('%s' % field_value) else: line.append('%s' % field_value) return line def disabled_target(self, target_record): # pylint: disable=no-self-use """ If target_record disabled, return true, else return false. """ val = target_record['ScanEnabled'].lower() if val == 'enabled': return False if val == 'disabled': return True ValueError('ScanEnabled field must contain "Enabled" or "Disabled' ' string. %s is invalid.' % val) def disabled_target_id(self, targetid): """ Return True if target recorded for this target_id marked disabled. Otherwise return True Parameters: target_id(:term:`integer`) Valid target Id for the Target_Tableue . Returns: (:class:`py:bool`) True if this target id disabled Exceptions: KeyError if target_id not in database """ return(self.disabled_target(self.data_dict[targetid])) def get_output_width(self, col_list): """ Get the width of a table from the column names in the list """ total_width = 0 for name in col_list: value = self.get_format_dict(name) total_width += value[1] return total_width def get_unique_creds(self): """ Get the set of Credentials and Principal that represents the unique combination of both. The result could be used to test with all Principals/Credentials knows in the db. Return list of targetIDs that represent unique sets of Principal and Credential """ creds = {k: '%s%s' % (v['Principal'], v['Credential']) for k, v in self.data_dict.items()} ucreds = dict([[v, k] for k, v in creds.items()]) unique_keys = dict([[v, k] for k, v in ucreds.items()]) unique_creds = [(self.data_dict[k]['Principal'], self.data_dict[k]['Credential']) for k in unique_keys] return unique_creds class SQLTargetsTable(TargetsTable): """ Subclass of Targets data for all SQL databases. Subclasses of this class support specialized sql databases. """ def __init__(self, db_dict, dbtype, verbose, output_format): """Pass through to SQL""" if verbose: print('SQL Database type %s verbose=%s' % (db_dict, verbose)) super(SQLTargetsTable, self).__init__(db_dict, dbtype, verbose, output_format) self.connection = None class MySQLTargetsTable(SQLTargetsTable, MySQLDBMixin): """ This subclass of TargetsTable process targets infromation from an sql database. Generate the targetstable from the sql database targets table and the companies table, by mapping the data to the dictionary defined for targets """ # TODO filename is config file name, not actual file name. def __init__(self, db_dict, dbtype, verbose, output_format): """Read the input file into a dictionary.""" super(MySQLTargetsTable, self).__init__(db_dict, dbtype, verbose, output_format) self.connectdb(db_dict, verbose) self._load_table() self._load_joins() def _load_joins(self): """ Load the tables that would normally be joins. In this case it is the companies table. Move the companyName into the targets table TODO we should not be doing this in this manner but with a join. """ # Get companies table and insert into targets table: # TODO in smipyping name is db_dict. Elsewhere it is db_info companies_tbl = CompaniesTable.factory(self.db_dict, self.db_type, self.verbose) try: # set the companyname into the targets table for target_key in self.data_dict: target = self.data_dict[target_key] if target['CompanyID'] in companies_tbl: company = companies_tbl[target['CompanyID']] target['CompanyName'] = company['CompanyName'] else: target['CompanyName'] = "TableError CompanyID %s" % \ target['CompanyID'] except Exception as ex: raise ValueError('Error: putting Company Name in table %r error %s' % (self.db_dict, ex)) def update_fields(self, targetid, changes): """ Update the database record defined by targetid with the dictionary of items defined by changes where each item is an entry in the target record. Update does NOT test if the new value is the same as the original value. """ cursor = self.connection.cursor() # dynamically build the update sql based on the changes dictionary set_names = "SET " values = [] comma = False for key, value in changes.items(): if comma: set_names = set_names + ", " else: comma = True set_names = set_names + "{0} = %s".format(key) values.append(value) values.append(targetid) sql = "Update Targets " + set_names # append targetid component sql = sql + " WHERE TargetID=%s" # Record the original data for the audit log. original_data = {} target_record = self.get_target(targetid) for change in changes: original_data[change] = target_record[change] try: cursor.execute(sql, tuple(values)) self.connection.commit() audit_logger = get_logger(AUDIT_LOGGER_NAME) audit_logger.info('TargetsTable TargetID: %s, update fields: %s, ' 'original fields: %s', targetid, changes, original_data) except Exception as ex: self.connection.rollback() audit_logger = get_logger(AUDIT_LOGGER_NAME) audit_logger.error('TargetsTable TargetID: %s failed SQL update. ' 'SQL: %s Changes: %s Exception: %s', targetid, sql, changes, ex) raise ex finally: self._load_table() self._load_joins() cursor.close() def activate(self, targetid, activate_flag): """ Activate or deactivate the table entry defined by the targetid parameter to the value defined by the activate_flag Parameters: targetid (:term:`py:integer`): The database key property for this table activate_flag (:class:`py:bool`): Next state that will be set into the database for this target. Since the db field is an enum it actually sete Active or Inactive strings into the field """ cursor = self.connection.cursor() enabled_kw = 'Enabled' if activate_flag else 'Disabled' sql = 'UPDATE Targets SET ScanEnabled = %s WHERE TargetID = %s' try: cursor.execute(sql, (enabled_kw, targetid)) # noqa F841 self.connection.commit() audit_logger = get_logger(AUDIT_LOGGER_NAME) audit_logger.info('TargetTable TargetId %s,set scanEnabled to %s', targetid, enabled_kw) except mysqlerror as ex: audit_logger = get_logger(AUDIT_LOGGER_NAME) audit_logger.error('TargetTable userid %s failed SQL change ' 'ScanEnabled. SQL=%s ' 'Change to %s exception %s: %s', targetid, sql, enabled_kw, ex.__class__.__name__, ex) self.connection.rollback() raise ex finally: self._load_table() self._load_joins() def delete(self, targetid): """ Delete the target in the targets table defined by the targetid """ cursor = self.connection.cursor() sql = "DELETE FROM Targets WHERE TargetID=%s" try: # pylint: disable=unused-variable mydata = cursor.execute(sql, (targetid,)) # noqa F841 self.connection.commit() audit_logger = get_logger(AUDIT_LOGGER_NAME) audit_logger.info('TargetTable TargetId %s Deleted', targetid) except mysqlerror as ex: audit_logger = get_logger(AUDIT_LOGGER_NAME) audit_logger.error('TargetTable targetid %s failed SQL DELETE. ' 'SQL=%s exception %s: %s', targetid, sql, ex.__class__.__name__, ex) self.connection.rollback() raise ex finally: self._load_table() self._load_joins() self.connection.close() def insert(self, fields): """ Write a new record to the database containing the fields defined in the input. Parameters: field_data () Dictionary of fields to be inserted into the table. There is one entry in the dictionary for each field to be inserted. Exceptions: """ cursor = self.connection.cursor() placeholders = ', '.join(['%s'] * len(fields)) columns = ', '.join(fields.keys()) sql = "INSERT INTO %s ( %s ) VALUES ( %s )" % (self.table_name, columns, placeholders) try: cursor.execute(sql, fields.values()) self.connection.commit() new_targetid = cursor.lastrowid audit_logger = get_logger(AUDIT_LOGGER_NAME) audit_logger.info('TargetsTable TargetId %s added. %s', new_targetid, fields) except mysqlerror as ex: audit_logger = get_logger(AUDIT_LOGGER_NAME) audit_logger.error('TargetTable INSERT failed SQL update. SQL=%s. ' 'data=%s. Exception %s: %s', sql, fields, ex.__class__.__name__, ex) self.connection.rollback() raise ex finally: self._load_table() self._load_joins() self.connection.close() class CsvTargetsTable(TargetsTable): """Comma Separated Values form of the Target base.""" def __init__(self, db_dict, dbtype, verbose, output_format): """Read the input file into a dictionary.""" super(CsvTargetsTable, self).__init__(db_dict, dbtype, verbose, output_format) fn = db_dict['targetsfilename'] self.filename = fn # If the filename is not a full directory, the data file must be # either in the local directory or the same directory as the # config file defined by the db_dict entry directory if os.path.isabs(fn): if not os.path.isfile(fn): ValueError('CSV file %s does not exist ' % fn) else: self.filename = fn else: if os.path.isfile(fn): self.filename = fn else: full_fn = os.path.join(db_dict['directory'], fn) if not os.path.isfile(full_fn): ValueError('CSV file %s does not exist ' 'in local directory or config directory %s' % (fn, db_dict['directory'])) else: self.filename = full_fn with open(self.filename) as input_file: reader = csv.DictReader(input_file) # create dictionary (id = key) with dictionary for # each set of entries result = {} for row in reader: key = int(row['TargetID']) if key in result: # duplicate row handling print('ERROR. Duplicate Id in table: %s\nrow=%s' % (key, row)) raise ValueError('Input Error. duplicate Id') else: result[key] = row self.data_dict = result def write_updated_record(self, record_id): """Backup the existing file and write the new one. with cvs it writes the whole file back """ backfile = '%s.bak' % self.filename # TODO does this cover directories/clean up for possible exceptions. if os.path.isfile(backfile): os.remove(backfile) os.rename(self.filename, backfile) self.write_file(self.filename) def write_file(self, file_name): """Write the current Target base to the named file.""" with open(file_name, 'wb') as f: writer = csv.DictWriter(f, fieldnames=self.get_field_list()) writer.writeheader() for key, value in sorted(self.data_dict.items()): writer.writerow(value)
[ "collections.OrderedDict", "csv.DictReader", "os.path.isabs", "os.rename", "re.match", "os.path.join", "os.path.isfile", "textwrap.wrap", "os.remove" ]
[((3808, 4429), 'collections.OrderedDict', 'OrderedDict', (["[('TargetID', ('ID', 2, int)), ('CompanyName', ('CompanyName', 12, str)), (\n 'Namespace', ('Namespace', 12, str)), ('SMIVersion', ('SMIVersion', 12,\n str)), ('Product', ('Product', 15, str)), ('Principal', ('Principal', \n 12, str)), ('Credential', ('Credential', 12, str)), ('CimomVersion', (\n 'CimomVersion', 15, str)), ('IPAddress', ('IPAddress', 12, str)), (\n 'InteropNamespace', ('Interop', 8, str)), ('Notify', ('Notify', 12, str\n )), ('NotifyUsers', ('NotifyUsers', 12, str)), ('Protocol', ('Prot', 5,\n str)), ('Port', ('Port', 4, int)), ('ScanEnabled', ('Enabled', 6, str))]"], {}), "([('TargetID', ('ID', 2, int)), ('CompanyName', ('CompanyName', \n 12, str)), ('Namespace', ('Namespace', 12, str)), ('SMIVersion', (\n 'SMIVersion', 12, str)), ('Product', ('Product', 15, str)), (\n 'Principal', ('Principal', 12, str)), ('Credential', ('Credential', 12,\n str)), ('CimomVersion', ('CimomVersion', 15, str)), ('IPAddress', (\n 'IPAddress', 12, str)), ('InteropNamespace', ('Interop', 8, str)), (\n 'Notify', ('Notify', 12, str)), ('NotifyUsers', ('NotifyUsers', 12, str\n )), ('Protocol', ('Prot', 5, str)), ('Port', ('Port', 4, int)), (\n 'ScanEnabled', ('Enabled', 6, str))])\n", (3819, 4429), False, 'from collections import OrderedDict\n'), ((9728, 9741), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (9739, 9741), False, 'from collections import OrderedDict\n'), ((24106, 24123), 'os.path.isabs', 'os.path.isabs', (['fn'], {}), '(fn)\n', (24119, 24123), False, 'import os\n'), ((25695, 25719), 'os.path.isfile', 'os.path.isfile', (['backfile'], {}), '(backfile)\n', (25709, 25719), False, 'import os\n'), ((25761, 25795), 'os.rename', 'os.rename', (['self.filename', 'backfile'], {}), '(self.filename, backfile)\n', (25770, 25795), False, 'import os\n'), ((24309, 24327), 'os.path.isfile', 'os.path.isfile', (['fn'], {}), '(fn)\n', (24323, 24327), False, 'import os\n'), ((24828, 24854), 'csv.DictReader', 'csv.DictReader', (['input_file'], {}), '(input_file)\n', (24842, 24854), False, 'import csv\n'), ((25733, 25752), 'os.remove', 'os.remove', (['backfile'], {}), '(backfile)\n', (25742, 25752), False, 'import os\n'), ((9821, 9860), 're.match', 're.match', (['ip_filter', "value['IPAddress']"], {}), "(ip_filter, value['IPAddress'])\n", (9829, 9860), False, 'import re\n'), ((9956, 10007), 're.match', 're.match', (["value['CompanyName']", 'company_name_filter'], {}), "(value['CompanyName'], company_name_filter)\n", (9964, 10007), False, 'import re\n'), ((24144, 24162), 'os.path.isfile', 'os.path.isfile', (['fn'], {}), '(fn)\n', (24158, 24162), False, 'import os\n'), ((24408, 24446), 'os.path.join', 'os.path.join', (["db_dict['directory']", 'fn'], {}), "(db_dict['directory'], fn)\n", (24420, 24446), False, 'import os\n'), ((24470, 24493), 'os.path.isfile', 'os.path.isfile', (['full_fn'], {}), '(full_fn)\n', (24484, 24493), False, 'import os\n'), ((12722, 12750), 'textwrap.wrap', 'wrap', (['field_value', 'max_width'], {}), '(field_value, max_width)\n', (12726, 12750), False, 'from textwrap import wrap\n')]
# # All or portions of this file Copyright (c) Amazon.com, Inc. or its affiliates or # its licensors. # # For complete copyright and license terms please see the LICENSE at the root of this # distribution (the "License"). All use of this software is governed by the License, # or, if provided, by the license below or the license accompanying this file. Do not # remove or modify any license notices. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # import os from az_code_gen.base import * from AzReflectionCpp import format_cpp_annotations class AZEBusInline_Driver(TemplateDriver): def apply_transformations(self, json_object): format_cpp_annotations(json_object) def render_templates(self, input_file, **template_kwargs): input_file_name, input_file_ext = os.path.splitext(input_file) self.render_template_to_file( "AzEBusInline.tpl", template_kwargs, '{}.generated.inline'.format(input_file_name)) # Factory function - called from launcher def create_drivers(env): return [AZEBusInline_Driver(env)]
[ "AzReflectionCpp.format_cpp_annotations", "os.path.splitext" ]
[((719, 754), 'AzReflectionCpp.format_cpp_annotations', 'format_cpp_annotations', (['json_object'], {}), '(json_object)\n', (741, 754), False, 'from AzReflectionCpp import format_cpp_annotations\n'), ((861, 889), 'os.path.splitext', 'os.path.splitext', (['input_file'], {}), '(input_file)\n', (877, 889), False, 'import os\n')]
import os from QUANTAXIS.QASetting import QALocalize #from QUANTAXIS_CRAWLY.run_selenium_alone import (read_east_money_page_zjlx_to_sqllite, open_chrome_driver, close_chrome_dirver) from QUANTAXIS_CRAWLY.run_selenium_alone import * import urllib import pandas as pd import time from QUANTAXIS.QAUtil import (DATABASE) def QA_request_eastmoney_zjlx( param_stock_code_list ): # 改用 strUrl = "http://data.eastmoney.com/zjlx/{}.html".format(param_stock_code_list[0]) # 延时 time.sleep(1.223) response = urllib.request.urlopen(strUrl) content = response.read() # 🛠todo 改用 re 正则表达式做匹配 strings = content.decode("utf-8", "ignore") string_lines = strings.split("\r\n") #for aline in string_lines: # aline = aline.strip() # if '_stockCode' in aline: # _stockCode = aline[len('var _stockCode = '):] # _stockCode = _stockCode.strip("\"\"\,") # if '_stockMarke' in aline: # _stockMarke = aline[len('_stockMarke = '):] # _stockMarke = _stockMarke.strip("\"\"\,") # # 60XXXX , #_stockMarke = 1 # 00XXXX , # _stockMarke = 2 # 30XXXX , # _stockMarke = 2 # if '_stockName' in aline: # _stockName = aline[len('_stockName = '):] # _stockName = _stockName.strip("\"\"\,") # if '_market' in aline: # _market = aline[len('_market = '):] # _market = _market.strip("\"\"\,") # break #_market= 'hsa' # print(_stockCode) # print(_stockMarke) # print(_stockName) # print(_market) values = [] for aline in string_lines: aline = aline.strip() if 'EM_CapitalFlowInterface' in aline: # print(aline) # print('------------------') aline = aline.strip() if aline.startswith('var strUrl = '): if 'var strUrl = ' in aline: aline = aline[len('var strUrl = '):] values = aline.split('+') # print(values) break # print('------------------') print(values) for iStockCode in range(len(param_stock_code_list)): requestStr = "" strCode = param_stock_code_list[iStockCode] if strCode[0:2] == '60': _stockMarke = '1' elif strCode[0:2] == '00' or strCode[0:2] == '30': _stockMarke = '2' else: print(strCode + " 暂不支持, 60, 00, 30 开头的股票代码") return for iItem in values: if '_stockCode' in iItem: requestStr = requestStr + param_stock_code_list[iStockCode] elif '_stockMarke' in iItem: requestStr = requestStr + _stockMarke else: if 'http://ff.eastmoney.com/' in iItem: requestStr = 'http://ff.eastmoney.com/' else: iItem = iItem.strip(' "') iItem = iItem.rstrip(' "') requestStr = requestStr + iItem # print(requestStr) # 延时 time.sleep(1.456) response = urllib.request.urlopen(requestStr) content2 = response.read() # print(content2) strings = content2.decode("utf-8", "ignore") # print(strings) list_data_zjlx = [] if 'var aff_data=({data:[["' in strings: leftChars = strings[len('var aff_data=({data:[["'):] # print(leftChars) dataArrays = leftChars.split(',') # print(dataArrays) for aItemIndex in range(0, len(dataArrays), 13): ''' 日期 收盘价 涨跌幅 主力净流入 净额 净占比 超大单净流入 净额 净占比 大单净流入 净额 净占比 中单净流入 净额 净占比 小单净流入 净额 净占比 ''' dict_row = {} dict_row['stock_code'] = param_stock_code_list[iStockCode] # 日期 # print(aItemIndex) data01 = dataArrays[aItemIndex] data01 = data01.strip('"') # print('日期',data01) dict_row['date'] = data01 # 主力净流入 净额 data02 = dataArrays[aItemIndex + 1] data02 = data02.strip('"') # print('主力净流入 净额',data02) dict_row['zljll_je_wy'] = data02 # 主力净流入 净占比 data03 = dataArrays[aItemIndex + 2] data03 = data03.strip('"') # print('主力净流入 净占比',data03) # date01 = aItemData.strip('[\'\'') dict_row['zljll_jzb_bfb'] = data03 # 超大单净流入 净额 data04 = dataArrays[aItemIndex + 3] data04 = data04.strip('"') # print('超大单净流入 净额',data04) dict_row['cddjll_je_wy'] = data04 # 超大单净流入 净占比 data05 = dataArrays[aItemIndex + 4] data05 = data05.strip('"') # print('超大单净流入 净占比',data05) dict_row['cddjll_je_jzb'] = data05 # 大单净流入 净额 data06 = dataArrays[aItemIndex + 5] data06 = data06.strip('"') # print('大单净流入 净额',data06) dict_row['ddjll_je_wy'] = data06 # 大单净流入 净占比 data07 = dataArrays[aItemIndex + 6] data07 = data07.strip('"') # print('大单净流入 净占比',data07) dict_row['ddjll_je_jzb'] = data07 # 中单净流入 净额 data08 = dataArrays[aItemIndex + 7] data08 = data08.strip('"') # print('中单净流入 净额',data08) dict_row['zdjll_je_wy'] = data08 # 中单净流入 净占比 data09 = dataArrays[aItemIndex + 8] data09 = data09.strip('"') # print('中单净流入 净占比',data09) dict_row['zdjll_je_jzb'] = data09 # 小单净流入 净额 data10 = dataArrays[aItemIndex + 9] data10 = data10.strip('"') # print('小单净流入 净额',data10) dict_row['xdjll_je_wy'] = data10 # 小单净流入 净占比 data11 = dataArrays[aItemIndex + 10] data11 = data11.strip('"') # print('小单净流入 净占比',data11) dict_row['xdjll_je_jzb'] = data11 # 收盘价 data12 = dataArrays[aItemIndex + 11] data12 = data12.strip('"') # print('收盘价',data12) dict_row['close_price'] = data12 # 涨跌幅 data13 = dataArrays[aItemIndex + 12] data13 = data13.strip('"') data13 = data13.strip('"]]})') # print('涨跌幅',data13) dict_row['change_price'] = data13 # 读取一条记录成功 # print("成功读取一条记录") # print(dict_row) list_data_zjlx.append(dict_row) # print(list_data_zjlx) df = pd.DataFrame(list_data_zjlx) # print(df) client = DATABASE coll_stock_zjlx = client.eastmoney_stock_zjlx # coll_stock_zjlx.insert_many(QA_util_to_json_from_pandas(df)) for i in range(len(list_data_zjlx)): aRec = list_data_zjlx[i] # 🛠todo 当天结束后,获取当天的资金流相,当天的资金流向是瞬时间点的 ret = coll_stock_zjlx.find_one(aRec) if ret == None: coll_stock_zjlx.insert_one(aRec) print("🤑 插入新的记录 ", aRec) else: print("😵 记录已经存在 ", ret) ''' 作为测试用例来获取, 对比 reqeust 方式的获取数据是否一致 ''' def QA_read_eastmoney_zjlx_web_page_to_sqllite(stockCodeList = None): # todo 🛠 check stockCode 是否存在有效合法 # todo 🛠 QALocalize 从QALocalize 目录中读取 固定位置存放驱动文件 print("📨当前工作路径文件位置 : ",os.getcwd()) path_check = os.getcwd()+"/QUANTAXIS_WEBDRIVER" if os.path.exists(path_check) == False: print("😵 确认当前路径是否包含selenium_driver目录 😰 ") return else: print(os.getcwd()+"/QUANTAXIS_WEBDRIVER"," 目录存在 😁") print("") # path_for_save_data = QALocalize.download_path + "/eastmoney_stock_zjlx" # isExists = os.path.exists(path_for_save_data) # if isExists == False: # os.mkdir(path_for_save_data) # isExists = os.path.exists(path_for_save_data) # if isExists == True: # print(path_for_save_data,"目录不存在! 成功建立目录 😢") # else: # print(path_for_save_data,"目录不存在! 失败建立目录 🤮, 可能没有权限 🈲") # return # else: # print(path_for_save_data,"目录存在!准备读取数据 😋") browser = open_chrome_driver() for indexCode in range(len(stockCodeList)): #full_path_name = path_for_save_data + "/" + stockCodeList[indexCode] + "_zjlx.sqlite.db" read_east_money_page_zjlx_to_sqllite(stockCodeList[indexCode], browser) pass close_chrome_dirver(browser) #创建目录 #启动线程读取网页,写入数据库 #等待完成
[ "os.path.exists", "time.sleep", "os.getcwd", "pandas.DataFrame", "urllib.request.urlopen" ]
[((488, 505), 'time.sleep', 'time.sleep', (['(1.223)'], {}), '(1.223)\n', (498, 505), False, 'import time\n'), ((522, 552), 'urllib.request.urlopen', 'urllib.request.urlopen', (['strUrl'], {}), '(strUrl)\n', (544, 552), False, 'import urllib\n'), ((3133, 3150), 'time.sleep', 'time.sleep', (['(1.456)'], {}), '(1.456)\n', (3143, 3150), False, 'import time\n'), ((3171, 3205), 'urllib.request.urlopen', 'urllib.request.urlopen', (['requestStr'], {}), '(requestStr)\n', (3193, 3205), False, 'import urllib\n'), ((7139, 7167), 'pandas.DataFrame', 'pd.DataFrame', (['list_data_zjlx'], {}), '(list_data_zjlx)\n', (7151, 7167), True, 'import pandas as pd\n'), ((7951, 7962), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (7960, 7962), False, 'import os\n'), ((7969, 7980), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (7978, 7980), False, 'import os\n'), ((8011, 8037), 'os.path.exists', 'os.path.exists', (['path_check'], {}), '(path_check)\n', (8025, 8037), False, 'import os\n'), ((8137, 8148), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (8146, 8148), False, 'import os\n')]
#!/usr/bin/env python import logging import sys from app import app as application def setup_flask_logging(): # Log to stdout handler = logging.StreamHandler(sys.stdout) # Log to a file #handler = logging.FileHandler('./application.log') handler.setLevel(logging.INFO) handler.setFormatter(logging.Formatter( '%(asctime)s [%(funcName)s] %(levelname)s: %(message)s ' )) application.logger.addHandler(handler) # Set default log level for the general logger # each handler can then restrict the messages logged application.logger.setLevel(logging.INFO) setup_flask_logging() if __name__ == '__main__': application.run()
[ "app.app.run", "logging.StreamHandler", "logging.Formatter", "app.app.logger.setLevel", "app.app.logger.addHandler" ]
[((552, 593), 'app.app.logger.setLevel', 'application.logger.setLevel', (['logging.INFO'], {}), '(logging.INFO)\n', (579, 593), True, 'from app import app as application\n'), ((146, 179), 'logging.StreamHandler', 'logging.StreamHandler', (['sys.stdout'], {}), '(sys.stdout)\n', (167, 179), False, 'import logging\n'), ((411, 449), 'app.app.logger.addHandler', 'application.logger.addHandler', (['handler'], {}), '(handler)\n', (440, 449), True, 'from app import app as application\n'), ((649, 666), 'app.app.run', 'application.run', ([], {}), '()\n', (664, 666), True, 'from app import app as application\n'), ((316, 391), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s [%(funcName)s] %(levelname)s: %(message)s """'], {}), "('%(asctime)s [%(funcName)s] %(levelname)s: %(message)s ')\n", (333, 391), False, 'import logging\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-06-25 15:10 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('rates', '0001_initial'), ] operations = [ migrations.RenameField( model_name='rate', old_name='euro_rate', new_name='eur_rate', ), migrations.RenameField( model_name='rate', old_name='pound_rates', new_name='gbp_rate', ), ]
[ "django.db.migrations.RenameField" ]
[((279, 368), 'django.db.migrations.RenameField', 'migrations.RenameField', ([], {'model_name': '"""rate"""', 'old_name': '"""euro_rate"""', 'new_name': '"""eur_rate"""'}), "(model_name='rate', old_name='euro_rate', new_name=\n 'eur_rate')\n", (301, 368), False, 'from django.db import migrations\n'), ((420, 511), 'django.db.migrations.RenameField', 'migrations.RenameField', ([], {'model_name': '"""rate"""', 'old_name': '"""pound_rates"""', 'new_name': '"""gbp_rate"""'}), "(model_name='rate', old_name='pound_rates', new_name=\n 'gbp_rate')\n", (442, 511), False, 'from django.db import migrations\n')]
# coding: utf-8 """ Quetzal API Quetzal: an API to manage data files and their associated metadata. OpenAPI spec version: 0.5.0 Contact: <EMAIL> Generated by: https://openapi-generator.tech """ from setuptools import setup, find_packages # noqa: H301 NAME = "quetzal-openapi-client" VERSION = "0.5.0" # To install the library, run the following # # python setup.py install # # prerequisite: setuptools # http://pypi.python.org/pypi/setuptools REQUIRES = ["urllib3 >= 1.15", "six >= 1.10", "certifi", "python-dateutil"] setup( name=NAME, version=VERSION, description="Quetzal API auto-generated client", author='<NAME>', author_email="<EMAIL>", url="https://github.com/quet.zal/quetzal-openapi-client", project_urls={ "Documentation": "https://quetzal-openapi-client.readthedocs.io", "Code": "https://github.com/quetz-al/quetzal-openapi-client", "Issue tracker": "https://github.com/quetz-al/quetzal-openapi-client/issues", }, license="BSD-3-Clause", keywords=["OpenAPI", "OpenAPI-Generator", "Quetzal API"], install_requires=REQUIRES, packages=find_packages(exclude=['test', 'docs']), namespace_packages=['quetzal'], include_package_data=True, long_description="""\ quetzal-openapi-client ====================== This is an auto-generated package using [openapi-generator](https://github.com/OpenAPITools/openapi-generator) from an OpenAPI specification of the Quetzal API. An improvement layer on this client exists in the quetzal-client package. Quetzal is an API to manage data files and their associated metadata. See more at [quetz.al](https://quetz.al) and its [readthedocs documentation](https://quetzal-api.readthedocs.io). """, long_description_content_type='text/markdown', classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: Database :: Front-Ends', 'Topic :: Internet :: WWW/HTTP', 'Topic :: System :: Archiving', ], )
[ "setuptools.find_packages" ]
[((1145, 1184), 'setuptools.find_packages', 'find_packages', ([], {'exclude': "['test', 'docs']"}), "(exclude=['test', 'docs'])\n", (1158, 1184), False, 'from setuptools import setup, find_packages\n')]
# coding: utf-8 from __future__ import unicode_literals import re from .adobepass import AdobePassIE from ..compat import compat_str from ..utils import ( fix_xml_ampersands, xpath_text, int_or_none, determine_ext, float_or_none, parse_duration, xpath_attr, update_url_query, ExtractorError, strip_or_none, url_or_none, ) class TurnerBaseIE(AdobePassIE): _AKAMAI_SPE_TOKEN_CACHE = {} def _extract_timestamp(self, video_data): return int_or_none(xpath_attr(video_data, 'dateCreated', 'uts')) def _add_akamai_spe_token(self, tokenizer_src, video_url, content_id, ap_data, custom_tokenizer_query=None): secure_path = self._search_regex(r'https?://[^/]+(.+/)', video_url, 'secure path') + '*' token = self._AKAMAI_SPE_TOKEN_CACHE.get(secure_path) if not token: query = { 'path': secure_path, } if custom_tokenizer_query: query.update(custom_tokenizer_query) else: query['videoId'] = content_id if ap_data.get('auth_required'): query['accessToken'] = self._extract_mvpd_auth(ap_data['url'], content_id, ap_data['site_name'], ap_data['site_name']) auth = self._download_xml( tokenizer_src, content_id, query=query) error_msg = xpath_text(auth, 'error/msg') if error_msg: raise ExtractorError(error_msg, expected=True) token = xpath_text(auth, 'token') if not token: return video_url self._AKAMAI_SPE_TOKEN_CACHE[secure_path] = token return video_url + '?hdnea=' + token def _extract_cvp_info(self, data_src, video_id, path_data={}, ap_data={}, fatal=False): video_data = self._download_xml( data_src, video_id, transform_source=lambda s: fix_xml_ampersands(s).strip(), fatal=fatal) if not video_data: return {} video_id = video_data.attrib['id'] title = xpath_text(video_data, 'headline', fatal=True) content_id = xpath_text(video_data, 'contentId') or video_id # rtmp_src = xpath_text(video_data, 'akamai/src') # if rtmp_src: # split_rtmp_src = rtmp_src.split(',') # if len(split_rtmp_src) == 2: # rtmp_src = split_rtmp_src[1] # aifp = xpath_text(video_data, 'akamai/aifp', default='') urls = [] formats = [] thumbnails = [] subtitles = {} rex = re.compile( r'(?P<width>[0-9]+)x(?P<height>[0-9]+)(?:_(?P<bitrate>[0-9]+))?') # Possible formats locations: files/file, files/groupFiles/files # and maybe others for video_file in video_data.findall('.//file'): video_url = url_or_none(video_file.text.strip()) if not video_url: continue ext = determine_ext(video_url) if video_url.startswith('/mp4:protected/'): continue # TODO Correct extraction for these files # protected_path_data = path_data.get('protected') # if not protected_path_data or not rtmp_src: # continue # protected_path = self._search_regex( # r'/mp4:(.+)\.[a-z0-9]', video_url, 'secure path') # auth = self._download_webpage( # protected_path_data['tokenizer_src'], query={ # 'path': protected_path, # 'videoId': content_id, # 'aifp': aifp, # }) # token = xpath_text(auth, 'token') # if not token: # continue # video_url = rtmp_src + video_url + '?' + token elif video_url.startswith('/secure/'): secure_path_data = path_data.get('secure') if not secure_path_data: continue video_url = self._add_akamai_spe_token( secure_path_data['tokenizer_src'], secure_path_data['media_src'] + video_url, content_id, ap_data) elif not re.match('https?://', video_url): base_path_data = path_data.get(ext, path_data.get('default', {})) media_src = base_path_data.get('media_src') if not media_src: continue video_url = media_src + video_url if video_url in urls: continue urls.append(video_url) format_id = video_file.get('bitrate') if ext in ('scc', 'srt', 'vtt'): subtitles.setdefault('en', []).append({ 'ext': ext, 'url': video_url, }) elif ext == 'png': thumbnails.append({ 'id': format_id, 'url': video_url, }) elif ext == 'smil': formats.extend(self._extract_smil_formats( video_url, video_id, fatal=False)) elif re.match(r'https?://[^/]+\.akamaihd\.net/[iz]/', video_url): formats.extend(self._extract_akamai_formats( video_url, video_id, { 'hds': path_data.get('f4m', {}).get('host'), # nba.cdn.turner.com, ht.cdn.turner.com, ht2.cdn.turner.com # ht3.cdn.turner.com, i.cdn.turner.com, s.cdn.turner.com # ssl.cdn.turner.com 'http': 'pmd.cdn.turner.com', })) elif ext == 'm3u8': m3u8_formats = self._extract_m3u8_formats( video_url, video_id, 'mp4', m3u8_id=format_id or 'hls', fatal=False) if '/secure/' in video_url and '?hdnea=' in video_url: for f in m3u8_formats: f['_seekable'] = False formats.extend(m3u8_formats) elif ext == 'f4m': formats.extend(self._extract_f4m_formats( update_url_query(video_url, {'hdcore': '3.7.0'}), video_id, f4m_id=format_id or 'hds', fatal=False)) else: f = { 'format_id': format_id, 'url': video_url, 'ext': ext, } mobj = rex.search(video_url) if mobj: f.update({ 'width': int(mobj.group('width')), 'height': int(mobj.group('height')), 'tbr': int_or_none(mobj.group('bitrate')), }) elif isinstance(format_id, compat_str): if format_id.isdigit(): f['tbr'] = int(format_id) else: mobj = re.match(r'ios_(audio|[0-9]+)$', format_id) if mobj: if mobj.group(1) == 'audio': f.update({ 'vcodec': 'none', 'ext': 'm4a', }) else: f['tbr'] = int(mobj.group(1)) formats.append(f) self._sort_formats(formats) for source in video_data.findall('closedCaptions/source'): for track in source.findall('track'): track_url = url_or_none(track.get('url')) if not track_url or track_url.endswith('/big'): continue lang = track.get('lang') or track.get('label') or 'en' subtitles.setdefault(lang, []).append({ 'url': track_url, 'ext': { 'scc': 'scc', 'webvtt': 'vtt', 'smptett': 'tt', }.get(source.get('format')) }) thumbnails.extend({ 'id': image.get('cut') or image.get('name'), 'url': image.text, 'width': int_or_none(image.get('width')), 'height': int_or_none(image.get('height')), } for image in video_data.findall('images/image')) is_live = xpath_text(video_data, 'isLive') == 'true' return { 'id': video_id, 'title': self._live_title(title) if is_live else title, 'formats': formats, 'subtitles': subtitles, 'thumbnails': thumbnails, 'thumbnail': xpath_text(video_data, 'poster'), 'description': strip_or_none(xpath_text(video_data, 'description')), 'duration': parse_duration(xpath_text(video_data, 'length') or xpath_text(video_data, 'trt')), 'timestamp': self._extract_timestamp(video_data), 'upload_date': xpath_attr(video_data, 'metas', 'version'), 'series': xpath_text(video_data, 'showTitle'), 'season_number': int_or_none(xpath_text(video_data, 'seasonNumber')), 'episode_number': int_or_none(xpath_text(video_data, 'episodeNumber')), 'is_live': is_live, } def _extract_ngtv_info(self, media_id, tokenizer_query, ap_data=None): streams_data = self._download_json( 'http://medium.ngtv.io/media/%s/tv' % media_id, media_id)['media']['tv'] duration = None chapters = [] formats = [] for supported_type in ('unprotected', 'bulkaes'): stream_data = streams_data.get(supported_type, {}) m3u8_url = stream_data.get('secureUrl') or stream_data.get('url') if not m3u8_url: continue if stream_data.get('playlistProtection') == 'spe': m3u8_url = self._add_akamai_spe_token( 'http://token.ngtv.io/token/token_spe', m3u8_url, media_id, ap_data or {}, tokenizer_query) formats.extend(self._extract_m3u8_formats( m3u8_url, media_id, 'mp4', m3u8_id='hls', fatal=False)) duration = float_or_none(stream_data.get('totalRuntime')) if not chapters: for chapter in stream_data.get('contentSegments', []): start_time = float_or_none(chapter.get('start')) chapter_duration = float_or_none(chapter.get('duration')) if start_time is None or chapter_duration is None: continue chapters.append({ 'start_time': start_time, 'end_time': start_time + chapter_duration, }) self._sort_formats(formats) return { 'formats': formats, 'chapters': chapters, 'duration': duration, }
[ "re.match", "re.compile" ]
[((2585, 2660), 're.compile', 're.compile', (['"""(?P<width>[0-9]+)x(?P<height>[0-9]+)(?:_(?P<bitrate>[0-9]+))?"""'], {}), "('(?P<width>[0-9]+)x(?P<height>[0-9]+)(?:_(?P<bitrate>[0-9]+))?')\n", (2595, 2660), False, 'import re\n'), ((4294, 4326), 're.match', 're.match', (['"""https?://"""', 'video_url'], {}), "('https?://', video_url)\n", (4302, 4326), False, 'import re\n'), ((5241, 5301), 're.match', 're.match', (['"""https?://[^/]+\\\\.akamaihd\\\\.net/[iz]/"""', 'video_url'], {}), "('https?://[^/]+\\\\.akamaihd\\\\.net/[iz]/', video_url)\n", (5249, 5301), False, 'import re\n'), ((7089, 7131), 're.match', 're.match', (['"""ios_(audio|[0-9]+)$"""', 'format_id'], {}), "('ios_(audio|[0-9]+)$', format_id)\n", (7097, 7131), False, 'import re\n')]
from alpha_vantage.timeseries import TimeSeries from pprint import pprint import json import argparse def save_dataset(symbol='MSFT', time_window='daily_adj'): credentials = json.load(open('creds.json', 'r')) api_key = credentials['av_api_key'] print(symbol, time_window) ts = TimeSeries(key=api_key, output_format='pandas') if time_window == 'intraday': data, meta_data = ts.get_intraday( symbol=symbol, interval='1min', outputsize='full') elif time_window == 'daily': data, meta_data = ts.get_daily(symbol, outputsize='full') elif time_window == 'daily_adj': data, meta_data = ts.get_daily_adjusted(symbol, outputsize='full') pprint(data.head(10)) data.to_csv(f'./{symbol}_{time_window}.csv') if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('symbol', type=str, help="the stock symbol you want to download") parser.add_argument('time_window', type=str, choices=[ 'intraday', 'daily', 'daily_adj'], help="the time period you want to download the stock history for") namespace = parser.parse_args() save_dataset(**vars(namespace))
[ "alpha_vantage.timeseries.TimeSeries", "argparse.ArgumentParser" ]
[((295, 342), 'alpha_vantage.timeseries.TimeSeries', 'TimeSeries', ([], {'key': 'api_key', 'output_format': '"""pandas"""'}), "(key=api_key, output_format='pandas')\n", (305, 342), False, 'from alpha_vantage.timeseries import TimeSeries\n'), ((813, 838), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (836, 838), False, 'import argparse\n')]
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """ This module define a WulffShape class to generate the Wulff shape from a lattice, a list of indices and their corresponding surface energies, and the total area and volume of the wulff shape,the weighted surface energy, the anisotropy and shape_factor can also be calculated. In support of plotting from a given view in terms of miller index. The lattice is from the conventional unit cell, and (hkil) for hexagonal lattices. If you use this code extensively, consider citing the following: <NAME>.; <NAME>.; <NAME>.; <NAME>.; <NAME>.; <NAME>. (2016). Surface energies of elemental crystals. Scientific Data. """ from pymatgen.core.structure import Structure from pymatgen.util.coord import get_angle import numpy as np import scipy as sp from scipy.spatial import ConvexHull import logging import warnings __author__ = '<NAME>, <NAME>, <NAME>' __copyright__ = 'Copyright 2013, The Materials Virtual Lab' __version__ = '0.1' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' __date__ = 'May 5 2016' logger = logging.getLogger(__name__) def hkl_tuple_to_str(hkl): """ Prepare for display on plots "(hkl)" for surfaces Agrs: hkl: in the form of [h, k, l] or (h, k, l) """ str_format = '($' for x in hkl: if x < 0: str_format += '\\overline{' + str(-x) + '}' else: str_format += str(x) str_format += '$)' return str_format def get_tri_area(pts): """ Given a list of coords for 3 points, Compute the area of this triangle. Args: pts: [a, b, c] three points """ a, b, c = pts[0], pts[1], pts[2] v1 = np.array(b) - np.array(a) v2 = np.array(c) - np.array(a) area_tri = abs(sp.linalg.norm(sp.cross(v1, v2)) / 2) return area_tri class WulffFacet: """ Helper container for each Wulff plane. """ def __init__(self, normal, e_surf, normal_pt, dual_pt, index, m_ind_orig, miller): """ :param normal: :param e_surf: :param normal_pt: :param dual_pt: :param index: :param m_ind_orig: :param miller: """ self.normal = normal self.e_surf = e_surf self.normal_pt = normal_pt self.dual_pt = dual_pt self.index = index self.m_ind_orig = m_ind_orig self.miller = miller self.points = [] self.outer_lines = [] class WulffShape: """ Generate Wulff Shape from list of miller index and surface energies, with given conventional unit cell. surface energy (Jm^2) is the length of normal. Wulff shape is the convex hull. Based on: http://scipy.github.io/devdocs/generated/scipy.spatial.ConvexHull.html Process: 1. get wulff simplices 2. label with color 3. get wulff_area and other properties .. attribute:: debug (bool) .. attribute:: alpha transparency .. attribute:: color_set .. attribute:: grid_off (bool) .. attribute:: axis_off (bool) .. attribute:: show_area .. attribute:: off_color color of facets off wulff .. attribute:: structure Structure object, input conventional unit cell (with H ) from lattice .. attribute:: miller_list list of input miller index, for hcp in the form of hkil .. attribute:: hkl_list modify hkill to hkl, in the same order with input_miller .. attribute:: e_surf_list list of input surface energies, in the same order with input_miller .. attribute:: lattice Lattice object, the input lattice for the conventional unit cell .. attribute:: facets [WulffFacet] for all facets considering symm .. attribute:: dual_cv_simp simplices from the dual convex hull (dual_pt) .. attribute:: wulff_pt_list .. attribute:: wulff_cv_simp simplices from the convex hull of wulff_pt_list .. attribute:: on_wulff list for all input_miller, True is on wulff. .. attribute:: color_area list for all input_miller, total area on wulff, off_wulff = 0. .. attribute:: miller_area ($hkl$): area for all input_miller """ def __init__(self, lattice, miller_list, e_surf_list, symprec=1e-5): """ Args: lattice: Lattice object of the conventional unit cell miller_list ([(hkl), ...]: list of hkl or hkil for hcp e_surf_list ([float]): list of corresponding surface energies symprec (float): for recp_operation, default is 1e-5. """ if any([se < 0 for se in e_surf_list]): warnings.warn("Unphysical (negative) surface energy detected.") self.color_ind = list(range(len(miller_list))) self.input_miller_fig = [hkl_tuple_to_str(x) for x in miller_list] # store input data self.structure = Structure(lattice, ["H"], [[0, 0, 0]]) self.miller_list = tuple([tuple(x) for x in miller_list]) self.hkl_list = tuple([(x[0], x[1], x[-1]) for x in miller_list]) self.e_surf_list = tuple(e_surf_list) self.lattice = lattice self.symprec = symprec # 2. get all the data for wulff construction # get all the surface normal from get_all_miller_e() self.facets = self._get_all_miller_e() logger.debug(len(self.facets)) # 3. consider the dual condition dual_pts = [x.dual_pt for x in self.facets] dual_convex = ConvexHull(dual_pts) dual_cv_simp = dual_convex.simplices # simplices (ndarray of ints, shape (nfacet, ndim)) # list of [i, j, k] , ndim = 3 # i, j, k: ind for normal_e_m # recalculate the dual of dual, get the wulff shape. # conner <-> surface # get cross point from the simplices of the dual convex hull wulff_pt_list = [self._get_cross_pt_dual_simp(dual_simp) for dual_simp in dual_cv_simp] wulff_convex = ConvexHull(wulff_pt_list) wulff_cv_simp = wulff_convex.simplices logger.debug(", ".join([str(len(x)) for x in wulff_cv_simp])) # store simplices and convex self.dual_cv_simp = dual_cv_simp self.wulff_pt_list = wulff_pt_list self.wulff_cv_simp = wulff_cv_simp self.wulff_convex = wulff_convex self.on_wulff, self.color_area = self._get_simpx_plane() miller_area = [] for m, in_mill_fig in enumerate(self.input_miller_fig): miller_area.append( in_mill_fig + ' : ' + str(round(self.color_area[m], 4))) self.miller_area = miller_area def _get_all_miller_e(self): """ from self: get miller_list(unique_miller), e_surf_list and symmetry operations(symmops) according to lattice apply symmops to get all the miller index, then get normal, get all the facets functions for wulff shape calculation: |normal| = 1, e_surf is plane's distance to (0, 0, 0), normal[0]x + normal[1]y + normal[2]z = e_surf return: [WulffFacet] """ all_hkl = [] color_ind = self.color_ind planes = [] recp = self.structure.lattice.reciprocal_lattice_crystallographic recp_symmops = self.lattice.get_recp_symmetry_operation(self.symprec) for i, (hkl, energy) in enumerate(zip(self.hkl_list, self.e_surf_list)): for op in recp_symmops: miller = tuple([int(x) for x in op.operate(hkl)]) if miller not in all_hkl: all_hkl.append(miller) normal = recp.get_cartesian_coords(miller) normal /= sp.linalg.norm(normal) normal_pt = [x * energy for x in normal] dual_pt = [x / energy for x in normal] color_plane = color_ind[divmod(i, len(color_ind))[1]] planes.append(WulffFacet(normal, energy, normal_pt, dual_pt, color_plane, i, hkl)) # sort by e_surf planes.sort(key=lambda x: x.e_surf) return planes def _get_cross_pt_dual_simp(self, dual_simp): """ |normal| = 1, e_surf is plane's distance to (0, 0, 0), plane function: normal[0]x + normal[1]y + normal[2]z = e_surf from self: normal_e_m to get the plane functions dual_simp: (i, j, k) simplices from the dual convex hull i, j, k: plane index(same order in normal_e_m) """ matrix_surfs = [self.facets[dual_simp[i]].normal for i in range(3)] matrix_e = [self.facets[dual_simp[i]].e_surf for i in range(3)] cross_pt = sp.dot(sp.linalg.inv(matrix_surfs), matrix_e) return cross_pt def _get_simpx_plane(self): """ Locate the plane for simpx of on wulff_cv, by comparing the center of the simpx triangle with the plane functions. """ on_wulff = [False] * len(self.miller_list) surface_area = [0.0] * len(self.miller_list) for simpx in self.wulff_cv_simp: pts = [self.wulff_pt_list[simpx[i]] for i in range(3)] center = np.sum(pts, 0) / 3.0 # check whether the center of the simplices is on one plane for plane in self.facets: abs_diff = abs(np.dot(plane.normal, center) - plane.e_surf) if abs_diff < 1e-5: on_wulff[plane.index] = True surface_area[plane.index] += get_tri_area(pts) plane.points.append(pts) plane.outer_lines.append([simpx[0], simpx[1]]) plane.outer_lines.append([simpx[1], simpx[2]]) plane.outer_lines.append([simpx[0], simpx[2]]) # already find the plane, move to the next simplices break for plane in self.facets: plane.outer_lines.sort() plane.outer_lines = [line for line in plane.outer_lines if plane.outer_lines.count(line) != 2] return on_wulff, surface_area def _get_colors(self, color_set, alpha, off_color, custom_colors={}): """ assign colors according to the surface energies of on_wulff facets. return: (color_list, color_proxy, color_proxy_on_wulff, miller_on_wulff, e_surf_on_wulff_list) """ import matplotlib as mpl import matplotlib.pyplot as plt color_list = [off_color] * len(self.hkl_list) color_proxy_on_wulff = [] miller_on_wulff = [] e_surf_on_wulff = [(i, e_surf) for i, e_surf in enumerate(self.e_surf_list) if self.on_wulff[i]] c_map = plt.get_cmap(color_set) e_surf_on_wulff.sort(key=lambda x: x[1], reverse=False) e_surf_on_wulff_list = [x[1] for x in e_surf_on_wulff] if len(e_surf_on_wulff) > 1: cnorm = mpl.colors.Normalize(vmin=min(e_surf_on_wulff_list), vmax=max(e_surf_on_wulff_list)) else: # if there is only one hkl on wulff, choose the color of the median cnorm = mpl.colors.Normalize(vmin=min(e_surf_on_wulff_list) - 0.1, vmax=max(e_surf_on_wulff_list) + 0.1) scalar_map = mpl.cm.ScalarMappable(norm=cnorm, cmap=c_map) for i, e_surf in e_surf_on_wulff: color_list[i] = scalar_map.to_rgba(e_surf, alpha=alpha) if tuple(self.miller_list[i]) in custom_colors.keys(): color_list[i] = custom_colors[tuple(self.miller_list[i])] color_proxy_on_wulff.append( plt.Rectangle((2, 2), 1, 1, fc=color_list[i], alpha=alpha)) miller_on_wulff.append(self.input_miller_fig[i]) scalar_map.set_array([x[1] for x in e_surf_on_wulff]) color_proxy = [plt.Rectangle((2, 2), 1, 1, fc=x, alpha=alpha) for x in color_list] return color_list, color_proxy, color_proxy_on_wulff, miller_on_wulff, e_surf_on_wulff_list def show(self, *args, **kwargs): r""" Show the Wulff plot. Args: *args: Passed to get_plot. **kwargs: Passed to get_plot. """ self.get_plot(*args, **kwargs).show() def get_line_in_facet(self, facet): """ Returns the sorted pts in a facet used to draw a line """ lines = list(facet.outer_lines) pt = [] prev = None while len(lines) > 0: if prev is None: l = lines.pop(0) else: for i, l in enumerate(lines): if prev in l: l = lines.pop(i) if l[1] == prev: l.reverse() break # make sure the lines are connected one by one. # find the way covering all pts and facets pt.append(self.wulff_pt_list[l[0]].tolist()) pt.append(self.wulff_pt_list[l[1]].tolist()) prev = l[1] return pt def get_plot(self, color_set='PuBu', grid_off=True, axis_off=True, show_area=False, alpha=1, off_color='red', direction=None, bar_pos=(0.75, 0.15, 0.05, 0.65), bar_on=False, units_in_JPERM2=True, legend_on=True, aspect_ratio=(8, 8), custom_colors={}): """ Get the Wulff shape plot. Args: color_set: default is 'PuBu' grid_off (bool): default is True axis_off (bool): default is Ture show_area (bool): default is False alpha (float): chosen from 0 to 1 (float), default is 1 off_color: Default color for facets not present on the Wulff shape. direction: default is (1, 1, 1) bar_pos: default is [0.75, 0.15, 0.05, 0.65] bar_on (bool): default is False legend_on (bool): default is True aspect_ratio: default is (8, 8) custom_colors ({(h,k,l}: [r,g,b,alpha}): Customize color of each facet with a dictionary. The key is the corresponding Miller index and value is the color. Undefined facets will use default color site. Note: If you decide to set your own colors, it probably won't make any sense to have the color bar on. Return: (matplotlib.pyplot) """ import matplotlib as mpl import matplotlib.pyplot as plt import mpl_toolkits.mplot3d as mpl3 color_list, color_proxy, color_proxy_on_wulff, miller_on_wulff, e_surf_on_wulff = self._get_colors( color_set, alpha, off_color, custom_colors=custom_colors) if not direction: # If direction is not specified, use the miller indices of # maximum area. direction = max(self.area_fraction_dict.items(), key=lambda x: x[1])[0] fig = plt.figure() fig.set_size_inches(aspect_ratio[0], aspect_ratio[1]) azim, elev = self._get_azimuth_elev([direction[0], direction[1], direction[-1]]) wulff_pt_list = self.wulff_pt_list ax = mpl3.Axes3D(fig, azim=azim, elev=elev) for plane in self.facets: # check whether [pts] is empty if len(plane.points) < 1: # empty, plane is not on_wulff. continue # assign the color for on_wulff facets according to its # index and the color_list for on_wulff plane_color = color_list[plane.index] pt = self.get_line_in_facet(plane) # plot from the sorted pts from [simpx] tri = mpl3.art3d.Poly3DCollection([pt]) tri.set_color(plane_color) tri.set_edgecolor("#808080") ax.add_collection3d(tri) # set ranges of x, y, z # find the largest distance between on_wulff pts and the origin, # to ensure complete and consistent display for all directions r_range = max([np.linalg.norm(x) for x in wulff_pt_list]) ax.set_xlim([-r_range * 1.1, r_range * 1.1]) ax.set_ylim([-r_range * 1.1, r_range * 1.1]) ax.set_zlim([-r_range * 1.1, r_range * 1.1]) # add legend if legend_on: color_proxy = color_proxy if show_area: ax.legend(color_proxy, self.miller_area, loc='upper left', bbox_to_anchor=(0, 1), fancybox=True, shadow=False) else: ax.legend(color_proxy_on_wulff, miller_on_wulff, loc='upper center', bbox_to_anchor=(0.5, 1), ncol=3, fancybox=True, shadow=False) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') # Add colorbar if bar_on: cmap = plt.get_cmap(color_set) cmap.set_over('0.25') cmap.set_under('0.75') bounds = [round(e, 2) for e in e_surf_on_wulff] bounds.append(1.2 * bounds[-1]) norm = mpl.colors.BoundaryNorm(bounds, cmap.N) # display surface energies ax1 = fig.add_axes(bar_pos) cbar = mpl.colorbar.ColorbarBase( ax1, cmap=cmap, norm=norm, boundaries=[0] + bounds + [10], extend='both', ticks=bounds[:-1], spacing='proportional', orientation='vertical') units = "$J/m^2$" if units_in_JPERM2 else r"$eV/\AA^2$" cbar.set_label('Surface Energies (%s)' % (units), fontsize=100) if grid_off: ax.grid('off') if axis_off: ax.axis('off') return plt def _get_azimuth_elev(self, miller_index): """ Args: miller_index: viewing direction Returns: azim, elev for plotting """ if miller_index == (0, 0, 1) or miller_index == (0, 0, 0, 1): return 0, 90 else: cart = self.lattice.get_cartesian_coords(miller_index) azim = get_angle([cart[0], cart[1], 0], (1, 0, 0)) v = [cart[0], cart[1], 0] elev = get_angle(cart, v) return azim, elev @property def volume(self): """ Volume of the Wulff shape """ return self.wulff_convex.volume @property def miller_area_dict(self): """ Returns {hkl: area_hkl on wulff} """ return dict(zip(self.miller_list, self.color_area)) @property def miller_energy_dict(self): """ Returns {hkl: surface energy_hkl} """ return dict(zip(self.miller_list, self.e_surf_list)) @property def surface_area(self): """ Total surface area of Wulff shape. """ return sum(self.miller_area_dict.values()) @property def weighted_surface_energy(self): """ Returns: sum(surface_energy_hkl * area_hkl)/ sum(area_hkl) """ return self.total_surface_energy / self.surface_area @property def area_fraction_dict(self): """ Returns: (dict): {hkl: area_hkl/total area on wulff} """ return {hkl: self.miller_area_dict[hkl] / self.surface_area for hkl in self.miller_area_dict.keys()} @property def anisotropy(self): """ Returns: (float) Coefficient of Variation from weighted surface energy The ideal sphere is 0. """ square_diff_energy = 0 weighted_energy = self.weighted_surface_energy area_frac_dict = self.area_fraction_dict miller_energy_dict = self.miller_energy_dict for hkl in miller_energy_dict.keys(): square_diff_energy += (miller_energy_dict[hkl] - weighted_energy) \ ** 2 * area_frac_dict[hkl] return np.sqrt(square_diff_energy) / weighted_energy @property def shape_factor(self): """ This is useful for determining the critical nucleus size. A large shape factor indicates great anisotropy. See <NAME>., <NAME>. & <NAME>. Kinetics of Materials. (<NAME>, 2005), p.461 Returns: (float) Shape factor. """ return self.surface_area / (self.volume ** (2 / 3)) @property def effective_radius(self): """ Radius of the Wulffshape when the Wulffshape is approximated as a sphere. Returns: (float) radius. """ return ((3 / 4) * (self.volume / np.pi)) ** (1 / 3) @property def total_surface_energy(self): """ Total surface energy of the Wulff shape. Returns: (float) sum(surface_energy_hkl * area_hkl) """ tot_surface_energy = 0 for hkl in self.miller_energy_dict.keys(): tot_surface_energy += self.miller_energy_dict[hkl] * \ self.miller_area_dict[hkl] return tot_surface_energy @property def tot_corner_sites(self): """ Returns the number of vertices in the convex hull. Useful for identifying catalytically active sites. """ return len(self.wulff_convex.vertices) @property def tot_edges(self): """ Returns the number of edges in the convex hull. Useful for identifying catalytically active sites. """ all_edges = [] for facet in self.facets: edges = [] pt = self.get_line_in_facet(facet) lines = [] for i, p in enumerate(pt): if i == len(pt) / 2: break lines.append(tuple(sorted(tuple([tuple(pt[i * 2]), tuple(pt[i * 2 + 1])])))) for i, p in enumerate(lines): if p not in all_edges: edges.append(p) all_edges.extend(edges) return len(all_edges)
[ "logging.getLogger", "numpy.sqrt", "pymatgen.core.structure.Structure", "matplotlib.colorbar.ColorbarBase", "numpy.array", "numpy.linalg.norm", "scipy.cross", "mpl_toolkits.mplot3d.art3d.Poly3DCollection", "numpy.dot", "matplotlib.cm.ScalarMappable", "matplotlib.pyplot.Rectangle", "warnings.warn", "scipy.spatial.ConvexHull", "scipy.linalg.inv", "mpl_toolkits.mplot3d.Axes3D", "matplotlib.pyplot.get_cmap", "pymatgen.util.coord.get_angle", "numpy.sum", "matplotlib.pyplot.figure", "scipy.linalg.norm", "matplotlib.colors.BoundaryNorm" ]
[((1126, 1153), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1143, 1153), False, 'import logging\n'), ((1738, 1749), 'numpy.array', 'np.array', (['b'], {}), '(b)\n', (1746, 1749), True, 'import numpy as np\n'), ((1752, 1763), 'numpy.array', 'np.array', (['a'], {}), '(a)\n', (1760, 1763), True, 'import numpy as np\n'), ((1773, 1784), 'numpy.array', 'np.array', (['c'], {}), '(c)\n', (1781, 1784), True, 'import numpy as np\n'), ((1787, 1798), 'numpy.array', 'np.array', (['a'], {}), '(a)\n', (1795, 1798), True, 'import numpy as np\n'), ((4997, 5035), 'pymatgen.core.structure.Structure', 'Structure', (['lattice', "['H']", '[[0, 0, 0]]'], {}), "(lattice, ['H'], [[0, 0, 0]])\n", (5006, 5035), False, 'from pymatgen.core.structure import Structure\n'), ((5601, 5621), 'scipy.spatial.ConvexHull', 'ConvexHull', (['dual_pts'], {}), '(dual_pts)\n', (5611, 5621), False, 'from scipy.spatial import ConvexHull\n'), ((6108, 6133), 'scipy.spatial.ConvexHull', 'ConvexHull', (['wulff_pt_list'], {}), '(wulff_pt_list)\n', (6118, 6133), False, 'from scipy.spatial import ConvexHull\n'), ((11053, 11076), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['color_set'], {}), '(color_set)\n', (11065, 11076), True, 'import matplotlib.pyplot as plt\n'), ((11660, 11705), 'matplotlib.cm.ScalarMappable', 'mpl.cm.ScalarMappable', ([], {'norm': 'cnorm', 'cmap': 'c_map'}), '(norm=cnorm, cmap=c_map)\n', (11681, 11705), True, 'import matplotlib as mpl\n'), ((15385, 15397), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (15395, 15397), True, 'import matplotlib.pyplot as plt\n'), ((15652, 15690), 'mpl_toolkits.mplot3d.Axes3D', 'mpl3.Axes3D', (['fig'], {'azim': 'azim', 'elev': 'elev'}), '(fig, azim=azim, elev=elev)\n', (15663, 15690), True, 'import mpl_toolkits.mplot3d as mpl3\n'), ((4749, 4812), 'warnings.warn', 'warnings.warn', (['"""Unphysical (negative) surface energy detected."""'], {}), "('Unphysical (negative) surface energy detected.')\n", (4762, 4812), False, 'import warnings\n'), ((8946, 8973), 'scipy.linalg.inv', 'sp.linalg.inv', (['matrix_surfs'], {}), '(matrix_surfs)\n', (8959, 8973), True, 'import scipy as sp\n'), ((12221, 12267), 'matplotlib.pyplot.Rectangle', 'plt.Rectangle', (['(2, 2)', '(1)', '(1)'], {'fc': 'x', 'alpha': 'alpha'}), '((2, 2), 1, 1, fc=x, alpha=alpha)\n', (12234, 12267), True, 'import matplotlib.pyplot as plt\n'), ((16167, 16200), 'mpl_toolkits.mplot3d.art3d.Poly3DCollection', 'mpl3.art3d.Poly3DCollection', (['[pt]'], {}), '([pt])\n', (16194, 16200), True, 'import mpl_toolkits.mplot3d as mpl3\n'), ((17366, 17389), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['color_set'], {}), '(color_set)\n', (17378, 17389), True, 'import matplotlib.pyplot as plt\n'), ((17582, 17621), 'matplotlib.colors.BoundaryNorm', 'mpl.colors.BoundaryNorm', (['bounds', 'cmap.N'], {}), '(bounds, cmap.N)\n', (17605, 17621), True, 'import matplotlib as mpl\n'), ((17720, 17894), 'matplotlib.colorbar.ColorbarBase', 'mpl.colorbar.ColorbarBase', (['ax1'], {'cmap': 'cmap', 'norm': 'norm', 'boundaries': '([0] + bounds + [10])', 'extend': '"""both"""', 'ticks': 'bounds[:-1]', 'spacing': '"""proportional"""', 'orientation': '"""vertical"""'}), "(ax1, cmap=cmap, norm=norm, boundaries=[0] +\n bounds + [10], extend='both', ticks=bounds[:-1], spacing='proportional',\n orientation='vertical')\n", (17745, 17894), True, 'import matplotlib as mpl\n'), ((18575, 18618), 'pymatgen.util.coord.get_angle', 'get_angle', (['[cart[0], cart[1], 0]', '(1, 0, 0)'], {}), '([cart[0], cart[1], 0], (1, 0, 0))\n', (18584, 18618), False, 'from pymatgen.util.coord import get_angle\n'), ((18676, 18694), 'pymatgen.util.coord.get_angle', 'get_angle', (['cart', 'v'], {}), '(cart, v)\n', (18685, 18694), False, 'from pymatgen.util.coord import get_angle\n'), ((20440, 20467), 'numpy.sqrt', 'np.sqrt', (['square_diff_energy'], {}), '(square_diff_energy)\n', (20447, 20467), True, 'import numpy as np\n'), ((1833, 1849), 'scipy.cross', 'sp.cross', (['v1', 'v2'], {}), '(v1, v2)\n', (1841, 1849), True, 'import scipy as sp\n'), ((9430, 9444), 'numpy.sum', 'np.sum', (['pts', '(0)'], {}), '(pts, 0)\n', (9436, 9444), True, 'import numpy as np\n'), ((12015, 12073), 'matplotlib.pyplot.Rectangle', 'plt.Rectangle', (['(2, 2)', '(1)', '(1)'], {'fc': 'color_list[i]', 'alpha': 'alpha'}), '((2, 2), 1, 1, fc=color_list[i], alpha=alpha)\n', (12028, 12073), True, 'import matplotlib.pyplot as plt\n'), ((16518, 16535), 'numpy.linalg.norm', 'np.linalg.norm', (['x'], {}), '(x)\n', (16532, 16535), True, 'import numpy as np\n'), ((7893, 7915), 'scipy.linalg.norm', 'sp.linalg.norm', (['normal'], {}), '(normal)\n', (7907, 7915), True, 'import scipy as sp\n'), ((9592, 9620), 'numpy.dot', 'np.dot', (['plane.normal', 'center'], {}), '(plane.normal, center)\n', (9598, 9620), True, 'import numpy as np\n')]
from python_on_rails.either import as_either, Failure, Success @as_either(TypeError) def add_one(x): return x + 1 @as_either() def times_five(x): return x * 5 def test_success_executes_bindings(): result = Success(1).bind(add_one).bind(times_five) assert isinstance(result, Success) assert result.value == 10 def test_a_failure_stops_the_execution_of_later_bindings(): result = Success("NaN").bind(add_one).bind(times_five) assert isinstance(result, Failure) assert type(result.value) == TypeError assert repr(result.value) == "TypeError('can only concatenate str (not \"int\") to str')"
[ "python_on_rails.either.Success", "python_on_rails.either.as_either" ]
[((66, 86), 'python_on_rails.either.as_either', 'as_either', (['TypeError'], {}), '(TypeError)\n', (75, 86), False, 'from python_on_rails.either import as_either, Failure, Success\n'), ((123, 134), 'python_on_rails.either.as_either', 'as_either', ([], {}), '()\n', (132, 134), False, 'from python_on_rails.either import as_either, Failure, Success\n'), ((224, 234), 'python_on_rails.either.Success', 'Success', (['(1)'], {}), '(1)\n', (231, 234), False, 'from python_on_rails.either import as_either, Failure, Success\n'), ((410, 424), 'python_on_rails.either.Success', 'Success', (['"""NaN"""'], {}), "('NaN')\n", (417, 424), False, 'from python_on_rails.either import as_either, Failure, Success\n')]
from django.db import models # Create your models here. # Station class Stations(models.Model): stationName = models.CharField(max_length=100) stationLocation = models.CharField(max_length=100) stationStaffId = models.CharField(max_length=100) date = models.DateTimeField(auto_now_add=True) def __str_(self): return self.stationName # Customers class Customers(models.Model): customerName = models.CharField(max_length=100) customerPhone = models.CharField(max_length=100) customerId = models.CharField(max_length=100) customerStartLoc = models.CharField(max_length=100) customerDestinationLoc = models.CharField(max_length=100) stationStaffId = models.CharField(max_length=100) date = models.DateTimeField(auto_now_add=True) def __str_(self): return self.customerName # Items class Items(models.Model): itemName = models.CharField(max_length=100) itemType = models.CharField(max_length=100) Quantity = models.CharField(max_length=100) originStation = models.CharField(max_length=100) originCounty = models.CharField(max_length=100) receiverName = models.CharField(max_length=100) receiverPhone = models.CharField(max_length=100) destinationAddress = models.CharField(max_length=100) destinationCounty = models.CharField(max_length=100) dateSend= models.CharField(max_length=100) dateExpected = models.CharField(max_length=100) def __str__(self): return self.itemName # Payments class Payments(models.Model): customerPhone = models.CharField(max_length=100) paymentAmount = models.CharField(max_length=100) paymentMeans = models.EmailField(max_length=100) code = models.CharField(max_length=100) date = models.DateTimeField(auto_now_add=True) def __str__(self): return self.customerPhone
[ "django.db.models.DateTimeField", "django.db.models.EmailField", "django.db.models.CharField" ]
[((119, 151), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (135, 151), False, 'from django.db import models\n'), ((174, 206), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (190, 206), False, 'from django.db import models\n'), ((229, 261), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (245, 261), False, 'from django.db import models\n'), ((274, 313), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (294, 313), False, 'from django.db import models\n'), ((436, 468), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (452, 468), False, 'from django.db import models\n'), ((492, 524), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (508, 524), False, 'from django.db import models\n'), ((548, 580), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (564, 580), False, 'from django.db import models\n'), ((604, 636), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (620, 636), False, 'from django.db import models\n'), ((666, 698), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (682, 698), False, 'from django.db import models\n'), ((721, 753), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (737, 753), False, 'from django.db import models\n'), ((776, 815), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (796, 815), False, 'from django.db import models\n'), ((923, 955), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (939, 955), False, 'from django.db import models\n'), ((971, 1003), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (987, 1003), False, 'from django.db import models\n'), ((1019, 1051), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1035, 1051), False, 'from django.db import models\n'), ((1072, 1104), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1088, 1104), False, 'from django.db import models\n'), ((1124, 1156), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1140, 1156), False, 'from django.db import models\n'), ((1176, 1208), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1192, 1208), False, 'from django.db import models\n'), ((1229, 1261), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1245, 1261), False, 'from django.db import models\n'), ((1287, 1319), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1303, 1319), False, 'from django.db import models\n'), ((1344, 1376), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1360, 1376), False, 'from django.db import models\n'), ((1391, 1423), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1407, 1423), False, 'from django.db import models\n'), ((1443, 1475), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1459, 1475), False, 'from django.db import models\n'), ((1598, 1630), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1614, 1630), False, 'from django.db import models\n'), ((1658, 1690), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1674, 1690), False, 'from django.db import models\n'), ((1718, 1751), 'django.db.models.EmailField', 'models.EmailField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1735, 1751), False, 'from django.db import models\n'), ((1780, 1812), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1796, 1812), False, 'from django.db import models\n'), ((1840, 1879), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (1860, 1879), False, 'from django.db import models\n')]
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, <NAME>. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch - TF 2.0 general utilities.""" import logging import os import re import numpy logger = logging.getLogger(__name__) def convert_tf_weight_name_to_pt_weight_name(tf_name, start_prefix_to_remove=""): """ Convert a TF 2.0 model variable name in a pytorch model weight name. Conventions for TF2.0 scopes -> PyTorch attribute names conversions: - '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch) - '_._' is replaced by a new level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList) return tuple with: - pytorch model weight name - transpose: boolean indicating weither TF2.0 and PyTorch weights matrices are transposed with regards to each other """ tf_name = tf_name.replace(":0", "") # device ids tf_name = re.sub( r"/[^/]*___([^/]*)/", r"/\1/", tf_name ) # '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch) tf_name = tf_name.replace( "_._", "/" ) # '_._' is replaced by a level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList) tf_name = re.sub(r"//+", "/", tf_name) # Remove empty levels at the end tf_name = tf_name.split("/") # Convert from TF2.0 '/' separators to PyTorch '.' separators tf_name = tf_name[1:] # Remove level zero # When should we transpose the weights transpose = bool(tf_name[-1] == "kernel" or "emb_projs" in tf_name or "out_projs" in tf_name) # Convert standard TF2.0 names in PyTorch names if tf_name[-1] == "kernel" or tf_name[-1] == "embeddings" or tf_name[-1] == "gamma": tf_name[-1] = "weight" if tf_name[-1] == "beta": tf_name[-1] = "bias" # Remove prefix if needed tf_name = ".".join(tf_name) if start_prefix_to_remove: tf_name = tf_name.replace(start_prefix_to_remove, "", 1) return tf_name, transpose ##################### # PyTorch => TF 2.0 # ##################### def load_pytorch_checkpoint_in_tf2_model(tf_model, pytorch_checkpoint_path, tf_inputs=None, allow_missing_keys=False): """ Load pytorch checkpoints in a TF 2.0 model """ try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise pt_path = os.path.abspath(pytorch_checkpoint_path) logger.info("Loading PyTorch weights from {}".format(pt_path)) pt_state_dict = torch.load(pt_path, map_location="cpu") logger.info("PyTorch checkpoint contains {:,} parameters".format(sum(t.numel() for t in pt_state_dict.values()))) return load_pytorch_weights_in_tf2_model( tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys ) def load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=None, allow_missing_keys=False): """ Load pytorch checkpoints in a TF 2.0 model """ pt_state_dict = pt_model.state_dict() return load_pytorch_weights_in_tf2_model( tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys ) def load_pytorch_weights_in_tf2_model(tf_model, pt_state_dict, tf_inputs=None, allow_missing_keys=False): """ Load pytorch state_dict in a TF 2.0 model. """ try: import torch # noqa: F401 import tensorflow as tf # noqa: F401 from tensorflow.python.keras import backend as K except ImportError: logger.error( "Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise if tf_inputs is None: tf_inputs = tf_model.dummy_inputs if tf_inputs is not None: tf_model(tf_inputs, training=False) # Make sure model is built # Adapt state dict - TODO remove this and update the AWS weights files instead # Convert old format to new format if needed from a PyTorch state_dict old_keys = [] new_keys = [] for key in pt_state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): pt_state_dict[new_key] = pt_state_dict.pop(old_key) # Make sure we are able to load PyTorch base models as well as derived models (with heads) # TF models always have a prefix, some of PyTorch models (base ones) don't start_prefix_to_remove = "" if not any(s.startswith(tf_model.base_model_prefix) for s in pt_state_dict.keys()): start_prefix_to_remove = tf_model.base_model_prefix + "." symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights tf_loaded_numel = 0 weight_value_tuples = [] all_pytorch_weights = set(list(pt_state_dict.keys())) for symbolic_weight in symbolic_weights: sw_name = symbolic_weight.name name, transpose = convert_tf_weight_name_to_pt_weight_name( sw_name, start_prefix_to_remove=start_prefix_to_remove ) # Find associated numpy array in pytorch model state dict if name not in pt_state_dict: if allow_missing_keys: continue raise AttributeError("{} not found in PyTorch model".format(name)) array = pt_state_dict[name].numpy() if transpose: array = numpy.transpose(array) if len(symbolic_weight.shape) < len(array.shape): array = numpy.squeeze(array) elif len(symbolic_weight.shape) > len(array.shape): array = numpy.expand_dims(array, axis=0) try: assert list(symbolic_weight.shape) == list(array.shape) except AssertionError as e: e.args += (symbolic_weight.shape, array.shape) raise e tf_loaded_numel += array.size # logger.warning("Initialize TF weight {}".format(symbolic_weight.name)) weight_value_tuples.append((symbolic_weight, array)) all_pytorch_weights.discard(name) K.batch_set_value(weight_value_tuples) if tf_inputs is not None: tf_model(tf_inputs, training=False) # Make sure restore ops are run logger.info("Loaded {:,} parameters in the TF 2.0 model.".format(tf_loaded_numel)) logger.info("Weights or buffers not loaded from PyTorch model: {}".format(all_pytorch_weights)) return tf_model ##################### # TF 2.0 => PyTorch # ##################### def load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path, tf_inputs=None, allow_missing_keys=False): """ Load TF 2.0 HDF5 checkpoint in a PyTorch model We use HDF5 to easily do transfer learning (see https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357). """ try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise import transformers logger.info("Loading TensorFlow weights from {}".format(tf_checkpoint_path)) # Instantiate and load the associated TF 2.0 model tf_model_class_name = "TF" + pt_model.__class__.__name__ # Add "TF" at the beggining tf_model_class = getattr(transformers, tf_model_class_name) tf_model = tf_model_class(pt_model.config) if tf_inputs is None: tf_inputs = tf_model.dummy_inputs if tf_inputs is not None: tf_model(tf_inputs, training=False) # Make sure model is built tf_model.load_weights(tf_checkpoint_path, by_name=True) return load_tf2_model_in_pytorch_model(pt_model, tf_model, allow_missing_keys=allow_missing_keys) def load_tf2_model_in_pytorch_model(pt_model, tf_model, allow_missing_keys=False): """ Load TF 2.0 model in a pytorch model """ weights = tf_model.weights return load_tf2_weights_in_pytorch_model(pt_model, weights, allow_missing_keys=allow_missing_keys) def load_tf2_weights_in_pytorch_model(pt_model, tf_weights, allow_missing_keys=False): """ Load TF2.0 symbolic weights in a PyTorch model """ try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise new_pt_params_dict = {} current_pt_params_dict = dict(pt_model.named_parameters()) # Make sure we are able to load PyTorch base models as well as derived models (with heads) # TF models always have a prefix, some of PyTorch models (base ones) don't start_prefix_to_remove = "" if not any(s.startswith(pt_model.base_model_prefix) for s in current_pt_params_dict.keys()): start_prefix_to_remove = pt_model.base_model_prefix + "." # Build a map from potential PyTorch weight names to TF 2.0 Variables tf_weights_map = {} for tf_weight in tf_weights: pt_name, transpose = convert_tf_weight_name_to_pt_weight_name( tf_weight.name, start_prefix_to_remove=start_prefix_to_remove ) tf_weights_map[pt_name] = (tf_weight.numpy(), transpose) all_tf_weights = set(list(tf_weights_map.keys())) loaded_pt_weights_data_ptr = {} missing_keys_pt = [] for pt_weight_name, pt_weight in current_pt_params_dict.items(): # Handle PyTorch shared weight ()not duplicated in TF 2.0 if pt_weight.data_ptr() in loaded_pt_weights_data_ptr: new_pt_params_dict[pt_weight_name] = loaded_pt_weights_data_ptr[pt_weight.data_ptr()] continue # Find associated numpy array in pytorch model state dict if pt_weight_name not in tf_weights_map: if allow_missing_keys: missing_keys_pt.append(pt_weight_name) continue raise AttributeError("{} not found in TF 2.0 model".format(pt_weight_name)) array, transpose = tf_weights_map[pt_weight_name] if transpose: array = numpy.transpose(array) if len(pt_weight.shape) < len(array.shape): array = numpy.squeeze(array) elif len(pt_weight.shape) > len(array.shape): array = numpy.expand_dims(array, axis=0) try: assert list(pt_weight.shape) == list(array.shape) except AssertionError as e: e.args += (pt_weight.shape, array.shape) raise e # logger.warning("Initialize PyTorch weight {}".format(pt_weight_name)) new_pt_params_dict[pt_weight_name] = torch.from_numpy(array) loaded_pt_weights_data_ptr[pt_weight.data_ptr()] = torch.from_numpy(array) all_tf_weights.discard(pt_weight_name) missing_keys, unexpected_keys = pt_model.load_state_dict(new_pt_params_dict, strict=False) missing_keys += missing_keys_pt if len(missing_keys) > 0: logger.info( "Weights of {} not initialized from TF 2.0 model: {}".format(pt_model.__class__.__name__, missing_keys) ) if len(unexpected_keys) > 0: logger.info( "Weights from TF 2.0 model not used in {}: {}".format(pt_model.__class__.__name__, unexpected_keys) ) logger.info("Weights or buffers not loaded from TF 2.0 model: {}".format(all_tf_weights)) return pt_model
[ "logging.getLogger", "tensorflow.python.keras.backend.batch_set_value", "torch.load", "torch.from_numpy", "numpy.squeeze", "numpy.expand_dims", "os.path.abspath", "re.sub", "numpy.transpose" ]
[((802, 829), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (819, 829), False, 'import logging\n'), ((1569, 1614), 're.sub', 're.sub', (['"""/[^/]*___([^/]*)/"""', '"""/\\\\1/"""', 'tf_name'], {}), "('/[^/]*___([^/]*)/', '/\\\\1/', tf_name)\n", (1575, 1614), False, 'import re\n'), ((1901, 1928), 're.sub', 're.sub', (['"""//+"""', '"""/"""', 'tf_name'], {}), "('//+', '/', tf_name)\n", (1907, 1928), False, 'import re\n'), ((3319, 3359), 'os.path.abspath', 'os.path.abspath', (['pytorch_checkpoint_path'], {}), '(pytorch_checkpoint_path)\n', (3334, 3359), False, 'import os\n'), ((3448, 3487), 'torch.load', 'torch.load', (['pt_path'], {'map_location': '"""cpu"""'}), "(pt_path, map_location='cpu')\n", (3458, 3487), False, 'import torch\n'), ((7272, 7310), 'tensorflow.python.keras.backend.batch_set_value', 'K.batch_set_value', (['weight_value_tuples'], {}), '(weight_value_tuples)\n', (7289, 7310), True, 'from tensorflow.python.keras import backend as K\n'), ((12182, 12205), 'torch.from_numpy', 'torch.from_numpy', (['array'], {}), '(array)\n', (12198, 12205), False, 'import torch\n'), ((12265, 12288), 'torch.from_numpy', 'torch.from_numpy', (['array'], {}), '(array)\n', (12281, 12288), False, 'import torch\n'), ((6610, 6632), 'numpy.transpose', 'numpy.transpose', (['array'], {}), '(array)\n', (6625, 6632), False, 'import numpy\n'), ((6712, 6732), 'numpy.squeeze', 'numpy.squeeze', (['array'], {}), '(array)\n', (6725, 6732), False, 'import numpy\n'), ((11646, 11668), 'numpy.transpose', 'numpy.transpose', (['array'], {}), '(array)\n', (11661, 11668), False, 'import numpy\n'), ((11742, 11762), 'numpy.squeeze', 'numpy.squeeze', (['array'], {}), '(array)\n', (11755, 11762), False, 'import numpy\n'), ((6813, 6845), 'numpy.expand_dims', 'numpy.expand_dims', (['array'], {'axis': '(0)'}), '(array, axis=0)\n', (6830, 6845), False, 'import numpy\n'), ((11837, 11869), 'numpy.expand_dims', 'numpy.expand_dims', (['array'], {'axis': '(0)'}), '(array, axis=0)\n', (11854, 11869), False, 'import numpy\n')]
import logging import uuid from django.db import models from django.urls import reverse from django.utils.encoding import force_text from django.utils.translation import ugettext_lazy as _ from model_utils.managers import InheritanceManager from mayan.apps.django_gpg.exceptions import VerificationError from mayan.apps.django_gpg.models import Key from mayan.apps.documents.models import DocumentVersion from mayan.apps.storage.classes import DefinedStorageLazy from .literals import STORAGE_NAME_DOCUMENT_SIGNATURES_DETACHED_SIGNATURE from .managers import DetachedSignatureManager, EmbeddedSignatureManager logger = logging.getLogger(name=__name__) def upload_to(*args, **kwargs): return force_text(s=uuid.uuid4()) class SignatureBaseModel(models.Model): """ Fields: * key_id - Key Identifier - This is what identifies uniquely a key. Not two keys in the world have the same Key ID. The Key ID is also used to locate a key in the key servers: http://pgp.mit.edu * signature_id - Signature ID - Every time a key is used to sign something it will generate a unique signature ID. No two signature IDs are the same, even when using the same key. """ document_version = models.ForeignKey( editable=False, on_delete=models.CASCADE, related_name='signatures', to=DocumentVersion, verbose_name=_('Document version') ) # Basic fields date = models.DateField( blank=True, editable=False, null=True, verbose_name=_('Date signed') ) key_id = models.CharField( help_text=_('ID of the key that will be used to sign the document.'), max_length=40, verbose_name=_('Key ID') ) # With proper key signature_id = models.CharField( blank=True, editable=False, null=True, max_length=64, verbose_name=_('Signature ID') ) public_key_fingerprint = models.CharField( blank=True, editable=False, null=True, max_length=40, verbose_name=_('Public key fingerprint') ) objects = InheritanceManager() class Meta: ordering = ('pk',) verbose_name = _('Document version signature') verbose_name_plural = _('Document version signatures') def __str__(self): return self.signature_id or '{} - {}'.format(self.date, self.key_id) def get_absolute_url(self): return reverse( viewname='signatures:document_version_signature_details', kwargs={'signature_id': self.pk} ) def get_key_id(self): if self.public_key_fingerprint: return self.public_key_fingerprint[-16:] else: return self.key_id def get_signature_type_display(self): if self.is_detached: return _('Detached') else: return _('Embedded') @property def is_detached(self): return hasattr(self, 'signature_file') @property def is_embedded(self): return not hasattr(self, 'signature_file') class EmbeddedSignature(SignatureBaseModel): objects = EmbeddedSignatureManager() class Meta: verbose_name = _('Document version embedded signature') verbose_name_plural = _('Document version embedded signatures') def save(self, *args, **kwargs): logger.debug(msg='checking for embedded signature') if self.pk: raw = True else: raw = False with self.document_version.open(raw=raw) as file_object: try: verify_result = Key.objects.verify_file( file_object=file_object ) except VerificationError as exception: # Not signed logger.debug( 'embedded signature verification error; %s', exception ) else: self.date = verify_result.date self.key_id = verify_result.key_id self.signature_id = verify_result.signature_id self.public_key_fingerprint = verify_result.pubkey_fingerprint super(EmbeddedSignature, self).save(*args, **kwargs) class DetachedSignature(SignatureBaseModel): signature_file = models.FileField( blank=True, help_text=_( 'Signature file previously generated.' ), null=True, storage=DefinedStorageLazy( name=STORAGE_NAME_DOCUMENT_SIGNATURES_DETACHED_SIGNATURE ), upload_to=upload_to, verbose_name=_('Signature file') ) objects = DetachedSignatureManager() class Meta: verbose_name = _('Document version detached signature') verbose_name_plural = _('Document version detached signatures') def __str__(self): return '{}-{}'.format(self.document_version, _('signature')) def delete(self, *args, **kwargs): if self.signature_file.name: self.signature_file.storage.delete(name=self.signature_file.name) super(DetachedSignature, self).delete(*args, **kwargs) def save(self, *args, **kwargs): with self.document_version.open() as file_object: try: verify_result = Key.objects.verify_file( file_object=file_object, signature_file=self.signature_file ) except VerificationError as exception: # Not signed logger.debug( 'detached signature verification error; %s', exception ) else: self.signature_file.seek(0) self.date = verify_result.date self.key_id = verify_result.key_id self.signature_id = verify_result.signature_id self.public_key_fingerprint = verify_result.pubkey_fingerprint return super(DetachedSignature, self).save(*args, **kwargs)
[ "logging.getLogger", "model_utils.managers.InheritanceManager", "django.utils.translation.ugettext_lazy", "mayan.apps.django_gpg.models.Key.objects.verify_file", "uuid.uuid4", "django.urls.reverse", "mayan.apps.storage.classes.DefinedStorageLazy" ]
[((624, 656), 'logging.getLogger', 'logging.getLogger', ([], {'name': '__name__'}), '(name=__name__)\n', (641, 656), False, 'import logging\n'), ((2025, 2045), 'model_utils.managers.InheritanceManager', 'InheritanceManager', ([], {}), '()\n', (2043, 2045), False, 'from model_utils.managers import InheritanceManager\n'), ((2113, 2144), 'django.utils.translation.ugettext_lazy', '_', (['"""Document version signature"""'], {}), "('Document version signature')\n", (2114, 2144), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((2175, 2207), 'django.utils.translation.ugettext_lazy', '_', (['"""Document version signatures"""'], {}), "('Document version signatures')\n", (2176, 2207), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((2357, 2461), 'django.urls.reverse', 'reverse', ([], {'viewname': '"""signatures:document_version_signature_details"""', 'kwargs': "{'signature_id': self.pk}"}), "(viewname='signatures:document_version_signature_details', kwargs={\n 'signature_id': self.pk})\n", (2364, 2461), False, 'from django.urls import reverse\n'), ((3118, 3158), 'django.utils.translation.ugettext_lazy', '_', (['"""Document version embedded signature"""'], {}), "('Document version embedded signature')\n", (3119, 3158), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((3189, 3230), 'django.utils.translation.ugettext_lazy', '_', (['"""Document version embedded signatures"""'], {}), "('Document version embedded signatures')\n", (3190, 3230), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((4586, 4626), 'django.utils.translation.ugettext_lazy', '_', (['"""Document version detached signature"""'], {}), "('Document version detached signature')\n", (4587, 4626), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((4657, 4698), 'django.utils.translation.ugettext_lazy', '_', (['"""Document version detached signatures"""'], {}), "('Document version detached signatures')\n", (4658, 4698), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((715, 727), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (725, 727), False, 'import uuid\n'), ((1358, 1379), 'django.utils.translation.ugettext_lazy', '_', (['"""Document version"""'], {}), "('Document version')\n", (1359, 1379), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1494, 1510), 'django.utils.translation.ugettext_lazy', '_', (['"""Date signed"""'], {}), "('Date signed')\n", (1495, 1510), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1566, 1624), 'django.utils.translation.ugettext_lazy', '_', (['"""ID of the key that will be used to sign the document."""'], {}), "('ID of the key that will be used to sign the document.')\n", (1567, 1624), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1662, 1673), 'django.utils.translation.ugettext_lazy', '_', (['"""Key ID"""'], {}), "('Key ID')\n", (1663, 1673), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1822, 1839), 'django.utils.translation.ugettext_lazy', '_', (['"""Signature ID"""'], {}), "('Signature ID')\n", (1823, 1839), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1976, 2003), 'django.utils.translation.ugettext_lazy', '_', (['"""Public key fingerprint"""'], {}), "('Public key fingerprint')\n", (1977, 2003), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((2747, 2760), 'django.utils.translation.ugettext_lazy', '_', (['"""Detached"""'], {}), "('Detached')\n", (2748, 2760), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((2794, 2807), 'django.utils.translation.ugettext_lazy', '_', (['"""Embedded"""'], {}), "('Embedded')\n", (2795, 2807), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((4260, 4301), 'django.utils.translation.ugettext_lazy', '_', (['"""Signature file previously generated."""'], {}), "('Signature file previously generated.')\n", (4261, 4301), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((4344, 4420), 'mayan.apps.storage.classes.DefinedStorageLazy', 'DefinedStorageLazy', ([], {'name': 'STORAGE_NAME_DOCUMENT_SIGNATURES_DETACHED_SIGNATURE'}), '(name=STORAGE_NAME_DOCUMENT_SIGNATURES_DETACHED_SIGNATURE)\n', (4362, 4420), False, 'from mayan.apps.storage.classes import DefinedStorageLazy\n'), ((4478, 4497), 'django.utils.translation.ugettext_lazy', '_', (['"""Signature file"""'], {}), "('Signature file')\n", (4479, 4497), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((4776, 4790), 'django.utils.translation.ugettext_lazy', '_', (['"""signature"""'], {}), "('signature')\n", (4777, 4790), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((3526, 3574), 'mayan.apps.django_gpg.models.Key.objects.verify_file', 'Key.objects.verify_file', ([], {'file_object': 'file_object'}), '(file_object=file_object)\n', (3549, 3574), False, 'from mayan.apps.django_gpg.models import Key\n'), ((5155, 5244), 'mayan.apps.django_gpg.models.Key.objects.verify_file', 'Key.objects.verify_file', ([], {'file_object': 'file_object', 'signature_file': 'self.signature_file'}), '(file_object=file_object, signature_file=self.\n signature_file)\n', (5178, 5244), False, 'from mayan.apps.django_gpg.models import Key\n')]
from ConfigParser import ConfigParser from sys import argv REPLACE_PROPERTIES = ["file_path", "database_connection", "new_file_path"] MAIN_SECTION = "app:main" def sync(): # Add or replace the relevant properites from galaxy.ini # into reports.ini reports_config_file = "config/reports.ini" if len(argv) > 1: reports_config_file = argv[1] universe_config_file = "config/galaxy.ini" if len(argv) > 2: universe_config_file = argv[2] parser = ConfigParser() parser.read(universe_config_file) with open(reports_config_file, "r") as f: reports_config_lines = f.readlines() replaced_properties = set([]) with open(reports_config_file, "w") as f: # Write all properties from reports config replacing as # needed. for reports_config_line in reports_config_lines: (line, replaced_property) = get_synced_line(reports_config_line, parser) if replaced_property: replaced_properties.add(replaced_property) f.write(line) # If any properties appear in universe config and not in # reports write these as well. for replacement_property in REPLACE_PROPERTIES: if parser.has_option(MAIN_SECTION, replacement_property) and \ not (replacement_property in replaced_properties): f.write(get_universe_line(replacement_property, parser)) def get_synced_line(reports_line, universe_config): # Cycle through properties to replace and perform replacement on # this line if needed. synced_line = reports_line replaced_property = None for replacement_property in REPLACE_PROPERTIES: if reports_line.startswith(replacement_property) and \ universe_config.has_option(MAIN_SECTION, replacement_property): synced_line = get_universe_line(replacement_property, universe_config) replaced_property = replacement_property break return (synced_line, replaced_property) def get_universe_line(property_name, universe_config): return "%s=%s\n" % (property_name, universe_config.get(MAIN_SECTION, property_name)) if __name__ == '__main__': sync()
[ "ConfigParser.ConfigParser" ]
[((489, 503), 'ConfigParser.ConfigParser', 'ConfigParser', ([], {}), '()\n', (501, 503), False, 'from ConfigParser import ConfigParser\n')]
# Copyright (c) 2020 Huawei Technologies Co.,Ltd. # # openGauss is licensed under Mulan PSL v2. # You can use this software according to the terms and conditions of the Mulan PSL v2. # You may obtain a copy of Mulan PSL v2 at: # # http://license.coscl.org.cn/MulanPSL2 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, # EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, # MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. # See the Mulan PSL v2 for more details. # ------------------------------------------------------------------------- # # test_ssh.py # # IDENTIFICATION # src/gausskernel/dbmind/xtuner/test/test_ssh.py # # ------------------------------------------------------------------------- from ssh import ExecutorFactory def test_remote(): exe = ExecutorFactory().set_host('').set_user('').set_pwd('').get_executor() # padding your information print(exe.exec_command_sync("cat /proc/cpuinfo | grep \"processor\" | wc -l")) print(exe.exec_command_sync("cat /proc/self/cmdline | xargs -0")) print(exe.exec_command_sync("echo -e 'hello \\n world'")[0].count('\n')) print(exe.exec_command_sync("echo -e 'hello \\n world'")[0]) print(exe.exec_command_sync('echo $SHELL')) def test_local(): exe = ExecutorFactory().get_executor() print(exe.exec_command_sync("ping -h")) if __name__ == "__main__": test_remote() test_local()
[ "ssh.ExecutorFactory" ]
[((1307, 1324), 'ssh.ExecutorFactory', 'ExecutorFactory', ([], {}), '()\n', (1322, 1324), False, 'from ssh import ExecutorFactory\n'), ((835, 852), 'ssh.ExecutorFactory', 'ExecutorFactory', ([], {}), '()\n', (850, 852), False, 'from ssh import ExecutorFactory\n')]
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # coding: utf-8 # pylint: disable= arguments-differ # pylint: disable= missing-docstring "Addtional image transforms." import random import math import numpy as np from mxnet import image, nd from mxnet.gluon import Block __all__ = ['RandomCrop', 'RandomErasing'] class RandomCrop(Block): """Randomly crop `src` with `size` (width, height). Padding is optional. Upsample result if `src` is smaller than `size`. Parameters ---------- size : int or tuple of (W, H) Size of the final output. pad: int or tuple if int, size of the zero-padding if tuple, number of values padded to the edges of each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad widths for each axis. ((before, after),) yields same before and after pad for each axis. (pad,) or int is a shortcut for before = after = pad width for all axes. interpolation : int Interpolation method for resizing. By default uses bilinear interpolation. See OpenCV's resize function for available choices. Inputs: - **data**: input tensor with (Hi x Wi x C) shape. Outputs: - **out**: output tensor with (size[0] x size[1] x C) or (size x size x C) shape. """ def __init__(self, size, pad=None, interpolation=2): super(RandomCrop, self).__init__() numeric_types = (float, int, np.generic) if isinstance(size, numeric_types): size = (size, size) self._args = (size, interpolation) self.pad = ((pad, pad), (pad, pad), (0, 0)) if isinstance(pad, int) else pad def forward(self, x): if self.pad: return image.random_crop(nd.array( np.pad(x.asnumpy(), self.pad, mode='constant', constant_values=0)), *self._args)[0] else: return image.random_crop(x, *self._args)[0] class RandomErasing(Block): """Randomly erasing the area in `src` between `s_min` and `s_max` with `probability`. `ratio` controls the ratio between width and height. `mean` means the value in erasing area. Parameters ---------- probability : float Probability of erasing. s_min : float Min area to all area. s_max : float Max area to all area. ratio : float The ratio between width and height. mean : int or tuple of (R, G, B) The value in erasing area. Inputs: - **data**: input tensor with (Hi x Wi x C) shape. Outputs: - **out**: output tensor with (Hi x Wi x C) shape. """ def __init__(self, probability=0.5, s_min=0.02, s_max=0.4, ratio=0.3, mean=(125.31, 122.96, 113.86)): super(RandomErasing, self).__init__() self.probability = probability self.mean = mean self.s_min = s_min self.s_max = s_max self.ratio = ratio def forward(self, x): if not isinstance(self.probability, float): raise TypeError('Got inappropriate size arg') if not isinstance(self.s_min, float): raise TypeError('Got inappropriate size arg') if not isinstance(self.s_max, float): raise TypeError('Got inappropriate size arg') if not isinstance(self.ratio, float): raise TypeError('Got inappropriate size arg') if not isinstance(self.mean, (int, tuple)): raise TypeError('Got inappropriate size arg') if random.uniform(0, 1) > self.probability: return x width, height, _ = x.shape area = width * height target_area = random.uniform(self.s_min, self.s_max) * area aspect_ratio = random.uniform(self.ratio, 1/self.ratio) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if w < width and h < height: x1 = random.randint(0, width - w) y1 = random.randint(0, height - h) x[x1:x1+w, y1:y1+h, 0] = self.mean[0] x[x1:x1+w, y1:y1+h, 1] = self.mean[1] x[x1:x1+w, y1:y1+h, 2] = self.mean[2] return x
[ "random.uniform", "math.sqrt", "random.randint", "mxnet.image.random_crop" ]
[((4465, 4507), 'random.uniform', 'random.uniform', (['self.ratio', '(1 / self.ratio)'], {}), '(self.ratio, 1 / self.ratio)\n', (4479, 4507), False, 'import random\n'), ((4246, 4266), 'random.uniform', 'random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (4260, 4266), False, 'import random\n'), ((4396, 4434), 'random.uniform', 'random.uniform', (['self.s_min', 'self.s_max'], {}), '(self.s_min, self.s_max)\n', (4410, 4434), False, 'import random\n'), ((4684, 4712), 'random.randint', 'random.randint', (['(0)', '(width - w)'], {}), '(0, width - w)\n', (4698, 4712), False, 'import random\n'), ((4730, 4759), 'random.randint', 'random.randint', (['(0)', '(height - h)'], {}), '(0, height - h)\n', (4744, 4759), False, 'import random\n'), ((2633, 2666), 'mxnet.image.random_crop', 'image.random_crop', (['x', '*self._args'], {}), '(x, *self._args)\n', (2650, 2666), False, 'from mxnet import image, nd\n'), ((4528, 4565), 'math.sqrt', 'math.sqrt', (['(target_area * aspect_ratio)'], {}), '(target_area * aspect_ratio)\n', (4537, 4565), False, 'import math\n'), ((4590, 4627), 'math.sqrt', 'math.sqrt', (['(target_area / aspect_ratio)'], {}), '(target_area / aspect_ratio)\n', (4599, 4627), False, 'import math\n')]
import plotly.graph_objects as go import streamlit as st import pandas as pd from utils import * import glob import wfdb import os ANNOTATIONS_COL_NAME = 'annotations' ''' # MIT-BIH Arrhythmia DB Exploration ''' record_ids = [os.path.basename(file)[:-4] for file in glob.glob('data/*.dat')] if len(record_ids) == 0: st.write('Warning ! No data could be found under the ./data/ directory.', '*\*.dat*, *\*.hea*, *\*.atr* files and such should be placed ', 'immediately under the ./data/ directory') else: record_ids.sort() record_id = st.selectbox('Select a record id', record_ids) record = wfdb.rdrecord(f'data/{record_id}') annotation = wfdb.rdann(f'data/{record_id}', 'atr') st.write('Signals found in this record :') for idx, signal in enumerate(record.sig_name): st.write(f'- `{signal}` : in {record.units[idx]}, with a frequency of ' f'{record.fs * record.samps_per_frame[idx]}hz') st.write(f'Comments for this record : {record.comments}') signals_df = pd.DataFrame(record.p_signal, columns=record.sig_name) annot_serie = pd.Series(annotation.symbol, index=annotation.sample, name=ANNOTATIONS_COL_NAME) full_df = pd.concat([signals_df, annot_serie], axis=1) ''' ## Annotations ''' beat_annot_count = annot_serie.isin(dict(beat_annotations)).sum() non_beat_annot_count = annot_serie.isin(dict(non_beat_annotations)).sum() unique_annot = annot_serie.value_counts().index.values st.write(f'This record contains `{annot_serie.size}` annotations ' f'among which `{beat_annot_count}` beat annotations and ' f'`{non_beat_annot_count}` non beat annotation(s).') st.write('The annotations are the followings :') for annot in unique_annot: st.write(f'- `{annot}` : {annotation_definitions[annot]}') st.write('More explanations on the annotations are available here : ' 'https://archive.physionet.org/physiobank/annotations.shtml') # Plot counts for each annotation annot_counts_df = annot_serie \ .value_counts() \ .rename_axis(ANNOTATIONS_COL_NAME) \ .reset_index(name='counts') bar_fig = go.Figure(data=[go.Bar(x=annot_counts_df[ANNOTATIONS_COL_NAME], y=annot_counts_df['counts'], text=annot_counts_df['counts'], textposition='auto' )]) bar_fig.update_layout(title='Annotations by count', yaxis_title='counts', xaxis_title='annotations') st.write(bar_fig) ''' ## Explore full dataset ''' signal = st.selectbox('Select a signal', record.sig_name) # Plot signals and annotations matching_rows_by_annot = {} for annot in unique_annot: matching_rows_by_annot[annot] = full_df[ANNOTATIONS_COL_NAME] == annot fig = go.Figure(layout=go.Layout(title=go.layout.Title( text='{} signal with annotations'.format(signal)))) fig.add_trace(go.Scatter(x=full_df.index.values, y=full_df[signal], mode='lines', name=signal)) for annot, annot_matching_rows in matching_rows_by_annot.items(): fig.add_trace(go.Scatter(x=full_df.index[annot_matching_rows].values, y=full_df[annot_matching_rows][signal].values, mode='markers', name='{} (annot)'.format(annot))) st.plotly_chart(fig)
[ "pandas.Series", "plotly.graph_objects.Bar", "streamlit.write", "wfdb.rdann", "plotly.graph_objects.Scatter", "wfdb.rdrecord", "os.path.basename", "streamlit.selectbox", "pandas.DataFrame", "streamlit.plotly_chart", "pandas.concat", "glob.glob" ]
[((324, 516), 'streamlit.write', 'st.write', (['"""Warning ! No data could be found under the ./data/ directory."""', '"""*\\\\*.dat*, *\\\\*.hea*, *\\\\*.atr* files and such should be placed """', '"""immediately under the ./data/ directory"""'], {}), "('Warning ! No data could be found under the ./data/ directory.',\n '*\\\\*.dat*, *\\\\*.hea*, *\\\\*.atr* files and such should be placed ',\n 'immediately under the ./data/ directory')\n", (332, 516), True, 'import streamlit as st\n'), ((576, 622), 'streamlit.selectbox', 'st.selectbox', (['"""Select a record id"""', 'record_ids'], {}), "('Select a record id', record_ids)\n", (588, 622), True, 'import streamlit as st\n'), ((636, 670), 'wfdb.rdrecord', 'wfdb.rdrecord', (['f"""data/{record_id}"""'], {}), "(f'data/{record_id}')\n", (649, 670), False, 'import wfdb\n'), ((688, 726), 'wfdb.rdann', 'wfdb.rdann', (['f"""data/{record_id}"""', '"""atr"""'], {}), "(f'data/{record_id}', 'atr')\n", (698, 726), False, 'import wfdb\n'), ((731, 773), 'streamlit.write', 'st.write', (['"""Signals found in this record :"""'], {}), "('Signals found in this record :')\n", (739, 773), True, 'import streamlit as st\n'), ((974, 1031), 'streamlit.write', 'st.write', (['f"""Comments for this record : {record.comments}"""'], {}), "(f'Comments for this record : {record.comments}')\n", (982, 1031), True, 'import streamlit as st\n'), ((1049, 1103), 'pandas.DataFrame', 'pd.DataFrame', (['record.p_signal'], {'columns': 'record.sig_name'}), '(record.p_signal, columns=record.sig_name)\n', (1061, 1103), True, 'import pandas as pd\n'), ((1122, 1207), 'pandas.Series', 'pd.Series', (['annotation.symbol'], {'index': 'annotation.sample', 'name': 'ANNOTATIONS_COL_NAME'}), '(annotation.symbol, index=annotation.sample, name=ANNOTATIONS_COL_NAME\n )\n', (1131, 1207), True, 'import pandas as pd\n'), ((1245, 1289), 'pandas.concat', 'pd.concat', (['[signals_df, annot_serie]'], {'axis': '(1)'}), '([signals_df, annot_serie], axis=1)\n', (1254, 1289), True, 'import pandas as pd\n'), ((1529, 1708), 'streamlit.write', 'st.write', (['f"""This record contains `{annot_serie.size}` annotations among which `{beat_annot_count}` beat annotations and `{non_beat_annot_count}` non beat annotation(s)."""'], {}), "(\n f'This record contains `{annot_serie.size}` annotations among which `{beat_annot_count}` beat annotations and `{non_beat_annot_count}` non beat annotation(s).'\n )\n", (1537, 1708), True, 'import streamlit as st\n'), ((1737, 1785), 'streamlit.write', 'st.write', (['"""The annotations are the followings :"""'], {}), "('The annotations are the followings :')\n", (1745, 1785), True, 'import streamlit as st\n'), ((1888, 2026), 'streamlit.write', 'st.write', (['"""More explanations on the annotations are available here : https://archive.physionet.org/physiobank/annotations.shtml"""'], {}), "(\n 'More explanations on the annotations are available here : https://archive.physionet.org/physiobank/annotations.shtml'\n )\n", (1896, 2026), True, 'import streamlit as st\n'), ((2661, 2678), 'streamlit.write', 'st.write', (['bar_fig'], {}), '(bar_fig)\n', (2669, 2678), True, 'import streamlit as st\n'), ((2729, 2777), 'streamlit.selectbox', 'st.selectbox', (['"""Select a signal"""', 'record.sig_name'], {}), "('Select a signal', record.sig_name)\n", (2741, 2777), True, 'import streamlit as st\n'), ((3610, 3630), 'streamlit.plotly_chart', 'st.plotly_chart', (['fig'], {}), '(fig)\n', (3625, 3630), True, 'import streamlit as st\n'), ((229, 251), 'os.path.basename', 'os.path.basename', (['file'], {}), '(file)\n', (245, 251), False, 'import os\n'), ((269, 292), 'glob.glob', 'glob.glob', (['"""data/*.dat"""'], {}), "('data/*.dat')\n", (278, 292), False, 'import glob\n'), ((833, 958), 'streamlit.write', 'st.write', (['f"""- `{signal}` : in {record.units[idx]}, with a frequency of {record.fs * record.samps_per_frame[idx]}hz"""'], {}), "(\n f'- `{signal}` : in {record.units[idx]}, with a frequency of {record.fs * record.samps_per_frame[idx]}hz'\n )\n", (841, 958), True, 'import streamlit as st\n'), ((1825, 1883), 'streamlit.write', 'st.write', (['f"""- `{annot}` : {annotation_definitions[annot]}"""'], {}), "(f'- `{annot}` : {annotation_definitions[annot]}')\n", (1833, 1883), True, 'import streamlit as st\n'), ((3093, 3178), 'plotly.graph_objects.Scatter', 'go.Scatter', ([], {'x': 'full_df.index.values', 'y': 'full_df[signal]', 'mode': '"""lines"""', 'name': 'signal'}), "(x=full_df.index.values, y=full_df[signal], mode='lines', name=signal\n )\n", (3103, 3178), True, 'import plotly.graph_objects as go\n'), ((2245, 2378), 'plotly.graph_objects.Bar', 'go.Bar', ([], {'x': 'annot_counts_df[ANNOTATIONS_COL_NAME]', 'y': "annot_counts_df['counts']", 'text': "annot_counts_df['counts']", 'textposition': '"""auto"""'}), "(x=annot_counts_df[ANNOTATIONS_COL_NAME], y=annot_counts_df['counts'],\n text=annot_counts_df['counts'], textposition='auto')\n", (2251, 2378), True, 'import plotly.graph_objects as go\n')]
import pandas as pd import ete2 from ete2 import faces, Tree, AttrFace, TreeStyle import pylab from matplotlib.colors import hex2color, rgb2hex, hsv_to_rgb, rgb_to_hsv kelly_colors_hex = [ 0xFFB300, # Vivid Yellow 0x803E75, # Strong Purple 0xFF6800, # Vivid Orange 0xA6BDD7, # Very Light Blue 0xC10020, # Vivid Red 0xCEA262, # Grayish Yellow 0x817066, # Medium Gray # The following don't work well for people with defective color vision 0x007D34, # Vivid Green 0xF6768E, # Strong Purplish Pink 0x00538A, # Strong Blue 0xFF7A5C, # Strong Yellowish Pink 0x53377A, # Strong Violet 0xFF8E00, # Vivid Orange Yellow 0xB32851, # Strong Purplish Red 0xF4C800, # Vivid Greenish Yellow 0x7F180D, # Strong Reddish Brown 0x93AA00, # Vivid Yellowish Green 0x593315, # Deep Yellowish Brown 0xF13A13, # Vivid Reddish Orange 0x232C16, # Dark Olive Green ] def my_layout(node): if node.is_leaf(): # If terminal node, draws its name name_face = AttrFace("name") else: # If internal node, draws label with smaller font size name_face = AttrFace("name", fsize=10) # Adds the name face to the image at the preferred position faces.add_face_to_node(name_face, node, column=0, position="branch-right") def adjust_kelly_brightness(hex_color, val, recon_min, recon_max): """set brightness according to change in continuous reconstruction value""" h, s, v = rgb_to_hsv(hex2color('#{0:06X}'.format(hex_color))) scale_factor = 1 - (recon_max - val) / (recon_max - recon_min) v_new = v - (v * (scale_factor)) return rgb2hex(hsv_to_rgb(pd.np.array([h, s, v_new]))) def get_style(): ts = TreeStyle() # Do not add leaf names automatically ts.show_leaf_name = False ts.show_scale = True ts.force_topology = False # Use my custom layout ts.layout_fn = my_layout return ts def plot_tree(pt_tree, target_node, out): #pt_tree, feats, pf2color = get_tree(phenotype = phenotype, feat_list = "top_cor", is_ml_plus_phypat = True, target_node = target_node) pt_tree.dist = 0 target = pt_tree.search_nodes(name = target_node)[0] target.render(out + '_tree.pdf', tree_style = get_style()) #target.render(out + '_tree.png', tree_style = get_style()) return target, feats, pf2color def plot_legend(feats, out, pf2color, pf_desc = False, pf_acc = True, include_class = False): fig = pylab.figure() figlegend = pylab.figure(figsize = (9, 6)) ax = fig.add_subplot(111) x = [0,1] lines = [ax.plot(x, pd.np.ones(len(x)), 'o', color = "#%06x" % (pf2color[feats.index[i]]))[0] for i in range(len(pf2color))] labels= [i for i in feats.index] #labels= ["%s" %(feats.loc[:,"Pfam_acc"].iloc[i]) for i in range(feats.shape[0])] #if include_class: # labels= ["%s %s" %(labels[i], feats.loc[:, "class"].iloc[i]) for i in range(len(labels))] #if pf_desc: # labels = ["%s %s" % (labels[i], pf2short_desc.loc[feats.loc[:,"Pfam_acc"].iloc[i], 1]) for i in range(len(labels))] #if pf_acc: # labels = ["%s %s" % (labels[i], pf2acc.loc[feats.loc[:,"Pfam_acc"].iloc[i], 1]) for i in range(len(labels))] figlegend.legend(lines, labels, markerscale = 2.5, numpoints = 1, frameon = False) #fig.show() fig.tight_layout() figlegend.savefig(out + "_legend.svg") figlegend.savefig(out + "_legend.png") return figlegend def get_tree(phenotype, tree, gain_recon, loss_recon, node_recon, pfam_mapping, feat_list, sample_mapping, threshold = 0.5, target_node = None, are_continuous_features_with_discrete_phenotype = False, max_feats = 10, miscl = None, node_annotation = None): #read target feats feats = pd.read_csv(feat_list, index_col = 0, sep = "\t") pt_tree = ete2.Tree(tree, format = 1) pt_tree.ladderize() if not node_annotation is None: node_table = pd.read_csv(node_annotation, sep = "\t", index_col = 0) sample_mapping = pd.read_csv(sample_mapping, index_col = 0, sep = "\t") #read node and edge reconstruction matrices node_recon = pd.read_csv(node_recon, sep = "\t", index_col = 0) gain_recon = pd.read_csv(gain_recon, sep = "\t", index_col = 0) gain_recon.index = ["_".join(("_".join(i.split("_")[:-1]), i.split("_")[-1])) for i in gain_recon.index.values] loss_recon = pd.read_csv(loss_recon, sep = "\t", index_col = 0) loss_recon.index = ["_".join(("_".join(i.split("_")[:-1]), i.split("_")[-1])) for i in loss_recon.index.values] #prune to target node if target_node is not None: pt_tree = pt_tree.search_nodes(name = target_node)[0] node2name = dict((i.name, i.name) for i in pt_tree.traverse(strategy = 'preorder')) pfams_with_event = set() pfam2color = {} #set the style of the branches and nodes according to the posterior probability top10_feats = feats.iloc[:max_feats,] #for visualization of continuous feature get the range of values for each feature if are_continuous_features_with_discrete_phenotype: recon_min = gain_recon.abs().apply(pd.np.min) recon_max = gain_recon.abs().apply(pd.np.max) if not miscl is None: miscl_m = pd.read_csv(miscl, sep = "\t", index_col = 0) for n in pt_tree.traverse(): #ignore the root if n.name == "N1": continue if not node_annotation is None: if n.name in node_table.index: for attr,i in zip(node_table.columns, range(len(node_table.columns))): value = node_table.loc[n.name, attr] if not pd.isnull(value): if value == 0: rf = ete2.CircleFace(radius = 8, style = "circle", color = 'red') elif value == 2: rf = faces.CircleFace(radius = 8, style = "circle", color = 'orange') else: rf = faces.CircleFace(radius = 8, style = "circle", color = 'green') else: rf = faces.CircleFace(radius = 8, style = "circle", color = 'grey') n.add_face(rf, column = i, position = "aligned") ns = node_recon.loc[n.name, phenotype] style = ete2.NodeStyle() style["shape"] = 'square' style['size'] = 10 if pd.isnull(ns): style['fgcolor'] = 'grey' elif ns < threshold: style['fgcolor'] = 'darkred' else: style['fgcolor'] = 'green' if not n.name == "N1": branch_id = n.name + "_" + n.up.name if gain_recon.loc[branch_id, phenotype] > threshold: style["hz_line_type"] = 1 style["hz_line_color"] = 'green' style["hz_line_width"] = 3 elif loss_recon.loc[branch_id, phenotype] > threshold: style["hz_line_type"] = 1 style["hz_line_color"] = 'red' style["hz_line_width"] = 3 else: style["hz_line_type"] = 0 style["hz_line_color"] = 'black' n.set_style(style) #check if sample was misclassified and add misclassified label if not miscl is None: if node2name[n.name] in miscl_m.index: tf = faces.TextFace("misclassified") n.add_face(tf, column = 0, position = "branch-right") #set species name instead of tax id if n.name in sample_mapping.index: node2name[n.name] = sample_mapping.loc[n.name,][0] #add majority feature gains and losses events = [] for i in range(top10_feats.shape[0]): if not are_continuous_features_with_discrete_phenotype: cf = faces.CircleFace(radius = 8, style = "circle", color = kelly_colors_hex[i]) #gain events if gain_recon.loc[branch_id, top10_feats.index[i]] > threshold: pfam2color[top10_feats.index[i]] = kelly_colors_hex[i] tf = faces.TextFace("-") events.append(tf) pfams_with_event.add(node_recon.index[i]) events.append(cf) #loss events elif loss_recon.loc[branch_id, top10_feats.index[i]] > threshold: pfam2color[top10_feats.index[i]] = kelly_colors_hex[i] tf = faces.TextFace("-") events.append(tf) pfams_with_event.add(node_recon.index[i]) events.append(cf) #continuous features else: adjusted_color = adjust_kelly_brightness(kelly_colors_hex[i], abs(loss_recon.loc[branch_id, top10_feats.index[i]]), recon_min.loc[top10_feats.index[i]], recon_max.loc[top10_feats.index[i]]) #tf = faces.TextFace(gain_recon.loc[branch_id, top10_feats.index[i]]) if loss_recon.loc[branch_id, top10_feats.index[i]] < 0: tf = faces.TextFace("-") else: tf = faces.TextFace("+") cf = faces.CircleFace(radius = 8, style = "circle", color = adjusted_color) pfam2color[top10_feats.index[i]] = kelly_colors_hex[i] pfams_with_event.add(node_recon.index[i]) events.append(cf) events.append(tf) for i in range(len(events)): n.add_face(events[i], column = i, position = "branch-top") for n in pt_tree.traverse(): if n.name in node2name: n.name = node2name[n.name] #filtered_pfams = filter(lambda i: i in list(pfams_with_event), top10_feats.loc[:,"Pfam_acc"].values) #print filtered_pfams #filtered_ids = pt_gt2id.loc[filtered_pfams, 0] - 1 #print filtered_ids #top10_feats_with_event = top10_feats.loc[filtered_ids,] #process node annotation return pt_tree, top10_feats, pfam2color if __name__ == "__main__": import argparse parser = argparse.ArgumentParser("""visualize target list of features""") parser.add_argument("node_recon", help = "node ancestral character state reconstruction") parser.add_argument("gain_recon", help = "gain events ancestral character state reconstruction") parser.add_argument("loss_recon", help = "loss events ancestral character state reconstruction") parser.add_argument("tree", help = "tree with internal nodes labeled") parser.add_argument("pfam_mapping", help = "feature mapping/list") parser.add_argument("feat_list", help = "list of features") parser.add_argument("--target_node", default = "N1", help = "list of features") parser.add_argument("phenotype", help = "target phenotype") parser.add_argument("--are_continuous_features_with_discrete_phenotype", action = 'store_true', help = "set if using continuous features with a discrete phenotype") parser.add_argument("threshold", type = float, help = "threshold to call genotype/phenotype events") parser.add_argument("sample_mapping", help = "mapping between sample ids and names") parser.add_argument("out", help = "output file") parser.add_argument("--max_feats", type = int, default = 10, help = "visualize at most max_feats features") parser.add_argument("--miscl", help = "table of misclassified samples") parser.add_argument("--node_annotation", help = "table of binary features for labeling the nodes") a = parser.parse_args() pt_tree, feats, pf2color = get_tree(node_recon = a.node_recon, gain_recon = a.gain_recon, loss_recon = a.loss_recon, pfam_mapping = a.pfam_mapping, tree = a.tree, feat_list = a.feat_list, phenotype = a.phenotype, target_node = a.target_node, threshold = a.threshold, sample_mapping = a.sample_mapping, are_continuous_features_with_discrete_phenotype = a.are_continuous_features_with_discrete_phenotype, max_feats = a.max_feats, miscl = a.miscl, node_annotation = a.node_annotation) plot_tree(pt_tree, a.target_node, a.out) plot_legend(feats, a.out, pf2color)
[ "ete2.Tree", "pandas.isnull", "ete2.faces.CircleFace", "ete2.CircleFace", "pandas.read_csv", "argparse.ArgumentParser", "ete2.TreeStyle", "ete2.faces.TextFace", "pylab.figure", "ete2.faces.add_face_to_node", "pandas.np.array", "ete2.AttrFace", "ete2.NodeStyle" ]
[((1247, 1321), 'ete2.faces.add_face_to_node', 'faces.add_face_to_node', (['name_face', 'node'], {'column': '(0)', 'position': '"""branch-right"""'}), "(name_face, node, column=0, position='branch-right')\n", (1269, 1321), False, 'from ete2 import faces, Tree, AttrFace, TreeStyle\n'), ((1732, 1743), 'ete2.TreeStyle', 'TreeStyle', ([], {}), '()\n', (1741, 1743), False, 'from ete2 import faces, Tree, AttrFace, TreeStyle\n'), ((2473, 2487), 'pylab.figure', 'pylab.figure', ([], {}), '()\n', (2485, 2487), False, 'import pylab\n'), ((2504, 2532), 'pylab.figure', 'pylab.figure', ([], {'figsize': '(9, 6)'}), '(figsize=(9, 6))\n', (2516, 2532), False, 'import pylab\n'), ((3755, 3800), 'pandas.read_csv', 'pd.read_csv', (['feat_list'], {'index_col': '(0)', 'sep': '"""\t"""'}), "(feat_list, index_col=0, sep='\\t')\n", (3766, 3800), True, 'import pandas as pd\n'), ((3819, 3844), 'ete2.Tree', 'ete2.Tree', (['tree'], {'format': '(1)'}), '(tree, format=1)\n', (3828, 3844), False, 'import ete2\n'), ((4005, 4055), 'pandas.read_csv', 'pd.read_csv', (['sample_mapping'], {'index_col': '(0)', 'sep': '"""\t"""'}), "(sample_mapping, index_col=0, sep='\\t')\n", (4016, 4055), True, 'import pandas as pd\n'), ((4125, 4171), 'pandas.read_csv', 'pd.read_csv', (['node_recon'], {'sep': '"""\t"""', 'index_col': '(0)'}), "(node_recon, sep='\\t', index_col=0)\n", (4136, 4171), True, 'import pandas as pd\n'), ((4193, 4239), 'pandas.read_csv', 'pd.read_csv', (['gain_recon'], {'sep': '"""\t"""', 'index_col': '(0)'}), "(gain_recon, sep='\\t', index_col=0)\n", (4204, 4239), True, 'import pandas as pd\n'), ((4377, 4423), 'pandas.read_csv', 'pd.read_csv', (['loss_recon'], {'sep': '"""\t"""', 'index_col': '(0)'}), "(loss_recon, sep='\\t', index_col=0)\n", (4388, 4423), True, 'import pandas as pd\n'), ((10225, 10285), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""visualize target list of features"""'], {}), "('visualize target list of features')\n", (10248, 10285), False, 'import argparse\n'), ((1040, 1056), 'ete2.AttrFace', 'AttrFace', (['"""name"""'], {}), "('name')\n", (1048, 1056), False, 'from ete2 import faces, Tree, AttrFace, TreeStyle\n'), ((1152, 1178), 'ete2.AttrFace', 'AttrFace', (['"""name"""'], {'fsize': '(10)'}), "('name', fsize=10)\n", (1160, 1178), False, 'from ete2 import faces, Tree, AttrFace, TreeStyle\n'), ((3928, 3979), 'pandas.read_csv', 'pd.read_csv', (['node_annotation'], {'sep': '"""\t"""', 'index_col': '(0)'}), "(node_annotation, sep='\\t', index_col=0)\n", (3939, 3979), True, 'import pandas as pd\n'), ((5221, 5262), 'pandas.read_csv', 'pd.read_csv', (['miscl'], {'sep': '"""\t"""', 'index_col': '(0)'}), "(miscl, sep='\\t', index_col=0)\n", (5232, 5262), True, 'import pandas as pd\n'), ((6297, 6313), 'ete2.NodeStyle', 'ete2.NodeStyle', ([], {}), '()\n', (6311, 6313), False, 'import ete2\n'), ((6386, 6399), 'pandas.isnull', 'pd.isnull', (['ns'], {}), '(ns)\n', (6395, 6399), True, 'import pandas as pd\n'), ((1676, 1702), 'pandas.np.array', 'pd.np.array', (['[h, s, v_new]'], {}), '([h, s, v_new])\n', (1687, 1702), True, 'import pandas as pd\n'), ((7370, 7401), 'ete2.faces.TextFace', 'faces.TextFace', (['"""misclassified"""'], {}), "('misclassified')\n", (7384, 7401), False, 'from ete2 import faces, Tree, AttrFace, TreeStyle\n'), ((7861, 7930), 'ete2.faces.CircleFace', 'faces.CircleFace', ([], {'radius': '(8)', 'style': '"""circle"""', 'color': 'kelly_colors_hex[i]'}), "(radius=8, style='circle', color=kelly_colors_hex[i])\n", (7877, 7930), False, 'from ete2 import faces, Tree, AttrFace, TreeStyle\n'), ((9314, 9378), 'ete2.faces.CircleFace', 'faces.CircleFace', ([], {'radius': '(8)', 'style': '"""circle"""', 'color': 'adjusted_color'}), "(radius=8, style='circle', color=adjusted_color)\n", (9330, 9378), False, 'from ete2 import faces, Tree, AttrFace, TreeStyle\n'), ((5628, 5644), 'pandas.isnull', 'pd.isnull', (['value'], {}), '(value)\n', (5637, 5644), True, 'import pandas as pd\n'), ((6100, 6156), 'ete2.faces.CircleFace', 'faces.CircleFace', ([], {'radius': '(8)', 'style': '"""circle"""', 'color': '"""grey"""'}), "(radius=8, style='circle', color='grey')\n", (6116, 6156), False, 'from ete2 import faces, Tree, AttrFace, TreeStyle\n'), ((8162, 8181), 'ete2.faces.TextFace', 'faces.TextFace', (['"""-"""'], {}), "('-')\n", (8176, 8181), False, 'from ete2 import faces, Tree, AttrFace, TreeStyle\n'), ((9194, 9213), 'ete2.faces.TextFace', 'faces.TextFace', (['"""-"""'], {}), "('-')\n", (9208, 9213), False, 'from ete2 import faces, Tree, AttrFace, TreeStyle\n'), ((9269, 9288), 'ete2.faces.TextFace', 'faces.TextFace', (['"""+"""'], {}), "('+')\n", (9283, 9288), False, 'from ete2 import faces, Tree, AttrFace, TreeStyle\n'), ((5718, 5772), 'ete2.CircleFace', 'ete2.CircleFace', ([], {'radius': '(8)', 'style': '"""circle"""', 'color': '"""red"""'}), "(radius=8, style='circle', color='red')\n", (5733, 5772), False, 'import ete2\n'), ((8559, 8578), 'ete2.faces.TextFace', 'faces.TextFace', (['"""-"""'], {}), "('-')\n", (8573, 8578), False, 'from ete2 import faces, Tree, AttrFace, TreeStyle\n'), ((5853, 5911), 'ete2.faces.CircleFace', 'faces.CircleFace', ([], {'radius': '(8)', 'style': '"""circle"""', 'color': '"""orange"""'}), "(radius=8, style='circle', color='orange')\n", (5869, 5911), False, 'from ete2 import faces, Tree, AttrFace, TreeStyle\n'), ((5981, 6038), 'ete2.faces.CircleFace', 'faces.CircleFace', ([], {'radius': '(8)', 'style': '"""circle"""', 'color': '"""green"""'}), "(radius=8, style='circle', color='green')\n", (5997, 6038), False, 'from ete2 import faces, Tree, AttrFace, TreeStyle\n')]
import attr from firedrake import * import numpy as np import matplotlib.pyplot as plt import matplotlib from scipy.linalg import svd from scipy.sparse.linalg import svds from scipy.sparse import csr_matrix from slepc4py import SLEPc import pandas as pd from tqdm import tqdm import os matplotlib.use('Agg') @attr.s class ConditionNumberResult(object): form = attr.ib() assembled_form = attr.ib() condition_number = attr.ib() sparse_operator = attr.ib() number_of_dofs = attr.ib() nnz = attr.ib() is_operator_symmetric = attr.ib() bcs = attr.ib(default=list()) def plot_matrix(assembled_form, **kwargs): """Provides a plot of a matrix.""" fig, ax = plt.subplots(1, 1) petsc_mat = assembled_form.M.handle size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() Mnp = Mnp.toarray() # Eliminate rows and columns filled with zero entries Mnp = Mnp[~(Mnp==0).all(1)] idx = np.argwhere(np.all(Mnp[..., :] == 0, axis=0)) Mnp = np.delete(Mnp, idx, axis=1) Am = np.ma.masked_values(Mnp, 0, rtol=1e-13) # Plot the matrix plot = ax.matshow(Am, **kwargs) # Remove axis ticks and values ax.tick_params(length=0) ax.set_xticklabels([]) ax.set_yticklabels([]) return plot def plot_matrix_mixed(assembled_form, **kwargs): """Provides a plot of a mixed matrix.""" fig, ax = plt.subplots(1, 1) petsc_mat = assembled_form.M.handle f0_size = assembled_form.M[0, 0].handle.getSize() size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() Mnp = Mnp.toarray() # Eliminate rows and columns filled with zero entries Mnp = Mnp[~(Mnp==0).all(1)] idx = np.argwhere(np.all(Mnp[..., :] == 0, axis=0)) Mnp = np.delete(Mnp, idx, axis=1) Am = np.ma.masked_values(Mnp, 0, rtol=1e-13) # Plot the matrix plot = ax.matshow(Am, **kwargs) # Remove axis ticks and values ax.tick_params(length=0) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.axhline(y=f0_size[0] - 0.5, color="k") ax.axvline(x=f0_size[0] - 0.5, color="k") return plot def plot_matrix_primal_hybrid_full(a_form, bcs=[], **kwargs): """Provides a plot of a full hybrid-mixed matrix.""" fig, ax = plt.subplots(1, 1) assembled_form = assemble(a_form, bcs=bcs, mat_type="aij") petsc_mat = assembled_form.M.handle f0_size = assembled_form.M[0, 0].handle.getSize() size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() Mnp = Mnp.toarray() # Eliminate rows and columns filled with zero entries Mnp = Mnp[~(Mnp==0).all(1)] idx = np.argwhere(np.all(Mnp[..., :] == 0, axis=0)) Mnp = np.delete(Mnp, idx, axis=1) Am = np.ma.masked_values(Mnp, 0, rtol=1e-13) # Plot the matrix plot = ax.matshow(Am, **kwargs) # Remove axis ticks and values ax.tick_params(length=0) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.axhline(y=f0_size[0] - 0.5, color="k") ax.axvline(x=f0_size[0] - 0.5, color="k") return plot def plot_matrix_mixed_hybrid_full(a_form, bcs=[], **kwargs): """Provides a plot of a full hybrid-mixed matrix.""" fig, ax = plt.subplots(1, 1) assembled_form = assemble(a_form, bcs=bcs, mat_type="aij") petsc_mat = assembled_form.M.handle f0_size = assembled_form.M[0, 0].handle.getSize() f1_size = assembled_form.M[1, 1].handle.getSize() size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() Mnp = Mnp.toarray() # Eliminate rows and columns filled with zero entries Mnp = Mnp[~(Mnp==0).all(1)] idx = np.argwhere(np.all(Mnp[..., :] == 0, axis=0)) Mnp = np.delete(Mnp, idx, axis=1) Am = np.ma.masked_values(Mnp, 0, rtol=1e-13) # Plot the matrix plot = ax.matshow(Am, **kwargs) # Remove axis ticks and values ax.tick_params(length=0) ax.set_xticklabels([]) ax.set_yticklabels([]) ax.axhline(y=f0_size[0] - 0.5, color="k") ax.axvline(x=f0_size[0] - 0.5, color="k") ax.axhline(y=f0_size[0] + f1_size[0] - 0.5, color="k") ax.axvline(x=f0_size[0] + f1_size[0] - 0.5, color="k") return plot def plot_matrix_hybrid_multiplier(a_form, trace_index=2, bcs=[], **kwargs): """Provides a plot of a condensed hybrid-mixed matrix for single scale problems.""" fig, ax = plt.subplots(1, 1) _A = Tensor(a_form) A = _A.blocks idx = trace_index S = A[idx, idx] - A[idx, :idx] * A[:idx, :idx].inv * A[:idx, idx] Smat = assemble(S, bcs=bcs) petsc_mat = Smat.M.handle size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() Mnp = Mnp.toarray() # Eliminate rows and columns filled with zero entries Mnp = Mnp[~(Mnp==0).all(1)] idx = np.argwhere(np.all(Mnp[..., :] == 0, axis=0)) Mnp = np.delete(Mnp, idx, axis=1) Am = np.ma.masked_values(Mnp, 0, rtol=1e-13) # Plot the matrix plot = ax.matshow(Am, **kwargs) # Below there is the spy alternative # plot = plt.spy(Am, **kwargs) # Remove axis ticks and values ax.tick_params(length=0) ax.set_xticklabels([]) ax.set_yticklabels([]) return plot def filter_real_part_in_array(array: np.ndarray, imag_threshold: float = 1e-5) -> np.ndarray: """Utility function to filter real part in a numpy array. :param array: Array with real and complex numbers. :param imag_threshold: Threshold to cut off imaginary part in complex number. :return: Filtered array with only real numbers. """ real_part_array = array.real[abs(array.imag) < 1e-5] return real_part_array def calculate_condition_number( A, num_of_factors, backend: str = "scipy", use_sparse: bool = False, zero_tol: float = 1e-5 ): backend = backend.lower() if backend == "scipy": size = A.getSize() Mnp = csr_matrix(A.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() if use_sparse: singular_values = svds( A=Mnp, k=num_of_factors, which="LM", maxiter=5000, return_singular_vectors=False, solver="lobpcg" ) else: M = Mnp.toarray() singular_values = svd(M, compute_uv=False, check_finite=False) singular_values = singular_values[singular_values > zero_tol] condition_number = singular_values.max() / singular_values.min() elif backend == "slepc": S = SLEPc.SVD() S.create() S.setOperator(A) S.setType(SLEPc.SVD.Type.LAPACK) S.setDimensions(nsv=num_of_factors) S.setTolerances(max_it=5000) S.setWhichSingularTriplets(SLEPc.SVD.Which.LARGEST) S.solve() num_converged_values = S.getConverged() singular_values_list = list() if num_converged_values > 0: for i in range(num_converged_values): singular_value = S.getValue(i) singular_values_list.append(singular_value) else: raise RuntimeError("SLEPc SVD has not converged.") singular_values = np.array(singular_values_list) singular_values = singular_values[singular_values > zero_tol] condition_number = singular_values.max() / singular_values.min() else: raise NotImplementedError("The required method for condition number estimation is currently unavailable.") return condition_number def solve_poisson_cg(mesh, degree=1, use_quads=False): # Function space declaration V = FunctionSpace(mesh, "CG", degree) # Trial and test functions u = TrialFunction(V) v = TestFunction(V) # Dirichlet BCs bcs = DirichletBC(V, 0.0, "on_boundary") # Variational form a = inner(grad(u), grad(v)) * dx A = assemble(a, bcs=bcs, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = V.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_ls(mesh, degree=1): # Function space declaration pressure_family = 'CG' velocity_family = 'CG' U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) W = U * V # Trial and test functions u, p = TrialFunctions(W) v, q = TestFunctions(W) # Mesh entities h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Dirichlet BCs bcs = DirichletBC(W[0], sigma_e, "on_boundary") # Stabilization parameters delta_1 = Constant(1) delta_2 = Constant(1) delta_3 = Constant(1) # Least-squares terms a = delta_1 * inner(u + grad(p), v + grad(q)) * dx a += delta_2 * div(u) * div(v) * dx a += delta_3 * inner(curl(u), curl(v)) * dx A = assemble(a, bcs=bcs, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = W.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_cgls(mesh, degree=1): # Function space declaration pressure_family = 'CG' velocity_family = 'CG' U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) W = U * V # Trial and test functions u, p = TrialFunctions(W) v, q = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Dirichlet BCs bcs = DirichletBC(W[0], sigma_e, "on_boundary") # Mixed classical terms a = (dot(u, v) - div(v) * p - q * div(u)) * dx # Stabilizing terms a += -0.5 * inner((u + grad(p)), v + grad(q)) * dx # a += 0.5 * h * h * div(u) * div(v) * dx # a += 0.5 * h * h * inner(curl(u), curl(v)) * dx # L += 0.5 * h * h * f * div(v) * dx a += 0.5 * div(u) * div(v) * dx a += 0.5 * inner(curl(u), curl(v)) * dx A = assemble(a, bcs=bcs, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = W.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_vms(mesh, degree=1): # Function space declaration pressure_family = 'CG' velocity_family = 'CG' U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) W = U * V # Trial and test functions u, p = TrialFunctions(W) v, q = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Dirichlet BCs bcs = DirichletBC(W[0], sigma_e, "on_boundary") # Mixed classical terms a = (dot(u, v) - div(v) * p + q * div(u)) * dx # Stabilizing terms a += 0.5 * inner(u + grad(p), grad(q) - v) * dx # a += 0.5 * h * h * div(u) * div(v) * dx # a += 0.5 * h * h * inner(curl(u), curl(v)) * dx # L += 0.5 * h * h * f * div(v) * dx # a += 0.5 * div(u) * div(v) * dx # a += 0.5 * inner(curl(u), curl(v)) * dx # L += 0.5 * f * div(v) * dx A = assemble(a, bcs=bcs, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = W.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_mixed_RT(mesh, degree=1): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" if use_quads: hdiv_family = 'RTCF' pressure_family = 'DQ' else: hdiv_family = 'RT' pressure_family = 'DG' U = FunctionSpace(mesh, hdiv_family, degree + 1) V = FunctionSpace(mesh, pressure_family, degree) W = U * V # Trial and test functions u, p = TrialFunctions(W) v, q = TestFunctions(W) # Mesh entities x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Dirichlet BCs bcs = DirichletBC(W[0], sigma_e, "on_boundary") # Mixed classical terms a = (dot(u, v) - div(v) * p + q * div(u)) * dx A = assemble(a, bcs=bcs, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = W.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_dgls(mesh, degree=1): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' velocity_family = 'DQ' if use_quads else 'DG' U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) W = U * V # Trial and test functions u, p = TrialFunctions(W) v, q = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Dirichlet BCs # bcs = DirichletBC(W[0], sigma_e, "on_boundary", method="geometric") # Average cell size and mesh dependent stabilization h_avg = (h("+") + h("-")) / 2.0 # Jump stabilizing parameters based on Badia-Codina stabilized dG method L0 = 1 eta_p = L0 * h # method B in the Badia-Codina paper # eta_p = 1 # eta_p = L0 * L0 # method D in the Badia-Codina paper eta_u = h / L0 # method B in the Badia-Codina paper # eta_u = 1 # Nitsche's penalizing term beta_0 = Constant(1.0) beta = beta_0 / h # Mixed classical terms a = (dot(u, v) - div(v) * p - q * div(u)) * dx # DG terms a += jump(v, n) * avg(p) * dS - avg(q) * jump(u, n) * dS # Edge stabilizing terms # ** Badia-Codina based a += (avg(eta_p) / h_avg) * (jump(u, n) * jump(v, n)) * dS a += (avg(eta_u) / h_avg) * dot(jump(p, n), jump(q, n)) * dS # ** Mesh independent terms # a += jump(u, n) * jump(v, n) * dS # a += dot(jump(p, n), jump(q, n)) * dS # Volumetric stabilizing terms # a += 0.5 * h * h * div(u) * div(v) * dx # a += 0.5 * h * h * inner(curl(u), curl(v)) * dx # L += 0.5 * h * h * f * div(v) * dx # a += -0.5 * inner(u + grad(p), v + grad(q)) * dx # a += 0.5 * div(u) * div(v) * dx # a += 0.5 * inner(curl(u), curl(v)) * dx # ** Badia-Codina based a += -eta_u * inner(u + grad(p), v + grad(q)) * dx a += eta_p * div(u) * div(v) * dx a += eta_p * inner(curl(u), curl(v)) * dx # Weakly imposed boundary conditions a += dot(v, n) * p * ds - q * dot(u, n) * ds a += beta * p * q * ds # may decrease convergente rates # ** The terms below are based on ASGS Badia-Codina (2010), it is not a classical Nitsche's method a += (eta_p / h) * dot(u, n) * dot(v, n) * ds a += (eta_u / h) * dot(p * n, q * n) * ds A = assemble(a, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = W.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_dvms(mesh, degree=1): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' velocity_family = 'DQ' if use_quads else 'DG' U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) W = U * V # Trial and test functions u, p = TrialFunctions(W) v, q = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Dirichlet BCs # bcs = DirichletBC(W[0], sigma_e, "on_boundary", method="geometric") # Average cell size and mesh dependent stabilization h_avg = (h("+") + h("-")) / 2.0 # Jump stabilizing parameters based on Badia-Codina stabilized dG method L0 = 1 eta_p = L0 * h # method B in the Badia-Codina paper # eta_p = L0 * L0 # method D in the Badia-Codina paper eta_u = h / L0 # method B in the Badia-Codina paper # Mixed classical terms a = (dot(u, v) - div(v) * p + q * div(u)) * dx # DG terms a += jump(v, n) * avg(p) * dS - avg(q) * jump(u, n) * dS # Edge stabilizing terms # ** Badia-Codina based a += (avg(eta_p) / h_avg) * (jump(u, n) * jump(v, n)) * dS a += (avg(eta_u) / h_avg) * dot(jump(p, n), jump(q, n)) * dS # ** Mesh independent (original) # a += jump(u, n) * jump(v, n) * dS # not considered in the original paper # a += dot(jump(p, n), jump(q, n)) * dS # Volumetric stabilizing terms # a += 0.5 * inner(u + grad(p), grad(q) - v) * dx # a += 0.5 * h * h * div(u) * div(v) * dx # a += 0.5 * h * h * inner(curl(u), curl(v)) * dx # L += 0.5 * h * h * f * div(v) * dx # a += 0.5 * div(u) * div(v) * dx # a += 0.5 * inner(curl(u), curl(v)) * dx # L += 0.5 * f * div(v) * dx # ** Badia-Codina based a += eta_u * inner(u + grad(p), grad(q) - v) * dx a += eta_p * div(u) * div(v) * dx # Weakly imposed boundary conditions a += dot(v, n) * p * ds - q * dot(u, n) * ds # ** The terms below are based on ASGS Badia-Codina (2010), it is not a classical Nitsche's method a += (eta_p / h) * dot(u, n) * dot(v, n) * ds a += (eta_u / h) * dot(p * n, q * n) * ds # may decrease convergente rates # ** Classical Nitsche # a += beta * p * q * ds # may decrease convergente rates (Nitsche) A = assemble(a, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = W.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_sipg(mesh, degree=1): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' V = FunctionSpace(mesh, pressure_family, degree) # Trial and test functions p = TrialFunction(V) q = TestFunction(V) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") # Forcing function f_expression = div(-grad(p_exact)) f = Function(V).interpolate(f_expression) # Edge stabilizing parameter beta0 = Constant(1e1) beta = beta0 / h # Symmetry term. Choose if the method is SIPG (-1) or NIPG (1) s = Constant(-1) # Classical volumetric terms a = inner(grad(p), grad(q)) * dx L = f * q * dx # DG edge terms a += s * dot(jump(p, n), avg(grad(q))) * dS - dot(avg(grad(p)), jump(q, n)) * dS # Edge stabilizing terms a += beta("+") * dot(jump(p, n), jump(q, n)) * dS # Weak boundary conditions a += s * dot(p * n, grad(q)) * ds - dot(grad(p), q * n) * ds a += beta * p * q * ds A = assemble(a, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = V.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_dls(mesh, degree=1): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' velocity_family = 'DQ' if use_quads else 'DG' U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) W = U * V # Trial and test functions u, p = TrialFunctions(W) v, q = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Dirichlet BCs # bcs = DirichletBC(W[0], sigma_e, "on_boundary", method="geometric") # Average cell size and mesh dependent stabilization h_avg = (h("+") + h("-")) / 2.0 # Jump stabilizing parameters based on Badia-Codina stabilized dG method # L0 = 1 # eta_p = L0 * h_avg # method B in the Badia-Codina paper eta_p = 1 # eta_p = L0 * L0 # method D in the Badia-Codina paper # eta_u = h_avg / L0 # method B in the Badia-Codina paper eta_u = 1 # eta_u_bc = h / L0 # method B in the Badia-Codina paper eta_u_bc = 1 # Least-Squares weights delta = Constant(1.0) # delta = h delta_0 = delta delta_1 = delta delta_2 = delta delta_3 = 1 / h delta_4 = 1 / h # Least-squares terms a = delta_0 * inner(u + grad(p), v + grad(q)) * dx a += delta_1 * div(u) * div(v) * dx a += delta_2 * inner(curl(u), curl(v)) * dx # Edge stabilizing terms # ** Badia-Codina based (better results) ** a += eta_u * avg(delta_3) * (jump(u, n) * jump(v, n)) * dS a += eta_p * avg(delta_4) * dot(jump(p, n), jump(q, n)) * dS a += eta_u_bc * delta_3 * p * q * ds # may decrease convergente rates a += eta_u_bc * delta_4 * dot(u, n) * dot(v, n) * ds # ** Mesh independent ** # a += jump(u, n) * jump(v, n) * dS # a += dot(jump(p, n), jump(q, n)) * dS # a += p * q * ds A = assemble(a, mat_type="aij") petsc_mat = A.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-12) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = W.dim() num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=A, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric ) return result def solve_poisson_sdhm( mesh, degree=1, is_multiplier_continuous=False ): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' velocity_family = 'DQ' if use_quads else 'DG' trace_family = "HDiv Trace" U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) if is_multiplier_continuous: LagrangeElement = FiniteElement("Lagrange", mesh.ufl_cell(), degree) C0TraceElement = LagrangeElement["facet"] T = FunctionSpace(mesh, C0TraceElement) else: T = FunctionSpace(mesh, trace_family, degree) W = U * V * T # Trial and test functions # solution = Function(W) # u, p, lambda_h = split(solution) u, p, lambda_h = TrialFunctions(W) v, q, mu_h = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Forcing function f_expression = div(-grad(p_exact)) f = Function(V).interpolate(f_expression) # BCs u_projected = sigma_e p_boundaries = p_exact bcs = DirichletBC(W.sub(2), p_exact, "on_boundary") # Hybridization parameter beta_0 = Constant(1.0e-18) # beta = beta_0 / h beta = beta_0 # Stabilization parameters delta_0 = Constant(-1) delta_1 = Constant(-0.5) * h * h delta_2 = Constant(0.5) * h * h delta_3 = Constant(0.5) * h * h # Mixed classical terms a = (dot(u, v) - div(v) * p + delta_0 * q * div(u)) * dx L = delta_0 * f * q * dx # Stabilizing terms a += delta_1 * inner(u + grad(p), v + grad(q)) * dx a += delta_2 * div(u) * div(v) * dx a += delta_3 * inner(curl(u), curl(v)) * dx L += delta_2 * f * div(v) * dx # Hybridization terms a += lambda_h("+") * dot(v, n)("+") * dS + mu_h("+") * dot(u, n)("+") * dS a += beta("+") * (lambda_h("+") - p("+")) * (mu_h("+") - q("+")) * dS # Weakly imposed BC a += (p_boundaries * dot(v, n) + mu_h * (dot(u, n) - dot(u_projected, n))) * ds a += beta * (lambda_h - p_boundaries) * mu_h * ds F = a - L a_form = lhs(F) _A = Tensor(a_form) A = _A.blocks S = A[2, 2] - A[2, :2] * A[:2, :2].inv * A[:2, 2] Smat = assemble(S, bcs=bcs) petsc_mat = Smat.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = Mnp.shape[0] num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=Smat, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric, bcs=bcs ) return result def solve_poisson_hdg( mesh, degree=1, is_multiplier_continuous=False ): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' velocity_family = 'DQ' if use_quads else 'DG' trace_family = "HDiv Trace" U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) if is_multiplier_continuous: LagrangeElement = FiniteElement("Lagrange", mesh.ufl_cell(), degree) C0TraceElement = LagrangeElement["facet"] T = FunctionSpace(mesh, C0TraceElement) else: T = FunctionSpace(mesh, trace_family, degree) W = U * V * T # Trial and test functions # solution = Function(W) # u, p, lambda_h = split(solution) u, p, lambda_h = TrialFunctions(W) v, q, mu_h = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # Forcing function f_expression = div(-grad(p_exact)) f = Function(V).interpolate(f_expression) # Dirichlet BCs bc_multiplier = DirichletBC(W.sub(2), p_exact, "on_boundary") # Hybridization parameter beta_0 = Constant(1.0e0) beta = beta_0 / h # beta = beta_0 # Numerical flux trace u_hat = u + beta * (p - lambda_h) * n # HDG classical form a = (dot(u, v) - div(v) * p) * dx + lambda_h("+") * jump(v, n) * dS a += -dot(u, grad(q)) * dx + jump(u_hat, n) * q("+") * dS L = f * q * dx # Transmission condition a += jump(u_hat, n) * mu_h("+") * dS # Weakly imposed BC a += lambda_h * dot(v, n) * ds a += dot(u_hat, n) * q * ds F = a - L a_form = lhs(F) _A = Tensor(a_form) A = _A.blocks S = A[2, 2] - A[2, :2] * A[:2, :2].inv * A[:2, 2] Smat = assemble(S, bcs=bc_multiplier) petsc_mat = Smat.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = Mnp.shape[0] num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=Smat, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric, bcs=bc_multiplier ) return result def solve_poisson_cgh( mesh, degree=1, is_multiplier_continuous=False ): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' trace_family = "HDiv Trace" V = FunctionSpace(mesh, pressure_family, degree) if is_multiplier_continuous: LagrangeElement = FiniteElement("Lagrange", mesh.ufl_cell(), degree) C0TraceElement = LagrangeElement["facet"] T = FunctionSpace(mesh, C0TraceElement) else: T = FunctionSpace(mesh, trace_family, degree) W = V * T # Trial and test functions # solution = Function(W) # u, p, lambda_h = split(solution) p, lambda_h = TrialFunctions(W) q, mu_h = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") # Forcing function f_expression = div(-grad(p_exact)) f = Function(V).interpolate(f_expression) # Dirichlet BCs bc_multiplier = DirichletBC(W.sub(1), p_exact, "on_boundary") # Hybridization parameter beta_0 = Constant(1.0e0) beta = beta_0 / h # beta = beta_0 # Numerical flux trace u = -grad(p) u_hat = u + beta * (p - lambda_h) * n # HDG classical form a = -dot(u, grad(q)) * dx + jump(u_hat, n) * q("+") * dS L = f * q * dx # Transmission condition a += jump(u_hat, n) * mu_h("+") * dS # Weakly imposed BC a += dot(u_hat, n) * q * ds F = a - L a_form = lhs(F) _A = Tensor(a_form) A = _A.blocks S = A[1, 1] - A[1, :1] * A[:1, :1].inv * A[:1, 1] Smat = assemble(S, bcs=bc_multiplier) petsc_mat = Smat.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = Mnp.shape[0] num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=Smat, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric, bcs=bc_multiplier ) return result def solve_poisson_ldgc( mesh, degree=1, is_multiplier_continuous=True ): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" primal_family = "DQ" if use_quads else "DG" V = FunctionSpace(mesh, primal_family, degree) if is_multiplier_continuous: LagrangeElement = FiniteElement("Lagrange", mesh.ufl_cell(), degree) C0TraceElement = LagrangeElement["facet"] T = FunctionSpace(mesh, C0TraceElement) else: trace_family = "HDiv Trace" T = FunctionSpace(mesh, trace_family, degree) W = V * T # Trial and test functions # solution = Function(W) # u, p, lambda_h = split(solution) p, lambda_h = TrialFunctions(W) q, mu_h = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") # Forcing function f_expression = div(-grad(p_exact)) f = Function(V).interpolate(f_expression) # Dirichlet BCs p_boundaries = Constant(0.0) bc_multiplier = DirichletBC(W.sub(1), p_exact, "on_boundary") # Hybridization parameter s = Constant(-1.0) beta = Constant(32.0) h = CellDiameter(mesh) h_avg = avg(h) # Classical term a = dot(grad(p), grad(q)) * dx L = f * q * dx # Hybridization terms a += s * dot(grad(q), n)("+") * (p("+") - lambda_h("+")) * dS a += -dot(grad(p), n)("+") * (q("+") - mu_h("+")) * dS a += (beta / h_avg) * (p("+") - lambda_h("+")) * (q("+") - mu_h("+")) * dS # Boundary terms # a += -dot(vel_projected, n) * v * ds # How to set this bc?? # a += (beta / h) * (p- p_boundaries) * q * ds # is this necessary? L += s * dot(grad(q), n) * p_boundaries * ds F = a - L a_form = lhs(F) _A = Tensor(a_form) A = _A.blocks S = A[1, 1] - A[1, :1] * A[:1, :1].inv * A[:1, 1] Smat = assemble(S, bcs=bc_multiplier) petsc_mat = Smat.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = Mnp.shape[0] num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=Smat, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric, bcs=bc_multiplier ) return result def solve_poisson_lsh( mesh, degree=1, is_multiplier_continuous=False ): # Function space declaration use_quads = str(mesh.ufl_cell()) == "quadrilateral" pressure_family = 'DQ' if use_quads else 'DG' velocity_family = 'DQ' if use_quads else 'DG' U = VectorFunctionSpace(mesh, velocity_family, degree) V = FunctionSpace(mesh, pressure_family, degree) if is_multiplier_continuous: LagrangeElement = FiniteElement("Lagrange", mesh.ufl_cell(), degree) C0TraceElement = LagrangeElement["facet"] T = FunctionSpace(mesh, C0TraceElement) else: trace_family = "HDiv Trace" T = FunctionSpace(mesh, trace_family, degree) W = U * V * T # Trial and test functions # solution = Function(W) # u, p, lambda_h = split(solution) u, p, lambda_h = TrialFunctions(W) v, q, mu_h = TestFunctions(W) # Mesh entities n = FacetNormal(mesh) h = CellDiameter(mesh) x, y = SpatialCoordinate(mesh) # Exact solution p_exact = sin(2 * pi * x) * sin(2 * pi * y) exact_solution = Function(V).interpolate(p_exact) exact_solution.rename("Exact pressure", "label") sigma_e = Function(U, name='Exact velocity') sigma_e.project(-grad(p_exact)) # BCs bcs = DirichletBC(W.sub(2), p_exact, "on_boundary") # Hybridization parameter beta_0 = Constant(1.0) beta = beta_0 / h beta_avg = beta_0 / h("+") # Stabilizing parameter # delta_0 = Constant(1) # delta_1 = Constant(1) # delta_2 = Constant(1) # delta_3 = Constant(1) # delta_4 = Constant(1) # delta_5 = Constant(1) # LARGE_NUMBER = Constant(1e0) delta = h * h # delta = Constant(1) # delta = h delta_0 = delta delta_1 = delta delta_2 = delta delta_3 = delta delta_4 = delta # delta_4 = LARGE_NUMBER / h delta_5 = delta # Numerical flux trace u_hat = u + beta * (p - lambda_h) * n v_hat = v + beta * (q - mu_h) * n # Flux least-squares # a = ( # (inner(u, v) - q * div(u) - p * div(v) + inner(grad(p), grad(q))) # * delta_1 # * dx # ) # # These terms below are unsymmetric # a += delta_1 * jump(u_hat, n=n) * q("+") * dS # a += delta_1("+") * dot(u_hat, n) * q * ds # # a += delta_1 * dot(u, n) * q * ds # # L = -delta_1 * dot(u_projected, n) * q * ds # a += delta_1("+") * lambda_h("+") * jump(v, n=n) * dS # a += delta_1 * lambda_h * dot(v, n) * ds # # L = delta_1 * p_exact * dot(v, n) * ds # Flux Least-squares as in DG a = delta_0 * inner(u + grad(p), v + grad(q)) * dx # Classical mixed Darcy eq. first-order terms as stabilizing terms a += delta_1 * (dot(u, v) - div(v) * p) * dx a += delta_1("+") * lambda_h("+") * jump(v, n=n) * dS a += delta_1 * lambda_h * dot(v, n) * ds # Mass balance least-square a += delta_2 * div(u) * div(v) * dx # L = delta_2 * f * div(v) * dx # Irrotational least-squares a += delta_3 * inner(curl(u), curl(v)) * dx # Hybridization terms a += mu_h("+") * jump(u_hat, n=n) * dS a += delta_4("+") * (p("+") - lambda_h("+")) * (q("+") - mu_h("+")) * dS # a += delta_4 * (p - lambda_h) * (q - mu_h) * ds # a += delta_5 * (dot(u, n)("+") - dot(u_hat, n)("+")) * (dot(v, n)("+") - dot(v_hat, n)("+")) * dS # a += delta_5 * (dot(u, n) - dot(u_hat, n)) * (dot(v, n) - dot(v_hat, n)) * ds # Weakly imposed BC from hybridization # a += mu_h * (lambda_h - p_boundaries) * ds # a += mu_h * lambda_h * ds # ### # a += ( # (mu_h - q) * (lambda_h - p_boundaries) * ds # ) # maybe this is not a good way to impose BC, but this necessary _A = Tensor(a) A = _A.blocks S = A[2, 2] - A[2, :2] * A[:2, :2].inv * A[:2, 2] Smat = assemble(S, bcs=bcs) petsc_mat = Smat.M.handle is_symmetric = petsc_mat.isSymmetric(tol=1e-8) size = petsc_mat.getSize() Mnp = csr_matrix(petsc_mat.getValuesCSR()[::-1], shape=size) Mnp.eliminate_zeros() nnz = Mnp.nnz number_of_dofs = Mnp.shape[0] num_of_factors = int(number_of_dofs) - 1 condition_number = calculate_condition_number(petsc_mat, num_of_factors) result = ConditionNumberResult( form=a, assembled_form=Smat, condition_number=condition_number, sparse_operator=Mnp, number_of_dofs=number_of_dofs, nnz=nnz, is_operator_symmetric=is_symmetric, bcs=bcs ) return result def hp_refinement_cond_number_calculation( solver, min_degree=1, max_degree=4, numel_xy=(5, 10, 15, 20, 25), quadrilateral=True, name="", **kwargs ): results_dict = { "Element": list(), "Number of Elements": list(), "Degree": list(), "Symmetric": list(), "nnz": list(), "dofs": list(), "h": list(), "Condition Number": list(), } element_kind = "Quad" if quadrilateral else "Tri" pbar = tqdm(range(min_degree, max_degree)) for degree in pbar: for n in numel_xy: pbar.set_description(f"Processing {name} - degree = {degree} - N = {n}") mesh = UnitSquareMesh(n, n, quadrilateral=quadrilateral) result = solver(mesh, degree=degree) current_cell_size = mesh.cell_sizes.dat.data_ro.min() if not quadrilateral else 1 / n results_dict["Element"].append(element_kind) results_dict["Number of Elements"].append(n * n) results_dict["Degree"].append(degree) results_dict["Symmetric"].append(result.is_operator_symmetric) results_dict["nnz"].append(result.nnz) results_dict["dofs"].append(result.number_of_dofs) results_dict["h"].append(current_cell_size) results_dict["Condition Number"].append(result.condition_number) os.makedirs("./cond_number_results/results_%s" % name, exist_ok=True) df_cond_number = pd.DataFrame(data=results_dict) path_to_save_results = "./cond_number_results/results_%s/cond_numbers.csv" % name df_cond_number.to_csv(path_to_save_results) return df_cond_number # Solver options solvers_options = { # "cg": solve_poisson_cg, # "cgls": solve_poisson_cgls, # "dgls": solve_poisson_dgls, # "sdhm": solve_poisson_sdhm, # "ls": solve_poisson_ls, # "dls": solve_poisson_dls, "lsh": solve_poisson_lsh, # "vms": solve_poisson_vms, # "dvms": solve_poisson_dvms, # "mixed_RT": solve_poisson_mixed_RT, # "hdg": solve_poisson_hdg, # "cgh": solve_poisson_cgh, # "ldgc": solve_poisson_ldgc, # "sipg": solve_poisson_sipg, } degree = 1 last_degree = 1 for current_solver in solvers_options: # Setting the output file name name = f"{current_solver}" # Selecting the solver and its kwargs solver = solvers_options[current_solver] # Performing the convergence study hp_refinement_cond_number_calculation( solver, min_degree=degree, max_degree=degree + last_degree, quadrilateral=True, name=name ) # N = 5 # mesh = UnitSquareMesh(N, N, quadrilateral=True) # result = solve_poisson_lsh(mesh, degree=1) # print(f'Is symmetric? {result.is_operator_symmetric}') # print(f'nnz: {result.nnz}') # print(f'DoFs: {result.number_of_dofs}') # print(f'Condition Number: {result.condition_number}') # # Plotting the resulting matrix # matplotlib.use('TkAgg') # import copy # my_cmap = copy.copy(plt.cm.get_cmap("winter")) # my_cmap.set_bad(color="lightgray") # # plot_matrix_primal_hybrid_full(result.form, result.bcs, cmap=my_cmap) # # plot_matrix_mixed_hybrid_full(result.form, result.bcs, cmap=my_cmap) # plot_matrix_hybrid_multiplier(result.form, trace_index=2, bcs=result.bcs, cmap=my_cmap) # # plot_matrix(result.assembled_form, cmap=my_cmap) # # plot_matrix_mixed(result.assembled_form, cmap=my_cmap) # plt.tight_layout() # plt.savefig("sparse_pattern.png") # plt.show()
[ "numpy.ma.masked_values", "slepc4py.SLEPc.SVD", "os.makedirs", "matplotlib.use", "numpy.delete", "numpy.array", "scipy.sparse.linalg.svds", "scipy.linalg.svd", "pandas.DataFrame", "numpy.all", "matplotlib.pyplot.subplots", "attr.ib" ]
[((287, 308), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (301, 308), False, 'import matplotlib\n'), ((367, 376), 'attr.ib', 'attr.ib', ([], {}), '()\n', (374, 376), False, 'import attr\n'), ((398, 407), 'attr.ib', 'attr.ib', ([], {}), '()\n', (405, 407), False, 'import attr\n'), ((431, 440), 'attr.ib', 'attr.ib', ([], {}), '()\n', (438, 440), False, 'import attr\n'), ((463, 472), 'attr.ib', 'attr.ib', ([], {}), '()\n', (470, 472), False, 'import attr\n'), ((494, 503), 'attr.ib', 'attr.ib', ([], {}), '()\n', (501, 503), False, 'import attr\n'), ((514, 523), 'attr.ib', 'attr.ib', ([], {}), '()\n', (521, 523), False, 'import attr\n'), ((552, 561), 'attr.ib', 'attr.ib', ([], {}), '()\n', (559, 561), False, 'import attr\n'), ((698, 716), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (710, 716), True, 'import matplotlib.pyplot as plt\n'), ((1061, 1088), 'numpy.delete', 'np.delete', (['Mnp', 'idx'], {'axis': '(1)'}), '(Mnp, idx, axis=1)\n', (1070, 1088), True, 'import numpy as np\n'), ((1098, 1137), 'numpy.ma.masked_values', 'np.ma.masked_values', (['Mnp', '(0)'], {'rtol': '(1e-13)'}), '(Mnp, 0, rtol=1e-13)\n', (1117, 1137), True, 'import numpy as np\n'), ((1443, 1461), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (1455, 1461), True, 'import matplotlib.pyplot as plt\n'), ((1861, 1888), 'numpy.delete', 'np.delete', (['Mnp', 'idx'], {'axis': '(1)'}), '(Mnp, idx, axis=1)\n', (1870, 1888), True, 'import numpy as np\n'), ((1898, 1937), 'numpy.ma.masked_values', 'np.ma.masked_values', (['Mnp', '(0)'], {'rtol': '(1e-13)'}), '(Mnp, 0, rtol=1e-13)\n', (1917, 1937), True, 'import numpy as np\n'), ((2361, 2379), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (2373, 2379), True, 'import matplotlib.pyplot as plt\n'), ((2843, 2870), 'numpy.delete', 'np.delete', (['Mnp', 'idx'], {'axis': '(1)'}), '(Mnp, idx, axis=1)\n', (2852, 2870), True, 'import numpy as np\n'), ((2880, 2919), 'numpy.ma.masked_values', 'np.ma.masked_values', (['Mnp', '(0)'], {'rtol': '(1e-13)'}), '(Mnp, 0, rtol=1e-13)\n', (2899, 2919), True, 'import numpy as np\n'), ((3342, 3360), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (3354, 3360), True, 'import matplotlib.pyplot as plt\n'), ((3878, 3905), 'numpy.delete', 'np.delete', (['Mnp', 'idx'], {'axis': '(1)'}), '(Mnp, idx, axis=1)\n', (3887, 3905), True, 'import numpy as np\n'), ((3915, 3954), 'numpy.ma.masked_values', 'np.ma.masked_values', (['Mnp', '(0)'], {'rtol': '(1e-13)'}), '(Mnp, 0, rtol=1e-13)\n', (3934, 3954), True, 'import numpy as np\n'), ((4541, 4559), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(1)'], {}), '(1, 1)\n', (4553, 4559), True, 'import matplotlib.pyplot as plt\n'), ((5061, 5088), 'numpy.delete', 'np.delete', (['Mnp', 'idx'], {'axis': '(1)'}), '(Mnp, idx, axis=1)\n', (5070, 5088), True, 'import numpy as np\n'), ((5098, 5137), 'numpy.ma.masked_values', 'np.ma.masked_values', (['Mnp', '(0)'], {'rtol': '(1e-13)'}), '(Mnp, 0, rtol=1e-13)\n', (5117, 5137), True, 'import numpy as np\n'), ((44728, 44797), 'os.makedirs', 'os.makedirs', (["('./cond_number_results/results_%s' % name)"], {'exist_ok': '(True)'}), "('./cond_number_results/results_%s' % name, exist_ok=True)\n", (44739, 44797), False, 'import os\n'), ((44819, 44850), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'results_dict'}), '(data=results_dict)\n', (44831, 44850), True, 'import pandas as pd\n'), ((1017, 1049), 'numpy.all', 'np.all', (['(Mnp[..., :] == 0)'], {'axis': '(0)'}), '(Mnp[..., :] == 0, axis=0)\n', (1023, 1049), True, 'import numpy as np\n'), ((1817, 1849), 'numpy.all', 'np.all', (['(Mnp[..., :] == 0)'], {'axis': '(0)'}), '(Mnp[..., :] == 0, axis=0)\n', (1823, 1849), True, 'import numpy as np\n'), ((2799, 2831), 'numpy.all', 'np.all', (['(Mnp[..., :] == 0)'], {'axis': '(0)'}), '(Mnp[..., :] == 0, axis=0)\n', (2805, 2831), True, 'import numpy as np\n'), ((3834, 3866), 'numpy.all', 'np.all', (['(Mnp[..., :] == 0)'], {'axis': '(0)'}), '(Mnp[..., :] == 0, axis=0)\n', (3840, 3866), True, 'import numpy as np\n'), ((5017, 5049), 'numpy.all', 'np.all', (['(Mnp[..., :] == 0)'], {'axis': '(0)'}), '(Mnp[..., :] == 0, axis=0)\n', (5023, 5049), True, 'import numpy as np\n'), ((6257, 6364), 'scipy.sparse.linalg.svds', 'svds', ([], {'A': 'Mnp', 'k': 'num_of_factors', 'which': '"""LM"""', 'maxiter': '(5000)', 'return_singular_vectors': '(False)', 'solver': '"""lobpcg"""'}), "(A=Mnp, k=num_of_factors, which='LM', maxiter=5000,\n return_singular_vectors=False, solver='lobpcg')\n", (6261, 6364), False, 'from scipy.sparse.linalg import svds\n'), ((6550, 6594), 'scipy.linalg.svd', 'svd', (['M'], {'compute_uv': '(False)', 'check_finite': '(False)'}), '(M, compute_uv=False, check_finite=False)\n', (6553, 6594), False, 'from scipy.linalg import svd\n'), ((6781, 6792), 'slepc4py.SLEPc.SVD', 'SLEPc.SVD', ([], {}), '()\n', (6790, 6792), False, 'from slepc4py import SLEPc\n'), ((7422, 7452), 'numpy.array', 'np.array', (['singular_values_list'], {}), '(singular_values_list)\n', (7430, 7452), True, 'import numpy as np\n')]
from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, SubmitField from wtforms.validators import InputRequired, Email, ValidationError from models import User class RegistrationForm(FlaskForm): email = StringField('Your Email Address', validators=[InputRequired(), Email()]) username = StringField('Enter your username', validators=[InputRequired()]) password = PasswordField('Password', validators=[InputRequired()]) submit = SubmitField('Sign Up') def validate_username(self, username): existing_username = User.query.filter_by(username=username.data).first() if existing_username: raise ValidationError("The username already exists") class LoginForm(FlaskForm): username = StringField("Your email address", validators=[InputRequired()]) password = PasswordField("<PASSWORD>:", validators=[InputRequired()]) submit = SubmitField("Sign In")
[ "wtforms.validators.Email", "models.User.query.filter_by", "wtforms.validators.ValidationError", "wtforms.SubmitField", "wtforms.validators.InputRequired" ]
[((471, 493), 'wtforms.SubmitField', 'SubmitField', (['"""Sign Up"""'], {}), "('Sign Up')\n", (482, 493), False, 'from wtforms import StringField, PasswordField, SubmitField\n'), ((910, 932), 'wtforms.SubmitField', 'SubmitField', (['"""Sign In"""'], {}), "('Sign In')\n", (921, 932), False, 'from wtforms import StringField, PasswordField, SubmitField\n'), ((667, 713), 'wtforms.validators.ValidationError', 'ValidationError', (['"""The username already exists"""'], {}), "('The username already exists')\n", (682, 713), False, 'from wtforms.validators import InputRequired, Email, ValidationError\n'), ((280, 295), 'wtforms.validators.InputRequired', 'InputRequired', ([], {}), '()\n', (293, 295), False, 'from wtforms.validators import InputRequired, Email, ValidationError\n'), ((297, 304), 'wtforms.validators.Email', 'Email', ([], {}), '()\n', (302, 304), False, 'from wtforms.validators import InputRequired, Email, ValidationError\n'), ((369, 384), 'wtforms.validators.InputRequired', 'InputRequired', ([], {}), '()\n', (382, 384), False, 'from wtforms.validators import InputRequired, Email, ValidationError\n'), ((440, 455), 'wtforms.validators.InputRequired', 'InputRequired', ([], {}), '()\n', (453, 455), False, 'from wtforms.validators import InputRequired, Email, ValidationError\n'), ((566, 610), 'models.User.query.filter_by', 'User.query.filter_by', ([], {'username': 'username.data'}), '(username=username.data)\n', (586, 610), False, 'from models import User\n'), ((805, 820), 'wtforms.validators.InputRequired', 'InputRequired', ([], {}), '()\n', (818, 820), False, 'from wtforms.validators import InputRequired, Email, ValidationError\n'), ((879, 894), 'wtforms.validators.InputRequired', 'InputRequired', ([], {}), '()\n', (892, 894), False, 'from wtforms.validators import InputRequired, Email, ValidationError\n')]
# GENERATED BY KOMAND SDK - DO NOT EDIT import komand import json class Component: DESCRIPTION = "Creates a security policy with the default values" class Input: NAME = "name" class Output: ID = "id" class CreateSecurityPolicyInput(komand.Input): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "name": { "type": "string", "title": "Name", "description": "The name of the security policy that needs to be created", "order": 1 } }, "required": [ "name" ] } """) def __init__(self): super(self.__class__, self).__init__(self.schema) class CreateSecurityPolicyOutput(komand.Output): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "id": { "type": "string", "title": "ID", "description": "ID of the new policy", "order": 1 } }, "required": [ "id" ] } """) def __init__(self): super(self.__class__, self).__init__(self.schema)
[ "json.loads" ]
[((288, 591), 'json.loads', 'json.loads', (['"""\n {\n "type": "object",\n "title": "Variables",\n "properties": {\n "name": {\n "type": "string",\n "title": "Name",\n "description": "The name of the security policy that needs to be created",\n "order": 1\n }\n },\n "required": [\n "name"\n ]\n}\n """'], {}), '(\n """\n {\n "type": "object",\n "title": "Variables",\n "properties": {\n "name": {\n "type": "string",\n "title": "Name",\n "description": "The name of the security policy that needs to be created",\n "order": 1\n }\n },\n "required": [\n "name"\n ]\n}\n """\n )\n', (298, 591), False, 'import json\n'), ((729, 990), 'json.loads', 'json.loads', (['"""\n {\n "type": "object",\n "title": "Variables",\n "properties": {\n "id": {\n "type": "string",\n "title": "ID",\n "description": "ID of the new policy",\n "order": 1\n }\n },\n "required": [\n "id"\n ]\n}\n """'], {}), '(\n """\n {\n "type": "object",\n "title": "Variables",\n "properties": {\n "id": {\n "type": "string",\n "title": "ID",\n "description": "ID of the new policy",\n "order": 1\n }\n },\n "required": [\n "id"\n ]\n}\n """\n )\n', (739, 990), False, 'import json\n')]
import collections import logging import urllib.parse from structlog import wrap_logger from secure_message.constants import MESSAGE_BY_ID_ENDPOINT, MESSAGE_LIST_ENDPOINT, MESSAGE_QUERY_LIMIT from secure_message.services.service_toggles import party, internal_user_service logger = wrap_logger(logging.getLogger(__name__)) MessageArgs = collections.namedtuple( 'MessageArgs', 'page limit business_id surveys cc label desc ce is_closed my_conversations new_respondent_conversations all_conversation_types unread_conversations') def get_options(args): # NOQA pylint:disable=too-complex """extract options from request , allow label to be set by caller :param args: contains search arguments. Not all end points support all args :returns: MessageArgs named tuple containing the args for the search business_id If set , restricts search to conversations regarding this specific party id surveys If set allows the count to be restricted by a list of survey_ids cc If set , allows the count to be restricted by a particular case ce If set, alows the count to be restricted by a particular collection exercise is_closed If set to 'true' only counts closed conversations, else only open conversations my_conversations If set to 'true only counts my conversations. I.e conversations where the current user id is the to actor id new_respondent_conversations If set to 'true'only counts conversations where the to actor is set to 'GROUP' all_conversation_types If set 'true', overrides is_closed, my_conversations and new_respondent_conversations and returns 4 counts 1 for each of , open , closed, my_conversations and new_respondent_conversations page If set requests the specific page of information to return limit If set it sets the maximum number of results to return desc If present, requests the information in descending order """ fields = {'page': 1, 'limit': MESSAGE_QUERY_LIMIT, 'business_id': None, 'surveys': None, 'desc': True, 'cc': None, 'label': None, 'ce': None, 'is_closed': False, 'my_conversations': False, 'new_respondent_conversations': False, 'all_conversation_types': False, 'unread_conversations': False} for field in ['cc', 'ce', 'business_id', 'label']: if args.get(field): fields[field] = str(args.get(field)) fields['surveys'] = args.getlist('survey') for field in ['limit', 'page']: if args.get(field): fields[field] = int(args.get(field)) if args.get('desc') == 'false': fields['desc'] = False if args.get('is_closed') == 'true': fields['is_closed'] = True if args.get('my_conversations') == 'true': fields['my_conversations'] = True if args.get('new_respondent_conversations') == 'true': fields['new_respondent_conversations'] = True if args.get('all_conversation_types') == 'true': fields['all_conversation_types'] = True if args.get('unread_conversations') == 'true': fields['unread_conversations'] = True return MessageArgs(page=fields['page'], limit=fields['limit'], business_id=fields['business_id'], surveys=fields['surveys'], cc=fields['cc'], label=fields['label'], desc=fields['desc'], ce=fields['ce'], is_closed=fields['is_closed'], my_conversations=fields['my_conversations'], new_respondent_conversations=fields['new_respondent_conversations'], all_conversation_types=fields['all_conversation_types'], unread_conversations=fields['unread_conversations']) def set_conversation_type_args(existing_args, is_closed=False, my_conversations=False, new_conversations=False, all_types=False, unread_conversations=False): """Returns a new set of args based on the existing args which are a named tuple, but allow the conversation type only to be changed""" return MessageArgs(page=existing_args.page, limit=existing_args.limit, business_id=existing_args.business_id, surveys=existing_args.surveys, cc=existing_args.cc, label=existing_args.label, desc=existing_args.desc, ce=existing_args.ce, is_closed=is_closed, my_conversations=my_conversations, new_respondent_conversations=new_conversations, all_conversation_types=all_types, unread_conversations=unread_conversations) def generate_string_query_args(args): params = {} for field in args._fields: if field in ['page']: continue value = getattr(args, field) if value: params[field] = value return urllib.parse.urlencode(params) def process_paginated_list(paginated_list, host_url, user, message_args, endpoint=MESSAGE_LIST_ENDPOINT, body_summary=True): """used to change a pagination object to json format with links""" messages = [] string_query_args = generate_string_query_args(message_args) for message in paginated_list.items: msg = message.serialize(user, body_summary=body_summary) msg['_links'] = {"self": {"href": f"{host_url}{MESSAGE_BY_ID_ENDPOINT}/{msg['msg_id']}"}} messages.append(msg) links = {'first': {"href": f"{host_url}{endpoint}"}, 'self': {"href": f"{host_url}{endpoint}?{string_query_args}&page={message_args.page}"}} if paginated_list.has_next: links['next'] = { "href": f"{host_url}{endpoint}?{string_query_args}&page={message_args.page + 1}"} if paginated_list.has_prev: links['prev'] = { "href": f"{host_url}{endpoint}?{string_query_args}&page={message_args.page - 1}"} return messages, links def add_to_details(messages): """Adds a @msg_to key to every message in a list of messages. Every msg_to uuid is resolved to include details of the user. If the call for the internal user id fails, an exception will be thrown. If the external user id cannot be found in the list that we got from the party service. There won't be a @msg_to value returned in the payload. The API documentation notes that these elements aren't guaranteed to be provided so we're not breaking the contract by doing this. Note: Several of these lines of code could be combined into a more succinct view, spreading them out is deliberate so that log stack traces are better able to identify the cause of log errors """ external_user_details = {} for user in party.get_users_details(get_external_user_uuid_list(messages)): external_user_details[user['id']] = user for message in messages: try: msg_to = message["msg_to"][0] from_internal = message["from_internal"] if not from_internal: msg_to_details = internal_user_service.get_user_details(msg_to) message.update({"@msg_to": [msg_to_details]}) else: msg_to_details = external_user_details.get(msg_to) if msg_to_details: message.update({'@msg_to': [msg_to_details]}) else: logger.info("No details found for the message recipient", msg_to=msg_to) except IndexError: logger.exception("Exception adding to details", msg_to=msg_to, from_internal=from_internal) raise return messages def add_from_details(messages): """Adds a @msg_from key to every message in a list of messages. Every msg_to uuid is resolved to include details of the user. If the call for the internal user id fails, an exception will be thrown. If the external user id cannot be found in the list that we got from the party service. There won't be a @msg_from value returned in the payload. The API documentation notes that these elements aren't guaranteed to be provided so we're not breaking the contract by doing this. """ external_user_details = {} for user in party.get_users_details(get_external_user_uuid_list(messages)): external_user_details[user['id']] = user for message in messages: try: msg_from = message["msg_from"] from_internal = message["from_internal"] if from_internal: message.update({"@msg_from": internal_user_service.get_user_details(msg_from)}) else: if external_user_details.get(message['msg_from']): message.update({'@msg_from': external_user_details.get(msg_from)}) except IndexError: logger.exception("Exception adding from details message", msg_from=msg_from, from_internal=from_internal) raise return messages def get_external_user_uuid_list(messages): """Compiles a list of all unique the external user (respondent) uuids from a list of messages""" external_user_uuids = set() external_msgs = [message for message in messages if message['from_internal'] is False] for message in external_msgs: external_user_uuids.add(message["msg_from"]) internal_messages = [message for message in messages if message['from_internal'] is True] for uuid in internal_messages: external_user_uuids.add(uuid["msg_to"][0]) return external_user_uuids def add_business_details(messages): """Adds a @business_details key to every message in a list of messages.""" business_ids = set() for message in messages: business_ids.add(message['business_id']) business_details = party.get_business_details(business_ids) for message in messages: message['@business_details'] = next((business for business in business_details if business["id"] == message['business_id']), None) return messages def add_users_and_business_details(messages): """Add both user and business details to messages based on data from party service""" if not messages: raise ValueError('messages is a required parameter and must not be empty') messages = add_to_details(messages) messages = add_from_details(messages) logger.info("Successfully added to and from details") messages = add_business_details(messages) logger.info("Successfully added business details") return messages
[ "logging.getLogger", "secure_message.services.service_toggles.internal_user_service.get_user_details", "secure_message.services.service_toggles.party.get_business_details", "collections.namedtuple" ]
[((340, 537), 'collections.namedtuple', 'collections.namedtuple', (['"""MessageArgs"""', '"""page limit business_id surveys cc label desc ce is_closed my_conversations new_respondent_conversations all_conversation_types unread_conversations"""'], {}), "('MessageArgs',\n 'page limit business_id surveys cc label desc ce is_closed my_conversations new_respondent_conversations all_conversation_types unread_conversations'\n )\n", (362, 537), False, 'import collections\n'), ((297, 324), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (314, 324), False, 'import logging\n'), ((9846, 9886), 'secure_message.services.service_toggles.party.get_business_details', 'party.get_business_details', (['business_ids'], {}), '(business_ids)\n', (9872, 9886), False, 'from secure_message.services.service_toggles import party, internal_user_service\n'), ((7125, 7171), 'secure_message.services.service_toggles.internal_user_service.get_user_details', 'internal_user_service.get_user_details', (['msg_to'], {}), '(msg_to)\n', (7163, 7171), False, 'from secure_message.services.service_toggles import party, internal_user_service\n'), ((8625, 8673), 'secure_message.services.service_toggles.internal_user_service.get_user_details', 'internal_user_service.get_user_details', (['msg_from'], {}), '(msg_from)\n', (8663, 8673), False, 'from secure_message.services.service_toggles import party, internal_user_service\n')]
import hashlib import mimetypes from urllib.parse import unquote from django.conf import settings from django.core.exceptions import ValidationError from django.db import models from django.http import HttpResponseRedirect from django.template.loader import render_to_string from django.urls import reverse from django.utils.functional import cached_property from django.utils.safestring import mark_safe from django.utils.text import slugify from django.utils.translation import ugettext_lazy as _ from django_extensions.db.fields import CreationDateTimeField, ModificationDateTimeField from great_components.mixins import GA360Mixin from modelcluster.contrib.taggit import ClusterTaggableManager from modelcluster.models import ClusterableModel, ParentalKey from taggit.managers import TaggableManager from taggit.models import ItemBase, TagBase, TaggedItemBase from wagtail.admin.edit_handlers import ( FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface, ) from wagtail.contrib.redirects.models import Redirect from wagtail.contrib.settings.models import BaseSetting, register_setting from wagtail.core import blocks from wagtail.core.blocks.stream_block import StreamBlockValidationError from wagtail.core.fields import RichTextField, StreamField from wagtail.core.models import Orderable, Page from wagtail.images import get_image_model_string from wagtail.images.edit_handlers import ImageChooserPanel from wagtail.images.models import AbstractImage, AbstractRendition, Image from wagtail.snippets.models import register_snippet from wagtail.utils.decorators import cached_classmethod from wagtailmedia.models import Media from core import blocks as core_blocks, mixins from core.case_study_index import delete_cs_index, update_cs_index from core.constants import BACKLINK_QUERYSTRING_NAME, RICHTEXT_FEATURES__MINIMAL from core.context import get_context_provider from core.utils import PageTopicHelper, get_first_lesson from exportplan.core.data import ( SECTION_SLUGS as EXPORTPLAN_SLUGS, SECTIONS as EXPORTPLAN_URL_MAP, ) # If we make a Redirect appear as a Snippet, we can sync it via Wagtail-Transfer register_snippet(Redirect) class GreatMedia(Media): transcript = models.TextField( verbose_name=_('Transcript'), blank=False, null=True # left null because was an existing field ) subtitles_en = models.TextField( verbose_name=_('English subtitles'), null=True, blank=True, help_text='English-language subtitles for this video, in VTT format', ) admin_form_fields = Media.admin_form_fields + ( 'transcript', 'subtitles_en', ) @property def sources(self): return [ { 'src': self.url, 'type': mimetypes.guess_type(self.filename)[0] or 'application/octet-stream', 'transcript': self.transcript, } ] @property def subtitles(self): output = [] # TO COME: support for more than just English if self.subtitles_en: output.append( { 'srclang': 'en', 'label': 'English', 'url': reverse('core:subtitles-serve', args=[self.id, 'en']), 'default': False, }, ) return output class AbstractObjectHash(models.Model): class Meta: abstract = True content_hash = models.CharField(max_length=1000) @staticmethod def generate_content_hash(field_file): filehash = hashlib.md5() field_file.open() filehash.update(field_file.read()) field_file.close() return filehash.hexdigest() class DocumentHash(AbstractObjectHash): document = models.ForeignKey( 'wagtaildocs.Document', null=True, blank=True, on_delete=models.CASCADE, related_name='+' ) class ImageHash(AbstractObjectHash): image = models.ForeignKey('wagtailimages.Image', null=True, blank=True, on_delete=models.CASCADE, related_name='+') class AltTextImage(AbstractImage): alt_text = models.CharField(max_length=255, blank=True) admin_form_fields = Image.admin_form_fields + ('alt_text',) class Rendition(AbstractRendition): image = models.ForeignKey(AltTextImage, on_delete=models.CASCADE, related_name='renditions') class Meta: unique_together = ('image', 'filter_spec', 'focal_point_key') @property def alt(self): return self.image.alt_text @register_snippet class Tour(ClusterableModel): page = models.OneToOneField('wagtailcore.Page', on_delete=models.CASCADE, related_name='tour') title = models.CharField(max_length=255) body = models.CharField(max_length=255) button_text = models.CharField(max_length=255) panels = [ PageChooserPanel('page'), FieldPanel('title'), FieldPanel('body'), FieldPanel('button_text'), MultiFieldPanel([InlinePanel('steps')], heading='Steps'), ] def __str__(self): return self.page.title class TourStep(Orderable): title = models.CharField(max_length=255) body = models.CharField(max_length=255) position = models.CharField(max_length=255) selector = models.CharField(max_length=255) tour = ParentalKey(Tour, on_delete=models.CASCADE, related_name='steps') panels = [ FieldPanel('title'), FieldPanel('body'), FieldPanel('position'), FieldPanel('selector'), ] @register_snippet class Product(models.Model): name = models.CharField(max_length=255) panels = [ FieldPanel('name'), ] def __str__(self): return self.name @register_snippet class Region(models.Model): name = models.CharField(max_length=100, unique=True) panels = [FieldPanel('name')] class Meta: ordering = ('name',) def __str__(self): return self.name @register_snippet class Country(models.Model): name = models.CharField(max_length=255) slug = models.SlugField(max_length=100, unique=True) region = models.ForeignKey(Region, null=True, blank=True, on_delete=models.SET_NULL) panels = [ FieldPanel('name'), FieldPanel('region'), ] class Meta: verbose_name_plural = 'Countries' ordering = ('name',) def save(self, *args, **kwargs): # Automatically set slug on save, if not already set if not self.slug: self.slug = slugify(self.name) super().save(*args, **kwargs) def __str__(self): return self.name @register_snippet class Tag(models.Model): name = models.CharField(max_length=100, unique=True) panels = [FieldPanel('name')] class Meta: ordering = ('name',) def __str__(self): return self.name @register_snippet class IndustryTag(models.Model): name = models.CharField(max_length=100, unique=True) icon = models.ForeignKey( AltTextImage, null=True, blank=True, on_delete=models.SET_NULL, related_name='+', ) panels = [FieldPanel('name'), ImageChooserPanel('icon')] class Meta: ordering = ('name',) def __str__(self): return self.name class TimeStampedModel(models.Model): """Modified version of django_extensions.db.models.TimeStampedModel Unfortunately, because null=True needed to be added to create and modified fields, inheritance causes issues with field clash. """ created = CreationDateTimeField('created', null=True) modified = ModificationDateTimeField('modified', null=True) def save(self, **kwargs): self.update_modified = kwargs.pop('update_modified', getattr(self, 'update_modified', True)) super().save(**kwargs) class Meta: get_latest_by = 'modified' ordering = ( '-modified', '-created', ) abstract = True # Content models class CMSGenericPage( mixins.EnableTourMixin, mixins.AuthenticatedUserRequired, mixins.WagtailGA360Mixin, GA360Mixin, Page, ): """ Generic page, freely inspired by Codered page """ class Meta: abstract = True # Do not allow this page type to be created in wagtail admin is_creatable = False template_choices = [] ############### # Layout fields ############### template = models.CharField( max_length=255, choices=None, ) ######### # Panels ########## layout_panels = [FieldPanel('template')] settings_panels = [FieldPanel('slug')] + Page.settings_panels def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) field = self._meta.get_field('template') field.choices = self.template_choices field.required = True @cached_classmethod def get_edit_handler(cls): # NOQA N805 panels = [ ObjectList(cls.content_panels, heading='Content'), ObjectList(cls.layout_panels, heading='Layout'), ObjectList(cls.settings_panels, heading='Settings', classname='settings'), ] return TabbedInterface(panels).bind_to(model=cls) def get_template(self, request, *args, **kwargs): return self.template def get_context(self, request, *args, **kwargs): context = super().get_context(request) self.set_ga360_payload( page_id=self.id, business_unit=settings.GA360_BUSINESS_UNIT, site_section=str(self.url or '/').split('/')[1], ) self.add_ga360_data_to_payload(request) context['ga360'] = self.ga360_payload provider = get_context_provider(request=request, page=self) if provider: context.update(provider.get_context_data(request=request, page=self)) return context class LandingPage(CMSGenericPage): parent_page_types = [ 'domestic.DomesticHomePage', # TODO: once we've restructured, remove this permission 'domestic.GreatDomesticHomePage', ] subpage_types = [ 'core.ListPage', 'core.InterstitialPage', 'domestic.DomesticDashboard', ] template_choices = ( ('learn/landing_page.html', 'Learn'), ('core/generic_page.html', 'Generic'), ) ################ # Content fields ################ description = RichTextField() button = StreamField([('button', core_blocks.ButtonBlock(icon='cog'))], null=True, blank=True) image = models.ForeignKey( get_image_model_string(), null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) body = StreamField( [ ('section', core_blocks.SectionBlock()), ('title', core_blocks.TitleBlock()), ('text', blocks.RichTextBlock(icon='openquote', helptext='Add a textblock')), ('image', core_blocks.ImageBlock()), ], null=True, blank=True, ) components = StreamField( [ ('route', core_blocks.RouteSectionBlock()), ], null=True, blank=True, ) ######### # Panels ######### content_panels = CMSGenericPage.content_panels + [ FieldPanel('description'), StreamFieldPanel('button'), ImageChooserPanel('image'), StreamFieldPanel('components'), StreamFieldPanel('body'), ] class InterstitialPage(CMSGenericPage): parent_page_types = ['core.LandingPage'] template_choices = (('learn/interstitial.html', 'Learn'),) ################ # Content fields ################ button = StreamField([('button', core_blocks.ButtonBlock(icon='cog'))], null=True, blank=True) ######### # Panels ######### content_panels = CMSGenericPage.content_panels + [ StreamFieldPanel('button'), ] class ListPage(CMSGenericPage): parent_page_types = ['core.LandingPage'] subpage_types = ['core.CuratedListPage'] template_choices = (('learn/automated_list_page.html', 'Learn'),) record_read_progress = models.BooleanField( default=False, help_text='Should we record when a user views a page in this collection?', ) class Meta: verbose_name = 'Automated list page' verbose_name_plural = 'Automated list pages' def get_context(self, request, *args, **kwargs): from core.helpers import get_high_level_completion_progress from domestic.helpers import get_lesson_completion_status context = super().get_context(request) if request.user.is_authenticated: completion_status = get_lesson_completion_status(request.user) context['high_level_completion_progress'] = get_high_level_completion_progress( completion_status=completion_status, ) return context ################ # Content fields ################ description = RichTextField() button_label = models.CharField(max_length=100) ######### # Panels ######### settings_panels = CMSGenericPage.settings_panels + [FieldPanel('record_read_progress')] content_panels = CMSGenericPage.content_panels + [FieldPanel('description'), FieldPanel('button_label')] class CuratedListPage(CMSGenericPage): parent_page_types = ['core.ListPage'] subpage_types = [ 'core.TopicPage', ] template_choices = (('learn/curated_list_page.html', 'Learn'),) ################ # Content fields ################ heading = RichTextField() image = models.ForeignKey( get_image_model_string(), null=True, blank=True, on_delete=models.SET_NULL, related_name='+' ) ######## # Panels ######## content_panels = CMSGenericPage.content_panels + [ FieldPanel('heading'), ImageChooserPanel('image'), ] def get_topics(self, live=True) -> models.QuerySet: qs = TopicPage.objects.live().specific().descendant_of(self) if live: qs = qs.live() return qs @cached_property def count_topics(self): return self.get_topics().count() @cached_property def count_detail_pages(self): count = 0 for topic in self.get_topics(): count += DetailPage.objects.live().descendant_of(topic).count() return count def get_context(self, request, *args, **kwargs): from core.helpers import ( get_high_level_completion_progress, get_module_completion_progress, ) from domestic.helpers import get_lesson_completion_status context = super().get_context(request) # Give the template a simple way to link back to the parent # learning module (ListPage) context['parent_page_url'] = self.get_parent().url if request.user.is_authenticated: # get this once, so we don't waste the network call to get the data twice completion_status = get_lesson_completion_status(request.user) context['module_completion_progress'] = get_module_completion_progress( completion_status=completion_status, module_page=self, ) context['high_level_completion_progress'] = get_high_level_completion_progress( completion_status=completion_status, ) return context def hero_singular_validation(value): if value and len(value) > 1: raise StreamBlockValidationError( non_block_errors=ValidationError('Only one image or video allowed in Hero section', code='invalid'), ) class TopicPage(mixins.AuthenticatedUserRequired, Page): """Structural page to allow for cleaner mapping of lessons (`DetailPage`s) to modules (`CuratedListPage`s). Not intented to be viewed by end users, so will redirect to the parent module if accessed. Also, for the above reason, mixins.WagtailGA360Mixin and GA360Mixin are not used.""" parent_page_types = ['core.CuratedListPage'] subpage_types = [ 'core.DetailPage', 'core.LessonPlaceholderPage', ] # `title` comes from Page superclass and that's all we need here def _redirect_to_parent_module(self): return HttpResponseRedirect(self.get_parent().url) def serve_preview(self, request, mode_name='dummy'): # It doesn't matter what is passed as mode_name - we always redirect return self._redirect_to_parent_module() def serve(self, request): return self._redirect_to_parent_module() class LessonPlaceholderPage(mixins.AuthenticatedUserRequired, Page): """Structural page to allow for configuring and representing very simple to modules (`CuratedListPage`s). Not intented to be viewed by end users, so will redirect to the parent module if accessed. Also, for the above reason, mixins.WagtailGA360Mixin and GA360Mixin are not used.""" parent_page_types = ['core.TopicPage'] subpage_types = [] # No child pages allowed for placeholders # `title` comes from Page superclass and that's all we need here def _redirect_to_parent_module(self): dest = CuratedListPage.objects.ancestor_of(self).first().url return HttpResponseRedirect(dest) def serve_preview(self, request, mode_name='dummy'): # It doesn't matter what is passed as mode_name - we always redirect return self._redirect_to_parent_module() def serve(self, request): return self._redirect_to_parent_module() class DetailPage(CMSGenericPage): estimated_read_duration = models.DurationField(null=True, blank=True) parent_page_types = [ 'core.CuratedListPage', # TEMPORARY: remove after topics refactor migration has run 'core.TopicPage', ] template_choices = (('learn/detail_page.html', 'Learn'),) class Meta: verbose_name = 'Detail page' verbose_name_plural = 'Detail pages' ################ # Content fields ################ hero = StreamField( [ ('Image', core_blocks.ImageBlock(template='core/includes/_hero_image.html')), ('Video', core_blocks.SimpleVideoBlock(template='core/includes/_hero_video.html')), ], null=True, blank=True, validators=[hero_singular_validation], ) objective = StreamField( [ ( 'paragraph', blocks.RichTextBlock(options={'class': 'objectives'}), ), ('ListItem', core_blocks.Item()), ] ) body = StreamField( [ ( 'paragraph', blocks.StructBlock( [('paragraph', blocks.RichTextBlock())], template='core/struct_paragraph_block.html', icon='fa-font', ), ), ( 'video', blocks.StructBlock( [('video', core_blocks.VideoBlock())], template='core/struct_video_block.html', icon='fa-play', ), ), ('case_study', core_blocks.CaseStudyStaticBlock(icon='fa-book')), ( 'Step', core_blocks.StepByStepBlock(icon='cog'), ), ( 'fictional_example', blocks.StructBlock( [('fiction_body', blocks.RichTextBlock(icon='openquote'))], template='learn/fictional_company_example.html', icon='fa-commenting-o', ), ), ( 'ITA_Quote', core_blocks.ITAQuoteBlock(icon='fa-quote-left'), ), ( 'pros_cons', blocks.StructBlock( [ ( 'pros', blocks.StreamBlock( [ ( 'item', core_blocks.Item(icon='fa-arrow-right'), ) ] ), ), ( 'cons', blocks.StreamBlock( [ ( 'item', core_blocks.Item(icon='fa-arrow-right'), ) ] ), ), ], template='learn/pros_and_cons.html', icon='fa-arrow-right', ), ), ('choose_do_not_choose', core_blocks.ChooseDoNotChooseBlock()), ( 'image', core_blocks.ImageBlock( template='core/includes/_image_full_width.html', help_text='Image displayed within a full-page-width block', ), ), ( 'video', core_blocks.SimpleVideoBlock( template='core/includes/_video_full_width.html', help_text='Video displayed within a full-page-width block', ), ), ] ) recap = StreamField( [ ( 'recap_item', blocks.StructBlock( [ ('title', blocks.CharBlock(icon='fa-header')), ( 'item', blocks.StreamBlock( [ ( 'item', core_blocks.Item(), ) ] ), ), ], template='learn/recap.html', icon='fa-commenting-o', ), ) ] ) ######### # Panels ########## content_panels = Page.content_panels + [ StreamFieldPanel('hero'), StreamFieldPanel('objective'), StreamFieldPanel('body'), StreamFieldPanel('recap'), ] def handle_page_view(self, request): if request.user.is_authenticated: # checking if the page should record read progress # checking if the page is already marked as read list_page = ( ListPage.objects.ancestor_of(self) .filter(record_read_progress=True) .exclude(page_views_list__sso_id=request.user.pk, page_views_list__page=self) .first() ) if list_page: PageView.objects.get_or_create( page=self, list_page=list_page, sso_id=request.user.pk, ) def serve(self, request, *args, **kwargs): self.handle_page_view(request) return super().serve(request, **kwargs) @cached_property def topic_title(self): return self.get_parent().title @cached_property def module(self): """Gets the learning module this lesson belongs to""" return CuratedListPage.objects.live().specific().ancestor_of(self).first() @cached_property def _export_plan_url_map(self): """Return a lookup dictionary of URL Slugs->title for all the Export Plan sections we have.""" return {url: values['title'] for url, values in EXPORTPLAN_URL_MAP.items()} def _get_backlink(self, request): """Try to extract a backlink (used for a link to the export plan) from the querystring on the request that brought us to this view. Only accepts backlinks that we KNOW are for the export plan, else ignore it.""" backlink_path = request.GET.get(BACKLINK_QUERYSTRING_NAME, '') if backlink_path is not None: backlink_path = unquote(backlink_path) if len(backlink_path.split('/')) > 2 and ( backlink_path.split('/')[3] in EXPORTPLAN_SLUGS and '://' not in backlink_path ): # The check for '://' will stop us accepting a backlink which # features a full URL as its OWN querystring param (eg a crafted attack # URL), but that's an acceptable limitation here and is very unlikely # to happen. return backlink_path return None # safe default def _get_backlink_title(self, backlink_path): """For a given backlink, see if we can get a title that goes with it. For now, this is limited only to Export Plan pages/links. """ # We have to re-arrange EXPORT_PLAN_SECTION_TITLES_URLS after import # because it features lazily-evaluated URLs that aren't ready when # models are imported if backlink_path and len(backlink_path.split('/')) > 3: _path = backlink_path.split('/')[3] return self._export_plan_url_map.get(_path) def get_context(self, request, *args, **kwargs): context = super().get_context(request) context['refresh_on_market_change'] = True # Prepare backlink to the export plan if we detect one and can validate it _backlink = self._get_backlink(request) if _backlink: context['backlink'] = _backlink context['backlink_title'] = self._get_backlink_title(_backlink) if isinstance(self.get_parent().specific, TopicPage): # In a conditional because a DetailPage currently MAY be used as # a child of another page type... page_topic_helper = PageTopicHelper(self) next_lesson = page_topic_helper.get_next_lesson() context['current_lesson'] = self context['current_module'] = page_topic_helper.module if page_topic_helper: topic_page = page_topic_helper.get_page_topic() if topic_page: context['current_topic'] = topic_page context['page_topic'] = topic_page.title if next_lesson: context['next_lesson'] = next_lesson else: next_module = self.module.get_next_sibling() if not next_module: return context context['next_module'] = next_module.specific context['next_lesson'] = get_first_lesson(next_module) return context class PageView(TimeStampedModel): page = models.ForeignKey(DetailPage, on_delete=models.CASCADE, related_name='page_views') list_page = models.ForeignKey(ListPage, on_delete=models.CASCADE, related_name='page_views_list') sso_id = models.TextField() class Meta: ordering = ['page__pk'] unique_together = ['page', 'sso_id'] # TODO: deprecate and remove class ContentModuleTag(TaggedItemBase): content_object = ParentalKey('core.ContentModule', on_delete=models.CASCADE, related_name='tagged_items') # TODO: deprecate and remove @register_snippet class ContentModule(ClusterableModel): title = models.CharField(max_length=255) content = RichTextField() tags = TaggableManager(through=ContentModuleTag, blank=True) panels = [ FieldPanel('title'), FieldPanel('content'), FieldPanel('tags'), ] def __str__(self): return self.title class PersonalisationHSCodeTag(TagBase): """Custom tag for personalisation. Tag value will be a HS6, HS4 or HS2 code""" # free_tagging = False # DISABLED until tag data only comes via data migration class Meta: verbose_name = 'HS Code tag for personalisation' verbose_name_plural = 'HS Code tags for personalisation' class PersonalisationCountryTag(TagBase): """Custom tag for personalisation. Tag value will be an ISO-2 Country code ('DE') """ free_tagging = False class Meta: verbose_name = 'Country tag for personalisation' verbose_name_plural = 'Country tags for personalisation' class PersonalisationRegionTag(TagBase): """Custom tag for personalisation. Tag value will be a geographical string ('Europe') """ free_tagging = False class Meta: verbose_name = 'Region tag for personalisation' verbose_name_plural = 'Region tags for personalisation' class PersonalisationTradingBlocTag(TagBase): """Custom tag for personalisation. Tag value will be an Trading blocs """ free_tagging = False class Meta: verbose_name = 'Trading bloc tag for personalisation' verbose_name_plural = 'Trading bloc tags for personalisation' # If you're wondering what's going on here: # https://docs.wagtail.io/en/stable/reference/pages/model_recipes.html#custom-tag-models class HSCodeTaggedCaseStudy(ItemBase): tag = models.ForeignKey( PersonalisationHSCodeTag, related_name='hscode_tagged_case_studies', on_delete=models.CASCADE ) content_object = ParentalKey(to='core.CaseStudy', on_delete=models.CASCADE, related_name='hs_code_tagged_items') class CountryTaggedCaseStudy(ItemBase): tag = models.ForeignKey( PersonalisationCountryTag, related_name='country_tagged_case_studies', on_delete=models.CASCADE ) content_object = ParentalKey(to='core.CaseStudy', on_delete=models.CASCADE, related_name='country_tagged_items') class RegionTaggedCaseStudy(ItemBase): tag = models.ForeignKey( PersonalisationRegionTag, related_name='region_tagged_case_studies', on_delete=models.CASCADE ) content_object = ParentalKey(to='core.CaseStudy', on_delete=models.CASCADE, related_name='region_tagged_items') class TradingBlocTaggedCaseStudy(ItemBase): tag = models.ForeignKey( PersonalisationTradingBlocTag, related_name='trading_bloc_tagged_case_studies', on_delete=models.CASCADE ) content_object = ParentalKey( to='core.CaseStudy', on_delete=models.CASCADE, related_name='trading_bloc_tagged_items' ) def _high_level_validation(value, error_messages): TEXT_BLOCK = 'text' # noqa N806 MEDIA_BLOCK = 'media' # noqa N806 QUOTE_BLOCK = 'quote' # noqa N806 # we need to be strict about presence and ordering of these nodes if [node.block_type for node in value if node.block_type != QUOTE_BLOCK] != [MEDIA_BLOCK, TEXT_BLOCK]: error_messages.append( ( 'This block must contain one Media section (with one or ' 'two items in it) and/or a Quote section, then one Text section following it.' ) ) return error_messages def _low_level_validation(value, error_messages): # Check content of media node, which should be present here MEDIA_BLOCK = 'media' # noqa N806 VIDEO_BLOCK = 'video' # noqa N806 for node in value: if node.block_type == MEDIA_BLOCK: subnode_block_types = [subnode.block_type for subnode in node.value] if len(subnode_block_types) == 2: if set(subnode_block_types) == {VIDEO_BLOCK}: # Two videos: not allowed error_messages.append('Only one video may be used in a case study.') elif subnode_block_types[1] == VIDEO_BLOCK: # implicitly, [0] must be an image # video after image: not allowed error_messages.append('The video must come before a still image.') return error_messages def case_study_body_validation(value): """Ensure the case study has exactly both a media node and a text node and that the media node has the following content: * One image, only * One video, only * One video + One image * (video must comes first so that it is displayed first) * Two images """ error_messages = [] if value: error_messages = _high_level_validation(value, error_messages) error_messages = _low_level_validation(value, error_messages) if error_messages: raise StreamBlockValidationError( non_block_errors=ValidationError('; '.join(error_messages), code='invalid'), ) class MagnaPageChooserPanel(PageChooserPanel): show_label = False field_template = 'admin/wagtailadmin/edit_handlers/field_panel_field.html' def render_as_field(self): instance_obj = self.get_chosen_item() context = { 'field': self.bound_field, self.object_type_name: instance_obj, 'is_chosen': bool(instance_obj), # DEPRECATED - passed to templates for backwards compatibility only # Added obj_type on base class method render_as_field 'obj_type': instance_obj.specific.__class__.__name__ if instance_obj else None, } return mark_safe(render_to_string(self.field_template, context)) class CaseStudyRelatedPages(Orderable): case_study = ParentalKey( 'core.CaseStudy', related_name='related_pages', on_delete=models.SET_NULL, null=True, blank=True, ) page = models.ForeignKey( 'wagtailcore.Page', on_delete=models.CASCADE, related_name='+', ) panels = [ MagnaPageChooserPanel('page', [DetailPage, CuratedListPage, TopicPage]), ] class Meta: unique_together = ['case_study', 'page'] @register_snippet class CaseStudy(ClusterableModel): """Dedicated snippet for use as a case study. Supports personalised selection via its tags. The decision about the appropriate Case Study block to show will happen when the page attempts to render the relevant CaseStudyBlock. Note that this is rendered via Wagtail's ModelAdmin, so appears in the sidebar, but we have to keep it registered as a Snippet to be able to transfer it with Wagtail-Transfer """ title = models.CharField( max_length=255, blank=False, verbose_name='Internal case study title', ) # old name company_name summary_context = models.CharField(max_length=255, blank=False, default='How we did it') # old name summary lead_title = models.TextField(blank=False) # Deliberately not rich-text / no formatting body = StreamField( [ ( 'media', blocks.StreamBlock( [ ('video', core_blocks.SimpleVideoBlock(template='core/includes/_case_study_video.html')), ('image', core_blocks.ImageBlock()), ], min_num=1, max_num=2, ), ), ( 'text', blocks.RichTextBlock( features=RICHTEXT_FEATURES__MINIMAL, ), ), ( 'quote', core_blocks.CaseStudyQuoteBlock(), ), ], validators=[case_study_body_validation], help_text=( 'This block must contain one Media section (with one or two items in it) ' 'and/or Quote sections, then one Text section.' ), ) # We are keeping the personalisation-relevant tags in separate # fields to aid lookup and make the UX easier for editors hs_code_tags = ClusterTaggableManager(through='core.HSCodeTaggedCaseStudy', blank=True, verbose_name='HS-code tags') country_code_tags = ClusterTaggableManager( through='core.CountryTaggedCaseStudy', blank=True, verbose_name='Country tags' ) region_code_tags = ClusterTaggableManager( through='core.RegionTaggedCaseStudy', blank=True, verbose_name='Region tags' ) trading_bloc_code_tags = ClusterTaggableManager( through='core.TradingBlocTaggedCaseStudy', blank=True, verbose_name='Trading bloc tags' ) created = CreationDateTimeField('created', null=True) modified = ModificationDateTimeField('modified', null=True) panels = [ MultiFieldPanel( [ FieldPanel('title'), FieldPanel('lead_title'), FieldPanel('summary_context'), StreamFieldPanel('body'), ], heading='Case Study content', ), MultiFieldPanel( [ FieldPanel('hs_code_tags'), FieldPanel('country_code_tags'), FieldPanel('region_code_tags'), FieldPanel('trading_bloc_code_tags'), ], heading='Case Study tags for Personalisation', ), MultiFieldPanel( [ InlinePanel('related_pages', label='Related pages'), ], heading='Related Lesson, Topic & Module, also used for Personalisation', ), ] def __str__(self): display_name = self.title if self.title else self.summary_context return f'{display_name}' def save(self, **kwargs): # When we create a new CS need to call create to obtain an ID for indexing self.update_modified = kwargs.pop('update_modified', getattr(self, 'update_modified', True)) super().save(**kwargs) update_cs_index(self) def delete(self, **kwargs): delete_cs_index(self.id) super().delete(**kwargs) def get_cms_standalone_view_url(self): return reverse('cms_extras:case-study-view', args=[self.id]) class Meta: verbose_name_plural = 'Case studies' get_latest_by = 'modified' ordering = ( '-modified', '-created', ) @register_setting class CaseStudyScoringSettings(BaseSetting): threshold = models.DecimalField( help_text='This is the minimum score which a case study needs to have to be ' 'considered before being presented to users. ', default=10, decimal_places=3, max_digits=5, ) lesson = models.DecimalField( help_text="Score given when user's lesson is tagged in the case study.", default=8, decimal_places=3, max_digits=5, ) topic = models.DecimalField( help_text="Score given when user's lesson's topic is tagged in the case study " 'unless there is also lesson match.', default=4, decimal_places=3, max_digits=5, ) module = models.DecimalField( help_text="Score given when the user's lesson's module is tagged in the case study " 'unless there is also lesson or topic match.', default=2, decimal_places=3, max_digits=5, ) product_hs6 = models.DecimalField( help_text='Score given when any case study HS6 tag matches the complete HS6 code of ' "any of the user's products", default=8, decimal_places=3, max_digits=5, ) product_hs4 = models.DecimalField( help_text="Score given when any case study HS4 tag matches the first 4 digits of any of the user's products " 'unless there is an HS6 match.', default=4, decimal_places=3, max_digits=5, ) product_hs2 = models.DecimalField( help_text="Score given when any case study HS2 tag matches the first 2 digits of any of the user's products " 'unless there is an HS6 or HS4 match.', default=2, decimal_places=3, max_digits=5, ) country_exact = models.DecimalField( help_text="Score given when any case study country tag exactly matches one of the user's export markets.", default=4, decimal_places=3, max_digits=5, ) country_region = models.DecimalField( help_text="Score given when any case study region tag matches the region of any of the user's export markets " 'unless there is an exact country match.', default=2, decimal_places=3, max_digits=5, ) trading_blocs = models.DecimalField( help_text='Score given when any case study trading bloc tag matches the any trading bloc that any of ' "the user's export markets falls into unless there is an exact country or region match.", default=2, decimal_places=3, max_digits=5, ) product_tab = [MultiFieldPanel([FieldPanel('product_hs6'), FieldPanel('product_hs4'), FieldPanel('product_hs2')])] market_tab = [ MultiFieldPanel([FieldPanel('country_exact'), FieldPanel('country_region'), FieldPanel('trading_blocs')]) ] lesson_tab = [MultiFieldPanel([FieldPanel('lesson'), FieldPanel('topic'), FieldPanel('module')])] threshold_tab = [ MultiFieldPanel( [ FieldPanel('threshold'), ] ) ] edit_handler = TabbedInterface( [ ObjectList(product_tab, heading='Product'), ObjectList(market_tab, heading='Market'), ObjectList(lesson_tab, heading='Lesson'), ObjectList(threshold_tab, heading='Threshold'), ] ) class Meta: verbose_name = 'Case Study Scoring'
[ "core.case_study_index.update_cs_index", "django.db.models.TextField", "wagtail.admin.edit_handlers.PageChooserPanel", "exportplan.core.data.SECTIONS.items", "django.core.exceptions.ValidationError", "core.blocks.VideoBlock", "django.urls.reverse", "wagtail.admin.edit_handlers.FieldPanel", "wagtail.admin.edit_handlers.ObjectList", "core.blocks.CaseStudyStaticBlock", "mimetypes.guess_type", "django.template.loader.render_to_string", "django.http.HttpResponseRedirect", "core.blocks.TitleBlock", "core.blocks.CaseStudyQuoteBlock", "django.db.models.ForeignKey", "core.blocks.ChooseDoNotChooseBlock", "core.utils.PageTopicHelper", "core.blocks.ITAQuoteBlock", "core.context.get_context_provider", "django.db.models.CharField", "urllib.parse.unquote", "django.db.models.OneToOneField", "wagtail.admin.edit_handlers.TabbedInterface", "django.utils.translation.ugettext_lazy", "wagtail.core.blocks.CharBlock", "hashlib.md5", "core.blocks.ImageBlock", "core.blocks.RouteSectionBlock", "django.db.models.DurationField", "core.helpers.get_high_level_completion_progress", "core.blocks.SimpleVideoBlock", "core.blocks.Item", "django.db.models.BooleanField", "taggit.managers.TaggableManager", "wagtail.admin.edit_handlers.StreamFieldPanel", "django_extensions.db.fields.CreationDateTimeField", "wagtail.admin.edit_handlers.InlinePanel", "core.utils.get_first_lesson", "core.helpers.get_module_completion_progress", "modelcluster.models.ParentalKey", "django.utils.text.slugify", "wagtail.images.edit_handlers.ImageChooserPanel", "core.case_study_index.delete_cs_index", "wagtail.core.blocks.RichTextBlock", "wagtail.snippets.models.register_snippet", "wagtail.images.get_image_model_string", "core.blocks.SectionBlock", "core.blocks.StepByStepBlock", "domestic.helpers.get_lesson_completion_status", "django.db.models.SlugField", "wagtail.core.fields.RichTextField", "django.db.models.DecimalField", "django_extensions.db.fields.ModificationDateTimeField", "core.blocks.ButtonBlock", "modelcluster.contrib.taggit.ClusterTaggableManager" ]
[((2206, 2232), 'wagtail.snippets.models.register_snippet', 'register_snippet', (['Redirect'], {}), '(Redirect)\n', (2222, 2232), False, 'from wagtail.snippets.models import register_snippet\n'), ((3527, 3560), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(1000)'}), '(max_length=1000)\n', (3543, 3560), False, 'from django.db import models\n'), ((3845, 3958), 'django.db.models.ForeignKey', 'models.ForeignKey', (['"""wagtaildocs.Document"""'], {'null': '(True)', 'blank': '(True)', 'on_delete': 'models.CASCADE', 'related_name': '"""+"""'}), "('wagtaildocs.Document', null=True, blank=True, on_delete=\n models.CASCADE, related_name='+')\n", (3862, 3958), False, 'from django.db import models\n'), ((4019, 4131), 'django.db.models.ForeignKey', 'models.ForeignKey', (['"""wagtailimages.Image"""'], {'null': '(True)', 'blank': '(True)', 'on_delete': 'models.CASCADE', 'related_name': '"""+"""'}), "('wagtailimages.Image', null=True, blank=True, on_delete=\n models.CASCADE, related_name='+')\n", (4036, 4131), False, 'from django.db import models\n'), ((4179, 4223), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'blank': '(True)'}), '(max_length=255, blank=True)\n', (4195, 4223), False, 'from django.db import models\n'), ((4339, 4428), 'django.db.models.ForeignKey', 'models.ForeignKey', (['AltTextImage'], {'on_delete': 'models.CASCADE', 'related_name': '"""renditions"""'}), "(AltTextImage, on_delete=models.CASCADE, related_name=\n 'renditions')\n", (4356, 4428), False, 'from django.db import models\n'), ((4641, 4732), 'django.db.models.OneToOneField', 'models.OneToOneField', (['"""wagtailcore.Page"""'], {'on_delete': 'models.CASCADE', 'related_name': '"""tour"""'}), "('wagtailcore.Page', on_delete=models.CASCADE,\n related_name='tour')\n", (4661, 4732), False, 'from django.db import models\n'), ((4741, 4773), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (4757, 4773), False, 'from django.db import models\n'), ((4785, 4817), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (4801, 4817), False, 'from django.db import models\n'), ((4836, 4868), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (4852, 4868), False, 'from django.db import models\n'), ((5179, 5211), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (5195, 5211), False, 'from django.db import models\n'), ((5223, 5255), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (5239, 5255), False, 'from django.db import models\n'), ((5271, 5303), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (5287, 5303), False, 'from django.db import models\n'), ((5319, 5351), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (5335, 5351), False, 'from django.db import models\n'), ((5363, 5428), 'modelcluster.models.ParentalKey', 'ParentalKey', (['Tour'], {'on_delete': 'models.CASCADE', 'related_name': '"""steps"""'}), "(Tour, on_delete=models.CASCADE, related_name='steps')\n", (5374, 5428), False, 'from modelcluster.models import ClusterableModel, ParentalKey\n'), ((5632, 5664), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (5648, 5664), False, 'from django.db import models\n'), ((5823, 5868), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'unique': '(True)'}), '(max_length=100, unique=True)\n', (5839, 5868), False, 'from django.db import models\n'), ((6059, 6091), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (6075, 6091), False, 'from django.db import models\n'), ((6103, 6148), 'django.db.models.SlugField', 'models.SlugField', ([], {'max_length': '(100)', 'unique': '(True)'}), '(max_length=100, unique=True)\n', (6119, 6148), False, 'from django.db import models\n'), ((6162, 6237), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Region'], {'null': '(True)', 'blank': '(True)', 'on_delete': 'models.SET_NULL'}), '(Region, null=True, blank=True, on_delete=models.SET_NULL)\n', (6179, 6237), False, 'from django.db import models\n'), ((6718, 6763), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'unique': '(True)'}), '(max_length=100, unique=True)\n', (6734, 6763), False, 'from django.db import models\n'), ((6958, 7003), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'unique': '(True)'}), '(max_length=100, unique=True)\n', (6974, 7003), False, 'from django.db import models\n'), ((7015, 7119), 'django.db.models.ForeignKey', 'models.ForeignKey', (['AltTextImage'], {'null': '(True)', 'blank': '(True)', 'on_delete': 'models.SET_NULL', 'related_name': '"""+"""'}), "(AltTextImage, null=True, blank=True, on_delete=models.\n SET_NULL, related_name='+')\n", (7032, 7119), False, 'from django.db import models\n'), ((7591, 7634), 'django_extensions.db.fields.CreationDateTimeField', 'CreationDateTimeField', (['"""created"""'], {'null': '(True)'}), "('created', null=True)\n", (7612, 7634), False, 'from django_extensions.db.fields import CreationDateTimeField, ModificationDateTimeField\n'), ((7650, 7698), 'django_extensions.db.fields.ModificationDateTimeField', 'ModificationDateTimeField', (['"""modified"""'], {'null': '(True)'}), "('modified', null=True)\n", (7675, 7698), False, 'from django_extensions.db.fields import CreationDateTimeField, ModificationDateTimeField\n'), ((8486, 8532), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'choices': 'None'}), '(max_length=255, choices=None)\n', (8502, 8532), False, 'from django.db import models\n'), ((10485, 10500), 'wagtail.core.fields.RichTextField', 'RichTextField', ([], {}), '()\n', (10498, 10500), False, 'from wagtail.core.fields import RichTextField, StreamField\n'), ((12182, 12296), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)', 'help_text': '"""Should we record when a user views a page in this collection?"""'}), "(default=False, help_text=\n 'Should we record when a user views a page in this collection?')\n", (12201, 12296), False, 'from django.db import models\n'), ((13048, 13063), 'wagtail.core.fields.RichTextField', 'RichTextField', ([], {}), '()\n', (13061, 13063), False, 'from wagtail.core.fields import RichTextField, StreamField\n'), ((13083, 13115), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (13099, 13115), False, 'from django.db import models\n'), ((13642, 13657), 'wagtail.core.fields.RichTextField', 'RichTextField', ([], {}), '()\n', (13655, 13657), False, 'from wagtail.core.fields import RichTextField, StreamField\n'), ((17723, 17766), 'django.db.models.DurationField', 'models.DurationField', ([], {'null': '(True)', 'blank': '(True)'}), '(null=True, blank=True)\n', (17743, 17766), False, 'from django.db import models\n'), ((27063, 27150), 'django.db.models.ForeignKey', 'models.ForeignKey', (['DetailPage'], {'on_delete': 'models.CASCADE', 'related_name': '"""page_views"""'}), "(DetailPage, on_delete=models.CASCADE, related_name=\n 'page_views')\n", (27080, 27150), False, 'from django.db import models\n'), ((27162, 27252), 'django.db.models.ForeignKey', 'models.ForeignKey', (['ListPage'], {'on_delete': 'models.CASCADE', 'related_name': '"""page_views_list"""'}), "(ListPage, on_delete=models.CASCADE, related_name=\n 'page_views_list')\n", (27179, 27252), False, 'from django.db import models\n'), ((27261, 27279), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (27277, 27279), False, 'from django.db import models\n'), ((27466, 27559), 'modelcluster.models.ParentalKey', 'ParentalKey', (['"""core.ContentModule"""'], {'on_delete': 'models.CASCADE', 'related_name': '"""tagged_items"""'}), "('core.ContentModule', on_delete=models.CASCADE, related_name=\n 'tagged_items')\n", (27477, 27559), False, 'from modelcluster.models import ClusterableModel, ParentalKey\n'), ((27655, 27687), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (27671, 27687), False, 'from django.db import models\n'), ((27702, 27717), 'wagtail.core.fields.RichTextField', 'RichTextField', ([], {}), '()\n', (27715, 27717), False, 'from wagtail.core.fields import RichTextField, StreamField\n'), ((27729, 27782), 'taggit.managers.TaggableManager', 'TaggableManager', ([], {'through': 'ContentModuleTag', 'blank': '(True)'}), '(through=ContentModuleTag, blank=True)\n', (27744, 27782), False, 'from taggit.managers import TaggableManager\n'), ((29407, 29524), 'django.db.models.ForeignKey', 'models.ForeignKey', (['PersonalisationHSCodeTag'], {'related_name': '"""hscode_tagged_case_studies"""', 'on_delete': 'models.CASCADE'}), "(PersonalisationHSCodeTag, related_name=\n 'hscode_tagged_case_studies', on_delete=models.CASCADE)\n", (29424, 29524), False, 'from django.db import models\n'), ((29555, 29655), 'modelcluster.models.ParentalKey', 'ParentalKey', ([], {'to': '"""core.CaseStudy"""', 'on_delete': 'models.CASCADE', 'related_name': '"""hs_code_tagged_items"""'}), "(to='core.CaseStudy', on_delete=models.CASCADE, related_name=\n 'hs_code_tagged_items')\n", (29566, 29655), False, 'from modelcluster.models import ClusterableModel, ParentalKey\n'), ((29703, 29822), 'django.db.models.ForeignKey', 'models.ForeignKey', (['PersonalisationCountryTag'], {'related_name': '"""country_tagged_case_studies"""', 'on_delete': 'models.CASCADE'}), "(PersonalisationCountryTag, related_name=\n 'country_tagged_case_studies', on_delete=models.CASCADE)\n", (29720, 29822), False, 'from django.db import models\n'), ((29853, 29953), 'modelcluster.models.ParentalKey', 'ParentalKey', ([], {'to': '"""core.CaseStudy"""', 'on_delete': 'models.CASCADE', 'related_name': '"""country_tagged_items"""'}), "(to='core.CaseStudy', on_delete=models.CASCADE, related_name=\n 'country_tagged_items')\n", (29864, 29953), False, 'from modelcluster.models import ClusterableModel, ParentalKey\n'), ((30000, 30117), 'django.db.models.ForeignKey', 'models.ForeignKey', (['PersonalisationRegionTag'], {'related_name': '"""region_tagged_case_studies"""', 'on_delete': 'models.CASCADE'}), "(PersonalisationRegionTag, related_name=\n 'region_tagged_case_studies', on_delete=models.CASCADE)\n", (30017, 30117), False, 'from django.db import models\n'), ((30148, 30247), 'modelcluster.models.ParentalKey', 'ParentalKey', ([], {'to': '"""core.CaseStudy"""', 'on_delete': 'models.CASCADE', 'related_name': '"""region_tagged_items"""'}), "(to='core.CaseStudy', on_delete=models.CASCADE, related_name=\n 'region_tagged_items')\n", (30159, 30247), False, 'from modelcluster.models import ClusterableModel, ParentalKey\n'), ((30299, 30427), 'django.db.models.ForeignKey', 'models.ForeignKey', (['PersonalisationTradingBlocTag'], {'related_name': '"""trading_bloc_tagged_case_studies"""', 'on_delete': 'models.CASCADE'}), "(PersonalisationTradingBlocTag, related_name=\n 'trading_bloc_tagged_case_studies', on_delete=models.CASCADE)\n", (30316, 30427), False, 'from django.db import models\n'), ((30458, 30563), 'modelcluster.models.ParentalKey', 'ParentalKey', ([], {'to': '"""core.CaseStudy"""', 'on_delete': 'models.CASCADE', 'related_name': '"""trading_bloc_tagged_items"""'}), "(to='core.CaseStudy', on_delete=models.CASCADE, related_name=\n 'trading_bloc_tagged_items')\n", (30469, 30563), False, 'from modelcluster.models import ClusterableModel, ParentalKey\n'), ((33519, 33633), 'modelcluster.models.ParentalKey', 'ParentalKey', (['"""core.CaseStudy"""'], {'related_name': '"""related_pages"""', 'on_delete': 'models.SET_NULL', 'null': '(True)', 'blank': '(True)'}), "('core.CaseStudy', related_name='related_pages', on_delete=\n models.SET_NULL, null=True, blank=True)\n", (33530, 33633), False, 'from modelcluster.models import ClusterableModel, ParentalKey\n'), ((33687, 33772), 'django.db.models.ForeignKey', 'models.ForeignKey', (['"""wagtailcore.Page"""'], {'on_delete': 'models.CASCADE', 'related_name': '"""+"""'}), "('wagtailcore.Page', on_delete=models.CASCADE,\n related_name='+')\n", (33704, 33772), False, 'from django.db import models\n'), ((34475, 34567), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'blank': '(False)', 'verbose_name': '"""Internal case study title"""'}), "(max_length=255, blank=False, verbose_name=\n 'Internal case study title')\n", (34491, 34567), False, 'from django.db import models\n'), ((34645, 34715), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'blank': '(False)', 'default': '"""How we did it"""'}), "(max_length=255, blank=False, default='How we did it')\n", (34661, 34715), False, 'from django.db import models\n'), ((34756, 34785), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(False)'}), '(blank=False)\n', (34772, 34785), False, 'from django.db import models\n'), ((35922, 36027), 'modelcluster.contrib.taggit.ClusterTaggableManager', 'ClusterTaggableManager', ([], {'through': '"""core.HSCodeTaggedCaseStudy"""', 'blank': '(True)', 'verbose_name': '"""HS-code tags"""'}), "(through='core.HSCodeTaggedCaseStudy', blank=True,\n verbose_name='HS-code tags')\n", (35944, 36027), False, 'from modelcluster.contrib.taggit import ClusterTaggableManager\n'), ((36049, 36155), 'modelcluster.contrib.taggit.ClusterTaggableManager', 'ClusterTaggableManager', ([], {'through': '"""core.CountryTaggedCaseStudy"""', 'blank': '(True)', 'verbose_name': '"""Country tags"""'}), "(through='core.CountryTaggedCaseStudy', blank=True,\n verbose_name='Country tags')\n", (36071, 36155), False, 'from modelcluster.contrib.taggit import ClusterTaggableManager\n'), ((36189, 36293), 'modelcluster.contrib.taggit.ClusterTaggableManager', 'ClusterTaggableManager', ([], {'through': '"""core.RegionTaggedCaseStudy"""', 'blank': '(True)', 'verbose_name': '"""Region tags"""'}), "(through='core.RegionTaggedCaseStudy', blank=True,\n verbose_name='Region tags')\n", (36211, 36293), False, 'from modelcluster.contrib.taggit import ClusterTaggableManager\n'), ((36333, 36449), 'modelcluster.contrib.taggit.ClusterTaggableManager', 'ClusterTaggableManager', ([], {'through': '"""core.TradingBlocTaggedCaseStudy"""', 'blank': '(True)', 'verbose_name': '"""Trading bloc tags"""'}), "(through='core.TradingBlocTaggedCaseStudy', blank=\n True, verbose_name='Trading bloc tags')\n", (36355, 36449), False, 'from modelcluster.contrib.taggit import ClusterTaggableManager\n'), ((36474, 36517), 'django_extensions.db.fields.CreationDateTimeField', 'CreationDateTimeField', (['"""created"""'], {'null': '(True)'}), "('created', null=True)\n", (36495, 36517), False, 'from django_extensions.db.fields import CreationDateTimeField, ModificationDateTimeField\n'), ((36533, 36581), 'django_extensions.db.fields.ModificationDateTimeField', 'ModificationDateTimeField', (['"""modified"""'], {'null': '(True)'}), "('modified', null=True)\n", (36558, 36581), False, 'from django_extensions.db.fields import CreationDateTimeField, ModificationDateTimeField\n'), ((38294, 38490), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'help_text': '"""This is the minimum score which a case study needs to have to be considered before being presented to users. """', 'default': '(10)', 'decimal_places': '(3)', 'max_digits': '(5)'}), "(help_text=\n 'This is the minimum score which a case study needs to have to be considered before being presented to users. '\n , default=10, decimal_places=3, max_digits=5)\n", (38313, 38490), False, 'from django.db import models\n'), ((38544, 38689), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'help_text': '"""Score given when user\'s lesson is tagged in the case study."""', 'default': '(8)', 'decimal_places': '(3)', 'max_digits': '(5)'}), '(help_text=\n "Score given when user\'s lesson is tagged in the case study.", default=\n 8, decimal_places=3, max_digits=5)\n', (38563, 38689), False, 'from django.db import models\n'), ((38731, 38918), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'help_text': '"""Score given when user\'s lesson\'s topic is tagged in the case study unless there is also lesson match."""', 'default': '(4)', 'decimal_places': '(3)', 'max_digits': '(5)'}), '(help_text=\n "Score given when user\'s lesson\'s topic is tagged in the case study unless there is also lesson match."\n , default=4, decimal_places=3, max_digits=5)\n', (38750, 38918), False, 'from django.db import models\n'), ((38972, 39173), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'help_text': '"""Score given when the user\'s lesson\'s module is tagged in the case study unless there is also lesson or topic match."""', 'default': '(2)', 'decimal_places': '(3)', 'max_digits': '(5)'}), '(help_text=\n "Score given when the user\'s lesson\'s module is tagged in the case study unless there is also lesson or topic match."\n , default=2, decimal_places=3, max_digits=5)\n', (38991, 39173), False, 'from django.db import models\n'), ((39232, 39417), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'help_text': '"""Score given when any case study HS6 tag matches the complete HS6 code of any of the user\'s products"""', 'default': '(8)', 'decimal_places': '(3)', 'max_digits': '(5)'}), '(help_text=\n "Score given when any case study HS6 tag matches the complete HS6 code of any of the user\'s products"\n , default=8, decimal_places=3, max_digits=5)\n', (39251, 39417), False, 'from django.db import models\n'), ((39476, 39688), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'help_text': '"""Score given when any case study HS4 tag matches the first 4 digits of any of the user\'s products unless there is an HS6 match."""', 'default': '(4)', 'decimal_places': '(3)', 'max_digits': '(5)'}), '(help_text=\n "Score given when any case study HS4 tag matches the first 4 digits of any of the user\'s products unless there is an HS6 match."\n , default=4, decimal_places=3, max_digits=5)\n', (39495, 39688), False, 'from django.db import models\n'), ((39747, 39966), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'help_text': '"""Score given when any case study HS2 tag matches the first 2 digits of any of the user\'s products unless there is an HS6 or HS4 match."""', 'default': '(2)', 'decimal_places': '(3)', 'max_digits': '(5)'}), '(help_text=\n "Score given when any case study HS2 tag matches the first 2 digits of any of the user\'s products unless there is an HS6 or HS4 match."\n , default=2, decimal_places=3, max_digits=5)\n', (39766, 39966), False, 'from django.db import models\n'), ((40027, 40206), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'help_text': '"""Score given when any case study country tag exactly matches one of the user\'s export markets."""', 'default': '(4)', 'decimal_places': '(3)', 'max_digits': '(5)'}), '(help_text=\n "Score given when any case study country tag exactly matches one of the user\'s export markets."\n , default=4, decimal_places=3, max_digits=5)\n', (40046, 40206), False, 'from django.db import models\n'), ((40257, 40480), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'help_text': '"""Score given when any case study region tag matches the region of any of the user\'s export markets unless there is an exact country match."""', 'default': '(2)', 'decimal_places': '(3)', 'max_digits': '(5)'}), '(help_text=\n "Score given when any case study region tag matches the region of any of the user\'s export markets unless there is an exact country match."\n , default=2, decimal_places=3, max_digits=5)\n', (40276, 40480), False, 'from django.db import models\n'), ((40542, 40804), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'help_text': '"""Score given when any case study trading bloc tag matches the any trading bloc that any of the user\'s export markets falls into unless there is an exact country or region match."""', 'default': '(2)', 'decimal_places': '(3)', 'max_digits': '(5)'}), '(help_text=\n "Score given when any case study trading bloc tag matches the any trading bloc that any of the user\'s export markets falls into unless there is an exact country or region match."\n , default=2, decimal_places=3, max_digits=5)\n', (40561, 40804), False, 'from django.db import models\n'), ((3642, 3655), 'hashlib.md5', 'hashlib.md5', ([], {}), '()\n', (3653, 3655), False, 'import hashlib\n'), ((4893, 4917), 'wagtail.admin.edit_handlers.PageChooserPanel', 'PageChooserPanel', (['"""page"""'], {}), "('page')\n", (4909, 4917), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((4927, 4946), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""title"""'], {}), "('title')\n", (4937, 4946), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((4956, 4974), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""body"""'], {}), "('body')\n", (4966, 4974), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((4984, 5009), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""button_text"""'], {}), "('button_text')\n", (4994, 5009), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((5453, 5472), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""title"""'], {}), "('title')\n", (5463, 5472), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((5482, 5500), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""body"""'], {}), "('body')\n", (5492, 5500), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((5510, 5532), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""position"""'], {}), "('position')\n", (5520, 5532), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((5542, 5564), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""selector"""'], {}), "('selector')\n", (5552, 5564), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((5689, 5707), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""name"""'], {}), "('name')\n", (5699, 5707), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((5884, 5902), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""name"""'], {}), "('name')\n", (5894, 5902), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((6262, 6280), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""name"""'], {}), "('name')\n", (6272, 6280), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((6290, 6310), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""region"""'], {}), "('region')\n", (6300, 6310), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((6779, 6797), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""name"""'], {}), "('name')\n", (6789, 6797), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((7177, 7195), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""name"""'], {}), "('name')\n", (7187, 7195), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((7197, 7222), 'wagtail.images.edit_handlers.ImageChooserPanel', 'ImageChooserPanel', (['"""icon"""'], {}), "('icon')\n", (7214, 7222), False, 'from wagtail.images.edit_handlers import ImageChooserPanel\n'), ((8620, 8642), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""template"""'], {}), "('template')\n", (8630, 8642), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((9775, 9823), 'core.context.get_context_provider', 'get_context_provider', ([], {'request': 'request', 'page': 'self'}), '(request=request, page=self)\n', (9795, 9823), False, 'from core.context import get_context_provider\n'), ((10639, 10663), 'wagtail.images.get_image_model_string', 'get_image_model_string', ([], {}), '()\n', (10661, 10663), False, 'from wagtail.images import get_image_model_string\n'), ((13697, 13721), 'wagtail.images.get_image_model_string', 'get_image_model_string', ([], {}), '()\n', (13719, 13721), False, 'from wagtail.images import get_image_model_string\n'), ((17366, 17392), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['dest'], {}), '(dest)\n', (17386, 17392), False, 'from django.http import HttpResponseRedirect\n'), ((27807, 27826), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""title"""'], {}), "('title')\n", (27817, 27826), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((27836, 27857), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""content"""'], {}), "('content')\n", (27846, 27857), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((27867, 27885), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""tags"""'], {}), "('tags')\n", (27877, 27885), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((37802, 37823), 'core.case_study_index.update_cs_index', 'update_cs_index', (['self'], {}), '(self)\n', (37817, 37823), False, 'from core.case_study_index import delete_cs_index, update_cs_index\n'), ((37865, 37889), 'core.case_study_index.delete_cs_index', 'delete_cs_index', (['self.id'], {}), '(self.id)\n', (37880, 37889), False, 'from core.case_study_index import delete_cs_index, update_cs_index\n'), ((37982, 38035), 'django.urls.reverse', 'reverse', (['"""cms_extras:case-study-view"""'], {'args': '[self.id]'}), "('cms_extras:case-study-view', args=[self.id])\n", (37989, 38035), False, 'from django.urls import reverse\n'), ((2317, 2332), 'django.utils.translation.ugettext_lazy', '_', (['"""Transcript"""'], {}), "('Transcript')\n", (2318, 2332), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((2465, 2487), 'django.utils.translation.ugettext_lazy', '_', (['"""English subtitles"""'], {}), "('English subtitles')\n", (2466, 2487), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((6555, 6573), 'django.utils.text.slugify', 'slugify', (['self.name'], {}), '(self.name)\n', (6562, 6573), False, 'from django.utils.text import slugify\n'), ((8667, 8685), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""slug"""'], {}), "('slug')\n", (8677, 8685), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((9019, 9068), 'wagtail.admin.edit_handlers.ObjectList', 'ObjectList', (['cls.content_panels'], {'heading': '"""Content"""'}), "(cls.content_panels, heading='Content')\n", (9029, 9068), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((9082, 9129), 'wagtail.admin.edit_handlers.ObjectList', 'ObjectList', (['cls.layout_panels'], {'heading': '"""Layout"""'}), "(cls.layout_panels, heading='Layout')\n", (9092, 9129), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((9143, 9216), 'wagtail.admin.edit_handlers.ObjectList', 'ObjectList', (['cls.settings_panels'], {'heading': '"""Settings"""', 'classname': '"""settings"""'}), "(cls.settings_panels, heading='Settings', classname='settings')\n", (9153, 9216), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((11328, 11353), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""description"""'], {}), "('description')\n", (11338, 11353), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((11363, 11389), 'wagtail.admin.edit_handlers.StreamFieldPanel', 'StreamFieldPanel', (['"""button"""'], {}), "('button')\n", (11379, 11389), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((11399, 11425), 'wagtail.images.edit_handlers.ImageChooserPanel', 'ImageChooserPanel', (['"""image"""'], {}), "('image')\n", (11416, 11425), False, 'from wagtail.images.edit_handlers import ImageChooserPanel\n'), ((11435, 11465), 'wagtail.admin.edit_handlers.StreamFieldPanel', 'StreamFieldPanel', (['"""components"""'], {}), "('components')\n", (11451, 11465), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((11475, 11499), 'wagtail.admin.edit_handlers.StreamFieldPanel', 'StreamFieldPanel', (['"""body"""'], {}), "('body')\n", (11491, 11499), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((11925, 11951), 'wagtail.admin.edit_handlers.StreamFieldPanel', 'StreamFieldPanel', (['"""button"""'], {}), "('button')\n", (11941, 11951), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((12741, 12783), 'domestic.helpers.get_lesson_completion_status', 'get_lesson_completion_status', (['request.user'], {}), '(request.user)\n', (12769, 12783), False, 'from domestic.helpers import get_lesson_completion_status\n'), ((12840, 12911), 'core.helpers.get_high_level_completion_progress', 'get_high_level_completion_progress', ([], {'completion_status': 'completion_status'}), '(completion_status=completion_status)\n', (12874, 12911), False, 'from core.helpers import get_high_level_completion_progress, get_module_completion_progress\n'), ((13214, 13248), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""record_read_progress"""'], {}), "('record_read_progress')\n", (13224, 13248), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((13304, 13329), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""description"""'], {}), "('description')\n", (13314, 13329), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((13331, 13357), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""button_label"""'], {}), "('button_label')\n", (13341, 13357), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((13899, 13920), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""heading"""'], {}), "('heading')\n", (13909, 13920), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((13930, 13956), 'wagtail.images.edit_handlers.ImageChooserPanel', 'ImageChooserPanel', (['"""image"""'], {}), "('image')\n", (13947, 13956), False, 'from wagtail.images.edit_handlers import ImageChooserPanel\n'), ((15084, 15126), 'domestic.helpers.get_lesson_completion_status', 'get_lesson_completion_status', (['request.user'], {}), '(request.user)\n', (15112, 15126), False, 'from domestic.helpers import get_lesson_completion_status\n'), ((15179, 15268), 'core.helpers.get_module_completion_progress', 'get_module_completion_progress', ([], {'completion_status': 'completion_status', 'module_page': 'self'}), '(completion_status=completion_status,\n module_page=self)\n', (15209, 15268), False, 'from core.helpers import get_high_level_completion_progress, get_module_completion_progress\n'), ((15368, 15439), 'core.helpers.get_high_level_completion_progress', 'get_high_level_completion_progress', ([], {'completion_status': 'completion_status'}), '(completion_status=completion_status)\n', (15402, 15439), False, 'from core.helpers import get_high_level_completion_progress, get_module_completion_progress\n'), ((22546, 22570), 'wagtail.admin.edit_handlers.StreamFieldPanel', 'StreamFieldPanel', (['"""hero"""'], {}), "('hero')\n", (22562, 22570), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((22580, 22609), 'wagtail.admin.edit_handlers.StreamFieldPanel', 'StreamFieldPanel', (['"""objective"""'], {}), "('objective')\n", (22596, 22609), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((22619, 22643), 'wagtail.admin.edit_handlers.StreamFieldPanel', 'StreamFieldPanel', (['"""body"""'], {}), "('body')\n", (22635, 22643), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((22653, 22678), 'wagtail.admin.edit_handlers.StreamFieldPanel', 'StreamFieldPanel', (['"""recap"""'], {}), "('recap')\n", (22669, 22678), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((24442, 24464), 'urllib.parse.unquote', 'unquote', (['backlink_path'], {}), '(backlink_path)\n', (24449, 24464), False, 'from urllib.parse import unquote\n'), ((26186, 26207), 'core.utils.PageTopicHelper', 'PageTopicHelper', (['self'], {}), '(self)\n', (26201, 26207), False, 'from core.utils import PageTopicHelper, get_first_lesson\n'), ((33412, 33458), 'django.template.loader.render_to_string', 'render_to_string', (['self.field_template', 'context'], {}), '(self.field_template, context)\n', (33428, 33458), False, 'from django.template.loader import render_to_string\n'), ((41398, 41440), 'wagtail.admin.edit_handlers.ObjectList', 'ObjectList', (['product_tab'], {'heading': '"""Product"""'}), "(product_tab, heading='Product')\n", (41408, 41440), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((41454, 41494), 'wagtail.admin.edit_handlers.ObjectList', 'ObjectList', (['market_tab'], {'heading': '"""Market"""'}), "(market_tab, heading='Market')\n", (41464, 41494), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((41508, 41548), 'wagtail.admin.edit_handlers.ObjectList', 'ObjectList', (['lesson_tab'], {'heading': '"""Lesson"""'}), "(lesson_tab, heading='Lesson')\n", (41518, 41548), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((41562, 41608), 'wagtail.admin.edit_handlers.ObjectList', 'ObjectList', (['threshold_tab'], {'heading': '"""Threshold"""'}), "(threshold_tab, heading='Threshold')\n", (41572, 41608), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((5036, 5056), 'wagtail.admin.edit_handlers.InlinePanel', 'InlinePanel', (['"""steps"""'], {}), "('steps')\n", (5047, 5056), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((9244, 9267), 'wagtail.admin.edit_handlers.TabbedInterface', 'TabbedInterface', (['panels'], {}), '(panels)\n', (9259, 9267), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((10538, 10573), 'core.blocks.ButtonBlock', 'core_blocks.ButtonBlock', ([], {'icon': '"""cog"""'}), "(icon='cog')\n", (10561, 10573), True, 'from core import blocks as core_blocks, mixins\n'), ((10797, 10823), 'core.blocks.SectionBlock', 'core_blocks.SectionBlock', ([], {}), '()\n', (10821, 10823), True, 'from core import blocks as core_blocks, mixins\n'), ((10848, 10872), 'core.blocks.TitleBlock', 'core_blocks.TitleBlock', ([], {}), '()\n', (10870, 10872), True, 'from core import blocks as core_blocks, mixins\n'), ((10896, 10962), 'wagtail.core.blocks.RichTextBlock', 'blocks.RichTextBlock', ([], {'icon': '"""openquote"""', 'helptext': '"""Add a textblock"""'}), "(icon='openquote', helptext='Add a textblock')\n", (10916, 10962), False, 'from wagtail.core import blocks\n'), ((10987, 11011), 'core.blocks.ImageBlock', 'core_blocks.ImageBlock', ([], {}), '()\n', (11009, 11011), True, 'from core import blocks as core_blocks, mixins\n'), ((11133, 11164), 'core.blocks.RouteSectionBlock', 'core_blocks.RouteSectionBlock', ([], {}), '()\n', (11162, 11164), True, 'from core import blocks as core_blocks, mixins\n'), ((11758, 11793), 'core.blocks.ButtonBlock', 'core_blocks.ButtonBlock', ([], {'icon': '"""cog"""'}), "(icon='cog')\n", (11781, 11793), True, 'from core import blocks as core_blocks, mixins\n'), ((15637, 15724), 'django.core.exceptions.ValidationError', 'ValidationError', (['"""Only one image or video allowed in Hero section"""'], {'code': '"""invalid"""'}), "('Only one image or video allowed in Hero section', code=\n 'invalid')\n", (15652, 15724), False, 'from django.core.exceptions import ValidationError\n'), ((18199, 18264), 'core.blocks.ImageBlock', 'core_blocks.ImageBlock', ([], {'template': '"""core/includes/_hero_image.html"""'}), "(template='core/includes/_hero_image.html')\n", (18221, 18264), True, 'from core import blocks as core_blocks, mixins\n'), ((18289, 18360), 'core.blocks.SimpleVideoBlock', 'core_blocks.SimpleVideoBlock', ([], {'template': '"""core/includes/_hero_video.html"""'}), "(template='core/includes/_hero_video.html')\n", (18317, 18360), True, 'from core import blocks as core_blocks, mixins\n'), ((18564, 18617), 'wagtail.core.blocks.RichTextBlock', 'blocks.RichTextBlock', ([], {'options': "{'class': 'objectives'}"}), "(options={'class': 'objectives'})\n", (18584, 18617), False, 'from wagtail.core import blocks\n'), ((18659, 18677), 'core.blocks.Item', 'core_blocks.Item', ([], {}), '()\n', (18675, 18677), True, 'from core import blocks as core_blocks, mixins\n'), ((19297, 19345), 'core.blocks.CaseStudyStaticBlock', 'core_blocks.CaseStudyStaticBlock', ([], {'icon': '"""fa-book"""'}), "(icon='fa-book')\n", (19329, 19345), True, 'from core import blocks as core_blocks, mixins\n'), ((19402, 19441), 'core.blocks.StepByStepBlock', 'core_blocks.StepByStepBlock', ([], {'icon': '"""cog"""'}), "(icon='cog')\n", (19429, 19441), True, 'from core import blocks as core_blocks, mixins\n'), ((19831, 19878), 'core.blocks.ITAQuoteBlock', 'core_blocks.ITAQuoteBlock', ([], {'icon': '"""fa-quote-left"""'}), "(icon='fa-quote-left')\n", (19856, 19878), True, 'from core import blocks as core_blocks, mixins\n'), ((21072, 21108), 'core.blocks.ChooseDoNotChooseBlock', 'core_blocks.ChooseDoNotChooseBlock', ([], {}), '()\n', (21106, 21108), True, 'from core import blocks as core_blocks, mixins\n'), ((21166, 21301), 'core.blocks.ImageBlock', 'core_blocks.ImageBlock', ([], {'template': '"""core/includes/_image_full_width.html"""', 'help_text': '"""Image displayed within a full-page-width block"""'}), "(template='core/includes/_image_full_width.html',\n help_text='Image displayed within a full-page-width block')\n", (21188, 21301), True, 'from core import blocks as core_blocks, mixins\n'), ((21428, 21575), 'core.blocks.SimpleVideoBlock', 'core_blocks.SimpleVideoBlock', ([], {'template': '"""core/includes/_video_full_width.html"""', 'help_text': '"""Video displayed within a full-page-width block"""'}), "(template=\n 'core/includes/_video_full_width.html', help_text=\n 'Video displayed within a full-page-width block')\n", (21456, 21575), True, 'from core import blocks as core_blocks, mixins\n'), ((24000, 24026), 'exportplan.core.data.SECTIONS.items', 'EXPORTPLAN_URL_MAP.items', ([], {}), '()\n', (24024, 24026), True, 'from exportplan.core.data import SECTION_SLUGS as EXPORTPLAN_SLUGS, SECTIONS as EXPORTPLAN_URL_MAP\n'), ((26963, 26992), 'core.utils.get_first_lesson', 'get_first_lesson', (['next_module'], {}), '(next_module)\n', (26979, 26992), False, 'from core.utils import PageTopicHelper, get_first_lesson\n'), ((35311, 35368), 'wagtail.core.blocks.RichTextBlock', 'blocks.RichTextBlock', ([], {'features': 'RICHTEXT_FEATURES__MINIMAL'}), '(features=RICHTEXT_FEATURES__MINIMAL)\n', (35331, 35368), False, 'from wagtail.core import blocks\n'), ((35479, 35512), 'core.blocks.CaseStudyQuoteBlock', 'core_blocks.CaseStudyQuoteBlock', ([], {}), '()\n', (35510, 35512), True, 'from core import blocks as core_blocks, mixins\n'), ((36653, 36672), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""title"""'], {}), "('title')\n", (36663, 36672), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((36690, 36714), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""lead_title"""'], {}), "('lead_title')\n", (36700, 36714), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((36732, 36761), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""summary_context"""'], {}), "('summary_context')\n", (36742, 36761), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((36779, 36803), 'wagtail.admin.edit_handlers.StreamFieldPanel', 'StreamFieldPanel', (['"""body"""'], {}), "('body')\n", (36795, 36803), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((36928, 36954), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""hs_code_tags"""'], {}), "('hs_code_tags')\n", (36938, 36954), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((36972, 37003), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""country_code_tags"""'], {}), "('country_code_tags')\n", (36982, 37003), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((37021, 37051), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""region_code_tags"""'], {}), "('region_code_tags')\n", (37031, 37051), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((37069, 37105), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""trading_bloc_code_tags"""'], {}), "('trading_bloc_code_tags')\n", (37079, 37105), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((37247, 37298), 'wagtail.admin.edit_handlers.InlinePanel', 'InlinePanel', (['"""related_pages"""'], {'label': '"""Related pages"""'}), "('related_pages', label='Related pages')\n", (37258, 37298), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((40882, 40907), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""product_hs6"""'], {}), "('product_hs6')\n", (40892, 40907), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((40909, 40934), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""product_hs4"""'], {}), "('product_hs4')\n", (40919, 40934), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((40936, 40961), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""product_hs2"""'], {}), "('product_hs2')\n", (40946, 40961), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((41009, 41036), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""country_exact"""'], {}), "('country_exact')\n", (41019, 41036), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((41038, 41066), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""country_region"""'], {}), "('country_region')\n", (41048, 41066), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((41068, 41095), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""trading_blocs"""'], {}), "('trading_blocs')\n", (41078, 41095), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((41139, 41159), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""lesson"""'], {}), "('lesson')\n", (41149, 41159), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((41161, 41180), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""topic"""'], {}), "('topic')\n", (41171, 41180), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((41182, 41202), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""module"""'], {}), "('module')\n", (41192, 41202), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((41284, 41307), 'wagtail.admin.edit_handlers.FieldPanel', 'FieldPanel', (['"""threshold"""'], {}), "('threshold')\n", (41294, 41307), False, 'from wagtail.admin.edit_handlers import FieldPanel, InlinePanel, MultiFieldPanel, ObjectList, PageChooserPanel, StreamFieldPanel, TabbedInterface\n'), ((3277, 3330), 'django.urls.reverse', 'reverse', (['"""core:subtitles-serve"""'], {'args': "[self.id, 'en']"}), "('core:subtitles-serve', args=[self.id, 'en'])\n", (3284, 3330), False, 'from django.urls import reverse\n'), ((2843, 2878), 'mimetypes.guess_type', 'mimetypes.guess_type', (['self.filename'], {}), '(self.filename)\n', (2863, 2878), False, 'import mimetypes\n'), ((18844, 18866), 'wagtail.core.blocks.RichTextBlock', 'blocks.RichTextBlock', ([], {}), '()\n', (18864, 18866), False, 'from wagtail.core import blocks\n'), ((19111, 19135), 'core.blocks.VideoBlock', 'core_blocks.VideoBlock', ([], {}), '()\n', (19133, 19135), True, 'from core import blocks as core_blocks, mixins\n'), ((19583, 19621), 'wagtail.core.blocks.RichTextBlock', 'blocks.RichTextBlock', ([], {'icon': '"""openquote"""'}), "(icon='openquote')\n", (19603, 19621), False, 'from wagtail.core import blocks\n'), ((21828, 21862), 'wagtail.core.blocks.CharBlock', 'blocks.CharBlock', ([], {'icon': '"""fa-header"""'}), "(icon='fa-header')\n", (21844, 21862), False, 'from wagtail.core import blocks\n'), ((34997, 35074), 'core.blocks.SimpleVideoBlock', 'core_blocks.SimpleVideoBlock', ([], {'template': '"""core/includes/_case_study_video.html"""'}), "(template='core/includes/_case_study_video.html')\n", (35025, 35074), True, 'from core import blocks as core_blocks, mixins\n'), ((35111, 35135), 'core.blocks.ImageBlock', 'core_blocks.ImageBlock', ([], {}), '()\n', (35133, 35135), True, 'from core import blocks as core_blocks, mixins\n'), ((20266, 20305), 'core.blocks.Item', 'core_blocks.Item', ([], {'icon': '"""fa-arrow-right"""'}), "(icon='fa-arrow-right')\n", (20282, 20305), True, 'from core import blocks as core_blocks, mixins\n'), ((20707, 20746), 'core.blocks.Item', 'core_blocks.Item', ([], {'icon': '"""fa-arrow-right"""'}), "(icon='fa-arrow-right')\n", (20723, 20746), True, 'from core import blocks as core_blocks, mixins\n'), ((22135, 22153), 'core.blocks.Item', 'core_blocks.Item', ([], {}), '()\n', (22151, 22153), True, 'from core import blocks as core_blocks, mixins\n')]
# -*-coding utf-8 -*- ########################################################################## # # Copyright (c) 2022 Baidu.com, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ########################################################################## """ 数据变换器 """ import numpy as np import numbers import collections import random import math import cv2 from . import functional as F from easymia.core.abstract_transforms import AbstractTransform from easymia.libs import manager @manager.TRANSFORMS.add_component class Compose(AbstractTransform): """ Do transformation on input data with corresponding pre-processing and augmentation operations. The shape of input data to all operations is [height, width, channels]. Args: transforms (list): A list contains data pre-processing or augmentation. Empty list means only reading images, no transformation. to_rgb (bool, optional): If converting image to RGB color space. Default: True. Raises: TypeError: When 'transforms' is not a list. ValueError: when the length of 'transforms' is less than 1. """ def __init__(self, mode, transforms): if not isinstance(transforms, list): raise TypeError('The transforms must be a list!') self.transforms = transforms super().__init__(mode) def __clas__(self, im): """ Args: im (np.ndarray): It is either image path or image object. Returns: (np.array). Image after transformation. """ for op in self.transforms: im = op(im) return im @manager.TRANSFORMS.add_component class RandomHorizontalFlip(AbstractTransform): """Horizontally flip the given PIL Image randomly with a given probability. Args: p (float): probability of the image being flipped. Default value is 0.5 """ def __init__(self, mode, prob=0.5): """ init """ self.prob = prob super().__init__(mode) def __clas__(self, img): """ Args: img (numpy ndarray): Image to be flipped. Returns: numpy ndarray: Randomly flipped image. """ if random.random() < self.prob: return F.hflip(img) return img @manager.TRANSFORMS.add_component class RandomVerticalFlip(AbstractTransform): """Vertically flip the given PIL Image randomly with a given probability. Args: p (float): probability of the image being flipped. Default value is 0.5 """ def __init__(self, mode, prob=0.5): """ init """ self.prob = prob super().__init__(mode) def __clas__(self, img): """ Args: img (numpy ndarray): Image to be flipped. Returns: numpy ndarray: Randomly flipped image. """ if random.random() < self.prob: return F.vflip(img) return img @manager.TRANSFORMS.add_component class RandomResizedCrop(AbstractTransform): """Crop the given numpy ndarray to random size and aspect ratio. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: cv2.INTER_CUBIC """ def __init__(self, mode, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=cv2.INTER_CUBIC): """ init """ self.size = (size, size) self.interpolation = interpolation self.scale = scale self.ratio = ratio super().__init__(mode) def get_params(self, img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (numpy ndarray): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ params_ret = collections.namedtuple('params_ret', ['i', 'j', 'h', 'w']) for attempt in range(10): area = img.shape[0] * img.shape[1] target_area = random.uniform(*scale) * area aspect_ratio = random.uniform(*ratio) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if random.random() < 0.5: w, h = h, w if w <= img.shape[1] and h <= img.shape[0]: i = random.randint(0, img.shape[0] - h) j = random.randint(0, img.shape[1] - w) return params_ret(i, j, h, w) # Fallback w = min(img.shape[0], img.shape[1]) i = (img.shape[0] - w) // 2 j = (img.shape[1] - w) // 2 return params_ret(i, j, w, w) def __clas__(self, img): """ Args: img (numpy ndarray): Image to be cropped and resized. Returns: numpy ndarray: Randomly cropped and resized image. """ i, j, h, w = self.get_params(img, self.scale, self.ratio) return F.resized_crop(img, i, j, h, w, self.size, self.interpolation) @manager.TRANSFORMS.add_component class RandomRotation(AbstractTransform): """Rotate the image by angle. Args: degrees (sequence or float or int): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). resample ({cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4}, optional): An optional resampling filter. See `filters`_ for more information. If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. expand (bool, optional): Optional expansion flag. If true, expands the output to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ def __init__(self, mode, degrees, center=None): """ init """ if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError( "If degrees is a single number, it must be positive.") self.degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError( "If degrees is a sequence, it must be of len 2.") self.degrees = degrees self.center = center super().__init__(mode) @staticmethod def get_params(degrees): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ angle = random.uniform(degrees[0], degrees[1]) return angle def __clas__(self, img): """ img (numpy ndarray): Image to be rotated. Returns: numpy ndarray: Rotated image. """ angle = self.get_params(self.degrees) return F.rotate(img, angle, self.center) @manager.TRANSFORMS.add_component class Resize(AbstractTransform): """Resize the input numpy ndarray to the given size. Args: size (sequence or int): Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if height > width, then image will be rescaled to (size * height / width, size) interpolation (int, optional): Desired interpolation. Default is ``cv2.INTER_CUBIC``, bicubic interpolation """ def __init__(self, mode, size, interpolation=cv2.INTER_LINEAR): """ resize """ # assert isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2) if isinstance(size, int): self.size = (size, size) elif isinstance(size, collections.abc.Iterable) and len(size) == 2: if type(size) == list: size = tuple(size) self.size = size else: raise ValueError('Unknown inputs for size: {}'.format(size)) self.interpolation = interpolation super().__init__(mode) def __clas__(self, img): """ Args: img (numpy ndarray): Image to be scaled. Returns: numpy ndarray: Rescaled image. """ return F.resize(img, self.size, self.interpolation)
[ "random.uniform", "collections.namedtuple", "math.sqrt", "random.random", "random.randint" ]
[((4959, 5017), 'collections.namedtuple', 'collections.namedtuple', (['"""params_ret"""', "['i', 'j', 'h', 'w']"], {}), "('params_ret', ['i', 'j', 'h', 'w'])\n", (4981, 5017), False, 'import collections\n'), ((8071, 8109), 'random.uniform', 'random.uniform', (['degrees[0]', 'degrees[1]'], {}), '(degrees[0], degrees[1])\n', (8085, 8109), False, 'import random\n'), ((2737, 2752), 'random.random', 'random.random', ([], {}), '()\n', (2750, 2752), False, 'import random\n'), ((3417, 3432), 'random.random', 'random.random', ([], {}), '()\n', (3430, 3432), False, 'import random\n'), ((5182, 5204), 'random.uniform', 'random.uniform', (['*ratio'], {}), '(*ratio)\n', (5196, 5204), False, 'import random\n'), ((5125, 5147), 'random.uniform', 'random.uniform', (['*scale'], {}), '(*scale)\n', (5139, 5147), False, 'import random\n'), ((5354, 5369), 'random.random', 'random.random', ([], {}), '()\n', (5367, 5369), False, 'import random\n'), ((5482, 5517), 'random.randint', 'random.randint', (['(0)', '(img.shape[0] - h)'], {}), '(0, img.shape[0] - h)\n', (5496, 5517), False, 'import random\n'), ((5538, 5573), 'random.randint', 'random.randint', (['(0)', '(img.shape[1] - w)'], {}), '(0, img.shape[1] - w)\n', (5552, 5573), False, 'import random\n'), ((5232, 5269), 'math.sqrt', 'math.sqrt', (['(target_area * aspect_ratio)'], {}), '(target_area * aspect_ratio)\n', (5241, 5269), False, 'import math\n'), ((5298, 5335), 'math.sqrt', 'math.sqrt', (['(target_area / aspect_ratio)'], {}), '(target_area / aspect_ratio)\n', (5307, 5335), False, 'import math\n')]
# -*- coding: utf-8 -*- # # This file is part of menRva. # Copyright (C) 2018-present NU,FSM,GHSL. # # menRva is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Test terms views.py""" from cd2h_repo_project.modules.terms.views import serialize_terms_for_edit_ui def test_serialize_terms_for_edit_ui(create_record): deposit = create_record( { 'terms': [ {'source': 'MeSH', 'value': 'Cognitive Neuroscience'}, {'source': 'FAST', 'value': 'Border terrier'} ] }, published=False ) serialized_deposit = serialize_terms_for_edit_ui(deposit) assert 'terms' not in serialized_deposit assert serialized_deposit['mesh_terms'] == [ { 'data': {'source': 'MeSH', 'value': 'Cognitive Neuroscience'} } ] assert serialized_deposit['fast_terms'] == [ { 'data': {'source': 'FAST', 'value': 'Border terrier'} } ] def test_serialize_terms_for_edit_ui_no_terms(create_record): deposit = create_record(published=False) serialized_deposit = serialize_terms_for_edit_ui(deposit) assert 'terms' not in serialized_deposit assert serialized_deposit['mesh_terms'] == [] assert serialized_deposit['fast_terms'] == []
[ "cd2h_repo_project.modules.terms.views.serialize_terms_for_edit_ui" ]
[((679, 715), 'cd2h_repo_project.modules.terms.views.serialize_terms_for_edit_ui', 'serialize_terms_for_edit_ui', (['deposit'], {}), '(deposit)\n', (706, 715), False, 'from cd2h_repo_project.modules.terms.views import serialize_terms_for_edit_ui\n'), ((1187, 1223), 'cd2h_repo_project.modules.terms.views.serialize_terms_for_edit_ui', 'serialize_terms_for_edit_ui', (['deposit'], {}), '(deposit)\n', (1214, 1223), False, 'from cd2h_repo_project.modules.terms.views import serialize_terms_for_edit_ui\n')]
# -*- coding: utf-8 -*- """Classes (Python) to compute the Bandit UCB (Upper Confidence Bound) arm allocation and choosing the arm to pull next. See :mod:`moe.bandit.bandit_interface` for further details on bandit. """ import copy from abc import abstractmethod from moe.bandit.bandit_interface import BanditInterface from moe.bandit.utils import get_winning_arm_names_from_payoff_arm_name_list, get_equal_arm_allocations class UCBInterface(BanditInterface): r"""Implementation of the constructor of UCB (Upper Confidence Bound) and method allocate_arms. The method get_ucb_payoff is implemented in subclass. A class to encapsulate the computation of bandit UCB. The Algorithm: http://moodle.technion.ac.il/pluginfile.php/192340/mod_resource/content/0/UCB.pdf To inherit this class, a subclass needs to implement get_ucb_payoff (see :func:`moe.bandit.ucb.ucb1.UCB1.get_ucb_payoff` for an example), everything else is already implemented. See :mod:`moe.bandit.bandit_interface` docs for further details. """ def __init__( self, historical_info, subtype=None, ): """Construct a UCB object. :param historical_info: a dictionary of arms sampled :type historical_info: dictionary of (str, SampleArm()) pairs (see :class:`moe.bandit.data_containers.SampleArm` for more details) :param subtype: subtype of the UCB bandit algorithm (default: None) :type subtype: str """ self._historical_info = copy.deepcopy(historical_info) self._subtype = subtype @staticmethod def get_unsampled_arm_names(arms_sampled): r"""Compute the set of unsampled arm names based on the given ``arms_sampled``.. Throws an exception when arms_sampled is empty. :param arms_sampled: a dictionary of arm name to :class:`moe.bandit.data_containers.SampleArm` :type arms_sampled: dictionary of (str, SampleArm()) pairs :return: set of names of the unsampled arms :rtype: frozenset(str) :raise: ValueError when ``arms_sampled`` are empty. """ if not arms_sampled: raise ValueError('arms_sampled is empty!') unsampled_arm_name_list = [name for name, sampled_arm in arms_sampled.iteritems() if sampled_arm.total == 0] return frozenset(unsampled_arm_name_list) @abstractmethod def get_ucb_payoff(self, sampled_arm, number_sampled): r"""Compute the expected upper confidence bound payoff using the UCB subtype formula. See definition in subclasses for details. :param sampled_arm: a sampled arm :type sampled_arm: :class:`moe.bandit.data_containers.SampleArm` :param number_sampled: the overall number of pulls so far :type number_sampled: int :return: ucb payoff :rtype: float64 :raise: ValueError when ``sampled_arm`` is empty. """ pass def allocate_arms(self): r"""Compute the allocation to each arm given ``historical_info``, running bandit ``subtype`` endpoint. Computes the allocation to each arm based on the given subtype, and, historical info. Works with k-armed bandits (k >= 1). The Algorithm: http://moodle.technion.ac.il/pluginfile.php/192340/mod_resource/content/0/UCB.pdf If there is at least one unsampled arm, this method will choose to pull the unsampled arm (randomly choose an unsampled arm if there are multiple unsampled arms). If all arms are pulled at least once, this method will pull the optimal arm (best expected upper confidence bound payoff). See :func:`moe.bandit.ucb.ucb_interface.UCBInterface.get_ucb_payoff` for details on how to compute the expected upper confidence bound payoff (expected UCB payoff) In case of a tie, the method will split the allocation among the optimal arms. For example, if we have three arms (arm1, arm2, and arm3) with expected UCB payoff 0.5, 0.5, and 0.1 respectively. We split the allocation between the optimal arms arm1 and arm2. ``{arm1: 0.5, arm2: 0.5, arm3: 0.0}`` :return: the dictionary of (arm, allocation) key-value pairs :rtype: a dictionary of (str, float64) pairs :raise: ValueError when ``sample_arms`` are empty. """ arms_sampled = self._historical_info.arms_sampled if not arms_sampled: raise ValueError('sample_arms are empty!') return get_equal_arm_allocations(arms_sampled, self.get_winning_arm_names(arms_sampled)) def get_winning_arm_names(self, arms_sampled): r"""Compute the set of winning arm names based on the given ``arms_sampled``.. Throws an exception when arms_sampled is empty. :param arms_sampled: a dictionary of arm name to :class:`moe.bandit.data_containers.SampleArm` :type arms_sampled: dictionary of (str, SampleArm()) pairs :return: set of names of the winning arms :rtype: frozenset(str) :raise: ValueError when ``arms_sampled`` are empty. """ if not arms_sampled: raise ValueError('arms_sampled is empty!') # If there exists an unsampled arm, return the names of the unsampled arms unsampled_arm_names = self.get_unsampled_arm_names(arms_sampled) if unsampled_arm_names: return unsampled_arm_names number_sampled = sum([sampled_arm.total for sampled_arm in arms_sampled.itervalues()]) ucb_payoff_arm_name_list = [(self.get_ucb_payoff(sampled_arm, number_sampled), arm_name) for arm_name, sampled_arm in arms_sampled.iteritems()] return get_winning_arm_names_from_payoff_arm_name_list(ucb_payoff_arm_name_list)
[ "moe.bandit.utils.get_winning_arm_names_from_payoff_arm_name_list", "copy.deepcopy" ]
[((1529, 1559), 'copy.deepcopy', 'copy.deepcopy', (['historical_info'], {}), '(historical_info)\n', (1542, 1559), False, 'import copy\n'), ((5703, 5776), 'moe.bandit.utils.get_winning_arm_names_from_payoff_arm_name_list', 'get_winning_arm_names_from_payoff_arm_name_list', (['ucb_payoff_arm_name_list'], {}), '(ucb_payoff_arm_name_list)\n', (5750, 5776), False, 'from moe.bandit.utils import get_winning_arm_names_from_payoff_arm_name_list, get_equal_arm_allocations\n')]
import numpy as np from yt.geometry.selection_routines import GridSelector from yt.utilities.io_handler import BaseIOHandler from yt.utilities.logger import ytLogger as mylog from yt.utilities.on_demand_imports import _h5py as h5py _convert_mass = ("particle_mass", "mass") _particle_position_names = {} class IOHandlerPackedHDF5(BaseIOHandler): _dataset_type = "enzo_packed_3d" _base = slice(None) _field_dtype = "float64" def _read_field_names(self, grid): if grid.filename is None: return [] f = h5py.File(grid.filename, mode="r") try: group = f["/Grid%08i" % grid.id] except KeyError: group = f fields = [] dtypes = set() add_io = "io" in grid.ds.particle_types add_dm = "DarkMatter" in grid.ds.particle_types for name, v in group.items(): # NOTE: This won't work with 1D datasets or references. # For all versions of Enzo I know about, we can assume all floats # are of the same size. So, let's grab one. if not hasattr(v, "shape") or v.dtype == "O": continue elif len(v.dims) == 1: if grid.ds.dimensionality == 1: fields.append(("enzo", str(name))) elif add_io: fields.append(("io", str(name))) elif add_dm: fields.append(("DarkMatter", str(name))) else: fields.append(("enzo", str(name))) dtypes.add(v.dtype) if len(dtypes) == 1: # Now, if everything we saw was the same dtype, we can go ahead and # set it here. We do this because it is a HUGE savings for 32 bit # floats, since our numpy copying/casting is way faster than # h5py's, for some reason I don't understand. This does *not* need # to be correct -- it will get fixed later -- it just needs to be # okay for now. self._field_dtype = list(dtypes)[0] f.close() return fields @property def _read_exception(self): return (KeyError,) def _read_particle_coords(self, chunks, ptf): yield from self._read_particle_fields(chunks, ptf, None) def _read_particle_fields(self, chunks, ptf, selector): chunks = list(chunks) for chunk in chunks: # These should be organized by grid filename f = None for g in chunk.objs: if g.filename is None: continue if f is None: # print("Opening (read) %s" % g.filename) f = h5py.File(g.filename, mode="r") nap = sum(g.NumberOfActiveParticles.values()) if g.NumberOfParticles == 0 and nap == 0: continue ds = f.get("/Grid%08i" % g.id) for ptype, field_list in sorted(ptf.items()): if ptype == "io": if g.NumberOfParticles == 0: continue pds = ds elif ptype == "DarkMatter": if g.NumberOfActiveParticles[ptype] == 0: continue pds = ds elif not g.NumberOfActiveParticles[ptype]: continue else: for pname in ["Active Particles", "Particles"]: pds = ds.get(f"{pname}/{ptype}") if pds is not None: break else: raise RuntimeError( "Could not find active particle group in data." ) pn = _particle_position_names.get(ptype, r"particle_position_%s") x, y, z = ( np.asarray(pds.get(pn % ax)[()], dtype="=f8") for ax in "xyz" ) if selector is None: # This only ever happens if the call is made from # _read_particle_coords. yield ptype, (x, y, z) continue mask = selector.select_points(x, y, z, 0.0) if mask is None: continue for field in field_list: data = np.asarray(pds.get(field)[()], "=f8") if field in _convert_mass: data *= g.dds.prod(dtype="f8") yield (ptype, field), data[mask] if f: f.close() def io_iter(self, chunks, fields): h5_dtype = self._field_dtype for chunk in chunks: fid = None filename = -1 for obj in chunk.objs: if obj.filename is None: continue if obj.filename != filename: # Note one really important thing here: even if we do # implement LRU caching in the _read_obj_field function, # we'll still be doing file opening and whatnot. This is a # problem, but one we can return to. if fid is not None: fid.close() fid = h5py.h5f.open( obj.filename.encode("latin-1"), h5py.h5f.ACC_RDONLY ) filename = obj.filename for field in fields: nodal_flag = self.ds.field_info[field].nodal_flag dims = obj.ActiveDimensions[::-1] + nodal_flag[::-1] data = np.empty(dims, dtype=h5_dtype) yield field, obj, self._read_obj_field(obj, field, (fid, data)) if fid is not None: fid.close() def _read_obj_field(self, obj, field, fid_data): if fid_data is None: fid_data = (None, None) fid, data = fid_data if fid is None: close = True fid = h5py.h5f.open(obj.filename.encode("latin-1"), h5py.h5f.ACC_RDONLY) else: close = False if data is None: data = np.empty(obj.ActiveDimensions[::-1], dtype=self._field_dtype) ftype, fname = field try: node = "/Grid%08i/%s" % (obj.id, fname) dg = h5py.h5d.open(fid, node.encode("latin-1")) except KeyError: if fname == "Dark_Matter_Density": data[:] = 0 return data.T raise dg.read(h5py.h5s.ALL, h5py.h5s.ALL, data) # I don't know why, but on some installations of h5py this works, but # on others, nope. Doesn't seem to be a version thing. # dg.close() if close: fid.close() return data.T class IOHandlerPackedHDF5GhostZones(IOHandlerPackedHDF5): _dataset_type = "enzo_packed_3d_gz" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) NGZ = self.ds.parameters.get("NumberOfGhostZones", 3) self._base = (slice(NGZ, -NGZ), slice(NGZ, -NGZ), slice(NGZ, -NGZ)) def _read_obj_field(self, *args, **kwargs): return super()._read_obj_field(*args, **kwargs)[self._base] class IOHandlerInMemory(BaseIOHandler): _dataset_type = "enzo_inline" def __init__(self, ds, ghost_zones=3): self.ds = ds import enzo self.enzo = enzo self.grids_in_memory = enzo.grid_data self.old_grids_in_memory = enzo.old_grid_data self.my_slice = ( slice(ghost_zones, -ghost_zones), slice(ghost_zones, -ghost_zones), slice(ghost_zones, -ghost_zones), ) BaseIOHandler.__init__(self, ds) def _read_field_names(self, grid): fields = [] add_io = "io" in grid.ds.particle_types for name, v in self.grids_in_memory[grid.id].items(): # NOTE: This won't work with 1D datasets or references. if not hasattr(v, "shape") or v.dtype == "O": continue elif v.ndim == 1: if grid.ds.dimensionality == 1: fields.append(("enzo", str(name))) elif add_io: fields.append(("io", str(name))) else: fields.append(("enzo", str(name))) return fields def _read_fluid_selection(self, chunks, selector, fields, size): rv = {} # Now we have to do something unpleasant chunks = list(chunks) if isinstance(selector, GridSelector): if not (len(chunks) == len(chunks[0].objs) == 1): raise RuntimeError g = chunks[0].objs[0] for ftype, fname in fields: rv[(ftype, fname)] = self.grids_in_memory[g.id][fname].swapaxes(0, 2) return rv if size is None: size = sum(g.count(selector) for chunk in chunks for g in chunk.objs) for field in fields: ftype, fname = field fsize = size rv[field] = np.empty(fsize, dtype="float64") ng = sum(len(c.objs) for c in chunks) mylog.debug( "Reading %s cells of %s fields in %s grids", size, [f2 for f1, f2 in fields], ng, ) ind = 0 for chunk in chunks: for g in chunk.objs: # We want a *hard error* here. # if g.id not in self.grids_in_memory: continue for field in fields: ftype, fname = field data_view = self.grids_in_memory[g.id][fname][ self.my_slice ].swapaxes(0, 2) nd = g.select(selector, data_view, rv[field], ind) ind += nd assert ind == fsize return rv def _read_particle_coords(self, chunks, ptf): chunks = list(chunks) for chunk in chunks: # These should be organized by grid filename for g in chunk.objs: if g.id not in self.grids_in_memory: continue nap = sum(g.NumberOfActiveParticles.values()) if g.NumberOfParticles == 0 and nap == 0: continue for ptype in sorted(ptf): x, y, z = ( self.grids_in_memory[g.id]["particle_position_x"], self.grids_in_memory[g.id]["particle_position_y"], self.grids_in_memory[g.id]["particle_position_z"], ) yield ptype, (x, y, z) def _read_particle_fields(self, chunks, ptf, selector): chunks = list(chunks) for chunk in chunks: # These should be organized by grid filename for g in chunk.objs: if g.id not in self.grids_in_memory: continue nap = sum(g.NumberOfActiveParticles.values()) if g.NumberOfParticles == 0 and nap == 0: continue for ptype, field_list in sorted(ptf.items()): x, y, z = ( self.grids_in_memory[g.id]["particle_position_x"], self.grids_in_memory[g.id]["particle_position_y"], self.grids_in_memory[g.id]["particle_position_z"], ) mask = selector.select_points(x, y, z, 0.0) if mask is None: continue for field in field_list: data = self.grids_in_memory[g.id][field] if field in _convert_mass: data = data * g.dds.prod(dtype="f8") yield (ptype, field), data[mask] class IOHandlerPacked2D(IOHandlerPackedHDF5): _dataset_type = "enzo_packed_2d" _particle_reader = False def _read_data_set(self, grid, field): f = h5py.File(grid.filename, mode="r") ds = f["/Grid%08i/%s" % (grid.id, field)][:] f.close() return ds.transpose()[:, :, None] def _read_fluid_selection(self, chunks, selector, fields, size): rv = {} # Now we have to do something unpleasant chunks = list(chunks) if isinstance(selector, GridSelector): if not (len(chunks) == len(chunks[0].objs) == 1): raise RuntimeError g = chunks[0].objs[0] f = h5py.File(g.filename, mode="r") gds = f.get("/Grid%08i" % g.id) for ftype, fname in fields: rv[(ftype, fname)] = np.atleast_3d(gds.get(fname)[()].transpose()) f.close() return rv if size is None: size = sum(g.count(selector) for chunk in chunks for g in chunk.objs) for field in fields: ftype, fname = field fsize = size rv[field] = np.empty(fsize, dtype="float64") ng = sum(len(c.objs) for c in chunks) mylog.debug( "Reading %s cells of %s fields in %s grids", size, [f2 for f1, f2 in fields], ng, ) ind = 0 for chunk in chunks: f = None for g in chunk.objs: if f is None: # print("Opening (count) %s" % g.filename) f = h5py.File(g.filename, mode="r") gds = f.get("/Grid%08i" % g.id) if gds is None: gds = f for field in fields: ftype, fname = field ds = np.atleast_3d(gds.get(fname)[()].transpose()) nd = g.select(selector, ds, rv[field], ind) # caches ind += nd f.close() return rv class IOHandlerPacked1D(IOHandlerPackedHDF5): _dataset_type = "enzo_packed_1d" _particle_reader = False def _read_data_set(self, grid, field): f = h5py.File(grid.filename, mode="r") ds = f["/Grid%08i/%s" % (grid.id, field)][:] f.close() return ds.transpose()[:, None, None]
[ "yt.utilities.on_demand_imports._h5py.File", "yt.utilities.io_handler.BaseIOHandler.__init__", "numpy.empty", "yt.utilities.logger.ytLogger.debug" ]
[((550, 584), 'yt.utilities.on_demand_imports._h5py.File', 'h5py.File', (['grid.filename'], {'mode': '"""r"""'}), "(grid.filename, mode='r')\n", (559, 584), True, 'from yt.utilities.on_demand_imports import _h5py as h5py\n'), ((7940, 7972), 'yt.utilities.io_handler.BaseIOHandler.__init__', 'BaseIOHandler.__init__', (['self', 'ds'], {}), '(self, ds)\n', (7962, 7972), False, 'from yt.utilities.io_handler import BaseIOHandler\n'), ((9396, 9493), 'yt.utilities.logger.ytLogger.debug', 'mylog.debug', (['"""Reading %s cells of %s fields in %s grids"""', 'size', '[f2 for f1, f2 in fields]', 'ng'], {}), "('Reading %s cells of %s fields in %s grids', size, [f2 for f1,\n f2 in fields], ng)\n", (9407, 9493), True, 'from yt.utilities.logger import ytLogger as mylog\n'), ((12245, 12279), 'yt.utilities.on_demand_imports._h5py.File', 'h5py.File', (['grid.filename'], {'mode': '"""r"""'}), "(grid.filename, mode='r')\n", (12254, 12279), True, 'from yt.utilities.on_demand_imports import _h5py as h5py\n'), ((13300, 13397), 'yt.utilities.logger.ytLogger.debug', 'mylog.debug', (['"""Reading %s cells of %s fields in %s grids"""', 'size', '[f2 for f1, f2 in fields]', 'ng'], {}), "('Reading %s cells of %s fields in %s grids', size, [f2 for f1,\n f2 in fields], ng)\n", (13311, 13397), True, 'from yt.utilities.logger import ytLogger as mylog\n'), ((14269, 14303), 'yt.utilities.on_demand_imports._h5py.File', 'h5py.File', (['grid.filename'], {'mode': '"""r"""'}), "(grid.filename, mode='r')\n", (14278, 14303), True, 'from yt.utilities.on_demand_imports import _h5py as h5py\n'), ((6390, 6451), 'numpy.empty', 'np.empty', (['obj.ActiveDimensions[::-1]'], {'dtype': 'self._field_dtype'}), '(obj.ActiveDimensions[::-1], dtype=self._field_dtype)\n', (6398, 6451), True, 'import numpy as np\n'), ((9309, 9341), 'numpy.empty', 'np.empty', (['fsize'], {'dtype': '"""float64"""'}), "(fsize, dtype='float64')\n", (9317, 9341), True, 'import numpy as np\n'), ((12752, 12783), 'yt.utilities.on_demand_imports._h5py.File', 'h5py.File', (['g.filename'], {'mode': '"""r"""'}), "(g.filename, mode='r')\n", (12761, 12783), True, 'from yt.utilities.on_demand_imports import _h5py as h5py\n'), ((13213, 13245), 'numpy.empty', 'np.empty', (['fsize'], {'dtype': '"""float64"""'}), "(fsize, dtype='float64')\n", (13221, 13245), True, 'import numpy as np\n'), ((2705, 2736), 'yt.utilities.on_demand_imports._h5py.File', 'h5py.File', (['g.filename'], {'mode': '"""r"""'}), "(g.filename, mode='r')\n", (2714, 2736), True, 'from yt.utilities.on_demand_imports import _h5py as h5py\n'), ((5857, 5887), 'numpy.empty', 'np.empty', (['dims'], {'dtype': 'h5_dtype'}), '(dims, dtype=h5_dtype)\n', (5865, 5887), True, 'import numpy as np\n'), ((13669, 13700), 'yt.utilities.on_demand_imports._h5py.File', 'h5py.File', (['g.filename'], {'mode': '"""r"""'}), "(g.filename, mode='r')\n", (13678, 13700), True, 'from yt.utilities.on_demand_imports import _h5py as h5py\n')]
#!/usr/bin/env python3 # Crypto trading bot using binance api # Author: LeonardoM011<<EMAIL>> # Created on 2021-02-05 21:56 # Set constants here: DELTA_TIME = 300 # How long can we check for setting up new trade (in seconds) # ---------------------- # Imports: import os import sys import time as t import datetime # Adding python-binance to path and importing python-binance sys.path.insert(1, "../deps/binance") from binance.client import Client from fun import * import candles as can # Globals: client = None # Main program loop def start(): hour_repeated = -1 try: while True: time = datetime.datetime.now() hour = time.hour minute = time.minute open_trade = client.futures_get_open_orders() if minute < 10: if not open_trade and hour_repeated != hour: candles = client.futures_klines(symbol="BTCUSDT", interval=Client.KLINE_INTERVAL_1HOUR, contractType="PERPETUAL") info = can.get_candle_info(candles[:-1]) candle_side = can.get_side(info) if candle_side: output.print_info('Initiating trade...') #current_price = client.futures_mark_price(symbol="BTCUSDT", contractType="PERPETUAL")['markPrice'] close_price = candles client.futures_create_order(symbol="BTCUSDT", side=candle_side, type=Client.ORDER_TYPE_MARKET, quantity=0.001) client.futures_create_order(symbol="BTCUSDT", side=can.flip_side(candle_side), type=Client.ORDER_TYPE_STOP_LOSS_LIMIT, quantity=0.001, price=57975.0, stopPrice=57976.0, workingType="MARK_PRICE") hour_repeated = hour t.sleep(300) except KeyboardInterrupt: print('Program canceled...') def connect(): while True: api_key = get_api_key("BINANCE_API_KEY") api_secret = get_api_key("BINANCE_API_SECRET_KEY") output.print_info('Connecting to binance...') global client client = Client(api_key, api_secret) if check_connectivity(client): output.print_ok('Successfully connected to binance.') if check_account_status(client): output.print_ok('Successfully connected using api keys.') return output.print_failed('Cannot connect to binance with api keys.') def main(): output.print_ok('Starting kobe trading bot...') connect() start() #try: # client.get_all_orders() #except BinanceAPIException as e: # print e.status_code # print e.message # datetime.datetime.now().year #btcusdt_price = requests.get("https://api.binance.com/api/v3/ticker/price?symbol=BTCUSDT") #if (btcusdt_price.status_code != 200): # print("Error connecting to api server to get price") # return #print("Successfully connected and got price") #while(True): # btcusdt_price = requests.get("https://api.binance.com/api/v3/ticker/price?symbol=BTCUSDT") # print("BTC/USDT: {}".format(btcusdt_price.json()['price'])) # time.sleep(1.0) #btcusdtindex = find_index_of('symbol', 'BTCUSDT', client.get_all_tickers()) #while (True): # print(client.get_all_tickers()[btcusdtindex]) # time.sleep(5.0) # client.futures_create_order(symbol="BTCUSDT", side="SELL", type="STOP", quantity=0.001, price=57975.0, stopPrice=57976.0, workingType="MARK_PRICE") # client.futures_create_order(symbol="BTCUSDT", side="BUY", type="MARKET", quantity=0.001) if __name__ == "__main__": main()
[ "binance.client.Client", "sys.path.insert", "time.sleep", "datetime.datetime.now", "candles.flip_side", "candles.get_candle_info", "candles.get_side" ]
[((402, 439), 'sys.path.insert', 'sys.path.insert', (['(1)', '"""../deps/binance"""'], {}), "(1, '../deps/binance')\n", (417, 439), False, 'import sys\n'), ((2173, 2200), 'binance.client.Client', 'Client', (['api_key', 'api_secret'], {}), '(api_key, api_secret)\n', (2179, 2200), False, 'from binance.client import Client\n'), ((660, 683), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (681, 683), False, 'import datetime\n'), ((1839, 1851), 'time.sleep', 't.sleep', (['(300)'], {}), '(300)\n', (1846, 1851), True, 'import time as t\n'), ((1061, 1094), 'candles.get_candle_info', 'can.get_candle_info', (['candles[:-1]'], {}), '(candles[:-1])\n', (1080, 1094), True, 'import candles as can\n'), ((1130, 1148), 'candles.get_side', 'can.get_side', (['info'], {}), '(info)\n', (1142, 1148), True, 'import candles as can\n'), ((1636, 1662), 'candles.flip_side', 'can.flip_side', (['candle_side'], {}), '(candle_side)\n', (1649, 1662), True, 'import candles as can\n')]
import matplotlib.pyplot as plt import random import pickle from skimage.transform import rotate from scipy import ndimage from skimage.util import img_as_ubyte from joblib import Parallel, delayed from sklearn.ensemble.forest import _generate_unsampled_indices from sklearn.ensemble.forest import _generate_sample_indices import numpy as np from sklearn.ensemble import BaggingClassifier from sklearn.tree import DecisionTreeClassifier from itertools import product import keras from keras import layers from joblib import Parallel, delayed from multiprocessing import Pool import tensorflow as tf from numba import cuda import sys sys.path.append("../../proglearn/") from progressive_learner import ProgressiveLearner from deciders import SimpleArgmaxAverage from transformers import TreeClassificationTransformer, NeuralClassificationTransformer from voters import TreeClassificationVoter, KNNClassificationVoter def cross_val_data(data_x, data_y, total_cls=10): x = data_x.copy() y = data_y.copy() idx = [np.where(data_y == u)[0] for u in np.unique(data_y)] for i in range(total_cls): indx = idx[i]#np.roll(idx[i],(cv-1)*100) random.shuffle(indx) if i==0: train_x1 = x[indx[0:250],:] train_x2 = x[indx[250:500],:] train_y1 = y[indx[0:250]] train_y2 = y[indx[250:500]] test_x = x[indx[500:600],:] test_y = y[indx[500:600]] else: train_x1 = np.concatenate((train_x1, x[indx[0:250],:]), axis=0) train_x2 = np.concatenate((train_x2, x[indx[250:500],:]), axis=0) train_y1 = np.concatenate((train_y1, y[indx[0:250]]), axis=0) train_y2 = np.concatenate((train_y2, y[indx[250:500]]), axis=0) test_x = np.concatenate((test_x, x[indx[500:600],:]), axis=0) test_y = np.concatenate((test_y, y[indx[500:600]]), axis=0) return train_x1, train_y1, train_x2, train_y2, test_x, test_y def LF_experiment(data_x, data_y, angle, model, granularity, reps=1, ntrees=29, acorn=None): if acorn is not None: np.random.seed(acorn) errors = np.zeros(2) for rep in range(reps): print("Starting Rep {} of Angle {}".format(rep, angle)) train_x1, train_y1, train_x2, train_y2, test_x, test_y = cross_val_data(data_x, data_y, total_cls=10) #change data angle for second task tmp_data = train_x2.copy() _tmp_ = np.zeros((32,32,3), dtype=int) total_data = tmp_data.shape[0] for i in range(total_data): tmp_ = image_aug(tmp_data[i],angle) tmp_data[i] = tmp_ if model == "uf": train_x1 = train_x1.reshape((train_x1.shape[0], train_x1.shape[1] * train_x1.shape[2] * train_x1.shape[3])) tmp_data = tmp_data.reshape((tmp_data.shape[0], tmp_data.shape[1] * tmp_data.shape[2] * tmp_data.shape[3])) test_x = test_x.reshape((test_x.shape[0], test_x.shape[1] * test_x.shape[2] * test_x.shape[3])) with tf.device('/gpu:'+str(int(angle // granularity) % 4)): default_transformer_class = NeuralClassificationTransformer network = keras.Sequential() network.add(layers.Conv2D(filters=16, kernel_size=(3, 3), activation='relu', input_shape=np.shape(train_x1)[1:])) network.add(layers.BatchNormalization()) network.add(layers.Conv2D(filters=32, kernel_size=(3, 3), strides = 2, padding = "same", activation='relu')) network.add(layers.BatchNormalization()) network.add(layers.Conv2D(filters=64, kernel_size=(3, 3), strides = 2, padding = "same", activation='relu')) network.add(layers.BatchNormalization()) network.add(layers.Conv2D(filters=128, kernel_size=(3, 3), strides = 2, padding = "same", activation='relu')) network.add(layers.BatchNormalization()) network.add(layers.Conv2D(filters=254, kernel_size=(3, 3), strides = 2, padding = "same", activation='relu')) network.add(layers.Flatten()) network.add(layers.BatchNormalization()) network.add(layers.Dense(2000, activation='relu')) network.add(layers.BatchNormalization()) network.add(layers.Dense(2000, activation='relu')) network.add(layers.BatchNormalization()) network.add(layers.Dense(units=10, activation = 'softmax')) default_transformer_kwargs = {"network" : network, "euclidean_layer_idx" : -2, "num_classes" : 10, "optimizer" : keras.optimizers.Adam(3e-4) } default_voter_class = KNNClassificationVoter default_voter_kwargs = {"k" : int(np.log2(len(train_x1)))} default_decider_class = SimpleArgmaxAverage progressive_learner = ProgressiveLearner(default_transformer_class = default_transformer_class, default_transformer_kwargs = default_transformer_kwargs, default_voter_class = default_voter_class, default_voter_kwargs = default_voter_kwargs, default_decider_class = default_decider_class) progressive_learner.add_task( X = train_x1, y = train_y1, transformer_voter_decider_split = [0.67, 0.33, 0], decider_kwargs = {"classes" : np.unique(train_y1)} ) progressive_learner.add_transformer( X = tmp_data, y = train_y2, transformer_data_proportion = 1, backward_task_ids = [0] ) llf_task1=progressive_learner.predict(test_x, task_id=0) llf_single_task=progressive_learner.predict(test_x, task_id=0, transformer_ids=[0]) errors[1] = errors[1]+(1 - np.mean(llf_task1 == test_y)) errors[0] = errors[0]+(1 - np.mean(llf_single_task == test_y)) errors = errors/reps print("Errors For Angle {}: {}".format(angle, errors)) with open('rotation_results/angle_'+str(angle)+'_'+model+'.pickle', 'wb') as f: pickle.dump(errors, f, protocol = 2) def image_aug(pic, angle, centroid_x=23, centroid_y=23, win=16, scale=1.45): im_sz = int(np.floor(pic.shape[0]*scale)) pic_ = np.uint8(np.zeros((im_sz,im_sz,3),dtype=int)) pic_[:,:,0] = ndimage.zoom(pic[:,:,0],scale) pic_[:,:,1] = ndimage.zoom(pic[:,:,1],scale) pic_[:,:,2] = ndimage.zoom(pic[:,:,2],scale) image_aug = rotate(pic_, angle, resize=False) #print(image_aug.shape) image_aug_ = image_aug[centroid_x-win:centroid_x+win,centroid_y-win:centroid_y+win,:] return img_as_ubyte(image_aug_) ### MAIN HYPERPARAMS ### model = "dnn" granularity = 2 reps = 4 ######################## (X_train, y_train), (X_test, y_test) = keras.datasets.cifar100.load_data() data_x = np.concatenate([X_train, X_test]) data_y = np.concatenate([y_train, y_test]) data_y = data_y[:, 0] def perform_angle(angle): LF_experiment(data_x, data_y, angle, model, granularity, reps=reps, ntrees=16, acorn=1) if model == "dnn": for angle_adder in range(30, 180, granularity * 4): angles = angle_adder + np.arange(0, granularity * 4, granularity) with Pool(4) as p: p.map(perform_angle, angles) elif model == "uf": angles = np.arange(30,180,2) Parallel(n_jobs=-1)(delayed(LF_experiment)(data_x, data_y, angle, model, granularity, reps=20, ntrees=16, acorn=1) for angle in angles)
[ "keras.layers.Conv2D", "keras.layers.Dense", "sys.path.append", "scipy.ndimage.zoom", "numpy.arange", "keras.Sequential", "numpy.mean", "skimage.transform.rotate", "numpy.where", "keras.datasets.cifar100.load_data", "skimage.util.img_as_ubyte", "numpy.random.seed", "numpy.concatenate", "keras.optimizers.Adam", "random.shuffle", "keras.layers.Flatten", "numpy.floor", "progressive_learner.ProgressiveLearner", "keras.layers.BatchNormalization", "numpy.shape", "pickle.dump", "numpy.unique", "joblib.Parallel", "numpy.zeros", "multiprocessing.Pool", "joblib.delayed" ]
[((638, 673), 'sys.path.append', 'sys.path.append', (['"""../../proglearn/"""'], {}), "('../../proglearn/')\n", (653, 673), False, 'import sys\n'), ((7056, 7091), 'keras.datasets.cifar100.load_data', 'keras.datasets.cifar100.load_data', ([], {}), '()\n', (7089, 7091), False, 'import keras\n'), ((7101, 7134), 'numpy.concatenate', 'np.concatenate', (['[X_train, X_test]'], {}), '([X_train, X_test])\n', (7115, 7134), True, 'import numpy as np\n'), ((7144, 7177), 'numpy.concatenate', 'np.concatenate', (['[y_train, y_test]'], {}), '([y_train, y_test])\n', (7158, 7177), True, 'import numpy as np\n'), ((2145, 2156), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (2153, 2156), True, 'import numpy as np\n'), ((6589, 6622), 'scipy.ndimage.zoom', 'ndimage.zoom', (['pic[:, :, 0]', 'scale'], {}), '(pic[:, :, 0], scale)\n', (6601, 6622), False, 'from scipy import ndimage\n'), ((6639, 6672), 'scipy.ndimage.zoom', 'ndimage.zoom', (['pic[:, :, 1]', 'scale'], {}), '(pic[:, :, 1], scale)\n', (6651, 6672), False, 'from scipy import ndimage\n'), ((6688, 6721), 'scipy.ndimage.zoom', 'ndimage.zoom', (['pic[:, :, 2]', 'scale'], {}), '(pic[:, :, 2], scale)\n', (6700, 6721), False, 'from scipy import ndimage\n'), ((6736, 6769), 'skimage.transform.rotate', 'rotate', (['pic_', 'angle'], {'resize': '(False)'}), '(pic_, angle, resize=False)\n', (6742, 6769), False, 'from skimage.transform import rotate\n'), ((6900, 6924), 'skimage.util.img_as_ubyte', 'img_as_ubyte', (['image_aug_'], {}), '(image_aug_)\n', (6912, 6924), False, 'from skimage.util import img_as_ubyte\n'), ((1170, 1190), 'random.shuffle', 'random.shuffle', (['indx'], {}), '(indx)\n', (1184, 1190), False, 'import random\n'), ((2109, 2130), 'numpy.random.seed', 'np.random.seed', (['acorn'], {}), '(acorn)\n', (2123, 2130), True, 'import numpy as np\n'), ((2456, 2488), 'numpy.zeros', 'np.zeros', (['(32, 32, 3)'], {'dtype': 'int'}), '((32, 32, 3), dtype=int)\n', (2464, 2488), True, 'import numpy as np\n'), ((6352, 6386), 'pickle.dump', 'pickle.dump', (['errors', 'f'], {'protocol': '(2)'}), '(errors, f, protocol=2)\n', (6363, 6386), False, 'import pickle\n'), ((6483, 6513), 'numpy.floor', 'np.floor', (['(pic.shape[0] * scale)'], {}), '(pic.shape[0] * scale)\n', (6491, 6513), True, 'import numpy as np\n'), ((6533, 6571), 'numpy.zeros', 'np.zeros', (['(im_sz, im_sz, 3)'], {'dtype': 'int'}), '((im_sz, im_sz, 3), dtype=int)\n', (6541, 6571), True, 'import numpy as np\n'), ((7570, 7591), 'numpy.arange', 'np.arange', (['(30)', '(180)', '(2)'], {}), '(30, 180, 2)\n', (7579, 7591), True, 'import numpy as np\n'), ((1027, 1048), 'numpy.where', 'np.where', (['(data_y == u)'], {}), '(data_y == u)\n', (1035, 1048), True, 'import numpy as np\n'), ((1061, 1078), 'numpy.unique', 'np.unique', (['data_y'], {}), '(data_y)\n', (1070, 1078), True, 'import numpy as np\n'), ((1485, 1538), 'numpy.concatenate', 'np.concatenate', (['(train_x1, x[indx[0:250], :])'], {'axis': '(0)'}), '((train_x1, x[indx[0:250], :]), axis=0)\n', (1499, 1538), True, 'import numpy as np\n'), ((1561, 1616), 'numpy.concatenate', 'np.concatenate', (['(train_x2, x[indx[250:500], :])'], {'axis': '(0)'}), '((train_x2, x[indx[250:500], :]), axis=0)\n', (1575, 1616), True, 'import numpy as np\n'), ((1639, 1689), 'numpy.concatenate', 'np.concatenate', (['(train_y1, y[indx[0:250]])'], {'axis': '(0)'}), '((train_y1, y[indx[0:250]]), axis=0)\n', (1653, 1689), True, 'import numpy as np\n'), ((1713, 1765), 'numpy.concatenate', 'np.concatenate', (['(train_y2, y[indx[250:500]])'], {'axis': '(0)'}), '((train_y2, y[indx[250:500]]), axis=0)\n', (1727, 1765), True, 'import numpy as np\n'), ((1788, 1841), 'numpy.concatenate', 'np.concatenate', (['(test_x, x[indx[500:600], :])'], {'axis': '(0)'}), '((test_x, x[indx[500:600], :]), axis=0)\n', (1802, 1841), True, 'import numpy as np\n'), ((1862, 1912), 'numpy.concatenate', 'np.concatenate', (['(test_y, y[indx[500:600]])'], {'axis': '(0)'}), '((test_y, y[indx[500:600]]), axis=0)\n', (1876, 1912), True, 'import numpy as np\n'), ((3182, 3200), 'keras.Sequential', 'keras.Sequential', ([], {}), '()\n', (3198, 3200), False, 'import keras\n'), ((4969, 5237), 'progressive_learner.ProgressiveLearner', 'ProgressiveLearner', ([], {'default_transformer_class': 'default_transformer_class', 'default_transformer_kwargs': 'default_transformer_kwargs', 'default_voter_class': 'default_voter_class', 'default_voter_kwargs': 'default_voter_kwargs', 'default_decider_class': 'default_decider_class'}), '(default_transformer_class=default_transformer_class,\n default_transformer_kwargs=default_transformer_kwargs,\n default_voter_class=default_voter_class, default_voter_kwargs=\n default_voter_kwargs, default_decider_class=default_decider_class)\n', (4987, 5237), False, 'from progressive_learner import ProgressiveLearner\n'), ((7426, 7468), 'numpy.arange', 'np.arange', (['(0)', '(granularity * 4)', 'granularity'], {}), '(0, granularity * 4, granularity)\n', (7435, 7468), True, 'import numpy as np\n'), ((7482, 7489), 'multiprocessing.Pool', 'Pool', (['(4)'], {}), '(4)\n', (7486, 7489), False, 'from multiprocessing import Pool\n'), ((7594, 7613), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': '(-1)'}), '(n_jobs=-1)\n', (7602, 7613), False, 'from joblib import Parallel, delayed\n'), ((3351, 3378), 'keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (3376, 3378), False, 'from keras import layers\n'), ((3404, 3499), 'keras.layers.Conv2D', 'layers.Conv2D', ([], {'filters': '(32)', 'kernel_size': '(3, 3)', 'strides': '(2)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(filters=32, kernel_size=(3, 3), strides=2, padding='same',\n activation='relu')\n", (3417, 3499), False, 'from keras import layers\n'), ((3525, 3552), 'keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (3550, 3552), False, 'from keras import layers\n'), ((3578, 3673), 'keras.layers.Conv2D', 'layers.Conv2D', ([], {'filters': '(64)', 'kernel_size': '(3, 3)', 'strides': '(2)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(filters=64, kernel_size=(3, 3), strides=2, padding='same',\n activation='relu')\n", (3591, 3673), False, 'from keras import layers\n'), ((3699, 3726), 'keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (3724, 3726), False, 'from keras import layers\n'), ((3752, 3848), 'keras.layers.Conv2D', 'layers.Conv2D', ([], {'filters': '(128)', 'kernel_size': '(3, 3)', 'strides': '(2)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(filters=128, kernel_size=(3, 3), strides=2, padding='same',\n activation='relu')\n", (3765, 3848), False, 'from keras import layers\n'), ((3874, 3901), 'keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (3899, 3901), False, 'from keras import layers\n'), ((3927, 4023), 'keras.layers.Conv2D', 'layers.Conv2D', ([], {'filters': '(254)', 'kernel_size': '(3, 3)', 'strides': '(2)', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(filters=254, kernel_size=(3, 3), strides=2, padding='same',\n activation='relu')\n", (3940, 4023), False, 'from keras import layers\n'), ((4050, 4066), 'keras.layers.Flatten', 'layers.Flatten', ([], {}), '()\n', (4064, 4066), False, 'from keras import layers\n'), ((4092, 4119), 'keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (4117, 4119), False, 'from keras import layers\n'), ((4145, 4182), 'keras.layers.Dense', 'layers.Dense', (['(2000)'], {'activation': '"""relu"""'}), "(2000, activation='relu')\n", (4157, 4182), False, 'from keras import layers\n'), ((4208, 4235), 'keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (4233, 4235), False, 'from keras import layers\n'), ((4261, 4298), 'keras.layers.Dense', 'layers.Dense', (['(2000)'], {'activation': '"""relu"""'}), "(2000, activation='relu')\n", (4273, 4298), False, 'from keras import layers\n'), ((4324, 4351), 'keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (4349, 4351), False, 'from keras import layers\n'), ((4377, 4421), 'keras.layers.Dense', 'layers.Dense', ([], {'units': '(10)', 'activation': '"""softmax"""'}), "(units=10, activation='softmax')\n", (4389, 4421), False, 'from keras import layers\n'), ((4677, 4706), 'keras.optimizers.Adam', 'keras.optimizers.Adam', (['(0.0003)'], {}), '(0.0003)\n', (4698, 4706), False, 'import keras\n'), ((6070, 6098), 'numpy.mean', 'np.mean', (['(llf_task1 == test_y)'], {}), '(llf_task1 == test_y)\n', (6077, 6098), True, 'import numpy as np\n'), ((6139, 6173), 'numpy.mean', 'np.mean', (['(llf_single_task == test_y)'], {}), '(llf_single_task == test_y)\n', (6146, 6173), True, 'import numpy as np\n'), ((7614, 7636), 'joblib.delayed', 'delayed', (['LF_experiment'], {}), '(LF_experiment)\n', (7621, 7636), False, 'from joblib import Parallel, delayed\n'), ((5615, 5634), 'numpy.unique', 'np.unique', (['train_y1'], {}), '(train_y1)\n', (5624, 5634), True, 'import numpy as np\n'), ((3302, 3320), 'numpy.shape', 'np.shape', (['train_x1'], {}), '(train_x1)\n', (3310, 3320), True, 'import numpy as np\n')]
import numpy as np import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin, clone from sklearn_pandas.util import validate_dataframe class MonitorMixin(object): def print_message(self, message): if self.logfile: with open(self.logfile, "a") as fout: fout.write(message) else: print(message) class ValidateTypes(BaseEstimator, TransformerMixin, MonitorMixin): def __init__(self, logfile=None, to_screen=True): self.logfile = logfile self.to_screen = to_screen def fit(self, X, y=None, **fitparams): X = validate_dataframe(X) self.types = {} for col in X.columns: self.types[col] = X[col].dtype.name return self def transform(self, X, **transformparams): X = validate_dataframe(X) new_col_list = [] for col in X.columns: var_type = X[col].dtype.name if var_type != self.types[col]: self.print_message( 'Data Type Mismatch for column {col}: Expected {expected} Received {received}'.format( col=col, expected=self.types[col], received=var_type) ) return X class ValidateRange(BaseEstimator, TransformerMixin, MonitorMixin): def __init__(self, logfile=None, to_screen=True, max_nunique=20): self.logfile = logfile self.to_screen = to_screen self.max_nunique = max_nunique def fit(self, X, y=None, **fitparams): X = validate_dataframe(X) self.types = {} self.unique_vals = {} self.minmax = {} for col in X.columns: self.types[col] = X[col].dtype.name if self.types[col] in ('object', 'bool', 'category'): unique_values = X[col].unique() if len(unique_values) <= self.max_nunique: self.unique_vals[col] = unique_values else: self.unique_vals[col] = None elif self.types[col] in ('int64', 'float64', 'datetime64', 'timedelta'): self.minmax[col] = (X[col].min(), X[col].max()) return self def transform(self, X, **transformparams): X = validate_dataframe(X) new_col_list = [] for col in X.columns: var_type = X[col].dtype.name if self.types[col] in ('object', 'bool', 'category'): if self.unique_vals[col] is not None: not_in_list = ~X[col].isin(self.unique_vals[col]) if sum(not_in_list) > 0: new_values = str(X[col][not_in_list].unique().tolist()) self.print_message( 'New Categories specified for column {col}: Received {received}'.format( col=col, received=new_values) ) elif self.types[col] in ('int64', 'float64', 'datetime64', 'timedelta'): minX = X[col].min() maxX = X[col].max() if minX < self.minmax[col][0]: self.print_message( 'Low Value warning for column {col}: Lowest Training value {lowtrain}, Lowest Scoring value {lowscore}'.format( col=col, lowtrain=self.minmax[col][0], lowscore=minX) ) if maxX > self.minmax[col][1]: self.print_message( 'High Value warning for column {col}: Largest Training value {hightrain}, Largest Scoring value {highscore}'.format( col=col, hightrain=self.minmax[col][1], highscore=maxX) ) return X
[ "sklearn_pandas.util.validate_dataframe" ]
[((622, 643), 'sklearn_pandas.util.validate_dataframe', 'validate_dataframe', (['X'], {}), '(X)\n', (640, 643), False, 'from sklearn_pandas.util import validate_dataframe\n'), ((826, 847), 'sklearn_pandas.util.validate_dataframe', 'validate_dataframe', (['X'], {}), '(X)\n', (844, 847), False, 'from sklearn_pandas.util import validate_dataframe\n'), ((1548, 1569), 'sklearn_pandas.util.validate_dataframe', 'validate_dataframe', (['X'], {}), '(X)\n', (1566, 1569), False, 'from sklearn_pandas.util import validate_dataframe\n'), ((2259, 2280), 'sklearn_pandas.util.validate_dataframe', 'validate_dataframe', (['X'], {}), '(X)\n', (2277, 2280), False, 'from sklearn_pandas.util import validate_dataframe\n')]
import pytest from CommonServerPython import * from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, \ pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, \ get_incidents_batch_by_time_request, get_new_incidents, get_time_delta MOCK_INCIDENT = { "id": 1, "type": "Malware", "summary": "Unsolicited Bulk Email", "description": "EvilScheme test message", "score": 4200, "state": "Open", "created_at": "2018-05-26T21:07:17Z", "event_count": 3, "event_sources": [ "Proofpoint TAP" ], "users": [ "" ], "assignee": "Unassigned", "team": "Unassigned", "hosts": { "attacker": [ "" ], "forensics": [ "", ] }, "incident_field_values": [ { "name": "Attack Vector", "value": "Email" }, { "name": "Classification", "value": "Spam" }, { "name": "Severity", "value": "Critical" }, { "name": "Abuse Disposition", "value": "Unknown" } ], "events": [ { "id": 3, "category": "malware", "severity": "Info", "source": "Proofpoint TAP", "threatname": "", "state": "Linked", "description": "", "attackDirection": "inbound", "received": "2018-05-26T21:07:17Z", "malwareName": "", "emails": [ { "sender": { "email": "test" }, "recipient": { "email": "test" }, "subject": "test", "messageId": "test", "messageDeliveryTime": { "chronology": { "zone": { "id": "UTC" } }, "millis": 1544640072000, }, "abuseCopy": "false", "body": "test", 'bodyType': "test", 'headers': "test", 'urls': "test" } ], } ], "quarantine_results": [], "successful_quarantines": 0, "failed_quarantines": 0, "pending_quarantines": 0 } INCIDENT_FIELD_CONTEXT = { "Attack_Vector": "Email", "Classification": "Spam", "Severity": "Critical", "Abuse_Disposition": "Unknown" } INCIDENT_FIELD_INPUT = [ (MOCK_INCIDENT, INCIDENT_FIELD_CONTEXT) ] def get_fetch_data(): with open('./test_data/raw_response.json', 'r') as f: file = json.loads(f.read()) return file.get('result') FETCH_RESPONSE = get_fetch_data() @pytest.mark.parametrize('incident, answer', INCIDENT_FIELD_INPUT) def test_get_incident_field_context(incident, answer): incident_field_values = create_incident_field_context(incident) assert incident_field_values == answer EMAIL_RESULT = [ { 'sender': "test", 'recipient': "test", 'subject': "test", 'message_id': "test", 'message_delivery_time': 1544640072000, 'body': "test", 'body_type': "test", 'headers': "test", 'urls': "test" } ] EMAILS_CONTEXT_INPUT = [ (MOCK_INCIDENT['events'][0], EMAIL_RESULT) ] @pytest.mark.parametrize('event, answer', EMAILS_CONTEXT_INPUT) def test_get_emails_context(event, answer): emails_context = get_emails_context(event) assert emails_context == answer SOURCE_LIST_INPUT = [ (["Proofpoint TAP"], True), ([], True), (["No such source"], False), (["No such source", "Proofpoint TAP"], True) ] @pytest.mark.parametrize('sources_list, expected_answer', SOURCE_LIST_INPUT) def test_pass_sources_list_filter(sources_list, expected_answer): result = pass_sources_list_filter(MOCK_INCIDENT, sources_list) assert result == expected_answer ABUSE_DISPOSITION_INPUT = [ (["Unknown"], True), ([], True), (["No such value"], False), (["No such value", "Unknown"], True) ] @pytest.mark.parametrize('abuse_dispotion_values, expected_answer', ABUSE_DISPOSITION_INPUT) def test_pass_abuse_disposition_filter(abuse_dispotion_values, expected_answer): result = pass_abuse_disposition_filter(MOCK_INCIDENT, abuse_dispotion_values) assert result == expected_answer DEMISTO_PARAMS = [({'event_sources': "No such source, Proofpoint TAP", 'abuse_disposition': "No such value, Unknown"}, [MOCK_INCIDENT]), ({'event_sources': "", 'abuse_disposition': ""}, [MOCK_INCIDENT]), ({'event_sources': "No such source", 'abuse_disposition': "No such value, Unknown"}, []), ({'event_sources': "No such source, Proofpoint TAP", 'abuse_disposition': "No such value"}, []), ({'event_sources': "No such source", 'abuse_disposition': "No such value"}, [])] @pytest.mark.parametrize('demisto_params, expected_answer', DEMISTO_PARAMS) def test_filter_incidents(mocker, demisto_params, expected_answer): mocker.patch.object(demisto, 'params', return_value=demisto_params) filtered_incidents = filter_incidents([MOCK_INCIDENT]) assert filtered_incidents == expected_answer INGEST_ALERT_ARGS = { "attacker": "{\"attacker\":{\"key\":\"value\"}}", "cnc_host": "{\"cnc_host\":{\"key\":\"value\"}}", "detector": "{\"detector\":{\"key\":\"value\"}}", "email": "{\"email\":{\"key\":\"value\"}}", "forensics_hosts": "{\"forensics_hosts\":{\"key\":\"value\"}}", "target": "{\"target\":{\"key\":\"value\"}}", "threat_info": "{\"threat_info\":{\"key\":\"value\"}}", "custom_fields": "{\"custom_fields\":{\"key\":\"value\"}}", "post_url_id": "value", "json_version": "value", "summary": "value" } EXPECTED_RESULT = { "attacker": {"key": "value"}, "cnc_host": {"key": "value"}, "detector": {"key": "value"}, "email": {"key": "value"}, "forensics_hosts": {"key": "value"}, "target": {"key": "value"}, "threat_info": {"key": "value"}, "custom_fields": {"key": "value"}, "post_url_id": "value", "json_version": "value", "summary": "value" } def test_prepare_ingest_alert_request_body(): prepared_body = prepare_ingest_alert_request_body(INGEST_ALERT_ARGS) assert prepared_body == EXPECTED_RESULT def test_fetch_incidents_limit_exceed(mocker): """ Given - a dict of params given to the function which is gathered originally from demisto.params() The dict includes the relevant params for the fetch e.g. fetch_delta, fetch_limit, created_after, state. - response of the api When - a single iteration of the fetch is activated with a fetch limit set to 5 Then - validate that the number or incidents that is returned is equal to the limit when the api returned more. """ params = { 'fetch_delta': '6 hours', 'fetch_limit': ' 5', 'created_after': '2021-03-30T11:44:24Z', 'state': 'closed' } mocker.patch('ProofpointThreatResponse.get_incidents_request', return_value=FETCH_RESPONSE) incidents_list = get_incidents_batch_by_time_request(params) assert len(incidents_list) == 5 def test_fetch_incidents_with_same_created_time(mocker): """ Given - a dict of params given to the function which is gathered originally from demisto.params() The dict includes the relevant params for the fetch e.g. fetch_delta, fetch_limit, created_after, state and last_fetched_id. - response of the api When - when a fetch occurs and the last fetched incident has exactly the same time of the next incident. Then - validate that only one of the incidents appear as to the fetch limit. - validate that the next incident whose time is exactly the same is brought in the next fetch loop. ( e.g. 3057 and 3058) """ expected_ids_to_fetch_first = [3055, 3056, 3057] expected_ids_to_fetch_second = [3058, 3059, 3060] params = { 'fetch_delta': '2 hours', 'fetch_limit': '3', 'created_after': '2021-03-30T10:44:24Z', 'state': 'closed' } mocker.patch('ProofpointThreatResponse.get_incidents_request', return_value=FETCH_RESPONSE) new_fetched_first = get_incidents_batch_by_time_request(params) for incident in new_fetched_first: assert incident.get('id') in expected_ids_to_fetch_first params = { 'fetch_delta': '2 hour', 'fetch_limit': '3', 'created_after': '2021-03-30T11:21:24Z', 'last_fetched_id': '3057', 'state': 'closed' } new_fetched_second = get_incidents_batch_by_time_request(params) for incident in new_fetched_second: assert incident.get('id') in expected_ids_to_fetch_second def test_get_new_incidents(mocker): """ Given - a dict of request_params to the api. - The last fetched incident id. When - Get new incidents is called during the fetch process. Then - validate that the number of expected incidents return. - validate that all of the returned incident have a bigger id then the last fetched incident. """ last_incident_fetched = 3057 request_params = { 'state': 'closed', 'created_after': '2021-03-30T10:21:24Z', 'created_before': '2021-03-31T11:21:24Z', } mocker.patch('ProofpointThreatResponse.get_incidents_request', return_value=FETCH_RESPONSE) new_incidnets = get_new_incidents(request_params, last_incident_fetched) assert len(new_incidnets) == 14 for incident in new_incidnets: assert incident.get('id') > 3057 def test_get_time_delta(): """ Given - input to the get_time_delta function which is valid and invalid When - run the get_time_delta function. Then - validate that on invalid input such as days or no units relevant errors are raised. - validate that on valid inputs the return value is as expected. """ time_delta = get_time_delta('1 minute') assert str(time_delta) == '0:01:00' time_delta = get_time_delta('2 hours') assert str(time_delta) == '2:00:00' try: get_time_delta('2') except Exception as ex: assert 'The fetch_delta is invalid. Please make sure to insert both the number and the unit of the fetch delta.' in str( ex) try: get_time_delta('2 days') except Exception as ex: assert 'The unit of fetch_delta is invalid. Possible values are "minutes" or "hours' in str(ex)
[ "ProofpointThreatResponse.filter_incidents", "ProofpointThreatResponse.get_time_delta", "ProofpointThreatResponse.prepare_ingest_alert_request_body", "pytest.mark.parametrize", "ProofpointThreatResponse.get_new_incidents", "ProofpointThreatResponse.get_incidents_batch_by_time_request", "ProofpointThreatResponse.pass_sources_list_filter", "ProofpointThreatResponse.pass_abuse_disposition_filter", "ProofpointThreatResponse.create_incident_field_context", "ProofpointThreatResponse.get_emails_context" ]
[((2985, 3050), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""incident, answer"""', 'INCIDENT_FIELD_INPUT'], {}), "('incident, answer', INCIDENT_FIELD_INPUT)\n", (3008, 3050), False, 'import pytest\n'), ((3591, 3653), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""event, answer"""', 'EMAILS_CONTEXT_INPUT'], {}), "('event, answer', EMAILS_CONTEXT_INPUT)\n", (3614, 3653), False, 'import pytest\n'), ((3940, 4015), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""sources_list, expected_answer"""', 'SOURCE_LIST_INPUT'], {}), "('sources_list, expected_answer', SOURCE_LIST_INPUT)\n", (3963, 4015), False, 'import pytest\n'), ((4335, 4430), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""abuse_dispotion_values, expected_answer"""', 'ABUSE_DISPOSITION_INPUT'], {}), "('abuse_dispotion_values, expected_answer',\n ABUSE_DISPOSITION_INPUT)\n", (4358, 4430), False, 'import pytest\n'), ((5177, 5251), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""demisto_params, expected_answer"""', 'DEMISTO_PARAMS'], {}), "('demisto_params, expected_answer', DEMISTO_PARAMS)\n", (5200, 5251), False, 'import pytest\n'), ((3134, 3173), 'ProofpointThreatResponse.create_incident_field_context', 'create_incident_field_context', (['incident'], {}), '(incident)\n', (3163, 3173), False, 'from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, get_incidents_batch_by_time_request, get_new_incidents, get_time_delta\n'), ((3719, 3744), 'ProofpointThreatResponse.get_emails_context', 'get_emails_context', (['event'], {}), '(event)\n', (3737, 3744), False, 'from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, get_incidents_batch_by_time_request, get_new_incidents, get_time_delta\n'), ((4095, 4148), 'ProofpointThreatResponse.pass_sources_list_filter', 'pass_sources_list_filter', (['MOCK_INCIDENT', 'sources_list'], {}), '(MOCK_INCIDENT, sources_list)\n', (4119, 4148), False, 'from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, get_incidents_batch_by_time_request, get_new_incidents, get_time_delta\n'), ((4521, 4589), 'ProofpointThreatResponse.pass_abuse_disposition_filter', 'pass_abuse_disposition_filter', (['MOCK_INCIDENT', 'abuse_dispotion_values'], {}), '(MOCK_INCIDENT, abuse_dispotion_values)\n', (4550, 4589), False, 'from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, get_incidents_batch_by_time_request, get_new_incidents, get_time_delta\n'), ((5417, 5450), 'ProofpointThreatResponse.filter_incidents', 'filter_incidents', (['[MOCK_INCIDENT]'], {}), '([MOCK_INCIDENT])\n', (5433, 5450), False, 'from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, get_incidents_batch_by_time_request, get_new_incidents, get_time_delta\n'), ((6511, 6563), 'ProofpointThreatResponse.prepare_ingest_alert_request_body', 'prepare_ingest_alert_request_body', (['INGEST_ALERT_ARGS'], {}), '(INGEST_ALERT_ARGS)\n', (6544, 6563), False, 'from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, get_incidents_batch_by_time_request, get_new_incidents, get_time_delta\n'), ((7410, 7453), 'ProofpointThreatResponse.get_incidents_batch_by_time_request', 'get_incidents_batch_by_time_request', (['params'], {}), '(params)\n', (7445, 7453), False, 'from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, get_incidents_batch_by_time_request, get_new_incidents, get_time_delta\n'), ((8564, 8607), 'ProofpointThreatResponse.get_incidents_batch_by_time_request', 'get_incidents_batch_by_time_request', (['params'], {}), '(params)\n', (8599, 8607), False, 'from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, get_incidents_batch_by_time_request, get_new_incidents, get_time_delta\n'), ((8930, 8973), 'ProofpointThreatResponse.get_incidents_batch_by_time_request', 'get_incidents_batch_by_time_request', (['params'], {}), '(params)\n', (8965, 8973), False, 'from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, get_incidents_batch_by_time_request, get_new_incidents, get_time_delta\n'), ((9773, 9829), 'ProofpointThreatResponse.get_new_incidents', 'get_new_incidents', (['request_params', 'last_incident_fetched'], {}), '(request_params, last_incident_fetched)\n', (9790, 9829), False, 'from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, get_incidents_batch_by_time_request, get_new_incidents, get_time_delta\n'), ((10308, 10334), 'ProofpointThreatResponse.get_time_delta', 'get_time_delta', (['"""1 minute"""'], {}), "('1 minute')\n", (10322, 10334), False, 'from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, get_incidents_batch_by_time_request, get_new_incidents, get_time_delta\n'), ((10392, 10417), 'ProofpointThreatResponse.get_time_delta', 'get_time_delta', (['"""2 hours"""'], {}), "('2 hours')\n", (10406, 10417), False, 'from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, get_incidents_batch_by_time_request, get_new_incidents, get_time_delta\n'), ((10475, 10494), 'ProofpointThreatResponse.get_time_delta', 'get_time_delta', (['"""2"""'], {}), "('2')\n", (10489, 10494), False, 'from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, get_incidents_batch_by_time_request, get_new_incidents, get_time_delta\n'), ((10685, 10709), 'ProofpointThreatResponse.get_time_delta', 'get_time_delta', (['"""2 days"""'], {}), "('2 days')\n", (10699, 10709), False, 'from ProofpointThreatResponse import create_incident_field_context, get_emails_context, pass_sources_list_filter, pass_abuse_disposition_filter, filter_incidents, prepare_ingest_alert_request_body, get_incidents_batch_by_time_request, get_new_incidents, get_time_delta\n')]
import sys import os import json from enum import Enum from .mach_o import LC_SYMTAB from macholib import MachO from macholib import mach_o from shutil import copy2 from shutil import SameFileError class ReplaceType(Enum): objc_methname = 1 symbol_table = 2 def replace_in_bytes(method_bytes, name_dict, type): is_prefix = False empty_byte = b'\x00' if not method_bytes.startswith(empty_byte): is_prefix = True method_bytes = empty_byte + method_bytes for key, value in name_dict.items(): if len(key) != len(value): raise("replace method name with different length may break the mach-o file, ori: " + key + ", dst: " + value) if type == ReplaceType.objc_methname: method_bytes = method_bytes.replace( empty_byte + key.encode('utf-8') + empty_byte, empty_byte + value.encode('utf-8') + empty_byte) elif type == ReplaceType.symbol_table: method_bytes = method_bytes.replace( b' ' + key.encode('utf-8') + b']', b' ' + value.encode('utf-8') + b']') if is_prefix: method_bytes = method_bytes.replace(empty_byte, b'', 1) return method_bytes def ch_methname_sect(header, name_dict): commands = header.commands lc = None sect = None for _, command_tuple in enumerate(commands): seg = command_tuple[1] data = command_tuple[2] if hasattr(seg, 'segname') and seg.segname.rstrip(b'\x00') == b'__TEXT': for tmp_sect in data: if tmp_sect.sectname.rstrip(b'\x00') == b'__objc_methname': lc = command_tuple[0] sect = tmp_sect if sect is None: raise("Can't find __objc_methname section") sect.section_data = replace_in_bytes( sect.section_data, name_dict, ReplaceType.objc_methname) header.mod_dict[lc] = [sect] def ch_symtab(header, name_dict): commands = header.commands for idx, command_tuple in enumerate(commands): lc = command_tuple[0] cmd = command_tuple[1] data = command_tuple[2] if lc.cmd == LC_SYMTAB: data = replace_in_bytes(data, name_dict, ReplaceType.symbol_table) header.mod_dict[lc] = [data] commands[idx] = (lc, cmd, data) return raise("Can't find LC_SYMTAB") def replace_methname(macho_file, methname_json, output_dir): """ Map method names in Mach-O file with the JSON file """ if not os.path.isfile(macho_file): raise("passing not exist file " + macho_file) if not os.path.isfile(methname_json): raise("passing not exist file " + methname_json) if output_dir is not None and not os.path.isdir(output_dir): raise("passing not exist dir " + output_dir) macho = MachO.MachO(macho_file) name_dict = None with open(methname_json) as json_file: name_dict = json.load(json_file) for header in macho.headers: ch_methname_sect(header, name_dict) ch_symtab(header, name_dict) ori_dir, filename = os.path.split(macho_file) if output_dir is None: output_dir = ori_dir output = os.path.join(output_dir, filename) try: copy2(macho_file, output_dir) except SameFileError: pass with open(output, 'r+b') as fp: macho.write(fp) os.chmod(output, 0o755) def main(): replace_methname(sys.argv[0], sys.argv[1], sys.argv[2]) if __name__ == '__main__': main()
[ "shutil.copy2", "os.path.join", "os.chmod", "os.path.isfile", "os.path.split", "os.path.isdir", "json.load", "macholib.MachO.MachO" ]
[((2829, 2852), 'macholib.MachO.MachO', 'MachO.MachO', (['macho_file'], {}), '(macho_file)\n', (2840, 2852), False, 'from macholib import MachO\n'), ((3099, 3124), 'os.path.split', 'os.path.split', (['macho_file'], {}), '(macho_file)\n', (3112, 3124), False, 'import os\n'), ((3194, 3228), 'os.path.join', 'os.path.join', (['output_dir', 'filename'], {}), '(output_dir, filename)\n', (3206, 3228), False, 'import os\n'), ((3385, 3406), 'os.chmod', 'os.chmod', (['output', '(493)'], {}), '(output, 493)\n', (3393, 3406), False, 'import os\n'), ((2517, 2543), 'os.path.isfile', 'os.path.isfile', (['macho_file'], {}), '(macho_file)\n', (2531, 2543), False, 'import os\n'), ((2610, 2639), 'os.path.isfile', 'os.path.isfile', (['methname_json'], {}), '(methname_json)\n', (2624, 2639), False, 'import os\n'), ((2938, 2958), 'json.load', 'json.load', (['json_file'], {}), '(json_file)\n', (2947, 2958), False, 'import json\n'), ((3251, 3280), 'shutil.copy2', 'copy2', (['macho_file', 'output_dir'], {}), '(macho_file, output_dir)\n', (3256, 3280), False, 'from shutil import copy2\n'), ((2736, 2761), 'os.path.isdir', 'os.path.isdir', (['output_dir'], {}), '(output_dir)\n', (2749, 2761), False, 'import os\n')]
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # [START forms_delete_watch] from __future__ import print_function from apiclient import discovery from httplib2 import Http from oauth2client import client, file, tools SCOPES = "https://www.googleapis.com/auth/drive" API_KEY = "<YOUR_API_KEY>" DISCOVERY_DOC = f"https://forms.googleapis.com/$discovery/rest?version=v1beta&key={API_KEY}&labels=FORMS_BETA_TESTERS" store = file.Storage('credentials.json') creds = None if not creds or creds.invalid: flow = client.flow_from_clientsecrets('client_secret.json', SCOPES) creds = tools.run_flow(flow, store) service = discovery.build('forms', 'v1beta', http=creds.authorize( Http()), discoveryServiceUrl=DISCOVERY_DOC, static_discovery=False) form_id = '<YOUR_FORM_ID>' watch_id = '<YOUR_WATCH_ID>' # Print JSON response after deleting a form watch result = service.forms().watches().delete(formId=form_id, watchId=watch_id).execute() print(result) # [END forms_delete_watch]
[ "httplib2.Http", "oauth2client.tools.run_flow", "oauth2client.client.flow_from_clientsecrets", "oauth2client.file.Storage" ]
[((952, 984), 'oauth2client.file.Storage', 'file.Storage', (['"""credentials.json"""'], {}), "('credentials.json')\n", (964, 984), False, 'from oauth2client import client, file, tools\n'), ((1040, 1100), 'oauth2client.client.flow_from_clientsecrets', 'client.flow_from_clientsecrets', (['"""client_secret.json"""', 'SCOPES'], {}), "('client_secret.json', SCOPES)\n", (1070, 1100), False, 'from oauth2client import client, file, tools\n'), ((1113, 1140), 'oauth2client.tools.run_flow', 'tools.run_flow', (['flow', 'store'], {}), '(flow, store)\n', (1127, 1140), False, 'from oauth2client import client, file, tools\n'), ((1212, 1218), 'httplib2.Http', 'Http', ([], {}), '()\n', (1216, 1218), False, 'from httplib2 import Http\n')]
# <NAME> # S = 1/2, I = 1/2 # Spin 1/2 electron coupled to spin 1/2 nuclei import numpy as np from scipy.linalg import expm from matplotlib.pylab import * from matplotlib import cm sigma_x = 0.5*np.r_[[[0, 1],[1, 0]]] sigma_y = 0.5*np.r_[[[0,-1j],[1j, 0]]] sigma_z = 0.5*np.r_[[[1, 0],[0, -1]]] Identity = np.eye(2) Sx = np.kron(sigma_x, Identity) Sy = np.kron(sigma_y, Identity) Sz = np.kron(sigma_z, Identity) Ix = np.kron(Identity, sigma_x) Iy = np.kron(Identity, sigma_y) Iz = np.kron(Identity, sigma_z) SxIx = np.kron(sigma_x,sigma_z) SxIx2 = np.dot(Sx,Iz) print(SxIx) print(SxIx2) print(np.allclose(SxIx,SxIx2)) omega_S = 1.76e11 # rad / (s * T) omega_I = 267.522e6 # rad / (s * T) Aiso = 2*np.pi * 50.e6 # Isotropic Hyperfine coupling rad / s B0 = 0.35# T H = omega_S/(2.*np.pi)*B0*Sz + omega_I/(2.*np.pi)*B0*Iz + Aiso * np.dot(Sz,Iz) #H = omega_S/(2.*np.pi)*B0*Sz + omega_I/(2.*np.pi)*B0*Iz + Aiso * (np.dot(Sx,Ix) + np.dot(Sy,Iy) + np.dot(Sz,Iz)) print('Hamiltonian:') print(H) out = np.linalg.eig(H) E = out[0] print(E) E12 = E[0] - E[1] E34 = E[2] - E[3] E13 = E[0] - E[2] E24 = E[1] - E[3] print(E12) print(E34) print(E13) print(E24) print('Nuclear') print('%0.05f MHz'%(E12 / 1e6)) print('%0.05f MHz'%(E34 / 1e6)) print('Electron') print('%0.05f GHz'%(E13 / 1e9)) print('%0.05f GHz'%(E24 / 1e9)) matshow(abs(H), cmap = cm.jet) title('Hamiltonian') show()
[ "numpy.eye", "numpy.allclose", "numpy.linalg.eig", "numpy.kron", "numpy.dot" ]
[((308, 317), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (314, 317), True, 'import numpy as np\n'), ((325, 351), 'numpy.kron', 'np.kron', (['sigma_x', 'Identity'], {}), '(sigma_x, Identity)\n', (332, 351), True, 'import numpy as np\n'), ((357, 383), 'numpy.kron', 'np.kron', (['sigma_y', 'Identity'], {}), '(sigma_y, Identity)\n', (364, 383), True, 'import numpy as np\n'), ((389, 415), 'numpy.kron', 'np.kron', (['sigma_z', 'Identity'], {}), '(sigma_z, Identity)\n', (396, 415), True, 'import numpy as np\n'), ((422, 448), 'numpy.kron', 'np.kron', (['Identity', 'sigma_x'], {}), '(Identity, sigma_x)\n', (429, 448), True, 'import numpy as np\n'), ((454, 480), 'numpy.kron', 'np.kron', (['Identity', 'sigma_y'], {}), '(Identity, sigma_y)\n', (461, 480), True, 'import numpy as np\n'), ((486, 512), 'numpy.kron', 'np.kron', (['Identity', 'sigma_z'], {}), '(Identity, sigma_z)\n', (493, 512), True, 'import numpy as np\n'), ((521, 546), 'numpy.kron', 'np.kron', (['sigma_x', 'sigma_z'], {}), '(sigma_x, sigma_z)\n', (528, 546), True, 'import numpy as np\n'), ((555, 569), 'numpy.dot', 'np.dot', (['Sx', 'Iz'], {}), '(Sx, Iz)\n', (561, 569), True, 'import numpy as np\n'), ((1004, 1020), 'numpy.linalg.eig', 'np.linalg.eig', (['H'], {}), '(H)\n', (1017, 1020), True, 'import numpy as np\n'), ((601, 625), 'numpy.allclose', 'np.allclose', (['SxIx', 'SxIx2'], {}), '(SxIx, SxIx2)\n', (612, 625), True, 'import numpy as np\n'), ((838, 852), 'numpy.dot', 'np.dot', (['Sz', 'Iz'], {}), '(Sz, Iz)\n', (844, 852), True, 'import numpy as np\n')]
from spiderNest.preIntro import * path_ = os.path.dirname(os.path.dirname(__file__)) + '/dataBase/log_information.csv' def save_login_info(VMess, class_): """ VMess入库 class_: ssr or v2ray """ now = str(datetime.now()).split('.')[0] with open(path_, 'a', encoding='utf-8', newline='') as f: writer = csv.writer(f) # 入库时间,Vmess,初始化状态:0 writer.writerow(['{}'.format(now), '{}'.format(VMess), class_, '0']) def vmess_IO(class_): """ 获取可用订阅链接并刷新存储池 class_: ssr ; v2ray """ def refresh_log(dataFlow): with open(path_, 'w', encoding='utf-8', newline='') as f: writer = csv.writer(f) writer.writerows(dataFlow) try: with open(path_, 'r', encoding='utf-8') as f: reader = csv.reader(f) vm_q = [vm for vm in reader] new_q = vm_q for i, value in enumerate(reversed(vm_q)): if value[-1] == '0' and value[-2] == class_: vm = value[1] new_q[-(i + 1)][-1] = '1' break refresh_log(new_q) return vm except UnboundLocalError: return '无可用订阅连接' def avi_num(): from datetime import datetime, timedelta with open(path_, 'r', encoding='utf-8') as f: reader = csv.reader(f) vm_list = [i for i in reader] # ['2020-08-06 04:27:59', 'link','class_', '1'] vm_q = [vm for vm in vm_list if vm[-1] == '0'] tag_items = '' for vm in vm_list: if vm[-1] == '0': bei_ing_time = datetime.fromisoformat(vm[0]) + timedelta(hours=12) tag_items += '\n【√可选】【{}】#{}'.format(bei_ing_time, vm[-2]) # return vm_q.__len__() return tag_items
[ "datetime.datetime.now", "datetime.timedelta", "datetime.datetime.fromisoformat" ]
[((225, 239), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (237, 239), False, 'from datetime import datetime, timedelta\n'), ((1602, 1631), 'datetime.datetime.fromisoformat', 'datetime.fromisoformat', (['vm[0]'], {}), '(vm[0])\n', (1624, 1631), False, 'from datetime import datetime, timedelta\n'), ((1634, 1653), 'datetime.timedelta', 'timedelta', ([], {'hours': '(12)'}), '(hours=12)\n', (1643, 1653), False, 'from datetime import datetime, timedelta\n')]
import os.path import re import sys import traceback from pprint import pformat import tornado from tornado import template SENSITIVE_SETTINGS_RE = re.compile( 'api|key|pass|salt|secret|signature|token', flags=re.IGNORECASE ) class ExceptionReporter: def __init__(self, exc_info, handler): self.exc_type = exc_info[0] self.exc_value = exc_info[1] self.exc_tb = exc_info[2] self.handler = handler def get_response(self): loader = template.Loader(os.path.dirname(os.path.abspath(__file__))) t = loader.load('debug.html') return t.generate( traceback=traceback, pprint=pprint, handler=self.handler, app_settings=self.get_app_settings(), exc_type=self.exc_type, exc_value=self.exc_value, exc_tb=self.exc_tb, frames=self.get_traceback_frames(), tornado_version=tornado.version, sys_version='%d.%d.%d' % sys.version_info[0:3], sys_executable=sys.executable, sys_path=sys.path, ) def get_app_settings(self): settings = {} for arg, value in self.handler.application.settings.items(): if SENSITIVE_SETTINGS_RE.search(arg): value = '*' * 15 settings[arg] = value return settings def get_source_lines(self, tb): filename = tb.tb_frame.f_code.co_filename lineno = tb.tb_lineno lines = [] try: with open(filename, 'rb') as f: _lines = f.read().splitlines() for _lineno in range( max(lineno - 5, 0), min(lineno + 5, len(_lines)) ): lines.append((_lineno + 1, _lines[_lineno])) except Exception as e: # could not open file pass return lines def get_traceback_frames(self): frames = [] tb = self.exc_tb while tb: frames.append({ 'lineno': tb.tb_lineno, 'filename': tb.tb_frame.f_code.co_filename, 'function': tb.tb_frame.f_code.co_name, 'module_name': tb.tb_frame.f_globals.get('__name__') or '', 'vars': tb.tb_frame.f_locals, 'lines': self.get_source_lines(tb), }) tb = tb.tb_next frames.reverse() return frames exceptions = [] exc_value = self.exc_value while exc_value: exceptions.append(exc_value) exc_value = self._get_explicit_or_implicit_cause(exc_value) if exc_value in exceptions: warnings.warn( "Cycle in the exception chain detected: exception '%s' " "encountered again." % exc_value, ExceptionCycleWarning, ) # Avoid infinite loop if there's a cyclic reference (#29393). break frames = [] # No exceptions were supplied to ExceptionReporter if not exceptions: return frames # In case there's just one exception, take the traceback from self.tb exc_value = exceptions.pop() tb = self.tb if not exceptions else exc_value.__traceback__ while True: frames.extend(self.get_exception_traceback_frames(exc_value, tb)) try: exc_value = exceptions.pop() except IndexError: break tb = exc_value.__traceback__ return frames def _get_explicit_or_implicit_cause(self, exc_value): explicit = getattr(exc_value, '__cause__', None) suppress_context = getattr(exc_value, '__suppress_context__', None) implicit = getattr(exc_value, '__context__', None) return explicit or (None if suppress_context else implicit) def pprint(value): try: return pformat(value, width=1) except Exception as e: return 'Error in formatting: %s: %s' % (e.__class__.__name__, e)
[ "pprint.pformat", "re.compile" ]
[((151, 226), 're.compile', 're.compile', (['"""api|key|pass|salt|secret|signature|token"""'], {'flags': 're.IGNORECASE'}), "('api|key|pass|salt|secret|signature|token', flags=re.IGNORECASE)\n", (161, 226), False, 'import re\n'), ((3995, 4018), 'pprint.pformat', 'pformat', (['value'], {'width': '(1)'}), '(value, width=1)\n', (4002, 4018), False, 'from pprint import pformat\n')]
''' Created on Mar 6, 2018 @author: cef hp functions for workign with dictionaries ''' import logging, os, sys, math, copy, inspect from collections import OrderedDict from weakref import WeakValueDictionary as wdict import numpy as np import hp.basic mod_logger = logging.getLogger(__name__) #creates a child logger of the root def dict_2_logr(dict, logger= mod_logger): #log each value of the dictionary to fille logger = logger.getChild('dict_2_logr') msg = '\n' for key, value in dict.iteritems(): msg = msg + ' key: %s\n value: %s \n'%(key, value) logger.debug(msg) def key_list(d, #return the intersection of the dict.keys() and the key_list key_list, logger = mod_logger): logger = logger.getChild('key_list') #=========================================================================== # pre check #=========================================================================== bool_list = hp.basic.bool_list_in_list(d.keys(), key_list) if not bool_list.any(): raise IOError #check if any are not found #=========================================================================== # build the found values #=========================================================================== values_fnd_list = [] for key, value in d.iteritems(): if key in key_list: values_fnd_list.append(value) return values_fnd_list def build_nones_dict(key_list, logger=mod_logger): #add 'None' values to the passed keys val_list = np.full((1, len(key_list)), None) dict = dict(zip(key_list, val_list)) return dict def merge_two_dicts(x, y): if x is None: return y if y is None: return x z = x.copy() # start with x's keys and values z.update(y) # modifies z with y's keys and values & returns None return z def value_by_ksearch(ksearch_str, d, #get the entry that matches the search str logger=mod_logger, *search_args): #=========================================================================== # take a shot at a perfect match #=========================================================================== try: return d[ksearch_str] except: #find a match for this key k_fnd = hp.basic.list_search(d.keys(), ksearch_str, *search_args) if k_fnd is None: logger = logger.getChild('value_by_ksearch') logger.debug('could not find \'%s\' in %i dict keys. returning None'%(ksearch_str, len(d))) return None else: return d[k_fnd] def merge(dl, dr, #intelligent dictionary merging set_type = 'intersect', method = 'exact', container = dict(), logger = mod_logger, *search_args): if set_type == 'union': if method == 'exact': d_merge = merge_two_dicts(dl, dr, logger=logger) else: raise IOError #todo elif set_type == 'intersect': d_merge = subset(dl, dr.keys(), set_type = set_type, method=method, container=container, logger=logger, *search_args) else: raise IOError logger.debug('got d_merge %i'%len(d_merge)) return container(d_merge) def subset_pfx(d_big, prefix, logger=mod_logger): #=========================================================================== # shortcuts #=========================================================================== if len(d_big) == 0: return dict() #=========================================================================== # defaults #=========================================================================== logger = logger.getChild('subset_pfx') d = copy.copy(d_big) fnd_d = dict() for k, v in d.iteritems(): if k.startswith(prefix): fnd_d[k] = v logger.debug('found %i entries with prefix \'%s\' \n'%(len(fnd_d), prefix)) return fnd_d def subset(d_big, l, #get a dictionary subset using standard user inputs #ordered = False, using containers instead set_type = 'sub', method = 'exact', container = dict, logger = mod_logger, *search_args): """ #=========================================================================== # INPUTS #=========================================================================== l: list of keys (within d_big) on which to erturn the sutset set_type: how to treat the set intersect: returna dictionary with only the common keys sub: raise a flag if not every item in 'l' is found in d_big.keys() method: what type of key search to perform (re.function) search: look for a key in the dictionary that contains the list entry. returned d is keyed by the list """ logger = logger.getChild('subset') #=========================================================================== # setup[] #========================================================================== d = container() """ #dictionary setup if ordered: d = OrderedDict() else: d = dict()""" #input list setup if isinstance(l, list): pass elif isinstance(l, basestring): l = [l] elif l is None: return d else: raise IOError nofnd_l = [] #=========================================================================== # determine subset by kwarg #=========================================================================== for k in l: try: #attempt teh direct match d[k] = d_big[k] except: #=================================================================== # try again using search functions #=================================================================== try: if method == 'search': #search and return this value v = value_by_ksearch(k, d_big, logger=logger, *search_args) if not v is None: d[k] = v continue #not sure this is needed else: raise ValueError else: raise ValueError #=================================================================== # nothing found. proceed based on set_type #=================================================================== except: logger.debug('unable to find \'%s\' in the dict with method \'%s\''%(k, method)) if set_type == 'sub': boolar = hp.basic.bool_list_in_list(d_big.keys(), l) if not np.all(boolar): logger.error('%i entries in list not found in big_d'%(len(l) - boolar.sum())) raise IOError elif set_type == 'intersect': nofnd_l.append(k) else: raise IOError #=========================================================================== # wrap up #=========================================================================== if len(nofnd_l) >0: logger.debug('%i of %i list entries DO NOT intersect: %s'%(len(nofnd_l), len(l), nofnd_l)) if set_type == 'sub': raise IOError #=========================================================================== # check #=========================================================================== if len(d) == 0: logger.warning('0 common values between d(%i) and l(%i)'%(len(d), len(l))) logger.debug('returning d with %i entries: %s \n'%(len(d), d.keys())) return container(d) #=============================================================================== # def subset(d_big, l, #get a dictionary subset using standard user inputs # ordered = False, set_type = 'sub', search = 'search', # logger = mod_logger): # """ # #=========================================================================== # # INPUTS # #=========================================================================== # l: list of keys (within d_big) on which to erturn the sutset # # set_type: how to treat the set # intersect: returna dictionary with only the common keys # sub: raise a flag if not every item in 'l' is found in d_big.keys() # # search: what type of key search to perform (re.function) # """ # logger = logger.getChild('subset') # # #=========================================================================== # # setup[] # #========================================================================== # #dictionary setup # if ordered: d = OrderedDict() # else: d = dict() # # #input list setup # if isinstance(l, list): pass # elif isinstance(l, basestring): l = [l] # elif l is None: return None # else: raise IOError # # #=========================================================================== # # determine subset by kwarg # #=========================================================================== # if set_type == 'sub': # try: # for k in l: # d[k] = d_big[k] # # except: # boolar = hp.basic.bool_list_in_list(d_big.keys(), l) # # if not np.all(boolar): # logger.error('%i entries in list not found in big_d'%(len(l) - boolar.sum())) # # raise IOError # # if len(d) == 0: raise IOError # # elif set_type == 'intersect': # nofnd_l = [] # for k in l: # try: # d[k] = d_big[k] # except: # nofnd_l.append(k) # # if len(nofnd_l) >0: # logger.debug('%i of %i list entries DO NOT intersect: %s'%(len(nofnd_l), len(l), nofnd_l)) # # #=========================================================================== # # check # #=========================================================================== # if len(d) == 0: logger.warning('0 common values between d(%i) and l(%i)'% # (len(d), len(l))) # # return d #=============================================================================== class deepcopier(): tries = 0 #keep track of the loop def __init__(self,obj, logger=mod_logger): self.logger = logger.getChild('deepcopier') self.copy_o = obj def tryit(self, obj=None): #make as deep a copy as possible if obj is None: obj = self.copy_o #=========================================================================== # simple try #=========================================================================== try: copy_o = copy.deepcopy(obj) return copy_o except: self.logger.debug('failed first attempt') self.tries += 1 #======================================================================= # sophisiticated try #======================================================================= self.logger.debug('copy attempt %i'%self.tries) if self.tries > 10: return self.copy_o #try for each element of the dict if isinstance(obj, dict): new_d = dict() for key, value in obj.iteritems(): try: new_d[key] = self.tryit(obj = value) except: new_d[key] = copy.copy(obj) self.logger.debug('returning new_d with %i entries: %s'%(len(new_d), new_d.keys())) else: raise IOError return new_d from collections import OrderedDict class MyOrderedDict(OrderedDict): """ as there is no builtin method to add to the head of an ordered dict, here we add a method https://stackoverflow.com/questions/16664874/how-can-i-add-an-element-at-the-top-of-an-ordereddict-in-python """ def prepend(self, key, value, dict_setitem=dict.__setitem__): """add entry to the front of myself""" root = self._OrderedDict__root first = root[1] if key in self: link = self._OrderedDict__map[key] link_prev, link_next, _ = link link_prev[1] = link_next link_next[0] = link_prev link[0] = root link[1] = first root[1] = first[0] = link else: root[1] = first[0] = self._OrderedDict__map[key] = [root, first, key] dict_setitem(self, key, value)
[ "logging.getLogger", "numpy.all", "copy.copy", "copy.deepcopy" ]
[((291, 318), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (308, 318), False, 'import logging, os, sys, math, copy, inspect\n'), ((4046, 4062), 'copy.copy', 'copy.copy', (['d_big'], {}), '(d_big)\n', (4055, 4062), False, 'import logging, os, sys, math, copy, inspect\n'), ((11902, 11920), 'copy.deepcopy', 'copy.deepcopy', (['obj'], {}), '(obj)\n', (11915, 11920), False, 'import logging, os, sys, math, copy, inspect\n'), ((12697, 12711), 'copy.copy', 'copy.copy', (['obj'], {}), '(obj)\n', (12706, 12711), False, 'import logging, os, sys, math, copy, inspect\n'), ((7354, 7368), 'numpy.all', 'np.all', (['boolar'], {}), '(boolar)\n', (7360, 7368), True, 'import numpy as np\n')]
#Grapheme Rime_tone=[ "a","ă","â","e","ê","i","o","ô","ơ","u","ư","y","iê","oa","oă","oe","oo","uâ","uê","uô","uơ","uy","ươ","uyê","yê", #blank "á","ắ","ấ","é","ế","í","ó","ố","ớ","ú","ứ","ý","iế","óa","oắ","óe","oó","uấ","uế","uố","ướ","úy","ướ","uyế","yế", #grave "oá", "oé","óo", "uý", "à","ằ","ầ","è","ề","ì","ò","ồ","ờ","ù","ừ","ỳ","iề","òa","oằ","òe","oò","uầ","uề","uồ","ườ","ùy","ườ","uyề","yề", #acute "oà", "oè","òo", "uỳ", "ả","ẳ","ẩ","ẻ","ể","ỉ","ỏ","ổ","ở","ủ","ử","ỷ","iể","ỏa","oẳ","ỏe","oỏ","uẩ","uể","uổ","ưở","ủy","ưở","uyể","yể", #hook "oả", "oẻ","ỏo", "uỷ", "ã","ẵ","ẫ","ẽ","ễ","ĩ","õ","ỗ","ỡ","ũ","ữ","ỹ","iễ","õa","oẵ","õe","oõ","uẫ","uễ","uỗ","ưỡ","ũy","ưỡ","uyễ","yễ", #tilde "oã", "oẽ","õo", "uỹ", "ạ","ặ","ậ","ẹ","ệ","ị","ọ","ộ","ợ","ụ","ự","ỵ","iệ","ọa","oặ","ọe","oọ","uậ","uệ","uệ","ượ","ụy","ượ","uyệ","yệ", #dot "oạ", "oẹ","ọo", "uỵ"] Onset=["b","d","h","l","m","n","p","r","s","t","v","x","đ","p", "tr", "th", "ch", "ph","nh","kh","gi","qu", "ngh","ng","gh","g","k","c"] #coding: utf-8 #Custom phoneme follow the https://vi.wikipedia.org/wiki/%C3%82m_v%E1%BB%8B_h%E1%BB%8Dc_ti%E1%BA%BFng_Vi%E1%BB%87t #Improve pronoune between N C S Cus_onsets = { u'b' : u'b', u't' : u't', u'th' : u'tʰ', u'đ' : u'd', u'ch' : u'c', u'kh' : u'x', u'g' : u'ɣ', u'l' : u'l', u'm' : u'm', u'n': u'n', u'ngh': u'ŋ', u'nh' : u'ɲ', u'ng' : u'ŋ', u'ph' : u'f', u'v' : u'v', u'x' : u's', u'd' : u'z', u'h' : u'h', u'p' : u'p', u'qu' : u'kw', u'gi' : u'j', u'tr' : u'ʈ', u'k' : u'k', u'c' : u'k', u'gh' : u'ɣ', u'r' : u'ʐ', u's' : u'ʂ', u'gi': u'j'} Cus_nuclei = { u'a' : u'a', u'á' : u'a', u'à' : u'a', u'ả' : u'a', u'ã' : u'a', u'ạ' : u'a', u'â' : u'ɤ̆', u'ấ' : u'ɤ̆', u'ầ' : u'ɤ̆', u'ẩ' : u'ɤ̆', u'ẫ' : u'ɤ̆', u'ậ' : u'ɤ̆', u'ă' : u'ă', u'ắ' : u'ă', u'ằ' : u'ă', u'ẳ' : u'ă', u'ẵ' : u'ă', u'ặ' : u'ă', u'e' : u'ɛ', u'é' : u'ɛ', u'è' : u'ɛ', u'ẻ' : u'ɛ', u'ẽ' : u'ɛ', u'ẹ' : u'ɛ', u'ê' : u'e', u'ế' : u'e', u'ề' : u'e', u'ể' : u'e', u'ễ' : u'e', u'ệ' : u'e', u'i' : u'i', u'í' : u'i', u'ì' : u'i', u'ỉ' : u'i', u'ĩ' : u'i', u'ị' : u'i', u'o' : u'ɔ', u'ó' : u'ɔ', u'ò' : u'ɔ', u'ỏ' : u'ɔ', u'õ' : u'ɔ', u'ọ' : u'ɔ', u'ô' : u'o', u'ố' : u'o', u'ồ' : u'o', u'ổ' : u'o', u'ỗ' : u'o', u'ộ' : u'o', u'ơ' : u'ɤ', u'ớ' : u'ɤ', u'ờ' : u'ɤ', u'ở' : u'ɤ', u'ỡ' : u'ɤ', u'ợ' : u'ɤ', u'u' : u'u', u'ú' : u'u', u'ù' : u'u', u'ủ' : u'u', u'ũ' : u'u', u'ụ' : u'u', u'ư' : u'ɯ', u'ứ' : u'ɯ', u'ừ' : u'ɯ', u'ử' : u'ɯ', u'ữ' : u'ɯ', u'ự' : u'ɯ', u'y' : u'i', u'ý' : u'i', u'ỳ' : u'i', u'ỷ' : u'i', u'ỹ' : u'i', u'ỵ' : u'i', u'eo' : u'eo', u'éo' : u'eo', u'èo' : u'eo', u'ẻo' : u'eo', u'ẽo': u'eo', u'ẹo' : u'eo', u'êu' : u'ɛu', u'ếu' : u'ɛu', u'ều' : u'ɛu', u'ểu' : u'ɛu', u'ễu': u'ɛu', u'ệu' : u'ɛu', u'ia' : u'iə', u'ía' : u'iə', u'ìa' : u'iə', u'ỉa' : u'iə', u'ĩa' : u'iə', u'ịa' : u'iə', u'ia' : u'iə', u'iá' : u'iə', u'ià' : u'iə', u'iả' : u'iə', u'iã' : u'iə', u'iạ' : u'iə', u'iê' : u'iə', u'iế' : u'iə', u'iề' : u'iə', u'iể' : u'iə', u'iễ' : u'iə', u'iệ' : u'iə', u'oo' : u'ɔ', u'óo' : u'ɔ', u'òo' : u'ɔ', u'ỏo' : u'ɔ', u'õo' : u'ɔ', u'ọo' : u'ɔ', u'oo' : u'ɔ', u'oó' : u'ɔ', u'oò' : u'ɔ', u'oỏ' : u'ɔ', u'oõ' : u'ɔ', u'oọ' : u'ɔ', u'ôô' : u'o', u'ốô' : u'o', u'ồô' : u'o', u'ổô' : u'o', u'ỗô' : u'o', u'ộô' : u'o', u'ôô' : u'o', u'ôố' : u'o', u'ôồ' : u'o', u'ôổ' : u'o', u'ôỗ' : u'o', u'ôộ' : u'o', u'ua' : u'uə', u'úa' : u'uə', u'ùa' : u'uə', u'ủa' : u'uə', u'ũa' : u'uə', u'ụa' : u'uə', u'uô' : u'uə', u'uố' : u'uə', u'uồ' : u'uə', u'uổ' : u'uə', u'uỗ' : u'uə', u'uộ' : u'uə', u'ưa' : u'ɯə', u'ứa' : u'ɯə', u'ừa' : u'ɯə', u'ửa' : u'ɯə', u'ữa' : u'ɯə', u'ựa' : u'ɯə', u'ươ' : u'ɯə', u'ướ' : u'ɯə', u'ườ' : u'ɯə', u'ưở' : u'ɯə', u'ưỡ' : u'ɯə', u'ượ' : u'ɯə', u'yê' : u'iɛ', u'yế' : u'iɛ', u'yề' : u'iɛ', u'yể' : u'iɛ', u'yễ' : u'iɛ', u'yệ' : u'iɛ', u'uơ' : u'uə', u'uở' : u'uə', u'uờ': u'uə', u'uở' : u'uə', u'uỡ' : u'uə', u'uợ' : u'uə', } Cus_offglides = { u'ai' : u'aj', u'ái' : u'aj', u'ài' : u'aj', u'ải' : u'aj', u'ãi' : u'aj', u'ại' : u'aj', u'ay' : u'ăj', u'áy' : u'ăj', u'ày' : u'ăj', u'ảy' : u'ăj', u'ãy' : u'ăj', u'ạy' : u'ăj', u'ao' : u'aw', u'áo' : u'aw', u'ào' : u'aw', u'ảo' : u'aw', u'ão' : u'aw', u'ạo' : u'aw', u'au' : u'ăw', u'áu' : u'ăw', u'àu' : u'ăw', u'ảu' : u'ăw', u'ãu' : u'ăw', u'ạu' : u'ăw', u'ây' : u'ɤ̆j', u'ấy' : u'ɤ̆j', u'ầy' : u'ɤ̆j', u'ẩy' : u'ɤ̆j', u'ẫy' : u'ɤ̆j', u'ậy' : u'ɤ̆j', u'âu' : u'ɤ̆w', u'ấu' : u'ɤ̆w', u'ầu': u'ɤ̆w', u'ẩu' : u'ɤ̆w', u'ẫu' : u'ɤ̆w', u'ậu' : u'ɤ̆w', u'eo' : u'ew', u'éo' : u'ew', u'èo' : u'ew', u'ẻo' : u'ew', u'ẽo' : u'ew', u'ẹo' : u'ew', u'iu' : u'iw', u'íu' : u'iw', u'ìu' : u'iw', u'ỉu' : u'iw', u'ĩu' : u'iw', u'ịu' : u'iw', u'oi' : u'ɔj', u'ói' : u'ɔj', u'òi' : u'ɔj', u'ỏi' : u'ɔj', u'õi' : u'ɔj', u'ọi' : u'ɔj', u'ôi' : u'oj', u'ối' : u'oj', u'ồi' : u'oj', u'ổi' : u'oj', u'ỗi' : u'oj', u'ội' : u'oj', u'ui' : u'uj', u'úi' : u'uj', u'ùi' : u'uj', u'ủi' : u'uj', u'ũi' : u'uj', u'ụi' : u'uj', #u'uy' : u'uj', u'úy' : u'uj', u'ùy' : u'uj', u'ủy' : u'uj', u'ũy' : u'uj', u'ụy' : u'uj', u'uy' : u'ʷi', u'úy' : u'uj', u'ùy' : u'uj', u'ủy' : u'uj', u'ũy' : u'uj', u'ụy' : u'uj', #thay để hạn chế trùng âm u'uy' : u'ʷi', u'uý' : u'ʷi', u'uỳ' : u'ʷi', u'uỷ' : u'ʷi', u'uỹ' : u'ʷi', u'uỵ' : u'ʷi', u'ơi' : u'ɤj', u'ới' : u'ɤj', u'ời' : u'ɤj', u'ởi' : u'ɤj', u'ỡi' : u'ɤj', u'ợi' : u'ɤj', u'ưi' : u'ɯj', u'ứi' : u'ɯj', u'ừi' : u'ɯj', u'ửi' : u'ɯj', u'ữi' : u'ɯj', u'ựi' : u'ɯj', u'ưu' : u'ɯw', u'ứu' : u'ɯw', u'ừu' : u'ɯw', u'ửu' : u'ɯw', u'ữu' : u'ɯw', u'ựu' : u'ɯw', u'iêu' : u'iəw', u'iếu' : u'iəw', u'iều' : u'iəw', u'iểu' : u'iəw', u'iễu' : u'iəw', u'iệu' : u'iəw', u'yêu' : u'iəw', u'yếu' : u'iəw', u'yều' : u'iəw', u'yểu' : u'iəw', u'yễu' : u'iəw', u'yệu' : u'iəw', u'uôi' : u'uəj', u'uối' : u'uəj', u'uồi' : u'uəj', u'uổi' : u'uəj', u'uỗi' : u'uəj', u'uội' : u'uəj', u'ươi' : u'ɯəj', u'ưới' : u'ɯəj', u'ười' : u'ɯəj', u'ưởi' : u'ɯəj', u'ưỡi' : u'ɯəj', u'ượi' : u'ɯəj', u'ươu' : u'ɯəw', u'ướu' : u'ɯəw', u'ườu' : u'ɯəw', u'ưởu' : u'ɯəw', 'ưỡu' : u'ɯəw', u'ượu' : u'ɯəw' } #Các âm vòng ở đây i chang không vòm: không có w ở trước => Try to add ʷ Cus_onglides = { u'oa' : u'ʷa', u'oá' : u'ʷa', u'oà' : u'ʷa', u'oả' : u'ʷa', u'oã' : u'ʷa', u'oạ' : u'ʷa', u'óa' : u'ʷa', u'òa' : u'ʷa', u'ỏa' : u'ʷa', u'õa' : u'ʷa', u'ọa' : u'ʷa', u'oă' : u'ʷă', u'oắ' : u'ʷă', u'oằ' : u'ʷă', u'oẳ' : u'ʷă', u'oẵ' : u'ʷă', u'oặ' : u'ʷă', u'oe' : u'ʷɛ', u'oé' : u'ʷɛ', u'oè' : u'ʷɛ', u'oẻ' : u'ʷɛ', u'oẽ' : u'ʷɛ', u'oẹ' : u'ʷɛ', u'oe' : u'ʷɛ', u'óe' : u'ʷɛ', u'òe' : u'ʷɛ', u'ỏe' : u'ʷɛ', u'õe' : u'ʷɛ', u'ọe' : u'ʷɛ', u'ua' : u'ʷa', u'uá' : u'ʷa', u'uà' : u'ʷa', u'uả' : u'ʷa', u'uã' : u'ʷa', u'uạ' : u'ʷa', u'uă' : u'ʷă', u'uắ' : u'ʷă', u'uằ' : u'ʷă', u'uẳ' : u'ʷă', u'uẵ' : u'ʷă', u'uặ' : u'ʷă', u'uâ' : u'ʷɤ̆', u'uấ' : u'ʷɤ̆', u'uầ' : u'ʷɤ̆', u'uẩ' : u'ʷɤ̆', u'uẫ' : u'ʷɤ̆', u'uậ' : u'ʷɤ̆', u'ue' : u'ʷɛ', u'ué' : u'ʷɛ', u'uè' : u'ʷɛ', u'uẻ' : u'ʷɛ', u'uẽ' : u'ʷɛ', u'uẹ' : u'ʷɛ', u'uê' : u'ʷe', u'uế' : u'ʷe', u'uề' : u'ʷe', u'uể' : u'ʷe', u'uễ' : u'ʷe', u'uệ' : u'ʷe', u'uơ' : u'ʷɤ', u'uớ' : u'ʷɤ', u'uờ' : u'ʷɤ', u'uở' : u'ʷɤ', u'uỡ' : u'ʷɤ', u'uợ' : u'ʷɤ', u'uy' : u'ʷi', u'uý' : u'ʷi', u'uỳ' : u'ʷi', u'uỷ' : u'ʷi', u'uỹ' : u'ʷi', u'uỵ' : u'ʷi', u'uya' : u'ʷiə', u'uyá' : u'ʷiə', u'uyà' : u'ʷiə', u'uyả' : u'ʷiə', u'uyã' : u'ʷiə', u'uyạ' : u'ʷiə', u'uyê' : u'ʷiə', u'uyế' : u'ʷiə', u'uyề' : u'ʷiə', u'uyể' : u'ʷiə', u'uyễ' : u'ʷiə', u'uyệ' : u'ʷiə', u'uyu' : u'ʷiu', u'uyú' : u'ʷiu', u'uyù' : u'ʷiu', u'uyủ' : u'ʷiu', u'uyũ' : u'ʷiu', u'uyụ' : u'ʷiu', u'uyu' : u'ʷiu', u'uýu' : u'ʷiu', u'uỳu' : u'ʷiu', u'uỷu' : u'ʷiu', u'uỹu' : u'ʷiu', u'uỵu' : u'ʷiu', u'oen' : u'ʷen', u'oén' : u'ʷen', u'oèn' : u'ʷen', u'oẻn' : u'ʷen', u'oẽn' : u'ʷen', u'oẹn' : u'ʷen', u'oet' : u'ʷet', u'oét' : u'ʷet', u'oèt' : u'ʷet', u'oẻt' : u'ʷet', u'oẽt' : u'ʷet', u'oẹt' : u'ʷet' } Cus_onoffglides = { u'oe' : u'ɛj', u'oé' : u'ɛj', u'oè' : u'ɛj', u'oẻ' : u'ɛj', u'oẽ' : u'ɛj', u'oẹ' : u'ɛj', u'oai' : u'aj', u'oái' : u'aj', u'oài' : u'aj', u'oải' : u'aj', u'oãi' : u'aj', u'oại' : u'aj', u'oay' : u'ăj', u'oáy' : u'ăj', u'oày' : u'ăj', u'oảy' : u'ăj', u'oãy' : u'ăj', u'oạy' : u'ăj', u'oao' : u'aw', u'oáo' : u'aw', u'oào' : u'aw', u'oảo' : u'aw', u'oão' : u'aw', u'oạo' : u'aw', u'oeo' : u'ew', u'oéo' : u'ew', u'oèo' : u'ew', u'oẻo' : u'ew', u'oẽo' : u'ew', u'oẹo' : u'ew', u'oeo' : u'ew', u'óeo' : u'ew', u'òeo' : u'ew', u'ỏeo' : u'ew', u'õeo' : u'ew', u'ọeo' : u'ew', u'ueo' : u'ew', u'uéo' : u'ew', u'uèo' : u'ew', u'uẻo' : u'ew', u'uẽo' : u'ew', u'uẹo' : u'ew', u'uai' : u'aj', u'uái' : u'aj', u'uài' : u'aj', u'uải' : u'aj', u'uãi' : u'aj', u'uại' : u'aj', u'uay' : u'ăj', u'uáy' : u'ăj', u'uày' : u'ăj', u'uảy' : u'ăj', u'uãy' : u'ăj', u'uạy' : u'ăj', u'uây' : u'ɤ̆j', u'uấy' : u'ɤ̆j', u'uầy' : u'ɤ̆j', u'uẩy' : u'ɤ̆j', u'uẫy' : u'ɤ̆j', u'uậy' : u'ɤ̆j' } Cus_codas = { u'p' : u'p', u't' : u't', u'c' : u'k', u'm' : u'm', u'n' : u'n', u'ng' : u'ŋ', u'nh' : u'ɲ', u'ch' : u'tʃ' } Cus_tones_p = { u'á' : 5, u'à' : 2, u'ả' : 4, u'ã' : 3, u'ạ' : 6, u'ấ' : 5, u'ầ' : 2, u'ẩ' : 4, u'ẫ' : 3, u'ậ' : 6, u'ắ' : 5, u'ằ' : 2, u'ẳ' : 4, u'ẵ' : 3, u'ặ' : 6, u'é' : 5, u'è' : 2, u'ẻ' : 4, u'ẽ' : 3, u'ẹ' : 6, u'ế' : 5, u'ề' : 2, u'ể' : 4, u'ễ' : 3, u'ệ' : 6, u'í' : 5, u'ì' : 2, u'ỉ' : 4, u'ĩ' : 3, u'ị' : 6, u'ó' : 5, u'ò' : 2, u'ỏ' : 4, u'õ' : 3, u'ọ' : 6, u'ố' : 5, u'ồ' : 2, u'ổ' : 4, u'ỗ' : 3, u'ộ' : 6, u'ớ' : 5, u'ờ' : 2, u'ở' : 4, u'ỡ' : 3, u'ợ' : 6, u'ú' : 5, u'ù' : 2, u'ủ' : 4, u'ũ' : 3, u'ụ' : 6, u'ứ' : 5, u'ừ' : 2, u'ử' : 4, u'ữ' : 3, u'ự' : 6, u'ý' : 5, u'ỳ' : 2, u'ỷ' : 4, u'ỹ' : 3, u'ỵ' : 6, } Cus_gi = { u'gi' : u'zi', u'gí': u'zi', u'gì' : u'zi', u'gì' : u'zi', u'gĩ' : u'zi', u'gị' : u'zi'} Cus_qu = {u'quy' : u'kwi', u'qúy' : u'kwi', u'qùy' : u'kwi', u'qủy' : u'kwi', u'qũy' : u'kwi', u'qụy' : u'kwi'} ####################################################### # North # #coding: utf-8 N_onsets = { u'b' : u'b', u't' : u't', u'th' : u'tʰ', u'đ' : u'd', u'ch' : u'c', u'kh' : u'x', u'g' : u'ɣ', u'l' : u'l', u'm' : u'm', u'n': u'n', u'ngh': u'ŋ', u'nh' : u'ɲ', u'ng' : u'ŋ', u'ph' : u'f', u'v' : u'v', u'x' : u's', u'd' : u'z', u'h' : u'h', u'p' : u'p', u'qu' : u'kw', u'gi' : u'z', u'tr' : u'c', u'k' : u'k', u'c' : u'k', u'gh' : u'ɣ', u'r' : u'z', u's' : u's', u'gi': u'z'} N_nuclei = { u'a' : u'a', u'á' : u'a', u'à' : u'a', u'ả' : u'a', u'ã' : u'a', u'ạ' : u'a', u'â' : u'ɤ̆', u'ấ' : u'ɤ̆', u'ầ' : u'ɤ̆', u'ẩ' : u'ɤ̆', u'ẫ' : u'ɤ̆', u'ậ' : u'ɤ̆', u'ă' : u'ă', u'ắ' : u'ă', u'ằ' : u'ă', u'ẳ' : u'ă', u'ẵ' : u'ă', u'ặ' : u'ă', u'e' : u'ɛ', u'é' : u'ɛ', u'è' : u'ɛ', u'ẻ' : u'ɛ', u'ẽ' : u'ɛ', u'ẹ' : u'ɛ', u'ê' : u'e', u'ế' : u'e', u'ề' : u'e', u'ể' : u'e', u'ễ' : u'e', u'ệ' : u'e', u'i' : u'i', u'í' : u'i', u'ì' : u'i', u'ỉ' : u'i', u'ĩ' : u'i', u'ị' : u'i', u'o' : u'ɔ', u'ó' : u'ɔ', u'ò' : u'ɔ', u'ỏ' : u'ɔ', u'õ' : u'ɔ', u'ọ' : u'ɔ', u'ô' : u'o', u'ố' : u'o', u'ồ' : u'o', u'ổ' : u'o', u'ỗ' : u'o', u'ộ' : u'o', u'ơ' : u'ɤ', u'ớ' : u'ɤ', u'ờ' : u'ɤ', u'ở' : u'ɤ', u'ỡ' : u'ɤ', u'ợ' : u'ɤ', u'u' : u'u', u'ú' : u'u', u'ù' : u'u', u'ủ' : u'u', u'ũ' : u'u', u'ụ' : u'u', u'ư' : u'ɯ', u'ứ' : u'ɯ', u'ừ' : u'ɯ', u'ử' : u'ɯ', u'ữ' : u'ɯ', u'ự' : u'ɯ', u'y' : u'i', u'ý' : u'i', u'ỳ' : u'i', u'ỷ' : u'i', u'ỹ' : u'i', u'ỵ' : u'i', u'eo' : u'eo', u'éo' : u'eo', u'èo' : u'eo', u'ẻo' : u'eo', u'ẽo': u'eo', u'ẹo' : u'eo', u'êu' : u'ɛu', u'ếu' : u'ɛu', u'ều' : u'ɛu', u'ểu' : u'ɛu', u'ễu': u'ɛu', u'ệu' : u'ɛu', u'ia' : u'iə', u'ía' : u'iə', u'ìa' : u'iə', u'ỉa' : u'iə', u'ĩa' : u'iə', u'ịa' : u'iə', u'ia' : u'iə', u'iá' : u'iə', u'ià' : u'iə', u'iả' : u'iə', u'iã' : u'iə', u'iạ' : u'iə', u'iê' : u'iə', u'iế' : u'iə', u'iề' : u'iə', u'iể' : u'iə', u'iễ' : u'iə', u'iệ' : u'iə', u'oo' : u'ɔ', u'óo' : u'ɔ', u'òo' : u'ɔ', u'ỏo' : u'ɔ', u'õo' : u'ɔ', u'ọo' : u'ɔ', u'oo' : u'ɔ', u'oó' : u'ɔ', u'oò' : u'ɔ', u'oỏ' : u'ɔ', u'oõ' : u'ɔ', u'oọ' : u'ɔ', u'ôô' : u'o', u'ốô' : u'o', u'ồô' : u'o', u'ổô' : u'o', u'ỗô' : u'o', u'ộô' : u'o', u'ôô' : u'o', u'ôố' : u'o', u'ôồ' : u'o', u'ôổ' : u'o', u'ôỗ' : u'o', u'ôộ' : u'o', u'ua' : u'uə', u'úa' : u'uə', u'ùa' : u'uə', u'ủa' : u'uə', u'ũa' : u'uə', u'ụa' : u'uə', u'uô' : u'uə', u'uố' : u'uə', u'uồ' : u'uə', u'uổ' : u'uə', u'uỗ' : u'uə', u'uộ' : u'uə', u'ưa' : u'ɯə', u'ứa' : u'ɯə', u'ừa' : u'ɯə', u'ửa' : u'ɯə', u'ữa' : u'ɯə', u'ựa' : u'ɯə', u'ươ' : u'ɯə', u'ướ' : u'ɯə', u'ườ' : u'ɯə', u'ưở' : u'ɯə', u'ưỡ' : u'ɯə', u'ượ' : u'ɯə', u'yê' : u'iɛ', u'yế' : u'iɛ', u'yề' : u'iɛ', u'yể' : u'iɛ', u'yễ' : u'iɛ', u'yệ' : u'iɛ', u'uơ' : u'uə', u'uở' : u'uə', u'uờ': u'uə', u'uở' : u'uə', u'uỡ' : u'uə', u'uợ' : u'uə', } N_offglides = { u'ai' : u'aj', u'ái' : u'aj', u'ài' : u'aj', u'ải' : u'aj', u'ãi' : u'aj', u'ại' : u'aj', u'ay' : u'ăj', u'áy' : u'ăj', u'ày' : u'ăj', u'ảy' : u'ăj', u'ãy' : u'ăj', u'ạy' : u'ăj', u'ao' : u'aw', u'áo' : u'aw', u'ào' : u'aw', u'ảo' : u'aw', u'ão' : u'aw', u'ạo' : u'aw', u'au' : u'ăw', u'áu' : u'ăw', u'àu' : u'ăw', u'ảu' : u'ăw', u'ãu' : u'ăw', u'ạu' : u'ăw', u'ây' : u'ɤ̆j', u'ấy' : u'ɤ̆j', u'ầy' : u'ɤ̆j', u'ẩy' : u'ɤ̆j', u'ẫy' : u'ɤ̆j', u'ậy' : u'ɤ̆j', u'âu' : u'ɤ̆w', u'ấu' : u'ɤ̆w', u'ầu': u'ɤ̆w', u'ẩu' : u'ɤ̆w', u'ẫu' : u'ɤ̆w', u'ậu' : u'ɤ̆w', u'eo' : u'ew', u'éo' : u'ew', u'èo' : u'ew', u'ẻo' : u'ew', u'ẽo' : u'ew', u'ẹo' : u'ew', u'iu' : u'iw', u'íu' : u'iw', u'ìu' : u'iw', u'ỉu' : u'iw', u'ĩu' : u'iw', u'ịu' : u'iw', u'oi' : u'ɔj', u'ói' : u'ɔj', u'òi' : u'ɔj', u'ỏi' : u'ɔj', u'õi' : u'ɔj', u'ọi' : u'ɔj', u'ôi' : u'oj', u'ối' : u'oj', u'ồi' : u'oj', u'ổi' : u'oj', u'ỗi' : u'oj', u'ội' : u'oj', u'ui' : u'uj', u'úi' : u'uj', u'ùi' : u'uj', u'ủi' : u'uj', u'ũi' : u'uj', u'ụi' : u'uj', u'uy' : u'uj', u'úy' : u'uj', u'ùy' : u'uj', u'ủy' : u'uj', u'ũy' : u'uj', u'ụy' : u'uj', u'ơi' : u'ɤj', u'ới' : u'ɤj', u'ời' : u'ɤj', u'ởi' : u'ɤj', u'ỡi' : u'ɤj', u'ợi' : u'ɤj', u'ưi' : u'ɯj', u'ứi' : u'ɯj', u'ừi' : u'ɯj', u'ửi' : u'ɯj', u'ữi' : u'ɯj', u'ựi' : u'ɯj', u'ưu' : u'ɯw', u'ứu' : u'ɯw', u'ừu' : u'ɯw', u'ửu' : u'ɯw', u'ữu' : u'ɯw', u'ựu' : u'ɯw', u'iêu' : u'iəw', u'iếu' : u'iəw', u'iều' : u'iəw', u'iểu' : u'iəw', u'iễu' : u'iəw', u'iệu' : u'iəw', u'yêu' : u'iəw', u'yếu' : u'iəw', u'yều' : u'iəw', u'yểu' : u'iəw', u'yễu' : u'iəw', u'yệu' : u'iəw', u'uôi' : u'uəj', u'uối' : u'uəj', u'uồi' : u'uəj', u'uổi' : u'uəj', u'uỗi' : u'uəj', u'uội' : u'uəj', u'ươi' : u'ɯəj', u'ưới' : u'ɯəj', u'ười' : u'ɯəj', u'ưởi' : u'ɯəj', u'ưỡi' : u'ɯəj', u'ượi' : u'ɯəj', u'ươu' : u'ɯəw', u'ướu' : u'ɯəw', u'ườu' : u'ɯəw', u'ưởu' : u'ɯəw', 'ưỡu' : u'ɯəw', u'ượu' : u'ɯəw' } N_onglides = { u'oa' : u'a', u'oá' : u'a', u'oà' : u'a', u'oả' : u'a', u'oã' : u'a', u'oạ' : u'a', u'óa' : u'a', u'òa' : u'a', u'ỏa' : u'a', u'õa' : u'a', u'ọa' : u'a', u'oă' : u'ă', u'oắ' : u'ă', u'oằ' : u'ă', u'oẳ' : u'ă', u'oẵ' : u'ă', u'oặ' : u'ă', u'oe' : u'e', u'oé' : u'e', u'oè' : u'e', u'oẻ' : u'e', u'oẽ' : u'e', u'oẹ' : u'e', u'oe' : u'e', u'óe' : u'e', u'òe' : u'e', u'ỏe' : u'e', u'õe' : u'e', u'ọe' : u'e', u'ua' : u'a', u'uá' : u'a', u'uà' : u'a', u'uả' : u'a', u'uã' : u'a', u'uạ' : u'a', u'uă' : u'ă', u'uắ' : u'ă', u'uằ' : u'ă', u'uẳ' : u'ă', u'uẵ' : u'ă', u'uặ' : u'ă', u'uâ' : u'ɤ̆', u'uấ' : u'ɤ̆', u'uầ' : u'ɤ̆', u'uẩ' : u'ɤ̆', u'uẫ' : u'ɤ̆', u'uậ' : u'ɤ̆', u'ue' : u'ɛ', u'ué' : u'ɛ', u'uè' : u'ɛ', u'uẻ' : u'ɛ', u'uẽ' : u'ɛ', u'uẹ' : u'ɛ', u'uê' : u'e', u'uế' : u'e', u'uề' : u'e', u'uể' : u'e', u'uễ' : u'e', u'uệ' : u'e', u'uơ' : u'ɤ', u'uớ' : u'ɤ', u'uờ' : u'ɤ', u'uở' : u'ɤ', u'uỡ' : u'ɤ', u'uợ' : u'ɤ', u'uy' : u'i', u'uý' : u'i', u'uỳ' : u'i', u'uỷ' : u'i', u'uỹ' : u'i', u'uỵ' : u'i', u'uya' : u'iə', u'uyá' : u'iə', u'uyà' : u'iə', u'uyả' : u'iə', u'uyã' : u'iə', u'uyạ' : u'iə', u'uyê' : u'iə', u'uyế' : u'iə', u'uyề' : u'iə', u'uyể' : u'iə', u'uyễ' : u'iə', u'uyệ' : u'iə', u'uyu' : u'iu', u'uyú' : u'iu', u'uyù' : u'iu', u'uyủ' : u'iu', u'uyũ' : u'iu', u'uyụ' : u'iu', u'uyu' : u'iu', u'uýu' : u'iu', u'uỳu' : u'iu', u'uỷu' : u'iu', u'uỹu' : u'iu', u'uỵu' : u'iu', u'oen' : u'en', u'oén' : u'en', u'oèn' : u'en', u'oẻn' : u'en', u'oẽn' : u'en', u'oẹn' : u'en', u'oet' : u'et', u'oét' : u'et', u'oèt' : u'et', u'oẻt' : u'et', u'oẽt' : u'et', u'oẹt' : u'et' } N_onoffglides = { u'oe' : u'ej', u'oé' : u'ej', u'oè' : u'ej', u'oẻ' : u'ej', u'oẽ' : u'ej', u'oẹ' : u'ej', u'oai' : u'aj', u'oái' : u'aj', u'oài' : u'aj', u'oải' : u'aj', u'oãi' : u'aj', u'oại' : u'aj', u'oay' : u'ăj', u'oáy' : u'ăj', u'oày' : u'ăj', u'oảy' : u'ăj', u'oãy' : u'ăj', u'oạy' : u'ăj', u'oao' : u'aw', u'oáo' : u'aw', u'oào' : u'aw', u'oảo' : u'aw', u'oão' : u'aw', u'oạo' : u'aw', u'oeo' : u'ew', u'oéo' : u'ew', u'oèo' : u'ew', u'oẻo' : u'ew', u'oẽo' : u'ew', u'oẹo' : u'ew', u'oeo' : u'ew', u'óeo' : u'ew', u'òeo' : u'ew', u'ỏeo' : u'ew', u'õeo' : u'ew', u'ọeo' : u'ew', u'ueo' : u'ew', u'uéo' : u'ew', u'uèo' : u'ew', u'uẻo' : u'ew', u'uẽo' : u'ew', u'uẹo' : u'ew', u'uai' : u'aj', u'uái' : u'aj', u'uài' : u'aj', u'uải' : u'aj', u'uãi' : u'aj', u'uại' : u'aj', u'uay' : u'ăj', u'uáy' : u'ăj', u'uày' : u'ăj', u'uảy' : u'ăj', u'uãy' : u'ăj', u'uạy' : u'ăj', u'uây' : u'ɤ̆j', u'uấy' : u'ɤ̆j', u'uầy' : u'ɤ̆j', u'uẩy' : u'ɤ̆j', u'uẫy' : u'ɤ̆j', u'uậy' : u'ɤ̆j' } N_codas = { u'p' : u'p', u't' : u't', u'c' : u'k', u'm' : u'm', u'n' : u'n', u'ng' : u'ŋ', u'nh' : u'ɲ', u'ch' : u'k' } #tones = { u'a' : 33, u'á' : 24, u'à' : 32, u'ả' : 312, u'ã' : u'35g', u'ạ' : u'21g', # u'â' : 33, u'ấ' : 24, u'ầ' : 32, u'ẩ' : 312, u'ẫ' : u'35g', u'ậ' : u'21g', # u'ă' : 33, u'ắ' : 24, u'ằ' : 32, u'ẳ' : 312, u'ẵ' : u'35g', u'ặ' : u'21g', # u'e' : 33, u'é' : 24, u'è' : 32, u'ẻ' : 312, u'ẽ' : u'35g', u'ẹ' : u'21g', # u'ê' : 33, u'ế' : 24, u'ề' : 32, u'ể' : 312, u'ễ' : u'35g', u'ệ' : u'21g', # u'i' : 33, u'í' : 24, u'ì' : 32, u'ỉ' : 312, u'ĩ' : u'35g', u'ị' : u'21g', # u'o' : 33, u'ó' : 24, u'ò' : 32, u'ỏ' : 312, u'õ' : u'35g', u'ọ' : u'21g', # u'ô' : 33, u'ố' : 24, u'ồ' : 32, u'ổ' : 312, u'ỗ' : u'35g', u'ộ' : u'21g', # u'ơ' : 33, u'ớ' : 24, u'ờ' : 32, u'ở' : 312, u'ỡ' : u'35g', u'ợ' : u'21g', # u'u' : 33, u'ú' : 24, u'ù' : 32, u'ủ' : 312, u'ũ' : u'35g', u'ụ' : u'21g', # u'ư' : 33, u'ứ' : 24, u'ừ' : 32, u'ử' : 312, u'ữ' : u'35g', u'ự' : u'21g', # u'y' : 33, u'ý' : 24, u'ỳ' : 32, u'ỷ' : 312, u'ỹ' : u'35g', u'ỵ' : u'21g', # } N_tones = { u'á' : 24, u'à' : 32, u'ả' : 312, u'ã' : u'35g', u'ạ' : u'21g', u'ấ' : 24, u'ầ' : 32, u'ẩ' : 312, u'ẫ' : u'35g', u'ậ' : u'21g', u'ắ' : 24, u'ằ' : 32, u'ẳ' : 312, u'ẵ' : u'35g', u'ặ' : u'21g', u'é' : 24, u'è' : 32, u'ẻ' : 312, u'ẽ' : u'35g', u'ẹ' : u'21g', u'ế' : 24, u'ề' : 32, u'ể' : 312, u'ễ' : u'35g', u'ệ' : u'21g', u'í' : 24, u'ì' : 32, u'ỉ' : 312, u'ĩ' : u'35g', u'ị' : u'21g', u'ó' : 24, u'ò' : 32, u'ỏ' : 312, u'õ' : u'35g', u'ọ' : u'21g', u'ố' : 24, u'ồ' : 32, u'ổ' : 312, u'ỗ' : u'35g', u'ộ' : u'21g', u'ớ' : 24, u'ờ' : 32, u'ở' : 312, u'ỡ' : u'35g', u'ợ' : u'21g', u'ú' : 24, u'ù' : 32, u'ủ' : 312, u'ũ' : u'35g', u'ụ' : u'21g', u'ứ' : 24, u'ừ' : 32, u'ử' : 312, u'ữ' : u'35g', u'ự' : u'21g', u'ý' : 24, u'ỳ' : 32, u'ỷ' : 312, u'ỹ' : u'35g', u'ỵ' : u'21g', } # used to use \u02C0 for the unicode raised glottal character N_tones_p = { u'á' : 5, u'à' : 2, u'ả' : 4, u'ã' : 3, u'ạ' : 6, u'ấ' : 5, u'ầ' : 2, u'ẩ' : 4, u'ẫ' : 3, u'ậ' : 6, u'ắ' : 5, u'ằ' : 2, u'ẳ' : 4, u'ẵ' : 3, u'ặ' : 6, u'é' : 5, u'è' : 2, u'ẻ' : 4, u'ẽ' : 3, u'ẹ' : 6, u'ế' : 5, u'ề' : 2, u'ể' : 4, u'ễ' : 3, u'ệ' : 6, u'í' : 5, u'ì' : 2, u'ỉ' : 4, u'ĩ' : 3, u'ị' : 6, u'ó' : 5, u'ò' : 2, u'ỏ' : 4, u'õ' : 3, u'ọ' : 6, u'ố' : 5, u'ồ' : 2, u'ổ' : 4, u'ỗ' : 3, u'ộ' : 6, u'ớ' : 5, u'ờ' : 2, u'ở' : 4, u'ỡ' : 3, u'ợ' : 6, u'ú' : 5, u'ù' : 2, u'ủ' : 4, u'ũ' : 3, u'ụ' : 6, u'ứ' : 5, u'ừ' : 2, u'ử' : 4, u'ữ' : 3, u'ự' : 6, u'ý' : 5, u'ỳ' : 2, u'ỷ' : 4, u'ỹ' : 3, u'ỵ' : 6, } N_gi = { u'gi' : u'zi', u'gí': u'zi', u'gì' : u'zi', u'gì' : u'zi', u'gĩ' : u'zi', u'gị' : u'zi'} N_qu = {u'quy' : u'kwi', u'qúy' : u'kwi', u'qùy' : u'kwi', u'qủy' : u'kwi', u'qũy' : u'kwi', u'qụy' : u'kwi'} ####################################################### #central.py #coding: utf-8 C_onsets = { u'b' : u'b', u't' : u't', u'th' : u'tʰ', u'đ' : u'd', u'ch' : u'c', u'kh' : u'x', u'g' : u'ɣ', u'l' : u'l', u'm' : u'm', u'n': u'n', u'ngh': u'ŋ', u'nh' : u'ɲ', u'ng' : u'ŋ', u'ph' : u'f', u'v' : u'j', u'x' : u's', u'd' : u'j', u'h' : u'h', u'p' : u'p', u'qu' : u'w', u'gi' : u'j', u'tr' : u'ʈ', u'k' : u'k', u'c' : u'k', u'gh' : u'ɣ', u'r' : u'ʐ', u's' : u'ʂ', u'gi' : u'j' } C_nuclei = { u'a' : u'a', u'á' : u'a', u'à' : u'a', u'ả' : u'a', u'ã' : u'a', u'ạ' : u'a', u'â' : u'ɤ̆', u'ấ' : u'ɤ̆', u'ầ' : u'ɤ̆', u'ẩ' : u'ɤ̆', u'ẫ' : u'ɤ̆', u'ậ' : u'ɤ̆', u'ă' : u'ă', u'ắ' : u'ă', u'ằ' : u'ă', u'ẳ' : u'ă', u'ẵ' : u'ă', u'ặ' : u'ă', u'e' : u'ɛ', u'é' : u'ɛ', u'è' : u'ɛ', u'ẻ' : u'ɛ', u'ẽ' : u'ɛ', u'ẹ' : u'ɛ', u'ê' : u'e', u'ế' : u'e', u'ề' : u'e', u'ể' : u'e', u'ễ' : u'e', u'ệ' : u'e', u'i' : u'i', u'í' : u'i', u'ì' : u'i', u'ỉ' : u'i', u'ĩ' : u'i', u'ị' : u'i', u'o' : u'ɔ', u'ó' : u'ɔ', u'ò' : u'ɔ', u'ỏ' : u'ɔ', u'õ' : u'ɔ', u'ọ' : u'ɔ', u'ô' : u'o', u'ố' : u'o', u'ồ' : u'o', u'ổ' : u'o', u'ỗ' : u'o', u'ộ' : u'o', u'ơ' : u'ɤ', u'ớ' : u'ɤ', u'ờ' : u'ɤ', u'ở' : u'ɤ', u'ỡ' : u'ɤ', u'ợ' : u'ɤ', u'u' : u'u', u'ú' : u'u', u'ù' : u'u', u'ủ' : u'u', u'ũ' : u'u', u'ụ' : u'u', u'ư' : u'ɯ', u'ứ' : u'ɯ', u'ừ' : u'ɯ', u'ử' : u'ɯ', u'ữ' : u'ɯ', u'ự' : u'ɯ', u'y' : u'i', u'ý' : u'i', u'ỳ' : u'i', u'ỷ' : u'i', u'ỹ' : u'i', u'ỵ' : u'i', u'eo' : u'eo', u'éo' : u'eo', u'èo' : u'eo', u'ẻo' : u'eo', u'ẽo': u'eo', u'ẹo' : u'eo', u'êu' : u'ɛu', u'ếu' : u'ɛu', u'ều' : u'ɛu', u'ểu' : u'ɛu', u'ễu': u'ɛu', u'ệu' : u'ɛu', u'ia' : u'iə', u'ía' : u'iə', u'ìa' : u'iə', u'ỉa' : u'iə', u'ĩa' : u'iə', u'ịa' : u'iə', u'ia' : u'iə', u'iá' : u'iə', u'ià' : u'iə', u'iả' : u'iə', u'iã' : u'iə', u'iạ' : u'iə', u'iê' : u'iə', u'iế' : u'iə', u'iề' : u'iə', u'iể' : u'iə', u'iễ' : u'iə', u'iệ' : u'iə', u'oo' : u'ɔ', u'óo' : u'ɔ', u'òo' : u'ɔ', u'ỏo' : u'ɔ', u'õo' : u'ɔ', u'ọo' : u'ɔ', u'oo' : u'ɔ', u'oó' : u'ɔ', u'oò' : u'ɔ', u'oỏ' : u'ɔ', u'oõ' : u'ɔ', u'oọ' : u'ɔ', u'ôô' : u'o', u'ốô' : u'o', u'ồô' : u'o', u'ổô' : u'o', u'ỗô' : u'o', u'ộô' : u'o', u'ôô' : u'o', u'ôố' : u'o', u'ôồ' : u'o', u'ôổ' : u'o', u'ôỗ' : u'o', u'ôộ' : u'o', u'ua' : u'uə', u'úa' : u'uə', u'ùa' : u'uə', u'ủa' : u'uə', u'ũa' : u'uə', u'ụa' : u'uə', u'uô' : u'uə', u'uố' : u'uə', u'uồ' : u'uə', u'uổ' : u'uə', u'uỗ' : u'uə', u'uộ' : u'uə', u'ưa' : u'ɯə', u'ứa' : u'ɯə', u'ừa' : u'ɯə', u'ửa' : u'ɯə', u'ữa' : u'ɯə', u'ựa' : u'ɯə', u'ươ' : u'ɯə', u'ướ' : u'ɯə', u'ườ' : u'ɯə', u'ưở' : u'ɯə', u'ưỡ' : u'ɯə', u'ượ' : u'ɯə', u'yê' : u'iɛ', u'yế' : u'iɛ', u'yề' : u'iɛ', u'yể' : u'iɛ', u'yễ' : u'iɛ', u'yệ' : u'iɛ', u'uơ' : u'uə', u'uở' : u'uə', u'uờ': u'uə', u'uở' : u'uə', u'uỡ' : u'uə', u'uợ' : u'uə', } C_offglides = { u'ai' : u'aj', u'ái' : u'aj', u'ài' : u'aj', u'ải' : u'aj', u'ãi' : u'aj', u'ại' : u'aj', u'ay' : u'ăj', u'áy' : u'ăj', u'ày' : u'ăj', u'ảy' : u'ăj', u'ãy' : u'ăj', u'ạy' : u'ăj', u'ao' : u'aw', u'áo' : u'aw', u'ào' : u'aw', u'ảo' : u'aw', u'ão' : u'aw', u'ạo' : u'aw', u'au' : u'ăw', u'áu' : u'ăw', u'àu' : u'ăw', u'ảu' : u'ăw', u'ãu' : u'ăw', u'ạu' : u'ăw', u'ây' : u'ɤ̆j', u'ấy' : u'ɤ̆j', u'ầy' : u'ɤ̆j', u'ẩy' : u'ɤ̆j', u'ẫy' : u'ɤ̆j', u'ậy' : u'ɤ̆j', u'âu' : u'ɤ̆w', u'ấu' : u'ɤ̆w', u'ầu': u'ɤ̆w', u'ẩu' : u'ɤ̆w', u'ẫu' : u'ɤ̆w', u'ậu' : u'ɤ̆w', u'eo' : u'ew', u'éo' : u'ew', u'èo' : u'ew', u'ẻo' : u'ew', u'ẽo' : u'ew', u'ẹo' : u'ew', u'iu' : u'iw', u'íu' : u'iw', u'ìu' : u'iw', u'ỉu' : u'iw', u'ĩu' : u'iw', u'ịu' : u'iw', u'oi' : u'ɔj', u'ói' : u'ɔj', u'òi' : u'ɔj', u'ỏi' : u'ɔj', u'õi' : u'ɔj', u'ọi' : u'ɔj', u'ôi' : u'oj', u'ối' : u'oj', u'ồi' : u'oj', u'ổi' : u'oj', u'ỗi' : u'oj', u'ội' : u'oj', u'ui' : u'uj', u'úi' : u'uj', u'ùi' : u'uj', u'ủi' : u'uj', u'ũi' : u'uj', u'ụi' : u'uj', u'uy' : u'uj', u'úy' : u'uj', u'ùy' : u'uj', u'ủy' : u'uj', u'ũy' : u'uj', u'ụy' : u'uj', u'ơi' : u'ɤj', u'ới' : u'ɤj', u'ời' : u'ɤj', u'ởi' : u'ɤj', u'ỡi' : u'ɤj', u'ợi' : u'ɤj', u'ưi' : u'ɯj', u'ứi' : u'ɯj', u'ừi' : u'ɯj', u'ửi' : u'ɯj', u'ữi' : u'ɯj', u'ựi' : u'ɯj', u'ưu' : u'ɯw', u'ứu' : u'ɯw', u'ừu' : u'ɯw', u'ửu' : u'ɯw', u'ữu' : u'ɯw', u'ựu' : u'ɯw', u'iêu' : u'iəw', u'iếu' : u'iəw', u'iều' : u'iəw', u'iểu' : u'iəw', u'iễu' : u'iəw', u'iệu' : u'iəw', u'yêu' : u'iəw', u'yếu' : u'iəw', u'yều' : u'iəw', u'yểu' : u'iəw', u'yễu' : u'iəw', u'yệu' : u'iəw', u'uôi' : u'uəj', u'uối' : u'uəj', u'uồi' : u'uəj', u'uổi' : u'uəj', u'uỗi' : u'uəj', u'uội' : u'uəj', u'ươi' : u'ɯəj', u'ưới' : u'ɯəj', u'ười' : u'ɯəj', u'ưởi' : u'ɯəj', u'ưỡi' : u'ɯəj', u'ượi' : u'ɯəj', u'ươu' : u'ɯəw', u'ướu' : u'ɯəw', u'ườu' : u'ɯəw', u'ưởu' : u'ɯəw', 'ưỡu' : u'ɯəw', u'ượu' : u'ɯəw' } C_onglides = { u'oa' : u'a', u'oá' : u'a', u'oà' : u'a', u'oả' : u'a', u'oã' : u'a', u'oạ' : u'a', u'óa' : u'a', u'òa' : u'a', u'ỏa' : u'a', u'õa' : u'a', u'ọa' : u'a', u'oă' : u'ă', u'oắ' : u'ă', u'oằ' : u'ă', u'oẳ' : u'ă', u'oẵ' : u'ă', u'oặ' : u'ă', u'oe' : u'e', u'oé' : u'e', u'oè' : u'e', u'oẻ' : u'e', u'oẽ' : u'e', u'oẹ' : u'e', u'oe' : u'e', u'óe' : u'e', u'òe' : u'e', u'ỏe' : u'e', u'õe' : u'e', u'ọe' : u'e', u'ua' : u'a', u'uá' : u'a', u'uà' : u'a', u'uả' : u'a', u'uã' : u'a', u'uạ' : u'a', u'uă' : u'ă', u'uắ' : u'ă', u'uằ' : u'ă', u'uẳ' : u'ă', u'uẵ' : u'ă', u'uặ' : u'ă', u'uâ' : u'ɤ̆', u'uấ' : u'ɤ̆', u'uầ' : u'ɤ̆', u'uẩ' : u'ɤ̆', u'uẫ' : u'ɤ̆', u'uậ' : u'ɤ̆', u'ue' : u'ɛ', u'ué' : u'ɛ', u'uè' : u'ɛ', u'uẻ' : u'ɛ', u'uẽ' : u'ɛ', u'uẹ' : u'ɛ', u'uê' : u'e', u'uế' : u'e', u'uề' : u'e', u'uể' : u'e', u'uễ' : u'e', u'uệ' : u'e', u'uơ' : u'ɤ', u'uớ' : u'ɤ', u'uờ' : u'ɤ', u'uở' : u'ɤ', u'uỡ' : u'ɤ', u'uợ' : u'ɤ', u'uy' : u'i', u'uý' : u'i', u'uỳ' : u'i', u'uỷ' : u'i', u'uỹ' : u'i', u'uỵ' : u'i', u'uya' : u'iə', u'uyá' : u'iə', u'uyà' : u'iə', u'uyả' : u'iə', u'uyã' : u'iə', u'uyạ' : u'iə', u'uyê' : u'iə', u'uyế' : u'iə', u'uyề' : u'iə', u'uyể' : u'iə', u'uyễ' : u'iə', u'uyệ' : u'iə', u'uyu' : u'iu', u'uyú' : u'iu', u'uyù' : u'iu', u'uyủ' : u'iu', u'uyũ' : u'iu', u'uyụ' : u'iu', u'uyu' : u'iu', u'uýu' : u'iu', u'uỳu' : u'iu', u'uỷu' : u'iu', u'uỹu' : u'iu', u'uỵu' : u'iu', u'oen' : u'en', u'oén' : u'en', u'oèn' : u'en', u'oẻn' : u'en', u'oẽn' : u'en', u'oẹn' : u'en', u'oet' : u'et', u'oét' : u'et', u'oèt' : u'et', u'oẻt' : u'et', u'oẽt' : u'et', u'oẹt' : u'et' } C_onoffglides = { u'oe' : u'ej', u'oé' : u'ej', u'oè' : u'ej', u'oẻ' : u'ej', u'oẽ' : u'ej', u'oẹ' : u'ej', u'oai' : u'aj', u'oái' : u'aj', u'oài' : u'aj', u'oải' : u'aj', u'oãi' : u'aj', u'oại' : u'aj', u'oay' : u'ăj', u'oáy' : u'ăj', u'oày' : u'ăj', u'oảy' : u'ăj', u'oãy' : u'ăj', u'oạy' : u'ăj', u'oao' : u'aw', u'oáo' : u'aw', u'oào' : u'aw', u'oảo' : u'aw', u'oão' : u'aw', u'oạo' : u'aw', u'oeo' : u'ew', u'oéo' : u'ew', u'oèo' : u'ew', u'oẻo' : u'ew', u'oẽo' : u'ew', u'oẹo' : u'ew', u'oeo' : u'ew', u'óeo' : u'ew', u'òeo' : u'ew', u'ỏeo' : u'ew', u'õeo' : u'ew', u'ọeo' : u'ew', u'ueo' : u'ew', u'uéo' : u'ew', u'uèo' : u'ew', u'uẻo' : u'ew', u'uẽo' : u'ew', u'uẹo' : u'ew', u'uai' : u'aj', u'uái' : u'aj', u'uài' : u'aj', u'uải' : u'aj', u'uãi' : u'aj', u'uại' : u'aj', u'uay' : u'ăj', u'uáy' : u'ăj', u'uày' : u'ăj', u'uảy' : u'ăj', u'uãy' : u'ăj', u'uạy' : u'ăj', u'uây' : u'ɤ̆j', u'uấy' : u'ɤ̆j', u'uầy' : u'ɤ̆j', u'uẩy' : u'ɤ̆j', u'uẫy' : u'ɤ̆j', u'uậy' : u'ɤ̆j' } C_codas = { u'p' : u'p', u't' : u'k', u'c' : u'k', u'm' : u'm', u'n' : u'ŋ', u'ng' : u'ŋ', u'nh' : u'n', u'ch' : u'k' } # See Alves 2007 (SEALS XII), Vũ 1982 C_tones = { u'á' : 13, u'à' : 42, u'ả' : 312, u'ã' : 312, u'ạ' : u'21g', u'ấ' : 13, u'ầ' : 42, u'ẩ' : 312, u'ẫ' : 312, u'ậ' : u'21g', u'ắ' : 13, u'ằ' : 42, u'ẳ' : 312, u'ẵ' : 312, u'ặ' : u'21g', u'é' : 13, u'è' : 42, u'ẻ' : 312, u'ẽ' : 312, u'ẹ' : u'21g', u'ế' : 13, u'ề' : 42, u'ể' : 312, u'ễ' : 312, u'ệ' : u'21g', u'í' : 13, u'ì' : 42, u'ỉ' : 312, u'ĩ' : 312, u'ị' : u'21g', u'ó' : 13, u'ò' : 42, u'ỏ' : 312, u'õ' : 312, u'ọ' : u'21g', u'ố' : 13, u'ồ' : 42, u'ổ' : 312, u'ỗ' : 312, u'ộ' : u'21g', u'ớ' : 13, u'ờ' : 42, u'ở' : 312, u'ỡ' : 312, u'ợ' : u'21g', u'ú' : 13, u'ù' : 42, u'ủ' : 312, u'ũ' : 312, u'ụ' : u'21g', u'ứ' : 13, u'ừ' : 42, u'ử' : 312, u'ữ' : 312, u'ự' : u'21g', u'ý' : 13, u'ỳ' : 42, u'ỷ' : 312, u'ỹ' : 312, u'ỵ' : u'21g', } # used to use \u02C0 for raised glottal instead of g C_tones_p = { u'á' : 5, u'à' : 2, u'ả' : 4, u'ã' : 4, u'ạ' : 6, u'ấ' : 5, u'ầ' : 2, u'ẩ' : 4, u'ẫ' : 4, u'ậ' : 6, u'ắ' : 5, u'ằ' : 2, u'ẳ' : 4, u'ẵ' : 4, u'ặ' : 6, u'é' : 5, u'è' : 2, u'ẻ' : 4, u'ẽ' : 4, u'ẹ' : 6, u'ế' : 5, u'ề' : 2, u'ể' : 4, u'ễ' : 4, u'ệ' : 6, u'í' : 5, u'ì' : 2, u'ỉ' : 4, u'ĩ' : 4, u'ị' : 6, u'ó' : 5, u'ò' : 2, u'ỏ' : 4, u'õ' : 4, u'ọ' : 6, u'ố' : 5, u'ồ' : 2, u'ổ' : 4, u'ỗ' : 4, u'ộ' : 6, u'ớ' : 5, u'ờ' : 2, u'ở' : 4, u'ỡ' : 4, u'ợ' : 6, u'ú' : 5, u'ù' : 2, u'ủ' : 4, u'ũ' : 4, u'ụ' : 6, u'ứ' : 5, u'ừ' : 2, u'ử' : 4, u'ữ' : 4, u'ự' : 6, u'ý' : 5, u'ỳ' : 2, u'ỷ' : 4, u'ỹ' : 4, u'ỵ' : 6, } C_gi = { u'gi' : u'ji', u'gí': u'ji', u'gì' : u'ji', u'gì' : u'ji', u'gĩ' : u'ji', u'gị' : u'ji' } C_qu = {u'quy' : u'wi', u'qúy' : u'wi', u'qùy' : u'wi', u'qủy' : u'wi', u'qũy' : u'wi', u'qụy' : u'wi'} ############################################ #south.py #coding: utf-8 S_onsets = { u'b' : u'b', u't' : u't', u'th' : u'tʰ', u'đ' : u'd', u'ch' : u'c', u'kh' : u'x', u'g' : u'ɣ', u'l' : u'l', u'm' : u'm', u'n': u'n', u'ngh': u'ŋ', u'nh' : u'ɲ', u'ng' : u'ŋ', u'ph' : u'f', u'v' : u'j', u'x' : u's', u'd' : u'j', u'h' : u'h', u'p' : u'p', u'qu' : u'w', u'gi' : u'j', u'tr' : u'ʈ', u'k' : u'k', u'c' : u'k', u'gh' : u'ɣ', u'r' : u'ʐ', u's' : u'ʂ', u'gi' : u'j' } S_nuclei = { u'a' : u'a', u'á' : u'a', u'à' : u'a', u'ả' : u'a', u'ã' : u'a', u'ạ' : u'a', u'â' : u'ɤ̆', u'ấ' : u'ɤ̆', u'ầ' : u'ɤ̆', u'ẩ' : u'ɤ̆', u'ẫ' : u'ɤ̆', u'ậ' : u'ɤ̆', u'ă' : u'ă', u'ắ' : u'ă', u'ằ' : u'ă', u'ẳ' : u'ă', u'ẵ' : u'ă', u'ặ' : u'ă', u'e' : u'ɛ', u'é' : u'ɛ', u'è' : u'ɛ', u'ẻ' : u'ɛ', u'ẽ' : u'ɛ', u'ẹ' : u'ɛ', u'ê' : u'e', u'ế' : u'e', u'ề' : u'e', u'ể' : u'e', u'ễ' : u'e', u'ệ' : u'e', u'i' : u'i', u'í' : u'i', u'ì' : u'i', u'ỉ' : u'i', u'ĩ' : u'i', u'ị' : u'i', u'o' : u'ɔ', u'ó' : u'ɔ', u'ò' : u'ɔ', u'ỏ' : u'ɔ', u'õ' : u'ɔ', u'ọ' : u'ɔ', u'ô' : u'o', u'ố' : u'o', u'ồ' : u'o', u'ổ' : u'o', u'ỗ' : u'o', u'ộ' : u'o', u'ơ' : u'ɤ', u'ớ' : u'ɤ', u'ờ' : u'ɤ', u'ở' : u'ɤ', u'ỡ' : u'ɤ', u'ợ' : u'ɤ', u'u' : u'u', u'ú' : u'u', u'ù' : u'u', u'ủ' : u'u', u'ũ' : u'u', u'ụ' : u'u', u'ư' : u'ɯ', u'ứ' : u'ɯ', u'ừ' : u'ɯ', u'ử' : u'ɯ', u'ữ' : u'ɯ', u'ự' : u'ɯ', u'y' : u'i', u'ý' : u'i', u'ỳ' : u'i', u'ỷ' : u'i', u'ỹ' : u'i', u'ỵ' : u'i', u'eo' : u'eo', u'éo' : u'eo', u'èo' : u'eo', u'ẻo' : u'eo', u'ẽo': u'eo', u'ẹo' : u'eo', u'êu' : u'ɛu', u'ếu' : u'ɛu', u'ều' : u'ɛu', u'ểu' : u'ɛu', u'ễu': u'ɛu', u'ệu' : u'ɛu', u'ia' : u'iə', u'ía' : u'iə', u'ìa' : u'iə', u'ỉa' : u'iə', u'ĩa' : u'iə', u'ịa' : u'iə', u'ia' : u'iə', u'iá' : u'iə', u'ià' : u'iə', u'iả' : u'iə', u'iã' : u'iə', u'iạ' : u'iə', u'iê' : u'iə', u'iế' : u'iə', u'iề' : u'iə', u'iể' : u'iə', u'iễ' : u'iə', u'iệ' : u'iə', u'oo' : u'ɔ', u'óo' : u'ɔ', u'òo' : u'ɔ', u'ỏo' : u'ɔ', u'õo' : u'ɔ', u'ọo' : u'ɔ', u'oo' : u'ɔ', u'oó' : u'ɔ', u'oò' : u'ɔ', u'oỏ' : u'ɔ', u'oõ' : u'ɔ', u'oọ' : u'ɔ', u'ôô' : u'o', u'ốô' : u'o', u'ồô' : u'o', u'ổô' : u'o', u'ỗô' : u'o', u'ộô' : u'o', u'ôô' : u'o', u'ôố' : u'o', u'ôồ' : u'o', u'ôổ' : u'o', u'ôỗ' : u'o', u'ôộ' : u'o', u'ua' : u'uə', u'úa' : u'uə', u'ùa' : u'uə', u'ủa' : u'uə', u'ũa' : u'uə', u'ụa' : u'uə', u'uô' : u'uə', u'uố' : u'uə', u'uồ' : u'uə', u'uổ' : u'uə', u'uỗ' : u'uə', u'uộ' : u'uə', u'ưa' : u'ɯə', u'ứa' : u'ɯə', u'ừa' : u'ɯə', u'ửa' : u'ɯə', u'ữa' : u'ɯə', u'ựa' : u'ɯə', u'ươ' : u'ɯə', u'ướ' : u'ɯə', u'ườ' : u'ɯə', u'ưở' : u'ɯə', u'ưỡ' : u'ɯə', u'ượ' : u'ɯə', u'yê' : u'iɛ', u'yế' : u'iɛ', u'yề' : u'iɛ', u'yể' : u'iɛ', u'yễ' : u'iɛ', u'yệ' : u'iɛ', u'uơ' : u'uə', u'uở' : u'uə', u'uờ': u'uə', u'uở' : u'uə', u'uỡ' : u'uə', u'uợ' : u'uə', } S_offglides = { u'ai' : u'aj', u'ái' : u'aj', u'ài' : u'aj', u'ải' : u'aj', u'ãi' : u'aj', u'ại' : u'aj', u'ay' : u'ăj', u'áy' : u'ăj', u'ày' : u'ăj', u'ảy' : u'ăj', u'ãy' : u'ăj', u'ạy' : u'ăj', u'ao' : u'aw', u'áo' : u'aw', u'ào' : u'aw', u'ảo' : u'aw', u'ão' : u'aw', u'ạo' : u'aw', u'au' : u'ăw', u'áu' : u'ăw', u'àu' : u'ăw', u'ảu' : u'ăw', u'ãu' : u'ăw', u'ạu' : u'ăw', u'ây' : u'ɤ̆j', u'ấy' : u'ɤ̆j', u'ầy' : u'ɤ̆j', u'ẩy' : u'ɤ̆j', u'ẫy' : u'ɤ̆j', u'ậy' : u'ɤ̆j', u'âu' : u'ɤ̆w', u'ấu' : u'ɤ̆w', u'ầu': u'ɤ̆w', u'ẩu' : u'ɤ̆w', u'ẫu' : u'ɤ̆w', u'ậu' : u'ɤ̆w', u'eo' : u'ew', u'éo' : u'ew', u'èo' : u'ew', u'ẻo' : u'ew', u'ẽo' : u'ew', u'ẹo' : u'ew', u'iu' : u'iw', u'íu' : u'iw', u'ìu' : u'iw', u'ỉu' : u'iw', u'ĩu' : u'iw', u'ịu' : u'iw', u'oi' : u'ɔj', u'ói' : u'ɔj', u'òi' : u'ɔj', u'ỏi' : u'ɔj', u'õi' : u'ɔj', u'ọi' : u'ɔj', u'ôi' : u'oj', u'ối' : u'oj', u'ồi' : u'oj', u'ổi' : u'oj', u'ỗi' : u'oj', u'ội' : u'oj', u'ui' : u'uj', u'úi' : u'uj', u'ùi' : u'uj', u'ủi' : u'uj', u'ũi' : u'uj', u'ụi' : u'uj', u'uy' : u'uj', u'úy' : u'uj', u'ùy' : u'uj', u'ủy' : u'uj', u'ũy' : u'uj', u'ụy' : u'uj', u'ơi' : u'ɤj', u'ới' : u'ɤj', u'ời' : u'ɤj', u'ởi' : u'ɤj', u'ỡi' : u'ɤj', u'ợi' : u'ɤj', u'ưi' : u'ɯj', u'ứi' : u'ɯj', u'ừi' : u'ɯj', u'ửi' : u'ɯj', u'ữi' : u'ɯj', u'ựi' : u'ɯj', u'ưu' : u'ɯw', u'ứu' : u'ɯw', u'ừu' : u'ɯw', u'ửu' : u'ɯw', u'ữu' : u'ɯw', u'ựu' : u'ɯw', u'iêu' : u'iəw', u'iếu' : u'iəw', u'iều' : u'iəw', u'iểu' : u'iəw', u'iễu' : u'iəw', u'iệu' : u'iəw', u'yêu' : u'iəw', u'yếu' : u'iəw', u'yều' : u'iəw', u'yểu' : u'iəw', u'yễu' : u'iəw', u'yệu' : u'iəw', u'uôi' : u'uəj', u'uối' : u'uəj', u'uồi' : u'uəj', u'uổi' : u'uəj', u'uỗi' : u'uəj', u'uội' : u'uəj', u'ươi' : u'ɯəj', u'ưới' : u'ɯəj', u'ười' : u'ɯəj', u'ưởi' : u'ɯəj', u'ưỡi' : u'ɯəj', u'ượi' : u'ɯəj', u'ươu' : u'ɯəw', u'ướu' : u'ɯəw', u'ườu' : u'ɯəw', u'ưởu' : u'ɯəw', 'ưỡu' : u'ɯəw', u'ượu' : u'ɯəw' } S_onglides = { u'oa' : u'a', u'oá' : u'a', u'oà' : u'a', u'oả' : u'a', u'oã' : u'a', u'oạ' : u'a', u'óa' : u'a', u'òa' : u'a', u'ỏa' : u'a', u'õa' : u'a', u'ọa' : u'a', u'oă' : u'ă', u'oắ' : u'ă', u'oằ' : u'ă', u'oẳ' : u'ă', u'oẵ' : u'ă', u'oặ' : u'ă', u'oe' : u'e', u'oé' : u'e', u'oè' : u'e', u'oẻ' : u'e', u'oẽ' : u'e', u'oẹ' : u'e', u'oe' : u'e', u'óe' : u'e', u'òe' : u'e', u'ỏe' : u'e', u'õe' : u'e', u'ọe' : u'e', u'ua' : u'a', u'uá' : u'a', u'uà' : u'a', u'uả' : u'a', u'uã' : u'a', u'uạ' : u'a', u'uă' : u'ă', u'uắ' : u'ă', u'uằ' : u'ă', u'uẳ' : u'ă', u'uẵ' : u'ă', u'uặ' : u'ă', u'uâ' : u'ɤ̆', u'uấ' : u'ɤ̆', u'uầ' : u'ɤ̆', u'uẩ' : u'ɤ̆', u'uẫ' : u'ɤ̆', u'uậ' : u'ɤ̆', u'ue' : u'ɛ', u'ué' : u'ɛ', u'uè' : u'ɛ', u'uẻ' : u'ɛ', u'uẽ' : u'ɛ', u'uẹ' : u'ɛ', u'uê' : u'e', u'uế' : u'e', u'uề' : u'e', u'uể' : u'e', u'uễ' : u'e', u'uệ' : u'e', u'uơ' : u'ɤ', u'uớ' : u'ɤ', u'uờ' : u'ɤ', u'uở' : u'ɤ', u'uỡ' : u'ɤ', u'uợ' : u'ɤ', u'uy' : u'i', u'uý' : u'i', u'uỳ' : u'i', u'uỷ' : u'i', u'uỹ' : u'i', u'uỵ' : u'i', u'uya' : u'iə', u'uyá' : u'iə', u'uyà' : u'iə', u'uyả' : u'iə', u'uyã' : u'iə', u'uyạ' : u'iə', u'uyê' : u'iə', u'uyế' : u'iə', u'uyề' : u'iə', u'uyể' : u'iə', u'uyễ' : u'iə', u'uyệ' : u'iə', u'uyu' : u'iu', u'uyú' : u'iu', u'uyù' : u'iu', u'uyủ' : u'iu', u'uyũ' : u'iu', u'uyụ' : u'iu', u'uyu' : u'iu', u'uýu' : u'iu', u'uỳu' : u'iu', u'uỷu' : u'iu', u'uỹu' : u'iu', u'uỵu' : u'iu', u'oen' : u'en', u'oén' : u'en', u'oèn' : u'en', u'oẻn' : u'en', u'oẽn' : u'en', u'oẹn' : u'en', u'oet' : u'et', u'oét' : u'et', u'oèt' : u'et', u'oẻt' : u'et', u'oẽt' : u'et', u'oẹt' : u'et' } S_onoffglides = { u'oe' : u'ej', u'oé' : u'ej', u'oè' : u'ej', u'oẻ' : u'ej', u'oẽ' : u'ej', u'oẹ' : u'ej', u'oai' : u'aj', u'oái' : u'aj', u'oài' : u'aj', u'oải' : u'aj', u'oãi' : u'aj', u'oại' : u'aj', u'oay' : u'ăj', u'oáy' : u'ăj', u'oày' : u'ăj', u'oảy' : u'ăj', u'oãy' : u'ăj', u'oạy' : u'ăj', u'oao' : u'aw', u'oáo' : u'aw', u'oào' : u'aw', u'oảo' : u'aw', u'oão' : u'aw', u'oạo' : u'aw', u'oeo' : u'ew', u'oéo' : u'ew', u'oèo' : u'ew', u'oẻo' : u'ew', u'oẽo' : u'ew', u'oẹo' : u'ew', u'oeo' : u'ew', u'óeo' : u'ew', u'òeo' : u'ew', u'ỏeo' : u'ew', u'õeo' : u'ew', u'ọeo' : u'ew', u'ueo' : u'ew', u'uéo' : u'ew', u'uèo' : u'ew', u'uẻo' : u'ew', u'uẽo' : u'ew', u'uẹo' : u'ew', u'uai' : u'aj', u'uái' : u'aj', u'uài' : u'aj', u'uải' : u'aj', u'uãi' : u'aj', u'uại' : u'aj', u'uay' : u'ăj', u'uáy' : u'ăj', u'uày' : u'ăj', u'uảy' : u'ăj', u'uãy' : u'ăj', u'uạy' : u'ăj', u'uây' : u'ɤ̆j', u'uấy' : u'ɤ̆j', u'uầy' : u'ɤ̆j', u'uẩy' : u'ɤ̆j', u'uẫy' : u'ɤ̆j', u'uậy' : u'ɤ̆j' } S_codas = { u'p' : u'p', u't' : u't', u'c' : u'k', u'm' : u'm', u'n' : u'ŋ', u'ng' : u'ŋ', u'nh' : u'n', u'ch' : u't' } S_tones = { u'á' : 45, u'à' : 32, u'ả' : 214, u'ã' : 214, u'ạ' : 212, u'ấ' : 45, u'ầ' : 32, u'ẩ' : 214, u'ẫ' : 214, u'ậ' : 212, u'ắ' : 45, u'ằ' : 32, u'ẳ' : 214, u'ẵ' : 214, u'ặ' : 212, u'é' : 45, u'è' : 32, u'ẻ' : 214, u'ẽ' : 214, u'ẹ' : 212, u'ế' : 45, u'ề' : 32, u'ể' : 214, u'ễ' : 214, u'ệ' : 212, u'í' : 45, u'ì' : 32, u'ỉ' : 214, u'ĩ' : 214, u'ị' : 212, u'ó' : 45, u'ò' : 32, u'ỏ' : 214, u'õ' : 214, u'ọ' : 212, u'ố' : 45, u'ồ' : 32, u'ổ' : 214, u'ỗ' : 214, u'ộ' : 212, u'ớ' : 45, u'ờ' : 32, u'ở' : 214, u'ỡ' : 214, u'ợ' : 212, u'ú' : 45, u'ù' : 32, u'ủ' : 214, u'ũ' : 214, u'ụ' : 212, u'ứ' : 45, u'ừ' : 32, u'ử' : 214, u'ữ' : 214, u'ự' : 212, u'ý' : 45, u'ỳ' : 32, u'ỷ' : 214, u'ỹ' : 214, u'ỵ' : 212, } S_tones_p = { u'á' : 5, u'à' : 2, u'ả' : 4, u'ã' : 4, u'ạ' : 6, u'ấ' : 5, u'ầ' : 2, u'ẩ' : 4, u'ẫ' : 4, u'ậ' : 6, u'ắ' : 5, u'ằ' : 2, u'ẳ' : 4, u'ẵ' : 4, u'ặ' : 6, u'é' : 5, u'è' : 2, u'ẻ' : 4, u'ẽ' : 4, u'ẹ' : 6, u'ế' : 5, u'ề' : 2, u'ể' : 4, u'ễ' : 4, u'ệ' : 6, u'í' : 5, u'ì' : 2, u'ỉ' : 4, u'ĩ' : 4, u'ị' : 6, u'ó' : 5, u'ò' : 2, u'ỏ' : 4, u'õ' : 4, u'ọ' : 6, u'ố' : 5, u'ồ' : 2, u'ổ' : 4, u'ỗ' : 4, u'ộ' : 6, u'ớ' : 5, u'ờ' : 2, u'ở' : 4, u'ỡ' : 4, u'ợ' : 6, u'ú' : 5, u'ù' : 2, u'ủ' : 4, u'ũ' : 4, u'ụ' : 6, u'ứ' : 5, u'ừ' : 2, u'ử' : 4, u'ữ' : 4, u'ự' : 6, u'ý' : 5, u'ỳ' : 2, u'ỷ' : 4, u'ỹ' : 4, u'ỵ' : 6, } S_gi = { u'gi' : u'ji', u'gí': u'ji', u'gì' : u'ji', u'gì' : u'ji', u'gĩ' : u'ji', u'gị' : u'ji' } S_qu = {u'quy' : u'wi', u'qúy' : u'wi', u'qùy' : u'wi', u'qủy' : u'wi', u'qũy' : u'wi', u'qụy' : u'wi'} ################################################3 import sys, codecs, re from io import StringIO from optparse import OptionParser from string import punctuation def trans(word, dialect, glottal, pham, cao, palatals): # This looks ugly, but newer versions of python complain about "from x import *" syntax if dialect == 'n': onsets, nuclei, codas, tones, onglides, offglides, onoffglides, qu, gi = N_onsets, N_nuclei, N_codas, N_tones, N_onglides, N_offglides, N_onoffglides, N_qu, N_gi elif dialect == 'c': onsets, nuclei, codas, tones, onglides, offglides, onoffglides, qu, gi = C_onsets, C_nuclei, C_codas, C_tones, C_onglides, C_offglides, C_onoffglides, C_qu, C_gi elif dialect == 's': onsets, nuclei, codas, tones, onglides, offglides, onoffglides, qu, gi = S_onsets, S_nuclei, S_codas, S_tones, S_onglides, S_offglides, S_onoffglides, S_qu, S_gi #Custom onsets, nuclei, codas, onglides, offglides, onoffglides, qu, gi = Cus_onsets, Cus_nuclei, Cus_codas, Cus_onglides, Cus_offglides, Cus_onoffglides, Cus_qu, Cus_gi if pham or cao: if dialect == 'n': tones_p = N_tones_p if dialect == 'c': tones_p = C_tones_p if dialect == 's': tones_p = S_tones_p #Custom tones_p = Cus_tones_p tones = tones_p ons = '' nuc = '' cod = '' ton = 0 oOffset = 0 cOffset = 0 l = len(word) if l > 0: if word[0:3] in onsets: # if onset is 'ngh' ons = onsets[word[0:3]] oOffset = 3 elif word[0:2] in onsets: # if onset is 'nh', 'gh', 'kʷ' etc ons = onsets[word[0:2]] oOffset = 2 elif word[0] in onsets: # if single onset ons = onsets[word[0]] oOffset = 1 if word[l-2:l] in codas: # if two-character coda cod = codas[word[l-2:l]] cOffset = 2 elif word[l-1] in codas: # if one-character coda cod = codas[word[l-1]] cOffset = 1 #if word[0:2] == u'gi' and cod and len(word) == 3: # if you just have 'gi' and a coda... if word[0:2] in gi and cod and len(word) == 3: # if you just have 'gi' and a coda... nucl = u'i' ons = u'z' else: nucl = word[oOffset:l-cOffset] if nucl in nuclei: if oOffset == 0: if glottal == 1: if word[0] not in onsets: # if there isn't an onset.... ons = u'ʔ'+nuclei[nucl] # add a glottal stop else: # otherwise... nuc = nuclei[nucl] # there's your nucleus else: nuc = nuclei[nucl] # there's your nucleus else: # otherwise... nuc = nuclei[nucl] # there's your nucleus elif nucl in onglides and ons != u'kw': # if there is an onglide... nuc = onglides[nucl] # modify the nuc accordingly if ons: # if there is an onset... ons = ons+u'w' # labialize it, but... else: # if there is no onset... ons = u'w' # add a labiovelar onset elif nucl in onglides and ons == u'kw': nuc = onglides[nucl] elif nucl in onoffglides: cod = onoffglides[nucl][-1] nuc = onoffglides[nucl][0:-1] if ons != u'kw': if ons: ons = ons+u'w' else: ons = u'w' elif nucl in offglides: cod = offglides[nucl][-1] nuc = offglides[nucl][:-1] elif word in gi: # if word == 'gi', 'gì',... ons = gi[word][0] nuc = gi[word][1] elif word in qu: # if word == 'quy', 'qúy',... ons = qu[word][:-1] nuc = qu[word][-1] else: # Something is non-Viet return (None, None, None, None) # Velar Fronting (Northern dialect) if dialect == 'n': if nuc == u'a': if cod == u'k' and cOffset == 2: nuc = u'ɛ' if cod == u'ɲ' and nuc == u'a': nuc = u'ɛ' # Final palatals (Northern dialect) if nuc not in [u'i', u'e', u'ɛ']: if cod == u'ɲ': cod = u'ɲ' # u'ŋ' elif palatals != 1 and nuc in [u'i', u'e', u'ɛ']: if cod == u'ɲ': cod = u'ɲ'#u'ŋ' if palatals == 1: if cod == u'k' and nuc in [u'i', u'e', u'ɛ']: cod = u'c' # Velar Fronting (Southern and Central dialects) else: if nuc in [u'i', u'e']: if cod == u'k': cod = u't' if cod == u'ŋ': cod = u'n' # There is also this reverse fronting, see Thompson 1965:94 ff. elif nuc in [u'iə', u'ɯə', u'uə', u'u', u'ɯ', u'ɤ', u'o', u'ɔ', u'ă', u'ɤ̆']: if cod == u't': cod = u'k' if cod == u'n': cod = u'ŋ' # Monophthongization (Southern dialects: Thompson 1965: 86; Hoàng 1985: 181) if dialect == 's': if cod in [u'm', u'p']: if nuc == u'iə': nuc = u'i' if nuc == u'uə': nuc = u'u' if nuc == u'ɯə': nuc = u'ɯ' # Tones # Modified 20 Sep 2008 to fix aberrant 33 error tonelist = [tones[word[i]] for i in range(0,l) if word[i] in tones] if tonelist: ton = str(tonelist[len(tonelist)-1]) else: if not (pham or cao): if dialect == 'c': ton = str('35') else: ton = str('33') else: ton = str('1') # Modifications for closed syllables if cOffset !=0: # Obstruent-final nang tones are modal voice if (dialect == 'n' or dialect == 's') and ton == u'21g' and cod in ['p', 't', 'k']: #if ton == u'21\u02C0' and cod in ['p', 't', 'k']: # fixed 8 Nov 2016 ton = u'21' # Modification for sắc in closed syllables (Northern and Central only) if ((dialect == 'n' and ton == u'24') or (dialect == 'c' and ton == u'13')) and cod in ['p', 't', 'k']: ton = u'45' # Modification for 8-tone system if cao == 1: if ton == u'5' and cod in ['p', 't', 'k']: ton = u'5b' if ton == u'6' and cod in ['p', 't', 'k']: ton = u'6b' # labialized allophony (added 17.09.08) if nuc in [u'u', u'o', u'ɔ']: if cod == u'ŋ': cod = u'ŋ͡m' if cod == u'k': cod = u'k͡p' return (ons, nuc, cod, ton) def convert(word, dialect, glottal, pham, cao, palatals, delimit): """Convert a single orthographic string to IPA.""" ons = '' nuc = '' cod = '' ton = 0 seq = '' try: (ons, nuc, cod, ton) = trans(word, dialect, glottal, pham, cao, palatals) if None in (ons, nuc, cod, ton): seq = u'['+word+u']' else: seq = delimit+delimit.join(filter(None, (ons, nuc, cod, ton)))+delimit except (TypeError): pass return seq ########################333 from vinorm import * from underthesea import word_tokenize import eng_to_ipa SET=[S_onsets, S_nuclei, S_codas#, S_tones , S_onglides, S_offglides, S_onoffglides, S_qu, S_gi, C_onsets, C_nuclei, C_codas#, C_tones , C_onglides, C_offglides, C_onoffglides, C_qu, C_gi, N_onsets, N_nuclei, N_codas#, N_tones , N_onglides, N_offglides, N_onoffglides, N_qu, N_gi, Cus_onsets, Cus_nuclei, Cus_codas#, N_tones , Cus_onglides, Cus_offglides, Cus_onoffglides, Cus_qu, Cus_gi] DICT={} #144 in total syms=['ɯəj', 'ɤ̆j', 'ʷiə', 'ɤ̆w', 'ɯəw', 'ʷet', 'iəw', 'uəj', 'ʷen', 'tʰw', 'ʷɤ̆', 'ʷiu', 'kwi', 'ŋ͡m', 'k͡p', 'cw', 'jw', 'uə', 'eə', 'bw', 'oj', 'ʷi', 'vw', 'ăw', 'ʈw', 'ʂw', 'aʊ', 'fw', 'ɛu', 'tʰ', 'tʃ', 'ɔɪ', 'xw', 'ʷɤ', 'ɤ̆', 'ŋw', 'ʊə', 'zi', 'ʷă', 'dw', 'eɪ', 'aɪ', 'ew', 'iə', 'ɣw', 'zw', 'ɯj', 'ʷɛ', 'ɯw', 'ɤj', 'ɔ:', 'əʊ', 'ʷa', 'mw', 'ɑ:', 'hw', 'ɔj', 'uj', 'lw', 'ɪə', 'ăj', 'u:', 'aw', 'ɛj', 'iw', 'aj', 'ɜ:', 'kw', 'nw', 't∫', 'ɲw', 'eo', 'sw', 'tw', 'ʐw', 'iɛ', 'ʷe', 'i:', 'ɯə', 'dʒ', 'ɲ', 'θ', 'ʌ', 'l', 'w', '1', 'ɪ', 'ɯ', 'd', '∫', 'p', 'ə', 'u', 'o', '3', 'ɣ', '!', 'ð', 'ʧ', '6', 'ʒ', 'ʐ', 'z', 'v', 'g', 'ă', '_', 'æ', 'ɤ', '2', 'ʤ', 'i', '.', 'ɒ', 'b', 'h', 'n', 'ʂ', 'ɔ', 'ɛ', 'k', 'm', '5', ' ', 'c', 'j', 'x', 'ʈ', ',', '4', 'ʊ', 's', 'ŋ', 'a', 'ʃ', '?', 'r', ':', 'η', 'f', ';', 'e', 't', "'"] def Parsing(listParse, text, delimit): undefine_symbol = "'" if listParse == "default": listParse=['ʷiə', 'uəj', 'iəw', 'k͡p', 'ʷɤ̆', 'ɤ̆j', 'ŋ͡m', 'kwi', 'ɤ̆w', 'ɯəj', 'ʷen', 'ʷiu', 'ʷet', 'ɯəw', 'ʷɛ', 'ʷɤ', 'ɯj', 'oj', 'ăw', 'zi', 'kw', 'aɪ', 'iɛ', 'ɤ̆', 'ɔ:', 'ăj', 'ʷa', 'eə', 'u:', 'uj', 'aʊ', 'uə', 'aj', 'iə', 'iw', 'əʊ', 'ɑ:', 'tʃ', 'ʷe', 'ɛu', 'ɔɪ', 'ʷi', 'eɪ', 'ɤj', 'ɯw', 'ɛj', 'ɔj', 'i:', 't∫', 'ɪə', 'ʷă', 'ɜ:', 'tʰ', 'dʒ', 'ew', 'ʊə', 'ɯə', 'aw', '3', 'θ', 'v', 'ʊ', 'ʤ', 'ɔ', '1', 'ʧ', 'ʈ', ' ', 'd', 'i', 'ɣ', 'ɲ', 'ɤ', '?', 'ɪ', 'l', '.', 'j', ':', 't', 'ʒ', 'ə', 'ʌ', 'm', '!', '∫', 'ð', 'u', 'e', 'w', 'p', 'ʃ', 'æ', "'", 'h', 'o', 'k', '5', 'g', '4', 'n', ';', 'r', 'b', 'ɯ', 'a', 's', 'ʐ', 'η', 'ŋ', 'ɒ', 'ʂ', '_', 'f', ',', 'ɛ', 'z', '6', '2', 'x', 'ă'] listParse.sort(reverse = True,key=len) output="" skip=0 for ic,char in enumerate(text): #print(char,skip) check = 0 if skip>0: skip=skip-1 continue for l in listParse: if len(l) <= len(text[ic:]) and l == text[ic:ic+len(l)]: output+=delimit+l check =1 skip=len(l)-1 break if check == 0: #Case symbol not in list if str(char) in ["ˈ","ˌ","*"]: continue print("this is not in symbol :"+ char+":") output+=delimit+undefine_symbol return output.rstrip()+delimit #print("Parsing",Parsing("default","iu iu","|")) def getSymbol(): for s in SET: DICT.update(s) list_phoneme=DICT.values() list_phoneme=list(list_phoneme) English_phoneme=["p","b","t","d","t∫","dʒ","k","g","f","v","ð","θ","s","z","∫","ʒ","m","n","η","l","r","w","j","ɪ","i:","ʊ","u:","e","ə","ɜ:","ɒ","ɔ:","æ","ʌ","ɑ:","ɪə","ʊə","eə","eɪ","ɔɪ","aɪ","əʊ","aʊ",'ʃ',"ʤ","ʧ"] Special=['jw', 'ŋw', 'bw', 'vw', 'dw', 'eo', 'ʈw', 'mw', 'zw', 'fw', 'tw', 'tʰw', 'ɲw', 'cw', 'ʂw', 'ɣw', 'ʐw', 'xw', 'lw', 'hw', 'nw', 'sw', 'c'] word_pad = ["_"] space = [" "] tone=["1","2","3","4","5","6"] punctuation = [".",",","!",":","?",";","'"] #" ' ( ) Have been removed due to none sound modifi = ["k͡p","ŋ͡m"] symbols = list_phoneme + space+word_pad + English_phoneme + punctuation + tone + modifi + Special symbols = list(set(symbols)) symbols.sort(reverse = True,key=len) return symbols def vi2IPA_pitrain(text): epi = epitran.Epitran('vie-Latn') r=epi.transliterate(text) return r def T2IPA_split(text,delimit): sys.path.append('./Rules') # make sure we can find the Rules files #Setup option glottal = 0 pham = 0 cao = 0 palatals = 0 tokenize = 0 dialect='n' #"c""s" tone_type=0 if tone_type==0: pham=1 else: cao=1 #Input text line = text if line =='\n': return "" else: compound = u'' ortho = u'' words = line.split() ## toss len==0 junk words = [word for word in words if len(word)>0] ## hack to get rid of single hyphens or underscores words = [word for word in words if word!=u'-'] words = [word for word in words if word!=u'_'] for i in range(0,len(words)): word = words[i].strip() ortho += word word = word.strip(punctuation).lower() ## 29.03.16: check if tokenize is true ## if true, call this routine for each substring ## and re-concatenate if (tokenize and '-' in word) or (tokenize and '_' in word): substrings = re.split(r'(_|-)', word) values = substrings[::2] delimiters = substrings[1::2] + [''] ipa = [convert(x, dialect, glottal, pham, cao, palatals, delimit).strip() for x in values] seq = ''.join(v+d for v,d in zip(ipa, delimiters)) else: seq = convert(word, dialect, glottal, pham, cao, palatals, delimit).strip() # concatenate if len(words) >= 2: ortho += ' ' if i < len(words)-1: seq = seq+u' ' compound = compound + seq return compound def T2IPA(text): sys.path.append('./Rules') # make sure we can find the Rules files #Setup option glottal = 0 pham = 0 cao = 0 palatals = 0 tokenize = 0 delimit = '' dialect='n' #"c""s" tone_type=0 if tone_type==0: pham=1 else: cao=1 #Input text line = text if line =='\n': return "" else: compound = u'' ortho = u'' words = line.split() ## toss len==0 junk words = [word for word in words if len(word)>0] ## hack to get rid of single hyphens or underscores words = [word for word in words if word!=u'-'] words = [word for word in words if word!=u'_'] for i in range(0,len(words)): word = words[i].strip() ortho += word word = word.strip(punctuation).lower() ## 29.03.16: check if tokenize is true ## if true, call this routine for each substring ## and re-concatenate if (tokenize and '-' in word) or (tokenize and '_' in word): substrings = re.split(r'(_|-)', word) values = substrings[::2] delimiters = substrings[1::2] + [''] ipa = [convert(x, dialect, glottal, pham, cao, palatals, delimit).strip() for x in values] seq = ''.join(v+d for v,d in zip(ipa, delimiters)) else: seq = convert(word, dialect, glottal, pham, cao, palatals, delimit).strip() # concatenate if len(words) >= 2: ortho += ' ' if i < len(words)-1: seq = seq+u' ' compound = compound + seq return compound EN={"a":"ây","ă":"á","â":"ớ","b":"bi","c":"si","d":"đi","đ":"đê","e":"i","ê":"ê","f":"ép","g":"giy","h":"ếch","i":"ai","j":"giây","k":"cây","l":"eo","m":"em","n":"en","o":"âu","ô":"ô","ơ":"ơ","p":"pi","q":"kiu","r":"a","s":"ét","t":"ti","u":"diu","ư":"ư","v":"vi","w":"đắp liu","x":"ít","y":"quai","z":"giét"} import re def vi2IPA_split(texts,delimit): content=[] with open("Popular.txt",encoding="utf-8") as f: content=f.read().splitlines() tess = texts.split(".") Results ="" for text in tess: print("------------------------------------------------------") TN= TTSnorm(text) print("------------------------------------------------------") print("Text normalize: ",TN) TK= word_tokenize(TN) print("Vietnamese Tokenize: ",TK) for iuv,under_valid in enumerate(TK): token_under=under_valid.split(" ") checkinvalid=0 print(token_under) if len(token_under) >1: for tok in token_under: if tok not in content or "[" in T2IPA(tok): checkinvalid=1 if checkinvalid==1: TK = TK[:iuv] + TK[iuv+1 :] for tok in reversed(token_under): TK.insert(iuv, tok) IPA="" for tk in TK: ipa = T2IPA_split(tk,delimit).replace(" ","_") if ipa =="": IPA+=delimit+tk+delimit+" " elif ipa[0]=="[" and ipa[-1]=="]": eng = eng_to_ipa.convert(tk) if eng[-1] == "*": if tk.lower().upper() == tk: #print("ENGLISH",tk) #Đọc tiếng anh từng chữ letter2sound="" for char in tk: CHAR = str(char).lower() if CHAR in list(EN.keys()): letter2sound+=EN[CHAR]+" " else: letter2sound+=char+" " IPA+=T2IPA_split(letter2sound,delimit)+" " else: #Giữ nguyên IPA+=Parsing("default",tk.lower(),delimit)+" " else: IPA+=Parsing("default",eng,delimit)+" " #Check tu dien tieng anh Etrain bưc #Neu co Mapping #Neu khong, check co nguyen am #Neu co de nguyen #Neu khong danh van print(" ..................Out of domain word: " ,ipa) else: IPA+=ipa+" " IPA=re.sub(delimit+'+', delimit, IPA) IPA=re.sub(' +', ' ', IPA) print("IPA Vietnamese: ",IPA) print("------------------------------------------------------") Results+= IPA.rstrip()+" "+delimit+"."+delimit+" " #For checking: need much memory ''' check_sym="ɯəjɤ̆jʷiəɤ̆wɯəwʷetiəwuəjʷentʰwʷɤ̆ʷiukwiŋ͡mk͡pcwjwuəeəbwojʷivwăwʈwʂwaʊfwɛutʰtʃɔɪxwʷɤɤ̆ŋwʊəziʷădweɪaɪewiəɣwzwɯjʷɛɯwɤjɔ:əʊʷamwɑ:hwɔjujlwɪəăju:awɛjiwajɜ:kwnwt∫ɲweoswtwʐwiɛʷei:ɯədʒɲθʌlw1ɪɯd∫pəuo3ɣ!ðʧ6ʒʐzvgă_æɤ2ʤi.ɒbhnʂɔɛkm5cjxʈ,4ʊsŋaʃ?r:ηf;et'" for ine,res in enumerate(Results): if res not in check_sym: Results[ine]="'" ''' return Results.rstrip() def vi2IPA(text): print("------------------------------------------------------") TN= TTSnorm(text) print("------------------------------------------------------") print("Text normalize: ",TN) TK= word_tokenize(TN) print("Vietnamese Tokenize: ",TK) IPA="" for tk in TK: ipa = T2IPA(tk).replace(" ","_") if ipa =="": IPA+=tk+" " elif ipa[0]=="[" and ipa[-1]=="]": eng = eng_to_ipa.convert(tk) if eng[-1] == "*": if tk.lower().upper() == tk: #Đọc tiếng anh từng chữ letter2sound="" for char in tk: CHAR = str(char).lower() if CHAR in list(EN.keys()): letter2sound+=EN[CHAR]+" " else: letter2sound+=char+" " IPA+=T2IPA_split(letter2sound,"")+" " else: #Giữ nguyên IPA+=Parsing("default",tk,"")+" " else: IPA+=eng+" " #Check tu dien tieng anh Etrain bưc #Neu co Mapping #Neu khong, check co nguyen am #Neu co de nguyen #Neu khong danh van print(" ..................Out of domain word: " ,ipa) else: IPA+=ipa+" " IPA=re.sub(' +', ' ', IPA) print("IPA Vietnamese: ",IPA) print("------------------------------------------------------") return IPA def checkDict(): cout=0 trung=0 List_token=[] List_pair = [] with open("Popular.txt", encoding="utf-8") as f: content=f.read().splitlines() for line in content: #nor_tr = vi2IPA_pitrain(line) #nor = vi2IPA(line) nor = T2IPA(line) if nor in List_token: print(line + " -> "+nor) trung +=1 List_pair.append(line) List_token.append(nor) if nor=="": cout+=1 print(line) print("Number of token can not convert: ",cout) print("Number of token in the same mapping:",trung) List_token = list(set(List_token)) #print(List_token) print(len(List_token)) ################################ #Looking for pair Pair = {} for lt in List_pair: Pair[T2IPA(lt)] = lt cout_same=0 with open("Popular.txt", encoding="utf-8") as f: content=f.read().splitlines() for line in content: if T2IPA(line) in Pair: lin2 =Pair[T2IPA(line)] if line != lin2: if (lin2[0]=="k" and line[0]=="c") or (lin2[-1] in ['i','í','ì','ĩ','ỉ','ị'] and line[-1] in ['y','ý','ỳ','ỷ','ỹ','ỵ']) or (lin2[-1] in ['y','ý','ỳ','ỷ','ỹ','ỵ'] and line[-1] in ['i','í','ì','ĩ','ỉ','ị']): continue cout_same+=1 print(line+ " <-> " + lin2 +"\t\t:\t\t"+T2IPA(line)) print("Same pair:" , cout_same) #Các trường hợp dẫn đến trùng âm là: # Phương ngữ khác nhau đã thống nhất ở list custom # Các trường hợp có cách bỏ dấu khác nhau đều gộp chung làm một #Disable convert from 'ɲ' to 'ɲ'' in north #Các âm vòng ở đây i chang không vòm: không có w ở trước như: "oa,ua,a" đều như một > must consider (nhưng nếu thêm vào ảnh hưởng chữ qu cũng ra w) #Try to add ʷ to all start o and u as in wiki # *** Problem with ủy onglide and off-glide is a big problem #Same positive #k <-> c #g <-> gh #i <-> y #Same negative / need to fix #oe <-> uê -> fix oe from e to ɛ #âm cuối: ch : k theo bắc : t theo nam -> custom k vì nó giảm trùng nhiều hơn 241->153 case #Tuy nhiên cuối cùng "ch" "c" "t" không phân âm được => ý tưởng mượn "tʃ" trong teach and watch để thay thế => k for c , t for t, tʃ for ch #Thay offglide: úy -> wi để phân biệt với úi #Remain ''' di <-> gi : zi1 dìm <-> gìm : zim2 din <-> gin : zin1 díp <-> gíp : zip5 gen <-> ghen : ɣɛn1 ghì <-> gì : ɣi2 ghích <-> gích : ɣitʃ5 ia <-> iê : iə1 iêu <-> yêu : iəw1 khoắng <-> khuắng : xwʷăŋ5 khỏe <-> khoẻ : xwʷɛ4 khua <-> khuơ : xuə1 lóe <-> loé : lwʷɛ5 ngét <-> nghét : ŋɛt5 ngễu <-> nghễu : ŋɛu3 nghía <-> ngía : ŋiə5 nghịu <-> ngịu : ŋiw6 nghoèo <-> ngoèo : ŋwew2 quít <-> quýt : kwit5 thủa <-> thuở : tʰuə4 tòe <-> toè : twʷɛ2 ua <-> uơ : uə1 ưa <-> ươ : ɯə1 xõa <-> xoã : swʷa3 ''' #Ở đây tiết kiệm chi phí chạy máy không normal phoneme về cường độ âm sắc chỉ dừng từ 1->6 #học ác cho kết quả "c" khác nhau ################################################### checkDict() #print(vi2IPA_split("!Singapo english? đại học là IUYE gì khôngtontaij NIYE BoOK","'")) #check các ipa của tiếng anh #print(vi2IPA_split("Another table was prepared to show available onsets. Onsets are splitted into 3 types. Type 1 are onsets which has one letter ","/")) #Lọc bỏ dấu nhấn của tiếng anh "'" #print(vi2IPA_split("speech? Secondly, we paper, we investigate work! One is that e language to another by","/").replace("/","")) #Case need to be deal: # NIYE BoOK #print(len(getSymbol())) #print(getSymbol()) ''' test="t" if test in syms: print(test) else: print("none") ''' ################################################### #Step #Vinorm #Underthesea #For each Convert to phoneme #Nếu không được check phoneme tiếng anh #Nếu không có trong từ tiếng anh -> đọc từng kí tự #Now #+Thêm kí tự IPA của tiếng ANH #+Thêm xử lí case không có cũng như case Tiếng anh: => dùng etrain cho tiếng anh #+Deal case thống nhất âm vực phoneme -> ok #+Get lại bộ symbol
[ "re.split", "eng_to_ipa.convert", "re.sub", "underthesea.word_tokenize", "sys.path.append" ]
[((53180, 53206), 'sys.path.append', 'sys.path.append', (['"""./Rules"""'], {}), "('./Rules')\n", (53195, 53206), False, 'import sys, codecs, re\n'), ((54939, 54965), 'sys.path.append', 'sys.path.append', (['"""./Rules"""'], {}), "('./Rules')\n", (54954, 54965), False, 'import sys, codecs, re\n'), ((60447, 60464), 'underthesea.word_tokenize', 'word_tokenize', (['TN'], {}), '(TN)\n', (60460, 60464), False, 'from underthesea import word_tokenize\n'), ((61714, 61736), 're.sub', 're.sub', (['""" +"""', '""" """', 'IPA'], {}), "(' +', ' ', IPA)\n", (61720, 61736), False, 'import re\n'), ((57463, 57480), 'underthesea.word_tokenize', 'word_tokenize', (['TN'], {}), '(TN)\n', (57476, 57480), False, 'from underthesea import word_tokenize\n'), ((59507, 59542), 're.sub', 're.sub', (["(delimit + '+')", 'delimit', 'IPA'], {}), "(delimit + '+', delimit, IPA)\n", (59513, 59542), False, 'import re\n'), ((59554, 59576), 're.sub', 're.sub', (['""" +"""', '""" """', 'IPA'], {}), "(' +', ' ', IPA)\n", (59560, 59576), False, 'import re\n'), ((54287, 54310), 're.split', 're.split', (['"""(_|-)"""', 'word'], {}), "('(_|-)', word)\n", (54295, 54310), False, 'import re\n'), ((56064, 56087), 're.split', 're.split', (['"""(_|-)"""', 'word'], {}), "('(_|-)', word)\n", (56072, 56087), False, 'import re\n'), ((60695, 60717), 'eng_to_ipa.convert', 'eng_to_ipa.convert', (['tk'], {}), '(tk)\n', (60713, 60717), False, 'import eng_to_ipa\n'), ((58297, 58319), 'eng_to_ipa.convert', 'eng_to_ipa.convert', (['tk'], {}), '(tk)\n', (58315, 58319), False, 'import eng_to_ipa\n')]
import unittest #write the import for function for assignment7 sum_list_values from src.assignments.assignment7 import sum_list_values class Test_Assign7(unittest.TestCase): def sample_test(self): self.assertEqual(1,1) #create a test for the sum_list_values function with list elements: # bill 23 16 19 22 def test_sum_w_23_16_19_22(self): test_list = ['bill', 23, 16, 19, 22] self.assertEqual(80, sum_list_values(test_list)) #unittest.main(verbosity=2)
[ "src.assignments.assignment7.sum_list_values" ]
[((441, 467), 'src.assignments.assignment7.sum_list_values', 'sum_list_values', (['test_list'], {}), '(test_list)\n', (456, 467), False, 'from src.assignments.assignment7 import sum_list_values\n')]
import pytest import numpy as np from numpy.testing import assert_allclose from keras import backend as K from keras import activations def get_standard_values(): ''' These are just a set of floats used for testing the activation functions, and are useful in multiple tests. ''' return np.array([[0, 0.1, 0.5, 0.9, 1.0]], dtype=K.floatx()) def test_softmax(): ''' Test using a reference implementation of softmax ''' def softmax(values): m = np.max(values) e = np.exp(values - m) return e / np.sum(e) x = K.placeholder(ndim=2) f = K.function([x], [activations.softmax(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = softmax(test_values) assert_allclose(result, expected, rtol=1e-05) def test_time_distributed_softmax(): x = K.placeholder(shape=(1, 1, 5)) f = K.function([x], [activations.softmax(x)]) test_values = get_standard_values() test_values = np.reshape(test_values, (1, 1, np.size(test_values))) f([test_values])[0] def test_softplus(): ''' Test using a reference softplus implementation ''' def softplus(x): return np.log(np.ones_like(x) + np.exp(x)) x = K.placeholder(ndim=2) f = K.function([x], [activations.softplus(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = softplus(test_values) assert_allclose(result, expected, rtol=1e-05) def test_softsign(): ''' Test using a reference softsign implementation ''' def softsign(x): return np.divide(x, np.ones_like(x) + np.absolute(x)) x = K.placeholder(ndim=2) f = K.function([x], [activations.softsign(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = softsign(test_values) assert_allclose(result, expected, rtol=1e-05) def test_sigmoid(): ''' Test using a numerically stable reference sigmoid implementation ''' def ref_sigmoid(x): if x >= 0: return 1 / (1 + np.exp(-x)) else: z = np.exp(x) return z / (1 + z) sigmoid = np.vectorize(ref_sigmoid) x = K.placeholder(ndim=2) f = K.function([x], [activations.sigmoid(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = sigmoid(test_values) assert_allclose(result, expected, rtol=1e-05) def test_hard_sigmoid(): ''' Test using a reference hard sigmoid implementation ''' def ref_hard_sigmoid(x): ''' Reference hard sigmoid with slope and shift values from theano, see https://github.com/Theano/Theano/blob/master/theano/tensor/nnet/sigm.py ''' x = (x * 0.2) + 0.5 z = 0.0 if x <= 0 else (1.0 if x >= 1 else x) return z hard_sigmoid = np.vectorize(ref_hard_sigmoid) x = K.placeholder(ndim=2) f = K.function([x], [activations.hard_sigmoid(x)]) test_values = get_standard_values() result = f([test_values])[0] expected = hard_sigmoid(test_values) assert_allclose(result, expected, rtol=1e-05) def test_relu(): ''' Relu implementation doesn't depend on the value being a theano variable. Testing ints, floats and theano tensors. ''' x = K.placeholder(ndim=2) f = K.function([x], [activations.relu(x)]) test_values = get_standard_values() result = f([test_values])[0] # because no negatives in test values assert_allclose(result, test_values, rtol=1e-05) def test_elu(): x = K.placeholder(ndim=2) f = K.function([x], [activations.elu(x, 0.5)]) test_values = get_standard_values() result = f([test_values])[0] # because no negatives in test values assert_allclose(result, test_values, rtol=1e-05) negative_values = np.array([[-1, -2]], dtype=K.floatx()) result = f([negative_values])[0] true_result = (np.exp(negative_values) - 1) / 2 assert_allclose(result, true_result) def test_tanh(): test_values = get_standard_values() x = K.placeholder(ndim=2) exp = activations.tanh(x) f = K.function([x], [exp]) result = f([test_values])[0] expected = np.tanh(test_values) assert_allclose(result, expected, rtol=1e-05) def test_linear(): ''' This function does no input validation, it just returns the thing that was passed in. ''' xs = [1, 5, True, None, 'foo'] for x in xs: assert(x == activations.linear(x)) if __name__ == '__main__': pytest.main([__file__])
[ "keras.activations.linear", "keras.backend.floatx", "keras.activations.hard_sigmoid", "numpy.testing.assert_allclose", "keras.backend.placeholder", "numpy.tanh", "pytest.main", "numpy.max", "numpy.exp", "keras.activations.softmax", "keras.activations.sigmoid", "numpy.size", "keras.activations.softsign", "numpy.vectorize", "numpy.ones_like", "keras.activations.relu", "numpy.absolute", "keras.activations.softplus", "keras.activations.tanh", "numpy.sum", "keras.activations.elu", "keras.backend.function" ]
[((575, 596), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (588, 596), True, 'from keras import backend as K\n'), ((761, 806), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'expected'], {'rtol': '(1e-05)'}), '(result, expected, rtol=1e-05)\n', (776, 806), False, 'from numpy.testing import assert_allclose\n'), ((854, 884), 'keras.backend.placeholder', 'K.placeholder', ([], {'shape': '(1, 1, 5)'}), '(shape=(1, 1, 5))\n', (867, 884), True, 'from keras import backend as K\n'), ((1242, 1263), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (1255, 1263), True, 'from keras import backend as K\n'), ((1430, 1475), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'expected'], {'rtol': '(1e-05)'}), '(result, expected, rtol=1e-05)\n', (1445, 1475), False, 'from numpy.testing import assert_allclose\n'), ((1658, 1679), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (1671, 1679), True, 'from keras import backend as K\n'), ((1846, 1891), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'expected'], {'rtol': '(1e-05)'}), '(result, expected, rtol=1e-05)\n', (1861, 1891), False, 'from numpy.testing import assert_allclose\n'), ((2167, 2192), 'numpy.vectorize', 'np.vectorize', (['ref_sigmoid'], {}), '(ref_sigmoid)\n', (2179, 2192), True, 'import numpy as np\n'), ((2202, 2223), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (2215, 2223), True, 'from keras import backend as K\n'), ((2388, 2433), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'expected'], {'rtol': '(1e-05)'}), '(result, expected, rtol=1e-05)\n', (2403, 2433), False, 'from numpy.testing import assert_allclose\n'), ((2859, 2889), 'numpy.vectorize', 'np.vectorize', (['ref_hard_sigmoid'], {}), '(ref_hard_sigmoid)\n', (2871, 2889), True, 'import numpy as np\n'), ((2899, 2920), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (2912, 2920), True, 'from keras import backend as K\n'), ((3095, 3140), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'expected'], {'rtol': '(1e-05)'}), '(result, expected, rtol=1e-05)\n', (3110, 3140), False, 'from numpy.testing import assert_allclose\n'), ((3306, 3327), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (3319, 3327), True, 'from keras import backend as K\n'), ((3496, 3544), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'test_values'], {'rtol': '(1e-05)'}), '(result, test_values, rtol=1e-05)\n', (3511, 3544), False, 'from numpy.testing import assert_allclose\n'), ((3571, 3592), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (3584, 3592), True, 'from keras import backend as K\n'), ((3765, 3813), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'test_values'], {'rtol': '(1e-05)'}), '(result, test_values, rtol=1e-05)\n', (3780, 3813), False, 'from numpy.testing import assert_allclose\n'), ((3970, 4006), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'true_result'], {}), '(result, true_result)\n', (3985, 4006), False, 'from numpy.testing import assert_allclose\n'), ((4075, 4096), 'keras.backend.placeholder', 'K.placeholder', ([], {'ndim': '(2)'}), '(ndim=2)\n', (4088, 4096), True, 'from keras import backend as K\n'), ((4107, 4126), 'keras.activations.tanh', 'activations.tanh', (['x'], {}), '(x)\n', (4123, 4126), False, 'from keras import activations\n'), ((4135, 4157), 'keras.backend.function', 'K.function', (['[x]', '[exp]'], {}), '([x], [exp])\n', (4145, 4157), True, 'from keras import backend as K\n'), ((4207, 4227), 'numpy.tanh', 'np.tanh', (['test_values'], {}), '(test_values)\n', (4214, 4227), True, 'import numpy as np\n'), ((4232, 4277), 'numpy.testing.assert_allclose', 'assert_allclose', (['result', 'expected'], {'rtol': '(1e-05)'}), '(result, expected, rtol=1e-05)\n', (4247, 4277), False, 'from numpy.testing import assert_allclose\n'), ((4537, 4560), 'pytest.main', 'pytest.main', (['[__file__]'], {}), '([__file__])\n', (4548, 4560), False, 'import pytest\n'), ((491, 505), 'numpy.max', 'np.max', (['values'], {}), '(values)\n', (497, 505), True, 'import numpy as np\n'), ((518, 536), 'numpy.exp', 'np.exp', (['(values - m)'], {}), '(values - m)\n', (524, 536), True, 'import numpy as np\n'), ((351, 361), 'keras.backend.floatx', 'K.floatx', ([], {}), '()\n', (359, 361), True, 'from keras import backend as K\n'), ((556, 565), 'numpy.sum', 'np.sum', (['e'], {}), '(e)\n', (562, 565), True, 'import numpy as np\n'), ((622, 644), 'keras.activations.softmax', 'activations.softmax', (['x'], {}), '(x)\n', (641, 644), False, 'from keras import activations\n'), ((910, 932), 'keras.activations.softmax', 'activations.softmax', (['x'], {}), '(x)\n', (929, 932), False, 'from keras import activations\n'), ((1024, 1044), 'numpy.size', 'np.size', (['test_values'], {}), '(test_values)\n', (1031, 1044), True, 'import numpy as np\n'), ((1289, 1312), 'keras.activations.softplus', 'activations.softplus', (['x'], {}), '(x)\n', (1309, 1312), False, 'from keras import activations\n'), ((1705, 1728), 'keras.activations.softsign', 'activations.softsign', (['x'], {}), '(x)\n', (1725, 1728), False, 'from keras import activations\n'), ((2112, 2121), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (2118, 2121), True, 'import numpy as np\n'), ((2249, 2271), 'keras.activations.sigmoid', 'activations.sigmoid', (['x'], {}), '(x)\n', (2268, 2271), False, 'from keras import activations\n'), ((2946, 2973), 'keras.activations.hard_sigmoid', 'activations.hard_sigmoid', (['x'], {}), '(x)\n', (2970, 2973), False, 'from keras import activations\n'), ((3353, 3372), 'keras.activations.relu', 'activations.relu', (['x'], {}), '(x)\n', (3369, 3372), False, 'from keras import activations\n'), ((3618, 3641), 'keras.activations.elu', 'activations.elu', (['x', '(0.5)'], {}), '(x, 0.5)\n', (3633, 3641), False, 'from keras import activations\n'), ((3864, 3874), 'keras.backend.floatx', 'K.floatx', ([], {}), '()\n', (3872, 3874), True, 'from keras import backend as K\n'), ((3932, 3955), 'numpy.exp', 'np.exp', (['negative_values'], {}), '(negative_values)\n', (3938, 3955), True, 'import numpy as np\n'), ((4481, 4502), 'keras.activations.linear', 'activations.linear', (['x'], {}), '(x)\n', (4499, 4502), False, 'from keras import activations\n'), ((1204, 1219), 'numpy.ones_like', 'np.ones_like', (['x'], {}), '(x)\n', (1216, 1219), True, 'import numpy as np\n'), ((1222, 1231), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (1228, 1231), True, 'import numpy as np\n'), ((1615, 1630), 'numpy.ones_like', 'np.ones_like', (['x'], {}), '(x)\n', (1627, 1630), True, 'import numpy as np\n'), ((1633, 1647), 'numpy.absolute', 'np.absolute', (['x'], {}), '(x)\n', (1644, 1647), True, 'import numpy as np\n'), ((2070, 2080), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (2076, 2080), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This test module contains the tests for the aea.cli.generate sub-module.""" from unittest import TestCase, mock from aea.cli.generate import _generate_item from tests.test_cli.tools_for_testing import ContextMock def _raise_file_exists(self, *args, **kwargs): raise FileExistsError() @mock.patch("builtins.open", mock.mock_open()) @mock.patch("aea.cli.generate.ConfigLoader") @mock.patch("aea.cli.generate.os.path.join", return_value="joined-path") @mock.patch("aea.cli.generate.ProtocolGenerator.generate", _raise_file_exists) class GenerateItemTestCase(TestCase): """Test case for fetch_agent_locally method.""" def test__generate_item_file_exists(self, *mocks): """Test for fetch_agent_locally method positive result.""" ctx_mock = ContextMock() with self.assertRaises(SystemExit): _generate_item(ctx_mock, "protocol", "path")
[ "unittest.mock.mock_open", "tests.test_cli.tools_for_testing.ContextMock", "unittest.mock.patch", "aea.cli.generate._generate_item" ]
[((1142, 1185), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.generate.ConfigLoader"""'], {}), "('aea.cli.generate.ConfigLoader')\n", (1152, 1185), False, 'from unittest import TestCase, mock\n'), ((1187, 1258), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.generate.os.path.join"""'], {'return_value': '"""joined-path"""'}), "('aea.cli.generate.os.path.join', return_value='joined-path')\n", (1197, 1258), False, 'from unittest import TestCase, mock\n'), ((1260, 1337), 'unittest.mock.patch', 'mock.patch', (['"""aea.cli.generate.ProtocolGenerator.generate"""', '_raise_file_exists'], {}), "('aea.cli.generate.ProtocolGenerator.generate', _raise_file_exists)\n", (1270, 1337), False, 'from unittest import TestCase, mock\n'), ((1123, 1139), 'unittest.mock.mock_open', 'mock.mock_open', ([], {}), '()\n', (1137, 1139), False, 'from unittest import TestCase, mock\n'), ((1570, 1583), 'tests.test_cli.tools_for_testing.ContextMock', 'ContextMock', ([], {}), '()\n', (1581, 1583), False, 'from tests.test_cli.tools_for_testing import ContextMock\n'), ((1640, 1684), 'aea.cli.generate._generate_item', '_generate_item', (['ctx_mock', '"""protocol"""', '"""path"""'], {}), "(ctx_mock, 'protocol', 'path')\n", (1654, 1684), False, 'from aea.cli.generate import _generate_item\n')]
""" sphinx.ext.napoleon ~~~~~~~~~~~~~~~~~~~ Support for NumPy and Google style docstrings. :copyright: Copyright 2007-2018 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ from sphinx import __display_version__ as __version__ from sphinx.application import Sphinx from sphinx.ext.napoleon.docstring import GoogleDocstring, NumpyDocstring if False: # For type annotation from typing import Any, Dict, List # NOQA class Config: """Sphinx napoleon extension settings in `conf.py`. Listed below are all the settings used by napoleon and their default values. These settings can be changed in the Sphinx `conf.py` file. Make sure that "sphinx.ext.napoleon" is enabled in `conf.py`:: # conf.py # Add any Sphinx extension module names here, as strings extensions = ['sphinx.ext.napoleon'] # Napoleon settings napoleon_google_docstring = True napoleon_numpy_docstring = True napoleon_include_init_with_doc = False napoleon_include_private_with_doc = False napoleon_include_special_with_doc = False napoleon_use_admonition_for_examples = False napoleon_use_admonition_for_notes = False napoleon_use_admonition_for_references = False napoleon_use_ivar = False napoleon_use_param = True napoleon_use_rtype = True napoleon_use_keyword = True napoleon_custom_sections = None .. _Google style: https://google.github.io/styleguide/pyguide.html .. _NumPy style: https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt Attributes ---------- napoleon_google_docstring : :obj:`bool` (Defaults to True) True to parse `Google style`_ docstrings. False to disable support for Google style docstrings. napoleon_numpy_docstring : :obj:`bool` (Defaults to True) True to parse `NumPy style`_ docstrings. False to disable support for NumPy style docstrings. napoleon_include_init_with_doc : :obj:`bool` (Defaults to False) True to list ``__init___`` docstrings separately from the class docstring. False to fall back to Sphinx's default behavior, which considers the ``__init___`` docstring as part of the class documentation. **If True**:: def __init__(self): \"\"\" This will be included in the docs because it has a docstring \"\"\" def __init__(self): # This will NOT be included in the docs napoleon_include_private_with_doc : :obj:`bool` (Defaults to False) True to include private members (like ``_membername``) with docstrings in the documentation. False to fall back to Sphinx's default behavior. **If True**:: def _included(self): \"\"\" This will be included in the docs because it has a docstring \"\"\" pass def _skipped(self): # This will NOT be included in the docs pass napoleon_include_special_with_doc : :obj:`bool` (Defaults to False) True to include special members (like ``__membername__``) with docstrings in the documentation. False to fall back to Sphinx's default behavior. **If True**:: def __str__(self): \"\"\" This will be included in the docs because it has a docstring \"\"\" return unicode(self).encode('utf-8') def __unicode__(self): # This will NOT be included in the docs return unicode(self.__class__.__name__) napoleon_use_admonition_for_examples : :obj:`bool` (Defaults to False) True to use the ``.. admonition::`` directive for the **Example** and **Examples** sections. False to use the ``.. rubric::`` directive instead. One may look better than the other depending on what HTML theme is used. This `NumPy style`_ snippet will be converted as follows:: Example ------- This is just a quick example **If True**:: .. admonition:: Example This is just a quick example **If False**:: .. rubric:: Example This is just a quick example napoleon_use_admonition_for_notes : :obj:`bool` (Defaults to False) True to use the ``.. admonition::`` directive for **Notes** sections. False to use the ``.. rubric::`` directive instead. Note ---- The singular **Note** section will always be converted to a ``.. note::`` directive. See Also -------- :attr:`napoleon_use_admonition_for_examples` napoleon_use_admonition_for_references : :obj:`bool` (Defaults to False) True to use the ``.. admonition::`` directive for **References** sections. False to use the ``.. rubric::`` directive instead. See Also -------- :attr:`napoleon_use_admonition_for_examples` napoleon_use_ivar : :obj:`bool` (Defaults to False) True to use the ``:ivar:`` role for instance variables. False to use the ``.. attribute::`` directive instead. This `NumPy style`_ snippet will be converted as follows:: Attributes ---------- attr1 : int Description of `attr1` **If True**:: :ivar attr1: Description of `attr1` :vartype attr1: int **If False**:: .. attribute:: attr1 Description of `attr1` :type: int napoleon_use_param : :obj:`bool` (Defaults to True) True to use a ``:param:`` role for each function parameter. False to use a single ``:parameters:`` role for all the parameters. This `NumPy style`_ snippet will be converted as follows:: Parameters ---------- arg1 : str Description of `arg1` arg2 : int, optional Description of `arg2`, defaults to 0 **If True**:: :param arg1: Description of `arg1` :type arg1: str :param arg2: Description of `arg2`, defaults to 0 :type arg2: int, optional **If False**:: :parameters: * **arg1** (*str*) -- Description of `arg1` * **arg2** (*int, optional*) -- Description of `arg2`, defaults to 0 napoleon_use_keyword : :obj:`bool` (Defaults to True) True to use a ``:keyword:`` role for each function keyword argument. False to use a single ``:keyword arguments:`` role for all the keywords. This behaves similarly to :attr:`napoleon_use_param`. Note unlike docutils, ``:keyword:`` and ``:param:`` will not be treated the same way - there will be a separate "Keyword Arguments" section, rendered in the same fashion as "Parameters" section (type links created if possible) See Also -------- :attr:`napoleon_use_param` napoleon_use_rtype : :obj:`bool` (Defaults to True) True to use the ``:rtype:`` role for the return type. False to output the return type inline with the description. This `NumPy style`_ snippet will be converted as follows:: Returns ------- bool True if successful, False otherwise **If True**:: :returns: True if successful, False otherwise :rtype: bool **If False**:: :returns: *bool* -- True if successful, False otherwise napoleon_custom_sections : :obj:`list` (Defaults to None) Add a list of custom sections to include, expanding the list of parsed sections. The entries can either be strings or tuples, depending on the intention: * To create a custom "generic" section, just pass a string. * To create an alias for an existing section, pass a tuple containing the alias name and the original, in that order. If an entry is just a string, it is interpreted as a header for a generic section. If the entry is a tuple/list/indexed container, the first entry is the name of the section, the second is the section key to emulate. """ _config_values = { 'napoleon_google_docstring': (True, 'env'), 'napoleon_numpy_docstring': (True, 'env'), 'napoleon_include_init_with_doc': (False, 'env'), 'napoleon_include_private_with_doc': (False, 'env'), 'napoleon_include_special_with_doc': (False, 'env'), 'napoleon_use_admonition_for_examples': (False, 'env'), 'napoleon_use_admonition_for_notes': (False, 'env'), 'napoleon_use_admonition_for_references': (False, 'env'), 'napoleon_use_ivar': (False, 'env'), 'napoleon_use_param': (True, 'env'), 'napoleon_use_rtype': (True, 'env'), 'napoleon_use_keyword': (True, 'env'), 'napoleon_custom_sections': (None, 'env') } def __init__(self, **settings): # type: (Any) -> None for name, (default, rebuild) in self._config_values.items(): setattr(self, name, default) for name, value in settings.items(): setattr(self, name, value) def setup(app): # type: (Sphinx) -> Dict[str, Any] """Sphinx extension setup function. When the extension is loaded, Sphinx imports this module and executes the ``setup()`` function, which in turn notifies Sphinx of everything the extension offers. Parameters ---------- app : sphinx.application.Sphinx Application object representing the Sphinx process See Also -------- `The Sphinx documentation on Extensions <http://sphinx-doc.org/extensions.html>`_ `The Extension Tutorial <http://sphinx-doc.org/extdev/tutorial.html>`_ `The Extension API <http://sphinx-doc.org/extdev/appapi.html>`_ """ if not isinstance(app, Sphinx): # probably called by tests return {'version': __version__, 'parallel_read_safe': True} _patch_python_domain() app.setup_extension('sphinx.ext.autodoc') app.connect('autodoc-process-docstring', _process_docstring) app.connect('autodoc-skip-member', _skip_member) for name, (default, rebuild) in Config._config_values.items(): app.add_config_value(name, default, rebuild) return {'version': __version__, 'parallel_read_safe': True} def _patch_python_domain(): # type: () -> None try: from sphinx.domains.python import PyTypedField except ImportError: pass else: import sphinx.domains.python from sphinx.locale import _ for doc_field in sphinx.domains.python.PyObject.doc_field_types: if doc_field.name == 'parameter': doc_field.names = ('param', 'parameter', 'arg', 'argument') break sphinx.domains.python.PyObject.doc_field_types.append( PyTypedField('keyword', label=_('Keyword Arguments'), names=('keyword', 'kwarg', 'kwparam'), typerolename='obj', typenames=('paramtype', 'kwtype'), can_collapse=True)) def _process_docstring(app, what, name, obj, options, lines): # type: (Sphinx, str, str, Any, Any, List[str]) -> None """Process the docstring for a given python object. Called when autodoc has read and processed a docstring. `lines` is a list of docstring lines that `_process_docstring` modifies in place to change what Sphinx outputs. The following settings in conf.py control what styles of docstrings will be parsed: * ``napoleon_google_docstring`` -- parse Google style docstrings * ``napoleon_numpy_docstring`` -- parse NumPy style docstrings Parameters ---------- app : sphinx.application.Sphinx Application object representing the Sphinx process. what : str A string specifying the type of the object to which the docstring belongs. Valid values: "module", "class", "exception", "function", "method", "attribute". name : str The fully qualified name of the object. obj : module, class, exception, function, method, or attribute The object to which the docstring belongs. options : sphinx.ext.autodoc.Options The options given to the directive: an object with attributes inherited_members, undoc_members, show_inheritance and noindex that are True if the flag option of same name was given to the auto directive. lines : list of str The lines of the docstring, see above. .. note:: `lines` is modified *in place* """ result_lines = lines docstring = None # type: GoogleDocstring if app.config.napoleon_numpy_docstring: docstring = NumpyDocstring(result_lines, app.config, app, what, name, obj, options) result_lines = docstring.lines() if app.config.napoleon_google_docstring: docstring = GoogleDocstring(result_lines, app.config, app, what, name, obj, options) result_lines = docstring.lines() lines[:] = result_lines[:] def _skip_member(app, what, name, obj, skip, options): # type: (Sphinx, str, str, Any, bool, Any) -> bool """Determine if private and special class members are included in docs. The following settings in conf.py determine if private and special class members or init methods are included in the generated documentation: * ``napoleon_include_init_with_doc`` -- include init methods if they have docstrings * ``napoleon_include_private_with_doc`` -- include private members if they have docstrings * ``napoleon_include_special_with_doc`` -- include special members if they have docstrings Parameters ---------- app : sphinx.application.Sphinx Application object representing the Sphinx process what : str A string specifying the type of the object to which the member belongs. Valid values: "module", "class", "exception", "function", "method", "attribute". name : str The name of the member. obj : module, class, exception, function, method, or attribute. For example, if the member is the __init__ method of class A, then `obj` will be `A.__init__`. skip : bool A boolean indicating if autodoc will skip this member if `_skip_member` does not override the decision options : sphinx.ext.autodoc.Options The options given to the directive: an object with attributes inherited_members, undoc_members, show_inheritance and noindex that are True if the flag option of same name was given to the auto directive. Returns ------- bool True if the member should be skipped during creation of the docs, False if it should be included in the docs. """ has_doc = getattr(obj, '__doc__', False) is_member = (what == 'class' or what == 'exception' or what == 'module') if name != '__weakref__' and has_doc and is_member: cls_is_owner = False if what == 'class' or what == 'exception': qualname = getattr(obj, '__qualname__', '') cls_path, _, _ = qualname.rpartition('.') if cls_path: try: if '.' in cls_path: import importlib import functools mod = importlib.import_module(obj.__module__) mod_path = cls_path.split('.') cls = functools.reduce(getattr, mod_path, mod) else: cls = obj.__globals__[cls_path] except Exception: cls_is_owner = False else: cls_is_owner = (cls and hasattr(cls, name) and # type: ignore name in cls.__dict__) else: cls_is_owner = False if what == 'module' or cls_is_owner: is_init = (name == '__init__') is_special = (not is_init and name.startswith('__') and name.endswith('__')) is_private = (not is_init and not is_special and name.startswith('_')) inc_init = app.config.napoleon_include_init_with_doc inc_special = app.config.napoleon_include_special_with_doc inc_private = app.config.napoleon_include_private_with_doc if ((is_special and inc_special) or (is_private and inc_private) or (is_init and inc_init)): return False return None
[ "importlib.import_module", "functools.reduce", "sphinx.locale._", "sphinx.ext.napoleon.docstring.GoogleDocstring", "sphinx.ext.napoleon.docstring.NumpyDocstring" ]
[((13152, 13223), 'sphinx.ext.napoleon.docstring.NumpyDocstring', 'NumpyDocstring', (['result_lines', 'app.config', 'app', 'what', 'name', 'obj', 'options'], {}), '(result_lines, app.config, app, what, name, obj, options)\n', (13166, 13223), False, 'from sphinx.ext.napoleon.docstring import GoogleDocstring, NumpyDocstring\n'), ((13365, 13437), 'sphinx.ext.napoleon.docstring.GoogleDocstring', 'GoogleDocstring', (['result_lines', 'app.config', 'app', 'what', 'name', 'obj', 'options'], {}), '(result_lines, app.config, app, what, name, obj, options)\n', (13380, 13437), False, 'from sphinx.ext.napoleon.docstring import GoogleDocstring, NumpyDocstring\n'), ((11303, 11325), 'sphinx.locale._', '_', (['"""Keyword Arguments"""'], {}), "('Keyword Arguments')\n", (11304, 11325), False, 'from sphinx.locale import _\n'), ((15875, 15914), 'importlib.import_module', 'importlib.import_module', (['obj.__module__'], {}), '(obj.__module__)\n', (15898, 15914), False, 'import importlib\n'), ((16000, 16040), 'functools.reduce', 'functools.reduce', (['getattr', 'mod_path', 'mod'], {}), '(getattr, mod_path, mod)\n', (16016, 16040), False, 'import functools\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from rdkit import DataStructs import plugin_api __license__ = "X11" class LbvsEntry(plugin_api.PluginInterface): """ Compute Tanimoto similarity. """ def __init__(self): self.stream = None self.counter = 0 self.first_entry = False def execute(self, files): query = LbvsEntry._load_file(files["query_file"]) database = LbvsEntry._load_file(files["database_file"]) with open(files["output_file"], "w") as stream: self.stream = stream self.write_output_header() self.compute_and_write_similarities_for_items(query, database) self.write_output_footer() def write_output_header(self): self.stream.write('{"data":[') def write_output_footer(self): self.stream.write(']}') def compute_and_write_similarities_for_items(self, query, database): self.first_entry = True for query_item in query: for database_item in database: self._write_separator_if_needed() self.first_entry = False self._compute_and_write_similarity(query_item, database_item) def _write_separator_if_needed(self): if not self.first_entry: self.stream.write(",") def _compute_and_write_similarity(self, query, item): similarity = LbvsEntry._compute_similarity( query["value"], item["value"]) json.dump({ "query": query["id"], "id": item["id"], "value": similarity }, self.stream) @staticmethod def _load_file(path): with open(path) as stream: return [{ "id": item["id"], "value": LbvsEntry._as_sparse_vector(item["value"]) } for item in json.load(stream)["data"]] @staticmethod def _as_sparse_vector(data): # Use max integer value as a size. vector = DataStructs.cDataStructs.IntSparseIntVect(8388608) for key in data: vector[(int)(key)] = (int)(data[key]) return vector @staticmethod def _compute_similarity(left, right): return DataStructs.TanimotoSimilarity(left, right) def get_metadata(self) -> object: return { "id": "rdkit/tanimoto" }
[ "json.load", "rdkit.DataStructs.TanimotoSimilarity", "rdkit.DataStructs.cDataStructs.IntSparseIntVect", "json.dump" ]
[((1496, 1585), 'json.dump', 'json.dump', (["{'query': query['id'], 'id': item['id'], 'value': similarity}", 'self.stream'], {}), "({'query': query['id'], 'id': item['id'], 'value': similarity},\n self.stream)\n", (1505, 1585), False, 'import json\n'), ((2021, 2071), 'rdkit.DataStructs.cDataStructs.IntSparseIntVect', 'DataStructs.cDataStructs.IntSparseIntVect', (['(8388608)'], {}), '(8388608)\n', (2062, 2071), False, 'from rdkit import DataStructs\n'), ((2245, 2288), 'rdkit.DataStructs.TanimotoSimilarity', 'DataStructs.TanimotoSimilarity', (['left', 'right'], {}), '(left, right)\n', (2275, 2288), False, 'from rdkit import DataStructs\n'), ((1882, 1899), 'json.load', 'json.load', (['stream'], {}), '(stream)\n', (1891, 1899), False, 'import json\n')]
import os import weather import datetime import unittest import tempfile class WeatherTestCase(unittest.TestCase): def setUp(self): self.db_fd, weather.app.config['DATABASE'] = tempfile.mkstemp() weather.app.config['TESTING'] = True self.app = weather.app.test_client() weather.init_db() def tearDown(self): os.close(self.db_fd) os.unlink(weather.app.config['DATABASE']) def test_empty_db(self): """Test empty database with no entries.""" rv = self.app.get('/') assert 'Nothing logged yet.' in rv.data def test_report(self): """Test reporting weather""" rv = self.app.get('/report/11210/63/23', follow_redirects=True) assert b'11210' in rv.data def test_full_db(self): """Test reporting weather""" rv = self.app.get('/', follow_redirects=True) assert b'11210' in rv.data if __name__ == '__main__': unittest.main()
[ "weather.init_db", "os.close", "weather.app.test_client", "os.unlink", "unittest.main", "tempfile.mkstemp" ]
[((949, 964), 'unittest.main', 'unittest.main', ([], {}), '()\n', (962, 964), False, 'import unittest\n'), ((191, 209), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {}), '()\n', (207, 209), False, 'import tempfile\n'), ((274, 299), 'weather.app.test_client', 'weather.app.test_client', ([], {}), '()\n', (297, 299), False, 'import weather\n'), ((308, 325), 'weather.init_db', 'weather.init_db', ([], {}), '()\n', (323, 325), False, 'import weather\n'), ((359, 379), 'os.close', 'os.close', (['self.db_fd'], {}), '(self.db_fd)\n', (367, 379), False, 'import os\n'), ((388, 429), 'os.unlink', 'os.unlink', (["weather.app.config['DATABASE']"], {}), "(weather.app.config['DATABASE'])\n", (397, 429), False, 'import os\n')]
import yagmail receiver = "<EMAIL>" #Receiver's gmail address body = "Hello there from Yagmail" filename = "document.pdf" yag = yagmail.SMTP("<EMAIL>")#Your gmail address yag.send( to=receiver, subject="Yagmail test (attachment included", contents=body, attachments=filename, )
[ "yagmail.SMTP" ]
[((136, 159), 'yagmail.SMTP', 'yagmail.SMTP', (['"""<EMAIL>"""'], {}), "('<EMAIL>')\n", (148, 159), False, 'import yagmail\n')]
############################################################################## # # Copyright (c) 2003-2020 by The University of Queensland # http://www.uq.edu.au # # Primary Business: Queensland, Australia # Licensed under the Apache License, version 2.0 # http://www.apache.org/licenses/LICENSE-2.0 # # Development until 2012 by Earth Systems Science Computational Center (ESSCC) # Development 2012-2013 by School of Earth Sciences # Development from 2014 by Centre for Geoscience Computing (GeoComp) # Development from 2019 by School of Earth and Environmental Sciences # ############################################################################## from __future__ import print_function, division __copyright__="""Copyright (c) 2003-2020 by The University of Queensland http://www.uq.edu.au Primary Business: Queensland, Australia""" __license__="""Licensed under the Apache License, version 2.0 http://www.apache.org/licenses/LICENSE-2.0""" __url__="https://launchpad.net/escript-finley" """ transformations :var __author__: name of author :var __copyright__: copyrights :var __license__: licence agreement :var __url__: url entry point on documentation :var __version__: version :var __date__: date of the version :var DEG: unit of degree :var RAD: unit of radiant """ __author__="<NAME>, <EMAIL>" import numpy import math _TYPE=numpy.float64 DEG=math.pi/180. RAD=1. class Transformation(object): """ General class to define an affine transformation *x->Ax+b*. """ def __init__(self): """ Creates a linear transformation. """ pass def __call__(self,x=numpy.zeros((3,))): """ Applies transformation to ``x``. """ raise NotImplementeError() class Translation(Transformation): """ Defines a translation *x->x+b*. """ def __init__(self,b=numpy.zeros((3,),dtype=_TYPE)): """ Creates the linear transformation *x->x+b*. """ super(Translation, self).__init__() self.__b=numpy.array(b,_TYPE) def __call__(self,x=numpy.zeros((3,))): """ Applies translation to ``x``. """ return numpy.array(x,_TYPE)+self.__b class Rotatation(Transformation): """ Defines a rotation. """ def __init__(self,axis=numpy.ones((3,),dtype=_TYPE),point=numpy.zeros((3,),dtype=_TYPE),angle=0.*RAD): """ Creates a rotation using an axis and a point on the axis. """ self.__axis=numpy.array(axis,dtype=_TYPE) self.__point=numpy.array(point,dtype=_TYPE) lax=numpy.dot(self.__axis,self.__axis) if not lax>0: raise ValueError("points must be distinct.") self.__axis/=math.sqrt(lax) self.__angle=float(angle) def __call__(self,x=numpy.zeros((3,))): """ Applies the rotation to ``x``. """ x=numpy.array(x,_TYPE) z=x-self.__point z0=numpy.dot(z,self.__axis) z_per=z-z0*self.__axis lz_per=numpy.dot(z_per,z_per) if lz_per>0: axis1=z_per/math.sqrt(lz_per) axis2=_cross(axis1,self.__axis) lax2=numpy.dot(axis2,axis2) if lax2>0: axis2/=math.sqrt(lax2) return z0*self.__axis+math.sqrt(lz_per)*(math.cos(self.__angle)*axis1-math.sin(self.__angle)*axis2)+self.__point else: return x else: return x def _cross(x, y): """ Returns the cross product of ``x`` and ``y``. """ return numpy.array([x[1] * y[2] - x[2] * y[1], x[2] * y[0] - x[0] * y[2], x[0] * y[1] - x[1] * y[0]], _TYPE) class Dilation(Transformation): """ Defines a dilation. """ def __init__(self,factor=1.,center=numpy.zeros((3,),dtype=_TYPE)): """ Creates a dilation with a center and a given expansion/contraction factor. """ if not abs(factor)>0: raise ValueError("factor must be non-zero.") self.__factor=factor self.__center=numpy.array(center,dtype=_TYPE) def __call__(self,x=numpy.zeros((3,))): """ Applies dilation to ``x``. """ x=numpy.array(x,_TYPE) return self.__factor*(x-self.__center)+self.__center class Reflection(Transformation): """ Defines a reflection on a plane. """ def __init__(self,normal=numpy.ones((3,),dtype=_TYPE),offset=0.): """ Defines a reflection on a plane defined in normal form. """ self.__normal=numpy.array(normal,dtype=_TYPE) ln=math.sqrt(numpy.dot(self.__normal,self.__normal)) if not ln>0.: raise ValueError("normal must have positive length.") self.__normal/=ln if isinstance(offset,float) or isinstance(offset,int): self.__offset=offset/ln else: self.__offset=numpy.dot(numpy.array(offset,dtype=_TYPE),self.__normal) def __call__(self,x=numpy.zeros((3,))): """ Applies reflection to ``x``. """ x=numpy.array(x,_TYPE) return x - 2*(numpy.dot(x,self.__normal)-self.__offset)*self.__normal
[ "numpy.ones", "math.sqrt", "math.cos", "numpy.array", "numpy.dot", "numpy.zeros", "math.sin" ]
[((3470, 3576), 'numpy.array', 'numpy.array', (['[x[1] * y[2] - x[2] * y[1], x[2] * y[0] - x[0] * y[2], x[0] * y[1] - x[1] *\n y[0]]', '_TYPE'], {}), '([x[1] * y[2] - x[2] * y[1], x[2] * y[0] - x[0] * y[2], x[0] * y\n [1] - x[1] * y[0]], _TYPE)\n', (3481, 3576), False, 'import numpy\n'), ((1609, 1626), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {}), '((3,))\n', (1620, 1626), False, 'import numpy\n'), ((1837, 1867), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {'dtype': '_TYPE'}), '((3,), dtype=_TYPE)\n', (1848, 1867), False, 'import numpy\n'), ((2001, 2022), 'numpy.array', 'numpy.array', (['b', '_TYPE'], {}), '(b, _TYPE)\n', (2012, 2022), False, 'import numpy\n'), ((2047, 2064), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {}), '((3,))\n', (2058, 2064), False, 'import numpy\n'), ((2272, 2301), 'numpy.ones', 'numpy.ones', (['(3,)'], {'dtype': '_TYPE'}), '((3,), dtype=_TYPE)\n', (2282, 2301), False, 'import numpy\n'), ((2307, 2337), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {'dtype': '_TYPE'}), '((3,), dtype=_TYPE)\n', (2318, 2337), False, 'import numpy\n'), ((2458, 2488), 'numpy.array', 'numpy.array', (['axis'], {'dtype': '_TYPE'}), '(axis, dtype=_TYPE)\n', (2469, 2488), False, 'import numpy\n'), ((2508, 2539), 'numpy.array', 'numpy.array', (['point'], {'dtype': '_TYPE'}), '(point, dtype=_TYPE)\n', (2519, 2539), False, 'import numpy\n'), ((2550, 2585), 'numpy.dot', 'numpy.dot', (['self.__axis', 'self.__axis'], {}), '(self.__axis, self.__axis)\n', (2559, 2585), False, 'import numpy\n'), ((2681, 2695), 'math.sqrt', 'math.sqrt', (['lax'], {}), '(lax)\n', (2690, 2695), False, 'import math\n'), ((2754, 2771), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {}), '((3,))\n', (2765, 2771), False, 'import numpy\n'), ((2843, 2864), 'numpy.array', 'numpy.array', (['x', '_TYPE'], {}), '(x, _TYPE)\n', (2854, 2864), False, 'import numpy\n'), ((2898, 2923), 'numpy.dot', 'numpy.dot', (['z', 'self.__axis'], {}), '(z, self.__axis)\n', (2907, 2923), False, 'import numpy\n'), ((2967, 2990), 'numpy.dot', 'numpy.dot', (['z_per', 'z_per'], {}), '(z_per, z_per)\n', (2976, 2990), False, 'import numpy\n'), ((3684, 3714), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {'dtype': '_TYPE'}), '((3,), dtype=_TYPE)\n', (3695, 3714), False, 'import numpy\n'), ((3960, 3992), 'numpy.array', 'numpy.array', (['center'], {'dtype': '_TYPE'}), '(center, dtype=_TYPE)\n', (3971, 3992), False, 'import numpy\n'), ((4017, 4034), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {}), '((3,))\n', (4028, 4034), False, 'import numpy\n'), ((4102, 4123), 'numpy.array', 'numpy.array', (['x', '_TYPE'], {}), '(x, _TYPE)\n', (4113, 4123), False, 'import numpy\n'), ((4300, 4329), 'numpy.ones', 'numpy.ones', (['(3,)'], {'dtype': '_TYPE'}), '((3,), dtype=_TYPE)\n', (4310, 4329), False, 'import numpy\n'), ((4447, 4479), 'numpy.array', 'numpy.array', (['normal'], {'dtype': '_TYPE'}), '(normal, dtype=_TYPE)\n', (4458, 4479), False, 'import numpy\n'), ((4864, 4881), 'numpy.zeros', 'numpy.zeros', (['(3,)'], {}), '((3,))\n', (4875, 4881), False, 'import numpy\n'), ((4951, 4972), 'numpy.array', 'numpy.array', (['x', '_TYPE'], {}), '(x, _TYPE)\n', (4962, 4972), False, 'import numpy\n'), ((2140, 2161), 'numpy.array', 'numpy.array', (['x', '_TYPE'], {}), '(x, _TYPE)\n', (2151, 2161), False, 'import numpy\n'), ((3104, 3127), 'numpy.dot', 'numpy.dot', (['axis2', 'axis2'], {}), '(axis2, axis2)\n', (3113, 3127), False, 'import numpy\n'), ((4499, 4538), 'numpy.dot', 'numpy.dot', (['self.__normal', 'self.__normal'], {}), '(self.__normal, self.__normal)\n', (4508, 4538), False, 'import numpy\n'), ((3031, 3048), 'math.sqrt', 'math.sqrt', (['lz_per'], {}), '(lz_per)\n', (3040, 3048), False, 'import math\n'), ((3166, 3181), 'math.sqrt', 'math.sqrt', (['lax2'], {}), '(lax2)\n', (3175, 3181), False, 'import math\n'), ((4792, 4824), 'numpy.array', 'numpy.array', (['offset'], {'dtype': '_TYPE'}), '(offset, dtype=_TYPE)\n', (4803, 4824), False, 'import numpy\n'), ((4993, 5020), 'numpy.dot', 'numpy.dot', (['x', 'self.__normal'], {}), '(x, self.__normal)\n', (5002, 5020), False, 'import numpy\n'), ((3216, 3233), 'math.sqrt', 'math.sqrt', (['lz_per'], {}), '(lz_per)\n', (3225, 3233), False, 'import math\n'), ((3235, 3257), 'math.cos', 'math.cos', (['self.__angle'], {}), '(self.__angle)\n', (3243, 3257), False, 'import math\n'), ((3264, 3286), 'math.sin', 'math.sin', (['self.__angle'], {}), '(self.__angle)\n', (3272, 3286), False, 'import math\n')]
#!/usr/bin/env python # coding=utf-8 from setuptools import setup, find_packages with open('README.md', encoding='utf-8') as f: readme = f.read() with open('LICENSE', encoding='utf-8') as f: license = f.read() with open('requirements.txt', encoding='utf-8') as f: reqs = f.read() pkgs = [p for p in find_packages() if p.startswith('fastNLP')] print(pkgs) setup( name='FastNLP', version='0.7.0', url='https://gitee.com/fastnlp/fastNLP', description='fastNLP: Deep Learning Toolkit for NLP, developed by Fudan FastNLP Team', long_description=readme, long_description_content_type='text/markdown', license='Apache License', author='<NAME>', python_requires='>=3.6', packages=pkgs, install_requires=reqs.strip().split('\n'), )
[ "setuptools.find_packages" ]
[((315, 330), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (328, 330), False, 'from setuptools import setup, find_packages\n')]
#enhanced keyboard driver import copy import os import configparser from pp_displaymanager import DisplayManager class pp_kbddriver_plus(object): # control list items NAME=0 # symbolic name for input and output DIRECTION = 1 # in/out MATCH = 2 # for input the character/string to match (no EOL) MODE= 3 # for input the match mode any-char,char,any-line,line TEMPLATE=['','','',''] # CLASS VARIABLES (pp_kbddriver_plus.) driver_active=False title='' # usd for error reporting and logging tick_interval='' # mS between polls of the serial input match_mode='' # char or line, whether input characters are matched for each character or a complete line inputs={} # executed by main program and by each object using the driver def __init__(self): self.dm=DisplayManager() # executed once from main program def init(self,filename,filepath,widget,pp_dir,pp_home,pp_profile,event_callback=None): # instantiate arguments self.widget=widget self.filename=filename self.filepath=filepath self.event_callback=event_callback pp_kbddriver_plus.driver_active = False # read pp_kbddriver_plus.cfg file. reason,message=self._read(self.filename,self.filepath) if reason =='error': return 'error',message if self.config.has_section('DRIVER') is False: return 'error','No DRIVER section in '+self.filepath # all the below are used by another instance of pp_kbddriver_plus so must reference class variables # read information from DRIVER section pp_kbddriver_plus.title=self.config.get('DRIVER','title') pp_kbddriver_plus.bind_printing = self.config.get('DRIVER','bind-printing') # construct the control list from the config file pp_kbddriver_plus.in_names=[] pp_kbddriver_plus.out_names=[] for section in self.config.sections(): if section == 'DRIVER': continue entry=copy.deepcopy(pp_kbddriver_plus.TEMPLATE) entry[pp_kbddriver_plus.NAME]=self.config.get(section,'name') entry[pp_kbddriver_plus.DIRECTION]=self.config.get(section,'direction') if entry[pp_kbddriver_plus.DIRECTION] == 'none': continue elif entry[pp_kbddriver_plus.DIRECTION] == 'in': entry[pp_kbddriver_plus.MODE]=self.config.get(section,'mode') if entry[pp_kbddriver_plus.MODE] in ('specific-character','specific-line'): entry[pp_kbddriver_plus.MATCH]=self.config.get(section,'match') pp_kbddriver_plus.in_names.append(copy.deepcopy(entry)) else: return 'error',pp_kbddriver_plus.title + ' direction not in or out' # print pp_kbddriver_plus.in_names # bind the keys self._bind_keys(widget,self._key_received) # all ok so indicate the driver is active pp_kbddriver_plus.driver_active=True # init must return two arguments return 'normal',pp_kbddriver_plus.title + ' active' # sets up tkinter keyboard events such that any key press # does a callback to _key_received() with the event object def _bind_keys(self,widget,callback): for display_name in DisplayManager.display_map: status,message,display_id,canvas=self.dm.id_of_canvas(display_name) if status !='normal': continue # bind all the normal keys that return a printing character such that x produces pp-key-x (but fileterd in _key_received) canvas.bind("<Key>", lambda event,match='<Key>',name='': self._key_received(event,match,name)) # print 'bind printing' # Bind <Return> so that eol detection works, <Return> cannot be used to trigger an input event # if you wnt that use keys.cfg canvas.bind("<Return>", lambda event,match='<Return>',name='': self._key_received(event,match,name)) # print 'bind Return to make eol work' # go through entries and bind all specific-character matches to _key_received for entry in pp_kbddriver_plus.in_names: if entry[pp_kbddriver_plus.MODE] == 'specific-character': match = entry[pp_kbddriver_plus.MATCH] name = entry[pp_kbddriver_plus.NAME] canvas.bind(match, lambda event, match=match,name=name: self._key_received(event,match,name)) # print 'bind specific-char', match,name # start method must be defined. If not using inputs just pass def start(self): pp_kbddriver_plus.inputs['current-character']='' pp_kbddriver_plus.inputs['current-line']='' pp_kbddriver_plus.inputs['previous-line']='' def _key_received(self,event,match,name): # generate the events with symbolic names if driver is active if pp_kbddriver_plus.driver_active is True: char=event.char # print 'received ',char,match,name # if char is eol then match the line and start a new line if match =='<Return>': # do match of line # print 'do match line',pp_kbddriver_plus.inputs['current-line'] self.match_line(pp_kbddriver_plus.inputs['current-line']) # shuffle and empty the buffer pp_kbddriver_plus.inputs['previous-line'] = pp_kbddriver_plus.inputs['current-line'] pp_kbddriver_plus.inputs['current-line']='' pp_kbddriver_plus.inputs['current-character']='' if name !='': # print 'bound <Return> key' if self.event_callback is not None: self.event_callback(name,pp_kbddriver_plus.title) else: # process a character if char == '' and match == '<Key>': # unbound special key # print 'unbound special key ', match pass else: # a character has been received pp_kbddriver_plus.inputs['current-character']=char pp_kbddriver_plus.inputs['current-line']+=char # print pp_kbddriver_plus.inputs['current-character'],pp_kbddriver_plus.inputs['current-line'] if match == '<Key>' and char != '' and self.bind_printing =='yes': # print 'printable key, bind-printing is yes',char,match # printable character without overiding section if self.event_callback is not None: self.event_callback('pp-key-'+ char,pp_kbddriver_plus.title) else: if name != '': # print 'bound non-printable character',char,name if self.event_callback is not None: self.event_callback(name,pp_kbddriver_plus.title) # look through entries for any-character for entry in pp_kbddriver_plus.in_names: if entry[pp_kbddriver_plus.MODE] == 'any-character': # print 'match any character', char, 'current line is ',pp_kbddriver_plus.inputs['current-line'] if self.event_callback is not None: self.event_callback(entry[pp_kbddriver_plus.NAME],pp_kbddriver_plus.title) def match_line(self,line): for entry in pp_kbddriver_plus.in_names: if entry[pp_kbddriver_plus.MODE] == 'any-line': # print 'match any line',line if self.event_callback is not None: self.event_callback(entry[pp_kbddriver_plus.NAME],pp_kbddriver_plus.title) if entry[pp_kbddriver_plus.MODE] == 'specific-line' and line == entry[pp_kbddriver_plus.MATCH]: # print 'match specific line', line if self.event_callback is not None: self.event_callback(entry[pp_kbddriver_plus.NAME],pp_kbddriver_plus.title) # allow track plugins (or anything else) to access analog input values def get_input(self,key): if key in pp_kbddriver_plus.inputs: return True, pp_kbddriver_plus.inputs[key] else: return False, None # allow querying of driver state def is_active(self): return pp_kbddriver_plus.driver_active # called by main program only. Called when PP is closed down def terminate(self): pp_kbddriver_plus.driver_active = False # ************************************************ # output interface method # this can be called from many objects so needs to operate on class variables # ************************************************ # execute an output event def handle_output_event(self,name,param_type,param_values,req_time): return 'normal','no output methods' # *********************************** # reading .cfg file # ************************************ def _read(self,filename,filepath): if os.path.exists(filepath): self.config = configparser.ConfigParser(inline_comment_prefixes = (';',)) self.config.read(filepath) return 'normal',filename+' read' else: return 'error',filename+' not found at: '+filepath if __name__ == '__main__': from tkinter import * def key_callback(symbol,source): print('callback',symbol,source,'\n') if symbol=='pp-stop': idd.terminate() exit() pass root = Tk() w = Label(root, text="pp_kbddriver_plus.py test harness") w.pack() idd=pp_kbddriver_plus() reason,message=idd.init('pp_kbddriver_plus.cfg','/home/pi/pipresents/pp_io_config/keys_plus.cfg',root,key_callback) print(reason,message) if reason != 'error': idd.start() root.mainloop()
[ "pp_displaymanager.DisplayManager", "os.path.exists", "configparser.ConfigParser", "copy.deepcopy" ]
[((884, 900), 'pp_displaymanager.DisplayManager', 'DisplayManager', ([], {}), '()\n', (898, 900), False, 'from pp_displaymanager import DisplayManager\n'), ((9565, 9589), 'os.path.exists', 'os.path.exists', (['filepath'], {}), '(filepath)\n', (9579, 9589), False, 'import os\n'), ((2132, 2173), 'copy.deepcopy', 'copy.deepcopy', (['pp_kbddriver_plus.TEMPLATE'], {}), '(pp_kbddriver_plus.TEMPLATE)\n', (2145, 2173), False, 'import copy\n'), ((9617, 9674), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {'inline_comment_prefixes': "(';',)"}), "(inline_comment_prefixes=(';',))\n", (9642, 9674), False, 'import configparser\n'), ((2783, 2803), 'copy.deepcopy', 'copy.deepcopy', (['entry'], {}), '(entry)\n', (2796, 2803), False, 'import copy\n')]
#!/usr/bin/env python # Copyright 1996-2019 Cyberbotics Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Generate textures prepared for OSM, based on image templates.""" import glob import os from PIL import Image # change directory to this script directory in order to allow this script to be called from another directory. os.chdir(os.path.dirname(os.path.realpath(__file__))) # get all the template files in put them in a list of tuples templates = [] for f in glob.glob("*_diffuse_template.jpg"): templates.append((f, f.replace('_diffuse_', '_color_mask_'))) # target colors # ref: http://wiki.openstreetmap.org/wiki/Key:colour # TODO: is it sufficient? colors = { '000000': (0.0, 0.0, 0.0), 'FFFFFF': (0.84, 0.84, 0.84), '808080': (0.4, 0.4, 0.4), 'C0C0C0': (0.65, 0.65, 0.65), '800000': (0.4, 0.15, 0.15), 'FF0000': (0.45, 0.0, 0.0), '808000': (0.4, 0.4, 0.2), 'FFFF00': (0.7, 0.6, 0.15), '008000': (0.15, 0.3, 0.15), '00FF00': (0.55, 0.69, 0.52), '008080': (0.15, 0.3, 0.3), '00FFFF': (0.6, 0.7, 0.7), '000080': (0.2, 0.2, 0.3), '0000FF': (0.4, 0.4, 0.75), '800080': (0.5, 0.4, 0.5), 'FF00FF': (0.9, 0.75, 0.85), 'F5DEB3': (0.83, 0.78, 0.65), '8B4513': (0.3, 0.1, 0.05) } effectFactor = 0.5 # power of the effect, found empirically # foreach template for template in templates: # load the templates diffuse = Image.open(template[0]) mask = Image.open(template[1]) assert diffuse.size == mask.size width, height = diffuse.size # create an image per color for colorString, color in colors.iteritems(): image = Image.new('RGB', diffuse.size) pixels = image.load() for x in range(height): for y in range(width): dR, dG, dB = diffuse.getpixel((x, y)) mR, mG, mB = mask.getpixel((x, y)) r = dR + int(255.0 * (mR / 255.0) * (color[0] * 2.0 - 1.0) * effectFactor) g = dG + int(255.0 * (mG / 255.0) * (color[1] * 2.0 - 1.0) * effectFactor) b = dB + int(255.0 * (mB / 255.0) * (color[2] * 2.0 - 1.0) * effectFactor) pixels[x, y] = (r, g, b) image.save(template[0].replace('_diffuse_template', '_' + colorString))
[ "os.path.realpath", "PIL.Image.new", "PIL.Image.open", "glob.glob" ]
[((975, 1010), 'glob.glob', 'glob.glob', (['"""*_diffuse_template.jpg"""'], {}), "('*_diffuse_template.jpg')\n", (984, 1010), False, 'import glob\n'), ((1915, 1938), 'PIL.Image.open', 'Image.open', (['template[0]'], {}), '(template[0])\n', (1925, 1938), False, 'from PIL import Image\n'), ((1950, 1973), 'PIL.Image.open', 'Image.open', (['template[1]'], {}), '(template[1])\n', (1960, 1973), False, 'from PIL import Image\n'), ((860, 886), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (876, 886), False, 'import os\n'), ((2143, 2173), 'PIL.Image.new', 'Image.new', (['"""RGB"""', 'diffuse.size'], {}), "('RGB', diffuse.size)\n", (2152, 2173), False, 'from PIL import Image\n')]
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Callable, Optional import pangu.core.backend as B from pangu.core.backend import Tensor, tensor from torchmetrics.functional.retrieval.fall_out import retrieval_fall_out from torchmetrics.retrieval.retrieval_metric import RetrievalMetric from torchmetrics.utilities.data import get_group_indexes class RetrievalFallOut(RetrievalMetric): """Computes `Fall-out`_. Works with binary target data. Accepts float predictions from a model output. Forward accepts: - ``preds`` (float tensor): ``(N, ...)`` - ``target`` (long or bool tensor): ``(N, ...)`` - ``indexes`` (long tensor): ``(N, ...)`` ``indexes``, ``preds`` and ``target`` must have the same dimension. ``indexes`` indicate to which query a prediction belongs. Predictions will be first grouped by ``indexes`` and then `Fall-out` will be computed as the mean of the `Fall-out` over each query. Args: empty_target_action: Specify what to do with queries that do not have at least a negative ``target``. Choose from: - ``'neg'``: those queries count as ``0.0`` (default) - ``'pos'``: those queries count as ``1.0`` - ``'skip'``: skip those queries; if all queries are skipped, ``0.0`` is returned - ``'error'``: raise a ``ValueError`` k: consider only the top k elements for each query (default: None, which considers them all) compute_on_step: Forward only calls ``update()`` and return None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. default: False process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) dist_sync_fn: Callback that performs the allgather operation on the metric state. When `None`, DDP will be used to perform the allgather. default: None Raises: ValueError: If ``k`` parameter is not `None` or an integer larger than 0 Example: >>> from torchmetrics import RetrievalFallOut >>> indexes = tensor([0, 0, 0, 1, 1, 1, 1]) >>> preds = tensor([0.2, 0.3, 0.5, 0.1, 0.3, 0.5, 0.2]) >>> target = tensor([False, False, True, False, True, False, True]) >>> fo = RetrievalFallOut(k=2) >>> fo(preds, target, indexes=indexes) tensor(0.5000) """ higher_is_better = False def __init__( self, empty_target_action: str = "pos", k: int = None, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ) -> None: super().__init__( empty_target_action=empty_target_action, compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step, process_group=process_group, dist_sync_fn=dist_sync_fn, ) if (k is not None) and not (isinstance(k, int) and k > 0): raise ValueError("`k` has to be a positive integer or None") self.k = k def compute(self) -> Tensor: """First concat state `indexes`, `preds` and `target` since they were stored as lists. After that, compute list of groups that will help in keeping together predictions about the same query. Finally, for each group compute the `_metric` if the number of negative targets is at least 1, otherwise behave as specified by `self.empty_target_action`. """ indexes = B.cat(self.indexes, dim=0) preds = B.cat(self.preds, dim=0) target = B.cat(self.target, dim=0) res = [] groups = get_group_indexes(indexes) for group in groups: mini_preds = preds[group] mini_target = target[group] if not (1 - mini_target).sum(): if self.empty_target_action == "error": raise ValueError("`compute` method was provided with a query with no negative target.") if self.empty_target_action == "pos": res.append(tensor(1.0)) elif self.empty_target_action == "neg": res.append(tensor(0.0)) else: # ensure list containt only float tensors res.append(self._metric(mini_preds, mini_target)) return B.stack([x.to(preds) for x in res]).mean() if res else tensor(0.0).to(preds) def _metric(self, preds: Tensor, target: Tensor) -> Tensor: return retrieval_fall_out(preds, target, k=self.k)
[ "torchmetrics.utilities.data.get_group_indexes", "pangu.core.backend.cat", "torchmetrics.functional.retrieval.fall_out.retrieval_fall_out", "pangu.core.backend.tensor" ]
[((4312, 4338), 'pangu.core.backend.cat', 'B.cat', (['self.indexes'], {'dim': '(0)'}), '(self.indexes, dim=0)\n', (4317, 4338), True, 'import pangu.core.backend as B\n'), ((4355, 4379), 'pangu.core.backend.cat', 'B.cat', (['self.preds'], {'dim': '(0)'}), '(self.preds, dim=0)\n', (4360, 4379), True, 'import pangu.core.backend as B\n'), ((4397, 4422), 'pangu.core.backend.cat', 'B.cat', (['self.target'], {'dim': '(0)'}), '(self.target, dim=0)\n', (4402, 4422), True, 'import pangu.core.backend as B\n'), ((4458, 4484), 'torchmetrics.utilities.data.get_group_indexes', 'get_group_indexes', (['indexes'], {}), '(indexes)\n', (4475, 4484), False, 'from torchmetrics.utilities.data import get_group_indexes\n'), ((5315, 5358), 'torchmetrics.functional.retrieval.fall_out.retrieval_fall_out', 'retrieval_fall_out', (['preds', 'target'], {'k': 'self.k'}), '(preds, target, k=self.k)\n', (5333, 5358), False, 'from torchmetrics.functional.retrieval.fall_out import retrieval_fall_out\n'), ((5213, 5224), 'pangu.core.backend.tensor', 'tensor', (['(0.0)'], {}), '(0.0)\n', (5219, 5224), False, 'from pangu.core.backend import Tensor, tensor\n'), ((4887, 4898), 'pangu.core.backend.tensor', 'tensor', (['(1.0)'], {}), '(1.0)\n', (4893, 4898), False, 'from pangu.core.backend import Tensor, tensor\n'), ((4987, 4998), 'pangu.core.backend.tensor', 'tensor', (['(0.0)'], {}), '(0.0)\n', (4993, 4998), False, 'from pangu.core.backend import Tensor, tensor\n')]
from arcapix.fs.gpfs.policy import PlacementPolicy from arcapix.fs.gpfs.rule import MigrateRule # load placement policy for mmfs1 policy = PlacementPolicy('mmfs1') # create a new migrate rule for 'sata1' r = MigrateRule(source='sata1', threshold=(90, 50)) # add rule to start of the policy policy.rules.insert(r, 0) # save changes policy.save()
[ "arcapix.fs.gpfs.policy.PlacementPolicy", "arcapix.fs.gpfs.rule.MigrateRule" ]
[((140, 164), 'arcapix.fs.gpfs.policy.PlacementPolicy', 'PlacementPolicy', (['"""mmfs1"""'], {}), "('mmfs1')\n", (155, 164), False, 'from arcapix.fs.gpfs.policy import PlacementPolicy\n'), ((210, 257), 'arcapix.fs.gpfs.rule.MigrateRule', 'MigrateRule', ([], {'source': '"""sata1"""', 'threshold': '(90, 50)'}), "(source='sata1', threshold=(90, 50))\n", (221, 257), False, 'from arcapix.fs.gpfs.rule import MigrateRule\n')]
from flask import Blueprint, request, render_template, \ flash, g, session, redirect, url_for, jsonify from app import db, requires_auth from flask_cors import CORS from .models import Paste import uuid from datetime import datetime from app.user.models import User from pygments import highlight from pygments.lexers import get_lexer_by_name, guess_lexer from pygments.formatters import HtmlFormatter from functools import wraps from datetime import datetime from dateutil import parser def requires_admin(f): @wraps(f) def decorated(*args, **kwargs): if 'user_id' not in session: return jsonify(message="Unauthorized", success=False), 401 user_id = session['user_id'] user = User.query.filter(User.id == user_id).first() if(user.user_type != 2): return jsonify(message="Unauthorized", success=False), 401 return f(*args, **kwargs) return decorated mod_paste = Blueprint('paste', __name__) CORS(mod_paste) def is_active(paste): return parser.parse(paste.expire_time) > datetime.now() @mod_paste.route('/create_paste', methods=['GET']) @requires_auth def create_form(): curr_id = session['user_id'] user = User.query.filter(User.id == curr_id).first() return render_template('user.html', username=user.username) @mod_paste.route('/create_paste', methods=['POST']) def create_paste(): title = request.form['title'] text = request.form['text'] paste_type = request.form['type'] if 'user_id' in session: user_id = session['user_id'] else: user = User.query.filter(User.username == 'Guest').first() user_id = user.id lang = request.form['lang'] time_form = request.form['time'] expire_time = str(time_form) add_time = str(datetime.now()) url = str(uuid.uuid4()) report_count = 0 try: paste = Paste(title, text, lang, add_time, expire_time, user_id, url, report_count, paste_type) user = User.query.filter(User.id == user_id).first() x = user.paste_count user.paste_count = x + 1 db.session.add(paste) db.session.commit() # jsonify(success=True, paste=paste.to_dict()) return jsonify({'url': url}), 200 except: return jsonify({'error': 'Error while creating Paste, Please check if all fields are filled'}), 400 @mod_paste.route('/paste', methods=['GET']) @requires_auth def get_all_pastes(): # user_id = session['user_id'] # pastes = paste.query.filter(paste.user_id == user_id).all() if 'user_id' in session: curr_id = session['user_id'] user = User.query.filter(curr_id == User.id).first() if user.user_type == 2: return render_template('admin_mypaste.html') return render_template("mypaste.html") else: return jsonify({'error': 'Please Login to Continue'}), 400 # return jsonify(success=True, pastes=[paste.to_dict() for paste in # pastes]) @mod_paste.route('/api/paste', methods=['POST']) @requires_auth def get_all_pastes_object(): user_id = session['user_id'] user = User.query.filter(user_id == User.id).first() pastes = Paste.query.filter(Paste.user_id == user_id).all() active = [] for paste in pastes: if is_active(paste): active.append(paste.to_dict()) else: userid_to_red = paste.user_id user_to_red = User.query.filter(userid_to_red == User.id) user_to_red.paste_count = user_to_red.paste_count - 1 db.session.delete(paste) db.session.commit() return jsonify({'paste_list': active, 'username': user.username}), 200 @mod_paste.route('/<url>/embed', methods=['GET']) def embed_code_form(url): paste = Paste.query.filter(Paste.url == url).first() if is_active(paste): return render_template('embed.html', paste_text=paste.text, paste_link="http://127.0.0.1:8080/" + url) else: userid_to_red = paste.user_id user_to_red = User.query.filter(User.id == userid_to_red).first() user_to_red.paste_count = user_to_red.paste_count - 1 db.session.delete(paste) db.session.commit() return render_template("index.html"), 404 # @mod_paste.route('/<url>/embed', methods=['POST']) # def embed_code(url): # paste = Paste.query.filter(Paste.url == url).first() # return jsonify(paste_text = paste.text,paste_link = url) @mod_paste.route('/<url>/embed/output', methods=['GET']) def embed_code_disp(url): paste = Paste.query.filter(Paste.url == url).first() if is_active(paste): return render_template('embed_output.html') else: userid_to_red = paste.user_id user_to_red = User.query.filter(User.id == userid_to_red).first() user_to_red.paste_count = user_to_red.paste_count - 1 db.session.delete(paste) db.session.commit() return render_template("index.html"), 404 # @mod_paste.route('/paste', methods=['GET']) # @requires_auth # def get_all_pastes(): # # user_id = session['user_id'] # # pastes = paste.query.filter(paste.user_id == user_id).all() # curr_id = session['user_id'] # user = User.query.filter(User.id == curr_id).first() # paste_list = Paste.query.filter(curr_id == Paste.user_id).all() # url_pre = "/" # for paste in paste_list: # paste.url = url_pre + paste.url # if user.user_type == 1: # return render_template('mypaste.html', paste_list=paste_list) # return render_template('admin_mypaste.html',paste_list = paste_list) # # return jsonify(success=True, pastes=[paste.to_dict() for paste in # # pastes]) # # # @mod_paste.route('/api/paste', methods=['POST']) # @requires_auth # def get_all_pastes_object(): # user_id = session['user_id'] # user = User.query.filter(user_id == User.id).first() # pastes = Paste.query.filter(Paste.user_id == user_id).all() # active = [] # for paste in pastes: # temp_paste = {} # if paste.is_active(): # temp_paste['title'] = paste.title # temp_paste['add_time']=paste.add_time # temp_paste['expire_time']=paste.expire_time # temp_paste['lang']=paste.lang # temp_paste['url']=paste.url # active.append(temp_paste) # # return jsonify({'paste_list':active,'username':user.username}),200 # @mod_paste.route('/paste/<id>', methods=['GET']) # @requires_auth # def get_paste(id): # user_id = session['user_id'] # paste = paste.query.filter( # Paste.id == id, Paste.user_id == user_id).first() # if paste is None: # return render_template("index.html"),4044 # else: # return jsonify(success=True, paste=paste.to_dict()) # @mod_paste.route('/paste/<id>', methods=['POST']) # @requires_auth # def edit_paste(id): # user_id = session['user_id'] # paste = Paste.query.filter( # Paste.id == id, Paste.user_id == user_id).first() # if paste is None: # return render_template("index.html"),4044 # else: # paste.title = request.form['title'] # paste.text = request.form['text'] # paste.color = request.form['color'] # paste.lang = request.form['lang'] # db.session.commit() # return jsonify(success=True) @mod_paste.route('/<url>/delete', methods=['POST']) @requires_auth def delete_paste(url): user_id = session['user_id'] # print(user_id) paste = Paste.query.filter(Paste.url == url).first() user = User.query.filter(User.id == user_id).first() if paste is None: return render_template("index.html"), 404 if is_active(paste): if paste.user_id == user_id or user.user_type == 2: userid_to_red = paste.user_id user_to_red = User.query.filter(User.id == userid_to_red).first() user_to_red.paste_count = user_to_red.paste_count - 1 db.session.delete(paste) db.session.commit() return jsonify(success=True, user_type=user.user_type), 200 else: return jsonify(success=False), 400 else: userid_to_red = paste.user_id user_to_red = User.query.filter(User.id == userid_to_red).first() user_to_red.paste_count = user_to_red.paste_count - 1 db.session.delete(paste) db.session.commit() return render_template("index.html"), 404 # @mod_paste.route('/<url>', methods=['GET']) # def display_paste(url): # paste = Paste.query.filter(Paste.url == url).first() # style = HtmlFormatter().get_style_defs('.highlight') # lexer = get_lexer_by_name(paste.lang) # formatter = HtmlFormatter(linenos=True, cssclass="highlight") # result = highlight(paste.text, lexer, formatter) # return render_template("view_paste.html", paste_title=paste.title, # paste_lang=paste.lang, highlight_style=style, @mod_paste.route('/<url>', methods=['GET']) # paste_text=result,paste_rawdata = paste.text) def display_paste(url): paste = Paste.query.filter(Paste.url == url).first() if Paste.query.filter(Paste.url == url).first() != None: if is_active(paste): if 'user_id' in session: if(paste.paste_type == "1" and session['user_id'] != paste.user_id): return render_template("index.html"), 200 user_id = session['user_id'] user = User.query.filter(User.id == user_id).first() if user.user_type == 1: return render_template('view_paste.html') if user.user_type == 2: return render_template('view_paste_admin.html') return render_template("view_paste_guest.html") else: userid_to_red = paste.user_id user_to_red = User.query.filter(User.id == userid_to_red).first() user_to_red.paste_count = user_to_red.paste_count - 1 db.session.delete(paste) db.session.commit() return render_template("index.html"), 404 else: return render_template("index.html"), 404 @mod_paste.route('/api/<url>', methods=['POST']) def ret_paste(url): paste = Paste.query.filter(Paste.url == url).first() user = User.query.filter(paste.user_id == User.id).first() if is_active(paste): return jsonify({'paste_owner': user.username, 'paste_text': paste.text, 'paste_title': paste.title, 'paste_lang': paste.lang, 'paste_add': paste.add_time, 'paste_expire': paste.expire_time}), 200 else: userid_to_red = paste.user_id user_to_red = User.query.filter(User.id == userid_to_red).first() user_to_red.paste_count = user_to_red.paste_count - 1 db.session.delete(paste) db.session.commit() return render_template("index.html"), 404 # @mod_paste.route('/<url>/add_report', methods=['POST']) # @requires_auth # def to_delete(url): # paste_to_delete = Paste.query.filter(Paste.url == url).first() # if paste_to_delete.report_count > 5: # db.session.delete(paste_to_delete) # else: # paste_to_delete.report_count = paste_to_delete.report_count + 1 # db.session.commit() # curr_id = session['user_id'] # paste_list = Paste.query.filter(Paste.user_id == curr_id).all() # url_pre = "/" # for paste in paste_list: # paste.url = url_pre + paste.url # return render_template('mypaste.html', paste_list=paste_list) @mod_paste.route('/<url>/edit', methods=['GET']) @requires_auth def edit_form(url): if 'user_id' in session: user_id = session['user_id'] paste = Paste.query.filter(Paste.url == url).first() if is_active(paste): if paste.user_id == user_id: return render_template('editpaste.html') return jsonify(success=False, reply="Not Authorized"), 400 else: userid_to_red = paste.user_id user_to_red = User.query.filter(User.id == userid_to_red).first() user_to_red.paste_count = user_to_red.paste_count - 1 db.session.delete(paste) db.session.commit() return render_template("index.html"), 404 return jsonify(success=False, reply="Please Login"), 400 @mod_paste.route('/<url>/edit', methods=['POST']) @requires_auth def edit_paste(url): if 'user_id' in session: user_id = session['user_id'] paste = Paste.query.filter(Paste.url == url).first() if not is_active(paste): userid_to_red = paste.user_id user_to_red = User.query.filter(User.id == userid_to_red).first() user_to_red.paste_count = user_to_red.paste_count - 1 db.session.delete(paste) db.session.commit() return render_template('index.html'), 404 if paste.user_id != user_id: return jsonify(success=False, reply="Not Authorized"), 400 title = request.form['title'] text = request.form['text'] lang = request.form['lang'] time_form = request.form['time'] paste_type = request.form['type'] expire_time = str(time_form) paste.title = title paste.text = text paste.lang = lang paste.expire_time = expire_time paste.paste_type = paste_type db.session.commit() return jsonify(success=True, url=url) return jsonify(success=False, reply="Please Login") @mod_paste.route('/admin/pastes', methods=['GET']) @requires_admin def all_pastes(): paste_list = db.session.all() url_pre = "/" for paste in paste_list: if is_active(paste): paste.url = url_pre + paste.url else: userid_to_red = paste.user_id user_to_red = User.query.filter(User.id == userid_to_red).first() user_to_red.paste_count = user_to_red.paste_count - 1 db.session.delete(paste) db.session.commit() return render_template('allpaste.html', paste_list=paste_list) @mod_paste.route('/<username>/paste', methods=['GET']) @requires_admin def get_user_pastes(username): # user_id = session['user_id'] # pastes = paste.query.filter(paste.user_id == user_id).all() if 'user_id' in session: return render_template('user_paste.html') else: return jsonify({'error': 'Please Login to Continue'}), 400 # return jsonify(success=True, pastes=[paste.to_dict() for paste in # pastes]) @mod_paste.route('/<username>/api/paste', methods=['POST']) #@requires_admin def get_user_pastes_object(username): # admin_id = session['user_id'] # admin = User.query.filter(admin_id == User.id).first() user = User.query.filter(User.username == username).first() pastes = Paste.query.filter(Paste.user_id == user.id).all() active = [] for paste in pastes: if is_active(paste): active.append(paste.to_dict()) else: userid_to_red = paste.user_id user_to_red = User.query.filter(User.id == userid_to_red).first() user_to_red.paste_count = user_to_red.paste_count - 1 db.session.delete(paste) db.session.commit() return jsonify({'paste_list': active, 'username': user.username}), 200
[ "flask.render_template", "dateutil.parser.parse", "app.db.session.commit", "app.db.session.delete", "flask_cors.CORS", "functools.wraps", "uuid.uuid4", "datetime.datetime.now", "app.db.session.all", "app.db.session.add", "flask.Blueprint", "app.user.models.User.query.filter", "flask.jsonify" ]
[((885, 913), 'flask.Blueprint', 'Blueprint', (['"""paste"""', '__name__'], {}), "('paste', __name__)\n", (894, 913), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((914, 929), 'flask_cors.CORS', 'CORS', (['mod_paste'], {}), '(mod_paste)\n', (918, 929), False, 'from flask_cors import CORS\n'), ((516, 524), 'functools.wraps', 'wraps', (['f'], {}), '(f)\n', (521, 524), False, 'from functools import wraps\n'), ((1190, 1242), 'flask.render_template', 'render_template', (['"""user.html"""'], {'username': 'user.username'}), "('user.html', username=user.username)\n", (1205, 1242), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((12287, 12331), 'flask.jsonify', 'jsonify', ([], {'success': '(False)', 'reply': '"""Please Login"""'}), "(success=False, reply='Please Login')\n", (12294, 12331), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((12433, 12449), 'app.db.session.all', 'db.session.all', ([], {}), '()\n', (12447, 12449), False, 'from app import db, requires_auth\n'), ((12775, 12830), 'flask.render_template', 'render_template', (['"""allpaste.html"""'], {'paste_list': 'paste_list'}), "('allpaste.html', paste_list=paste_list)\n", (12790, 12830), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((962, 993), 'dateutil.parser.parse', 'parser.parse', (['paste.expire_time'], {}), '(paste.expire_time)\n', (974, 993), False, 'from dateutil import parser\n'), ((996, 1010), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1008, 1010), False, 'from datetime import datetime\n'), ((1666, 1680), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1678, 1680), False, 'from datetime import datetime\n'), ((1693, 1705), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1703, 1705), False, 'import uuid\n'), ((1943, 1964), 'app.db.session.add', 'db.session.add', (['paste'], {}), '(paste)\n', (1957, 1964), False, 'from app import db, requires_auth\n'), ((1967, 1986), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (1984, 1986), False, 'from app import db, requires_auth\n'), ((2556, 2587), 'flask.render_template', 'render_template', (['"""mypaste.html"""'], {}), "('mypaste.html')\n", (2571, 2587), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((3289, 3347), 'flask.jsonify', 'jsonify', (["{'paste_list': active, 'username': user.username}"], {}), "({'paste_list': active, 'username': user.username})\n", (3296, 3347), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((3516, 3616), 'flask.render_template', 'render_template', (['"""embed.html"""'], {'paste_text': 'paste.text', 'paste_link': "('http://127.0.0.1:8080/' + url)"}), "('embed.html', paste_text=paste.text, paste_link=\n 'http://127.0.0.1:8080/' + url)\n", (3531, 3616), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((3777, 3801), 'app.db.session.delete', 'db.session.delete', (['paste'], {}), '(paste)\n', (3794, 3801), False, 'from app import db, requires_auth\n'), ((3804, 3823), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (3821, 3823), False, 'from app import db, requires_auth\n'), ((4231, 4267), 'flask.render_template', 'render_template', (['"""embed_output.html"""'], {}), "('embed_output.html')\n", (4246, 4267), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((4433, 4457), 'app.db.session.delete', 'db.session.delete', (['paste'], {}), '(paste)\n', (4450, 4457), False, 'from app import db, requires_auth\n'), ((4460, 4479), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (4477, 4479), False, 'from app import db, requires_auth\n'), ((7767, 7791), 'app.db.session.delete', 'db.session.delete', (['paste'], {}), '(paste)\n', (7784, 7791), False, 'from app import db, requires_auth\n'), ((7794, 7813), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (7811, 7813), False, 'from app import db, requires_auth\n'), ((9914, 9938), 'app.db.session.delete', 'db.session.delete', (['paste'], {}), '(paste)\n', (9931, 9938), False, 'from app import db, requires_auth\n'), ((9941, 9960), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (9958, 9960), False, 'from app import db, requires_auth\n'), ((11269, 11313), 'flask.jsonify', 'jsonify', ([], {'success': '(False)', 'reply': '"""Please Login"""'}), "(success=False, reply='Please Login')\n", (11276, 11313), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((12219, 12238), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (12236, 12238), False, 'from app import db, requires_auth\n'), ((12248, 12278), 'flask.jsonify', 'jsonify', ([], {'success': '(True)', 'url': 'url'}), '(success=True, url=url)\n', (12255, 12278), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((13065, 13099), 'flask.render_template', 'render_template', (['"""user_paste.html"""'], {}), "('user_paste.html')\n", (13080, 13099), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((13897, 13955), 'flask.jsonify', 'jsonify', (["{'paste_list': active, 'username': user.username}"], {}), "({'paste_list': active, 'username': user.username})\n", (13904, 13955), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((1136, 1173), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == curr_id)'], {}), '(User.id == curr_id)\n', (1153, 1173), False, 'from app.user.models import User\n'), ((2045, 2066), 'flask.jsonify', 'jsonify', (["{'url': url}"], {}), "({'url': url})\n", (2052, 2066), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((2509, 2546), 'flask.render_template', 'render_template', (['"""admin_mypaste.html"""'], {}), "('admin_mypaste.html')\n", (2524, 2546), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((2604, 2650), 'flask.jsonify', 'jsonify', (["{'error': 'Please Login to Continue'}"], {}), "({'error': 'Please Login to Continue'})\n", (2611, 2650), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((2870, 2907), 'app.user.models.User.query.filter', 'User.query.filter', (['(user_id == User.id)'], {}), '(user_id == User.id)\n', (2887, 2907), False, 'from app.user.models import User\n'), ((3128, 3171), 'app.user.models.User.query.filter', 'User.query.filter', (['(userid_to_red == User.id)'], {}), '(userid_to_red == User.id)\n', (3145, 3171), False, 'from app.user.models import User\n'), ((3232, 3256), 'app.db.session.delete', 'db.session.delete', (['paste'], {}), '(paste)\n', (3249, 3256), False, 'from app import db, requires_auth\n'), ((3260, 3279), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (3277, 3279), False, 'from app import db, requires_auth\n'), ((3833, 3862), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (3848, 3862), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((4489, 4518), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (4504, 4518), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((7098, 7135), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == user_id)'], {}), '(User.id == user_id)\n', (7115, 7135), False, 'from app.user.models import User\n'), ((7172, 7201), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (7187, 7201), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((7445, 7469), 'app.db.session.delete', 'db.session.delete', (['paste'], {}), '(paste)\n', (7462, 7469), False, 'from app import db, requires_auth\n'), ((7473, 7492), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (7490, 7492), False, 'from app import db, requires_auth\n'), ((7823, 7852), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (7838, 7852), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((8989, 9029), 'flask.render_template', 'render_template', (['"""view_paste_guest.html"""'], {}), "('view_paste_guest.html')\n", (9004, 9029), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((9200, 9224), 'app.db.session.delete', 'db.session.delete', (['paste'], {}), '(paste)\n', (9217, 9224), False, 'from app import db, requires_auth\n'), ((9228, 9247), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (9245, 9247), False, 'from app import db, requires_auth\n'), ((9309, 9338), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (9324, 9338), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((9477, 9520), 'app.user.models.User.query.filter', 'User.query.filter', (['(paste.user_id == User.id)'], {}), '(paste.user_id == User.id)\n', (9494, 9520), False, 'from app.user.models import User\n'), ((9560, 9751), 'flask.jsonify', 'jsonify', (["{'paste_owner': user.username, 'paste_text': paste.text, 'paste_title':\n paste.title, 'paste_lang': paste.lang, 'paste_add': paste.add_time,\n 'paste_expire': paste.expire_time}"], {}), "({'paste_owner': user.username, 'paste_text': paste.text,\n 'paste_title': paste.title, 'paste_lang': paste.lang, 'paste_add':\n paste.add_time, 'paste_expire': paste.expire_time})\n", (9567, 9751), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((9970, 9999), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (9985, 9999), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((11168, 11192), 'app.db.session.delete', 'db.session.delete', (['paste'], {}), '(paste)\n', (11185, 11192), False, 'from app import db, requires_auth\n'), ((11196, 11215), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (11213, 11215), False, 'from app import db, requires_auth\n'), ((11708, 11732), 'app.db.session.delete', 'db.session.delete', (['paste'], {}), '(paste)\n', (11725, 11732), False, 'from app import db, requires_auth\n'), ((11736, 11755), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (11753, 11755), False, 'from app import db, requires_auth\n'), ((12719, 12743), 'app.db.session.delete', 'db.session.delete', (['paste'], {}), '(paste)\n', (12736, 12743), False, 'from app import db, requires_auth\n'), ((12747, 12766), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (12764, 12766), False, 'from app import db, requires_auth\n'), ((13116, 13162), 'flask.jsonify', 'jsonify', (["{'error': 'Please Login to Continue'}"], {}), "({'error': 'Please Login to Continue'})\n", (13123, 13162), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((13465, 13509), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.username == username)'], {}), '(User.username == username)\n', (13482, 13509), False, 'from app.user.models import User\n'), ((13841, 13865), 'app.db.session.delete', 'db.session.delete', (['paste'], {}), '(paste)\n', (13858, 13865), False, 'from app import db, requires_auth\n'), ((13869, 13888), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (13886, 13888), False, 'from app import db, requires_auth\n'), ((599, 645), 'flask.jsonify', 'jsonify', ([], {'message': '"""Unauthorized"""', 'success': '(False)'}), "(message='Unauthorized', success=False)\n", (606, 645), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((691, 728), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == user_id)'], {}), '(User.id == user_id)\n', (708, 728), False, 'from app.user.models import User\n'), ((774, 820), 'flask.jsonify', 'jsonify', ([], {'message': '"""Unauthorized"""', 'success': '(False)'}), "(message='Unauthorized', success=False)\n", (781, 820), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((1485, 1528), 'app.user.models.User.query.filter', 'User.query.filter', (["(User.username == 'Guest')"], {}), "(User.username == 'Guest')\n", (1502, 1528), False, 'from app.user.models import User\n'), ((1845, 1882), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == user_id)'], {}), '(User.id == user_id)\n', (1862, 1882), False, 'from app.user.models import User\n'), ((2090, 2181), 'flask.jsonify', 'jsonify', (["{'error': 'Error while creating Paste, Please check if all fields are filled'}"], {}), "({'error':\n 'Error while creating Paste, Please check if all fields are filled'})\n", (2097, 2181), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((2427, 2464), 'app.user.models.User.query.filter', 'User.query.filter', (['(curr_id == User.id)'], {}), '(curr_id == User.id)\n', (2444, 2464), False, 'from app.user.models import User\n'), ((3667, 3710), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == userid_to_red)'], {}), '(User.id == userid_to_red)\n', (3684, 3710), False, 'from app.user.models import User\n'), ((4323, 4366), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == userid_to_red)'], {}), '(User.id == userid_to_red)\n', (4340, 4366), False, 'from app.user.models import User\n'), ((7503, 7550), 'flask.jsonify', 'jsonify', ([], {'success': '(True)', 'user_type': 'user.user_type'}), '(success=True, user_type=user.user_type)\n', (7510, 7550), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((7574, 7596), 'flask.jsonify', 'jsonify', ([], {'success': '(False)'}), '(success=False)\n', (7581, 7596), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((7657, 7700), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == userid_to_red)'], {}), '(User.id == userid_to_red)\n', (7674, 7700), False, 'from app.user.models import User\n'), ((9258, 9287), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (9273, 9287), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((9804, 9847), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == userid_to_red)'], {}), '(User.id == userid_to_red)\n', (9821, 9847), False, 'from app.user.models import User\n'), ((10902, 10935), 'flask.render_template', 'render_template', (['"""editpaste.html"""'], {}), "('editpaste.html')\n", (10917, 10935), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((10946, 10992), 'flask.jsonify', 'jsonify', ([], {'success': '(False)', 'reply': '"""Not Authorized"""'}), "(success=False, reply='Not Authorized')\n", (10953, 10992), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((11226, 11255), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (11241, 11255), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((11766, 11795), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (11781, 11795), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((11842, 11888), 'flask.jsonify', 'jsonify', ([], {'success': '(False)', 'reply': '"""Not Authorized"""'}), "(success=False, reply='Not Authorized')\n", (11849, 11888), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((7333, 7376), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == userid_to_red)'], {}), '(User.id == userid_to_red)\n', (7350, 7376), False, 'from app.user.models import User\n'), ((8863, 8897), 'flask.render_template', 'render_template', (['"""view_paste.html"""'], {}), "('view_paste.html')\n", (8878, 8897), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((8938, 8978), 'flask.render_template', 'render_template', (['"""view_paste_admin.html"""'], {}), "('view_paste_admin.html')\n", (8953, 8978), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((9088, 9131), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == userid_to_red)'], {}), '(User.id == userid_to_red)\n', (9105, 9131), False, 'from app.user.models import User\n'), ((11056, 11099), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == userid_to_red)'], {}), '(User.id == userid_to_red)\n', (11073, 11099), False, 'from app.user.models import User\n'), ((11596, 11639), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == userid_to_red)'], {}), '(User.id == userid_to_red)\n', (11613, 11639), False, 'from app.user.models import User\n'), ((12607, 12650), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == userid_to_red)'], {}), '(User.id == userid_to_red)\n', (12624, 12650), False, 'from app.user.models import User\n'), ((13729, 13772), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == userid_to_red)'], {}), '(User.id == userid_to_red)\n', (13746, 13772), False, 'from app.user.models import User\n'), ((8698, 8727), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (8713, 8727), False, 'from flask import Blueprint, request, render_template, flash, g, session, redirect, url_for, jsonify\n'), ((8777, 8814), 'app.user.models.User.query.filter', 'User.query.filter', (['(User.id == user_id)'], {}), '(User.id == user_id)\n', (8794, 8814), False, 'from app.user.models import User\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This script run neural network model on a camera live stream """ import argparse import cv2 import numpy as np import os import time import sys COMMANDS = {0: "move_forward", 1: "go_down", 2: "rot_10_deg", 3: "go_up", 4: "take_off", 5: "land", 6: "idle"} def send_command(anafi, command_id): """ Function to send commands to an Anafi drone in function of the command id """ if command_id not in COMMANDS: raise f"Command id not in COMMANDS choices: {command_id}" print("The following command will be sent: ", COMMANDS[command_id]) if COMMANDS[command_id] == "move_forward": anafi.move_relative(dx=1, dy=0, dz=0, dradians=0) if COMMANDS[command_id] == "go_down": anafi.move_relative(dx=0, dy=0, dz=-0.5, dradians=0) if COMMANDS[command_id] == "rot_10_deg": anafi.move_relative(dx=0, dy=0, dz=0, dradians=0.785) if COMMANDS[command_id] == "go_up": anafi.move_relative(dx=0, dy=0, dz=0.5, dradians=0) if COMMANDS[command_id] == "take_off": anafi.safe_takeoff(5) if COMMANDS[command_id] == "land": anafi.safe_land(5) return def main(): parser = argparse.ArgumentParser() parser.add_argument( "-p", "--weight_path", required=True, type=str, help="Path to load weights for the model." ) parser.add_argument( "-a", "--pyparrot_path", required=True, type=str, help="Path to pyparrot module downloaded from amymcgovern on github." ) parser.add_argument( "-w", "--img_width", required=False, default=28, type=int, help="Image width." ) parser.add_argument( "-n", "--num_classes", required=False, default=7, type=int, help="Number of classes." ) parser.add_argument( "-c", "--crop", required=False, default=None, type=str, help="Crop image, format: MinWidth,MaxWidth,MinHeight,MaxHeight.\ Set -1 for the unchanged ones" ) parser.add_argument( "-r", "--resize", required=False, default=None, type=str, help="Resize shape, format: height,width" ) parser.add_argument( "-b", "--binarize", required=False, default=None, type=str, help="To binarize images, format for thresholding: min,max" ) parser.add_argument( "-g", "--gray", required=False, action="store_true", help="To save 1-channel images" ) parser.add_argument( "-e", "--erode", required=False, default=None, type=str, help="Erode option, format: kernel_size,iteration" ) parser.add_argument( "-d", "--dilate", required=False, default=None, type=str, help="Dilate option, format: kernel_size,iteration" ) parser.add_argument( "-m", "--camid", required=False, default=0, type=int, help="Camera ID, default is 0" ) parser.add_argument( "-t", "--tensorflow", required=False, action="store_true", help="To specify if Tensorflow model is used." ) parser.add_argument( "-z", "--number_of_confimation", required=False, default=3, type=int, help="Minimum number of identical commands before sending to drone." ) args = parser.parse_args() """ Drone connection """ sys.path.append(args.pyparrot_path) from pyparrot.Anafi import Anafi print("Connecting to drone...") anafi = Anafi(drone_type="Anafi", ip_address="192.168.42.1") success = anafi.connect(10) print(success) print("Sleeping few seconds...") anafi.smart_sleep(3) """ Load model """ print("Loading model...") input_size = args.img_width**2 num_class = args.num_classes hidden_size = 128 if args.tensorflow: import tensorflow as tf model = tf.keras.models.load_model(args.weight_path) else: script_path = os.path.realpath(__file__) sys.path.append(os.path.dirname(script_path) + "/../") from homemade_framework import framework as NN model = NN.Sequential([NN.Linear(input_size, hidden_size), NN.LeakyReLU(), NN.BatchNorm(), NN.Linear(hidden_size, hidden_size), NN.LeakyReLU(), NN.BatchNorm(), NN.Linear(hidden_size, num_class), NN.Softmax()], NN.LossMSE()) model.load(args.weight_path) """ Webcam process """ print("Start webcam...") cam = cv2.VideoCapture(args.camid) ret, frame = cam.read() min_height, max_height = 0, frame.shape[0] min_width, max_width = 0, frame.shape[1] print("Cam resolution: {}x{}".format(max_width, max_height)) if args.crop is not None: res = [int(x) for x in args.crop.split(',')] if res[0] != -1: min_width = res[0] if res[1] != -1: max_width = res[1] if res[2] != -1: min_height = res[2] if res[3] != -1: max_height = res[3] print("Image cropped to minWidth:maxWidth, minHeight:maxHeight: {}:{}\ , {},{}".format(min_width, max_width, min_height, max_height)) pause = False imgs = [] while True: ret, frame = cam.read() if not ret: print("failed to grab frame") break if args.crop is not None: frame = frame[min_height:max_height, min_width:max_width] cv2.imshow("Original image", frame) k = cv2.waitKey(1) if k % 256 == 27: # ESC pressed print("Escape hit, closing...") break elif k % 256 == ord('p'): # p pressed if pause: pause = False else: pause = True if not pause: if args.gray: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if args.binarize: frame = cv2.medianBlur(frame, 5) min_thresh, max_thresh = [int(x) for x in args.binarize.split(',')] ret, frame = cv2.threshold(frame, min_thresh, max_thresh, cv2.THRESH_BINARY) if args.erode is not None: k_size, iteration = [int(x) for x in args.erode.split(',')] kernel = np.ones((k_size, k_size), np.uint8) frame = cv2.erode(frame, kernel, iterations=int(iteration)) if args.dilate is not None: k_size, iteration = [int(x) for x in args.dilate.split(',')] kernel = np.ones((k_size, k_size), np.uint8) frame = cv2.dilate(frame, kernel, iterations=int(iteration)) if args.resize: height, width = [int(size) for size in args.resize.split(',')] frame = cv2.resize(frame, (height, width), interpolation=cv2.INTER_AREA) image = np.asarray(frame)/255. cv2.imshow("Input image for the model", frame) image = image.reshape([np.prod(image.shape)]) if len(imgs) < args.number_of_confimation: imgs.append(image) else: if args.tensorflow: results = np.argmax(model(np.asarray(imgs)), axis=1) else: results = NN.get_inferences(model, np.asarray(imgs)) print("Model's output on buffer: ", results) if np.unique(results).size == 1 and\ COMMANDS[results[0]] != "idle": send_command(anafi, results[0]) imgs = [] imgs = imgs[1:] imgs.append(image) time.sleep(0.3) cam.release() cv2.destroyAllWindows() if __name__ == '__main__': main()
[ "numpy.prod", "time.sleep", "cv2.imshow", "homemade_framework.framework.LossMSE", "homemade_framework.framework.Softmax", "cv2.destroyAllWindows", "tensorflow.keras.models.load_model", "sys.path.append", "homemade_framework.framework.LeakyReLU", "argparse.ArgumentParser", "cv2.threshold", "numpy.asarray", "cv2.medianBlur", "homemade_framework.framework.Linear", "cv2.waitKey", "numpy.ones", "pyparrot.Anafi.Anafi", "os.path.dirname", "cv2.cvtColor", "cv2.resize", "numpy.unique", "homemade_framework.framework.BatchNorm", "os.path.realpath", "cv2.VideoCapture" ]
[((1221, 1246), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1244, 1246), False, 'import argparse\n'), ((3712, 3747), 'sys.path.append', 'sys.path.append', (['args.pyparrot_path'], {}), '(args.pyparrot_path)\n', (3727, 3747), False, 'import sys\n'), ((3833, 3885), 'pyparrot.Anafi.Anafi', 'Anafi', ([], {'drone_type': '"""Anafi"""', 'ip_address': '"""192.168.42.1"""'}), "(drone_type='Anafi', ip_address='192.168.42.1')\n", (3838, 3885), False, 'from pyparrot.Anafi import Anafi\n'), ((4945, 4973), 'cv2.VideoCapture', 'cv2.VideoCapture', (['args.camid'], {}), '(args.camid)\n', (4961, 4973), False, 'import cv2\n'), ((8269, 8292), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (8290, 8292), False, 'import cv2\n'), ((4224, 4268), 'tensorflow.keras.models.load_model', 'tf.keras.models.load_model', (['args.weight_path'], {}), '(args.weight_path)\n', (4250, 4268), True, 'import tensorflow as tf\n'), ((4301, 4327), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (4317, 4327), False, 'import os\n'), ((5898, 5933), 'cv2.imshow', 'cv2.imshow', (['"""Original image"""', 'frame'], {}), "('Original image', frame)\n", (5908, 5933), False, 'import cv2\n'), ((5947, 5961), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (5958, 5961), False, 'import cv2\n'), ((4819, 4831), 'homemade_framework.framework.LossMSE', 'NN.LossMSE', ([], {}), '()\n', (4829, 4831), True, 'from homemade_framework import framework as NN\n'), ((7482, 7528), 'cv2.imshow', 'cv2.imshow', (['"""Input image for the model"""', 'frame'], {}), "('Input image for the model', frame)\n", (7492, 7528), False, 'import cv2\n'), ((8230, 8245), 'time.sleep', 'time.sleep', (['(0.3)'], {}), '(0.3)\n', (8240, 8245), False, 'import time\n'), ((4352, 4380), 'os.path.dirname', 'os.path.dirname', (['script_path'], {}), '(script_path)\n', (4367, 4380), False, 'import os\n'), ((4477, 4511), 'homemade_framework.framework.Linear', 'NN.Linear', (['input_size', 'hidden_size'], {}), '(input_size, hidden_size)\n', (4486, 4511), True, 'from homemade_framework import framework as NN\n'), ((4544, 4558), 'homemade_framework.framework.LeakyReLU', 'NN.LeakyReLU', ([], {}), '()\n', (4556, 4558), True, 'from homemade_framework import framework as NN\n'), ((4560, 4574), 'homemade_framework.framework.BatchNorm', 'NN.BatchNorm', ([], {}), '()\n', (4572, 4574), True, 'from homemade_framework import framework as NN\n'), ((4607, 4642), 'homemade_framework.framework.Linear', 'NN.Linear', (['hidden_size', 'hidden_size'], {}), '(hidden_size, hidden_size)\n', (4616, 4642), True, 'from homemade_framework import framework as NN\n'), ((4675, 4689), 'homemade_framework.framework.LeakyReLU', 'NN.LeakyReLU', ([], {}), '()\n', (4687, 4689), True, 'from homemade_framework import framework as NN\n'), ((4691, 4705), 'homemade_framework.framework.BatchNorm', 'NN.BatchNorm', ([], {}), '()\n', (4703, 4705), True, 'from homemade_framework import framework as NN\n'), ((4738, 4771), 'homemade_framework.framework.Linear', 'NN.Linear', (['hidden_size', 'num_class'], {}), '(hidden_size, num_class)\n', (4747, 4771), True, 'from homemade_framework import framework as NN\n'), ((4804, 4816), 'homemade_framework.framework.Softmax', 'NN.Softmax', ([], {}), '()\n', (4814, 4816), True, 'from homemade_framework import framework as NN\n'), ((6306, 6345), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2GRAY'], {}), '(frame, cv2.COLOR_BGR2GRAY)\n', (6318, 6345), False, 'import cv2\n'), ((6400, 6424), 'cv2.medianBlur', 'cv2.medianBlur', (['frame', '(5)'], {}), '(frame, 5)\n', (6414, 6424), False, 'import cv2\n'), ((6580, 6643), 'cv2.threshold', 'cv2.threshold', (['frame', 'min_thresh', 'max_thresh', 'cv2.THRESH_BINARY'], {}), '(frame, min_thresh, max_thresh, cv2.THRESH_BINARY)\n', (6593, 6643), False, 'import cv2\n'), ((6827, 6862), 'numpy.ones', 'np.ones', (['(k_size, k_size)', 'np.uint8'], {}), '((k_size, k_size), np.uint8)\n', (6834, 6862), True, 'import numpy as np\n'), ((7081, 7116), 'numpy.ones', 'np.ones', (['(k_size, k_size)', 'np.uint8'], {}), '((k_size, k_size), np.uint8)\n', (7088, 7116), True, 'import numpy as np\n'), ((7326, 7390), 'cv2.resize', 'cv2.resize', (['frame', '(height, width)'], {'interpolation': 'cv2.INTER_AREA'}), '(frame, (height, width), interpolation=cv2.INTER_AREA)\n', (7336, 7390), False, 'import cv2\n'), ((7447, 7464), 'numpy.asarray', 'np.asarray', (['frame'], {}), '(frame)\n', (7457, 7464), True, 'import numpy as np\n'), ((7564, 7584), 'numpy.prod', 'np.prod', (['image.shape'], {}), '(image.shape)\n', (7571, 7584), True, 'import numpy as np\n'), ((7881, 7897), 'numpy.asarray', 'np.asarray', (['imgs'], {}), '(imgs)\n', (7891, 7897), True, 'import numpy as np\n'), ((7777, 7793), 'numpy.asarray', 'np.asarray', (['imgs'], {}), '(imgs)\n', (7787, 7793), True, 'import numpy as np\n'), ((7979, 7997), 'numpy.unique', 'np.unique', (['results'], {}), '(results)\n', (7988, 7997), True, 'import numpy as np\n')]
from allennlp.common import JsonDict from allennlp.data import DatasetReader, Instance from allennlp.models import Model from allennlp.predictors import Predictor from overrides import overrides @Predictor.register("sentence_classifier") class SentenceClassifierPredictor(Predictor): def predict(self, sentence: str) -> JsonDict: return self.predict_json({"sentence": sentence}) @overrides def _json_to_instance(self, json_dict: JsonDict) -> Instance: sentence = json_dict["sentence"] return self._dataset_reader.text_to_instance(sentence)
[ "allennlp.predictors.Predictor.register" ]
[((198, 239), 'allennlp.predictors.Predictor.register', 'Predictor.register', (['"""sentence_classifier"""'], {}), "('sentence_classifier')\n", (216, 239), False, 'from allennlp.predictors import Predictor\n')]
# Created on Sep 7, 2020 # author: <NAME> # contact: <EMAIL> import os output_dir = os.path.curdir def skinnytk2(R=1): """ This function generates the relations of Skinny-n-n for R rounds. tk ================================================> TWEAKEY_P(tk) ===> --- SB AC | P MC SB AC | x_0 ===> x_0 ===> x_0 ===> + ===> y_0 ===> P(y_0) ===> x_1 ===> x_1 ===> x_1 ===> + ===> y_1 ===> --- """ cipher_name = 'skinnytk2' P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12] TKP = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7] tk1 = ['tk1_%d' % i for i in range(16)] tk2 = ['tk2_%d' % i for i in range(16)] # 1 round # recommended_mg = 8 # recommended_ms = 4 # 2 rounds # recommended_mg = 16 # recommended_ms = 8 # 3 rounds # recommended_mg = 19 # recommended_ms = 24 # 4 rounds # recommended_mg = 21 # recommended_ms = 27 # 5 rounds # recommended_mg = 22 # recommended_ms = 35 # 6 rounds # recommended_mg = 25 # recommended_ms = 40 # 7 rounds # recommended_mg = 26 # recommended_ms = 70 # 8 rounds # recommended_mg = 28 # recommended_ms = 80 # 9 rounds # recommended_mg = 28 # recommended_ms = 100 # 10 rounds recommended_mg = 30 recommended_ms = 100 # 11 rounds # recommended_mg = 31 # recommended_ms = 100 eqs = '#%s %d Rounds\n' % (cipher_name, R) eqs += 'connection relations\n' for r in range(R): xin = ['x_%d_%d' % (r, i) for i in range(16)] xout = ['x_%d_%d' % (r + 1, i) for i in range(16)] y = ['y_%d_%d' % (r, i) for i in range(16)] tk = ['tk_%d_%d' % (r, i) for i in range(8)] # Generaete AddTweakey relations for i in range(4): for j in range(4): if i < 2: eqs += '%s, %s, %s\n' % (tk1[j + 4*i], tk2[j + 4*i], tk[j + 4*i]) eqs += '%s, %s, %s\n' % (xin[j + 4*i], tk[j + 4*i], y[j + 4*i]) else: eqs += '%s, %s\n' % (xin[j + 4*i], y[j + 4*i]) # Apply ShiftRows py = [y[P[i]] for i in range(16)] # Generate MixColumn relations for j in range(4): eqs += '%s, %s, %s, %s\n' % (py[j + 0*4], py[j + 2*4], py[j + 3*4], xout[j + 0*4]) eqs += '%s, %s\n' % (py[j], xout[j + 1*4]) eqs += '%s, %s, %s\n' % (py[j + 1*4], py[j + 2*4], xout[j + 2*4]) eqs += '%s, %s, %s\n' % (py[j + 0*4], py[j + 2*4], xout[j + 3*4]) # Update Tweakey temp1 = tk1.copy() temp2 = tk2.copy() tk1 = [temp1[TKP[i]] for i in range(16)] tk2 = [temp2[TKP[i]] for i in range(16)] plaintext = ['x_0_%d' % i for i in range(16)] ciphertext = ['x_%d_%d' % (R, i) for i in range(16)] eqs += 'known\n' + '\n'.join(plaintext + ciphertext) eqs += '\nend' relation_file_path = os.path.join(output_dir, 'relationfile_%s_%dr_mg%d_ms%d.txt' % (cipher_name, R, recommended_mg, recommended_ms)) with open(relation_file_path, 'w') as relation_file: relation_file.write(eqs) def main(): skinnytk2(R=10) if __name__ == '__main__': main()
[ "os.path.join" ]
[((3054, 3170), 'os.path.join', 'os.path.join', (['output_dir', "('relationfile_%s_%dr_mg%d_ms%d.txt' % (cipher_name, R, recommended_mg,\n recommended_ms))"], {}), "(output_dir, 'relationfile_%s_%dr_mg%d_ms%d.txt' % (cipher_name,\n R, recommended_mg, recommended_ms))\n", (3066, 3170), False, 'import os\n')]
import urllib.request import json from .models import News # Getting api key api_key = None # Getting the movie base url base_url = None def configure_request(app): global api_key,base_url api_key = app.config['NEWS_API_KEY'] base_url = app.config['NEWS_API_BASE_URL'] def get_news_source(country,category): ''' Function that gets the json response to our url request ''' get_news_source_url = base_url.format(country,category,api_key) with urllib.request.urlopen(get_news_source_url)as url: get_news_source_data = url.read() get_news_source_response = json.loads(get_news_source_data) print(get_news_source_response) source_result = None if get_news_source_response['articles']: source_result_list = get_news_source_response['articles'] source_result = process_result(source_result_list) return source_result def process_result(source_list): ''' this function processes the results and converts them into a list the source list is a list of dictionaries containing news results ''' source_result= [] for source_item in source_list: source = source_item.get('source') author = source_item.get('author') title = source_item.get('title') description = source_item.get('description') url = source_item.get('url') urlToImage = source_item.get('urlToImage') publishedAt = source_item.get('publishedAt') if urlToImage: source_object = News(source,author,title,description,url,urlToImage,publishedAt) source_result.append(source_object) return source_result def get_news(source): get_news_details_url = base_url.format(source,api_key) with urllib.request.urlopen(get_news_details_url) as url: news_details_data = url.read() news_details_response = json.loads(news_details_data) news_object = None if news_details_response: source = news_details_response.get('source') author = news_details_response.get('original_author') title = news_details_response.get('title') description = news_details_response.get('description') url = news_details_response.get('url') urlToImage = news_details_response.get('urlToImage') news_object = news(source,author,title,description,url,urlToImage,publishedAt) return news_object
[ "json.loads" ]
[((604, 636), 'json.loads', 'json.loads', (['get_news_source_data'], {}), '(get_news_source_data)\n', (614, 636), False, 'import json\n'), ((1880, 1909), 'json.loads', 'json.loads', (['news_details_data'], {}), '(news_details_data)\n', (1890, 1909), False, 'import json\n')]
import numpy as np from hypernet.src.general import const from hypernet.src.general import utils from hypernet.src.thermophysicalModels.reactionThermo.mixture import Basic class MultiComponent(Basic): # Initialization ########################################################################### def __init__( self, specieThermos, *args, **kwargs ): super(MultiComponent, self).__init__(specieThermos) # Methods ########################################################################### # Mixture properties ------------------------------------------------------ def update(self, XY, var='Y'): # Update mass/molar fractions for name, value in XY.items(): value = utils.check_XY(utils.convert_to_array(value)) setattr(self.spTh[name].specie, var, value) # Update mixture/species properties self.M = self.M_(var=var) if var == 'Y': self.Xi_() elif var == 'X': self.Yi_() self.R = self.R_() # Mixture properties ------------------------------------------------------ # Mass def M_(self, var='Y'): # [kg/mol] if var == 'Y': M = [spTh.specie.Y / spTh.specie.M for spTh in self.spTh.values()] return 1./np.sum(np.concatenate(M)) elif var == 'X': M = [spTh.specie.X * spTh.specie.M for spTh in self.spTh.values()] return np.sum(np.concatenate(M)) # Specific gas constant def R_(self): R = [spTh.specie.Y * spTh.specie.R for spTh in self.spTh.values()] return np.sum(np.concatenate(R)) # Pressure def p_(self, rho, T): return rho*self.R*T # Density def rho_(self, p, T): return p/(self.R*T) # Number density def n_(self, rho): self.ni_(rho=rho, var='Y') n = [spTh.specie.n for spTh in self.spTh.values()] return np.sum(np.concatenate(n)) # Enthalpy/Energy def he_(self): # [J/kg] he = [spTh.specie.Y * spTh.thermo.he for spTh in self.spTh.values()] return np.sum(np.concatenate(he)) def cpv_(self): # [J/(kg K)] cpv = [spTh.specie.Y * spTh.thermo.cpv for spTh in self.spTh.values()] return np.sum(np.concatenate(cpv)) def dcpvdT_(self): # [J/kg] dcpvdT = [ spTh.specie.Y * spTh.thermo.dcpvdT for spTh in self.spTh.values() ] return np.sum(np.concatenate(dcpvdT)) def dhedY_(self, dY): # [J/kg] dhedY = [ np.sum(dY[name] * spTh.thermo.he) \ for name, spTh in self.spTh.items() ] return np.sum(dhedY) # Species properties ------------------------------------------------------ def Yi_(self): for spTh_ in self.spTh.values(): sp = spTh_.specie sp.Y = sp.X * sp.M / self.M def Xi_(self): for spTh_ in self.spTh.values(): sp = spTh_.specie sp.X = sp.Y * self.M / sp.M def ni_(self, rho=None, n=None, var='Y'): for spTh_ in self.spTh.values(): sp = spTh_.specie if var == 'Y': sp.n = sp.Y * rho / sp.M * const.UNA elif var == 'X': sp.n = sp.X * n def rhoi_(self, rho=None, n=None, var='Y'): for spTh_ in self.spTh.values(): sp = spTh_.specie if var == 'Y': sp.rho = sp.Y * rho elif var == 'X': sp.rho = sp.X * n * sp.M / const.UNA
[ "hypernet.src.general.utils.convert_to_array", "numpy.sum", "numpy.concatenate" ]
[((2710, 2723), 'numpy.sum', 'np.sum', (['dhedY'], {}), '(dhedY)\n', (2716, 2723), True, 'import numpy as np\n'), ((1649, 1666), 'numpy.concatenate', 'np.concatenate', (['R'], {}), '(R)\n', (1663, 1666), True, 'import numpy as np\n'), ((1968, 1985), 'numpy.concatenate', 'np.concatenate', (['n'], {}), '(n)\n', (1982, 1985), True, 'import numpy as np\n'), ((2145, 2163), 'numpy.concatenate', 'np.concatenate', (['he'], {}), '(he)\n', (2159, 2163), True, 'import numpy as np\n'), ((2308, 2327), 'numpy.concatenate', 'np.concatenate', (['cpv'], {}), '(cpv)\n', (2322, 2327), True, 'import numpy as np\n'), ((2499, 2521), 'numpy.concatenate', 'np.concatenate', (['dcpvdT'], {}), '(dcpvdT)\n', (2513, 2521), True, 'import numpy as np\n'), ((2597, 2630), 'numpy.sum', 'np.sum', (['(dY[name] * spTh.thermo.he)'], {}), '(dY[name] * spTh.thermo.he)\n', (2603, 2630), True, 'import numpy as np\n'), ((782, 811), 'hypernet.src.general.utils.convert_to_array', 'utils.convert_to_array', (['value'], {}), '(value)\n', (804, 811), False, 'from hypernet.src.general import utils\n'), ((1337, 1354), 'numpy.concatenate', 'np.concatenate', (['M'], {}), '(M)\n', (1351, 1354), True, 'import numpy as np\n'), ((1486, 1503), 'numpy.concatenate', 'np.concatenate', (['M'], {}), '(M)\n', (1500, 1503), True, 'import numpy as np\n')]
from __future__ import print_function from scipy.linalg import block_diag from scipy.stats import norm as ndist from scipy.interpolate import interp1d import collections import numpy as np from numpy import log from numpy.linalg import norm, qr, inv, eig import pandas as pd import regreg.api as rr from .randomization import randomization from ..base import restricted_estimator from ..algorithms.barrier_affine import solve_barrier_affine_py as solver from ..distributions.discrete_family import discrete_family class group_lasso(object): def __init__(self, loglike, groups, weights, ridge_term, randomizer, use_lasso=True, # should lasso solver be used where applicable - defaults to True perturb=None): _check_groups(groups) # make sure groups looks sensible # log likelihood : quadratic loss self.loglike = loglike self.nfeature = self.loglike.shape[0] # ridge parameter self.ridge_term = ridge_term # group lasso penalty (from regreg) # use regular lasso penalty if all groups are size 1 if use_lasso and groups.size == np.unique(groups).size: # need to provide weights an an np.array rather than a dictionary weights_np = np.array([w[1] for w in sorted(weights.items())]) self.penalty = rr.weighted_l1norm(weights=weights_np, lagrange=1.) else: self.penalty = rr.group_lasso(groups, weights=weights, lagrange=1.) # store groups as a class variable since the non-group lasso doesn't self.groups = groups self._initial_omega = perturb # gaussian randomization self.randomizer = randomizer def fit(self, solve_args={'tol': 1.e-12, 'min_its': 50}, perturb=None): # solve the randomized version of group lasso (self.initial_soln, self.initial_subgrad) = self._solve_randomized_problem(perturb=perturb, solve_args=solve_args) # initialize variables active_groups = [] # active group labels active_dirs = {} # dictionary: keys are group labels, values are unit-norm coefficients unpenalized = [] # selected groups with no penalty overall = np.ones(self.nfeature, np.bool) # mask of active features ordered_groups = [] # active group labels sorted by label ordered_opt = [] # gamma's ordered by group labels ordered_vars = [] # indices "ordered" by sorting group labels tol = 1.e-20 _, self.randomizer_prec = self.randomizer.cov_prec # now we are collecting the directions and norms of the active groups for g in sorted(np.unique(self.groups)): # g is group label group_mask = self.groups == g soln = self.initial_soln # do not need to keep setting this if norm(soln[group_mask]) > tol * norm(soln): # is group g appreciably nonzero ordered_groups.append(g) # variables in active group ordered_vars.extend(np.flatnonzero(group_mask)) if self.penalty.weights[g] == 0: unpenalized.append(g) else: active_groups.append(g) active_dirs[g] = soln[group_mask] / norm(soln[group_mask]) ordered_opt.append(norm(soln[group_mask])) else: overall[group_mask] = False self.selection_variable = {'directions': active_dirs, 'active_groups': active_groups} # kind of redundant with keys of active_dirs self._ordered_groups = ordered_groups # exception if no groups are selected if len(self.selection_variable['active_groups']) == 0: return np.sign(soln), soln # otherwise continue as before self.observed_opt_state = np.hstack(ordered_opt) # gammas as array _beta_unpenalized = restricted_estimator(self.loglike, # refit OLS on E overall, solve_args=solve_args) beta_bar = np.zeros(self.nfeature) beta_bar[overall] = _beta_unpenalized # refit OLS beta with zeros self._beta_full = beta_bar X, y = self.loglike.data W = self._W = self.loglike.saturated_loss.hessian(X.dot(beta_bar)) # all 1's for LS opt_linearNoU = np.dot(X.T, X[:, ordered_vars] * W[:, np.newaxis]) for i, var in enumerate(ordered_vars): opt_linearNoU[var, i] += self.ridge_term opt_offset = self.initial_subgrad self.observed_score_state = -opt_linearNoU.dot(_beta_unpenalized) self.observed_score_state[~overall] += self.loglike.smooth_objective(beta_bar, 'grad')[~overall] active_signs = np.sign(self.initial_soln) active = np.flatnonzero(active_signs) self.active = active def compute_Vg(ug): pg = ug.size # figure out size of g'th group if pg > 1: Z = np.column_stack((ug, np.eye(pg, pg - 1))) Q, _ = qr(Z) Vg = Q[:, 1:] # drop the first column else: Vg = np.zeros((1, 0)) # if the group is size one, the orthogonal complement is empty return Vg def compute_Lg(g): pg = active_dirs[g].size Lg = self.penalty.weights[g] * np.eye(pg) return Lg sorted_active_dirs = collections.OrderedDict(sorted(active_dirs.items())) Vs = [compute_Vg(ug) for ug in sorted_active_dirs.values()] V = block_diag(*Vs) # unpack the list Ls = [compute_Lg(g) for g in sorted_active_dirs] L = block_diag(*Ls) # unpack the list XE = X[:, ordered_vars] # changed to ordered_vars Q = XE.T.dot(self._W[:, None] * XE) QI = inv(Q) C = V.T.dot(QI).dot(L).dot(V) self.XE = XE self.Q = Q self.QI = QI self.C = C U = block_diag(*[ug for ug in sorted_active_dirs.values()]).T self.opt_linear = opt_linearNoU.dot(U) self.active_dirs = active_dirs self.opt_offset = opt_offset self.ordered_vars = ordered_vars self.linear_part = -np.eye(self.observed_opt_state.shape[0]) self.offset = np.zeros(self.observed_opt_state.shape[0]) return active_signs, soln def _solve_randomized_problem(self, perturb=None, solve_args={'tol': 1.e-15, 'min_its': 100}): # take a new perturbation if supplied if perturb is not None: self._initial_omega = perturb if self._initial_omega is None: self._initial_omega = self.randomizer.sample() quad = rr.identity_quadratic(self.ridge_term, 0, -self._initial_omega, 0) problem = rr.simple_problem(self.loglike, self.penalty) # if all groups are size 1, set up lasso penalty and run usual lasso solver... (see existing code)... initial_soln = problem.solve(quad, **solve_args) initial_subgrad = -(self.loglike.smooth_objective(initial_soln, 'grad') + quad.objective(initial_soln, 'grad')) return initial_soln, initial_subgrad @staticmethod def gaussian(X, Y, groups, weights, sigma=1., quadratic=None, ridge_term=0., perturb=None, use_lasso=True, # should lasso solver be used when applicable - defaults to True randomizer_scale=None): loglike = rr.glm.gaussian(X, Y, coef=1. / sigma ** 2, quadratic=quadratic) n, p = X.shape mean_diag = np.mean((X ** 2).sum(0)) if ridge_term is None: ridge_term = np.std(Y) * np.sqrt(mean_diag) / np.sqrt(n - 1) if randomizer_scale is None: randomizer_scale = np.sqrt(mean_diag) * 0.5 * np.std(Y) * np.sqrt(n / (n - 1.)) randomizer = randomization.isotropic_gaussian((p,), randomizer_scale) return group_lasso(loglike, groups, weights, ridge_term, randomizer, use_lasso, perturb) def _setup_implied_gaussian(self): _, prec = self.randomizer.cov_prec if np.asarray(prec).shape in [(), (0,)]: cond_precision = self.opt_linear.T.dot(self.opt_linear) * prec cond_cov = inv(cond_precision) logdens_linear = cond_cov.dot(self.opt_linear.T) * prec else: cond_precision = self.opt_linear.T.dot(prec.dot(self.opt_linear)) cond_cov = inv(cond_precision) logdens_linear = cond_cov.dot(self.opt_linear.T).dot(prec) cond_mean = -logdens_linear.dot(self.observed_score_state + self.opt_offset) self.cond_mean = cond_mean self.cond_cov = cond_cov self.cond_precision = cond_precision self.logdens_linear = logdens_linear return cond_mean, cond_cov, cond_precision, logdens_linear def selective_MLE(self, solve_args={'tol': 1.e-12}, level=0.9, useJacobian=True, dispersion=None): """Do selective_MLE for group_lasso Note: this masks the selective_MLE inherited from query because that is not adapted for the group_lasso. Also, assumes you have already run the fit method since this uses results from that method. Parameters ---------- observed_target: from selected_targets target_cov: from selected_targets target_cov_score: from selected_targets init_soln: (opt_state) initial (observed) value of optimization variables cond_mean: conditional mean of optimization variables (model on _setup_implied_gaussian) cond_cov: conditional variance of optimization variables (model on _setup_implied_gaussian) logdens_linear: (model on _setup_implied_gaussian) linear_part: like A_scaling (from lasso) offset: like b_scaling (from lasso) solve_args: passed on to solver level: level of confidence intervals useC: whether to use python or C solver JacobianPieces: (use self.C defined in fitting) """ self._setup_implied_gaussian() # Calculate useful quantities (observed_target, target_cov, target_score_cov, alternatives) = self.selected_targets(dispersion) init_soln = self.observed_opt_state # just the gammas cond_mean = self.cond_mean cond_cov = self.cond_cov logdens_linear = self.logdens_linear linear_part = self.linear_part offset = self.offset if np.asarray(observed_target).shape in [(), (0,)]: raise ValueError('no target specified') observed_target = np.atleast_1d(observed_target) prec_target = inv(target_cov) prec_opt = self.cond_precision score_offset = self.observed_score_state + self.opt_offset # target_lin determines how the conditional mean of optimization variables # vary with target # logdens_linear determines how the argument of the optimization density # depends on the score, not how the mean depends on score, hence the minus sign target_linear = target_score_cov.T.dot(prec_target) target_offset = score_offset - target_linear.dot(observed_target) target_lin = - logdens_linear.dot(target_linear) target_off = cond_mean - target_lin.dot(observed_target) if np.asarray(self.randomizer_prec).shape in [(), (0,)]: _P = target_linear.T.dot(target_offset) * self.randomizer_prec _prec = prec_target + (target_linear.T.dot(target_linear) * self.randomizer_prec) - target_lin.T.dot( prec_opt).dot( target_lin) else: _P = target_linear.T.dot(self.randomizer_prec).dot(target_offset) _prec = prec_target + (target_linear.T.dot(self.randomizer_prec).dot(target_linear)) - target_lin.T.dot( prec_opt).dot(target_lin) C = target_cov.dot(_P - target_lin.T.dot(prec_opt).dot(target_off)) conjugate_arg = prec_opt.dot(cond_mean) val, soln, hess = solve_barrier_affine_jacobian_py(conjugate_arg, prec_opt, init_soln, linear_part, offset, self.C, self.active_dirs, useJacobian, **solve_args) final_estimator = target_cov.dot(_prec).dot(observed_target) \ + target_cov.dot(target_lin.T.dot(prec_opt.dot(cond_mean - soln))) + C unbiased_estimator = target_cov.dot(_prec).dot(observed_target) + target_cov.dot( _P - target_lin.T.dot(prec_opt).dot(target_off)) L = target_lin.T.dot(prec_opt) observed_info_natural = _prec + L.dot(target_lin) - L.dot(hess.dot(L.T)) observed_info_mean = target_cov.dot(observed_info_natural.dot(target_cov)) Z_scores = final_estimator / np.sqrt(np.diag(observed_info_mean)) pvalues = ndist.cdf(Z_scores) pvalues = 2 * np.minimum(pvalues, 1 - pvalues) alpha = 1 - level quantile = ndist.ppf(1 - alpha / 2.) intervals = np.vstack([final_estimator - quantile * np.sqrt(np.diag(observed_info_mean)), final_estimator + quantile * np.sqrt(np.diag(observed_info_mean))]).T log_ref = val + conjugate_arg.T.dot(cond_cov).dot(conjugate_arg) / 2. result = pd.DataFrame({'MLE': final_estimator, 'SE': np.sqrt(np.diag(observed_info_mean)), 'Zvalue': Z_scores, 'pvalue': pvalues, 'lower_confidence': intervals[:, 0], 'upper_confidence': intervals[:, 1], 'unbiased': unbiased_estimator}) return result, observed_info_mean, log_ref def selected_targets(self, dispersion=None, solve_args={'tol': 1.e-12, 'min_its': 50}): X, y = self.loglike.data n, p = X.shape XE = self.XE Q = self.Q observed_target = restricted_estimator(self.loglike, self.ordered_vars, solve_args=solve_args) _score_linear = -XE.T.dot(self._W[:, None] * X).T alternatives = ['twosided'] * len(self.active) if dispersion is None: # use Pearson's X^2 dispersion = ((y - self.loglike.saturated_loss.mean_function( XE.dot(observed_target))) ** 2 / self._W).sum() / (n - XE.shape[1]) cov_target = self.QI * dispersion crosscov_target_score = _score_linear.dot(self.QI).T * dispersion return (observed_target, cov_target, crosscov_target_score, alternatives) class approximate_grid_inference(object): def __init__(self, query, dispersion, solve_args={'tol': 1.e-12}, useIP=True): """ Produce p-values and confidence intervals for targets of model including selected features Parameters ---------- query : `gaussian_query` A Gaussian query which has information to describe implied Gaussian. observed_target : ndarray Observed estimate of target. target_cov : ndarray Estimated covaraince of target. target_score_cov : ndarray Estimated covariance of target and score of randomized query. solve_args : dict, optional Arguments passed to solver. """ self.solve_args = solve_args result, inverse_info = query.selective_MLE(dispersion=dispersion)[:2] self.linear_part = query.linear_part self.offset = query.offset self.logdens_linear = query.logdens_linear self.cond_mean = query.cond_mean self.prec_opt = np.linalg.inv(query.cond_cov) self.cond_cov = query.cond_cov self.C = query.C self.active_dirs = query.active_dirs (observed_target, target_cov, target_score_cov, alternatives) = query.selected_targets(dispersion) self.observed_target = observed_target self.target_score_cov = target_score_cov self.target_cov = target_cov self.init_soln = query.observed_opt_state self.randomizer_prec = query.randomizer_prec self.score_offset = query.observed_score_state + query.opt_offset self.ntarget = ntarget = target_cov.shape[0] _scale = 4 * np.sqrt(np.diag(inverse_info)) if useIP == False: ngrid = 1000 self.stat_grid = np.zeros((ntarget, ngrid)) for j in range(ntarget): self.stat_grid[j, :] = np.linspace(observed_target[j] - 1.5 * _scale[j], observed_target[j] + 1.5 * _scale[j], num=ngrid) else: ngrid = 100 self.stat_grid = np.zeros((ntarget, ngrid)) for j in range(ntarget): self.stat_grid[j, :] = np.linspace(observed_target[j] - 1.5 * _scale[j], observed_target[j] + 1.5 * _scale[j], num=ngrid) self.opt_linear = query.opt_linear self.useIP = useIP def summary(self, alternatives=None, parameter=None, level=0.9): """ Produce p-values and confidence intervals for targets of model including selected features Parameters ---------- alternatives : [str], optional Sequence of strings describing the alternatives, should be values of ['twosided', 'less', 'greater'] parameter : np.array Hypothesized value for parameter -- defaults to 0. level : float Confidence level. """ if parameter is not None: pivots = self._approx_pivots(parameter, alternatives=alternatives) else: pivots = None pvalues = self._approx_pivots(np.zeros_like(self.observed_target), alternatives=alternatives) lower, upper = self._approx_intervals(level=level) result = pd.DataFrame({'target': self.observed_target, 'pvalue': pvalues, 'lower_confidence': lower, 'upper_confidence': upper}) if not np.all(parameter == 0): result.insert(4, 'pivot', pivots) result.insert(5, 'parameter', parameter) return result def log_reference(self, observed_target, target_cov, target_score_cov, grid): """ Approximate the log of the reference density on a grid. """ if np.asarray(observed_target).shape in [(), (0,)]: raise ValueError('no target specified') prec_target = np.linalg.inv(target_cov) target_lin = - self.logdens_linear.dot(target_score_cov.T.dot(prec_target)) ref_hat = [] for k in range(grid.shape[0]): # in the usual D = N + Gamma theta.hat, # target_lin is "something" times Gamma, # where "something" comes from implied Gaussian # cond_mean is "something" times D # Gamma is target_score_cov.T.dot(prec_target) num_opt = self.prec_opt.shape[0] num_con = self.linear_part.shape[0] cond_mean_grid = (target_lin.dot(np.atleast_1d(grid[k] - observed_target)) + self.cond_mean) #direction for decomposing o eta = -self.prec_opt.dot(self.logdens_linear.dot(target_score_cov.T)) implied_mean = np.asscalar(eta.T.dot(cond_mean_grid)) implied_cov = np.asscalar(eta.T.dot(self.cond_cov).dot(eta)) implied_prec = 1./implied_cov _A = self.cond_cov.dot(eta) * implied_prec R = np.identity(num_opt) - _A.dot(eta.T) A = self.linear_part.dot(_A).reshape((-1,)) b = self.offset-self.linear_part.dot(R).dot(self.init_soln) conjugate_arg = implied_mean * implied_prec val, soln, _ = solver(np.asarray([conjugate_arg]), np.reshape(implied_prec, (1,1)), eta.T.dot(self.init_soln), A.reshape((A.shape[0],1)), b, **self.solve_args) gamma_ = _A.dot(soln) + R.dot(self.init_soln) log_jacob = jacobian_grad_hess(gamma_, self.C, self.active_dirs) ref_hat.append(-val - ((conjugate_arg ** 2) * implied_cov)/ 2. + log_jacob[0]) return np.asarray(ref_hat) def _construct_families(self): self._construct_density() self._families = [] for m in range(self.ntarget): p = self.target_score_cov.shape[1] observed_target_uni = (self.observed_target[m]).reshape((1,)) target_cov_uni = (np.diag(self.target_cov)[m]).reshape((1, 1)) target_score_cov_uni = self.target_score_cov[m, :].reshape((1, p)) var_target = 1. / ((self.precs[m])[0, 0]) log_ref = self.log_reference(observed_target_uni, target_cov_uni, target_score_cov_uni, self.stat_grid[m]) if self.useIP == False: logW = (log_ref - 0.5 * (self.stat_grid[m] - self.observed_target[m]) ** 2 / var_target) logW -= logW.max() self._families.append(discrete_family(self.stat_grid[m], np.exp(logW))) else: approx_fn = interp1d(self.stat_grid[m], log_ref, kind='quadratic', bounds_error=False, fill_value='extrapolate') grid = np.linspace(self.stat_grid[m].min(), self.stat_grid[m].max(), 1000) logW = (approx_fn(grid) - 0.5 * (grid - self.observed_target[m]) ** 2 / var_target) logW -= logW.max() self._families.append(discrete_family(grid, np.exp(logW))) def _approx_pivots(self, mean_parameter, alternatives=None): if not hasattr(self, "_families"): self._construct_families() if alternatives is None: alternatives = ['twosided'] * self.ntarget pivot = [] for m in range(self.ntarget): family = self._families[m] var_target = 1. / ((self.precs[m])[0, 0]) mean = self.S[m].dot(mean_parameter[m].reshape((1,))) + self.r[m] _cdf = family.cdf((mean[0] - self.observed_target[m]) / var_target, x=self.observed_target[m]) print("variable completed ", m) if alternatives[m] == 'twosided': pivot.append(2 * min(_cdf, 1 - _cdf)) elif alternatives[m] == 'greater': pivot.append(1 - _cdf) elif alternatives[m] == 'less': pivot.append(_cdf) else: raise ValueError('alternative should be in ["twosided", "less", "greater"]') return pivot def _approx_intervals(self, level=0.9): if not hasattr(self, "_families"): self._construct_families() lower, upper = [], [] for m in range(self.ntarget): # construction of intervals from families follows `selectinf.learning.core` family = self._families[m] observed_target = self.observed_target[m] l, u = family.equal_tailed_interval(observed_target, alpha=1 - level) var_target = 1. / ((self.precs[m])[0, 0]) lower.append(l * var_target + observed_target) upper.append(u * var_target + observed_target) return np.asarray(lower), np.asarray(upper) ### Private method def _construct_density(self): precs = {} S = {} r = {} p = self.target_score_cov.shape[1] for m in range(self.ntarget): observed_target_uni = (self.observed_target[m]).reshape((1,)) target_cov_uni = (np.diag(self.target_cov)[m]).reshape((1, 1)) prec_target = 1. / target_cov_uni target_score_cov_uni = self.target_score_cov[m, :].reshape((1, p)) target_linear = target_score_cov_uni.T.dot(prec_target) target_offset = (self.score_offset - target_linear.dot(observed_target_uni)).reshape( (target_linear.shape[0],)) target_lin = -self.logdens_linear.dot(target_linear) target_off = (self.cond_mean - target_lin.dot(observed_target_uni)).reshape((target_lin.shape[0],)) _prec = prec_target + (target_linear.T.dot(target_linear) * self.randomizer_prec) - target_lin.T.dot( self.prec_opt).dot(target_lin) _P = target_linear.T.dot(target_offset) * self.randomizer_prec _r = (1. / _prec).dot(target_lin.T.dot(self.prec_opt).dot(target_off) - _P) _S = np.linalg.inv(_prec).dot(prec_target) S[m] = _S r[m] = _r precs[m] = _prec self.precs = precs self.S = S self.r = r def solve_barrier_affine_jacobian_py(conjugate_arg, precision, feasible_point, con_linear, con_offset, C, active_dirs, useJacobian=True, step=1, nstep=2000, min_its=500, tol=1.e-12): """ This needs to be updated to actually use the Jacobian information (in self.C) arguments conjugate_arg: \\bar{\\Sigma}^{-1} \bar{\\mu} precision: \\bar{\\Sigma}^{-1} feasible_point: gamma's from fitting con_linear: linear part of affine constraint used for barrier function con_offset: offset part of affine constraint used for barrier function C: V^T Q^{-1} \\Lambda V active_dirs: """ scaling = np.sqrt(np.diag(con_linear.dot(precision).dot(con_linear.T))) if feasible_point is None: feasible_point = 1. / scaling def objective(gs): p1 = -gs.T.dot(conjugate_arg) p2 = gs.T.dot(precision).dot(gs) / 2. if useJacobian: p3 = - jacobian_grad_hess(gs, C, active_dirs)[0] else: p3 = 0 p4 = log(1. + 1. / ((con_offset - con_linear.dot(gs)) / scaling)).sum() return p1 + p2 + p3 + p4 def grad(gs): p1 = -conjugate_arg + precision.dot(gs) p2 = -con_linear.T.dot(1. / (scaling + con_offset - con_linear.dot(gs))) if useJacobian: p3 = - jacobian_grad_hess(gs, C, active_dirs)[1] else: p3 = 0 p4 = 1. / (con_offset - con_linear.dot(gs)) return p1 + p2 + p3 + p4 def barrier_hessian(gs): # contribution of barrier and jacobian to hessian p1 = con_linear.T.dot(np.diag(-1. / ((scaling + con_offset - con_linear.dot(gs)) ** 2.) + 1. / ((con_offset - con_linear.dot(gs)) ** 2.))).dot(con_linear) if useJacobian: p2 = - jacobian_grad_hess(gs, C, active_dirs)[2] else: p2 = 0 return p1 + p2 current = feasible_point current_value = np.inf for itercount in range(nstep): cur_grad = grad(current) # make sure proposal is feasible count = 0 while True: count += 1 proposal = current - step * cur_grad if np.all(con_offset - con_linear.dot(proposal) > 0): break step *= 0.5 if count >= 40: raise ValueError('not finding a feasible point') # make sure proposal is a descent count = 0 while True: count += 1 proposal = current - step * cur_grad proposed_value = objective(proposal) if proposed_value <= current_value: break step *= 0.5 if count >= 20: if not (np.isnan(proposed_value) or np.isnan(current_value)): break else: raise ValueError('value is NaN: %f, %f' % (proposed_value, current_value)) # stop if relative decrease is small if np.fabs(current_value - proposed_value) < tol * np.fabs(current_value) and itercount >= min_its: current = proposal current_value = proposed_value break current = proposal current_value = proposed_value if itercount % 4 == 0: step *= 2 hess = inv(precision + barrier_hessian(current)) return current_value, current, hess # Jacobian calculations def calc_GammaMinus(gamma, active_dirs): """Calculate Gamma^minus (as a function of gamma vector, active directions) """ to_diag = [[g] * (ug.size - 1) for (g, ug) in zip(gamma, active_dirs.values())] return block_diag(*[i for gp in to_diag for i in gp]) def jacobian_grad_hess(gamma, C, active_dirs): """ Calculate the log-Jacobian (scalar), gradient (gamma.size vector) and hessian (gamma.size square matrix) """ if C.shape == (0, 0): # when all groups are size one, C will be an empty array return 0, 0, 0 else: GammaMinus = calc_GammaMinus(gamma, active_dirs) # eigendecomposition #evalues, evectors = eig(GammaMinus + C) # log Jacobian #J = log(evalues).sum() J = np.log(np.linalg.det(GammaMinus + C)) # inverse #GpC_inv = evectors.dot(np.diag(1 / evalues).dot(evectors.T)) GpC_inv = np.linalg.inv(GammaMinus + C) # summing matrix (gamma.size by C.shape[0]) S = block_diag(*[np.ones((1, ug.size - 1)) for ug in active_dirs.values()]) # gradient grad_J = S.dot(GpC_inv.diagonal()) # hessian hess_J = -S.dot(np.multiply(GpC_inv, GpC_inv.T).dot(S.T)) return J, grad_J, hess_J def _check_groups(groups): """Make sure that the user-specific groups are ok There are a number of assumptions that group_lasso makes about how groups are specified. Specifically, we assume that `groups` is a 1-d array_like of integers that are sorted in increasing order, start at 0, and have no gaps (e.g., if there is a group 2 and a group 4, there must also be at least one feature in group 3). This function checks the user-specified group scheme and raises an exception if it finds any problems. Sorting feature groups is potentially tedious for the user and in future we might do this for them. """ # check array_like agroups = np.array(groups) # check dimension if len(agroups.shape) != 1: raise ValueError("Groups are not a 1D array_like") # check sorted if np.any(agroups[:-1] > agroups[1:]) < 0: raise ValueError("Groups are not sorted") # check integers if not np.issubdtype(agroups.dtype, np.integer): raise TypeError("Groups are not integers") # check starts with 0 if not np.amin(agroups) == 0: raise ValueError("First group is not 0") # check for no skipped groups if not np.all(np.diff(np.unique(agroups)) == 1): raise ValueError("Some group is skipped")
[ "regreg.api.simple_problem", "numpy.sqrt", "numpy.hstack", "scipy.interpolate.interp1d", "numpy.array", "numpy.linalg.norm", "scipy.stats.norm.cdf", "numpy.multiply", "numpy.linalg.qr", "numpy.reshape", "regreg.api.identity_quadratic", "regreg.api.group_lasso", "numpy.flatnonzero", "numpy.asarray", "regreg.api.weighted_l1norm", "numpy.exp", "numpy.issubdtype", "numpy.dot", "regreg.api.glm.gaussian", "numpy.linspace", "pandas.DataFrame", "numpy.identity", "numpy.eye", "numpy.all", "numpy.ones", "numpy.amin", "scipy.stats.norm.ppf", "numpy.any", "numpy.isnan", "numpy.sign", "numpy.std", "numpy.atleast_1d", "numpy.fabs", "numpy.unique", "numpy.minimum", "numpy.linalg.det", "numpy.diag", "numpy.zeros", "numpy.linalg.inv", "scipy.linalg.block_diag", "numpy.zeros_like" ]
[((31360, 31406), 'scipy.linalg.block_diag', 'block_diag', (['*[i for gp in to_diag for i in gp]'], {}), '(*[i for gp in to_diag for i in gp])\n', (31370, 31406), False, 'from scipy.linalg import block_diag\n'), ((33085, 33101), 'numpy.array', 'np.array', (['groups'], {}), '(groups)\n', (33093, 33101), True, 'import numpy as np\n'), ((2537, 2568), 'numpy.ones', 'np.ones', (['self.nfeature', 'np.bool'], {}), '(self.nfeature, np.bool)\n', (2544, 2568), True, 'import numpy as np\n'), ((4189, 4211), 'numpy.hstack', 'np.hstack', (['ordered_opt'], {}), '(ordered_opt)\n', (4198, 4211), True, 'import numpy as np\n'), ((4463, 4486), 'numpy.zeros', 'np.zeros', (['self.nfeature'], {}), '(self.nfeature)\n', (4471, 4486), True, 'import numpy as np\n'), ((4748, 4798), 'numpy.dot', 'np.dot', (['X.T', '(X[:, ordered_vars] * W[:, np.newaxis])'], {}), '(X.T, X[:, ordered_vars] * W[:, np.newaxis])\n', (4754, 4798), True, 'import numpy as np\n'), ((5147, 5173), 'numpy.sign', 'np.sign', (['self.initial_soln'], {}), '(self.initial_soln)\n', (5154, 5173), True, 'import numpy as np\n'), ((5191, 5219), 'numpy.flatnonzero', 'np.flatnonzero', (['active_signs'], {}), '(active_signs)\n', (5205, 5219), True, 'import numpy as np\n'), ((5952, 5967), 'scipy.linalg.block_diag', 'block_diag', (['*Vs'], {}), '(*Vs)\n', (5962, 5967), False, 'from scipy.linalg import block_diag\n'), ((6056, 6071), 'scipy.linalg.block_diag', 'block_diag', (['*Ls'], {}), '(*Ls)\n', (6066, 6071), False, 'from scipy.linalg import block_diag\n'), ((6207, 6213), 'numpy.linalg.inv', 'inv', (['Q'], {}), '(Q)\n', (6210, 6213), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((6661, 6703), 'numpy.zeros', 'np.zeros', (['self.observed_opt_state.shape[0]'], {}), '(self.observed_opt_state.shape[0])\n', (6669, 6703), True, 'import numpy as np\n'), ((7143, 7209), 'regreg.api.identity_quadratic', 'rr.identity_quadratic', (['self.ridge_term', '(0)', '(-self._initial_omega)', '(0)'], {}), '(self.ridge_term, 0, -self._initial_omega, 0)\n', (7164, 7209), True, 'import regreg.api as rr\n'), ((7340, 7385), 'regreg.api.simple_problem', 'rr.simple_problem', (['self.loglike', 'self.penalty'], {}), '(self.loglike, self.penalty)\n', (7357, 7385), True, 'import regreg.api as rr\n'), ((8199, 8264), 'regreg.api.glm.gaussian', 'rr.glm.gaussian', (['X', 'Y'], {'coef': '(1.0 / sigma ** 2)', 'quadratic': 'quadratic'}), '(X, Y, coef=1.0 / sigma ** 2, quadratic=quadratic)\n', (8214, 8264), True, 'import regreg.api as rr\n'), ((11580, 11610), 'numpy.atleast_1d', 'np.atleast_1d', (['observed_target'], {}), '(observed_target)\n', (11593, 11610), True, 'import numpy as np\n'), ((11633, 11648), 'numpy.linalg.inv', 'inv', (['target_cov'], {}), '(target_cov)\n', (11636, 11648), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((14248, 14267), 'scipy.stats.norm.cdf', 'ndist.cdf', (['Z_scores'], {}), '(Z_scores)\n', (14257, 14267), True, 'from scipy.stats import norm as ndist\n'), ((14370, 14396), 'scipy.stats.norm.ppf', 'ndist.ppf', (['(1 - alpha / 2.0)'], {}), '(1 - alpha / 2.0)\n', (14379, 14396), True, 'from scipy.stats import norm as ndist\n'), ((17277, 17306), 'numpy.linalg.inv', 'np.linalg.inv', (['query.cond_cov'], {}), '(query.cond_cov)\n', (17290, 17306), True, 'import numpy as np\n'), ((19777, 19900), 'pandas.DataFrame', 'pd.DataFrame', (["{'target': self.observed_target, 'pvalue': pvalues, 'lower_confidence':\n lower, 'upper_confidence': upper}"], {}), "({'target': self.observed_target, 'pvalue': pvalues,\n 'lower_confidence': lower, 'upper_confidence': upper})\n", (19789, 19900), True, 'import pandas as pd\n'), ((20548, 20573), 'numpy.linalg.inv', 'np.linalg.inv', (['target_cov'], {}), '(target_cov)\n', (20561, 20573), True, 'import numpy as np\n'), ((22410, 22429), 'numpy.asarray', 'np.asarray', (['ref_hat'], {}), '(ref_hat)\n', (22420, 22429), True, 'import numpy as np\n'), ((32043, 32072), 'numpy.linalg.inv', 'np.linalg.inv', (['(GammaMinus + C)'], {}), '(GammaMinus + C)\n', (32056, 32072), True, 'import numpy as np\n'), ((33243, 33277), 'numpy.any', 'np.any', (['(agroups[:-1] > agroups[1:])'], {}), '(agroups[:-1] > agroups[1:])\n', (33249, 33277), True, 'import numpy as np\n'), ((33366, 33406), 'numpy.issubdtype', 'np.issubdtype', (['agroups.dtype', 'np.integer'], {}), '(agroups.dtype, np.integer)\n', (33379, 33406), True, 'import numpy as np\n'), ((1435, 1487), 'regreg.api.weighted_l1norm', 'rr.weighted_l1norm', ([], {'weights': 'weights_np', 'lagrange': '(1.0)'}), '(weights=weights_np, lagrange=1.0)\n', (1453, 1487), True, 'import regreg.api as rr\n'), ((1574, 1627), 'regreg.api.group_lasso', 'rr.group_lasso', (['groups'], {'weights': 'weights', 'lagrange': '(1.0)'}), '(groups, weights=weights, lagrange=1.0)\n', (1588, 1627), True, 'import regreg.api as rr\n'), ((2979, 3001), 'numpy.unique', 'np.unique', (['self.groups'], {}), '(self.groups)\n', (2988, 3001), True, 'import numpy as np\n'), ((6598, 6638), 'numpy.eye', 'np.eye', (['self.observed_opt_state.shape[0]'], {}), '(self.observed_opt_state.shape[0])\n', (6604, 6638), True, 'import numpy as np\n'), ((9138, 9157), 'numpy.linalg.inv', 'inv', (['cond_precision'], {}), '(cond_precision)\n', (9141, 9157), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((9341, 9360), 'numpy.linalg.inv', 'inv', (['cond_precision'], {}), '(cond_precision)\n', (9344, 9360), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((14291, 14323), 'numpy.minimum', 'np.minimum', (['pvalues', '(1 - pvalues)'], {}), '(pvalues, 1 - pvalues)\n', (14301, 14323), True, 'import numpy as np\n'), ((18024, 18050), 'numpy.zeros', 'np.zeros', (['(ntarget, ngrid)'], {}), '((ntarget, ngrid))\n', (18032, 18050), True, 'import numpy as np\n'), ((18395, 18421), 'numpy.zeros', 'np.zeros', (['(ntarget, ngrid)'], {}), '((ntarget, ngrid))\n', (18403, 18421), True, 'import numpy as np\n'), ((19598, 19633), 'numpy.zeros_like', 'np.zeros_like', (['self.observed_target'], {}), '(self.observed_target)\n', (19611, 19633), True, 'import numpy as np\n'), ((20006, 20028), 'numpy.all', 'np.all', (['(parameter == 0)'], {}), '(parameter == 0)\n', (20012, 20028), True, 'import numpy as np\n'), ((25922, 25939), 'numpy.asarray', 'np.asarray', (['lower'], {}), '(lower)\n', (25932, 25939), True, 'import numpy as np\n'), ((25941, 25958), 'numpy.asarray', 'np.asarray', (['upper'], {}), '(upper)\n', (25951, 25958), True, 'import numpy as np\n'), ((31905, 31934), 'numpy.linalg.det', 'np.linalg.det', (['(GammaMinus + C)'], {}), '(GammaMinus + C)\n', (31918, 31934), True, 'import numpy as np\n'), ((33497, 33513), 'numpy.amin', 'np.amin', (['agroups'], {}), '(agroups)\n', (33504, 33513), True, 'import numpy as np\n'), ((3156, 3178), 'numpy.linalg.norm', 'norm', (['soln[group_mask]'], {}), '(soln[group_mask])\n', (3160, 3178), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((4095, 4108), 'numpy.sign', 'np.sign', (['soln'], {}), '(soln)\n', (4102, 4108), True, 'import numpy as np\n'), ((5444, 5449), 'numpy.linalg.qr', 'qr', (['Z'], {}), '(Z)\n', (5446, 5449), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((5544, 5560), 'numpy.zeros', 'np.zeros', (['(1, 0)'], {}), '((1, 0))\n', (5552, 5560), True, 'import numpy as np\n'), ((5755, 5765), 'numpy.eye', 'np.eye', (['pg'], {}), '(pg)\n', (5761, 5765), True, 'import numpy as np\n'), ((8422, 8436), 'numpy.sqrt', 'np.sqrt', (['(n - 1)'], {}), '(n - 1)\n', (8429, 8436), True, 'import numpy as np\n'), ((8545, 8567), 'numpy.sqrt', 'np.sqrt', (['(n / (n - 1.0))'], {}), '(n / (n - 1.0))\n', (8552, 8567), True, 'import numpy as np\n'), ((9002, 9018), 'numpy.asarray', 'np.asarray', (['prec'], {}), '(prec)\n', (9012, 9018), True, 'import numpy as np\n'), ((11452, 11479), 'numpy.asarray', 'np.asarray', (['observed_target'], {}), '(observed_target)\n', (11462, 11479), True, 'import numpy as np\n'), ((12307, 12339), 'numpy.asarray', 'np.asarray', (['self.randomizer_prec'], {}), '(self.randomizer_prec)\n', (12317, 12339), True, 'import numpy as np\n'), ((14200, 14227), 'numpy.diag', 'np.diag', (['observed_info_mean'], {}), '(observed_info_mean)\n', (14207, 14227), True, 'import numpy as np\n'), ((17919, 17940), 'numpy.diag', 'np.diag', (['inverse_info'], {}), '(inverse_info)\n', (17926, 17940), True, 'import numpy as np\n'), ((18127, 18229), 'numpy.linspace', 'np.linspace', (['(observed_target[j] - 1.5 * _scale[j])', '(observed_target[j] + 1.5 * _scale[j])'], {'num': 'ngrid'}), '(observed_target[j] - 1.5 * _scale[j], observed_target[j] + 1.5 *\n _scale[j], num=ngrid)\n', (18138, 18229), True, 'import numpy as np\n'), ((18498, 18600), 'numpy.linspace', 'np.linspace', (['(observed_target[j] - 1.5 * _scale[j])', '(observed_target[j] + 1.5 * _scale[j])'], {'num': 'ngrid'}), '(observed_target[j] - 1.5 * _scale[j], observed_target[j] + 1.5 *\n _scale[j], num=ngrid)\n', (18509, 18600), True, 'import numpy as np\n'), ((20424, 20451), 'numpy.asarray', 'np.asarray', (['observed_target'], {}), '(observed_target)\n', (20434, 20451), True, 'import numpy as np\n'), ((21600, 21620), 'numpy.identity', 'np.identity', (['num_opt'], {}), '(num_opt)\n', (21611, 21620), True, 'import numpy as np\n'), ((21858, 21885), 'numpy.asarray', 'np.asarray', (['[conjugate_arg]'], {}), '([conjugate_arg])\n', (21868, 21885), True, 'import numpy as np\n'), ((21921, 21953), 'numpy.reshape', 'np.reshape', (['implied_prec', '(1, 1)'], {}), '(implied_prec, (1, 1))\n', (21931, 21953), True, 'import numpy as np\n'), ((23507, 23611), 'scipy.interpolate.interp1d', 'interp1d', (['self.stat_grid[m]', 'log_ref'], {'kind': '"""quadratic"""', 'bounds_error': '(False)', 'fill_value': '"""extrapolate"""'}), "(self.stat_grid[m], log_ref, kind='quadratic', bounds_error=False,\n fill_value='extrapolate')\n", (23515, 23611), False, 'from scipy.interpolate import interp1d\n'), ((30706, 30745), 'numpy.fabs', 'np.fabs', (['(current_value - proposed_value)'], {}), '(current_value - proposed_value)\n', (30713, 30745), True, 'import numpy as np\n'), ((1231, 1248), 'numpy.unique', 'np.unique', (['groups'], {}), '(groups)\n', (1240, 1248), True, 'import numpy as np\n'), ((3187, 3197), 'numpy.linalg.norm', 'norm', (['soln'], {}), '(soln)\n', (3191, 3197), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((3355, 3381), 'numpy.flatnonzero', 'np.flatnonzero', (['group_mask'], {}), '(group_mask)\n', (3369, 3381), True, 'import numpy as np\n'), ((3657, 3679), 'numpy.linalg.norm', 'norm', (['soln[group_mask]'], {}), '(soln[group_mask])\n', (3661, 3679), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((8389, 8398), 'numpy.std', 'np.std', (['Y'], {}), '(Y)\n', (8395, 8398), True, 'import numpy as np\n'), ((8401, 8419), 'numpy.sqrt', 'np.sqrt', (['mean_diag'], {}), '(mean_diag)\n', (8408, 8419), True, 'import numpy as np\n'), ((8533, 8542), 'numpy.std', 'np.std', (['Y'], {}), '(Y)\n', (8539, 8542), True, 'import numpy as np\n'), ((14838, 14865), 'numpy.diag', 'np.diag', (['observed_info_mean'], {}), '(observed_info_mean)\n', (14845, 14865), True, 'import numpy as np\n'), ((21131, 21171), 'numpy.atleast_1d', 'np.atleast_1d', (['(grid[k] - observed_target)'], {}), '(grid[k] - observed_target)\n', (21144, 21171), True, 'import numpy as np\n'), ((27155, 27175), 'numpy.linalg.inv', 'np.linalg.inv', (['_prec'], {}), '(_prec)\n', (27168, 27175), True, 'import numpy as np\n'), ((30754, 30776), 'numpy.fabs', 'np.fabs', (['current_value'], {}), '(current_value)\n', (30761, 30776), True, 'import numpy as np\n'), ((32151, 32176), 'numpy.ones', 'np.ones', (['(1, ug.size - 1)'], {}), '((1, ug.size - 1))\n', (32158, 32176), True, 'import numpy as np\n'), ((33630, 33648), 'numpy.unique', 'np.unique', (['agroups'], {}), '(agroups)\n', (33639, 33648), True, 'import numpy as np\n'), ((3598, 3620), 'numpy.linalg.norm', 'norm', (['soln[group_mask]'], {}), '(soln[group_mask])\n', (3602, 3620), False, 'from numpy.linalg import norm, qr, inv, eig\n'), ((5400, 5418), 'numpy.eye', 'np.eye', (['pg', '(pg - 1)'], {}), '(pg, pg - 1)\n', (5406, 5418), True, 'import numpy as np\n'), ((8506, 8524), 'numpy.sqrt', 'np.sqrt', (['mean_diag'], {}), '(mean_diag)\n', (8513, 8524), True, 'import numpy as np\n'), ((22721, 22745), 'numpy.diag', 'np.diag', (['self.target_cov'], {}), '(self.target_cov)\n', (22728, 22745), True, 'import numpy as np\n'), ((23446, 23458), 'numpy.exp', 'np.exp', (['logW'], {}), '(logW)\n', (23452, 23458), True, 'import numpy as np\n'), ((24122, 24134), 'numpy.exp', 'np.exp', (['logW'], {}), '(logW)\n', (24128, 24134), True, 'import numpy as np\n'), ((26254, 26278), 'numpy.diag', 'np.diag', (['self.target_cov'], {}), '(self.target_cov)\n', (26261, 26278), True, 'import numpy as np\n'), ((30451, 30475), 'numpy.isnan', 'np.isnan', (['proposed_value'], {}), '(proposed_value)\n', (30459, 30475), True, 'import numpy as np\n'), ((30479, 30502), 'numpy.isnan', 'np.isnan', (['current_value'], {}), '(current_value)\n', (30487, 30502), True, 'import numpy as np\n'), ((32316, 32347), 'numpy.multiply', 'np.multiply', (['GpC_inv', 'GpC_inv.T'], {}), '(GpC_inv, GpC_inv.T)\n', (32327, 32347), True, 'import numpy as np\n'), ((14496, 14523), 'numpy.diag', 'np.diag', (['observed_info_mean'], {}), '(observed_info_mean)\n', (14503, 14523), True, 'import numpy as np\n'), ((14625, 14652), 'numpy.diag', 'np.diag', (['observed_info_mean'], {}), '(observed_info_mean)\n', (14632, 14652), True, 'import numpy as np\n')]
import six import json import gzip from exporters.default_retries import retry_long from exporters.writers.base_writer import BaseWriter class ODOWriter(BaseWriter): """ Writes items to a odo destination. https://odo.readthedocs.org/en/latest/ Needed parameters: - schema (object) schema object. - odo_uri (str) ODO valid destination uri. """ requirements = { 'schema': {'type': object, 'required': True}, 'odo_uri': {'type': six.string_types, 'required': True} } def __init__(self, options): super(ODOWriter, self).__init__(options) from flatson import Flatson schema = self.read_option('schema', None) self.odo_uri = self.read_option('odo_uri', None) self.flatson = Flatson(schema) self.logger.info('ODOWriter has been initiated. Writing to: {}'.format(self.odo_uri)) @retry_long def write(self, dump_path, group_key=''): from odo import odo, resource, discover import pandas as pd with gzip.open(dump_path) as f: lines = [json.loads(line.replace('\n', '')) for line in f.readlines()] flattened_lines = (self.flatson.flatten(line) for line in lines) pf = pd.DataFrame(flattened_lines, columns=self.flatson.fieldnames) dshape = discover(pf) odo(pf, resource(self.odo_uri), dshape=dshape)
[ "odo.discover", "gzip.open", "flatson.Flatson", "pandas.DataFrame", "odo.resource" ]
[((800, 815), 'flatson.Flatson', 'Flatson', (['schema'], {}), '(schema)\n', (807, 815), False, 'from flatson import Flatson\n'), ((1258, 1320), 'pandas.DataFrame', 'pd.DataFrame', (['flattened_lines'], {'columns': 'self.flatson.fieldnames'}), '(flattened_lines, columns=self.flatson.fieldnames)\n', (1270, 1320), True, 'import pandas as pd\n'), ((1338, 1350), 'odo.discover', 'discover', (['pf'], {}), '(pf)\n', (1346, 1350), False, 'from odo import odo, resource, discover\n'), ((1062, 1082), 'gzip.open', 'gzip.open', (['dump_path'], {}), '(dump_path)\n', (1071, 1082), False, 'import gzip\n'), ((1367, 1389), 'odo.resource', 'resource', (['self.odo_uri'], {}), '(self.odo_uri)\n', (1375, 1389), False, 'from odo import odo, resource, discover\n')]
''' Written by: <NAME> <EMAIL> <EMAIL> Last updated: 29.01.2021 ''' # the concept is to generate a side channel resistant initialisation of the hashing function based on # one secret key and several openly known initialisation vectors (IV) in a manner that the same input # is not hashed too more than two times, which is hopefully not sufficient for side channel # measurements based computations: the number of consecutive measurements for a successful attack on # the CHI function in a practically noiseless computer simulation (see "chi_cpa.py") takes around a # 100 measurements # this concept is achieved by taking a counter of a certain bitlength, and twice as many IVs as bits in # the counter: "IV0s" and "IV1s" and compute a series of hashes starting with the secret key then with a # correspong IV of the sets 0 and 1 based on whether the counter's corresponding bit - starting at MSB - # is 0 or 1; this way every hash output is exactly used 2 times if the intermediate values are STORTED # and the entire series of initial hashes are NOT fully recomputed only such whose corresponding # counter bits has changed and all the next levels too down to the LSB of the counter # the working solution is going to based on the algorithms presented here, although # in this file the algorithm here does the full padding so the results won't equal to # a scheme where the rate is fully filled with IVs and the data comes only afterwards... import hashlib # KEY DATA STRUCTURES' INTERPRETATION # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ IV0s = [658678, 6785697, 254376, 67856, 1432543, 786, 124345, 5443654] IV1s = [2565, 256658, 985, 218996, 255, 685652, 28552, 3256565] # LSB ... MSB hash_copies = [None for i in range(len(IV0s))] # LSB ... MSB # counter # MSB ... LSB # COMPUTING HASHES FOR EVERY COUNTER VALUE INDIVIDUALLY # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ for counter in range(11): hash = hashlib.sha3_512() # looping from MSB to LSB in counter too for i in range(len(IV0s)-1, -1, -1): if (counter>>i) & 1 == 1: IV = bytes(IV1s[i]) else: IV = bytes(IV0s[i]) hash.update(IV) print(hash.hexdigest()) print() # COMPUTING HASHES BASED ON THE NATURE OF BINARY INCREMENTATION: # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # only fewer values need to be recomputed, those whose corresponding # bits have changed, down until LSB # initialize hash = hashlib.sha3_512() # looping from MSB to LSB for i in range(len(IV0s)-1, -1, -1): # addressing "MSB" of IVs at first, "LSB" at last! IV = bytes(IV0s[i]) hash.update(IV) # index 0 of hash_copies changes the most frequently ie. according to counter's LSB hash_copies[i] = hash.copy() # compute last_counter = 0 for counter in range(11): IV_mask = last_counter ^ counter last_counter = counter # determine the highest non-zero bit of IV_mask, LSB is 1, 0 means there was no change nz = 0 while IV_mask > 0: IV_mask >>= 1 nz += 1 # initialize hash to the last value whose corresponding counter bit didn't switch # have to copy object otherwise the originally pointed version gets updated! hash = hash_copies[nz].copy() # LSB is index 0 # compute only the remaining hashes while nz != 0: # nz=0 is the initial condition, nothing needs to be done nz -= 1 if (counter>>nz) & 1 == 1: IV = bytes(IV1s[nz]) else: IV = bytes(IV0s[nz]) hash.update(IV) # needs to be copied again because of object orientation hash_copies[nz] = hash.copy() # showing the hash copies' entire table after each computation #for hashes in hash_copies: # print(hashes.hexdigest()) print(hash_copies[0].hexdigest())
[ "hashlib.sha3_512" ]
[((2526, 2544), 'hashlib.sha3_512', 'hashlib.sha3_512', ([], {}), '()\n', (2542, 2544), False, 'import hashlib\n'), ((1973, 1991), 'hashlib.sha3_512', 'hashlib.sha3_512', ([], {}), '()\n', (1989, 1991), False, 'import hashlib\n')]
import os def check_env(env_var_name): """ Check and return the type of an environment variable. supported types: None Integer String @param env_var_name: environment variable name @return: string of the type name. """ try: val = os.getenv(env_var_name) if val is None: return 'None' except Exception as ex: return "None" try: int_val = int(val) return 'Integer' except ValueError: return 'String'
[ "os.getenv" ]
[((294, 317), 'os.getenv', 'os.getenv', (['env_var_name'], {}), '(env_var_name)\n', (303, 317), False, 'import os\n')]
from .models import Sound , Album from rest_framework import serializers class SoundSerializer(serializers.ModelSerializer): class Meta: model = Sound fields = ["name" , "song_image" , "pk" , "like" , "played" , "tag" , "singer" , "upload_date"] class SoundDetailSerializer(serializers.ModelSerializer): class Meta: model = Sound fields = "__all__" class AlbumSerializer(serializers.ModelSerializer): sound = serializers.SerializerMethodField() class Meta: model = Album fields = ["name" , "datepublish" , "category" , "sound"] depth = 1 def get_sound(self , obj): print("WORKING") return SoundSerializer(instance=obj.sound , many=True).data
[ "rest_framework.serializers.SerializerMethodField" ]
[((474, 509), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (507, 509), False, 'from rest_framework import serializers\n')]
from datetime import datetime from django.conf import settings import pytz def check_tracker(obj, simple=True): if simple: if obj.status > 0: return True return False # we have a gatekeeper now = datetime.now(pytz.utc) if obj.tracker_publish_status < 0: return False if obj.tracker_publish_status > 0: return True # Checking live_as_of ... # is live_as_of set? if not obj.tracker_live_as_of: # No live_as_of --- bail return False # has it happened yet? if now < obj.tracker_live_as_of: # live_as_of --- not yet! return False # is there an expiration date? if obj.tracker_expires and now > obj.tracker_expires: # EXPIRED! return False # it's OK then return True DEFAULT_TRACKER_POSITIONS = [ ('tracker-head-top', 'Head - near top'), ('tracker-head-bottom', 'Head - near bottom'), ('tracker-body-top', 'Body - near top'), ('tracker-body-bottom', 'Body - near bottom') ] def get_tracker_position_options(): """ This creates the dropdown in the Admin for where to put each tracker. It defaults to the obvious 4 location (top/bottom of the head/body); however the user can create more by adding a list of 3-ples in the settings file under ADDITIONAL_TRACKER_POSITIONS. (2-letter-code, description, block name), e.g. ('HN', 'Header Navigation', 'header-navigation-trackers') would allow for the user to have tracking code in a navbar (no, I don't know why they'd want this) if they put {% block header-navigation-trackers %}{% generate_trackers 'HN' %}{% endblock %} in their template. """ tracker_position_list = DEFAULT_TRACKER_POSITIONS additional_tracker_positions = getattr(settings, "ADDITIONAL_TRACKER_POSITIONS", []) full_list = list() for x in (tracker_position_list + additional_tracker_positions): full_list.append((x[0], x[1])) return full_list
[ "datetime.datetime.now" ]
[((246, 268), 'datetime.datetime.now', 'datetime.now', (['pytz.utc'], {}), '(pytz.utc)\n', (258, 268), False, 'from datetime import datetime\n')]
import datetime from fastapi import APIRouter router = APIRouter() @router.get("", tags=["health"]) async def get_health(): return { "results": [], "status": "success", "timestamp": datetime.datetime.now().timestamp() }
[ "datetime.datetime.now", "fastapi.APIRouter" ]
[((57, 68), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (66, 68), False, 'from fastapi import APIRouter\n'), ((214, 237), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (235, 237), False, 'import datetime\n')]
import numpy as np import os import six.moves.urllib as urllib import sys import tarfile import tensorflow as tf import zipfile from distutils.version import StrictVersion from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image import json import time import cv2 PATH_TO_FROZEN_GRAPH = '../data/mobilenet_v2_1.4_224/mobilenet_v2_1.4_224_frozen.pb' info='Time taken to load Model into memory:' start_time=time.time() detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') end_time=time.time() time_taken=end_time-start_time print(info,time_taken) # Load the labels #Load categories categories = [] with open('../data/' + 'categories.txt', 'r') as f: for line in f: cat = line.split('\n')[0] if cat != 'classes': categories.append(cat) f.close() print('Number of categories:', len(categories)) # Load image size with open('../data/' + 'inputsize.txt', 'r') as f: reqsize = int(f.readline().split('\n')[0]) #print(reqsize) #image_filename = '../data/' + 'image1.jpg' def Load_and_process_img(image_filename): img = cv2.imread(image_filename)#.astype(numpy.float32) img = cv2.resize(img, (reqsize, reqsize)) img=cv2.cvtColor(img,cv2.COLOR_BGR2RGB) img = img.astype(float) #img values are scaled from -1 to 1 img /= 255.0 img -= 0.5 img *= 2.0 return img sess=tf.Session(graph=detection_graph) def run_inference_b1(key_name,image, graph,no_of_run): #model output layer name ops = graph.get_operations() all_tensor_names = {output.name for op in ops for output in op.outputs} #print(all_tensor_names) tensor_dict = {} for key in [key_name]: tensor_name = key + ':0' if tensor_name in all_tensor_names: tensor_dict[key] = graph.get_tensor_by_name(tensor_name) image=image.reshape(1,image.shape[0],image.shape[1],image.shape[2]) image_tensor = graph.get_tensor_by_name('input:0') #Demo run, so that graph is loaded into TF memory sess.run(tensor_dict,feed_dict={image_tensor: image}) # Run inference info='Time taken to run inference: run_inference_b1:'+str(no_of_run)+' Times: ' start_time=time.time() for i in range(no_of_run): output_dict = sess.run(tensor_dict, feed_dict={image_tensor: image}) end_time=time.time() time_taken=end_time-start_time print(info,time_taken) #print(output_dict) top_inds = output_dict[key_name][0].argsort()[::-1][:5] result=[] for i in range(5): result.append([top_inds[i], categories[top_inds[i]], output_dict[key_name][0][top_inds[i]]]) return result, time_taken image_filename = '../data/' + 'Tiger.jpg' img = Load_and_process_img(image_filename) key_name='MobilenetV2/Predictions/Reshape_1' result,time_taken=run_inference_b1(key_name,img,detection_graph,1000) print('Time Taken to run Inference is:',time_taken) print(result)
[ "tensorflow.Graph", "tensorflow.Session", "tensorflow.GraphDef", "cv2.cvtColor", "tensorflow.import_graph_def", "tensorflow.gfile.GFile", "cv2.resize", "time.time", "cv2.imread" ]
[((471, 482), 'time.time', 'time.time', ([], {}), '()\n', (480, 482), False, 'import time\n'), ((502, 512), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (510, 512), True, 'import tensorflow as tf\n'), ((779, 790), 'time.time', 'time.time', ([], {}), '()\n', (788, 790), False, 'import time\n'), ((1643, 1676), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'detection_graph'}), '(graph=detection_graph)\n', (1653, 1676), True, 'import tensorflow as tf\n'), ((565, 578), 'tensorflow.GraphDef', 'tf.GraphDef', ([], {}), '()\n', (576, 578), True, 'import tensorflow as tf\n'), ((1366, 1392), 'cv2.imread', 'cv2.imread', (['image_filename'], {}), '(image_filename)\n', (1376, 1392), False, 'import cv2\n'), ((1426, 1461), 'cv2.resize', 'cv2.resize', (['img', '(reqsize, reqsize)'], {}), '(img, (reqsize, reqsize))\n', (1436, 1461), False, 'import cv2\n'), ((1470, 1506), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2RGB'], {}), '(img, cv2.COLOR_BGR2RGB)\n', (1482, 1506), False, 'import cv2\n'), ((2459, 2470), 'time.time', 'time.time', ([], {}), '()\n', (2468, 2470), False, 'import time\n'), ((2620, 2631), 'time.time', 'time.time', ([], {}), '()\n', (2629, 2631), False, 'import time\n'), ((586, 628), 'tensorflow.gfile.GFile', 'tf.gfile.GFile', (['PATH_TO_FROZEN_GRAPH', '"""rb"""'], {}), "(PATH_TO_FROZEN_GRAPH, 'rb')\n", (600, 628), True, 'import tensorflow as tf\n'), ((726, 768), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['od_graph_def'], {'name': '""""""'}), "(od_graph_def, name='')\n", (745, 768), True, 'import tensorflow as tf\n')]
from __future__ import unicode_literals import frappe, json from frappe.model.utils.user_settings import update_user_settings, sync_user_settings def execute(): users = frappe.db.sql("select distinct(user) from `__UserSettings`", as_dict=True) for user in users: user_settings = frappe.db.sql(''' select * from `__UserSettings` where user="{user}" '''.format(user = user.user), as_dict=True) for setting in user_settings: data = frappe.parse_json(setting.get('data')) if data: for key in data: update_user_setting_filters(data, key, setting) sync_user_settings() def update_user_setting_filters(data, key, user_setting): timespan_map = { '1 week': 'week', '1 month': 'month', '3 months': 'quarter', '6 months': '6 months', '1 year': 'year', } period_map = { 'Previous': 'last', 'Next': 'next' } if data.get(key): update = False if isinstance(data.get(key), dict): filters = data.get(key).get('filters') if filters and isinstance(filters, list): for f in filters: if f[2] == 'Next' or f[2] == 'Previous': update = True f[3] = period_map[f[2]] + ' ' + timespan_map[f[3]] f[2] = 'Timespan' if update: data[key]['filters'] = filters update_user_settings(user_setting['doctype'], json.dumps(data), for_update=True)
[ "json.dumps", "frappe.db.sql", "frappe.model.utils.user_settings.sync_user_settings" ]
[((171, 245), 'frappe.db.sql', 'frappe.db.sql', (['"""select distinct(user) from `__UserSettings`"""'], {'as_dict': '(True)'}), "('select distinct(user) from `__UserSettings`', as_dict=True)\n", (184, 245), False, 'import frappe, json\n'), ((584, 604), 'frappe.model.utils.user_settings.sync_user_settings', 'sync_user_settings', ([], {}), '()\n', (602, 604), False, 'from frappe.model.utils.user_settings import update_user_settings, sync_user_settings\n'), ((1289, 1305), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (1299, 1305), False, 'import frappe, json\n')]
import BoltzmannMachine as bm import QHO as qho import numpy as np import datetime # Visualization imports from IPython.display import clear_output from PIL import Image import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['figure.dpi']=300 def sigmoid(x): return .5 * (1 + np.tanh(x / 2.)) # Set the quantum gas with N particles, a limit of 10 for the # quantum numbers and default temperature and frequency N = 10*10 gas = qho.QHOGas(N=N) n_max = 10 training_size = 100000 # the amount of hidden units was set by trial and error hidden_units = 70 # the recipe suggests to set the batchsize to 10, though it can range # from 10 to 100 batchsize = 10 # the recipe suggests a learning rate that makes the weight updates about # 1e-3 times the weights (to within an order of magnitude) eta = 0.005 # the amount of steps was set by trial and error nsteps = 300000 # define the validation set to be used in training_visualization validation_set = gas.generate(amount=20) def training_visualization(machine, current_step, total_steps, eta, a, b, w, da, db, dw): # Every now and then (every 50k steps), let us know that the training # is still running if current_step%50000 == 0: print("{:08d} / {:08d}".format(current_step, total_steps), end=" \r") # After 'checkpoint_steps', show the suggested plots checkpoint_steps = 10000 if current_step%checkpoint_steps == 0 or current_step == total_steps-1: print(f"Showing at step {current_step}.") # Produce a sample starting from the validation set after 100 steps v_prime = machine.generate(validation_set, 100, a=a, b=b, w=w) # print useful plots for training plot_training(validation_set, v_prime, eta, a, b, w, da, db, dw) def plot_training(v, v_prime, eta, a, b, w, da, db, dw): clear_output(wait=True) # Show how the weights light up for the state v hMean = sigmoid(np.dot(v, w) + b) image = Image.fromarray(hMean * 256).show() # Create the grid for all the other plots we want plt.rcParams.update({'font.size': 2}) # plot histogram of initial vs generated n = np.arange(0,10) generated_quantum_numbers = np.rint(v_prime*10) plt.hist( generated_quantum_numbers.flatten(), bins=np.arange(0,10), density=True, label="Sampled" ) plt.plot( n, gas.p_n(n), label="Theor." ) plt.xlabel('n') plt.ylabel('P(n)') plt.legend() # plot histogram of visible, hidden, weights fig = plt.figure(constrained_layout=True) gs = fig.add_gridspec(ncols=3, nrows=2) def plotit(axis, values, title): axis.hist(values) axis.set_title(f"{title}: mm = {np.mean(np.fabs(values))}") plotit(fig.add_subplot(gs[0,0]), a, 'a') plotit(fig.add_subplot(gs[0,1]), w.flatten(), 'w') plotit(fig.add_subplot(gs[0,2]), b, 'b') # plot histogram of d_visible, d_hidden, d_weights plotit(fig.add_subplot(gs[1,0]), eta*da, 'da') plotit(fig.add_subplot(gs[1,1]), eta*dw.flatten(), 'dw') plotit(fig.add_subplot(gs[1,2]), eta*db, 'db') # show free energies of the average of samples x = lambda vv : b + np.dot(vv, w) free_training = -np.dot(v, a) - np.sum( np.log(1 + np.exp(x(v))), axis=1) free_valdation = -np.dot(v_prime, a) - np.sum( np.log(1 + np.exp(x(v_prime))), axis=1) print(f"\nF_training={np.average(free_training)} vs F_validation={np.average(free_valdation)}\n") # Show. # CAUTION! This will freeze the execution plt.show() # Init the boltzmann machine and train it while visualizing the suggested plots training_set = gas.generate(amount=training_size, n_max=n_max) m = bm.BoltzmannMachine(num_hidden=hidden_units) a,b,w = m.train(training_set, batchsize=batchsize, eta=eta, nsteps=nsteps, do_while_training=None) # Store in a file run_id = int(datetime.datetime.now().timestamp()) np.savetxt(f"a_{run_id}.csv", a, delimiter=',') np.savetxt(f"b_{run_id}.csv", b, delimiter=',') np.savetxt(f"w_{run_id}.csv", w, delimiter=',')
[ "numpy.fabs", "QHO.QHOGas", "PIL.Image.fromarray", "matplotlib.pyplot.ylabel", "numpy.average", "matplotlib.pyplot.legend", "matplotlib.pyplot.xlabel", "numpy.tanh", "IPython.display.clear_output", "matplotlib.pyplot.rcParams.update", "matplotlib.pyplot.figure", "numpy.dot", "BoltzmannMachine.BoltzmannMachine", "numpy.rint", "numpy.savetxt", "datetime.datetime.now", "numpy.arange", "matplotlib.pyplot.show" ]
[((447, 462), 'QHO.QHOGas', 'qho.QHOGas', ([], {'N': 'N'}), '(N=N)\n', (457, 462), True, 'import QHO as qho\n'), ((3637, 3681), 'BoltzmannMachine.BoltzmannMachine', 'bm.BoltzmannMachine', ([], {'num_hidden': 'hidden_units'}), '(num_hidden=hidden_units)\n', (3656, 3681), True, 'import BoltzmannMachine as bm\n'), ((3849, 3896), 'numpy.savetxt', 'np.savetxt', (['f"""a_{run_id}.csv"""', 'a'], {'delimiter': '""","""'}), "(f'a_{run_id}.csv', a, delimiter=',')\n", (3859, 3896), True, 'import numpy as np\n'), ((3897, 3944), 'numpy.savetxt', 'np.savetxt', (['f"""b_{run_id}.csv"""', 'b'], {'delimiter': '""","""'}), "(f'b_{run_id}.csv', b, delimiter=',')\n", (3907, 3944), True, 'import numpy as np\n'), ((3945, 3992), 'numpy.savetxt', 'np.savetxt', (['f"""w_{run_id}.csv"""', 'w'], {'delimiter': '""","""'}), "(f'w_{run_id}.csv', w, delimiter=',')\n", (3955, 3992), True, 'import numpy as np\n'), ((1829, 1852), 'IPython.display.clear_output', 'clear_output', ([], {'wait': '(True)'}), '(wait=True)\n', (1841, 1852), False, 'from IPython.display import clear_output\n'), ((2050, 2087), 'matplotlib.pyplot.rcParams.update', 'plt.rcParams.update', (["{'font.size': 2}"], {}), "({'font.size': 2})\n", (2069, 2087), True, 'import matplotlib.pyplot as plt\n'), ((2142, 2158), 'numpy.arange', 'np.arange', (['(0)', '(10)'], {}), '(0, 10)\n', (2151, 2158), True, 'import numpy as np\n'), ((2190, 2211), 'numpy.rint', 'np.rint', (['(v_prime * 10)'], {}), '(v_prime * 10)\n', (2197, 2211), True, 'import numpy as np\n'), ((2365, 2380), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""n"""'], {}), "('n')\n", (2375, 2380), True, 'import matplotlib.pyplot as plt\n'), ((2385, 2403), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""P(n)"""'], {}), "('P(n)')\n", (2395, 2403), True, 'import matplotlib.pyplot as plt\n'), ((2408, 2420), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2418, 2420), True, 'import matplotlib.pyplot as plt\n'), ((2481, 2516), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'constrained_layout': '(True)'}), '(constrained_layout=True)\n', (2491, 2516), True, 'import matplotlib.pyplot as plt\n'), ((3478, 3488), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3486, 3488), True, 'import matplotlib.pyplot as plt\n'), ((295, 311), 'numpy.tanh', 'np.tanh', (['(x / 2.0)'], {}), '(x / 2.0)\n', (302, 311), True, 'import numpy as np\n'), ((1925, 1937), 'numpy.dot', 'np.dot', (['v', 'w'], {}), '(v, w)\n', (1931, 1937), True, 'import numpy as np\n'), ((1955, 1983), 'PIL.Image.fromarray', 'Image.fromarray', (['(hMean * 256)'], {}), '(hMean * 256)\n', (1970, 1983), False, 'from PIL import Image\n'), ((2266, 2282), 'numpy.arange', 'np.arange', (['(0)', '(10)'], {}), '(0, 10)\n', (2275, 2282), True, 'import numpy as np\n'), ((3130, 3143), 'numpy.dot', 'np.dot', (['vv', 'w'], {}), '(vv, w)\n', (3136, 3143), True, 'import numpy as np\n'), ((3166, 3178), 'numpy.dot', 'np.dot', (['v', 'a'], {}), '(v, a)\n', (3172, 3178), True, 'import numpy as np\n'), ((3245, 3263), 'numpy.dot', 'np.dot', (['v_prime', 'a'], {}), '(v_prime, a)\n', (3251, 3263), True, 'import numpy as np\n'), ((3812, 3835), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3833, 3835), False, 'import datetime\n'), ((3340, 3365), 'numpy.average', 'np.average', (['free_training'], {}), '(free_training)\n', (3350, 3365), True, 'import numpy as np\n'), ((3384, 3410), 'numpy.average', 'np.average', (['free_valdation'], {}), '(free_valdation)\n', (3394, 3410), True, 'import numpy as np\n'), ((2672, 2687), 'numpy.fabs', 'np.fabs', (['values'], {}), '(values)\n', (2679, 2687), True, 'import numpy as np\n')]
import time import os import sys import shutil import json import argparse from zipfile import ZipFile from contextlib import contextmanager from datetime import datetime from Tests.private_build.upload_packs_private import download_and_extract_index, update_index_with_priced_packs, \ extract_packs_artifacts from Tests.Marketplace.marketplace_services import init_storage_client from Tests.scripts.utils.log_util import install_logging from Tests.scripts.utils import logging_wrapper as logging MAX_SECONDS_TO_WAIT_FOR_LOCK = 600 LOCK_FILE_PATH = 'lock.txt' @contextmanager def lock_and_unlock_dummy_index(public_storage_bucket, dummy_index_lock_path): try: acquire_dummy_index_lock(public_storage_bucket, dummy_index_lock_path) yield except Exception: logging.exception("Error in dummy index lock context manager.") finally: release_dummy_index_lock(public_storage_bucket, dummy_index_lock_path) def change_pack_price_to_zero(path_to_pack_metadata): with open(path_to_pack_metadata, 'r') as pack_metadata_file: pack_metadata = json.load(pack_metadata_file) pack_metadata['price'] = 0 with open(path_to_pack_metadata, 'w') as pack_metadata_file: json.dump(pack_metadata, pack_metadata_file, indent=4) def change_packs_price_to_zero(public_index_folder_path): paths_to_packs_in_merged_index = [pack_dir.path for pack_dir in os.scandir(public_index_folder_path) if pack_dir.is_dir()] for path_to_pack in paths_to_packs_in_merged_index: path_to_pack_metadata = os.path.join(path_to_pack, 'metadata.json') change_pack_price_to_zero(path_to_pack_metadata) def merge_private_index_into_public_index(public_index_folder_path, private_index_folder_path): packs_in_private_index = [pack_dir.name for pack_dir in os.scandir(private_index_folder_path) if pack_dir.is_dir()] for pack_name in packs_in_private_index: path_to_pack_in_private_index = os.path.join(private_index_folder_path, pack_name) path_to_pack_in_public_index = os.path.join(public_index_folder_path, pack_name) shutil.copy(path_to_pack_in_private_index, path_to_pack_in_public_index) def upload_modified_index(public_index_folder_path, extract_destination_path, public_ci_dummy_index_blob, build_number, private_packs): """Upload updated index zip to cloud storage. Args: public_index_folder_path (str): public index folder full path. extract_destination_path (str): extract folder full path. public_ci_dummy_index_blob (Blob): google cloud storage object that represents the dummy index.zip blob. build_number (str): circleCI build number, used as an index revision. private_packs (list): List of private packs and their price. """ with open(os.path.join(public_index_folder_path, "index.json"), "w+") as index_file: for private_pack in private_packs: private_pack['price'] = 0 index = { 'revision': build_number, 'modified': datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%SZ'), 'packs': private_packs } json.dump(index, index_file, indent=4) index_zip_name = os.path.basename(public_index_folder_path) index_zip_path = shutil.make_archive(base_name=public_index_folder_path, format="zip", root_dir=extract_destination_path, base_dir=index_zip_name) try: public_ci_dummy_index_blob.reload() public_ci_dummy_index_blob.cache_control = "no-cache,max-age=0" # disabling caching for index blob public_ci_dummy_index_blob.upload_from_filename(index_zip_path) logging.success("Finished uploading index.zip to storage.") except Exception: logging.exception("Failed in uploading index. Mismatch in index file generation.") sys.exit(1) finally: shutil.rmtree(public_index_folder_path) def option_handler(): """Validates and parses script arguments. Returns: Namespace: Parsed arguments object. """ parser = argparse.ArgumentParser(description="Store packs in cloud storage.") # disable-secrets-detection-start parser.add_argument('-b', '--public_bucket_name', help="CI public bucket name", required=True) parser.add_argument('-pb', '--private_bucket_name', help="CI private bucket name", required=True) parser.add_argument('-s', '--service_account', help=("Path to gcloud service account, is for circleCI usage. " "For local development use your personal account and " "authenticate using Google Cloud SDK by running: " "`gcloud auth application-default login` and leave this parameter blank. " "For more information go to: " "https://googleapis.dev/python/google-api-core/latest/auth.html"), required=False) parser.add_argument('-n', '--ci_build_number', help="CircleCi build number (will be used as hash revision at index file)", required=True) parser.add_argument('-e', '--extract_public_index_path', help="Full path of folder to extract the public index", required=True) parser.add_argument('-sb', '--storage_base_path', help="Storage base path of the directory to upload to.", required=False) parser.add_argument('-p', '--pack_name', help="Modified pack to upload to gcs.") parser.add_argument('-a', '--artifacts_path', help="The full path of packs artifacts", required=True) parser.add_argument('-ea', '--extract_artifacts_path', help="Full path of folder to extract wanted packs", required=True) parser.add_argument('-di', '--dummy_index_dir_path', help="Full path to the dummy index in the private CI bucket", required=True) # disable-secrets-detection-end return parser.parse_args() def is_dummy_index_locked(public_storage_bucket, dummy_index_lock_path): dummy_index_lock_blob = public_storage_bucket.blob(dummy_index_lock_path) return dummy_index_lock_blob.exists() def lock_dummy_index(public_storage_bucket, dummy_index_lock_path): dummy_index_lock_blob = public_storage_bucket.blob(dummy_index_lock_path) with open(LOCK_FILE_PATH, 'w') as lock_file: lock_file.write('locked') with open(LOCK_FILE_PATH, 'rb') as lock_file: dummy_index_lock_blob.upload_from_file(lock_file) def acquire_dummy_index_lock(public_storage_bucket, dummy_index_lock_path): total_seconds_waited = 0 while is_dummy_index_locked(public_storage_bucket, dummy_index_lock_path): if total_seconds_waited >= MAX_SECONDS_TO_WAIT_FOR_LOCK: logging.critical("Error: Failed too long to acquire lock, exceeded max wait time.") sys.exit(1) if total_seconds_waited % 60 == 0: # Printing a message every minute to keep the machine from dying due to no output logging.info("Waiting to acquire lock.") total_seconds_waited += 10 time.sleep(10) lock_dummy_index(public_storage_bucket, dummy_index_lock_path) def release_dummy_index_lock(public_storage_bucket, dummy_index_lock_path): dummy_index_lock_blob = public_storage_bucket.blob(dummy_index_lock_path) dummy_index_lock_blob.delete() os.remove(LOCK_FILE_PATH) def add_private_packs_from_dummy_index(private_packs, dummy_index_blob): downloaded_dummy_index_path = 'current_dummy_index.zip' extracted_dummy_index_path = 'dummy_index' dummy_index_json_path = os.path.join(extracted_dummy_index_path, 'index', 'index.json') dummy_index_blob.download_to_filename(downloaded_dummy_index_path) os.mkdir(extracted_dummy_index_path) if os.path.exists(downloaded_dummy_index_path): with ZipFile(downloaded_dummy_index_path, 'r') as index_zip: index_zip.extractall(extracted_dummy_index_path) with open(dummy_index_json_path) as index_file: index_json = json.load(index_file) packs_from_dummy_index = index_json.get('packs', []) for pack in private_packs: is_pack_in_dummy_index = any( [pack['id'] == dummy_index_pack['id'] for dummy_index_pack in packs_from_dummy_index]) if not is_pack_in_dummy_index: packs_from_dummy_index.append(pack) os.remove(downloaded_dummy_index_path) shutil.rmtree(extracted_dummy_index_path) return packs_from_dummy_index def main(): install_logging('prepare_public_index_for_private_testing.log', logger=logging) upload_config = option_handler() service_account = upload_config.service_account build_number = upload_config.ci_build_number public_bucket_name = upload_config.public_bucket_name private_bucket_name = upload_config.private_bucket_name storage_base_path = upload_config.storage_base_path extract_public_index_path = upload_config.extract_public_index_path changed_pack = upload_config.pack_name extract_destination_path = upload_config.extract_artifacts_path packs_artifacts_path = upload_config.artifacts_path dummy_index_dir_path = upload_config.dummy_index_dir_path dummy_index_path = os.path.join(dummy_index_dir_path, 'index.zip') dummy_index_lock_path = os.path.join(dummy_index_dir_path, 'lock.txt') storage_client = init_storage_client(service_account) public_storage_bucket = storage_client.bucket(public_bucket_name) private_storage_bucket = storage_client.bucket(private_bucket_name) dummy_index_blob = public_storage_bucket.blob(dummy_index_path) with lock_and_unlock_dummy_index(public_storage_bucket, dummy_index_lock_path): extract_packs_artifacts(packs_artifacts_path, extract_destination_path) public_index_folder_path, public_index_blob, _ = download_and_extract_index(public_storage_bucket, extract_public_index_path, storage_base_path) # In order for the packs to be downloaded successfully, their price has to be 0 change_packs_price_to_zero(public_index_folder_path) private_packs, private_index_path, private_index_blob = update_index_with_priced_packs(private_storage_bucket, extract_destination_path, public_index_folder_path, changed_pack, True, storage_base_path) private_packs = add_private_packs_from_dummy_index(private_packs, dummy_index_blob) upload_modified_index(public_index_folder_path, extract_public_index_path, dummy_index_blob, build_number, private_packs) if __name__ == '__main__': main()
[ "Tests.Marketplace.marketplace_services.init_storage_client", "zipfile.ZipFile", "Tests.scripts.utils.logging_wrapper.info", "time.sleep", "Tests.private_build.upload_packs_private.extract_packs_artifacts", "sys.exit", "Tests.private_build.upload_packs_private.download_and_extract_index", "os.remove", "os.path.exists", "argparse.ArgumentParser", "os.mkdir", "Tests.scripts.utils.logging_wrapper.critical", "os.scandir", "Tests.scripts.utils.log_util.install_logging", "shutil.copy", "Tests.private_build.upload_packs_private.update_index_with_priced_packs", "Tests.scripts.utils.logging_wrapper.success", "Tests.scripts.utils.logging_wrapper.exception", "shutil.make_archive", "datetime.datetime.utcnow", "os.path.join", "os.path.basename", "shutil.rmtree", "json.load", "json.dump" ]
[((3268, 3310), 'os.path.basename', 'os.path.basename', (['public_index_folder_path'], {}), '(public_index_folder_path)\n', (3284, 3310), False, 'import os\n'), ((3332, 3465), 'shutil.make_archive', 'shutil.make_archive', ([], {'base_name': 'public_index_folder_path', 'format': '"""zip"""', 'root_dir': 'extract_destination_path', 'base_dir': 'index_zip_name'}), "(base_name=public_index_folder_path, format='zip',\n root_dir=extract_destination_path, base_dir=index_zip_name)\n", (3351, 3465), False, 'import shutil\n'), ((4149, 4217), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Store packs in cloud storage."""'}), "(description='Store packs in cloud storage.')\n", (4172, 4217), False, 'import argparse\n'), ((7524, 7549), 'os.remove', 'os.remove', (['LOCK_FILE_PATH'], {}), '(LOCK_FILE_PATH)\n', (7533, 7549), False, 'import os\n'), ((7760, 7823), 'os.path.join', 'os.path.join', (['extracted_dummy_index_path', '"""index"""', '"""index.json"""'], {}), "(extracted_dummy_index_path, 'index', 'index.json')\n", (7772, 7823), False, 'import os\n'), ((7899, 7935), 'os.mkdir', 'os.mkdir', (['extracted_dummy_index_path'], {}), '(extracted_dummy_index_path)\n', (7907, 7935), False, 'import os\n'), ((7943, 7986), 'os.path.exists', 'os.path.exists', (['downloaded_dummy_index_path'], {}), '(downloaded_dummy_index_path)\n', (7957, 7986), False, 'import os\n'), ((8555, 8593), 'os.remove', 'os.remove', (['downloaded_dummy_index_path'], {}), '(downloaded_dummy_index_path)\n', (8564, 8593), False, 'import os\n'), ((8598, 8639), 'shutil.rmtree', 'shutil.rmtree', (['extracted_dummy_index_path'], {}), '(extracted_dummy_index_path)\n', (8611, 8639), False, 'import shutil\n'), ((8692, 8771), 'Tests.scripts.utils.log_util.install_logging', 'install_logging', (['"""prepare_public_index_for_private_testing.log"""'], {'logger': 'logging'}), "('prepare_public_index_for_private_testing.log', logger=logging)\n", (8707, 8771), False, 'from Tests.scripts.utils.log_util import install_logging\n'), ((9408, 9455), 'os.path.join', 'os.path.join', (['dummy_index_dir_path', '"""index.zip"""'], {}), "(dummy_index_dir_path, 'index.zip')\n", (9420, 9455), False, 'import os\n'), ((9484, 9530), 'os.path.join', 'os.path.join', (['dummy_index_dir_path', '"""lock.txt"""'], {}), "(dummy_index_dir_path, 'lock.txt')\n", (9496, 9530), False, 'import os\n'), ((9553, 9589), 'Tests.Marketplace.marketplace_services.init_storage_client', 'init_storage_client', (['service_account'], {}), '(service_account)\n', (9572, 9589), False, 'from Tests.Marketplace.marketplace_services import init_storage_client\n'), ((1095, 1124), 'json.load', 'json.load', (['pack_metadata_file'], {}), '(pack_metadata_file)\n', (1104, 1124), False, 'import json\n'), ((1230, 1284), 'json.dump', 'json.dump', (['pack_metadata', 'pack_metadata_file'], {'indent': '(4)'}), '(pack_metadata, pack_metadata_file, indent=4)\n', (1239, 1284), False, 'import json\n'), ((1598, 1641), 'os.path.join', 'os.path.join', (['path_to_pack', '"""metadata.json"""'], {}), "(path_to_pack, 'metadata.json')\n", (1610, 1641), False, 'import os\n'), ((2002, 2052), 'os.path.join', 'os.path.join', (['private_index_folder_path', 'pack_name'], {}), '(private_index_folder_path, pack_name)\n', (2014, 2052), False, 'import os\n'), ((2092, 2141), 'os.path.join', 'os.path.join', (['public_index_folder_path', 'pack_name'], {}), '(public_index_folder_path, pack_name)\n', (2104, 2141), False, 'import os\n'), ((2150, 2222), 'shutil.copy', 'shutil.copy', (['path_to_pack_in_private_index', 'path_to_pack_in_public_index'], {}), '(path_to_pack_in_private_index, path_to_pack_in_public_index)\n', (2161, 2222), False, 'import shutil\n'), ((3207, 3245), 'json.dump', 'json.dump', (['index', 'index_file'], {'indent': '(4)'}), '(index, index_file, indent=4)\n', (3216, 3245), False, 'import json\n'), ((3745, 3804), 'Tests.scripts.utils.logging_wrapper.success', 'logging.success', (['"""Finished uploading index.zip to storage."""'], {}), "('Finished uploading index.zip to storage.')\n", (3760, 3804), True, 'from Tests.scripts.utils import logging_wrapper as logging\n'), ((3959, 3998), 'shutil.rmtree', 'shutil.rmtree', (['public_index_folder_path'], {}), '(public_index_folder_path)\n', (3972, 3998), False, 'import shutil\n'), ((7246, 7260), 'time.sleep', 'time.sleep', (['(10)'], {}), '(10)\n', (7256, 7260), False, 'import time\n'), ((8192, 8213), 'json.load', 'json.load', (['index_file'], {}), '(index_file)\n', (8201, 8213), False, 'import json\n'), ((9895, 9966), 'Tests.private_build.upload_packs_private.extract_packs_artifacts', 'extract_packs_artifacts', (['packs_artifacts_path', 'extract_destination_path'], {}), '(packs_artifacts_path, extract_destination_path)\n', (9918, 9966), False, 'from Tests.private_build.upload_packs_private import download_and_extract_index, update_index_with_priced_packs, extract_packs_artifacts\n'), ((10024, 10123), 'Tests.private_build.upload_packs_private.download_and_extract_index', 'download_and_extract_index', (['public_storage_bucket', 'extract_public_index_path', 'storage_base_path'], {}), '(public_storage_bucket, extract_public_index_path,\n storage_base_path)\n', (10050, 10123), False, 'from Tests.private_build.upload_packs_private import download_and_extract_index, update_index_with_priced_packs, extract_packs_artifacts\n'), ((10419, 10572), 'Tests.private_build.upload_packs_private.update_index_with_priced_packs', 'update_index_with_priced_packs', (['private_storage_bucket', 'extract_destination_path', 'public_index_folder_path', 'changed_pack', '(True)', 'storage_base_path'], {}), '(private_storage_bucket,\n extract_destination_path, public_index_folder_path, changed_pack, True,\n storage_base_path)\n', (10449, 10572), False, 'from Tests.private_build.upload_packs_private import download_and_extract_index, update_index_with_priced_packs, extract_packs_artifacts\n'), ((794, 857), 'Tests.scripts.utils.logging_wrapper.exception', 'logging.exception', (['"""Error in dummy index lock context manager."""'], {}), "('Error in dummy index lock context manager.')\n", (811, 857), True, 'from Tests.scripts.utils import logging_wrapper as logging\n'), ((1413, 1449), 'os.scandir', 'os.scandir', (['public_index_folder_path'], {}), '(public_index_folder_path)\n', (1423, 1449), False, 'import os\n'), ((1857, 1894), 'os.scandir', 'os.scandir', (['private_index_folder_path'], {}), '(private_index_folder_path)\n', (1867, 1894), False, 'import os\n'), ((2868, 2920), 'os.path.join', 'os.path.join', (['public_index_folder_path', '"""index.json"""'], {}), "(public_index_folder_path, 'index.json')\n", (2880, 2920), False, 'import os\n'), ((3835, 3922), 'Tests.scripts.utils.logging_wrapper.exception', 'logging.exception', (['"""Failed in uploading index. Mismatch in index file generation."""'], {}), "(\n 'Failed in uploading index. Mismatch in index file generation.')\n", (3852, 3922), True, 'from Tests.scripts.utils import logging_wrapper as logging\n'), ((3926, 3937), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (3934, 3937), False, 'import sys\n'), ((6903, 6991), 'Tests.scripts.utils.logging_wrapper.critical', 'logging.critical', (['"""Error: Failed too long to acquire lock, exceeded max wait time."""'], {}), "(\n 'Error: Failed too long to acquire lock, exceeded max wait time.')\n", (6919, 6991), True, 'from Tests.scripts.utils import logging_wrapper as logging\n'), ((6999, 7010), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (7007, 7010), False, 'import sys\n'), ((7161, 7201), 'Tests.scripts.utils.logging_wrapper.info', 'logging.info', (['"""Waiting to acquire lock."""'], {}), "('Waiting to acquire lock.')\n", (7173, 7201), True, 'from Tests.scripts.utils import logging_wrapper as logging\n'), ((8001, 8042), 'zipfile.ZipFile', 'ZipFile', (['downloaded_dummy_index_path', '"""r"""'], {}), "(downloaded_dummy_index_path, 'r')\n", (8008, 8042), False, 'from zipfile import ZipFile\n'), ((3104, 3121), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (3119, 3121), False, 'from datetime import datetime\n')]
import os import shutil from dataclasses import dataclass from datetime import datetime from typing import Dict, List, Optional from huggingface_hub import Repository from loguru import logger from prettytable import PrettyTable from .splits import TEST_SPLIT, TRAIN_SPLIT, VALID_SPLIT from .tasks import TASKS from .utils import BOLD_TAG, CYAN_TAG, GREEN_TAG, PURPLE_TAG, RESET_TAG, YELLOW_TAG, http_get, http_post from .validation import validate_file FILE_STATUS = ( "☁ Uploaded", "⌚ Queued", "⚙ In Progress...", "✅ Success!", "❌ Failed: file not found", "❌ Failed: unsupported file type", "❌ Failed: server error", "❌ Invalid column mapping, please fix it and re-upload the file.", ) JOB_STATUS = ( ("⌚", "queued"), ("🚀", "start"), ("⚙", "data_munging"), ("🏃", "model_training"), ("✅", "success"), ("❌", "failed"), ) PROJECT_STATUS = ( ("✨", "Created"), ("🚀", "Data processing started"), ("✅", "Data processing successful"), ("❌", "Failed to download data files from the huggingface hub"), ("❌", "Missing 'train' or 'valid' split in data files"), ("❌", "Failed to process data files"), ("❌", "Failed to upload processed data files to the huggingface hub"), ) SPLITS = (TRAIN_SPLIT, VALID_SPLIT, TEST_SPLIT) @dataclass class TrainingJob: """A training job in AutoNLP""" job_id: int status: str status_emoji: str created_at: datetime updated_at: datetime @classmethod def from_json_resp(cls, json_resp: dict): return cls( job_id=json_resp["id"], status_emoji=JOB_STATUS[json_resp["status"] - 1][0], status=JOB_STATUS[json_resp["status"] - 1][1], created_at=datetime.fromisoformat(json_resp["created_at"]), updated_at=datetime.fromisoformat(json_resp["updated_at"]), ) def __str__(self): return "\n".join( [ f"📚 Model # {self.job_id}", f" • {BOLD_TAG}Status{RESET_TAG}: {self.status_emoji} {self.status}", f" • {BOLD_TAG}Created at{RESET_TAG}: {self.created_at.strftime('%Y-%m-%d %H:%M Z')}", f" • {BOLD_TAG}Last update{RESET_TAG}: {self.updated_at.strftime('%Y-%m-%d %H:%M Z')}", ] ) @dataclass class UploadedFile: """A file uploaded to an AutoNLP project""" file_id: int filename: str processing_status: str split: str col_mapping: Dict[str, str] created_at: datetime updated_at: datetime @classmethod def from_json_resp(cls, json_resp: dict): return cls( file_id=json_resp["data_file_id"], filename=json_resp["fname"], processing_status=FILE_STATUS[json_resp["download_status"] - 1], split=SPLITS[json_resp["split"] - 1], col_mapping=json_resp["col_mapping"], created_at=datetime.fromisoformat(json_resp["created_at"]), updated_at=datetime.fromisoformat(json_resp["updated_at"]), ) def __str__(self): return "\n".join( [ f"📁 {CYAN_TAG}{self.filename}{RESET_TAG} (id # {self.file_id})", f" • {BOLD_TAG}Split{RESET_TAG}: {self.split}", f" • {BOLD_TAG}Processing status{RESET_TAG}: {self.processing_status}", f" • {BOLD_TAG}Last update{RESET_TAG}: {self.updated_at.strftime('%Y-%m-%d %H:%M Z')}", ] ) @dataclass class Project: """An AutoNLP project""" _token: str proj_id: int name: str user: str task: str status_emoji: str status: str language: str created_at: datetime updated_at: datetime dataset_id: str files: Optional[List[UploadedFile]] = None training_jobs: Optional[List] = None @classmethod def from_json_resp(cls, json_resp: dict, token: str): """Build a Project from the API response, JSON-encoded""" return cls( proj_id=json_resp["id"], name=json_resp["proj_name"], user=json_resp["username"], task=list(filter(lambda key: TASKS[key] == json_resp["task"], TASKS.keys()))[0], status_emoji=PROJECT_STATUS[json_resp["status"] - 1][0], status=PROJECT_STATUS[json_resp["status"] - 1][1], created_at=datetime.fromisoformat(json_resp["created_at"]), updated_at=datetime.fromisoformat(json_resp["updated_at"]), dataset_id=json_resp["dataset_id"], language=json_resp["config"]["language"], _token=token, ) def refresh(self): """Update information about uploaded files and models attached to the project""" logger.info("🔄 Refreshing uploaded files information...") resp = http_get(path=f"/projects/{self.proj_id}/data", token=self._token) json_files = resp.json() self.files = [UploadedFile.from_json_resp(file) for file in json_files] logger.info("🔄 Refreshing models information...") resp = http_get(path=f"/projects/{self.proj_id}/jobs", token=self._token) json_jobs = resp.json() self.training_jobs = [TrainingJob.from_json_resp(job) for job in json_jobs] def upload(self, filepaths: List[str], split: str, col_mapping: Dict[str, str]): """Uploads files to the project""" local_dataset_dir = os.path.expanduser(f"~/.huggingface/autonlp/projects/{self.dataset_id}") if os.path.exists(local_dataset_dir): if os.path.isdir(os.path.join(local_dataset_dir, "git")): clone_from = None else: shutil.rmtree(local_dataset_dir) clone_from = "https://huggingface.co/datasets/" + self.dataset_id else: clone_from = "https://huggingface.co/datasets/" + self.dataset_id dataset_repo = Repository( local_dir=local_dataset_dir, clone_from=clone_from, use_auth_token=self._token, ) dataset_repo.git_pull() for idx, file_path in enumerate(filepaths): if not os.path.isfile(file_path): logger.error(f"[{idx + 1}/{len(filepaths)}] ❌ '{file_path}' does not exist or is not a file!") continue file_name = os.path.basename(file_path) file_extension = file_name.split(".")[-1] src = os.path.expanduser(file_path) dst = os.path.join(local_dataset_dir, "raw", file_name) logger.info(f"[{idx + 1}/{len(filepaths)}] 📦 Copying {src} to {dst}...") os.makedirs(os.path.dirname(dst), exist_ok=True) shutil.copyfile(src, dst) logger.info(f"[{idx + 1}/{len(filepaths)}] 🔎 Validating {dst} and column mapping...") validate_file(path=dst, task=self.task, file_ext=file_extension, col_mapping=col_mapping) dataset_repo.lfs_track(patterns=[f"raw/*.{file_extension}"]) dataset_repo.git_pull() try: logger.info("☁ Uploading files to the dataset hub...") dataset_repo.push_to_hub(commit_message="Upload from AutoNLP CLI") logger.info("✅ Successfully uploaded the files!") except OSError as err: if "nothing to commit, working tree clean" in err.args[0]: logger.info("❔ Files did not change since last upload!") dataset_repo.git_push() return logger.error("❌ Something went wrong when uploading the files!") raise for idx, file_path in enumerate(filepaths): file_name = os.path.basename(file_path) logger.info(f"[{idx + 1}/{len(filepaths)}] 📁 Registering file {file_name} into project '{file_name}'...") payload = { "split": split, "col_mapping": col_mapping, "data_files": [{"fname": file_name, "username": self.user}], } http_post(path=f"/projects/{self.proj_id}/data/add", payload=payload, token=self._token) logger.info(f"[{idx + 1}/{len(filepaths)}] ✅ Success!") def train(self): """Starts training on the models""" http_get(path=f"/projects/{self.proj_id}/data/start_process", token=self._token) logger.info("🔥🔥 Training started!") def __str__(self): header = "\n".join( [ f"AutoNLP Project (id # {self.proj_id})", "~" * 35, f" • {BOLD_TAG}Name{RESET_TAG}: {PURPLE_TAG}{self.name}{RESET_TAG}", f" • {BOLD_TAG}Owner{RESET_TAG}: {GREEN_TAG}{self.user}{RESET_TAG}", f" • {BOLD_TAG}Status{RESET_TAG}: {BOLD_TAG}{self.status_emoji} {self.status}{RESET_TAG}", f" • {BOLD_TAG}Task{RESET_TAG}: {YELLOW_TAG}{self.task.title().replace('_', ' ')}{RESET_TAG}", f" • {BOLD_TAG}Created at{RESET_TAG}: {self.created_at.strftime('%Y-%m-%d %H:%M Z')}", f" • {BOLD_TAG}Last update{RESET_TAG}: {self.updated_at.strftime('%Y-%m-%d %H:%M Z')}", "", ] ) printout = [header] # Uploaded files information if self.files is None: descriptions = ["❓ Files information unknown, update the project"] else: if len(self.files) == 0: descriptions = ["🤷 No files uploaded yet!"] else: sorted_files = sorted(self.files, key=lambda file: file.split) # Sort by split descriptions = [str(file) for file in sorted_files] printout.append( "\n".join( [ "~" * 14 + f" {BOLD_TAG}Files{RESET_TAG} " + "~" * 14, "", "Dataset ID:", f"{CYAN_TAG}{self.dataset_id}{RESET_TAG}", "", ] + descriptions ) ) # Training jobs information if self.training_jobs is None: jobs_str = "❓ Models information unknown, update the project" else: if len(self.training_jobs) == 0: jobs_str = "🤷 No train jobs started yet!" else: model_table = PrettyTable(["", "ID", "Status", "Creation date", "Last update"]) for job in sorted(self.training_jobs, key=lambda job: job.job_id): model_table.add_row( [ job.status_emoji, job.job_id, job.status, job.created_at.strftime("%Y-%m-%d %H:%M Z"), job.updated_at.strftime("%Y-%m-%d %H:%M Z"), ] ) jobs_str = str(model_table) printout.append("\n".join(["", "~" * 12 + f" {BOLD_TAG}Models{RESET_TAG} " + "~" * 11, "", jobs_str])) return "\n".join(printout)
[ "prettytable.PrettyTable", "os.path.exists", "loguru.logger.info", "os.path.join", "huggingface_hub.Repository", "os.path.isfile", "os.path.dirname", "shutil.copyfile", "loguru.logger.error", "os.path.basename", "datetime.datetime.fromisoformat", "shutil.rmtree", "os.path.expanduser" ]
[((4759, 4816), 'loguru.logger.info', 'logger.info', (['"""🔄 Refreshing uploaded files information..."""'], {}), "('🔄 Refreshing uploaded files information...')\n", (4770, 4816), False, 'from loguru import logger\n'), ((5021, 5070), 'loguru.logger.info', 'logger.info', (['"""🔄 Refreshing models information..."""'], {}), "('🔄 Refreshing models information...')\n", (5032, 5070), False, 'from loguru import logger\n'), ((5426, 5498), 'os.path.expanduser', 'os.path.expanduser', (['f"""~/.huggingface/autonlp/projects/{self.dataset_id}"""'], {}), "(f'~/.huggingface/autonlp/projects/{self.dataset_id}')\n", (5444, 5498), False, 'import os\n'), ((5510, 5543), 'os.path.exists', 'os.path.exists', (['local_dataset_dir'], {}), '(local_dataset_dir)\n', (5524, 5543), False, 'import os\n'), ((5913, 6007), 'huggingface_hub.Repository', 'Repository', ([], {'local_dir': 'local_dataset_dir', 'clone_from': 'clone_from', 'use_auth_token': 'self._token'}), '(local_dir=local_dataset_dir, clone_from=clone_from,\n use_auth_token=self._token)\n', (5923, 6007), False, 'from huggingface_hub import Repository\n'), ((8334, 8369), 'loguru.logger.info', 'logger.info', (['"""🔥🔥 Training started!"""'], {}), "('🔥🔥 Training started!')\n", (8345, 8369), False, 'from loguru import logger\n'), ((6342, 6369), 'os.path.basename', 'os.path.basename', (['file_path'], {}), '(file_path)\n', (6358, 6369), False, 'import os\n'), ((6442, 6471), 'os.path.expanduser', 'os.path.expanduser', (['file_path'], {}), '(file_path)\n', (6460, 6471), False, 'import os\n'), ((6490, 6539), 'os.path.join', 'os.path.join', (['local_dataset_dir', '"""raw"""', 'file_name'], {}), "(local_dataset_dir, 'raw', file_name)\n", (6502, 6539), False, 'import os\n'), ((6698, 6723), 'shutil.copyfile', 'shutil.copyfile', (['src', 'dst'], {}), '(src, dst)\n', (6713, 6723), False, 'import shutil\n'), ((7058, 7112), 'loguru.logger.info', 'logger.info', (['"""☁ Uploading files to the dataset hub..."""'], {}), "('☁ Uploading files to the dataset hub...')\n", (7069, 7112), False, 'from loguru import logger\n'), ((7204, 7254), 'loguru.logger.info', 'logger.info', (['"""✅ Successfully uploaded the files!"""'], {}), "('✅ Successfully uploaded the files!')\n", (7215, 7254), False, 'from loguru import logger\n'), ((7665, 7692), 'os.path.basename', 'os.path.basename', (['file_path'], {}), '(file_path)\n', (7681, 7692), False, 'import os\n'), ((1743, 1790), 'datetime.datetime.fromisoformat', 'datetime.fromisoformat', (["json_resp['created_at']"], {}), "(json_resp['created_at'])\n", (1765, 1790), False, 'from datetime import datetime\n'), ((1815, 1862), 'datetime.datetime.fromisoformat', 'datetime.fromisoformat', (["json_resp['updated_at']"], {}), "(json_resp['updated_at'])\n", (1837, 1862), False, 'from datetime import datetime\n'), ((2924, 2971), 'datetime.datetime.fromisoformat', 'datetime.fromisoformat', (["json_resp['created_at']"], {}), "(json_resp['created_at'])\n", (2946, 2971), False, 'from datetime import datetime\n'), ((2996, 3043), 'datetime.datetime.fromisoformat', 'datetime.fromisoformat', (["json_resp['updated_at']"], {}), "(json_resp['updated_at'])\n", (3018, 3043), False, 'from datetime import datetime\n'), ((4379, 4426), 'datetime.datetime.fromisoformat', 'datetime.fromisoformat', (["json_resp['created_at']"], {}), "(json_resp['created_at'])\n", (4401, 4426), False, 'from datetime import datetime\n'), ((4451, 4498), 'datetime.datetime.fromisoformat', 'datetime.fromisoformat', (["json_resp['updated_at']"], {}), "(json_resp['updated_at'])\n", (4473, 4498), False, 'from datetime import datetime\n'), ((5574, 5612), 'os.path.join', 'os.path.join', (['local_dataset_dir', '"""git"""'], {}), "(local_dataset_dir, 'git')\n", (5586, 5612), False, 'import os\n'), ((5683, 5715), 'shutil.rmtree', 'shutil.rmtree', (['local_dataset_dir'], {}), '(local_dataset_dir)\n', (5696, 5715), False, 'import shutil\n'), ((6155, 6180), 'os.path.isfile', 'os.path.isfile', (['file_path'], {}), '(file_path)\n', (6169, 6180), False, 'import os\n'), ((6649, 6669), 'os.path.dirname', 'os.path.dirname', (['dst'], {}), '(dst)\n', (6664, 6669), False, 'import os\n'), ((7505, 7569), 'loguru.logger.error', 'logger.error', (['"""❌ Something went wrong when uploading the files!"""'], {}), "('❌ Something went wrong when uploading the files!')\n", (7517, 7569), False, 'from loguru import logger\n'), ((10329, 10394), 'prettytable.PrettyTable', 'PrettyTable', (["['', 'ID', 'Status', 'Creation date', 'Last update']"], {}), "(['', 'ID', 'Status', 'Creation date', 'Last update'])\n", (10340, 10394), False, 'from prettytable import PrettyTable\n'), ((7373, 7429), 'loguru.logger.info', 'logger.info', (['"""❔ Files did not change since last upload!"""'], {}), "('❔ Files did not change since last upload!')\n", (7384, 7429), False, 'from loguru import logger\n')]
r"""Training and evaluating quantum kernels =========================================== .. meta:: :property="og:description": Kernels and alignment training with Pennylane. :property="og:image": https://pennylane.ai/qml/_images/QEK_thumbnail.png .. related:: tutorial_kernel_based_training Kernel-based training with scikit-learn tutorial_data_reuploading_classifier Classification with data reuploading *Authors: <NAME>, <NAME>, <NAME>, <NAME>, <NAME> and <NAME>. Posted: 24 June 2021* Kernel methods are one of the cornerstones of classical machine learning. Here we are concerned with kernels that can be evaluated on quantum computers, *quantum kernels* for short. In this tutorial you will learn how to evaluate kernels, use them for classification and train them with gradient-based optimization, and all that using the functionality of PennyLane's `kernels module <https://pennylane.readthedocs.io/en/latest/code/qml_kernels.html>`__. The demo is based on Ref. [#Training_QEKs]_, a project from Xanadu's own `QHack <https://qhack.ai/>`__ hackathon. What are kernel methods? ------------------------ To understand what a kernel method does, let's first revisit one of the simplest methods to assign binary labels to datapoints: linear classification. Imagine we want to discern two different classes of points that lie in different corners of the plane. A linear classifier corresponds to drawing a line and assigning different labels to the regions on opposing sides of the line: .. figure:: ../demonstrations/kernels_module/linear_classification.png :align: center :width: 30% We can mathematically formalize this by assigning the label :math:`y` via .. math:: y(\boldsymbol{x}) = \operatorname{sgn}(\langle \boldsymbol{w}, \boldsymbol{x}\rangle + b). The vector :math:`\boldsymbol{w}` points perpendicular to the line and thus determine its slope. The independent term :math:`b` specifies the position on the plane. In this form, linear classification can also be extended to higher dimensional vectors :math:`\boldsymbol{x}`, where a line does not divide the entire space into two regions anymore. Instead one needs a *hyperplane*. It is immediately clear that this method is not very powerful, as datasets that are not separable by a hyperplane can't be classified without error. We can actually sneak around this limitation by performing a neat trick: if we define some map :math:`\phi(\boldsymbol{x})` that *embeds* our datapoints into a larger *feature space* and then perform linear classification there, we could actually realise non-linear classification in our original space! .. figure:: ../demonstrations/kernels_module/embedding_nonlinear_classification.png :align: center :width: 65% If we go back to the expression for our prediction and include the embedding, we get .. math:: y(\boldsymbol{x}) = \operatorname{sgn}(\langle \boldsymbol{w}, \phi(\boldsymbol{x})\rangle + b). We will forgo one tiny step, but it can be shown that for the purpose of optimal classification, we can choose the vector defining the decision boundary as a linear combination of the embedded datapoints :math:`\boldsymbol{w} = \sum_i \alpha_i \phi(\boldsymbol{x}_i)`. Putting this into the formula yields .. math:: y(\boldsymbol{x}) = \operatorname{sgn}\left(\sum_i \alpha_i \langle \phi(\boldsymbol{x}_i), \phi(\boldsymbol{x})\rangle + b\right). This rewriting might not seem useful at first, but notice the above formula only contains inner products between vectors in the embedding space: .. math:: k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \langle \phi(\boldsymbol{x}_i), \phi(\boldsymbol{x}_j)\rangle. We call this function the *kernel*. It provides the advantage that we can often find an explicit formula for the kernel :math:`k` that makes it superfluous to actually perform the (potentially expensive) embedding :math:`\phi`. Consider for example the following embedding and the associated kernel: .. math:: \phi((x_1, x_2)) &= (x_1^2, \sqrt{2} x_1 x_2, x_2^2) \\ k(\boldsymbol{x}, \boldsymbol{y}) &= x_1^2 y_1^2 + 2 x_1 x_2 y_1 y_2 + x_2^2 y_2^2 = \langle \boldsymbol{x}, \boldsymbol{y} \rangle^2. This means by just replacing the regular scalar product in our linear classification with the map :math:`k`, we can actually express much more intricate decision boundaries! This is very important, because in many interesting cases the embedding :math:`\phi` will be much costlier to compute than the kernel :math:`k`. In this demo, we will explore one particular kind of kernel that can be realized on near-term quantum computers, namely *Quantum Embedding Kernels (QEKs)*. These are kernels that arise from embedding data into the space of quantum states. We formalize this by considering a parameterised quantum circuit :math:`U(\boldsymbol{x})` that maps a datapoint :math:`\boldsymbol{x}` to the state .. math:: |\psi(\boldsymbol{x})\rangle = U(\boldsymbol{x}) |0 \rangle. The kernel value is then given by the *overlap* of the associated embedded quantum states .. math:: k(\boldsymbol{x}_i, \boldsymbol{x}_j) = | \langle\psi(\boldsymbol{x}_i)|\psi(\boldsymbol{x}_j)\rangle|^2. """ ############################################################################## # A toy problem # ------------- # In this demo, we will treat a toy problem that showcases the # inner workings of classification with quantum embedding kernels, # training variational embedding kernels and the available functionalities # to do both in PennyLane. We of course need to start with some imports: from pennylane import numpy as np import matplotlib as mpl np.random.seed(1359) ############################################################################## # And we proceed right away to create a dataset to work with, the # ``DoubleCake`` dataset. Firstly, we define two functions to enable us to # generate the data. # The details of these functions are not essential for understanding the demo, # so don't mind them if they are confusing. def _make_circular_data(num_sectors): """Generate datapoints arranged in an even circle.""" center_indices = np.array(range(0, num_sectors)) sector_angle = 2 * np.pi / num_sectors angles = (center_indices + 0.5) * sector_angle x = 0.7 * np.cos(angles) y = 0.7 * np.sin(angles) labels = 2 * np.remainder(np.floor_divide(angles, sector_angle), 2) - 1 return x, y, labels def make_double_cake_data(num_sectors): x1, y1, labels1 = _make_circular_data(num_sectors) x2, y2, labels2 = _make_circular_data(num_sectors) # x and y coordinates of the datapoints x = np.hstack([x1, 0.5 * x2]) y = np.hstack([y1, 0.5 * y2]) # Canonical form of dataset X = np.vstack([x, y]).T labels = np.hstack([labels1, -1 * labels2]) # Canonical form of labels Y = labels.astype(int) return X, Y ############################################################################## # Next, we define a function to help plot the ``DoubleCake`` data: def plot_double_cake_data(X, Y, ax, num_sectors=None): """Plot double cake data and corresponding sectors.""" x, y = X.T cmap = mpl.colors.ListedColormap(["#FF0000", "#0000FF"]) ax.scatter(x, y, c=Y, cmap=cmap, s=25, marker="s") if num_sectors is not None: sector_angle = 360 / num_sectors for i in range(num_sectors): color = ["#FF0000", "#0000FF"][(i % 2)] other_color = ["#FF0000", "#0000FF"][((i + 1) % 2)] ax.add_artist( mpl.patches.Wedge( (0, 0), 1, i * sector_angle, (i + 1) * sector_angle, lw=0, color=color, alpha=0.1, width=0.5, ) ) ax.add_artist( mpl.patches.Wedge( (0, 0), 0.5, i * sector_angle, (i + 1) * sector_angle, lw=0, color=other_color, alpha=0.1, ) ) ax.set_xlim(-1, 1) ax.set_ylim(-1, 1) ax.set_aspect("equal") ax.axis("off") return ax ############################################################################## # Let's now have a look at our dataset. In our example, we will work with # 3 sectors: import matplotlib.pyplot as plt num_sectors = 3 X, Y = make_double_cake_data(num_sectors) ax = plot_double_cake_data(X, Y, plt.gca(), num_sectors=num_sectors) ############################################################################## # Defining a Quantum Embedding Kernel # ----------------------------------- # PennyLane's `kernels module <https://pennylane.readthedocs.io/en/latest/code/qml_kernels.html>`__ # allows for a particularly simple # implementation of Quantum Embedding Kernels. The first ingredient we # need for this is an *ansatz*, which we will construct by repeating a # layer as building block. Let's start by defining this layer: import pennylane as qml def layer(x, params, wires, i0=0, inc=1): """Building block of the embedding ansatz""" i = i0 for j, wire in enumerate(wires): qml.Hadamard(wires=[wire]) qml.RZ(x[i % len(x)], wires=[wire]) i += inc qml.RY(params[0, j], wires=[wire]) qml.broadcast(unitary=qml.CRZ, pattern="ring", wires=wires, parameters=params[1]) ############################################################################## # To construct the ansatz, this layer is repeated multiple times, reusing # the datapoint ``x`` but feeding different variational # parameters ``params`` into each of them. # Together, the datapoint and the variational parameters fully determine # the embedding ansatz :math:`U(\boldsymbol{x})`. # In order to construct the full kernel circuit, we also require its adjoint # :math:`U(\boldsymbol{x})^\dagger`, which we can obtain via ``qml.adjoint``. def ansatz(x, params, wires): """The embedding ansatz""" for j, layer_params in enumerate(params): layer(x, layer_params, wires, i0=j * len(wires)) adjoint_ansatz = qml.adjoint(ansatz) def random_params(num_wires, num_layers): """Generate random variational parameters in the shape for the ansatz.""" return np.random.uniform(0, 2 * np.pi, (num_layers, 2, num_wires), requires_grad=True) ############################################################################## # Together with the ansatz we only need a device to run the quantum circuit on. # For the purpose of this tutorial we will use PennyLane's ``default.qubit`` # device with 5 wires in analytic mode. dev = qml.device("default.qubit", wires=5, shots=None) wires = dev.wires.tolist() ############################################################################## # Let us now define the quantum circuit that realizes the kernel. We will compute # the overlap of the quantum states by first applying the embedding of the first # datapoint and then the adjoint of the embedding of the second datapoint. We # finally extract the probabilities of observing each basis state. @qml.qnode(dev) def kernel_circuit(x1, x2, params): ansatz(x1, params, wires=wires) adjoint_ansatz(x2, params, wires=wires) return qml.probs(wires=wires) ############################################################################## # The kernel function itself is now obtained by looking at the probability # of observing the all-zero state at the end of the kernel circuit -- because # of the ordering in ``qml.probs``, this is the first entry: def kernel(x1, x2, params): return kernel_circuit(x1, x2, params)[0] ############################################################################## # # .. note:: # An alternative way to set up the kernel circuit in PennyLane would be # to use the observable type # `Projector <https://pennylane.readthedocs.io/en/latest/code/api/pennylane.Projector.html>`__. # This is shown in the # `demo on kernel-based training of quantum models <https://pennylane.ai/qml/demos/tutorial_kernel_based_training.html>`__, where you will also find more # background information on the kernel circuit structure itself. # # Before focusing on the kernel values we have to provide values for the # variational parameters. At this point we fix the number of layers in the # ansatz circuit to :math:`6`. init_params = random_params(num_wires=5, num_layers=6) ############################################################################## # Now we can have a look at the kernel value between the first and the # second datapoint: kernel_value = kernel(X[0], X[1], init_params) print(f"The kernel value between the first and second datapoint is {kernel_value:.3f}") ############################################################################## # The mutual kernel values between all elements of the dataset form the # *kernel matrix*. We can inspect it via the ``qml.kernels.square_kernel_matrix`` # method, which makes use of symmetry of the kernel, # :math:`k(\boldsymbol{x}_i,\boldsymbol{x}_j) = k(\boldsymbol{x}_j, \boldsymbol{x}_i)`. # In addition, the option ``assume_normalized_kernel=True`` ensures that we do not # calculate the entries between the same datapoints, as we know them to be 1 # for our noiseless simulation. Overall this means that we compute # :math:`\frac{1}{2}(N^2-N)` kernel values for :math:`N` datapoints. # To include the variational parameters, we construct a ``lambda`` function that # fixes them to the values we sampled above. init_kernel = lambda x1, x2: kernel(x1, x2, init_params) K_init = qml.kernels.square_kernel_matrix(X, init_kernel, assume_normalized_kernel=True) with np.printoptions(precision=3, suppress=True): print(K_init) ############################################################################## # Using the Quantum Embedding Kernel for predictions # -------------------------------------------------- # The quantum kernel alone can not be used to make predictions on a # dataset, becaues it is essentially just a tool to measure the similarity # between two datapoints. To perform an actual prediction we will make use # of scikit-learn's Support Vector Classifier (SVC). from sklearn.svm import SVC ############################################################################## # To construct the SVM, we need to supply ``sklearn.svm.SVC`` with a function # that takes two sets of datapoints and returns the associated kernel matrix. # We can make use of the function ``qml.kernels.kernel_matrix`` that provides # this functionality. It expects the kernel to not have additional parameters # besides the datapoints, which is why we again supply the variational # parameters via the ``lambda`` function from above. # Once we have this, we can let scikit-learn adjust the SVM from our Quantum # Embedding Kernel. # # .. note:: # This step does *not* modify the variational parameters in our circuit # ansatz. What it does is solving a different optimization task for the # :math:`\alpha` and :math:`b` vectors we introduced in the beginning. svm = SVC(kernel=lambda X1, X2: qml.kernels.kernel_matrix(X1, X2, init_kernel)).fit(X, Y) ############################################################################## # To see how well our classifier performs we will measure which percentage # of the dataset it classifies correctly. def accuracy(classifier, X, Y_target): return 1 - np.count_nonzero(classifier.predict(X) - Y_target) / len(Y_target) accuracy_init = accuracy(svm, X, Y) print(f"The accuracy of the kernel with random parameters is {accuracy_init:.3f}") ############################################################################## # We are also interested in seeing what the decision boundaries in this # classification look like. This could help us spotting overfitting issues # visually in more complex data sets. To this end we will introduce a # second helper method. def plot_decision_boundaries(classifier, ax, N_gridpoints=14): _xx, _yy = np.meshgrid(np.linspace(-1, 1, N_gridpoints), np.linspace(-1, 1, N_gridpoints)) _zz = np.zeros_like(_xx) for idx in np.ndindex(*_xx.shape): _zz[idx] = classifier.predict(np.array([_xx[idx], _yy[idx]])[np.newaxis, :]) plot_data = {"_xx": _xx, "_yy": _yy, "_zz": _zz} ax.contourf( _xx, _yy, _zz, cmap=mpl.colors.ListedColormap(["#FF0000", "#0000FF"]), alpha=0.2, levels=[-1, 0, 1], ) plot_double_cake_data(X, Y, ax) return plot_data ############################################################################## # With that done, let's have a look at the decision boundaries for our # initial classifier: init_plot_data = plot_decision_boundaries(svm, plt.gca()) ############################################################################## # We see the outer points in the dataset can be correctly classified, but # we still struggle with the inner circle. But remember we have a circuit # with many free parameters! It is reasonable to believe we can give # values to those variational parameters which improve the overall accuracy # of our SVC. # # Training the Quantum Embedding Kernel # ------------------------------------- # # To be able to train the Quantum Embedding Kernel we need some measure of # how well it fits the dataset in question. Performing an exhaustive # search in parameter space is not a good solution because it is very # resource intensive, and since the accuracy is a discrete quantity we # would not be able to detect small improvements. # # We can, however, resort to a more specialized measure, the # *kernel-target alignment* [#Alignment]_. The kernel-target alignment compares the # similarity predicted by the quantum kernel to the actual labels of the # training data. It is based on *kernel alignment*, a similiarity measure # between two kernels with given kernel matrices :math:`K_1` and # :math:`K_2`: # # .. math:: # \operatorname{KA}(K_1, K_2) = \frac{\operatorname{Tr}(K_1 K_2)}{\sqrt{\operatorname{Tr}(K_1^2)\operatorname{Tr}(K_2^2)}}. # # .. note:: # Seen from a more theoretical side, :math:`\operatorname{KA}` # is nothing else than the cosine of the angle between the kernel # matrices :math:`K_1` and :math:`K_2` if we see them as vectors # in the space of matrices with the Hilbert-Schmidt (or # Frobenius) scalar product # :math:`\langle A, B \rangle = \operatorname{Tr}(A^T B)`. This # reinforces the geometric picture of how this measure relates # to objects, namely two kernels, being aligned in a vector space. # # The training data enters the picture by defining an *ideal* kernel # function that expresses the original labelling in the vector # :math:`\boldsymbol{y}` by assigning to two datapoints the product # of the corresponding labels: # # .. math:: # k_{\boldsymbol{y}}(\boldsymbol{x}_i, \boldsymbol{x}_j) = y_i y_j. # # The assigned kernel is thus :math:`+1` if both datapoints lie in the # same class and :math:`-1` otherwise and its kernel matrix is simply # given by the outer product :math:`\boldsymbol{y}\boldsymbol{y}^T`. # The kernel-target alignment is then defined as the kernel alignment # of the kernel matrix :math:`K` generated by the # quantum kernel and :math:`\boldsymbol{y}\boldsymbol{y}^T`: # # .. math:: # \operatorname{KTA}_{\boldsymbol{y}}(K) # = \frac{\operatorname{Tr}(K \boldsymbol{y}\boldsymbol{y}^T)}{\sqrt{\operatorname{Tr}(K^2)\operatorname{Tr}((\boldsymbol{y}\boldsymbol{y}^T)^2)}} # = \frac{\boldsymbol{y}^T K \boldsymbol{y}}{\sqrt{\operatorname{Tr}(K^2)} N} # # where :math:`N` is the number of elements in :math:`\boldsymbol{y}`, # that is the number of datapoints in the dataset. # # In summary, the kernel-target alignment effectively captures how well # the kernel you chose reproduces the actual similarities of the data. It # does have one drawback, however: having a high kernel-target alignment # is only a necessary but not a sufficient condition for a good # performance of the kernel [#Alignment]_. This means having good alignment is # guaranteed for good performance, but optimal alignment will not always # bring optimal training accuracy with it. # # Let's now come back to the actual implementation. PennyLane's # ``kernels`` module allows you to easily evaluate the kernel # target alignment: kta_init = qml.kernels.target_alignment(X, Y, init_kernel, assume_normalized_kernel=True) print(f"The kernel-target alignment for our dataset and random parameters is {kta_init:.3f}") ############################################################################## # Now let's code up an optimization loop and improve the kernel-target alignment! # # We will make use of regular gradient descent optimization. To speed up # the optimization we will not use the entire training set to compute # :math:`\operatorname{KTA}` but rather # sample smaller subsets of the data at each step, we choose :math:`4` # datapoints at random. Remember that PennyLane's built-in optimizer works # to *minimize* the cost function that is given to it, which is why we # have to multiply the kernel target alignment by :math:`-1` to actually # *maximize* it in the process. # # .. note:: # Currently, the function ``qml.kernels.target_alignment`` is not # differentiable yet, making it unfit for gradient descent optimization. # We therefore first define a differentiable version of this function. def target_alignment( X, Y, kernel, assume_normalized_kernel=False, rescale_class_labels=True, ): """Kernel-target alignment between kernel and labels.""" K = qml.kernels.square_kernel_matrix( X, kernel, assume_normalized_kernel=assume_normalized_kernel, ) if rescale_class_labels: nplus = np.count_nonzero(np.array(Y) == 1) nminus = len(Y) - nplus _Y = np.array([y / nplus if y == 1 else y / nminus for y in Y]) else: _Y = np.array(Y) T = np.outer(_Y, _Y) inner_product = np.sum(K * T) norm = np.sqrt(np.sum(K * K) * np.sum(T * T)) inner_product = inner_product / norm return inner_product params = init_params opt = qml.GradientDescentOptimizer(0.2) for i in range(500): # Choose subset of datapoints to compute the KTA on. subset = np.random.choice(list(range(len(X))), 4) # Define the cost function for optimization cost = lambda _params: -target_alignment( X[subset], Y[subset], lambda x1, x2: kernel(x1, x2, _params), assume_normalized_kernel=True, ) # Optimization step params = opt.step(cost, params) # Report the alignment on the full dataset every 50 steps. if (i + 1) % 50 == 0: current_alignment = target_alignment( X, Y, lambda x1, x2: kernel(x1, x2, params), assume_normalized_kernel=True, ) print(f"Step {i+1} - Alignment = {current_alignment:.3f}") ############################################################################## # We want to assess the impact of training the parameters of the quantum # kernel. Thus, let's build a second support vector classifier with the # trained kernel: # First create a kernel with the trained parameter baked into it. trained_kernel = lambda x1, x2: kernel(x1, x2, params) # Second create a kernel matrix function using the trained kernel. trained_kernel_matrix = lambda X1, X2: qml.kernels.kernel_matrix(X1, X2, trained_kernel) # Note that SVC expects the kernel argument to be a kernel matrix function. svm_trained = SVC(kernel=trained_kernel_matrix).fit(X, Y) ############################################################################## # We expect to see an accuracy improvement vs. the SVM with random # parameters: accuracy_trained = accuracy(svm_trained, X, Y) print(f"The accuracy of a kernel with trained parameters is {accuracy_trained:.3f}") ############################################################################## # We have now achieved perfect classification! 🎆 # # Following on the results that SVM's have proven good generalisation # behavior, it will be interesting to inspect the decision boundaries of # our classifier: trained_plot_data = plot_decision_boundaries(svm_trained, plt.gca()) ############################################################################## # Indeed, we see that now not only every data instance falls within the # correct class, but also that there are no strong artifacts that would make us # distrust the model. In this sense, our approach benefits from both: on # one hand it can adjust itself to the dataset, and on the other hand # is not expected to suffer from bad generalisation. # # References # ---------- # # .. [#Training_QEKs] # # <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, and <NAME>. # "Training Quantum Embedding Kernels on Near-Term Quantum Computers." # `arXiv:2105.02276 <https://arxiv.org/abs/2105.02276>`__, 2021. # # .. [#Alignment] # # <NAME>, <NAME>, and <NAME>. # "An overview of kernel alignment and its applications." # `Artificial Intelligence Review 43.2: 179-192 <https://link.springer.com/article/10.1007/s10462-012-9369-4>`__, 2015.
[ "pennylane.broadcast", "pennylane.numpy.ndindex", "pennylane.device", "pennylane.numpy.zeros_like", "pennylane.GradientDescentOptimizer", "pennylane.numpy.array", "pennylane.numpy.printoptions", "pennylane.numpy.sin", "pennylane.numpy.sum", "pennylane.numpy.vstack", "pennylane.qnode", "matplotlib.patches.Wedge", "matplotlib.colors.ListedColormap", "pennylane.kernels.square_kernel_matrix", "pennylane.numpy.random.seed", "pennylane.numpy.floor_divide", "pennylane.numpy.cos", "pennylane.kernels.kernel_matrix", "pennylane.adjoint", "matplotlib.pyplot.gca", "pennylane.numpy.linspace", "pennylane.numpy.outer", "pennylane.RY", "pennylane.kernels.target_alignment", "sklearn.svm.SVC", "pennylane.numpy.random.uniform", "pennylane.probs", "pennylane.Hadamard", "pennylane.numpy.hstack" ]
[((5625, 5645), 'pennylane.numpy.random.seed', 'np.random.seed', (['(1359)'], {}), '(1359)\n', (5639, 5645), True, 'from pennylane import numpy as np\n'), ((10210, 10229), 'pennylane.adjoint', 'qml.adjoint', (['ansatz'], {}), '(ansatz)\n', (10221, 10229), True, 'import pennylane as qml\n'), ((10728, 10776), 'pennylane.device', 'qml.device', (['"""default.qubit"""'], {'wires': '(5)', 'shots': 'None'}), "('default.qubit', wires=5, shots=None)\n", (10738, 10776), True, 'import pennylane as qml\n'), ((11195, 11209), 'pennylane.qnode', 'qml.qnode', (['dev'], {}), '(dev)\n', (11204, 11209), True, 'import pennylane as qml\n'), ((13696, 13775), 'pennylane.kernels.square_kernel_matrix', 'qml.kernels.square_kernel_matrix', (['X', 'init_kernel'], {'assume_normalized_kernel': '(True)'}), '(X, init_kernel, assume_normalized_kernel=True)\n', (13728, 13775), True, 'import pennylane as qml\n'), ((20484, 20562), 'pennylane.kernels.target_alignment', 'qml.kernels.target_alignment', (['X', 'Y', 'init_kernel'], {'assume_normalized_kernel': '(True)'}), '(X, Y, init_kernel, assume_normalized_kernel=True)\n', (20512, 20562), True, 'import pennylane as qml\n'), ((22305, 22338), 'pennylane.GradientDescentOptimizer', 'qml.GradientDescentOptimizer', (['(0.2)'], {}), '(0.2)\n', (22333, 22338), True, 'import pennylane as qml\n'), ((6620, 6645), 'pennylane.numpy.hstack', 'np.hstack', (['[x1, 0.5 * x2]'], {}), '([x1, 0.5 * x2])\n', (6629, 6645), True, 'from pennylane import numpy as np\n'), ((6654, 6679), 'pennylane.numpy.hstack', 'np.hstack', (['[y1, 0.5 * y2]'], {}), '([y1, 0.5 * y2])\n', (6663, 6679), True, 'from pennylane import numpy as np\n'), ((6755, 6789), 'pennylane.numpy.hstack', 'np.hstack', (['[labels1, -1 * labels2]'], {}), '([labels1, -1 * labels2])\n', (6764, 6789), True, 'from pennylane import numpy as np\n'), ((7154, 7203), 'matplotlib.colors.ListedColormap', 'mpl.colors.ListedColormap', (["['#FF0000', '#0000FF']"], {}), "(['#FF0000', '#0000FF'])\n", (7179, 7203), True, 'import matplotlib as mpl\n'), ((8569, 8578), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (8576, 8578), True, 'import matplotlib.pyplot as plt\n'), ((9411, 9497), 'pennylane.broadcast', 'qml.broadcast', ([], {'unitary': 'qml.CRZ', 'pattern': '"""ring"""', 'wires': 'wires', 'parameters': 'params[1]'}), "(unitary=qml.CRZ, pattern='ring', wires=wires, parameters=\n params[1])\n", (9424, 9497), True, 'import pennylane as qml\n'), ((10363, 10442), 'pennylane.numpy.random.uniform', 'np.random.uniform', (['(0)', '(2 * np.pi)', '(num_layers, 2, num_wires)'], {'requires_grad': '(True)'}), '(0, 2 * np.pi, (num_layers, 2, num_wires), requires_grad=True)\n', (10380, 10442), True, 'from pennylane import numpy as np\n'), ((11337, 11359), 'pennylane.probs', 'qml.probs', ([], {'wires': 'wires'}), '(wires=wires)\n', (11346, 11359), True, 'import pennylane as qml\n'), ((13782, 13825), 'pennylane.numpy.printoptions', 'np.printoptions', ([], {'precision': '(3)', 'suppress': '(True)'}), '(precision=3, suppress=True)\n', (13797, 13825), True, 'from pennylane import numpy as np\n'), ((16209, 16227), 'pennylane.numpy.zeros_like', 'np.zeros_like', (['_xx'], {}), '(_xx)\n', (16222, 16227), True, 'from pennylane import numpy as np\n'), ((16243, 16265), 'pennylane.numpy.ndindex', 'np.ndindex', (['*_xx.shape'], {}), '(*_xx.shape)\n', (16253, 16265), True, 'from pennylane import numpy as np\n'), ((16858, 16867), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (16865, 16867), True, 'import matplotlib.pyplot as plt\n'), ((21753, 21852), 'pennylane.kernels.square_kernel_matrix', 'qml.kernels.square_kernel_matrix', (['X', 'kernel'], {'assume_normalized_kernel': 'assume_normalized_kernel'}), '(X, kernel, assume_normalized_kernel=\n assume_normalized_kernel)\n', (21785, 21852), True, 'import pennylane as qml\n'), ((22108, 22124), 'pennylane.numpy.outer', 'np.outer', (['_Y', '_Y'], {}), '(_Y, _Y)\n', (22116, 22124), True, 'from pennylane import numpy as np\n'), ((22145, 22158), 'pennylane.numpy.sum', 'np.sum', (['(K * T)'], {}), '(K * T)\n', (22151, 22158), True, 'from pennylane import numpy as np\n'), ((23566, 23615), 'pennylane.kernels.kernel_matrix', 'qml.kernels.kernel_matrix', (['X1', 'X2', 'trained_kernel'], {}), '(X1, X2, trained_kernel)\n', (23591, 23615), True, 'import pennylane as qml\n'), ((24396, 24405), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (24403, 24405), True, 'import matplotlib.pyplot as plt\n'), ((6270, 6284), 'pennylane.numpy.cos', 'np.cos', (['angles'], {}), '(angles)\n', (6276, 6284), True, 'from pennylane import numpy as np\n'), ((6299, 6313), 'pennylane.numpy.sin', 'np.sin', (['angles'], {}), '(angles)\n', (6305, 6313), True, 'from pennylane import numpy as np\n'), ((6721, 6738), 'pennylane.numpy.vstack', 'np.vstack', (['[x, y]'], {}), '([x, y])\n', (6730, 6738), True, 'from pennylane import numpy as np\n'), ((9275, 9301), 'pennylane.Hadamard', 'qml.Hadamard', ([], {'wires': '[wire]'}), '(wires=[wire])\n', (9287, 9301), True, 'import pennylane as qml\n'), ((9371, 9405), 'pennylane.RY', 'qml.RY', (['params[0, j]'], {'wires': '[wire]'}), '(params[0, j], wires=[wire])\n', (9377, 9405), True, 'import pennylane as qml\n'), ((16130, 16162), 'pennylane.numpy.linspace', 'np.linspace', (['(-1)', '(1)', 'N_gridpoints'], {}), '(-1, 1, N_gridpoints)\n', (16141, 16162), True, 'from pennylane import numpy as np\n'), ((16164, 16196), 'pennylane.numpy.linspace', 'np.linspace', (['(-1)', '(1)', 'N_gridpoints'], {}), '(-1, 1, N_gridpoints)\n', (16175, 16196), True, 'from pennylane import numpy as np\n'), ((22005, 22065), 'pennylane.numpy.array', 'np.array', (['[(y / nplus if y == 1 else y / nminus) for y in Y]'], {}), '([(y / nplus if y == 1 else y / nminus) for y in Y])\n', (22013, 22065), True, 'from pennylane import numpy as np\n'), ((22087, 22098), 'pennylane.numpy.array', 'np.array', (['Y'], {}), '(Y)\n', (22095, 22098), True, 'from pennylane import numpy as np\n'), ((23707, 23740), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': 'trained_kernel_matrix'}), '(kernel=trained_kernel_matrix)\n', (23710, 23740), False, 'from sklearn.svm import SVC\n'), ((16475, 16524), 'matplotlib.colors.ListedColormap', 'mpl.colors.ListedColormap', (["['#FF0000', '#0000FF']"], {}), "(['#FF0000', '#0000FF'])\n", (16500, 16524), True, 'import matplotlib as mpl\n'), ((22178, 22191), 'pennylane.numpy.sum', 'np.sum', (['(K * K)'], {}), '(K * K)\n', (22184, 22191), True, 'from pennylane import numpy as np\n'), ((22194, 22207), 'pennylane.numpy.sum', 'np.sum', (['(T * T)'], {}), '(T * T)\n', (22200, 22207), True, 'from pennylane import numpy as np\n'), ((6344, 6381), 'pennylane.numpy.floor_divide', 'np.floor_divide', (['angles', 'sector_angle'], {}), '(angles, sector_angle)\n', (6359, 6381), True, 'from pennylane import numpy as np\n'), ((7529, 7644), 'matplotlib.patches.Wedge', 'mpl.patches.Wedge', (['(0, 0)', '(1)', '(i * sector_angle)', '((i + 1) * sector_angle)'], {'lw': '(0)', 'color': 'color', 'alpha': '(0.1)', 'width': '(0.5)'}), '((0, 0), 1, i * sector_angle, (i + 1) * sector_angle, lw=0,\n color=color, alpha=0.1, width=0.5)\n', (7546, 7644), True, 'import matplotlib as mpl\n'), ((7877, 7990), 'matplotlib.patches.Wedge', 'mpl.patches.Wedge', (['(0, 0)', '(0.5)', '(i * sector_angle)', '((i + 1) * sector_angle)'], {'lw': '(0)', 'color': 'other_color', 'alpha': '(0.1)'}), '((0, 0), 0.5, i * sector_angle, (i + 1) * sector_angle, lw\n =0, color=other_color, alpha=0.1)\n', (7894, 7990), True, 'import matplotlib as mpl\n'), ((16305, 16335), 'pennylane.numpy.array', 'np.array', (['[_xx[idx], _yy[idx]]'], {}), '([_xx[idx], _yy[idx]])\n', (16313, 16335), True, 'from pennylane import numpy as np\n'), ((21942, 21953), 'pennylane.numpy.array', 'np.array', (['Y'], {}), '(Y)\n', (21950, 21953), True, 'from pennylane import numpy as np\n'), ((15218, 15264), 'pennylane.kernels.kernel_matrix', 'qml.kernels.kernel_matrix', (['X1', 'X2', 'init_kernel'], {}), '(X1, X2, init_kernel)\n', (15243, 15264), True, 'import pennylane as qml\n')]