url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
46
51
id
int64
599M
2.35B
node_id
stringlengths
18
32
number
int64
1
6.97k
title
stringlengths
1
290
user
dict
labels
listlengths
0
4
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
4
milestone
dict
comments
int64
0
70
created_at
unknown
updated_at
unknown
closed_at
unknown
author_association
stringclasses
4 values
active_lock_reason
float64
draft
float64
0
1
pull_request
dict
body
stringlengths
0
228k
reactions
dict
timeline_url
stringlengths
67
70
performed_via_github_app
float64
state_reason
stringclasses
3 values
existe_pull_request
bool
2 classes
comentarios
sequencelengths
0
30
https://api.github.com/repos/huggingface/datasets/issues/6972
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6972/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6972/comments
https://api.github.com/repos/huggingface/datasets/issues/6972/events
https://github.com/huggingface/datasets/pull/6972
2,353,531,912
PR_kwDODunzps5yfa_e
6,972
Fix webdataset pickling
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
2
"2024-06-14T14:43:02"
"2024-06-14T15:43:43"
"2024-06-14T15:37:35"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6972.diff", "html_url": "https://github.com/huggingface/datasets/pull/6972", "merged_at": "2024-06-14T15:37:35Z", "patch_url": "https://github.com/huggingface/datasets/pull/6972.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6972" }
...by making tracked iterables picklable. This is important to make streaming datasets compatible with multiprocessing e.g. for parallel data loading
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6972/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6972/timeline
null
null
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6972). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005195 / 0.011353 (-0.006157) | 0.003734 / 0.011008 (-0.007275) | 0.063087 / 0.038508 (0.024579) | 0.031467 / 0.023109 (0.008358) | 0.245183 / 0.275898 (-0.030715) | 0.280071 / 0.323480 (-0.043409) | 0.003205 / 0.007986 (-0.004780) | 0.003311 / 0.004328 (-0.001018) | 0.049967 / 0.004250 (0.045717) | 0.044927 / 0.037052 (0.007875) | 0.262244 / 0.258489 (0.003755) | 0.284549 / 0.293841 (-0.009292) | 0.027595 / 0.128546 (-0.100952) | 0.010521 / 0.075646 (-0.065126) | 0.206928 / 0.419271 (-0.212343) | 0.036179 / 0.043533 (-0.007354) | 0.254256 / 0.255139 (-0.000883) | 0.272733 / 0.283200 (-0.010467) | 0.020456 / 0.141683 (-0.121226) | 1.118527 / 1.452155 (-0.333628) | 1.152741 / 1.492716 (-0.339975) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096642 / 0.018006 (0.078636) | 0.306981 / 0.000490 (0.306491) | 0.000220 / 0.000200 (0.000020) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019031 / 0.037411 (-0.018380) | 0.063960 / 0.014526 (0.049435) | 0.074428 / 0.176557 (-0.102129) | 0.121226 / 0.737135 (-0.615909) | 0.077111 / 0.296338 (-0.219228) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279830 / 0.215209 (0.064621) | 2.748243 / 2.077655 (0.670588) | 1.481554 / 1.504120 (-0.022566) | 1.355015 / 1.541195 (-0.186180) | 1.379655 / 1.468490 (-0.088835) | 0.560378 / 4.584777 (-4.024399) | 2.407241 / 3.745712 (-1.338471) | 2.837090 / 5.269862 (-2.432771) | 1.767084 / 4.565676 (-2.798593) | 0.063517 / 0.424275 (-0.360758) | 0.005024 / 0.007607 (-0.002584) | 0.334845 / 0.226044 (0.108800) | 3.290712 / 2.268929 (1.021783) | 1.836923 / 55.444624 (-53.607702) | 1.543671 / 6.876477 (-5.332806) | 1.582319 / 2.142072 (-0.559754) | 0.637689 / 4.805227 (-4.167538) | 0.119515 / 6.500664 (-6.381149) | 0.042191 / 0.075469 (-0.033278) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.980018 / 1.841788 (-0.861770) | 11.620211 / 8.074308 (3.545903) | 9.697799 / 10.191392 (-0.493593) | 0.131733 / 0.680424 (-0.548691) | 0.014007 / 0.534201 (-0.520193) | 0.286046 / 0.579283 (-0.293237) | 0.264776 / 0.434364 (-0.169588) | 0.325041 / 0.540337 (-0.215296) | 0.452740 / 1.386936 (-0.934196) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005603 / 0.011353 (-0.005750) | 0.003810 / 0.011008 (-0.007199) | 0.050773 / 0.038508 (0.012265) | 0.032601 / 0.023109 (0.009492) | 0.268035 / 0.275898 (-0.007863) | 0.292614 / 0.323480 (-0.030866) | 0.005076 / 0.007986 (-0.002910) | 0.004487 / 0.004328 (0.000159) | 0.049988 / 0.004250 (0.045737) | 0.040258 / 0.037052 (0.003205) | 0.284145 / 0.258489 (0.025656) | 0.318291 / 0.293841 (0.024450) | 0.029672 / 0.128546 (-0.098875) | 0.010534 / 0.075646 (-0.065113) | 0.059020 / 0.419271 (-0.360252) | 0.033451 / 0.043533 (-0.010082) | 0.270220 / 0.255139 (0.015081) | 0.290500 / 0.283200 (0.007300) | 0.017123 / 0.141683 (-0.124560) | 1.130870 / 1.452155 (-0.321285) | 1.160038 / 1.492716 (-0.332678) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097045 / 0.018006 (0.079039) | 0.314573 / 0.000490 (0.314083) | 0.000203 / 0.000200 (0.000003) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022396 / 0.037411 (-0.015015) | 0.079393 / 0.014526 (0.064867) | 0.088460 / 0.176557 (-0.088097) | 0.128050 / 0.737135 (-0.609085) | 0.093070 / 0.296338 (-0.203268) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293858 / 0.215209 (0.078649) | 2.819956 / 2.077655 (0.742301) | 1.540181 / 1.504120 (0.036061) | 1.419671 / 1.541195 (-0.121524) | 1.441594 / 1.468490 (-0.026897) | 0.565200 / 4.584777 (-4.019577) | 0.963967 / 3.745712 (-2.781745) | 2.752137 / 5.269862 (-2.517725) | 1.779239 / 4.565676 (-2.786438) | 0.063787 / 0.424275 (-0.360488) | 0.005344 / 0.007607 (-0.002263) | 0.344283 / 0.226044 (0.118239) | 3.353263 / 2.268929 (1.084334) | 1.898678 / 55.444624 (-53.545947) | 1.607868 / 6.876477 (-5.268609) | 1.781938 / 2.142072 (-0.360134) | 0.652119 / 4.805227 (-4.153108) | 0.117883 / 6.500664 (-6.382781) | 0.048811 / 0.075469 (-0.026658) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.013154 / 1.841788 (-0.828634) | 12.421963 / 8.074308 (4.347655) | 10.352056 / 10.191392 (0.160664) | 0.143784 / 0.680424 (-0.536640) | 0.016370 / 0.534201 (-0.517831) | 0.283668 / 0.579283 (-0.295615) | 0.127070 / 0.434364 (-0.307294) | 0.326199 / 0.540337 (-0.214138) | 0.432776 / 1.386936 (-0.954160) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5e72fb13b4824dcb27aedb807e4e28c420dec244 \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/6971
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6971/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6971/comments
https://api.github.com/repos/huggingface/datasets/issues/6971/events
https://github.com/huggingface/datasets/pull/6971
2,351,830,856
PR_kwDODunzps5yZoc3
6,971
packaging: Remove useless dependencies
{ "avatar_url": "https://avatars.githubusercontent.com/u/9336514?v=4", "events_url": "https://api.github.com/users/daskol/events{/privacy}", "followers_url": "https://api.github.com/users/daskol/followers", "following_url": "https://api.github.com/users/daskol/following{/other_user}", "gists_url": "https://api.github.com/users/daskol/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/daskol", "id": 9336514, "login": "daskol", "node_id": "MDQ6VXNlcjkzMzY1MTQ=", "organizations_url": "https://api.github.com/users/daskol/orgs", "received_events_url": "https://api.github.com/users/daskol/received_events", "repos_url": "https://api.github.com/users/daskol/repos", "site_admin": false, "starred_url": "https://api.github.com/users/daskol/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/daskol/subscriptions", "type": "User", "url": "https://api.github.com/users/daskol" }
[]
closed
false
null
[]
null
4
"2024-06-13T18:43:43"
"2024-06-14T14:03:34"
"2024-06-14T13:57:24"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6971.diff", "html_url": "https://github.com/huggingface/datasets/pull/6971", "merged_at": "2024-06-14T13:57:24Z", "patch_url": "https://github.com/huggingface/datasets/pull/6971.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6971" }
Revert changes in #6396 and #6404. CVE-2023-47248 has been fixed since PyArrow v14.0.1. Meanwhile Python requirements requires `pyarrow>=15.0.0`.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6971/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6971/timeline
null
null
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6971). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "@HuggingFaceDocBuilderDev There is no doc for this change. Call a human.", "Haha it was me who triggered the CI for your PR", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005051 / 0.011353 (-0.006302) | 0.004831 / 0.011008 (-0.006178) | 0.063006 / 0.038508 (0.024498) | 0.031589 / 0.023109 (0.008480) | 0.296202 / 0.275898 (0.020304) | 0.274274 / 0.323480 (-0.049205) | 0.003199 / 0.007986 (-0.004786) | 0.002768 / 0.004328 (-0.001561) | 0.049422 / 0.004250 (0.045172) | 0.045174 / 0.037052 (0.008121) | 0.263814 / 0.258489 (0.005325) | 0.288125 / 0.293841 (-0.005716) | 0.027641 / 0.128546 (-0.100905) | 0.010439 / 0.075646 (-0.065207) | 0.203075 / 0.419271 (-0.216196) | 0.036259 / 0.043533 (-0.007274) | 0.245159 / 0.255139 (-0.009980) | 0.268897 / 0.283200 (-0.014303) | 0.019493 / 0.141683 (-0.122190) | 1.108330 / 1.452155 (-0.343824) | 1.155835 / 1.492716 (-0.336881) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096860 / 0.018006 (0.078854) | 0.309428 / 0.000490 (0.308938) | 0.000197 / 0.000200 (-0.000003) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019275 / 0.037411 (-0.018136) | 0.062623 / 0.014526 (0.048098) | 0.073871 / 0.176557 (-0.102686) | 0.120410 / 0.737135 (-0.616726) | 0.075766 / 0.296338 (-0.220572) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279876 / 0.215209 (0.064667) | 2.742429 / 2.077655 (0.664774) | 1.414368 / 1.504120 (-0.089752) | 1.293194 / 1.541195 (-0.248001) | 1.318043 / 1.468490 (-0.150447) | 0.570904 / 4.584777 (-4.013873) | 2.384386 / 3.745712 (-1.361326) | 2.757953 / 5.269862 (-2.511908) | 1.728766 / 4.565676 (-2.836910) | 0.062699 / 0.424275 (-0.361576) | 0.004951 / 0.007607 (-0.002656) | 0.332222 / 0.226044 (0.106177) | 3.407429 / 2.268929 (1.138500) | 1.777136 / 55.444624 (-53.667488) | 1.521269 / 6.876477 (-5.355207) | 1.544814 / 2.142072 (-0.597258) | 0.646249 / 4.805227 (-4.158978) | 0.117032 / 6.500664 (-6.383632) | 0.042274 / 0.075469 (-0.033195) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.016249 / 1.841788 (-0.825539) | 11.794003 / 8.074308 (3.719695) | 9.871925 / 10.191392 (-0.319467) | 0.133694 / 0.680424 (-0.546730) | 0.014904 / 0.534201 (-0.519297) | 0.287453 / 0.579283 (-0.291831) | 0.271802 / 0.434364 (-0.162561) | 0.324711 / 0.540337 (-0.215626) | 0.411812 / 1.386936 (-0.975124) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005376 / 0.011353 (-0.005977) | 0.003631 / 0.011008 (-0.007377) | 0.050154 / 0.038508 (0.011646) | 0.033665 / 0.023109 (0.010556) | 0.279062 / 0.275898 (0.003164) | 0.298899 / 0.323480 (-0.024581) | 0.004388 / 0.007986 (-0.003598) | 0.002810 / 0.004328 (-0.001518) | 0.049032 / 0.004250 (0.044781) | 0.040531 / 0.037052 (0.003478) | 0.287220 / 0.258489 (0.028731) | 0.319060 / 0.293841 (0.025219) | 0.029473 / 0.128546 (-0.099073) | 0.010317 / 0.075646 (-0.065329) | 0.058483 / 0.419271 (-0.360789) | 0.033359 / 0.043533 (-0.010174) | 0.276404 / 0.255139 (0.021265) | 0.295013 / 0.283200 (0.011813) | 0.019372 / 0.141683 (-0.122311) | 1.172624 / 1.452155 (-0.279531) | 1.176815 / 1.492716 (-0.315902) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097347 / 0.018006 (0.079341) | 0.306959 / 0.000490 (0.306469) | 0.000200 / 0.000200 (-0.000000) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022776 / 0.037411 (-0.014635) | 0.077865 / 0.014526 (0.063340) | 0.088806 / 0.176557 (-0.087751) | 0.130448 / 0.737135 (-0.606687) | 0.090973 / 0.296338 (-0.205365) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.301168 / 0.215209 (0.085959) | 2.957634 / 2.077655 (0.879979) | 1.556999 / 1.504120 (0.052879) | 1.413940 / 1.541195 (-0.127255) | 1.427970 / 1.468490 (-0.040520) | 0.587653 / 4.584777 (-3.997124) | 0.951295 / 3.745712 (-2.794417) | 2.691004 / 5.269862 (-2.578858) | 1.755826 / 4.565676 (-2.809851) | 0.064883 / 0.424275 (-0.359392) | 0.005379 / 0.007607 (-0.002228) | 0.353790 / 0.226044 (0.127745) | 3.457747 / 2.268929 (1.188818) | 1.891884 / 55.444624 (-53.552740) | 1.616619 / 6.876477 (-5.259858) | 1.736167 / 2.142072 (-0.405906) | 0.669257 / 4.805227 (-4.135970) | 0.119620 / 6.500664 (-6.381044) | 0.041390 / 0.075469 (-0.034080) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.008851 / 1.841788 (-0.832937) | 13.151216 / 8.074308 (5.076908) | 10.398371 / 10.191392 (0.206979) | 0.143420 / 0.680424 (-0.537004) | 0.015759 / 0.534201 (-0.518442) | 0.293068 / 0.579283 (-0.286215) | 0.131449 / 0.434364 (-0.302914) | 0.334715 / 0.540337 (-0.205623) | 0.445824 / 1.386936 (-0.941112) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#087671dcaf817c906a8649404c07b0440e2732ea \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/6970
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6970/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6970/comments
https://api.github.com/repos/huggingface/datasets/issues/6970/events
https://github.com/huggingface/datasets/pull/6970
2,351,380,029
PR_kwDODunzps5yYF37
6,970
Set dev version
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
2
"2024-06-13T14:59:45"
"2024-06-13T15:06:18"
"2024-06-13T14:59:56"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6970.diff", "html_url": "https://github.com/huggingface/datasets/pull/6970", "merged_at": "2024-06-13T14:59:56Z", "patch_url": "https://github.com/huggingface/datasets/pull/6970.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6970" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6970/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6970/timeline
null
null
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6970). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005450 / 0.011353 (-0.005902) | 0.003911 / 0.011008 (-0.007098) | 0.063467 / 0.038508 (0.024959) | 0.031029 / 0.023109 (0.007920) | 0.247916 / 0.275898 (-0.027982) | 0.274737 / 0.323480 (-0.048743) | 0.003255 / 0.007986 (-0.004731) | 0.002842 / 0.004328 (-0.001487) | 0.049617 / 0.004250 (0.045366) | 0.046689 / 0.037052 (0.009637) | 0.255152 / 0.258489 (-0.003337) | 0.288630 / 0.293841 (-0.005211) | 0.028174 / 0.128546 (-0.100372) | 0.010773 / 0.075646 (-0.064873) | 0.202119 / 0.419271 (-0.217153) | 0.035914 / 0.043533 (-0.007619) | 0.248197 / 0.255139 (-0.006942) | 0.273508 / 0.283200 (-0.009691) | 0.020626 / 0.141683 (-0.121057) | 1.125668 / 1.452155 (-0.326487) | 1.156678 / 1.492716 (-0.336038) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098294 / 0.018006 (0.080288) | 0.306661 / 0.000490 (0.306172) | 0.000227 / 0.000200 (0.000027) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019118 / 0.037411 (-0.018293) | 0.063086 / 0.014526 (0.048560) | 0.077735 / 0.176557 (-0.098822) | 0.123159 / 0.737135 (-0.613976) | 0.077228 / 0.296338 (-0.219111) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280031 / 0.215209 (0.064822) | 2.762524 / 2.077655 (0.684870) | 1.444571 / 1.504120 (-0.059549) | 1.330590 / 1.541195 (-0.210604) | 1.371937 / 1.468490 (-0.096553) | 0.563847 / 4.584777 (-4.020930) | 2.369908 / 3.745712 (-1.375804) | 2.827441 / 5.269862 (-2.442420) | 1.749864 / 4.565676 (-2.815812) | 0.063996 / 0.424275 (-0.360279) | 0.005060 / 0.007607 (-0.002547) | 0.326067 / 0.226044 (0.100023) | 3.270170 / 2.268929 (1.001242) | 1.785164 / 55.444624 (-53.659460) | 1.560432 / 6.876477 (-5.316045) | 1.587005 / 2.142072 (-0.555068) | 0.645714 / 4.805227 (-4.159513) | 0.119975 / 6.500664 (-6.380689) | 0.043962 / 0.075469 (-0.031507) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.979003 / 1.841788 (-0.862785) | 11.988701 / 8.074308 (3.914393) | 9.788564 / 10.191392 (-0.402828) | 0.142644 / 0.680424 (-0.537780) | 0.014924 / 0.534201 (-0.519277) | 0.285942 / 0.579283 (-0.293341) | 0.264086 / 0.434364 (-0.170278) | 0.343360 / 0.540337 (-0.196977) | 0.413467 / 1.386936 (-0.973469) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005818 / 0.011353 (-0.005535) | 0.003726 / 0.011008 (-0.007283) | 0.050936 / 0.038508 (0.012428) | 0.032000 / 0.023109 (0.008890) | 0.273282 / 0.275898 (-0.002616) | 0.293889 / 0.323480 (-0.029591) | 0.004287 / 0.007986 (-0.003699) | 0.002797 / 0.004328 (-0.001531) | 0.049088 / 0.004250 (0.044838) | 0.040235 / 0.037052 (0.003183) | 0.280240 / 0.258489 (0.021751) | 0.315749 / 0.293841 (0.021908) | 0.029986 / 0.128546 (-0.098560) | 0.010440 / 0.075646 (-0.065206) | 0.058935 / 0.419271 (-0.360336) | 0.033198 / 0.043533 (-0.010335) | 0.274321 / 0.255139 (0.019182) | 0.288039 / 0.283200 (0.004840) | 0.018865 / 0.141683 (-0.122818) | 1.114915 / 1.452155 (-0.337240) | 1.180548 / 1.492716 (-0.312169) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095028 / 0.018006 (0.077022) | 0.304797 / 0.000490 (0.304307) | 0.000221 / 0.000200 (0.000021) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022556 / 0.037411 (-0.014855) | 0.076839 / 0.014526 (0.062313) | 0.090255 / 0.176557 (-0.086302) | 0.128748 / 0.737135 (-0.608387) | 0.091718 / 0.296338 (-0.204621) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296061 / 0.215209 (0.080852) | 2.851376 / 2.077655 (0.773722) | 1.548084 / 1.504120 (0.043964) | 1.428589 / 1.541195 (-0.112606) | 1.467244 / 1.468490 (-0.001246) | 0.583533 / 4.584777 (-4.001244) | 0.967436 / 3.745712 (-2.778277) | 2.774775 / 5.269862 (-2.495087) | 1.800435 / 4.565676 (-2.765242) | 0.063998 / 0.424275 (-0.360277) | 0.005420 / 0.007607 (-0.002187) | 0.346353 / 0.226044 (0.120308) | 3.383885 / 2.268929 (1.114956) | 1.902914 / 55.444624 (-53.541710) | 1.599545 / 6.876477 (-5.276932) | 1.772754 / 2.142072 (-0.369318) | 0.651804 / 4.805227 (-4.153423) | 0.120380 / 6.500664 (-6.380284) | 0.043311 / 0.075469 (-0.032159) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.004414 / 1.841788 (-0.837374) | 12.356077 / 8.074308 (4.281769) | 10.513420 / 10.191392 (0.322028) | 0.132419 / 0.680424 (-0.548005) | 0.015470 / 0.534201 (-0.518731) | 0.284883 / 0.579283 (-0.294400) | 0.130763 / 0.434364 (-0.303601) | 0.320068 / 0.540337 (-0.220270) | 0.430284 / 1.386936 (-0.956652) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#574791e0a0cf57ba761f679a054b9e89e4a3ee22 \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/6969
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6969/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6969/comments
https://api.github.com/repos/huggingface/datasets/issues/6969/events
https://github.com/huggingface/datasets/pull/6969
2,351,351,436
PR_kwDODunzps5yX_nC
6,969
Release: 2.20.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
2
"2024-06-13T14:48:20"
"2024-06-13T15:04:39"
"2024-06-13T14:55:53"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6969.diff", "html_url": "https://github.com/huggingface/datasets/pull/6969", "merged_at": "2024-06-13T14:55:53Z", "patch_url": "https://github.com/huggingface/datasets/pull/6969.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6969" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6969/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6969/timeline
null
null
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6969). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005414 / 0.011353 (-0.005939) | 0.003936 / 0.011008 (-0.007073) | 0.064129 / 0.038508 (0.025621) | 0.032985 / 0.023109 (0.009875) | 0.244051 / 0.275898 (-0.031847) | 0.273500 / 0.323480 (-0.049980) | 0.003227 / 0.007986 (-0.004759) | 0.002858 / 0.004328 (-0.001470) | 0.049212 / 0.004250 (0.044962) | 0.046432 / 0.037052 (0.009380) | 0.249543 / 0.258489 (-0.008946) | 0.297339 / 0.293841 (0.003498) | 0.027880 / 0.128546 (-0.100666) | 0.010582 / 0.075646 (-0.065065) | 0.202345 / 0.419271 (-0.216927) | 0.036402 / 0.043533 (-0.007131) | 0.253157 / 0.255139 (-0.001982) | 0.283355 / 0.283200 (0.000155) | 0.021907 / 0.141683 (-0.119776) | 1.174431 / 1.452155 (-0.277723) | 1.172103 / 1.492716 (-0.320613) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097942 / 0.018006 (0.079936) | 0.307114 / 0.000490 (0.306624) | 0.000230 / 0.000200 (0.000030) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019149 / 0.037411 (-0.018262) | 0.064283 / 0.014526 (0.049758) | 0.075643 / 0.176557 (-0.100913) | 0.122531 / 0.737135 (-0.614604) | 0.077360 / 0.296338 (-0.218978) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291790 / 0.215209 (0.076581) | 2.869234 / 2.077655 (0.791580) | 1.550266 / 1.504120 (0.046146) | 1.392392 / 1.541195 (-0.148802) | 1.375700 / 1.468490 (-0.092790) | 0.574963 / 4.584777 (-4.009814) | 2.444746 / 3.745712 (-1.300966) | 2.920602 / 5.269862 (-2.349259) | 1.812720 / 4.565676 (-2.752957) | 0.064811 / 0.424275 (-0.359464) | 0.005163 / 0.007607 (-0.002444) | 0.341306 / 0.226044 (0.115261) | 3.443177 / 2.268929 (1.174249) | 1.843510 / 55.444624 (-53.601115) | 1.534023 / 6.876477 (-5.342454) | 1.603575 / 2.142072 (-0.538498) | 0.656923 / 4.805227 (-4.148304) | 0.120338 / 6.500664 (-6.380326) | 0.042958 / 0.075469 (-0.032511) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975993 / 1.841788 (-0.865795) | 11.942335 / 8.074308 (3.868027) | 9.964277 / 10.191392 (-0.227115) | 0.131247 / 0.680424 (-0.549176) | 0.014166 / 0.534201 (-0.520035) | 0.283994 / 0.579283 (-0.295290) | 0.267516 / 0.434364 (-0.166848) | 0.328363 / 0.540337 (-0.211974) | 0.412204 / 1.386936 (-0.974732) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005867 / 0.011353 (-0.005486) | 0.003860 / 0.011008 (-0.007148) | 0.050247 / 0.038508 (0.011739) | 0.033819 / 0.023109 (0.010710) | 0.264840 / 0.275898 (-0.011058) | 0.291253 / 0.323480 (-0.032227) | 0.004481 / 0.007986 (-0.003504) | 0.002880 / 0.004328 (-0.001449) | 0.048528 / 0.004250 (0.044278) | 0.041720 / 0.037052 (0.004667) | 0.280467 / 0.258489 (0.021978) | 0.315244 / 0.293841 (0.021404) | 0.030569 / 0.128546 (-0.097977) | 0.010494 / 0.075646 (-0.065152) | 0.058652 / 0.419271 (-0.360620) | 0.034181 / 0.043533 (-0.009352) | 0.266466 / 0.255139 (0.011327) | 0.292038 / 0.283200 (0.008838) | 0.018501 / 0.141683 (-0.123182) | 1.115965 / 1.452155 (-0.336189) | 1.162753 / 1.492716 (-0.329963) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.101301 / 0.018006 (0.083295) | 0.296812 / 0.000490 (0.296322) | 0.000212 / 0.000200 (0.000012) | 0.000049 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023662 / 0.037411 (-0.013749) | 0.080678 / 0.014526 (0.066153) | 0.089867 / 0.176557 (-0.086689) | 0.130803 / 0.737135 (-0.606332) | 0.091479 / 0.296338 (-0.204860) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286028 / 0.215209 (0.070819) | 2.780072 / 2.077655 (0.702418) | 1.520146 / 1.504120 (0.016026) | 1.372952 / 1.541195 (-0.168243) | 1.428734 / 1.468490 (-0.039756) | 0.571484 / 4.584777 (-4.013293) | 0.969643 / 3.745712 (-2.776069) | 2.788157 / 5.269862 (-2.481705) | 1.841166 / 4.565676 (-2.724511) | 0.063311 / 0.424275 (-0.360964) | 0.005320 / 0.007607 (-0.002287) | 0.333341 / 0.226044 (0.107296) | 3.295141 / 2.268929 (1.026213) | 1.865537 / 55.444624 (-53.579088) | 1.584655 / 6.876477 (-5.291821) | 1.747417 / 2.142072 (-0.394655) | 0.634549 / 4.805227 (-4.170678) | 0.116373 / 6.500664 (-6.384291) | 0.041567 / 0.075469 (-0.033902) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.023086 / 1.841788 (-0.818702) | 13.091905 / 8.074308 (5.017597) | 10.572164 / 10.191392 (0.380772) | 0.142208 / 0.680424 (-0.538216) | 0.015692 / 0.534201 (-0.518509) | 0.284309 / 0.579283 (-0.294974) | 0.126467 / 0.434364 (-0.307897) | 0.322719 / 0.540337 (-0.217618) | 0.439952 / 1.386936 (-0.946985) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#98fdc9e78e6d057ca66e58a37f49d6618aab8130 \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/6968
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6968/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6968/comments
https://api.github.com/repos/huggingface/datasets/issues/6968/events
https://github.com/huggingface/datasets/pull/6968
2,351,331,417
PR_kwDODunzps5yX7Qr
6,968
Use `HF_HUB_OFFLINE` instead of `HF_DATASETS_OFFLINE`
{ "avatar_url": "https://avatars.githubusercontent.com/u/11801849?v=4", "events_url": "https://api.github.com/users/Wauplin/events{/privacy}", "followers_url": "https://api.github.com/users/Wauplin/followers", "following_url": "https://api.github.com/users/Wauplin/following{/other_user}", "gists_url": "https://api.github.com/users/Wauplin/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Wauplin", "id": 11801849, "login": "Wauplin", "node_id": "MDQ6VXNlcjExODAxODQ5", "organizations_url": "https://api.github.com/users/Wauplin/orgs", "received_events_url": "https://api.github.com/users/Wauplin/received_events", "repos_url": "https://api.github.com/users/Wauplin/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Wauplin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Wauplin/subscriptions", "type": "User", "url": "https://api.github.com/users/Wauplin" }
[]
closed
false
null
[]
null
3
"2024-06-13T14:39:40"
"2024-06-13T17:31:37"
"2024-06-13T17:25:37"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6968.diff", "html_url": "https://github.com/huggingface/datasets/pull/6968", "merged_at": "2024-06-13T17:25:37Z", "patch_url": "https://github.com/huggingface/datasets/pull/6968.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6968" }
To use `datasets` offline, one can use the `HF_DATASETS_OFFLINE` environment variable. This PR makes `HF_HUB_OFFLINE` the recommended environment variable for offline training. Goal is to be more consistent with the rest of HF ecosystem and have a single config value to set. The changes are backward-compatible meaning that: - `HF_DATASETS_OFFLINE` environment is still taken into account, though not documented - `datasets.config.HF_DATASETS_OFFLINE` still exists, though it is not used anymore (in favor of `datasets.config.HF_HUB_OFFLINE`) **Note:** it might break things in downstream libraries if they were monkeypatching `datasets.config.HF_DATASETS_OFFLINE` in their CI tests (for instance). Not much of a problem IMO.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6968/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6968/timeline
null
null
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6968). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Oops, sorry for the style issue. Fixed in https://github.com/huggingface/datasets/pull/6968/commits/a4e2b28fa647b28190ae2615d7271e6ac63c8499.\r\n\r\nRegarding docs, I can't find mentions of `HF_DATASETS_OFFLINE` anywhere else in `datasets`/`hub-docs`. Once this is merged and released, I'm planning to update some `transformers` docs that briefly mention it.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005173 / 0.011353 (-0.006180) | 0.003485 / 0.011008 (-0.007524) | 0.063867 / 0.038508 (0.025359) | 0.031338 / 0.023109 (0.008229) | 0.242093 / 0.275898 (-0.033805) | 0.266606 / 0.323480 (-0.056874) | 0.003069 / 0.007986 (-0.004916) | 0.003307 / 0.004328 (-0.001022) | 0.051059 / 0.004250 (0.046808) | 0.044396 / 0.037052 (0.007344) | 0.254896 / 0.258489 (-0.003593) | 0.282835 / 0.293841 (-0.011006) | 0.027548 / 0.128546 (-0.100998) | 0.010520 / 0.075646 (-0.065126) | 0.201701 / 0.419271 (-0.217570) | 0.035613 / 0.043533 (-0.007920) | 0.240955 / 0.255139 (-0.014184) | 0.271902 / 0.283200 (-0.011298) | 0.019826 / 0.141683 (-0.121857) | 1.116994 / 1.452155 (-0.335161) | 1.162886 / 1.492716 (-0.329831) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093683 / 0.018006 (0.075677) | 0.297970 / 0.000490 (0.297480) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018952 / 0.037411 (-0.018459) | 0.062710 / 0.014526 (0.048184) | 0.073641 / 0.176557 (-0.102916) | 0.121200 / 0.737135 (-0.615935) | 0.075723 / 0.296338 (-0.220616) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286056 / 0.215209 (0.070847) | 2.811424 / 2.077655 (0.733770) | 1.448045 / 1.504120 (-0.056075) | 1.338309 / 1.541195 (-0.202885) | 1.328371 / 1.468490 (-0.140119) | 0.557282 / 4.584777 (-4.027495) | 2.362235 / 3.745712 (-1.383477) | 2.732108 / 5.269862 (-2.537754) | 1.730911 / 4.565676 (-2.834765) | 0.061689 / 0.424275 (-0.362586) | 0.004947 / 0.007607 (-0.002660) | 0.346700 / 0.226044 (0.120656) | 3.355989 / 2.268929 (1.087060) | 1.828078 / 55.444624 (-53.616546) | 1.511531 / 6.876477 (-5.364946) | 1.535897 / 2.142072 (-0.606175) | 0.630276 / 4.805227 (-4.174951) | 0.115808 / 6.500664 (-6.384857) | 0.042199 / 0.075469 (-0.033270) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969203 / 1.841788 (-0.872584) | 11.282997 / 8.074308 (3.208689) | 9.538914 / 10.191392 (-0.652478) | 0.140072 / 0.680424 (-0.540352) | 0.014021 / 0.534201 (-0.520180) | 0.283784 / 0.579283 (-0.295499) | 0.255973 / 0.434364 (-0.178391) | 0.320284 / 0.540337 (-0.220053) | 0.412689 / 1.386936 (-0.974247) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005201 / 0.011353 (-0.006152) | 0.003312 / 0.011008 (-0.007697) | 0.050044 / 0.038508 (0.011536) | 0.033610 / 0.023109 (0.010501) | 0.266429 / 0.275898 (-0.009469) | 0.287782 / 0.323480 (-0.035698) | 0.004316 / 0.007986 (-0.003670) | 0.002696 / 0.004328 (-0.001633) | 0.049667 / 0.004250 (0.045417) | 0.040244 / 0.037052 (0.003192) | 0.278870 / 0.258489 (0.020381) | 0.311415 / 0.293841 (0.017574) | 0.029150 / 0.128546 (-0.099396) | 0.010046 / 0.075646 (-0.065600) | 0.058527 / 0.419271 (-0.360744) | 0.032871 / 0.043533 (-0.010662) | 0.266582 / 0.255139 (0.011443) | 0.286157 / 0.283200 (0.002957) | 0.017197 / 0.141683 (-0.124486) | 1.120944 / 1.452155 (-0.331211) | 1.161111 / 1.492716 (-0.331606) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092679 / 0.018006 (0.074672) | 0.299195 / 0.000490 (0.298705) | 0.000204 / 0.000200 (0.000004) | 0.000048 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022212 / 0.037411 (-0.015199) | 0.076734 / 0.014526 (0.062208) | 0.088326 / 0.176557 (-0.088230) | 0.128209 / 0.737135 (-0.608926) | 0.088807 / 0.296338 (-0.207531) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291782 / 0.215209 (0.076573) | 2.882990 / 2.077655 (0.805335) | 1.601638 / 1.504120 (0.097518) | 1.457560 / 1.541195 (-0.083635) | 1.470517 / 1.468490 (0.002027) | 0.565738 / 4.584777 (-4.019039) | 0.949235 / 3.745712 (-2.796478) | 2.661927 / 5.269862 (-2.607934) | 1.722178 / 4.565676 (-2.843498) | 0.063680 / 0.424275 (-0.360595) | 0.005339 / 0.007607 (-0.002268) | 0.344280 / 0.226044 (0.118235) | 3.432998 / 2.268929 (1.164070) | 1.985516 / 55.444624 (-53.459108) | 1.651826 / 6.876477 (-5.224651) | 1.764541 / 2.142072 (-0.377531) | 0.640219 / 4.805227 (-4.165008) | 0.116541 / 6.500664 (-6.384124) | 0.041237 / 0.075469 (-0.034232) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.013927 / 1.841788 (-0.827861) | 11.876661 / 8.074308 (3.802353) | 10.264144 / 10.191392 (0.072752) | 0.131151 / 0.680424 (-0.549273) | 0.015774 / 0.534201 (-0.518427) | 0.284948 / 0.579283 (-0.294335) | 0.125924 / 0.434364 (-0.308439) | 0.319845 / 0.540337 (-0.220493) | 0.431978 / 1.386936 (-0.954958) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#68f67741ffde68c98d0a2f59ac4d8e3a7bc03065 \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/6967
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6967/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6967/comments
https://api.github.com/repos/huggingface/datasets/issues/6967/events
https://github.com/huggingface/datasets/issues/6967
2,349,146,398
I_kwDODunzps6MBSEe
6,967
Method to load Laion400m
{ "avatar_url": "https://avatars.githubusercontent.com/u/6862868?v=4", "events_url": "https://api.github.com/users/humanely/events{/privacy}", "followers_url": "https://api.github.com/users/humanely/followers", "following_url": "https://api.github.com/users/humanely/following{/other_user}", "gists_url": "https://api.github.com/users/humanely/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/humanely", "id": 6862868, "login": "humanely", "node_id": "MDQ6VXNlcjY4NjI4Njg=", "organizations_url": "https://api.github.com/users/humanely/orgs", "received_events_url": "https://api.github.com/users/humanely/received_events", "repos_url": "https://api.github.com/users/humanely/repos", "site_admin": false, "starred_url": "https://api.github.com/users/humanely/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/humanely/subscriptions", "type": "User", "url": "https://api.github.com/users/humanely" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
0
"2024-06-12T16:04:04"
"2024-06-12T16:04:04"
null
NONE
null
null
null
### Feature request Large datasets like Laion400m are provided as embeddings. The provided methods in load_dataset are not straightforward for loading embedding files, i.e. img_emb_XX.npy ; XX = 0 to 99 ### Motivation The trial and experimentation is the key pivot of HF. It would be great if HF can load embeddings files s,ealessly. ### Your contribution I cam write the loader with some help.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6967/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6967/timeline
null
null
false
[]
https://api.github.com/repos/huggingface/datasets/issues/6966
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6966/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6966/comments
https://api.github.com/repos/huggingface/datasets/issues/6966/events
https://github.com/huggingface/datasets/pull/6966
2,348,934,466
PR_kwDODunzps5yPwL4
6,966
Remove underlines between badges
{ "avatar_url": "https://avatars.githubusercontent.com/u/35881688?v=4", "events_url": "https://api.github.com/users/novialriptide/events{/privacy}", "followers_url": "https://api.github.com/users/novialriptide/followers", "following_url": "https://api.github.com/users/novialriptide/following{/other_user}", "gists_url": "https://api.github.com/users/novialriptide/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/novialriptide", "id": 35881688, "login": "novialriptide", "node_id": "MDQ6VXNlcjM1ODgxNjg4", "organizations_url": "https://api.github.com/users/novialriptide/orgs", "received_events_url": "https://api.github.com/users/novialriptide/received_events", "repos_url": "https://api.github.com/users/novialriptide/repos", "site_admin": false, "starred_url": "https://api.github.com/users/novialriptide/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/novialriptide/subscriptions", "type": "User", "url": "https://api.github.com/users/novialriptide" }
[]
open
false
null
[]
null
0
"2024-06-12T14:32:11"
"2024-06-12T14:32:11"
null
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6966.diff", "html_url": "https://github.com/huggingface/datasets/pull/6966", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6966.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6966" }
## Before: <img width="935" alt="image" src="https://github.com/huggingface/datasets/assets/35881688/93666e72-059b-4180-9e1d-ff176a3d9dac"> ## After: <img width="956" alt="image" src="https://github.com/huggingface/datasets/assets/35881688/75df7c3e-f473-44f0-a872-eeecf6a85fe2">
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6966/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6966/timeline
null
null
true
[]
https://api.github.com/repos/huggingface/datasets/issues/6965
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6965/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6965/comments
https://api.github.com/repos/huggingface/datasets/issues/6965/events
https://github.com/huggingface/datasets/pull/6965
2,348,653,895
PR_kwDODunzps5yOyNG
6,965
Improve skip take shuffling and distributed
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
open
false
null
[]
null
1
"2024-06-12T12:30:27"
"2024-06-12T22:08:57"
null
MEMBER
null
1
{ "diff_url": "https://github.com/huggingface/datasets/pull/6965.diff", "html_url": "https://github.com/huggingface/datasets/pull/6965", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6965.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6965" }
set the right behavior of skip/take depending on whether it's called after or before shuffle/split_by_node
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6965/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6965/timeline
null
null
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6965). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
https://api.github.com/repos/huggingface/datasets/issues/6964
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6964/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6964/comments
https://api.github.com/repos/huggingface/datasets/issues/6964/events
https://github.com/huggingface/datasets/pull/6964
2,344,973,229
PR_kwDODunzps5yCNGa
6,964
Fix resuming arrow format
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
2
"2024-06-10T22:40:33"
"2024-06-14T15:04:49"
"2024-06-14T14:58:37"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6964.diff", "html_url": "https://github.com/huggingface/datasets/pull/6964", "merged_at": "2024-06-14T14:58:37Z", "patch_url": "https://github.com/huggingface/datasets/pull/6964.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6964" }
following https://github.com/huggingface/datasets/pull/6658
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6964/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6964/timeline
null
null
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6964). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005735 / 0.011353 (-0.005618) | 0.003746 / 0.011008 (-0.007263) | 0.063115 / 0.038508 (0.024606) | 0.033557 / 0.023109 (0.010447) | 0.247599 / 0.275898 (-0.028299) | 0.275310 / 0.323480 (-0.048170) | 0.004203 / 0.007986 (-0.003783) | 0.002770 / 0.004328 (-0.001558) | 0.050951 / 0.004250 (0.046700) | 0.046609 / 0.037052 (0.009557) | 0.256237 / 0.258489 (-0.002252) | 0.292050 / 0.293841 (-0.001791) | 0.027991 / 0.128546 (-0.100556) | 0.010367 / 0.075646 (-0.065279) | 0.202295 / 0.419271 (-0.216977) | 0.037287 / 0.043533 (-0.006246) | 0.250330 / 0.255139 (-0.004809) | 0.281250 / 0.283200 (-0.001950) | 0.018832 / 0.141683 (-0.122851) | 1.117303 / 1.452155 (-0.334852) | 1.141593 / 1.492716 (-0.351123) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097318 / 0.018006 (0.079312) | 0.304853 / 0.000490 (0.304364) | 0.000220 / 0.000200 (0.000020) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020353 / 0.037411 (-0.017058) | 0.065497 / 0.014526 (0.050971) | 0.076205 / 0.176557 (-0.100351) | 0.122471 / 0.737135 (-0.614665) | 0.079522 / 0.296338 (-0.216816) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282604 / 0.215209 (0.067395) | 2.743198 / 2.077655 (0.665543) | 1.480436 / 1.504120 (-0.023684) | 1.373935 / 1.541195 (-0.167260) | 1.388901 / 1.468490 (-0.079589) | 0.571961 / 4.584777 (-4.012816) | 2.431790 / 3.745712 (-1.313922) | 2.942126 / 5.269862 (-2.327736) | 1.857361 / 4.565676 (-2.708316) | 0.063535 / 0.424275 (-0.360740) | 0.005039 / 0.007607 (-0.002568) | 0.331726 / 0.226044 (0.105682) | 3.282504 / 2.268929 (1.013576) | 1.852303 / 55.444624 (-53.592321) | 1.506665 / 6.876477 (-5.369812) | 1.577524 / 2.142072 (-0.564548) | 0.646267 / 4.805227 (-4.158960) | 0.118706 / 6.500664 (-6.381958) | 0.043437 / 0.075469 (-0.032033) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.978073 / 1.841788 (-0.863714) | 12.028575 / 8.074308 (3.954267) | 10.066303 / 10.191392 (-0.125090) | 0.131763 / 0.680424 (-0.548661) | 0.016479 / 0.534201 (-0.517722) | 0.286012 / 0.579283 (-0.293271) | 0.266824 / 0.434364 (-0.167540) | 0.328452 / 0.540337 (-0.211885) | 0.414562 / 1.386936 (-0.972374) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005943 / 0.011353 (-0.005409) | 0.003992 / 0.011008 (-0.007016) | 0.051159 / 0.038508 (0.012651) | 0.033805 / 0.023109 (0.010695) | 0.268425 / 0.275898 (-0.007474) | 0.295662 / 0.323480 (-0.027818) | 0.004473 / 0.007986 (-0.003512) | 0.002910 / 0.004328 (-0.001418) | 0.048595 / 0.004250 (0.044345) | 0.043724 / 0.037052 (0.006671) | 0.280552 / 0.258489 (0.022063) | 0.319052 / 0.293841 (0.025211) | 0.031269 / 0.128546 (-0.097278) | 0.010976 / 0.075646 (-0.064671) | 0.060128 / 0.419271 (-0.359144) | 0.034198 / 0.043533 (-0.009335) | 0.269664 / 0.255139 (0.014525) | 0.292249 / 0.283200 (0.009049) | 0.019950 / 0.141683 (-0.121733) | 1.143073 / 1.452155 (-0.309082) | 1.188553 / 1.492716 (-0.304164) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095188 / 0.018006 (0.077182) | 0.300207 / 0.000490 (0.299717) | 0.000205 / 0.000200 (0.000005) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023610 / 0.037411 (-0.013802) | 0.082868 / 0.014526 (0.068342) | 0.089059 / 0.176557 (-0.087498) | 0.131735 / 0.737135 (-0.605401) | 0.091467 / 0.296338 (-0.204872) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302497 / 0.215209 (0.087287) | 2.985794 / 2.077655 (0.908140) | 1.590783 / 1.504120 (0.086663) | 1.468819 / 1.541195 (-0.072375) | 1.503115 / 1.468490 (0.034625) | 0.575109 / 4.584777 (-4.009668) | 0.972370 / 3.745712 (-2.773342) | 2.727976 / 5.269862 (-2.541886) | 1.793438 / 4.565676 (-2.772238) | 0.068840 / 0.424275 (-0.355435) | 0.005440 / 0.007607 (-0.002167) | 0.351843 / 0.226044 (0.125799) | 3.523108 / 2.268929 (1.254180) | 1.928576 / 55.444624 (-53.516049) | 1.627939 / 6.876477 (-5.248538) | 1.837618 / 2.142072 (-0.304454) | 0.669351 / 4.805227 (-4.135876) | 0.121822 / 6.500664 (-6.378842) | 0.042056 / 0.075469 (-0.033413) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.020081 / 1.841788 (-0.821707) | 13.417448 / 8.074308 (5.343140) | 10.974516 / 10.191392 (0.783124) | 0.135240 / 0.680424 (-0.545184) | 0.017581 / 0.534201 (-0.516620) | 0.289080 / 0.579283 (-0.290203) | 0.127679 / 0.434364 (-0.306685) | 0.331818 / 0.540337 (-0.208520) | 0.453143 / 1.386936 (-0.933793) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ef2fb358433678b322d275c0bdee3239fa6485b2 \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/6963
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6963/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6963/comments
https://api.github.com/repos/huggingface/datasets/issues/6963/events
https://github.com/huggingface/datasets/pull/6963
2,344,269,477
PR_kwDODunzps5x_yu-
6,963
[Streaming] retry on requests errors
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
open
false
null
[]
null
1
"2024-06-10T15:51:56"
"2024-06-11T07:37:21"
null
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6963.diff", "html_url": "https://github.com/huggingface/datasets/pull/6963", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6963.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6963" }
reported in https://discuss.huggingface.co/t/speeding-up-streaming-of-large-datasets-fineweb/90714/6 when training using a streaming a dataloader cc @Wauplin it looks like the retries from `hfh` are not always enough. In this PR I let `datasets` do additional retries (that users can configure in `datasets.config`) since I couldn't find an easy way to increase the max_retries for `hfh` users in general.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6963/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6963/timeline
null
null
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6963). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
https://api.github.com/repos/huggingface/datasets/issues/6962
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6962/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6962/comments
https://api.github.com/repos/huggingface/datasets/issues/6962/events
https://github.com/huggingface/datasets/pull/6962
2,343,394,378
PR_kwDODunzps5x8yHt
6,962
fix(ci): remove unnecessary permissions
{ "avatar_url": "https://avatars.githubusercontent.com/u/9112841?v=4", "events_url": "https://api.github.com/users/McPatate/events{/privacy}", "followers_url": "https://api.github.com/users/McPatate/followers", "following_url": "https://api.github.com/users/McPatate/following{/other_user}", "gists_url": "https://api.github.com/users/McPatate/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/McPatate", "id": 9112841, "login": "McPatate", "node_id": "MDQ6VXNlcjkxMTI4NDE=", "organizations_url": "https://api.github.com/users/McPatate/orgs", "received_events_url": "https://api.github.com/users/McPatate/received_events", "repos_url": "https://api.github.com/users/McPatate/repos", "site_admin": false, "starred_url": "https://api.github.com/users/McPatate/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/McPatate/subscriptions", "type": "User", "url": "https://api.github.com/users/McPatate" }
[]
closed
false
null
[]
null
2
"2024-06-10T09:28:02"
"2024-06-11T08:31:52"
"2024-06-11T08:25:47"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6962.diff", "html_url": "https://github.com/huggingface/datasets/pull/6962", "merged_at": "2024-06-11T08:25:47Z", "patch_url": "https://github.com/huggingface/datasets/pull/6962.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6962" }
### What does this PR do? Remove unnecessary permissions granted to the actions workflow. Sorry for the mishap.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6962/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6962/timeline
null
null
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6962). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005520 / 0.011353 (-0.005833) | 0.003989 / 0.011008 (-0.007019) | 0.064786 / 0.038508 (0.026278) | 0.031075 / 0.023109 (0.007966) | 0.241619 / 0.275898 (-0.034279) | 0.275341 / 0.323480 (-0.048139) | 0.003139 / 0.007986 (-0.004847) | 0.002820 / 0.004328 (-0.001508) | 0.049766 / 0.004250 (0.045515) | 0.045047 / 0.037052 (0.007995) | 0.251906 / 0.258489 (-0.006583) | 0.285889 / 0.293841 (-0.007952) | 0.028297 / 0.128546 (-0.100249) | 0.010683 / 0.075646 (-0.064963) | 0.206467 / 0.419271 (-0.212805) | 0.036267 / 0.043533 (-0.007266) | 0.250720 / 0.255139 (-0.004419) | 0.268565 / 0.283200 (-0.014635) | 0.020394 / 0.141683 (-0.121289) | 1.114283 / 1.452155 (-0.337872) | 1.163884 / 1.492716 (-0.328833) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.112698 / 0.018006 (0.094692) | 0.302740 / 0.000490 (0.302251) | 0.000209 / 0.000200 (0.000009) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019337 / 0.037411 (-0.018075) | 0.062854 / 0.014526 (0.048328) | 0.077088 / 0.176557 (-0.099468) | 0.120926 / 0.737135 (-0.616209) | 0.075594 / 0.296338 (-0.220744) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290787 / 0.215209 (0.075578) | 2.867894 / 2.077655 (0.790239) | 1.490043 / 1.504120 (-0.014076) | 1.356383 / 1.541195 (-0.184812) | 1.400229 / 1.468490 (-0.068261) | 0.582076 / 4.584777 (-4.002701) | 2.398270 / 3.745712 (-1.347442) | 2.856459 / 5.269862 (-2.413403) | 1.815545 / 4.565676 (-2.750131) | 0.063259 / 0.424275 (-0.361016) | 0.005056 / 0.007607 (-0.002551) | 0.347699 / 0.226044 (0.121655) | 3.466511 / 2.268929 (1.197582) | 1.862096 / 55.444624 (-53.582528) | 1.532324 / 6.876477 (-5.344152) | 1.599411 / 2.142072 (-0.542661) | 0.657350 / 4.805227 (-4.147878) | 0.118981 / 6.500664 (-6.381683) | 0.042224 / 0.075469 (-0.033245) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.965649 / 1.841788 (-0.876139) | 11.896501 / 8.074308 (3.822193) | 9.873923 / 10.191392 (-0.317469) | 0.141165 / 0.680424 (-0.539258) | 0.013885 / 0.534201 (-0.520316) | 0.291464 / 0.579283 (-0.287819) | 0.273153 / 0.434364 (-0.161211) | 0.324395 / 0.540337 (-0.215942) | 0.422040 / 1.386936 (-0.964897) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005640 / 0.011353 (-0.005713) | 0.004035 / 0.011008 (-0.006973) | 0.050831 / 0.038508 (0.012323) | 0.032841 / 0.023109 (0.009732) | 0.272226 / 0.275898 (-0.003672) | 0.297880 / 0.323480 (-0.025599) | 0.004397 / 0.007986 (-0.003588) | 0.002762 / 0.004328 (-0.001566) | 0.049887 / 0.004250 (0.045637) | 0.040372 / 0.037052 (0.003320) | 0.286337 / 0.258489 (0.027848) | 0.320015 / 0.293841 (0.026174) | 0.029992 / 0.128546 (-0.098554) | 0.010781 / 0.075646 (-0.064865) | 0.059391 / 0.419271 (-0.359880) | 0.034410 / 0.043533 (-0.009123) | 0.273024 / 0.255139 (0.017885) | 0.288953 / 0.283200 (0.005754) | 0.018072 / 0.141683 (-0.123611) | 1.125742 / 1.452155 (-0.326413) | 1.175233 / 1.492716 (-0.317483) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093470 / 0.018006 (0.075463) | 0.313248 / 0.000490 (0.312758) | 0.000324 / 0.000200 (0.000124) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023529 / 0.037411 (-0.013882) | 0.077305 / 0.014526 (0.062779) | 0.088916 / 0.176557 (-0.087640) | 0.128792 / 0.737135 (-0.608344) | 0.090141 / 0.296338 (-0.206197) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291110 / 0.215209 (0.075901) | 2.848118 / 2.077655 (0.770464) | 1.581664 / 1.504120 (0.077544) | 1.446390 / 1.541195 (-0.094804) | 1.452594 / 1.468490 (-0.015896) | 0.571213 / 4.584777 (-4.013564) | 0.976382 / 3.745712 (-2.769330) | 2.756192 / 5.269862 (-2.513670) | 1.770274 / 4.565676 (-2.795403) | 0.064513 / 0.424275 (-0.359763) | 0.005334 / 0.007607 (-0.002273) | 0.347380 / 0.226044 (0.121335) | 3.424800 / 2.268929 (1.155871) | 1.942374 / 55.444624 (-53.502250) | 1.636069 / 6.876477 (-5.240407) | 1.795327 / 2.142072 (-0.346745) | 0.658942 / 4.805227 (-4.146285) | 0.119542 / 6.500664 (-6.381123) | 0.041826 / 0.075469 (-0.033643) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.007230 / 1.841788 (-0.834558) | 12.293084 / 8.074308 (4.218776) | 10.618104 / 10.191392 (0.426712) | 0.133691 / 0.680424 (-0.546733) | 0.015725 / 0.534201 (-0.518476) | 0.288860 / 0.579283 (-0.290423) | 0.130546 / 0.434364 (-0.303818) | 0.327279 / 0.540337 (-0.213059) | 0.428768 / 1.386936 (-0.958168) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#af3acfdfcf76bb980dbac871540e30c2cade0cf9 \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/6961
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6961/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6961/comments
https://api.github.com/repos/huggingface/datasets/issues/6961/events
https://github.com/huggingface/datasets/issues/6961
2,342,022,418
I_kwDODunzps6LmG0S
6,961
Manual downloads should count as downloads
{ "avatar_url": "https://avatars.githubusercontent.com/u/8473183?v=4", "events_url": "https://api.github.com/users/umarbutler/events{/privacy}", "followers_url": "https://api.github.com/users/umarbutler/followers", "following_url": "https://api.github.com/users/umarbutler/following{/other_user}", "gists_url": "https://api.github.com/users/umarbutler/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/umarbutler", "id": 8473183, "login": "umarbutler", "node_id": "MDQ6VXNlcjg0NzMxODM=", "organizations_url": "https://api.github.com/users/umarbutler/orgs", "received_events_url": "https://api.github.com/users/umarbutler/received_events", "repos_url": "https://api.github.com/users/umarbutler/repos", "site_admin": false, "starred_url": "https://api.github.com/users/umarbutler/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/umarbutler/subscriptions", "type": "User", "url": "https://api.github.com/users/umarbutler" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
1
"2024-06-09T04:52:06"
"2024-06-13T16:05:00"
null
NONE
null
null
null
### Feature request I would like to request that manual downloads of data files from Hugging Face dataset repositories count as downloads of a dataset. According to the documentation for the Hugging Face Hub, that is currently not the case: https://huggingface.co/docs/hub/en/datasets-download-stats ### Motivation This would ensure that downloads are accurately reported to end users. ### Your contribution N/A
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6961/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6961/timeline
null
null
false
[ "We're unlikely to add more features/support for datasets with python loading scripts, which include datasets with manual download. Sorry for the inconvenience" ]
https://api.github.com/repos/huggingface/datasets/issues/6960
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6960/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6960/comments
https://api.github.com/repos/huggingface/datasets/issues/6960/events
https://github.com/huggingface/datasets/pull/6960
2,340,791,685
PR_kwDODunzps5x0R3T
6,960
feat(ci): add trufflehog secrets detection
{ "avatar_url": "https://avatars.githubusercontent.com/u/9112841?v=4", "events_url": "https://api.github.com/users/McPatate/events{/privacy}", "followers_url": "https://api.github.com/users/McPatate/followers", "following_url": "https://api.github.com/users/McPatate/following{/other_user}", "gists_url": "https://api.github.com/users/McPatate/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/McPatate", "id": 9112841, "login": "McPatate", "node_id": "MDQ6VXNlcjkxMTI4NDE=", "organizations_url": "https://api.github.com/users/McPatate/orgs", "received_events_url": "https://api.github.com/users/McPatate/received_events", "repos_url": "https://api.github.com/users/McPatate/repos", "site_admin": false, "starred_url": "https://api.github.com/users/McPatate/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/McPatate/subscriptions", "type": "User", "url": "https://api.github.com/users/McPatate" }
[]
closed
false
null
[]
null
3
"2024-06-07T16:18:23"
"2024-06-08T14:58:27"
"2024-06-08T14:52:18"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6960.diff", "html_url": "https://github.com/huggingface/datasets/pull/6960", "merged_at": "2024-06-08T14:52:18Z", "patch_url": "https://github.com/huggingface/datasets/pull/6960.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6960" }
### What does this PR do? Adding a GH action to scan for leaked secrets on each commit.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6960/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6960/timeline
null
null
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6960). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Yes!", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005007 / 0.011353 (-0.006346) | 0.003603 / 0.011008 (-0.007405) | 0.062719 / 0.038508 (0.024211) | 0.029327 / 0.023109 (0.006217) | 0.250360 / 0.275898 (-0.025538) | 0.265095 / 0.323480 (-0.058385) | 0.004205 / 0.007986 (-0.003781) | 0.002713 / 0.004328 (-0.001616) | 0.049209 / 0.004250 (0.044958) | 0.045162 / 0.037052 (0.008110) | 0.260439 / 0.258489 (0.001950) | 0.287778 / 0.293841 (-0.006063) | 0.027458 / 0.128546 (-0.101088) | 0.010169 / 0.075646 (-0.065477) | 0.199487 / 0.419271 (-0.219784) | 0.036584 / 0.043533 (-0.006949) | 0.254523 / 0.255139 (-0.000616) | 0.269902 / 0.283200 (-0.013298) | 0.017138 / 0.141683 (-0.124545) | 1.099285 / 1.452155 (-0.352869) | 1.150878 / 1.492716 (-0.341839) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092868 / 0.018006 (0.074862) | 0.300421 / 0.000490 (0.299932) | 0.000213 / 0.000200 (0.000013) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018810 / 0.037411 (-0.018601) | 0.062341 / 0.014526 (0.047815) | 0.074779 / 0.176557 (-0.101777) | 0.120641 / 0.737135 (-0.616494) | 0.075020 / 0.296338 (-0.221318) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.277782 / 0.215209 (0.062573) | 2.716427 / 2.077655 (0.638772) | 1.434204 / 1.504120 (-0.069916) | 1.335990 / 1.541195 (-0.205205) | 1.336636 / 1.468490 (-0.131854) | 0.557562 / 4.584777 (-4.027215) | 2.323517 / 3.745712 (-1.422196) | 2.647937 / 5.269862 (-2.621925) | 1.728735 / 4.565676 (-2.836941) | 0.061888 / 0.424275 (-0.362387) | 0.004981 / 0.007607 (-0.002627) | 0.329429 / 0.226044 (0.103385) | 3.324708 / 2.268929 (1.055779) | 1.832641 / 55.444624 (-53.611983) | 1.514386 / 6.876477 (-5.362091) | 1.656912 / 2.142072 (-0.485160) | 0.630706 / 4.805227 (-4.174521) | 0.116250 / 6.500664 (-6.384414) | 0.042598 / 0.075469 (-0.032871) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969217 / 1.841788 (-0.872570) | 11.232580 / 8.074308 (3.158272) | 9.541306 / 10.191392 (-0.650086) | 0.139544 / 0.680424 (-0.540880) | 0.014441 / 0.534201 (-0.519760) | 0.285834 / 0.579283 (-0.293449) | 0.261950 / 0.434364 (-0.172414) | 0.325449 / 0.540337 (-0.214889) | 0.415501 / 1.386936 (-0.971435) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005422 / 0.011353 (-0.005931) | 0.003528 / 0.011008 (-0.007480) | 0.049582 / 0.038508 (0.011074) | 0.032683 / 0.023109 (0.009574) | 0.277309 / 0.275898 (0.001411) | 0.298598 / 0.323480 (-0.024882) | 0.004325 / 0.007986 (-0.003661) | 0.002741 / 0.004328 (-0.001588) | 0.047933 / 0.004250 (0.043683) | 0.040778 / 0.037052 (0.003726) | 0.287492 / 0.258489 (0.029003) | 0.311408 / 0.293841 (0.017567) | 0.029482 / 0.128546 (-0.099064) | 0.010630 / 0.075646 (-0.065016) | 0.057745 / 0.419271 (-0.361526) | 0.033501 / 0.043533 (-0.010031) | 0.279880 / 0.255139 (0.024741) | 0.297421 / 0.283200 (0.014221) | 0.017907 / 0.141683 (-0.123776) | 1.152221 / 1.452155 (-0.299934) | 1.189332 / 1.492716 (-0.303385) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094464 / 0.018006 (0.076457) | 0.300769 / 0.000490 (0.300279) | 0.000196 / 0.000200 (-0.000004) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022232 / 0.037411 (-0.015179) | 0.076626 / 0.014526 (0.062100) | 0.087807 / 0.176557 (-0.088750) | 0.128847 / 0.737135 (-0.608288) | 0.092135 / 0.296338 (-0.204203) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.299013 / 0.215209 (0.083804) | 2.929788 / 2.077655 (0.852133) | 1.614185 / 1.504120 (0.110065) | 1.486720 / 1.541195 (-0.054475) | 1.492473 / 1.468490 (0.023983) | 0.563699 / 4.584777 (-4.021078) | 0.928820 / 3.745712 (-2.816892) | 2.597271 / 5.269862 (-2.672590) | 1.716534 / 4.565676 (-2.849142) | 0.062568 / 0.424275 (-0.361707) | 0.005168 / 0.007607 (-0.002439) | 0.353781 / 0.226044 (0.127737) | 3.493732 / 2.268929 (1.224803) | 2.018343 / 55.444624 (-53.426282) | 1.694516 / 6.876477 (-5.181961) | 1.796950 / 2.142072 (-0.345123) | 0.634846 / 4.805227 (-4.170382) | 0.115230 / 6.500664 (-6.385434) | 0.040816 / 0.075469 (-0.034654) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.986212 / 1.841788 (-0.855575) | 11.954392 / 8.074308 (3.880084) | 10.299670 / 10.191392 (0.108278) | 0.128358 / 0.680424 (-0.552066) | 0.016313 / 0.534201 (-0.517888) | 0.289621 / 0.579283 (-0.289662) | 0.124708 / 0.434364 (-0.309656) | 0.325269 / 0.540337 (-0.215068) | 0.415133 / 1.386936 (-0.971803) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#97513be330114a8aa07e5199ec252ac662aeb76d \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/6959
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6959/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6959/comments
https://api.github.com/repos/huggingface/datasets/issues/6959/events
https://github.com/huggingface/datasets/pull/6959
2,340,229,908
PR_kwDODunzps5xyVt6
6,959
Better error handling in `dataset_module_factory`
{ "avatar_url": "https://avatars.githubusercontent.com/u/11801849?v=4", "events_url": "https://api.github.com/users/Wauplin/events{/privacy}", "followers_url": "https://api.github.com/users/Wauplin/followers", "following_url": "https://api.github.com/users/Wauplin/following{/other_user}", "gists_url": "https://api.github.com/users/Wauplin/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Wauplin", "id": 11801849, "login": "Wauplin", "node_id": "MDQ6VXNlcjExODAxODQ5", "organizations_url": "https://api.github.com/users/Wauplin/orgs", "received_events_url": "https://api.github.com/users/Wauplin/received_events", "repos_url": "https://api.github.com/users/Wauplin/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Wauplin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Wauplin/subscriptions", "type": "User", "url": "https://api.github.com/users/Wauplin" }
[]
closed
false
null
[]
null
3
"2024-06-07T11:24:15"
"2024-06-10T07:33:53"
"2024-06-10T07:27:43"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6959.diff", "html_url": "https://github.com/huggingface/datasets/pull/6959", "merged_at": "2024-06-10T07:27:43Z", "patch_url": "https://github.com/huggingface/datasets/pull/6959.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6959" }
cc @cakiki who reported it on [slack](https://huggingface.slack.com/archives/C039P47V1L5/p1717754405578539) (private link) This PR updates how errors are handled in `dataset_module_factory` when the `dataset_info` cannot be accessed: 1. Use multiple `except ... as e` instead of using `isinstance(e, ...)` 2. Always raise `DatasetNotFoundError` with `from e` so that the initial error is explicitly logged in the stacktrace. 3. Differentiate `RepoNotFoundError` / `GatedRepoError` / `RevisionNotFoundError` cases
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 2, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6959/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6959/timeline
null
null
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6959). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Test should be fixed by https://github.com/huggingface/datasets/pull/6959/commits/ef8f7cee79ffb070d9b5190f21128fc523b3d3ee (tested locally). Let's see what CI says :crossed_fingers: ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005678 / 0.011353 (-0.005675) | 0.004119 / 0.011008 (-0.006889) | 0.063901 / 0.038508 (0.025393) | 0.032071 / 0.023109 (0.008961) | 0.243182 / 0.275898 (-0.032716) | 0.280709 / 0.323480 (-0.042770) | 0.004195 / 0.007986 (-0.003791) | 0.002810 / 0.004328 (-0.001518) | 0.048722 / 0.004250 (0.044472) | 0.049381 / 0.037052 (0.012328) | 0.257816 / 0.258489 (-0.000673) | 0.288460 / 0.293841 (-0.005381) | 0.028518 / 0.128546 (-0.100029) | 0.010775 / 0.075646 (-0.064871) | 0.203149 / 0.419271 (-0.216122) | 0.038792 / 0.043533 (-0.004741) | 0.248502 / 0.255139 (-0.006637) | 0.268251 / 0.283200 (-0.014949) | 0.019536 / 0.141683 (-0.122147) | 1.133935 / 1.452155 (-0.318220) | 1.182855 / 1.492716 (-0.309862) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097531 / 0.018006 (0.079525) | 0.303612 / 0.000490 (0.303122) | 0.000222 / 0.000200 (0.000022) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019670 / 0.037411 (-0.017741) | 0.063439 / 0.014526 (0.048913) | 0.075119 / 0.176557 (-0.101438) | 0.122419 / 0.737135 (-0.614717) | 0.076965 / 0.296338 (-0.219374) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286780 / 0.215209 (0.071571) | 2.811860 / 2.077655 (0.734206) | 1.485165 / 1.504120 (-0.018954) | 1.373296 / 1.541195 (-0.167898) | 1.412700 / 1.468490 (-0.055790) | 0.566442 / 4.584777 (-4.018335) | 2.382616 / 3.745712 (-1.363096) | 2.677214 / 5.269862 (-2.592647) | 1.760073 / 4.565676 (-2.805603) | 0.062673 / 0.424275 (-0.361602) | 0.005050 / 0.007607 (-0.002557) | 0.341701 / 0.226044 (0.115657) | 3.321182 / 2.268929 (1.052253) | 1.811715 / 55.444624 (-53.632909) | 1.554986 / 6.876477 (-5.321491) | 1.727448 / 2.142072 (-0.414624) | 0.642193 / 4.805227 (-4.163034) | 0.117878 / 6.500664 (-6.382786) | 0.042814 / 0.075469 (-0.032655) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.985894 / 1.841788 (-0.855894) | 12.195975 / 8.074308 (4.121667) | 9.890180 / 10.191392 (-0.301212) | 0.142638 / 0.680424 (-0.537786) | 0.015207 / 0.534201 (-0.518994) | 0.283140 / 0.579283 (-0.296143) | 0.266016 / 0.434364 (-0.168348) | 0.325518 / 0.540337 (-0.214820) | 0.418994 / 1.386936 (-0.967942) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005978 / 0.011353 (-0.005374) | 0.003915 / 0.011008 (-0.007093) | 0.051592 / 0.038508 (0.013084) | 0.033338 / 0.023109 (0.010229) | 0.267925 / 0.275898 (-0.007973) | 0.296011 / 0.323480 (-0.027469) | 0.004503 / 0.007986 (-0.003483) | 0.002854 / 0.004328 (-0.001475) | 0.049958 / 0.004250 (0.045707) | 0.041708 / 0.037052 (0.004656) | 0.287185 / 0.258489 (0.028696) | 0.322715 / 0.293841 (0.028874) | 0.030088 / 0.128546 (-0.098458) | 0.010709 / 0.075646 (-0.064938) | 0.059736 / 0.419271 (-0.359536) | 0.034294 / 0.043533 (-0.009239) | 0.264316 / 0.255139 (0.009177) | 0.285471 / 0.283200 (0.002272) | 0.019197 / 0.141683 (-0.122486) | 1.135571 / 1.452155 (-0.316583) | 1.190019 / 1.492716 (-0.302698) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099251 / 0.018006 (0.081245) | 0.305357 / 0.000490 (0.304867) | 0.000215 / 0.000200 (0.000015) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023206 / 0.037411 (-0.014205) | 0.077835 / 0.014526 (0.063310) | 0.090242 / 0.176557 (-0.086315) | 0.131208 / 0.737135 (-0.605928) | 0.091726 / 0.296338 (-0.204612) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292487 / 0.215209 (0.077278) | 2.837044 / 2.077655 (0.759389) | 1.553155 / 1.504120 (0.049035) | 1.433645 / 1.541195 (-0.107550) | 1.476702 / 1.468490 (0.008212) | 0.561926 / 4.584777 (-4.022851) | 0.954630 / 3.745712 (-2.791082) | 2.752286 / 5.269862 (-2.517575) | 1.782746 / 4.565676 (-2.782931) | 0.062984 / 0.424275 (-0.361291) | 0.005056 / 0.007607 (-0.002551) | 0.341700 / 0.226044 (0.115656) | 3.343726 / 2.268929 (1.074798) | 1.953390 / 55.444624 (-53.491234) | 1.616989 / 6.876477 (-5.259488) | 1.785104 / 2.142072 (-0.356969) | 0.643465 / 4.805227 (-4.161763) | 0.115905 / 6.500664 (-6.384759) | 0.041678 / 0.075469 (-0.033791) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.000237 / 1.841788 (-0.841550) | 12.633517 / 8.074308 (4.559208) | 10.553485 / 10.191392 (0.362092) | 0.143188 / 0.680424 (-0.537236) | 0.016020 / 0.534201 (-0.518181) | 0.286739 / 0.579283 (-0.292544) | 0.128488 / 0.434364 (-0.305876) | 0.321932 / 0.540337 (-0.218405) | 0.418635 / 1.386936 (-0.968301) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9510252f03fded02b8cc87ca6dfa3195d17594ba \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/6958
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6958/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6958/comments
https://api.github.com/repos/huggingface/datasets/issues/6958/events
https://github.com/huggingface/datasets/issues/6958
2,337,476,383
I_kwDODunzps6LUw8f
6,958
My Private Dataset doesn't exist on the Hub or cannot be accessed
{ "avatar_url": "https://avatars.githubusercontent.com/u/39621324?v=4", "events_url": "https://api.github.com/users/wangguan1995/events{/privacy}", "followers_url": "https://api.github.com/users/wangguan1995/followers", "following_url": "https://api.github.com/users/wangguan1995/following{/other_user}", "gists_url": "https://api.github.com/users/wangguan1995/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/wangguan1995", "id": 39621324, "login": "wangguan1995", "node_id": "MDQ6VXNlcjM5NjIxMzI0", "organizations_url": "https://api.github.com/users/wangguan1995/orgs", "received_events_url": "https://api.github.com/users/wangguan1995/received_events", "repos_url": "https://api.github.com/users/wangguan1995/repos", "site_admin": false, "starred_url": "https://api.github.com/users/wangguan1995/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wangguan1995/subscriptions", "type": "User", "url": "https://api.github.com/users/wangguan1995" }
[]
open
false
null
[]
null
7
"2024-06-06T06:52:19"
"2024-06-12T16:59:05"
null
NONE
null
null
null
### Describe the bug ``` File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 1852, in dataset_module_factory raise DatasetNotFoundError(msg + f" at revision '{revision}'" if revision else msg) datasets.exceptions.DatasetNotFoundError: Dataset 'xxx' doesn't exist on the Hub or cannot be accessed >>> dataset = load_dataset("xxxx", token=True) 404 error 404 Client Error. (Request ID: Root=xxxx) Repository Not Found for url: https://huggingface.co/api/datasets/xxx/xxx. Please make sure you specified the correct `repo_id` and `repo_type`. If you are trying to access a private or gated repo, make sure you are authenticated. Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 2593, in load_dataset builder_instance = load_dataset_builder( File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 2265, in load_dataset_builder dataset_module = dataset_module_factory( File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 1910, in dataset_module_factory raise e1 from None File "/root/miniconda3/envs/gino_conda/lib/python3.9/site-packages/datasets/load.py", line 1852, in dataset_module_factory raise DatasetNotFoundError(msg + f" at revision '{revision}'" if revision else msg) datasets.exceptions.DatasetNotFoundError: Dataset 'xxx' doesn't exist on the Hub or cannot be accessed ``` ### Steps to reproduce the bug 123 ### Expected behavior 123 ### Environment info 123
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6958/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6958/timeline
null
null
false
[ "I can load public dataset, but for my private dataset it fails", "https://huggingface.co/docs/datasets/upload_dataset", "I have checked the API HTTP link. Repository Not Found for url: https://huggingface.co/api/datasets/xxx/xxx.\r\n\r\n![image](https://github.com/huggingface/datasets/assets/39621324/4aceef59-0c65-4161-9665-676d25d73225)\r\n\r\nIt just works fine.", "It seems that everything is in a mass huh....\r\n\r\n![image](https://github.com/huggingface/datasets/assets/39621324/fb2fe12c-4f0a-4bf6-9656-63ba50347b10)\r\n", "https://huggingface.co/datasets/rajpurkar/squad/blob/main/squad.py fails again", "https://github.com/huggingface/datasets/blob/main/templates/new_dataset_script.py#L81 can not use this, too complex. I just need a def to load my file to a dict", "I am facing the same issue. Did you find a fix?" ]
https://api.github.com/repos/huggingface/datasets/issues/6957
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6957/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6957/comments
https://api.github.com/repos/huggingface/datasets/issues/6957/events
https://github.com/huggingface/datasets/pull/6957
2,335,559,400
PR_kwDODunzps5xiTwJ
6,957
Fix typos in docs
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
2
"2024-06-05T10:46:47"
"2024-06-05T13:01:07"
"2024-06-05T12:43:26"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6957.diff", "html_url": "https://github.com/huggingface/datasets/pull/6957", "merged_at": "2024-06-05T12:43:26Z", "patch_url": "https://github.com/huggingface/datasets/pull/6957.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6957" }
Fix typos in docs introduced by: - #6956 Typos: - `comparisions` => `comparisons` - two consecutive sentences both ending in colon - split one sentence into two Sorry, I did not have time to review that PR. CC: @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6957/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6957/timeline
null
null
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6957). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005371 / 0.011353 (-0.005982) | 0.003834 / 0.011008 (-0.007174) | 0.063032 / 0.038508 (0.024524) | 0.031623 / 0.023109 (0.008514) | 0.250008 / 0.275898 (-0.025890) | 0.273998 / 0.323480 (-0.049482) | 0.004114 / 0.007986 (-0.003871) | 0.002821 / 0.004328 (-0.001508) | 0.049470 / 0.004250 (0.045220) | 0.046586 / 0.037052 (0.009534) | 0.276807 / 0.258489 (0.018318) | 0.288607 / 0.293841 (-0.005234) | 0.027427 / 0.128546 (-0.101119) | 0.010634 / 0.075646 (-0.065012) | 0.202451 / 0.419271 (-0.216821) | 0.036346 / 0.043533 (-0.007187) | 0.250426 / 0.255139 (-0.004713) | 0.274104 / 0.283200 (-0.009096) | 0.018461 / 0.141683 (-0.123222) | 1.120326 / 1.452155 (-0.331829) | 1.157635 / 1.492716 (-0.335081) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102287 / 0.018006 (0.084281) | 0.313145 / 0.000490 (0.312655) | 0.000255 / 0.000200 (0.000055) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019494 / 0.037411 (-0.017917) | 0.063252 / 0.014526 (0.048727) | 0.075318 / 0.176557 (-0.101239) | 0.122194 / 0.737135 (-0.614942) | 0.076837 / 0.296338 (-0.219501) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284098 / 0.215209 (0.068889) | 2.822301 / 2.077655 (0.744647) | 1.490185 / 1.504120 (-0.013935) | 1.366723 / 1.541195 (-0.174472) | 1.398832 / 1.468490 (-0.069658) | 0.563661 / 4.584777 (-4.021116) | 2.385129 / 3.745712 (-1.360583) | 2.689823 / 5.269862 (-2.580039) | 1.731271 / 4.565676 (-2.834405) | 0.063351 / 0.424275 (-0.360924) | 0.004974 / 0.007607 (-0.002633) | 0.332163 / 0.226044 (0.106119) | 3.314906 / 2.268929 (1.045977) | 1.811331 / 55.444624 (-53.633294) | 1.513357 / 6.876477 (-5.363120) | 1.718454 / 2.142072 (-0.423618) | 0.639663 / 4.805227 (-4.165564) | 0.120377 / 6.500664 (-6.380287) | 0.043254 / 0.075469 (-0.032215) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.978534 / 1.841788 (-0.863253) | 11.622313 / 8.074308 (3.548005) | 9.608732 / 10.191392 (-0.582660) | 0.131339 / 0.680424 (-0.549085) | 0.015226 / 0.534201 (-0.518975) | 0.287317 / 0.579283 (-0.291966) | 0.266647 / 0.434364 (-0.167717) | 0.324243 / 0.540337 (-0.216094) | 0.442025 / 1.386936 (-0.944911) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005673 / 0.011353 (-0.005680) | 0.003722 / 0.011008 (-0.007286) | 0.049483 / 0.038508 (0.010975) | 0.033308 / 0.023109 (0.010199) | 0.261912 / 0.275898 (-0.013986) | 0.291151 / 0.323480 (-0.032329) | 0.004389 / 0.007986 (-0.003596) | 0.002762 / 0.004328 (-0.001567) | 0.048970 / 0.004250 (0.044719) | 0.041509 / 0.037052 (0.004457) | 0.273288 / 0.258489 (0.014798) | 0.308351 / 0.293841 (0.014510) | 0.029958 / 0.128546 (-0.098589) | 0.010500 / 0.075646 (-0.065146) | 0.058253 / 0.419271 (-0.361019) | 0.033820 / 0.043533 (-0.009713) | 0.261089 / 0.255139 (0.005950) | 0.282179 / 0.283200 (-0.001021) | 0.018543 / 0.141683 (-0.123140) | 1.121303 / 1.452155 (-0.330852) | 1.166141 / 1.492716 (-0.326575) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099209 / 0.018006 (0.081203) | 0.316920 / 0.000490 (0.316430) | 0.000216 / 0.000200 (0.000016) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023339 / 0.037411 (-0.014072) | 0.077127 / 0.014526 (0.062602) | 0.088160 / 0.176557 (-0.088396) | 0.129449 / 0.737135 (-0.607686) | 0.093159 / 0.296338 (-0.203180) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281262 / 0.215209 (0.066053) | 2.797504 / 2.077655 (0.719850) | 1.513354 / 1.504120 (0.009234) | 1.383034 / 1.541195 (-0.158161) | 1.395202 / 1.468490 (-0.073288) | 0.563180 / 4.584777 (-4.021597) | 0.979330 / 3.745712 (-2.766383) | 2.674008 / 5.269862 (-2.595853) | 1.762174 / 4.565676 (-2.803502) | 0.062333 / 0.424275 (-0.361942) | 0.004991 / 0.007607 (-0.002616) | 0.336043 / 0.226044 (0.109999) | 3.313500 / 2.268929 (1.044571) | 1.848083 / 55.444624 (-53.596541) | 1.554723 / 6.876477 (-5.321754) | 1.743485 / 2.142072 (-0.398587) | 0.657117 / 4.805227 (-4.148111) | 0.115736 / 6.500664 (-6.384928) | 0.040527 / 0.075469 (-0.034942) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.005876 / 1.841788 (-0.835911) | 12.525895 / 8.074308 (4.451587) | 10.492961 / 10.191392 (0.301569) | 0.143443 / 0.680424 (-0.536981) | 0.016652 / 0.534201 (-0.517548) | 0.288236 / 0.579283 (-0.291047) | 0.131401 / 0.434364 (-0.302963) | 0.322885 / 0.540337 (-0.217452) | 0.416048 / 1.386936 (-0.970888) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6548e0e282aeeda7bfb18beafbc65ebecd780c63 \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/6956
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6956/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6956/comments
https://api.github.com/repos/huggingface/datasets/issues/6956/events
https://github.com/huggingface/datasets/pull/6956
2,333,940,021
PR_kwDODunzps5xcwXz
6,956
update docs on N-dim arrays
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
2
"2024-06-04T16:32:19"
"2024-06-04T16:46:34"
"2024-06-04T16:40:27"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6956.diff", "html_url": "https://github.com/huggingface/datasets/pull/6956", "merged_at": "2024-06-04T16:40:27Z", "patch_url": "https://github.com/huggingface/datasets/pull/6956.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6956" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6956/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6956/timeline
null
null
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6956). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005348 / 0.011353 (-0.006005) | 0.003785 / 0.011008 (-0.007223) | 0.061674 / 0.038508 (0.023166) | 0.032127 / 0.023109 (0.009017) | 0.247095 / 0.275898 (-0.028803) | 0.276466 / 0.323480 (-0.047014) | 0.004197 / 0.007986 (-0.003789) | 0.002734 / 0.004328 (-0.001594) | 0.049604 / 0.004250 (0.045354) | 0.048553 / 0.037052 (0.011500) | 0.253230 / 0.258489 (-0.005259) | 0.286954 / 0.293841 (-0.006887) | 0.028181 / 0.128546 (-0.100365) | 0.010602 / 0.075646 (-0.065044) | 0.200719 / 0.419271 (-0.218552) | 0.037278 / 0.043533 (-0.006254) | 0.251565 / 0.255139 (-0.003574) | 0.269026 / 0.283200 (-0.014174) | 0.017632 / 0.141683 (-0.124050) | 1.136216 / 1.452155 (-0.315939) | 1.181158 / 1.492716 (-0.311559) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004892 / 0.018006 (-0.013114) | 0.312921 / 0.000490 (0.312431) | 0.000247 / 0.000200 (0.000047) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019303 / 0.037411 (-0.018108) | 0.062699 / 0.014526 (0.048174) | 0.075227 / 0.176557 (-0.101329) | 0.122919 / 0.737135 (-0.614217) | 0.076506 / 0.296338 (-0.219833) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.277299 / 0.215209 (0.062090) | 2.754771 / 2.077655 (0.677116) | 1.457164 / 1.504120 (-0.046956) | 1.318878 / 1.541195 (-0.222317) | 1.374245 / 1.468490 (-0.094245) | 0.566253 / 4.584777 (-4.018524) | 2.352589 / 3.745712 (-1.393123) | 2.764263 / 5.269862 (-2.505599) | 1.843141 / 4.565676 (-2.722535) | 0.063996 / 0.424275 (-0.360279) | 0.005045 / 0.007607 (-0.002562) | 0.336703 / 0.226044 (0.110658) | 3.342538 / 2.268929 (1.073609) | 1.836664 / 55.444624 (-53.607960) | 1.528901 / 6.876477 (-5.347576) | 1.769562 / 2.142072 (-0.372511) | 0.674192 / 4.805227 (-4.131035) | 0.122421 / 6.500664 (-6.378243) | 0.043714 / 0.075469 (-0.031756) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.989432 / 1.841788 (-0.852356) | 12.178341 / 8.074308 (4.104033) | 9.730838 / 10.191392 (-0.460554) | 0.146751 / 0.680424 (-0.533673) | 0.014720 / 0.534201 (-0.519481) | 0.285821 / 0.579283 (-0.293462) | 0.266474 / 0.434364 (-0.167889) | 0.327886 / 0.540337 (-0.212451) | 0.455672 / 1.386936 (-0.931264) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005691 / 0.011353 (-0.005662) | 0.004089 / 0.011008 (-0.006919) | 0.049878 / 0.038508 (0.011370) | 0.033578 / 0.023109 (0.010469) | 0.268295 / 0.275898 (-0.007603) | 0.288918 / 0.323480 (-0.034561) | 0.005092 / 0.007986 (-0.002894) | 0.002916 / 0.004328 (-0.001412) | 0.049489 / 0.004250 (0.045239) | 0.042495 / 0.037052 (0.005442) | 0.276253 / 0.258489 (0.017764) | 0.313321 / 0.293841 (0.019480) | 0.029386 / 0.128546 (-0.099160) | 0.010926 / 0.075646 (-0.064720) | 0.071747 / 0.419271 (-0.347525) | 0.033642 / 0.043533 (-0.009891) | 0.264950 / 0.255139 (0.009811) | 0.282962 / 0.283200 (-0.000238) | 0.018878 / 0.141683 (-0.122805) | 1.170685 / 1.452155 (-0.281470) | 1.198321 / 1.492716 (-0.294396) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100422 / 0.018006 (0.082415) | 0.311750 / 0.000490 (0.311260) | 0.000235 / 0.000200 (0.000035) | 0.000063 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023093 / 0.037411 (-0.014318) | 0.076934 / 0.014526 (0.062408) | 0.088959 / 0.176557 (-0.087598) | 0.129511 / 0.737135 (-0.607624) | 0.090151 / 0.296338 (-0.206187) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.301646 / 0.215209 (0.086437) | 2.961780 / 2.077655 (0.884126) | 1.656051 / 1.504120 (0.151931) | 1.533154 / 1.541195 (-0.008041) | 1.585152 / 1.468490 (0.116662) | 0.582157 / 4.584777 (-4.002620) | 0.954881 / 3.745712 (-2.790831) | 2.813174 / 5.269862 (-2.456688) | 1.842840 / 4.565676 (-2.722837) | 0.065598 / 0.424275 (-0.358677) | 0.005306 / 0.007607 (-0.002301) | 0.359610 / 0.226044 (0.133565) | 3.575320 / 2.268929 (1.306391) | 2.015327 / 55.444624 (-53.429297) | 1.734086 / 6.876477 (-5.142391) | 1.919081 / 2.142072 (-0.222991) | 0.671178 / 4.805227 (-4.134049) | 0.120109 / 6.500664 (-6.380555) | 0.042353 / 0.075469 (-0.033116) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.011726 / 1.841788 (-0.830062) | 13.007806 / 8.074308 (4.933498) | 10.632486 / 10.191392 (0.441094) | 0.148535 / 0.680424 (-0.531889) | 0.015988 / 0.534201 (-0.518213) | 0.290023 / 0.579283 (-0.289260) | 0.130685 / 0.434364 (-0.303679) | 0.322912 / 0.540337 (-0.217425) | 0.420596 / 1.386936 (-0.966340) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#336512dcba4fdb4c349d5ecb632b6ced80e038d5 \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/6955
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6955/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6955/comments
https://api.github.com/repos/huggingface/datasets/issues/6955/events
https://github.com/huggingface/datasets/pull/6955
2,333,802,815
PR_kwDODunzps5xcSYm
6,955
Fix small typo
{ "avatar_url": "https://avatars.githubusercontent.com/u/17081356?v=4", "events_url": "https://api.github.com/users/marcenacp/events{/privacy}", "followers_url": "https://api.github.com/users/marcenacp/followers", "following_url": "https://api.github.com/users/marcenacp/following{/other_user}", "gists_url": "https://api.github.com/users/marcenacp/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/marcenacp", "id": 17081356, "login": "marcenacp", "node_id": "MDQ6VXNlcjE3MDgxMzU2", "organizations_url": "https://api.github.com/users/marcenacp/orgs", "received_events_url": "https://api.github.com/users/marcenacp/received_events", "repos_url": "https://api.github.com/users/marcenacp/repos", "site_admin": false, "starred_url": "https://api.github.com/users/marcenacp/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/marcenacp/subscriptions", "type": "User", "url": "https://api.github.com/users/marcenacp" }
[]
closed
false
null
[]
null
1
"2024-06-04T15:19:02"
"2024-06-05T10:18:56"
"2024-06-04T15:20:55"
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6955.diff", "html_url": "https://github.com/huggingface/datasets/pull/6955", "merged_at": "2024-06-04T15:20:55Z", "patch_url": "https://github.com/huggingface/datasets/pull/6955.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6955" }
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6955/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6955/timeline
null
null
true
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005507 / 0.011353 (-0.005845) | 0.003757 / 0.011008 (-0.007251) | 0.063274 / 0.038508 (0.024766) | 0.029720 / 0.023109 (0.006610) | 0.247974 / 0.275898 (-0.027924) | 0.272283 / 0.323480 (-0.051197) | 0.004186 / 0.007986 (-0.003799) | 0.002820 / 0.004328 (-0.001508) | 0.049070 / 0.004250 (0.044820) | 0.050026 / 0.037052 (0.012973) | 0.256501 / 0.258489 (-0.001988) | 0.297082 / 0.293841 (0.003241) | 0.028549 / 0.128546 (-0.099997) | 0.010361 / 0.075646 (-0.065285) | 0.213202 / 0.419271 (-0.206070) | 0.038117 / 0.043533 (-0.005416) | 0.258878 / 0.255139 (0.003739) | 0.282980 / 0.283200 (-0.000220) | 0.018911 / 0.141683 (-0.122772) | 1.118857 / 1.452155 (-0.333298) | 1.157763 / 1.492716 (-0.334953) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004499 / 0.018006 (-0.013507) | 0.310445 / 0.000490 (0.309956) | 0.000218 / 0.000200 (0.000018) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019275 / 0.037411 (-0.018137) | 0.063257 / 0.014526 (0.048731) | 0.075833 / 0.176557 (-0.100724) | 0.122323 / 0.737135 (-0.614812) | 0.079046 / 0.296338 (-0.217292) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292811 / 0.215209 (0.077602) | 2.903501 / 2.077655 (0.825846) | 1.592434 / 1.504120 (0.088314) | 1.450833 / 1.541195 (-0.090362) | 1.481285 / 1.468490 (0.012795) | 0.570150 / 4.584777 (-4.014627) | 2.388618 / 3.745712 (-1.357094) | 2.699322 / 5.269862 (-2.570540) | 1.781405 / 4.565676 (-2.784272) | 0.063451 / 0.424275 (-0.360824) | 0.004979 / 0.007607 (-0.002628) | 0.353346 / 0.226044 (0.127302) | 3.541217 / 2.268929 (1.272289) | 1.972335 / 55.444624 (-53.472289) | 1.634780 / 6.876477 (-5.241697) | 1.815944 / 2.142072 (-0.326128) | 0.651559 / 4.805227 (-4.153669) | 0.118398 / 6.500664 (-6.382266) | 0.041962 / 0.075469 (-0.033507) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.971435 / 1.841788 (-0.870352) | 11.843740 / 8.074308 (3.769431) | 9.716333 / 10.191392 (-0.475059) | 0.145923 / 0.680424 (-0.534501) | 0.015073 / 0.534201 (-0.519128) | 0.293307 / 0.579283 (-0.285976) | 0.265505 / 0.434364 (-0.168859) | 0.327578 / 0.540337 (-0.212760) | 0.436409 / 1.386936 (-0.950527) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005647 / 0.011353 (-0.005706) | 0.003669 / 0.011008 (-0.007339) | 0.050234 / 0.038508 (0.011726) | 0.033033 / 0.023109 (0.009924) | 0.269303 / 0.275898 (-0.006595) | 0.282472 / 0.323480 (-0.041008) | 0.004283 / 0.007986 (-0.003703) | 0.002821 / 0.004328 (-0.001507) | 0.050887 / 0.004250 (0.046637) | 0.041618 / 0.037052 (0.004565) | 0.277628 / 0.258489 (0.019139) | 0.310539 / 0.293841 (0.016698) | 0.030036 / 0.128546 (-0.098511) | 0.010401 / 0.075646 (-0.065245) | 0.058845 / 0.419271 (-0.360427) | 0.033676 / 0.043533 (-0.009857) | 0.261148 / 0.255139 (0.006009) | 0.295232 / 0.283200 (0.012032) | 0.018603 / 0.141683 (-0.123080) | 1.132182 / 1.452155 (-0.319972) | 1.173763 / 1.492716 (-0.318953) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100594 / 0.018006 (0.082588) | 0.308101 / 0.000490 (0.307611) | 0.000217 / 0.000200 (0.000017) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023040 / 0.037411 (-0.014371) | 0.080676 / 0.014526 (0.066150) | 0.094687 / 0.176557 (-0.081870) | 0.129780 / 0.737135 (-0.607356) | 0.092241 / 0.296338 (-0.204097) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294799 / 0.215209 (0.079590) | 2.957570 / 2.077655 (0.879915) | 1.576795 / 1.504120 (0.072675) | 1.446869 / 1.541195 (-0.094326) | 1.463133 / 1.468490 (-0.005357) | 0.568511 / 4.584777 (-4.016266) | 1.011502 / 3.745712 (-2.734211) | 2.759571 / 5.269862 (-2.510291) | 1.771738 / 4.565676 (-2.793939) | 0.064104 / 0.424275 (-0.360171) | 0.005160 / 0.007607 (-0.002448) | 0.347554 / 0.226044 (0.121510) | 3.463905 / 2.268929 (1.194976) | 1.931843 / 55.444624 (-53.512781) | 1.622765 / 6.876477 (-5.253712) | 1.809146 / 2.142072 (-0.332926) | 0.653388 / 4.805227 (-4.151839) | 0.122703 / 6.500664 (-6.377961) | 0.041680 / 0.075469 (-0.033790) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.000428 / 1.841788 (-0.841359) | 12.503003 / 8.074308 (4.428695) | 10.434802 / 10.191392 (0.243410) | 0.144684 / 0.680424 (-0.535740) | 0.015988 / 0.534201 (-0.518213) | 0.287179 / 0.579283 (-0.292104) | 0.124811 / 0.434364 (-0.309553) | 0.327855 / 0.540337 (-0.212482) | 0.425144 / 1.386936 (-0.961792) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f7170067f819222153fcd45682db61279bdfe673 \"CML watermark\")\n" ]
https://api.github.com/repos/huggingface/datasets/issues/6954
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6954/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6954/comments
https://api.github.com/repos/huggingface/datasets/issues/6954/events
https://github.com/huggingface/datasets/pull/6954
2,333,530,558
PR_kwDODunzps5xbWtU
6,954
Remove default `trust_remote_code=True`
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
4
"2024-06-04T13:22:56"
"2024-06-15T14:23:57"
"2024-06-07T12:20:29"
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6954.diff", "html_url": "https://github.com/huggingface/datasets/pull/6954", "merged_at": "2024-06-07T12:20:29Z", "patch_url": "https://github.com/huggingface/datasets/pull/6954.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6954" }
TODO: - [x] fix tests
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6954/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6954/timeline
null
null
true
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6954). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "yay! 🎉 ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004881 / 0.011353 (-0.006472) | 0.003246 / 0.011008 (-0.007762) | 0.062496 / 0.038508 (0.023988) | 0.030760 / 0.023109 (0.007651) | 0.241500 / 0.275898 (-0.034398) | 0.272073 / 0.323480 (-0.051407) | 0.004123 / 0.007986 (-0.003863) | 0.002796 / 0.004328 (-0.001533) | 0.049015 / 0.004250 (0.044764) | 0.047095 / 0.037052 (0.010043) | 0.257002 / 0.258489 (-0.001487) | 0.287602 / 0.293841 (-0.006239) | 0.027281 / 0.128546 (-0.101265) | 0.010132 / 0.075646 (-0.065514) | 0.203699 / 0.419271 (-0.215572) | 0.036553 / 0.043533 (-0.006980) | 0.246221 / 0.255139 (-0.008918) | 0.268137 / 0.283200 (-0.015062) | 0.017260 / 0.141683 (-0.124423) | 1.100677 / 1.452155 (-0.351478) | 1.148367 / 1.492716 (-0.344349) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102519 / 0.018006 (0.084513) | 0.301929 / 0.000490 (0.301439) | 0.000223 / 0.000200 (0.000023) | 0.000046 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018590 / 0.037411 (-0.018821) | 0.061615 / 0.014526 (0.047089) | 0.074579 / 0.176557 (-0.101978) | 0.121415 / 0.737135 (-0.615720) | 0.075696 / 0.296338 (-0.220642) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283842 / 0.215209 (0.068633) | 2.788321 / 2.077655 (0.710666) | 1.481376 / 1.504120 (-0.022743) | 1.356064 / 1.541195 (-0.185131) | 1.380592 / 1.468490 (-0.087898) | 0.575577 / 4.584777 (-4.009199) | 2.471858 / 3.745712 (-1.273854) | 2.760769 / 5.269862 (-2.509093) | 1.808638 / 4.565676 (-2.757038) | 0.064930 / 0.424275 (-0.359345) | 0.005056 / 0.007607 (-0.002551) | 0.337794 / 0.226044 (0.111750) | 3.359444 / 2.268929 (1.090515) | 1.829540 / 55.444624 (-53.615084) | 1.518660 / 6.876477 (-5.357817) | 1.671612 / 2.142072 (-0.470460) | 0.664286 / 4.805227 (-4.140941) | 0.119593 / 6.500664 (-6.381071) | 0.042519 / 0.075469 (-0.032950) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.993152 / 1.841788 (-0.848636) | 11.733054 / 8.074308 (3.658746) | 9.746734 / 10.191392 (-0.444658) | 0.143026 / 0.680424 (-0.537398) | 0.014900 / 0.534201 (-0.519301) | 0.292243 / 0.579283 (-0.287040) | 0.261301 / 0.434364 (-0.173063) | 0.330838 / 0.540337 (-0.209500) | 0.523719 / 1.386936 (-0.863217) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005707 / 0.011353 (-0.005646) | 0.003523 / 0.011008 (-0.007485) | 0.052265 / 0.038508 (0.013757) | 0.034296 / 0.023109 (0.011187) | 0.266589 / 0.275898 (-0.009309) | 0.288441 / 0.323480 (-0.035039) | 0.004507 / 0.007986 (-0.003478) | 0.002745 / 0.004328 (-0.001583) | 0.049417 / 0.004250 (0.045167) | 0.042679 / 0.037052 (0.005627) | 0.278518 / 0.258489 (0.020029) | 0.328751 / 0.293841 (0.034911) | 0.029530 / 0.128546 (-0.099016) | 0.010373 / 0.075646 (-0.065274) | 0.058207 / 0.419271 (-0.361064) | 0.033434 / 0.043533 (-0.010099) | 0.267902 / 0.255139 (0.012763) | 0.288192 / 0.283200 (0.004993) | 0.018866 / 0.141683 (-0.122817) | 1.132734 / 1.452155 (-0.319421) | 1.172879 / 1.492716 (-0.319837) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097787 / 0.018006 (0.079780) | 0.305509 / 0.000490 (0.305019) | 0.000268 / 0.000200 (0.000068) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023230 / 0.037411 (-0.014181) | 0.076637 / 0.014526 (0.062111) | 0.088386 / 0.176557 (-0.088171) | 0.131079 / 0.737135 (-0.606057) | 0.091142 / 0.296338 (-0.205197) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295586 / 0.215209 (0.080377) | 2.872090 / 2.077655 (0.794435) | 1.538152 / 1.504120 (0.034032) | 1.405695 / 1.541195 (-0.135500) | 1.421058 / 1.468490 (-0.047432) | 0.561179 / 4.584777 (-4.023598) | 0.943954 / 3.745712 (-2.801758) | 2.684381 / 5.269862 (-2.585481) | 1.757457 / 4.565676 (-2.808220) | 0.062903 / 0.424275 (-0.361372) | 0.004998 / 0.007607 (-0.002610) | 0.370290 / 0.226044 (0.144245) | 3.374988 / 2.268929 (1.106059) | 1.899282 / 55.444624 (-53.545342) | 1.598787 / 6.876477 (-5.277690) | 1.735371 / 2.142072 (-0.406702) | 0.647367 / 4.805227 (-4.157860) | 0.116975 / 6.500664 (-6.383689) | 0.040811 / 0.075469 (-0.034658) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.996380 / 1.841788 (-0.845408) | 12.225657 / 8.074308 (4.151349) | 10.291221 / 10.191392 (0.099829) | 0.142791 / 0.680424 (-0.537633) | 0.016087 / 0.534201 (-0.518114) | 0.299978 / 0.579283 (-0.279305) | 0.149444 / 0.434364 (-0.284920) | 0.321354 / 0.540337 (-0.218984) | 0.414492 / 1.386936 (-0.972444) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a2dc287cbef5311cf1a32ad4e3685f4052db227c \"CML watermark\")\n", "@lhoestq Thanks for the PR, Is there a way to detect if `trust_remote_code=True` will be required for loading the dataset, without loading it? It would be great if you could please point me to the relevant documentation." ]
https://api.github.com/repos/huggingface/datasets/issues/6953
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6953/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6953/comments
https://api.github.com/repos/huggingface/datasets/issues/6953/events
https://github.com/huggingface/datasets/issues/6953
2,333,366,120
I_kwDODunzps6LFFdo
6,953
Remove canonical datasets from docs
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "color": "0075ca", "default": true, "description": "Improvements or additions to documentation", "id": 1935892861, "name": "documentation", "node_id": "MDU6TGFiZWwxOTM1ODkyODYx", "url": "https://api.github.com/repos/huggingface/datasets/labels/documentation" } ]
open
false
null
[]
null
0
"2024-06-04T12:09:03"
"2024-06-04T12:09:03"
null
MEMBER
null
null
null
Remove canonical datasets from docs, now that we no longer have canonical datasets.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6953/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6953/timeline
null
null
false
[]
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

Dataset Card for GitHub Issues

Dataset Summary

GitHub Issues is a dataset consisting of GitHub issues and pull requests associated with the 🤗 Datasets repository. It is intended for educational purposes and can be used for semantic search or multilabel text classification. The contents of each GitHub issue are in English and concern the domain of datasets for NLP, computer vision, and beyond.

Supported Tasks and Leaderboards

For each of the tasks tagged for this dataset, give a brief description of the tag, metrics, and suggested models (with a link to their HuggingFace implementation if available). Give a similar description of tasks that were not covered by the structured tag set (repace the task-category-tag with an appropriate other:other-task-name).

  • task-category-tag: The dataset can be used to train a model for [TASK NAME], which consists in [TASK DESCRIPTION]. Success on this task is typically measured by achieving a high/low metric name. The (model name or model class) model currently achieves the following score. [IF A LEADERBOARD IS AVAILABLE]: This task has an active leaderboard which can be found at leaderboard url and ranks models based on metric name while also reporting other metric name.

Languages

Provide a brief overview of the languages represented in the dataset. Describe relevant details about specifics of the language such as whether it is social media text, African American English,...

When relevant, please provide BCP-47 codes, which consist of a primary language subtag, with a script subtag and/or region subtag if available.

Dataset Structure

Data Instances

Provide an JSON-formatted example and brief description of a typical instance in the dataset. If available, provide a link to further examples.

{
  'example_field': ...,
  ...
}

Provide any additional information that is not covered in the other sections about the data here. In particular describe any relationships between data points and if these relationships are made explicit.

Data Fields

List and describe the fields present in the dataset. Mention their data type, and whether they are used as input or output in any of the tasks the dataset currently supports. If the data has span indices, describe their attributes, such as whether they are at the character level or word level, whether they are contiguous or not, etc. If the datasets contains example IDs, state whether they have an inherent meaning, such as a mapping to other datasets or pointing to relationships between data points.

  • example_field: description of example_field

Note that the descriptions can be initialized with the Show Markdown Data Fields output of the tagging app, you will then only need to refine the generated descriptions.

Data Splits

Describe and name the splits in the dataset if there are more than one.

Describe any criteria for splitting the data, if used. If their are differences between the splits (e.g. if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here.

Provide the sizes of each split. As appropriate, provide any descriptive statistics for the features, such as average length. For example:

Tain Valid Test
Input Sentences
Average Sentence Length

Dataset Creation

Curation Rationale

What need motivated the creation of this dataset? What are some of the reasons underlying the major choices involved in putting it together?

Source Data

This section describes the source data (e.g. news text and headlines, social media posts, translated sentences,...)

Initial Data Collection and Normalization

Describe the data collection process. Describe any criteria for data selection or filtering. List any key words or search terms used. If possible, include runtime information for the collection process.

If data was collected from other pre-existing datasets, link to source here and to their Hugging Face version.

If the data was modified or normalized after being collected (e.g. if the data is word-tokenized), describe the process and the tools used.

Who are the source language producers?

State whether the data was produced by humans or machine generated. Describe the people or systems who originally created the data.

If available, include self-reported demographic or identity information for the source data creators, but avoid inferring this information. Instead state that this information is unknown. See Larson 2017 for using identity categories as a variables, particularly gender.

Describe the conditions under which the data was created (for example, if the producers were crowdworkers, state what platform was used, or if the data was found, what website the data was found on). If compensation was provided, include that information here.

Describe other people represented or mentioned in the data. Where possible, link to references for the information.

Annotations

If the dataset contains annotations which are not part of the initial data collection, describe them in the following paragraphs.

Annotation process

If applicable, describe the annotation process and any tools used, or state otherwise. Describe the amount of data annotated, if not all. Describe or reference annotation guidelines provided to the annotators. If available, provide interannotator statistics. Describe any annotation validation processes.

Who are the annotators?

If annotations were collected for the source data (such as class labels or syntactic parses), state whether the annotations were produced by humans or machine generated.

Describe the people or systems who originally created the annotations and their selection criteria if applicable.

If available, include self-reported demographic or identity information for the annotators, but avoid inferring this information. Instead state that this information is unknown. See Larson 2017 for using identity categories as a variables, particularly gender.

Describe the conditions under which the data was annotated (for example, if the annotators were crowdworkers, state what platform was used, or if the data was found, what website the data was found on). If compensation was provided, include that information here.

Personal and Sensitive Information

State whether the dataset uses identity categories and, if so, how the information is used. Describe where this information comes from (i.e. self-reporting, collecting from profiles, inferring, etc.). See Larson 2017 for using identity categories as a variables, particularly gender. State whether the data is linked to individuals and whether those individuals can be identified in the dataset, either directly or indirectly (i.e., in combination with other data).

State whether the dataset contains other data that might be considered sensitive (e.g., data that reveals racial or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history).

If efforts were made to anonymize the data, describe the anonymization process.

Considerations for Using the Data

Social Impact of Dataset

Please discuss some of the ways you believe the use of this dataset will impact society.

The statement should include both positive outlooks, such as outlining how technologies developed through its use may improve people's lives, and discuss the accompanying risks. These risks may range from making important decisions more opaque to people who are affected by the technology, to reinforcing existing harmful biases (whose specifics should be discussed in the next section), among other considerations.

Also describe in this section if the proposed dataset contains a low-resource or under-represented language. If this is the case or if this task has any impact on underserved communities, please elaborate here.

Discussion of Biases

Provide descriptions of specific biases that are likely to be reflected in the data, and state whether any steps were taken to reduce their impact.

For Wikipedia text, see for example Dinan et al 2020 on biases in Wikipedia (esp. Table 1), or Blodgett et al 2020 for a more general discussion of the topic.

If analyses have been run quantifying these biases, please add brief summaries and links to the studies here.

Other Known Limitations

If studies of the datasets have outlined other limitations of the dataset, such as annotation artifacts, please outline and cite them here.

Additional Information

Dataset Curators

List the people involved in collecting the dataset and their affiliation(s). If funding information is known, include it here.

Licensing Information

Provide the license and link to the license webpage if available.

Citation Information

Provide the BibTex-formatted reference for the dataset. For example:

@article{article_id,
  author    = {Author List},
  title     = {Dataset Paper Title},
  journal   = {Publication Venue},
  year      = {2525}
}

If the dataset has a DOI, please provide it here.

Contributions

Thanks to @lewtun for adding this dataset.

Downloads last month
49
Edit dataset card