Datasets:
license: apache-2.0 | |
configs: | |
- config_name: '2022' | |
data_files: 2022.jsonl | |
- config_name: '2023' | |
data_files: 2023.jsonl | |
default: true | |
dataset_info: | |
features: | |
- name: id | |
dtype: string | |
- name: exam | |
dtype: string | |
- name: IU | |
dtype: bool | |
- name: ledor | |
dtype: bool | |
- name: question | |
dtype: string | |
- name: alternatives | |
sequence: string | |
- name: figures | |
sequence: string | |
- name: description | |
sequence: string | |
- name: label | |
dtype: string | |
task_categories: | |
- visual-question-answering | |
- multiple-choice | |
language: | |
- pt | |
pretty_name: ENEM | |
size_categories: | |
- n<1K | |
The enem 2022 and enem 2023 datasets encompass all multiple-choice questions from the last two editions of the [Exame Nacional do Ensino Médio (ENEM)](https://www.gov.br/inep/pt-br/areas-de-atuacao/avaliacao-e-exames-educacionais/enem), the main standardized entrance examination adopted by Brazilian universities. The datasets have been created to allow the evaluation of both textual-only and textual-visual language models. To evaluate textual-only models, we incorporated into the datasets the textual descriptions of the images that appear in the questions' statements from the orange ENEM exam booklet, a particular booklet that offers accessibility to people with visual impairments. | |
A repository containing the essential code for utilizing this dataset is accessible [here](https://github.com/piresramon/gpt-4-enem). | |
If you use this dataset in your research, please acknowledge the papers below by citing them: | |
```bibtex | |
@misc{pires2023evaluating, | |
title={Evaluating GPT-4's Vision Capabilities on Brazilian University Admission Exams}, | |
author={Ramon Pires and Thales Sales Almeida and Hugo Abonizio and Rodrigo Nogueira}, | |
year={2023}, | |
eprint={2311.14169}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
``` | |
```bibtex | |
@misc{nunes2023evaluating, | |
title={Evaluating GPT-3.5 and GPT-4 Models on Brazilian University Admission Exams}, | |
author={Desnes Nunes and Ricardo Primi and Ramon Pires and Roberto Lotufo and Rodrigo Nogueira}, | |
year={2023}, | |
eprint={2303.17003}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
``` |