Datasets:

Modalities:
Text
Formats:
json
Languages:
Portuguese
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
enem / README.md
Ramon Pires
Update the README with description and citation
6bf05b2
---
license: apache-2.0
configs:
- config_name: '2022'
data_files: 2022.jsonl
- config_name: '2023'
data_files: 2023.jsonl
default: true
dataset_info:
features:
- name: id
dtype: string
- name: exam
dtype: string
- name: IU
dtype: bool
- name: ledor
dtype: bool
- name: question
dtype: string
- name: alternatives
sequence: string
- name: figures
sequence: string
- name: description
sequence: string
- name: label
dtype: string
task_categories:
- visual-question-answering
- multiple-choice
language:
- pt
pretty_name: ENEM
size_categories:
- n<1K
---
The enem 2022 and enem 2023 datasets encompass all multiple-choice questions from the last two editions of the [Exame Nacional do Ensino Médio (ENEM)](https://www.gov.br/inep/pt-br/areas-de-atuacao/avaliacao-e-exames-educacionais/enem), the main standardized entrance examination adopted by Brazilian universities. The datasets have been created to allow the evaluation of both textual-only and textual-visual language models. To evaluate textual-only models, we incorporated into the datasets the textual descriptions of the images that appear in the questions' statements from the orange ENEM exam booklet, a particular booklet that offers accessibility to people with visual impairments.
A repository containing the essential code for utilizing this dataset is accessible [here](https://github.com/piresramon/gpt-4-enem).
If you use this dataset in your research, please acknowledge the papers below by citing them:
```bibtex
@misc{pires2023evaluating,
title={Evaluating GPT-4's Vision Capabilities on Brazilian University Admission Exams},
author={Ramon Pires and Thales Sales Almeida and Hugo Abonizio and Rodrigo Nogueira},
year={2023},
eprint={2311.14169},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
```bibtex
@misc{nunes2023evaluating,
title={Evaluating GPT-3.5 and GPT-4 Models on Brazilian University Admission Exams},
author={Desnes Nunes and Ricardo Primi and Ramon Pires and Roberto Lotufo and Rodrigo Nogueira},
year={2023},
eprint={2303.17003},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```