Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
sentiment-classification
Languages:
Latvian
Size:
1K - 10K
ArXiv:
License:
license: mit | |
task_categories: | |
- text-classification | |
task_ids: | |
- sentiment-classification | |
language: | |
- lv | |
tags: | |
- sentiment | |
- sentiment analysis | |
- sentiment classification | |
- Latvian | |
- social media | |
- short text | |
pretty_name: Latvian Twitter Eater Corpus - Sentiment | |
size_categories: | |
- 1K<n<10K | |
# Latvian Twitter Eater Corpus - Sentiment Analysis Sub-corpus | |
This sub-corpus contains 5420 tweets with human-annotated sentiment as positive (pos), neutral (neu) or negative (neg). 1631 tweets are positive, 2507 - neutral and 1282 - negative. | |
- **ltec-sentiment-annotated.json** contains tweets with human annotated sentiment | |
- **ltec-sentiment-annotated-test.json** contains the test set that we used in our paper | |
- **ltec-sentiment-automatic.json** contains tweets with automatically assigned sentiment based on emoticons | |
## Tweet Structure | |
```json | |
{ | |
"sentiment":"pos", | |
"screen_name":"artisare", | |
"tweet_id":221520985738846209, | |
"tweet_text":"@mazheks Burgā ir brančs?!? Es jau sāku domāt ka uz Pērli jāmauc ēst pirms tam Illy paķerot kafiju. Cikos domā?" | |
} | |
``` | |
## Other Latvian twitter sentiment corpora | |
--------- | |
* [Pinnis](https://github.com/pmarcis/latvian-tweet-corpus) - ~ 7000 tweets from politicians and companies | |
* [Peisenieks](https://github.com/FnTm/latvian-tweet-sentiment-corpus) - ~ 1000 general tweets with sentiment annotated by multiple annotators | |
* [Vīksna](https://github.com/RinaldsViksna/sikzinu_analize) - ~ 4000 general tweets | |
* [Nicmanis](https://github.com/nicemanis/LV-twitter-sentiment-corpus) - ~ 2000 general tweets | |
* [Špats](https://github.com/gatis/om) - ~ 6000 general tweets (lowercased) | |
Publications | |
--------- | |
If you use this corpus or scripts, please cite the following paper: | |
Uga Sproģis and Matīss Rikters (2020). "[What Can We Learn From Almost a Decade of Food Tweets.](https://arxiv.org/abs/2007.05194)" In Proceedings of the 9th Conference Human Language Technologies - The Baltic Perspective ([Baltic HLT 2020](https://klc.vdu.lt/hlt/programme)) (2020). | |
```bibtex | |
@inproceedings{SprogisRikters2020BalticHLT, | |
author = {Sproģis, Uga and Rikters, Matīss}, | |
booktitle={In Proceedings of the 9th Conference Human Language Technologies - The Baltic Perspective (Baltic HLT 2020)}, | |
title = {{What Can We Learn From Almost a Decade of Food Tweets}}, | |
address={Kaunas, Lithuania}, | |
year = {2020} | |
} | |
``` |