slug
stringlengths
15
15
content
listlengths
1
129
rawContent
stringlengths
1
2k
author
dict
attachments
listlengths
0
49
mentions
listlengths
0
49
reactions
listlengths
0
12
publishedAt
stringlengths
24
24
updatedAt
stringlengths
24
24
commentators
listlengths
0
52
url
stringlengths
25
46
totalUniqueImpressions
int64
1
42.1k
numComments
int64
0
621
181714694113305
[ { "type": "text", "value": "EPFL and Apple (at ", "raw": "EPFL and Apple (at ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@EPFL-VILAB", "href": null, "resource": null, "url": null, "code": null, "user": "EPFL-VILAB", "label": null, "lang": null }, { "type": "text", "value": ") just released 4M-21: single any-to-any model that can do anything from text-to-image generation to generating depth masks! 🙀", "raw": ") just released 4M-21: single any-to-any model that can do anything from text-to-image generation to generating depth masks! 🙀", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "4M is a multimodal training framework introduced by Apple and EPFL.", "raw": "4M is a multimodal training framework introduced by Apple and EPFL.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Resulting model takes image and text and output image and text 🤩", "raw": "Resulting model takes image and text and output image and text 🤩", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Models: ", "raw": "Models: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/EPFL-VILAB/4m-models-660193abe3faf4b4d98a2742", "href": null, "resource": { "type": "collection", "id": "EPFL-VILAB/4m-models-660193abe3faf4b4d98a2742", "discussionNum": null }, "url": "https://huggingface.co/collections/EPFL-VILAB/4m-models-660193abe3faf4b4d98a2742", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Demo: ", "raw": "Demo: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/EPFL-VILAB/4M", "href": null, "resource": { "type": "space", "id": "EPFL-VILAB/4M", "discussionNum": null }, "url": "https://huggingface.co/spaces/EPFL-VILAB/4M", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Paper: ", "raw": "Paper: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2406.09406", "href": null, "resource": { "type": "paper", "id": "2406.09406", "discussionNum": null }, "url": "https://huggingface.co/papers/2406.09406", "code": null, "user": null, "label": "4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities (2406.09406)", "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This model consists of transformer encoder and decoder, where the key to multimodality lies in input and output data:", "raw": "This model consists of transformer encoder and decoder, where the key to multimodality lies in input and output data:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "input and output tokens are decoded to generate bounding boxes, generated image's pixels, captions and more!", "raw": "input and output tokens are decoded to generate bounding boxes, generated image's pixels, captions and more!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This model also learnt to generate canny maps, SAM edges and other things for steerable text-to-image generation 🖼️", "raw": "This model also learnt to generate canny maps, SAM edges and other things for steerable text-to-image generation 🖼️", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The authors only added image-to-all capabilities for the demo, but you can try to use this model for text-to-image generation as well ☺️", "raw": "The authors only added image-to-all capabilities for the demo, but you can try to use this model for text-to-image generation as well ☺️", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
EPFL and Apple (at @EPFL-VILAB) just released 4M-21: single any-to-any model that can do anything from text-to-image generation to generating depth masks! 🙀 4M is a multimodal training framework introduced by Apple and EPFL. Resulting model takes image and text and output image and text 🤩 Models: https://huggingface.co/collections/EPFL-VILAB/4m-models-660193abe3faf4b4d98a2742 Demo: https://huggingface.co/spaces/EPFL-VILAB/4M Paper: https://huggingface.co/papers/2406.09406 This model consists of transformer encoder and decoder, where the key to multimodality lies in input and output data: input and output tokens are decoded to generate bounding boxes, generated image's pixels, captions and more! This model also learnt to generate canny maps, SAM edges and other things for steerable text-to-image generation 🖼️ The authors only added image-to-all capabilities for the demo, but you can try to use this model for text-to-image generation as well ☺️
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5589, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/2HyJV8kCBZPp7EX7z3Dzc.png" } ]
[]
[ { "reaction": "🤯", "users": [ "Tonic", "YaTharThShaRma999", "radames", "KingNish", "LeroyDyer", "Jebadiah", "Ramikan-BR", "louisbrulenaudet" ], "count": 8 }, { "reaction": "👀", "users": [ "Tonic", "YaTharThShaRma999", "Taylor658", "radames", "LeroyDyer", "Jebadiah", "Ukdah", "Ramikan-BR" ], "count": 8 }, { "reaction": "👍", "users": [ "Tonic", "YaTharThShaRma999", "LeroyDyer", "Jebadiah", "Norod78", "Ramikan-BR" ], "count": 6 }, { "reaction": "😎", "users": [ "Tonic", "YaTharThShaRma999", "LeroyDyer", "Jebadiah", "Ramikan-BR" ], "count": 5 }, { "reaction": "🧠", "users": [ "Tonic", "YaTharThShaRma999", "Jebadiah", "Ramikan-BR" ], "count": 4 }, { "reaction": "🤝", "users": [ "Ukdah", "Ramikan-BR" ], "count": 2 }, { "reaction": "🔥", "users": [ "Ramikan-BR" ], "count": 1 } ]
2024-06-21T13:11:37.000Z
2024-06-21T13:11:37.163Z
[]
/posts/merve/181714694113305
3,562
0
746271131430293
[ { "type": "text", "value": "The new Claude Sonnet 3.5 model from Anthropic AI has been getting good reviews on since last night. It is quite good at coding related tasks. We tried it on the Static Analysis Eval benchmark (", "raw": "The new Claude Sonnet 3.5 model from Anthropic AI has been getting good reviews on since last night. It is quite good at coding related tasks. We tried it on the Static Analysis Eval benchmark (", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/patched-codes/static-analysis-eval", "href": null, "resource": { "type": "dataset", "id": "patched-codes/static-analysis-eval", "discussionNum": null }, "url": "https://huggingface.co/datasets/patched-codes/static-analysis-eval", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ") which measures the ability of a LLM to fix vulnerabilities. The model scores 59.21% which is good but not better than other frontier models (like GPT-4, Gemini-1.5 and LLama-3).", "raw": ") which measures the ability of a LLM to fix vulnerabilities. The model scores 59.21% which is good but not better than other frontier models (like GPT-4, Gemini-1.5 and LLama-3).", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
The new Claude Sonnet 3.5 model from Anthropic AI has been getting good reviews on since last night. It is quite good at coding related tasks. We tried it on the Static Analysis Eval benchmark (https://huggingface.co/datasets/patched-codes/static-analysis-eval) which measures the ability of a LLM to fix vulnerabilities. The model scores 59.21% which is good but not better than other frontier models (like GPT-4, Gemini-1.5 and LLama-3).
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677134945205-62f32eab52ad88c930bb3f3b.png", "fullname": "Asankhaya Sharma", "name": "codelion", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 46, "isFollowing": false }
[]
[]
[ { "reaction": "👀", "users": [ "codelion", "John6666", "sbarman25", "lemon-mint", "den0620", "sroecker" ], "count": 6 }, { "reaction": "🧠", "users": [ "codelion", "phanerozoic", "pduf", "xi0v" ], "count": 4 }, { "reaction": "👍", "users": [ "codelion", "joseEjmendez" ], "count": 2 }, { "reaction": "🚀", "users": [ "codelion" ], "count": 1 } ]
2024-06-21T11:20:27.000Z
2024-11-11T08:11:38.913Z
[ { "avatarUrl": "/avatars/066a250e5f73c4f37c9436e60aa8c861.svg", "fullname": "Minoru Tanaka ", "name": "Minorutanaka14052005", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1671634255137-noauth.png", "fullname": "diego lopoez", "name": "D1360VR", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "/avatars/8ee8dc056adbf361e79f577ce801e163.svg", "fullname": "JacketJacket", "name": "Jacket1119", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "/avatars/0fbd78ac044ee1fa6248ab1119021956.svg", "fullname": "Fuji Santoso", "name": "FujiAILearner", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "/avatars/cbd018187d5909d2173357f46bff030f.svg", "fullname": "امیر مرادی", "name": "Ettdghh", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "/avatars/2b3abd4d9045b68fc213946950bdf4cd.svg", "fullname": "Rich'Art Dely ", "name": "Richartvrai", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "/avatars/f3fc9a8fa17c76dfc4d5c3d7a89a6956.svg", "fullname": "MEDDEB", "name": "NOBODY204", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/codelion/746271131430293
7,308
11
857171391930523
[ { "type": "text", "value": "Hey all!", "raw": "Hey all!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Here I take a somewhat strong stance and am petitioning to revisit the default training parameters on the Diffusers LoRA page.", "raw": "Here I take a somewhat strong stance and am petitioning to revisit the default training parameters on the Diffusers LoRA page.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "In my opinion and after observing and testing may training pipelines shared by startups and resources, I have found that many of them exhibit the same types of issues. Upon discussing with some of these founders and creators, the common theme has been working backwards from the Diffusers LoRA page.", "raw": "In my opinion and after observing and testing may training pipelines shared by startups and resources, I have found that many of them exhibit the same types of issues. Upon discussing with some of these founders and creators, the common theme has been working backwards from the Diffusers LoRA page.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "In this article, I explain why the defaults in the Diffuser LoRA code produce some positive results, which can be initially misleading, and a suggestion on how that could be improved.", "raw": "In this article, I explain why the defaults in the Diffuser LoRA code produce some positive results, which can be initially misleading, and a suggestion on how that could be improved.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/blog/alvdansen/revisit-diffusers-default-params", "href": "https://huggingface.co/blog/alvdansen/revisit-diffusers-default-params", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Hey all! Here I take a somewhat strong stance and am petitioning to revisit the default training parameters on the Diffusers LoRA page. In my opinion and after observing and testing may training pipelines shared by startups and resources, I have found that many of them exhibit the same types of issues. Upon discussing with some of these founders and creators, the common theme has been working backwards from the Diffusers LoRA page. In this article, I explain why the defaults in the Diffuser LoRA code produce some positive results, which can be initially misleading, and a suggestion on how that could be improved. https://huggingface.co/blog/alvdansen/revisit-diffusers-default-params
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png", "fullname": "araminta_k", "name": "alvdansen", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 496, "isFollowing": false }
[]
[]
[]
2024-06-21T09:45:59.000Z
2024-06-21T17:53:22.249Z
[ { "avatarUrl": "/avatars/5f967031612cba5c89ebd3ede1aee392.svg", "fullname": "Cedric Roux", "name": "djcedr", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png", "fullname": "araminta_k", "name": "alvdansen", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 496, "isFollowing": false } ]
/posts/alvdansen/857171391930523
972
4
965061553506061
[ { "type": "text", "value": "We’re thrilled to share our latest technical paper on the multi-task GLiNER model. Our research dives into the following exciting and forward-thinking topics:", "raw": "We’re thrilled to share our latest technical paper on the multi-task GLiNER model. Our research dives into the following exciting and forward-thinking topics:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔍 Zero-shot NER & Information Extraction: We demonstrate that with diverse and ample data, paired with the right architecture, encoders can achieve impressive results across various extraction tasks;", "raw": "🔍 Zero-shot NER & Information Extraction: We demonstrate that with diverse and ample data, paired with the right architecture, encoders can achieve impressive results across various extraction tasks;", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🛠️ Synthetic Data Generation: Leveraging open labelling by LLMs like Llama, we generated high-quality training data. Our student model even outperformed the teacher model, highlighting the potential of this approach.", "raw": "🛠️ Synthetic Data Generation: Leveraging open labelling by LLMs like Llama, we generated high-quality training data. Our student model even outperformed the teacher model, highlighting the potential of this approach.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🤖 Self-Learning: Our model showed consistent improvements in performance without labelled data, achieving up to a 12% increase in F1 score for initially challenging topics. This ability to learn and improve autonomously is a very perspective direction of future research!", "raw": "🤖 Self-Learning: Our model showed consistent improvements in performance without labelled data, achieving up to a 12% increase in F1 score for initially challenging topics. This ability to learn and improve autonomously is a very perspective direction of future research!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2406.12925", "href": null, "resource": { "type": "paper", "id": "2406.12925", "discussionNum": null }, "url": "https://huggingface.co/papers/2406.12925", "code": null, "user": null, "label": "GLiNER multi-task: Generalist Lightweight Model for Various Information\n Extraction Tasks (2406.12925)", "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/knowledgator/gliner-multitask-large-v0.5", "href": null, "resource": { "type": "model", "id": "knowledgator/gliner-multitask-large-v0.5", "discussionNum": null }, "url": "https://huggingface.co/knowledgator/gliner-multitask-large-v0.5", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/knowledgator/GLiNER_HandyLab", "href": null, "resource": { "type": "space", "id": "knowledgator/GLiNER_HandyLab", "discussionNum": null }, "url": "https://huggingface.co/spaces/knowledgator/GLiNER_HandyLab", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "code_fence", "value": null, "raw": "```\n#!pip install gliner -U\n\nfrom gliner import GLiNER\n\nmodel = GLiNER.from_pretrained(\"knowledgator/gliner-multitask-large-v0.5\")\n\ntext = \"\"\"\nMicrosoft was founded by Bill Gates and Paul Allen on April 4, 1975 to develop and sell BASIC interpreters for the Altair 8800. \n\"\"\"\n\nlabels = [\"founder\", \"computer\", \"software\", \"position\", \"date\"]\n\nentities = model.predict_entities(text, labels)\n\nfor entity in entities:\n print(entity[\"text\"], \"=>\", entity[\"label\"])\n```", "href": null, "resource": null, "url": null, "code": "#!pip install gliner -U\n\nfrom gliner import GLiNER\n\nmodel = GLiNER.from_pretrained(\"knowledgator/gliner-multitask-large-v0.5\")\n\ntext = \"\"\"\nMicrosoft was founded by Bill Gates and Paul Allen on April 4, 1975 to develop and sell BASIC interpreters for the Altair 8800. \n\"\"\"\n\nlabels = [\"founder\", \"computer\", \"software\", \"position\", \"date\"]\n\nentities = model.predict_entities(text, labels)\n\nfor entity in entities:\n print(entity[\"text\"], \"=>\", entity[\"label\"])", "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
We’re thrilled to share our latest technical paper on the multi-task GLiNER model. Our research dives into the following exciting and forward-thinking topics: 🔍 Zero-shot NER & Information Extraction: We demonstrate that with diverse and ample data, paired with the right architecture, encoders can achieve impressive results across various extraction tasks; 🛠️ Synthetic Data Generation: Leveraging open labelling by LLMs like Llama, we generated high-quality training data. Our student model even outperformed the teacher model, highlighting the potential of this approach. 🤖 Self-Learning: Our model showed consistent improvements in performance without labelled data, achieving up to a 12% increase in F1 score for initially challenging topics. This ability to learn and improve autonomously is a very perspective direction of future research! https://huggingface.co/papers/2406.12925 https://huggingface.co/knowledgator/gliner-multitask-large-v0.5 https://huggingface.co/spaces/knowledgator/GLiNER_HandyLab ``` #!pip install gliner -U from gliner import GLiNER model = GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5") text = """ Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975 to develop and sell BASIC interpreters for the Altair 8800. """ labels = ["founder", "computer", "software", "position", "date"] entities = model.predict_entities(text, labels) for entity in entities: print(entity["text"], "=>", entity["label"]) ```
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1658166666371-noauth.png", "fullname": "Stepanov", "name": "Ihor", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 15, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "YaTharThShaRma999" ], "count": 1 } ]
2024-06-21T08:53:27.000Z
2024-06-21T08:54:47.439Z
[]
/posts/Ihor/965061553506061
594
0
795270205684056
[ { "type": "text", "value": "I'm about to start storing files in my TFLOPS count..", "raw": "I'm about to start storing files in my TFLOPS count..", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
I'm about to start storing files in my TFLOPS count..
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/659f000b83abded48e190901/BnXL_XYbVX6PHngfQLECW.png", "fullname": "Noa Roggendorff", "name": "nroggendorff", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 141, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "mazenandmariah", "YaTharThShaRma999", "lunarflu", "not-lain" ], "count": 4 } ]
2024-06-20T19:14:37.000Z
2024-06-21T16:48:31.799Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/659f000b83abded48e190901/BnXL_XYbVX6PHngfQLECW.png", "fullname": "Noa Roggendorff", "name": "nroggendorff", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 141, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/634262af8d8089ebaefd410e/pr6KcEebXTo5V2XAlpQNw.png", "fullname": "Fizz 🏳️‍⚧️", "name": "Fizzarolli", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 49, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/652ff5ee7aab9cfb619400bf/cIdrUic40uXoRbAylFiM8.png", "fullname": "Samuel L Meyers", "name": "MrOvkill", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 31, "isFollowing": false } ]
/posts/nroggendorff/795270205684056
2,479
38
379857675340435
[ { "type": "text", "value": "I am excited to share Synthetic Data Workshop, a Space that aims to simplify creating synthetic datasets! ", "raw": "I am excited to share Synthetic Data Workshop, a Space that aims to simplify creating synthetic datasets! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "✅ Pre-configured environment", "raw": "✅ Pre-configured environment", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "✅ Ready-to-use notebooks", "raw": "✅ Ready-to-use notebooks", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "✅ No local GPU needed", "raw": "✅ No local GPU needed", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "You can try the Space here: ", "raw": "You can try the Space here: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/davanstrien/synthetic-data-workshop", "href": null, "resource": { "type": "space", "id": "davanstrien/synthetic-data-workshop", "discussionNum": null }, "url": "https://huggingface.co/spaces/davanstrien/synthetic-data-workshop", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "I also wrote a blog post going into more detail about the motivations for the Space: ", "raw": "I also wrote a blog post going into more detail about the motivations for the Space: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/blog/davanstrien/synthetic-data-workshop", "href": "https://huggingface.co/blog/davanstrien/synthetic-data-workshop", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
I am excited to share Synthetic Data Workshop, a Space that aims to simplify creating synthetic datasets! ✅ Pre-configured environment ✅ Ready-to-use notebooks ✅ No local GPU needed You can try the Space here: https://huggingface.co/spaces/davanstrien/synthetic-data-workshop I also wrote a blog post going into more detail about the motivations for the Space: https://huggingface.co/blog/davanstrien/synthetic-data-workshop
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1627505688463-60107b385ac3e86b3ea4fc34.jpeg", "fullname": "Daniel van Strien", "name": "davanstrien", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 410, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "osanseviero", "xi0v", "yjernite" ], "count": 3 } ]
2024-06-20T15:47:03.000Z
2024-06-21T06:22:12.802Z
[]
/posts/davanstrien/379857675340435
2,019
1
730848617257487
[ { "type": "text", "value": "🔍 A recently published technical report introduces MINT-1T, a dataset that will considerably expand open-source multimodal data. It features one trillion text tokens and three billion images and is scheduled for release in July 2024.", "raw": "🔍 A recently published technical report introduces MINT-1T, a dataset that will considerably expand open-source multimodal data. It features one trillion text tokens and three billion images and is scheduled for release in July 2024.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Researcher Affiliation: ", "raw": "Researcher Affiliation: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "University of Washington", "raw": "University of Washington", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Salesforce Research", "raw": "Salesforce Research", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Stanford University", "raw": "Stanford University", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "University of Texas at Austin", "raw": "University of Texas at Austin", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "University of California, Berkeley", "raw": "University of California, Berkeley", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Paper:", "raw": "Paper:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens", "raw": "MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://arxiv.org/pdf/2406.11271v1.pdf", "href": "https://arxiv.org/pdf/2406.11271v1.pdf", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "GitHub:", "raw": "GitHub:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/mlfoundations/MINT-1T", "href": "https://github.com/mlfoundations/MINT-1T", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Highlights:", "raw": "Highlights:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "MINT-1T Dataset: Largest open-source multimodal interleaved dataset with 1 trillion text tokens & 3 billion images. 📊🖼️", "raw": "MINT-1T Dataset: Largest open-source multimodal interleaved dataset with 1 trillion text tokens & 3 billion images. 📊🖼️", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Diverse Sources: Incorporates data from HTML, PDFs, and ArXiv documents. 📄📚", "raw": "Diverse Sources: Incorporates data from HTML, PDFs, and ArXiv documents. 📄📚", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Open Source: Dataset and code will be released at ", "raw": "Open Source: Dataset and code will be released at ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/mlfoundations/MINT-1T", "href": "https://github.com/mlfoundations/MINT-1T", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ". 🌐🔓", "raw": ". 🌐🔓", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Broader Domain Representation: Uses diverse data sources for balanced domain representation. 🌍📚", "raw": "Broader Domain Representation: Uses diverse data sources for balanced domain representation. 🌍📚", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Performance in Multimodal Tasks: The dataset’s scale and diversity should enhance multimodal task performance. 🤖💡", "raw": "Performance in Multimodal Tasks: The dataset’s scale and diversity should enhance multimodal task performance. 🤖💡", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Datasheet Information:", "raw": "Datasheet Information:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Motivation: Addresses the gap in large-scale open-source multimodal datasets. 🌐📊", "raw": "Motivation: Addresses the gap in large-scale open-source multimodal datasets. 🌐📊", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Composition: 927.6 million documents, including HTML, PDF, and ArXiv sources. 📄📚", "raw": "Composition: 927.6 million documents, including HTML, PDF, and ArXiv sources. 📄📚", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Collection Process: Gathered from CommonCrawl WARC and WAT dumps, with rigorous filtering. 🗂️🔍", "raw": "Collection Process: Gathered from CommonCrawl WARC and WAT dumps, with rigorous filtering. 🗂️🔍", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Preprocessing/Cleaning: Removal of low-quality text, duplicates and anonymization of sensitive information. 🧹🔒", "raw": "Preprocessing/Cleaning: Removal of low-quality text, duplicates and anonymization of sensitive information. 🧹🔒", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Ethical Considerations: Measures to ensure privacy and avoid bias. ⚖️🔏", "raw": "Ethical Considerations: Measures to ensure privacy and avoid bias. ⚖️🔏", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Uses: Training multimodal models, generating interleaved image-text sequences, and building retrieval systems. 🤖📖", "raw": "Uses: Training multimodal models, generating interleaved image-text sequences, and building retrieval systems. 🤖📖", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
🔍 A recently published technical report introduces MINT-1T, a dataset that will considerably expand open-source multimodal data. It features one trillion text tokens and three billion images and is scheduled for release in July 2024. Researcher Affiliation: University of Washington Salesforce Research Stanford University University of Texas at Austin University of California, Berkeley Paper: MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens https://arxiv.org/pdf/2406.11271v1.pdf GitHub: https://github.com/mlfoundations/MINT-1T Highlights: MINT-1T Dataset: Largest open-source multimodal interleaved dataset with 1 trillion text tokens & 3 billion images. 📊🖼️ Diverse Sources: Incorporates data from HTML, PDFs, and ArXiv documents. 📄📚 Open Source: Dataset and code will be released at https://github.com/mlfoundations/MINT-1T. 🌐🔓 Broader Domain Representation: Uses diverse data sources for balanced domain representation. 🌍📚 Performance in Multimodal Tasks: The dataset’s scale and diversity should enhance multimodal task performance. 🤖💡 Datasheet Information: Motivation: Addresses the gap in large-scale open-source multimodal datasets. 🌐📊 Composition: 927.6 million documents, including HTML, PDF, and ArXiv sources. 📄📚 Collection Process: Gathered from CommonCrawl WARC and WAT dumps, with rigorous filtering. 🗂️🔍 Preprocessing/Cleaning: Removal of low-quality text, duplicates and anonymization of sensitive information. 🧹🔒 Ethical Considerations: Measures to ensure privacy and avoid bias. ⚖️🔏 Uses: Training multimodal models, generating interleaved image-text sequences, and building retrieval systems. 🤖📖
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641b754d1911d3be6745cce9/GXN8mEmaq3rfITRrw7GeZ.jpeg", "fullname": "atayloraerospace", "name": "Taylor658", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 76, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/641b754d1911d3be6745cce9/meW29kMUUadt1nmS79PJN.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/641b754d1911d3be6745cce9/np_DuLHU3dz1wYpDenXwj.png" } ]
[]
[ { "reaction": "🔥", "users": [ "YaTharThShaRma999", "anas-awadalla" ], "count": 2 } ]
2024-06-20T15:19:49.000Z
2024-06-20T15:31:17.817Z
[]
/posts/Taylor658/730848617257487
935
0
597673567444043
[ { "type": "text", "value": "Towards a Dynamic 2.0 Model of Generative Intelligence", "raw": "Towards a Dynamic 2.0 Model of Generative Intelligence", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://empereur-pirate.medium.com/towards-a-dynamic-2-0-model-of-generative-intelligence-6128d64fb523", "href": "https://empereur-pirate.medium.com/towards-a-dynamic-2-0-model-of-generative-intelligence-6128d64fb523", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This article explores the limitations of current AI language models, which do not allow user contributions and restrict freedom of expression through corporate censorship. It argues for a participatory approach to AI development, emphasizing the need for open and transparent models that integrate user feedback and contributions. The article highlights the importance of network neutrality and the potential of AI to enhance creativity and collective intelligence. It calls for political and institutional support to foster innovation in AI, ensuring that these technologies respect fundamental rights and promote qualitative performance through inclusivity and transparency.", "raw": "This article explores the limitations of current AI language models, which do not allow user contributions and restrict freedom of expression through corporate censorship. It argues for a participatory approach to AI development, emphasizing the need for open and transparent models that integrate user feedback and contributions. The article highlights the importance of network neutrality and the potential of AI to enhance creativity and collective intelligence. It calls for political and institutional support to foster innovation in AI, ensuring that these technologies respect fundamental rights and promote qualitative performance through inclusivity and transparency.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Towards a Dynamic 2.0 Model of Generative Intelligence https://empereur-pirate.medium.com/towards-a-dynamic-2-0-model-of-generative-intelligence-6128d64fb523 This article explores the limitations of current AI language models, which do not allow user contributions and restrict freedom of expression through corporate censorship. It argues for a participatory approach to AI development, emphasizing the need for open and transparent models that integrate user feedback and contributions. The article highlights the importance of network neutrality and the potential of AI to enhance creativity and collective intelligence. It calls for political and institutional support to foster innovation in AI, ensuring that these technologies respect fundamental rights and promote qualitative performance through inclusivity and transparency.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1678038324479-noauth.jpeg", "fullname": "Empereur Pirate", "name": "Empereur-Pirate", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 7, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "Empereur-Pirate", "osanseviero" ], "count": 2 } ]
2024-06-20T15:01:48.000Z
2024-06-20T15:01:48.531Z
[]
/posts/Empereur-Pirate/597673567444043
1,458
0
422173022604565
[ { "type": "text", "value": "Florence-2 is a new vision foundation model capable of a wide variety of tasks 🤯 ", "raw": "Florence-2 is a new vision foundation model capable of a wide variety of tasks 🤯 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Demo 👉🏻 ", "raw": "Demo 👉🏻 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/gokaygokay/Florence-2", "href": null, "resource": { "type": "space", "id": "gokaygokay/Florence-2", "discussionNum": null }, "url": "https://huggingface.co/spaces/gokaygokay/Florence-2", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Collection 👉🏻 ", "raw": "Collection 👉🏻 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/microsoft/florence-6669f44df0d87d9c3bfb76de", "href": null, "resource": { "type": "collection", "id": "microsoft/florence-6669f44df0d87d9c3bfb76de", "discussionNum": null }, "url": "https://huggingface.co/collections/microsoft/florence-6669f44df0d87d9c3bfb76de", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This model can handle tasks that vary from OCR to semantic segmentation. ", "raw": "This model can handle tasks that vary from OCR to semantic segmentation. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The difference from previous models is that the authors have compiled a dataset consisting of 126M images with 5.4B annotations labelled with their own data engine pseudolabelled by smaller specialized models and APIs. ", "raw": "The difference from previous models is that the authors have compiled a dataset consisting of 126M images with 5.4B annotations labelled with their own data engine pseudolabelled by smaller specialized models and APIs. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The model has a similar architecture to previous models: an image encoder and a multimodality encoder with a text decoder. The authors have compiled the multitask dataset with prompts for each task. ", "raw": "The model has a similar architecture to previous models: an image encoder and a multimodality encoder with a text decoder. The authors have compiled the multitask dataset with prompts for each task. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "You can also fine-tune this model on any task of choice. The authors also released different results on downstream tasks and reported their results when un/freezing the vision encoder 🤓📉 ", "raw": "You can also fine-tune this model on any task of choice. The authors also released different results on downstream tasks and reported their results when un/freezing the vision encoder 🤓📉 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "They have released fine-tuned models too, you can find them in the collection above 🤗 ", "raw": "They have released fine-tuned models too, you can find them in the collection above 🤗 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Florence-2 is a new vision foundation model capable of a wide variety of tasks 🤯 Demo 👉🏻 https://huggingface.co/spaces/gokaygokay/Florence-2 Collection 👉🏻 https://huggingface.co/collections/microsoft/florence-6669f44df0d87d9c3bfb76de This model can handle tasks that vary from OCR to semantic segmentation. The difference from previous models is that the authors have compiled a dataset consisting of 126M images with 5.4B annotations labelled with their own data engine pseudolabelled by smaller specialized models and APIs. The model has a similar architecture to previous models: an image encoder and a multimodality encoder with a text decoder. The authors have compiled the multitask dataset with prompts for each task. You can also fine-tune this model on any task of choice. The authors also released different results on downstream tasks and reported their results when un/freezing the vision encoder 🤓📉 They have released fine-tuned models too, you can find them in the collection above 🤗
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5589, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/cKwqeIUVmdMM9GDeVu7z2.png" } ]
[]
[ { "reaction": "🔥", "users": [ "osanseviero", "afondiel", "victor", "gokaygokay", "John6666", "leduckhai", "louisbrulenaudet", "KingNish", "Linksplayer", "jlzhou" ], "count": 10 }, { "reaction": "👀", "users": [ "osanseviero", "Taylor658", "victor", "gokaygokay", "John6666", "omaryshchenko" ], "count": 6 }, { "reaction": "❤️", "users": [ "anakin87", "KnutJaegersberg" ], "count": 2 } ]
2024-06-20T12:49:10.000Z
2024-06-22T10:18:39.766Z
[ { "avatarUrl": "/avatars/54483699273ac58a4a6fe1fa4aab65fe.svg", "fullname": "Robert Sinclair", "name": "ZeroWw", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 76, "isFollowing": false }, { "avatarUrl": "/avatars/9fbbb8eaaa7b19752b336cf228d4679e.svg", "fullname": "lucasjin", "name": "lucasjin", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 8, "isFollowing": false }, { "avatarUrl": "/avatars/a69b6f3e1f5e04937fe9500ca9b31af7.svg", "fullname": "pollies", "name": "polles", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/merve/422173022604565
4,324
3
106001158662393
[ { "type": "text", "value": "Check out AutoRound, SOTA LLM quantization algorithm across 2-4 bits without adding any inference overhead to any model", "raw": "Check out AutoRound, SOTA LLM quantization algorithm across 2-4 bits without adding any inference overhead to any model", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "paper: ", "raw": "paper: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://arxiv.org/abs/2309.05516", "href": "https://arxiv.org/abs/2309.05516", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "github: ", "raw": "github: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/intel/auto-round", "href": "https://github.com/intel/auto-round", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "lowbits leaderboard: ", "raw": "lowbits leaderboard: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/spaces/Intel/low-bit-leaderboard", "href": "https://huggingface.co/spaces/Intel/low-bit-leaderboard", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Check out AutoRound, SOTA LLM quantization algorithm across 2-4 bits without adding any inference overhead to any model paper: https://arxiv.org/abs/2309.05516 github: https://github.com/intel/auto-round lowbits leaderboard: https://huggingface.co/spaces/Intel/low-bit-leaderboard
{ "avatarUrl": "/avatars/2e88e32ac0d45a1c624026e497eb00b3.svg", "fullname": "wenhua cheng", "name": "wenhuach", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 4, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/634772780a9fa1ac49994510/eVfopROZjga1VmgywgayB.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/634772780a9fa1ac49994510/8XuToowlRbkpwtniEza_a.png" } ]
[]
[]
2024-06-20T09:38:56.000Z
2024-06-20T09:38:56.679Z
[]
/posts/wenhuach/106001158662393
530
0
317212739158608
[ { "type": "text", "value": "With the most recent workshop on Semantic Evaluation as a part of NAACL-2024, this year delighted to contribute with 🧪 on Chain-of-Thought fine-tuning concepts to push forward LLMs reasoning capabilities in: ", "raw": "With the most recent workshop on Semantic Evaluation as a part of NAACL-2024, this year delighted to contribute with 🧪 on Chain-of-Thought fine-tuning concepts to push forward LLMs reasoning capabilities in: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🧪 1. Reading Comprehension of Numerals in texts 🇨🇳 ", "raw": "🧪 1. Reading Comprehension of Numerals in texts 🇨🇳 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "⭐ ", "raw": "⭐ ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/GavinZhao19/SemEval24-NumAnalysis-CN", "href": "https://github.com/GavinZhao19/SemEval24-NumAnalysis-CN", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔒 ", "raw": "🔒 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/GavinZhao23/NumAnalysis-Chatglm3-6B", "href": "https://huggingface.co/GavinZhao23/NumAnalysis-Chatglm3-6B", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🧪 2. Extracting Emotion-Causes using Reasoning Revision (RR)", "raw": "🧪 2. Extracting Emotion-Causes using Reasoning Revision (RR)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "⭐ ", "raw": "⭐ ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/nicolay-r/THOR-ECAC", "href": "https://github.com/nicolay-r/THOR-ECAC", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔓 ", "raw": "🔓 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/nicolay-r/flan-t5-emotion-cause-thor-base", "href": null, "resource": { "type": "model", "id": "nicolay-r/flan-t5-emotion-cause-thor-base", "discussionNum": null }, "url": "https://huggingface.co/nicolay-r/flan-t5-emotion-cause-thor-base", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2404.03361", "href": null, "resource": { "type": "paper", "id": "2404.03361", "discussionNum": null }, "url": "https://huggingface.co/papers/2404.03361", "code": null, "user": null, "label": "nicolay-r at SemEval-2024 Task 3: Using Flan-T5 for Reasoning Emotion\n Cause in Conversations with Chain-of-Thought on Emotion States (2404.03361)", "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔑 In short, there are three major takeaways:", "raw": "🔑 In short, there are three major takeaways:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "✅ 1. The scale of the backboned LLM for SFT matters (>1.1B is preferable)", "raw": "✅ 1. The scale of the backboned LLM for SFT matters (>1.1B is preferable)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "✅ 2. The language of the input data matters in LLM reasoning capabilities: transfering data in English and picking English-based LLM is crucial for the most cases!", "raw": "✅ 2. The language of the input data matters in LLM reasoning capabilities: transfering data in English and picking English-based LLM is crucial for the most cases!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "✅ 3. CoT and RR takes more time ⏳ for inferring and fine-tuning, proportionally to abount of steps in chain / amount of revisions in reasoning 🧠", "raw": "✅ 3. CoT and RR takes more time ⏳ for inferring and fine-tuning, proportionally to abount of steps in chain / amount of revisions in reasoning 🧠", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
With the most recent workshop on Semantic Evaluation as a part of NAACL-2024, this year delighted to contribute with 🧪 on Chain-of-Thought fine-tuning concepts to push forward LLMs reasoning capabilities in: 🧪 1. Reading Comprehension of Numerals in texts 🇨🇳 ⭐ https://github.com/GavinZhao19/SemEval24-NumAnalysis-CN 🔒 https://huggingface.co/GavinZhao23/NumAnalysis-Chatglm3-6B 🧪 2. Extracting Emotion-Causes using Reasoning Revision (RR) ⭐ https://github.com/nicolay-r/THOR-ECAC 🔓 https://huggingface.co/nicolay-r/flan-t5-emotion-cause-thor-base https://huggingface.co/papers/2404.03361 🔑 In short, there are three major takeaways: ✅ 1. The scale of the backboned LLM for SFT matters (>1.1B is preferable) ✅ 2. The language of the input data matters in LLM reasoning capabilities: transfering data in English and picking English-based LLM is crucial for the most cases! ✅ 3. CoT and RR takes more time ⏳ for inferring and fine-tuning, proportionally to abount of steps in chain / amount of revisions in reasoning 🧠
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg", "fullname": "Nicolay Rusnachenko", "name": "nicolay-r", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 49, "isFollowing": false }
[]
[]
[]
2024-06-20T09:18:29.000Z
2024-06-20T09:19:29.195Z
[]
/posts/nicolay-r/317212739158608
451
0
330069080161256
[ { "type": "text", "value": "🚀 Exciting news about ", "raw": "🚀 Exciting news about ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/as-cle-bert/proteinviz", "href": null, "resource": { "type": "space", "id": "as-cle-bert/proteinviz", "discussionNum": null }, "url": "https://huggingface.co/spaces/as-cle-bert/proteinviz", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ", your fully open-source protein structure prediction tool!", "raw": ", your fully open-source protein structure prediction tool!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🧬 I'm thrilled to announce 𝘽𝙪𝙡𝙠𝙋𝙧𝙤𝙩𝙚𝙞𝙣𝙫𝙞𝙯, a new functionality which supports multiple structure predictions at once: you just need to upload a FASTA file with all the amino-acidic sequences, and you'll be done in minutes!", "raw": "🧬 I'm thrilled to announce 𝘽𝙪𝙡𝙠𝙋𝙧𝙤𝙩𝙚𝙞𝙣𝙫𝙞𝙯, a new functionality which supports multiple structure predictions at once: you just need to upload a FASTA file with all the amino-acidic sequences, and you'll be done in minutes!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🏃 This can be really helpful in speeding up your research: give it a shot, if you are curious!🤗", "raw": "🏃 This can be really helpful in speeding up your research: give it a shot, if you are curious!🤗", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "(Demo in the attached video)", "raw": "(Demo in the attached video)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
🚀 Exciting news about https://huggingface.co/spaces/as-cle-bert/proteinviz, your fully open-source protein structure prediction tool! 🧬 I'm thrilled to announce 𝘽𝙪𝙡𝙠𝙋𝙧𝙤𝙩𝙚𝙞𝙣𝙫𝙞𝙯, a new functionality which supports multiple structure predictions at once: you just need to upload a FASTA file with all the amino-acidic sequences, and you'll be done in minutes! 🏃 This can be really helpful in speeding up your research: give it a shot, if you are curious!🤗 (Demo in the attached video)
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65e330e7edc2f7306e252448/ucpk9c8x0UafGM4mXTrRy.jpeg", "fullname": "Astra Clelia Bertelli", "name": "as-cle-bert", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 650, "isFollowing": false }
[ { "type": "video", "url": "https://cdn-uploads.huggingface.co/production/uploads/65e330e7edc2f7306e252448/OYJ_QG3_nKGPXWC5tvS-o.mp4" } ]
[]
[ { "reaction": "🚀", "users": [ "louisbrulenaudet" ], "count": 1 } ]
2024-06-20T07:39:35.000Z
2024-06-20T07:42:55.286Z
[]
/posts/as-cle-bert/330069080161256
530
0
381892915091977
[ { "type": "mention", "value": null, "raw": "@ehartford", "href": null, "resource": null, "url": null, "code": null, "user": "ehartford", "label": null, "lang": null }, { "type": "text", "value": " hey eric, i have been following u since your first dolphin model.... i realy appreciate you doing what you do. none the less, i have a quick question. i was wondering what is your favorite smaller uncensored dolphin model that would run well on my m1 -8gb macbook air.. and what user interface do you suggest? thanks so much, and i hope to hear from you soon.", "raw": " hey eric, i have been following u since your first dolphin model.... i realy appreciate you doing what you do. none the less, i have a quick question. i was wondering what is your favorite smaller uncensored dolphin model that would run well on my m1 -8gb macbook air.. and what user interface do you suggest? thanks so much, and i hope to hear from you soon.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
@ehartford hey eric, i have been following u since your first dolphin model.... i realy appreciate you doing what you do. none the less, i have a quick question. i was wondering what is your favorite smaller uncensored dolphin model that would run well on my m1 -8gb macbook air.. and what user interface do you suggest? thanks so much, and i hope to hear from you soon.
{ "avatarUrl": "/avatars/09decdf06b4494f6e834fb57d3d66c23.svg", "fullname": "paul", "name": "ki11b451c", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 6, "isFollowing": false }
[]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63111b2d88942700629f5771/u2a9y-yx6TG0N31OhMSHI.png", "fullname": "Eric Hartford", "name": "ehartford", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 3287 } ]
[ { "reaction": "👍", "users": [ "FAU57", "maheedhar1998", "Imtiazhashmi", "John6666", "theblackcat102" ], "count": 5 }, { "reaction": "🤯", "users": [ "ki11b451c" ], "count": 1 }, { "reaction": "🤝", "users": [ "ki11b451c" ], "count": 1 } ]
2024-06-19T18:40:43.000Z
2024-07-02T04:28:25.295Z
[ { "avatarUrl": "/avatars/09decdf06b4494f6e834fb57d3d66c23.svg", "fullname": "paul", "name": "ki11b451c", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 6, "isFollowing": false } ]
/posts/ki11b451c/381892915091977
2,627
1
275559570184677
[ { "type": "text", "value": "🔥 🔥 Releasing our new paper on AI safety alignment -- Safety Arithmetic: A Framework for Test-time Safety Alignment of Language Models by Steering Parameters and Activations 🎯 with Sayan Layek, Somnath Banerjee and Soujanya Poria.", "raw": "🔥 🔥 Releasing our new paper on AI safety alignment -- Safety Arithmetic: A Framework for Test-time Safety Alignment of Language Models by Steering Parameters and Activations 🎯 with Sayan Layek, Somnath Banerjee and Soujanya Poria.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "👉 We propose Safety Arithmetic, a training-free framework enhancing LLM safety across different scenarios: Base models, Supervised fine-tuned models (SFT), and Edited models. Safety Arithmetic involves Harm Direction Removal (HDR) to avoid harmful content and Safety Alignment to promote safe responses.", "raw": "👉 We propose Safety Arithmetic, a training-free framework enhancing LLM safety across different scenarios: Base models, Supervised fine-tuned models (SFT), and Edited models. Safety Arithmetic involves Harm Direction Removal (HDR) to avoid harmful content and Safety Alignment to promote safe responses.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "👉 Paper: ", "raw": "👉 Paper: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://arxiv.org/abs/2406.11801v1", "href": "https://arxiv.org/abs/2406.11801v1", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "👉 Code: ", "raw": "👉 Code: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/declare-lab/safety-arithmetic", "href": "https://github.com/declare-lab/safety-arithmetic", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
🔥 🔥 Releasing our new paper on AI safety alignment -- Safety Arithmetic: A Framework for Test-time Safety Alignment of Language Models by Steering Parameters and Activations 🎯 with Sayan Layek, Somnath Banerjee and Soujanya Poria. 👉 We propose Safety Arithmetic, a training-free framework enhancing LLM safety across different scenarios: Base models, Supervised fine-tuned models (SFT), and Edited models. Safety Arithmetic involves Harm Direction Removal (HDR) to avoid harmful content and Safety Alignment to promote safe responses. 👉 Paper: https://arxiv.org/abs/2406.11801v1 👉 Code: https://github.com/declare-lab/safety-arithmetic
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64be339512afb2f11951b217/B-O3HH0lG0BOdmEE4sTAV.png", "fullname": "RIMA HAZRA", "name": "rimahazra", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }
[]
[]
[]
2024-06-19T18:19:07.000Z
2024-06-19T18:19:07.089Z
[]
/posts/rimahazra/275559570184677
758
0
958678432239203
[ { "type": "text", "value": "Forget about all the captioning datasets you've tried before!", "raw": "Forget about all the captioning datasets you've tried before!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "PixelProse is a captioning dataset of 16M image-caption pairs, with less toxicity and higher details ✨ ", "raw": "PixelProse is a captioning dataset of 16M image-caption pairs, with less toxicity and higher details ✨ ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/tomg-group-umd/pixelprose", "href": null, "resource": { "type": "dataset", "id": "tomg-group-umd/pixelprose", "discussionNum": null }, "url": "https://huggingface.co/datasets/tomg-group-umd/pixelprose", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The existing suite of captioning datasets consists of web scrapes that have alt text that is either irrelevant or not descriptive. The authors of this paper have taken those datasets, filtered for CSAM, passed it with a prompt to Gemini Vision Pro. They also removed PII and detoxified the resulting dataset. ", "raw": "The existing suite of captioning datasets consists of web scrapes that have alt text that is either irrelevant or not descriptive. The authors of this paper have taken those datasets, filtered for CSAM, passed it with a prompt to Gemini Vision Pro. They also removed PII and detoxified the resulting dataset. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Forget about all the captioning datasets you've tried before! PixelProse is a captioning dataset of 16M image-caption pairs, with less toxicity and higher details ✨ https://huggingface.co/datasets/tomg-group-umd/pixelprose The existing suite of captioning datasets consists of web scrapes that have alt text that is either irrelevant or not descriptive. The authors of this paper have taken those datasets, filtered for CSAM, passed it with a prompt to Gemini Vision Pro. They also removed PII and detoxified the resulting dataset.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5589, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/OqNm4RDrjxCq1F9jYJCpJ.png" } ]
[]
[ { "reaction": "😎", "users": [ "darknoon", "KingNish", "AtAndDev", "louisbrulenaudet" ], "count": 4 }, { "reaction": "➕", "users": [ "Zigshau", "AtAndDev", "LeroyDyer" ], "count": 3 }, { "reaction": "👍", "users": [ "ijohn07", "Arakinas", "AtAndDev" ], "count": 3 }, { "reaction": "👀", "users": [ "osanseviero", "AtAndDev" ], "count": 2 } ]
2024-06-19T12:52:21.000Z
2024-06-19T12:52:21.555Z
[]
/posts/merve/958678432239203
3,274
0
218789131577811
[ { "type": "text", "value": "⚗️ Looking to get started with Synthetic data and AI Feedback? ", "raw": "⚗️ Looking to get started with Synthetic data and AI Feedback? ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "I created this cool notebook for a workshop ", "raw": "I created this cool notebook for a workshop ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@davanstrien", "href": null, "resource": null, "url": null, "code": null, "user": "davanstrien", "label": null, "lang": null }, { "type": "text", "value": " and I gave it a couple of weeks back. It uses ", "raw": " and I gave it a couple of weeks back. It uses ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://distilabel.argilla.io/dev/", "href": "https://distilabel.argilla.io/dev/", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " and I think it is a good entry point for anyone with a practical interest in the topic.", "raw": " and I think it is a good entry point for anyone with a practical interest in the topic.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://colab.research.google.com/github/davanstrien/data-for-fine-tuning-llms/blob/main/03-synthetic-data-generation.ipynb", "href": "https://colab.research.google.com/github/davanstrien/data-for-fine-tuning-llms/blob/main/03-synthetic-data-generation.ipynb", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
⚗️ Looking to get started with Synthetic data and AI Feedback? I created this cool notebook for a workshop @davanstrien and I gave it a couple of weeks back. It uses https://distilabel.argilla.io/dev/ and I think it is a good entry point for anyone with a practical interest in the topic. https://colab.research.google.com/github/davanstrien/data-for-fine-tuning-llms/blob/main/03-synthetic-data-generation.ipynb
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677141720071-634ff41ff32062e9eb7b06a3.jpeg", "fullname": "David Berenstein", "name": "davidberenstein1957", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 167, "isFollowing": false }
[]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1627505688463-60107b385ac3e86b3ea4fc34.jpeg", "fullname": "Daniel van Strien", "name": "davanstrien", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 410 } ]
[ { "reaction": "🔥", "users": [ "burtenshaw", "osanseviero", "pcuenq", "dvilasuero", "gabrielmbmb" ], "count": 5 }, { "reaction": "🚀", "users": [ "dvilasuero", "Auxon" ], "count": 2 }, { "reaction": "🧠", "users": [ "dvilasuero", "gabrielmbmb" ], "count": 2 }, { "reaction": "🤝", "users": [ "jeanflop" ], "count": 1 } ]
2024-06-19T09:27:12.000Z
2024-06-20T18:40:08.355Z
[ { "avatarUrl": "/avatars/fe5aceade87d93b9050407977fe92ef7.svg", "fullname": "sharkr", "name": "Zigshau", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false }, { "avatarUrl": "/avatars/a531b52b89543ec6ea1d72912656a82e.svg", "fullname": "lompo", "name": "jeanflop", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 7, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677141720071-634ff41ff32062e9eb7b06a3.jpeg", "fullname": "David Berenstein", "name": "davidberenstein1957", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 167, "isFollowing": false } ]
/posts/davidberenstein1957/218789131577811
2,365
5
791804707913711
[ { "type": "text", "value": "On-Device deployment ready MobileNet-V4 models:", "raw": "On-Device deployment ready MobileNet-V4 models:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/byoussef/mobilenetv4-conv-pretrained-tflite-models-66726c945040fc61f5a50b63", "href": null, "resource": { "type": "collection", "id": "byoussef/mobilenetv4-conv-pretrained-tflite-models-66726c945040fc61f5a50b63", "discussionNum": null }, "url": "https://huggingface.co/collections/byoussef/mobilenetv4-conv-pretrained-tflite-models-66726c945040fc61f5a50b63", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Models converted from timm's pretrained Pytorch weights to TFLite (fp32 & fp16). ", "raw": "Models converted from timm's pretrained Pytorch weights to TFLite (fp32 & fp16). ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "All conv models fully compatible with TFLite Gpu Delegate on Android for fast on-device inference 🚀", "raw": "All conv models fully compatible with TFLite Gpu Delegate on Android for fast on-device inference 🚀", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Can also run super fast on Google-Edge-TPU on Pixel phones 🚀", "raw": "Can also run super fast on Google-Edge-TPU on Pixel phones 🚀", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
On-Device deployment ready MobileNet-V4 models: https://huggingface.co/collections/byoussef/mobilenetv4-conv-pretrained-tflite-models-66726c945040fc61f5a50b63 Models converted from timm's pretrained Pytorch weights to TFLite (fp32 & fp16). All conv models fully compatible with TFLite Gpu Delegate on Android for fast on-device inference 🚀 Can also run super fast on Google-Edge-TPU on Pixel phones 🚀
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1678864953699-63638e4b2e11f41bc8168b20.jpeg", "fullname": "youssef boulaouane", "name": "byoussef", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 8, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "osanseviero" ], "count": 1 } ]
2024-06-19T08:00:08.000Z
2024-06-19T08:00:08.997Z
[]
/posts/byoussef/791804707913711
923
0
756619808319174
[ { "type": "text", "value": "🤯🤯🤯VERY ROBUST TOOL to control camera motion for videos!!!", "raw": "🤯🤯🤯VERY ROBUST TOOL to control camera motion for videos!!!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Even doesn't need any additional finetuning! It uses inference process of video diffusion directly!!", "raw": "Even doesn't need any additional finetuning! It uses inference process of video diffusion directly!!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Try it on your own video diffusion model and generate CINEMATIC SHOTS!📸🎥🫢", "raw": "Try it on your own video diffusion model and generate CINEMATIC SHOTS!📸🎥🫢", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Check at ", "raw": "Check at ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://lifedecoder.github.io/CamTrol/", "href": "https://lifedecoder.github.io/CamTrol/", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
🤯🤯🤯VERY ROBUST TOOL to control camera motion for videos!!! Even doesn't need any additional finetuning! It uses inference process of video diffusion directly!! Try it on your own video diffusion model and generate CINEMATIC SHOTS!📸🎥🫢 Check at https://lifedecoder.github.io/CamTrol/
{ "avatarUrl": "/avatars/7a79a12d9f67100b0ea2dfb19dc695d0.svg", "fullname": "Chen Hou", "name": "LegolasS", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 6, "isFollowing": false }
[ { "type": "video", "url": "https://cdn-uploads.huggingface.co/production/uploads/660a367942025e0a8b8a2de5/zTAJay-sv15VbqYOQoAl8.qt" } ]
[]
[ { "reaction": "🤯", "users": [ "chchnii", "victor", "shadinpira80", "KingNish", "dillfrescott", "netynet", "LegolasS", "Ramikan-BR", "GPT007", "PetrLe" ], "count": 10 }, { "reaction": "🚀", "users": [ "chchnii", "Taylor658", "victor", "rreed-pha", "KingNish", "LegolasS", "Ramikan-BR", "ucyang" ], "count": 8 }, { "reaction": "🔥", "users": [ "chchnii", "LegolasS", "ibvhim", "Ramikan-BR", "PetrLe" ], "count": 5 }, { "reaction": "👍", "users": [ "dillfrescott", "Ramikan-BR", "LegolasS", "kramp", "PetrLe" ], "count": 5 }, { "reaction": "👀", "users": [ "chchnii", "dillfrescott", "Ramikan-BR" ], "count": 3 }, { "reaction": "❤️", "users": [ "Ramikan-BR", "shaising", "PetrLe" ], "count": 3 }, { "reaction": "🤗", "users": [ "LegolasS", "PetrLe" ], "count": 2 } ]
2024-06-19T03:31:30.000Z
2024-06-25T09:40:13.870Z
[]
/posts/LegolasS/756619808319174
4,042
0
471891899352409
[ { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2312.16171", "href": null, "resource": { "type": "paper", "id": "2312.16171", "discussionNum": null }, "url": "https://huggingface.co/papers/2312.16171", "code": null, "user": null, "label": "Principled Instructions Are All You Need for Questioning LLaMA-1/2,\n GPT-3.5/4 (2312.16171)", "lang": null }, { "type": "text", "value": " I normally use this to make prompts in the form of a RAG (Retrieval Augmented Generation). For example, here's one from Gemma 7B about articles. ", "raw": " I normally use this to make prompts in the form of a RAG (Retrieval Augmented Generation). For example, here's one from Gemma 7B about articles. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "\"Please summarize the main ideas of the article '[Article Title]' in a concise and informative manner. Focus on highlighting the key points and arguments presented in the article. Keep the summary to around [desired length] words.\"", "raw": "\"Please summarize the main ideas of the article '[Article Title]' in a concise and informative manner. Focus on highlighting the key points and arguments presented in the article. Keep the summary to around [desired length] words.\"", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Has anyone else tried this? Do you like the results you are getting?", "raw": "Has anyone else tried this? Do you like the results you are getting?", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
https://huggingface.co/papers/2312.16171 I normally use this to make prompts in the form of a RAG (Retrieval Augmented Generation). For example, here's one from Gemma 7B about articles. "Please summarize the main ideas of the article '[Article Title]' in a concise and informative manner. Focus on highlighting the key points and arguments presented in the article. Keep the summary to around [desired length] words." Has anyone else tried this? Do you like the results you are getting?
{ "avatarUrl": "/avatars/b82eaad6ac45182aa489ff247fe6a00c.svg", "fullname": "NB", "name": "Skier8402", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 11, "isFollowing": false }
[]
[]
[]
2024-06-19T02:47:04.000Z
2024-06-19T02:47:04.374Z
[]
/posts/Skier8402/471891899352409
729
0
632509301461247
[ { "type": "text", "value": "⚗️ distilabel 1.2.0 is out and it comes with improved support for structured generation, new tasks for generating datasets for training embedding models, new steps for loading data, MixtureOfAgentsLLM and improved docs.", "raw": "⚗️ distilabel 1.2.0 is out and it comes with improved support for structured generation, new tasks for generating datasets for training embedding models, new steps for loading data, MixtureOfAgentsLLM and improved docs.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "We would love to see a few new datasets for training embedding models built with distilabel on the Hub! ❤️", "raw": "We would love to see a few new datasets for training embedding models built with distilabel on the Hub! ❤️", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
⚗️ distilabel 1.2.0 is out and it comes with improved support for structured generation, new tasks for generating datasets for training embedding models, new steps for loading data, MixtureOfAgentsLLM and improved docs. We would love to see a few new datasets for training embedding models built with distilabel on the Hub! ❤️
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60f2fc91b92afccb7c34b8ed/whF6nGtyTAhbtiWJJnL9e.png", "fullname": "Gabriel Martín Blázquez", "name": "gabrielmbmb", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 90, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "monsoon-nlp", "clem", "osanseviero", "victor", "abunchofrandomwords" ], "count": 5 } ]
2024-06-18T17:20:04.000Z
2024-06-18T17:20:04.566Z
[]
/posts/gabrielmbmb/632509301461247
2,503
0
847779810698714
[ { "type": "text", "value": "I've fine-tuned three types of PaliGemma image captioner models for generating prompts for Text2Image models. They generate captions similar to prompts we give to the image generation models. I used google/docci and google/imageinwords datasets for fine-tuning. ", "raw": "I've fine-tuned three types of PaliGemma image captioner models for generating prompts for Text2Image models. They generate captions similar to prompts we give to the image generation models. I used google/docci and google/imageinwords datasets for fine-tuning. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This one gives you longer captions. ", "raw": "This one gives you longer captions. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner", "href": null, "resource": { "type": "space", "id": "gokaygokay/SD3-Long-Captioner", "discussionNum": null }, "url": "https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This one gives you middle size captions. ", "raw": "This one gives you middle size captions. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner-V2", "href": "https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner-V2", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "And this one gives you shorter captions. ", "raw": "And this one gives you shorter captions. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/spaces/gokaygokay/SDXL-Captioner", "href": "https://huggingface.co/spaces/gokaygokay/SDXL-Captioner", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
I've fine-tuned three types of PaliGemma image captioner models for generating prompts for Text2Image models. They generate captions similar to prompts we give to the image generation models. I used google/docci and google/imageinwords datasets for fine-tuning. This one gives you longer captions. https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner This one gives you middle size captions. https://huggingface.co/spaces/gokaygokay/SD3-Long-Captioner-V2 And this one gives you shorter captions. https://huggingface.co/spaces/gokaygokay/SDXL-Captioner
{ "avatarUrl": "/avatars/b9a6d8e11ec7a62ca2b819e0b6c37222.svg", "fullname": "gokay aydogan", "name": "gokaygokay", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 1130, "isFollowing": false }
[]
[]
[ { "reaction": "❤️", "users": [ "clem", "osanseviero", "victor", "OjciecTadeusz", "emanuelevivoli", "Warlord-K", "John6666", "pcuenq", "FiditeNemini", "AmmarNTNU12" ], "count": 10 }, { "reaction": "🔥", "users": [ "gabrielchua", "AIGCalien", "John6666", "pcuenq" ], "count": 4 }, { "reaction": "👍", "users": [ "Norod78", "John6666" ], "count": 2 }, { "reaction": "🚀", "users": [ "prithivMLmods", "John6666" ], "count": 2 } ]
2024-06-18T16:13:54.000Z
2024-10-10T09:47:55.536Z
[ { "avatarUrl": "/avatars/2079d5aa1e9bb5091fffe95468162aec.svg", "fullname": "NULL", "name": "ljnlonoljpiljm", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 8, "isFollowing": false }, { "avatarUrl": "/avatars/b9a6d8e11ec7a62ca2b819e0b6c37222.svg", "fullname": "gokay aydogan", "name": "gokaygokay", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 1130, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62f8ca074588fe31f4361dae/F2k343TPD7KVfW3P26IRs.jpeg", "fullname": "Yatharth Gupta", "name": "Warlord-K", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 36, "isFollowing": false }, { "avatarUrl": "/avatars/751ab4b02b469b502d9a994d55d4df8a.svg", "fullname": "Gomez", "name": "raulgb", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/gokaygokay/847779810698714
5,922
10
808154088391506
[ { "type": "text", "value": "With the CVPR conference (", "raw": "With the CVPR conference (", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://cvpr.thecvf.com", "href": "https://cvpr.thecvf.com", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ") in full swing this week in Seattle 🏙️, the competition details for NeurIPS 2024 have just been released.🚀", "raw": ") in full swing this week in Seattle 🏙️, the competition details for NeurIPS 2024 have just been released.🚀", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Some of the competitions this year include:", "raw": "Some of the competitions this year include:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🦾 MyoChallenge 2024: Physiological dexterity in bionic humans.", "raw": "🦾 MyoChallenge 2024: Physiological dexterity in bionic humans.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🌌 FAIR Universe: Handling uncertainties in fundamental science.", "raw": "🌌 FAIR Universe: Handling uncertainties in fundamental science.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🧪 BELKA: Chemical assessment through big encoded libraries.", "raw": "🧪 BELKA: Chemical assessment through big encoded libraries.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🏆 HAC: Hacker-Cup AI competition.", "raw": "🏆 HAC: Hacker-Cup AI competition.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "💰 Large-Scale Auction Challenge: Decision-making in competitive games.", "raw": "💰 Large-Scale Auction Challenge: Decision-making in competitive games.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📶 URGENT Challenge: Signal reconstruction and enhancement.", "raw": "📶 URGENT Challenge: Signal reconstruction and enhancement.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🛡️ LASC 2024: Safety in LLM and AI agents.", "raw": "🛡️ LASC 2024: Safety in LLM and AI agents.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "For more details, check out: ", "raw": "For more details, check out: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://blog.neurips.cc/2024/06/04/neurips-2024-competitions-announced", "href": "https://blog.neurips.cc/2024/06/04/neurips-2024-competitions-announced", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
With the CVPR conference (https://cvpr.thecvf.com) in full swing this week in Seattle 🏙️, the competition details for NeurIPS 2024 have just been released.🚀 Some of the competitions this year include: 🦾 MyoChallenge 2024: Physiological dexterity in bionic humans. 🌌 FAIR Universe: Handling uncertainties in fundamental science. 🧪 BELKA: Chemical assessment through big encoded libraries. 🏆 HAC: Hacker-Cup AI competition. 💰 Large-Scale Auction Challenge: Decision-making in competitive games. 📶 URGENT Challenge: Signal reconstruction and enhancement. 🛡️ LASC 2024: Safety in LLM and AI agents. For more details, check out: https://blog.neurips.cc/2024/06/04/neurips-2024-competitions-announced
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641b754d1911d3be6745cce9/GXN8mEmaq3rfITRrw7GeZ.jpeg", "fullname": "atayloraerospace", "name": "Taylor658", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 76, "isFollowing": false }
[]
[]
[ { "reaction": "❤️", "users": [ "dai-tokyo" ], "count": 1 } ]
2024-06-18T15:53:14.000Z
2024-06-18T15:53:14.239Z
[]
/posts/Taylor658/808154088391506
826
0
363479369380557
[ { "type": "text", "value": "Impressive to see Depth Anything V2. See this example I just took with a lot of different depths. ", "raw": "Impressive to see Depth Anything V2. See this example I just took with a lot of different depths. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "If you want to learn more about it, this TLDR by ", "raw": "If you want to learn more about it, this TLDR by ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@merve", "href": null, "resource": null, "url": null, "code": null, "user": "merve", "label": null, "lang": null }, { "type": "text", "value": " is👌 ", "raw": " is👌 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/posts/merve/568638914646708", "href": "https://huggingface.co/posts/merve/568638914646708", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Impressive to see Depth Anything V2. See this example I just took with a lot of different depths. If you want to learn more about it, this TLDR by @merve is👌 https://huggingface.co/posts/merve/568638914646708
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg", "fullname": "Florent Daudens", "name": "fdaudens", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 384, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/647f36a8454af0237bd49574/95iaI35bZQ72snHNRJm3j.png" } ]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5589 } ]
[]
2024-06-18T15:21:14.000Z
2024-06-18T15:21:14.963Z
[]
/posts/fdaudens/363479369380557
555
0
568638914646708
[ { "type": "text", "value": "I love Depth Anything V2 😍 ", "raw": "I love Depth Anything V2 😍 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "It’s Depth Anything, but scaled with both larger teacher model and a gigantic dataset! ", "raw": "It’s Depth Anything, but scaled with both larger teacher model and a gigantic dataset! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Here's a small TLDR of paper with a lot of findings, experiments and more. ", "raw": "Here's a small TLDR of paper with a lot of findings, experiments and more. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "I have also created a collection that has the models, the dataset, the demo and CoreML converted model 😚 ", "raw": "I have also created a collection that has the models, the dataset, the demo and CoreML converted model 😚 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/merve/depth-anything-v2-release-6671902e798cd404513ffbf5", "href": null, "resource": { "type": "collection", "id": "merve/depth-anything-v2-release-6671902e798cd404513ffbf5", "discussionNum": null }, "url": "https://huggingface.co/collections/merve/depth-anything-v2-release-6671902e798cd404513ffbf5", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The authors have analyzed Marigold, a diffusion based model against Depth Anything and found out what’s up with using synthetic images vs real images for MDE:", "raw": "The authors have analyzed Marigold, a diffusion based model against Depth Anything and found out what’s up with using synthetic images vs real images for MDE:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔖 Real data has a lot of label noise, inaccurate depth maps (caused by depth sensors missing transparent objects etc) and there are many details overlooked ", "raw": "🔖 Real data has a lot of label noise, inaccurate depth maps (caused by depth sensors missing transparent objects etc) and there are many details overlooked ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔖 Synthetic data have more precise and detailed depth labels and they are truly ground-truth, but there’s a distribution shift between real and synthetic images, and they have restricted scene coverage", "raw": "🔖 Synthetic data have more precise and detailed depth labels and they are truly ground-truth, but there’s a distribution shift between real and synthetic images, and they have restricted scene coverage", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The authors train different image encoders only on synthetic images and find out unless the encoder is very large the model can’t generalize well (but large models generalize inherently anyway) 🧐", "raw": "The authors train different image encoders only on synthetic images and find out unless the encoder is very large the model can’t generalize well (but large models generalize inherently anyway) 🧐", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "But they still fail encountering real images that have wide distribution in labels (e.g. diverse instances of objects) 🥲", "raw": "But they still fail encountering real images that have wide distribution in labels (e.g. diverse instances of objects) 🥲", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Depth Anything v2 framework is to..", "raw": "Depth Anything v2 framework is to..", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🦖 Train a teacher model based on DINOv2-G based on 595K synthetic images", "raw": "🦖 Train a teacher model based on DINOv2-G based on 595K synthetic images", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🏷️ Label 62M real images using teacher model", "raw": "🏷️ Label 62M real images using teacher model", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🦕 Train a student model using the real images labelled by teacher ", "raw": "🦕 Train a student model using the real images labelled by teacher ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Result: 10x faster and more accurate than Marigold! ", "raw": "Result: 10x faster and more accurate than Marigold! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The authors also construct a new benchmark called DA-2K that is less noisy, highly detailed and more diverse! ", "raw": "The authors also construct a new benchmark called DA-2K that is less noisy, highly detailed and more diverse! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
I love Depth Anything V2 😍 It’s Depth Anything, but scaled with both larger teacher model and a gigantic dataset! Here's a small TLDR of paper with a lot of findings, experiments and more. I have also created a collection that has the models, the dataset, the demo and CoreML converted model 😚 https://huggingface.co/collections/merve/depth-anything-v2-release-6671902e798cd404513ffbf5 The authors have analyzed Marigold, a diffusion based model against Depth Anything and found out what’s up with using synthetic images vs real images for MDE: 🔖 Real data has a lot of label noise, inaccurate depth maps (caused by depth sensors missing transparent objects etc) and there are many details overlooked 🔖 Synthetic data have more precise and detailed depth labels and they are truly ground-truth, but there’s a distribution shift between real and synthetic images, and they have restricted scene coverage The authors train different image encoders only on synthetic images and find out unless the encoder is very large the model can’t generalize well (but large models generalize inherently anyway) 🧐 But they still fail encountering real images that have wide distribution in labels (e.g. diverse instances of objects) 🥲 Depth Anything v2 framework is to.. 🦖 Train a teacher model based on DINOv2-G based on 595K synthetic images 🏷️ Label 62M real images using teacher model 🦕 Train a student model using the real images labelled by teacher Result: 10x faster and more accurate than Marigold! The authors also construct a new benchmark called DA-2K that is less noisy, highly detailed and more diverse!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5589, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/UbIwAPTcbmYYkZidLXxJF.png" } ]
[]
[ { "reaction": "🔥", "users": [ "osanseviero", "Ramikan-BR", "fynnkroeger", "SixOpen", "kingabzpro", "Taylor658", "clem", "Hev832", "shadinpira80", "xu3kev", "radames", "louisbrulenaudet" ], "count": 12 }, { "reaction": "🚀", "users": [ "Ramikan-BR", "Tuana", "kramp", "clem", "super-cinnamon" ], "count": 5 }, { "reaction": "❤️", "users": [ "Ramikan-BR", "clem", "melmass", "shaising", "radames" ], "count": 5 }, { "reaction": "👀", "users": [ "Ramikan-BR", "clem" ], "count": 2 }, { "reaction": "🤗", "users": [ "kingabzpro", "clem" ], "count": 2 } ]
2024-06-18T13:59:59.000Z
2024-06-18T13:59:59.663Z
[]
/posts/merve/568638914646708
4,208
0
999224288136633
[ { "type": "text", "value": "Hey All!", "raw": "Hey All!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "I've been asked a lot of share more on how I train LoRAs. The truth is I don't think my advice is very helpful without also including more contextual, theoretical commentary on how I **think** about training LoRAs for SDXL and other models. ", "raw": "I've been asked a lot of share more on how I train LoRAs. The truth is I don't think my advice is very helpful without also including more contextual, theoretical commentary on how I **think** about training LoRAs for SDXL and other models. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "I wrote a first article here about it - let me know what you think.", "raw": "I wrote a first article here about it - let me know what you think.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/blog/alvdansen/thoughts-on-lora-training-1", "href": "https://huggingface.co/blog/alvdansen/thoughts-on-lora-training-1", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Edit: Also people kept asking where to start so I made a list of possible resources:", "raw": "Edit: Also people kept asking where to start so I made a list of possible resources:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/blog/alvdansen/thoughts-on-lora-training-pt-2-training-services", "href": "https://huggingface.co/blog/alvdansen/thoughts-on-lora-training-pt-2-training-services", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Hey All! I've been asked a lot of share more on how I train LoRAs. The truth is I don't think my advice is very helpful without also including more contextual, theoretical commentary on how I **think** about training LoRAs for SDXL and other models. I wrote a first article here about it - let me know what you think. https://huggingface.co/blog/alvdansen/thoughts-on-lora-training-1 Edit: Also people kept asking where to start so I made a list of possible resources: https://huggingface.co/blog/alvdansen/thoughts-on-lora-training-pt-2-training-services
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png", "fullname": "araminta_k", "name": "alvdansen", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 496, "isFollowing": false }
[]
[]
[ { "reaction": "❤️", "users": [ "victor", "shaising", "merve", "not-lain", "netynet", "dillfrescott", "KingNish", "philipp-zettl", "kramp" ], "count": 9 }, { "reaction": "👍", "users": [ "digiplay", "victor", "merve", "not-lain", "dillfrescott" ], "count": 5 } ]
2024-06-18T13:38:30.000Z
2024-06-27T03:50:40.376Z
[ { "avatarUrl": "/avatars/8473d30b909208e7dd5828620bcb4ce1.svg", "fullname": "Wallow", "name": "Viktor1233", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png", "fullname": "araminta_k", "name": "alvdansen", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 496, "isFollowing": false }, { "avatarUrl": "/avatars/7ca2d750fb67cc848dc07a9161bfa9dd.svg", "fullname": "Martin Viewegger", "name": "Viewegger", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6406a284a577649430c5bfdd/6mGZ3EOvkWWvUGVv04Tm9.jpeg", "fullname": "Fihade", "name": "Fihade", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false } ]
/posts/alvdansen/999224288136633
3,245
13
948457903511815
[ { "type": "text", "value": "💰 𝗚𝗲𝘁 𝘁𝗵𝗲 𝗽𝗿𝗶𝗰𝗲 𝗼𝗳 𝗮𝗻𝘆 𝗟𝗟𝗠 𝗔𝗣𝗜 𝗿𝗲𝗾𝘂𝗲𝘀𝘁 ⇒ 𝘁𝗼𝗸𝗲𝗻𝗰𝗼𝘀𝘁", "raw": "💰 𝗚𝗲𝘁 𝘁𝗵𝗲 𝗽𝗿𝗶𝗰𝗲 𝗼𝗳 𝗮𝗻𝘆 𝗟𝗟𝗠 𝗔𝗣𝗜 𝗿𝗲𝗾𝘂𝗲𝘀𝘁 ⇒ 𝘁𝗼𝗸𝗲𝗻𝗰𝗼𝘀𝘁", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "I've just found out about 𝙰𝚐𝚎𝚗𝚝𝙾𝚙𝚜-𝙰𝙸/𝚝𝚘𝚔𝚎𝚗𝚌𝚘𝚜𝚝 (", "raw": "I've just found out about 𝙰𝚐𝚎𝚗𝚝𝙾𝚙𝚜-𝙰𝙸/𝚝𝚘𝚔𝚎𝚗𝚌𝚘𝚜𝚝 (", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/AgentOps-AI/tokencost", "href": "https://github.com/AgentOps-AI/tokencost", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ").", "raw": ").", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "𝗧𝗵𝗶𝘀 𝗹𝗶𝗯𝗿𝗮𝗿𝘆 𝗴𝗶𝘃𝗲𝘀 𝘆𝗼𝘂 𝘁𝗵𝗲 𝗽𝗿𝗶𝗰𝗲 𝗼𝗳 𝘆𝗼𝘂𝗿 𝗰𝗮𝗹𝗹𝘀 𝘁𝗼 𝗮𝗻𝘆 𝗟𝗟𝗠 𝗔𝗣𝗜: OpenAI, Anthropic, Mistral, AWS or Databricks...", "raw": "𝗧𝗵𝗶𝘀 𝗹𝗶𝗯𝗿𝗮𝗿𝘆 𝗴𝗶𝘃𝗲𝘀 𝘆𝗼𝘂 𝘁𝗵𝗲 𝗽𝗿𝗶𝗰𝗲 𝗼𝗳 𝘆𝗼𝘂𝗿 𝗰𝗮𝗹𝗹𝘀 𝘁𝗼 𝗮𝗻𝘆 𝗟𝗟𝗠 𝗔𝗣𝗜: OpenAI, Anthropic, Mistral, AWS or Databricks...", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "For any model, you can use as input either string prompts or messages, and get as outputs either the price or token count.", "raw": "For any model, you can use as input either string prompts or messages, and get as outputs either the price or token count.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Congrats to the AgentOps-AI team: this will be very useful when trying to get a ballpark estimate of a project's price, to compare APIs, or for precise monitoring of usage!", "raw": "Congrats to the AgentOps-AI team: this will be very useful when trying to get a ballpark estimate of a project's price, to compare APIs, or for precise monitoring of usage!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "✨ Daily reminder: 𝗿𝘂𝗻𝗻𝗶𝗻𝗴 𝗮𝗻 𝗔𝟭𝟬𝟬 𝗰𝗼𝘀𝘁𝘀 𝘆𝗼𝘂 𝗲𝘅𝗮𝗰𝘁𝗹𝘆 $𝟬.𝟬𝟬/𝗵𝗼𝘂𝗿 (or 0.00€ in current exchange rates) on a HF space with ZeroGPU!", "raw": "✨ Daily reminder: 𝗿𝘂𝗻𝗻𝗶𝗻𝗴 𝗮𝗻 𝗔𝟭𝟬𝟬 𝗰𝗼𝘀𝘁𝘀 𝘆𝗼𝘂 𝗲𝘅𝗮𝗰𝘁𝗹𝘆 $𝟬.𝟬𝟬/𝗵𝗼𝘂𝗿 (or 0.00€ in current exchange rates) on a HF space with ZeroGPU!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Learn more on ZeroGPU 👉 ", "raw": "Learn more on ZeroGPU 👉 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://www.datacenterdynamics.com/en/news/hugging-face-launches-zerogpu-project-to-democratize-ai-gives-away-10-million-worth-of-compute/", "href": "https://www.datacenterdynamics.com/en/news/hugging-face-launches-zerogpu-project-to-democratize-ai-gives-away-10-million-worth-of-compute/", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
💰 𝗚𝗲𝘁 𝘁𝗵𝗲 𝗽𝗿𝗶𝗰𝗲 𝗼𝗳 𝗮𝗻𝘆 𝗟𝗟𝗠 𝗔𝗣𝗜 𝗿𝗲𝗾𝘂𝗲𝘀𝘁 ⇒ 𝘁𝗼𝗸𝗲𝗻𝗰𝗼𝘀𝘁 I've just found out about 𝙰𝚐𝚎𝚗𝚝𝙾𝚙𝚜-𝙰𝙸/𝚝𝚘𝚔𝚎𝚗𝚌𝚘𝚜𝚝 (https://github.com/AgentOps-AI/tokencost). 𝗧𝗵𝗶𝘀 𝗹𝗶𝗯𝗿𝗮𝗿𝘆 𝗴𝗶𝘃𝗲𝘀 𝘆𝗼𝘂 𝘁𝗵𝗲 𝗽𝗿𝗶𝗰𝗲 𝗼𝗳 𝘆𝗼𝘂𝗿 𝗰𝗮𝗹𝗹𝘀 𝘁𝗼 𝗮𝗻𝘆 𝗟𝗟𝗠 𝗔𝗣𝗜: OpenAI, Anthropic, Mistral, AWS or Databricks... For any model, you can use as input either string prompts or messages, and get as outputs either the price or token count. Congrats to the AgentOps-AI team: this will be very useful when trying to get a ballpark estimate of a project's price, to compare APIs, or for precise monitoring of usage! ✨ Daily reminder: 𝗿𝘂𝗻𝗻𝗶𝗻𝗴 𝗮𝗻 𝗔𝟭𝟬𝟬 𝗰𝗼𝘀𝘁𝘀 𝘆𝗼𝘂 𝗲𝘅𝗮𝗰𝘁𝗹𝘆 $𝟬.𝟬𝟬/𝗵𝗼𝘂𝗿 (or 0.00€ in current exchange rates) on a HF space with ZeroGPU! Learn more on ZeroGPU 👉 https://www.datacenterdynamics.com/en/news/hugging-face-launches-zerogpu-project-to-democratize-ai-gives-away-10-million-worth-of-compute/
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63d10d4e8eaa4831005e92b5/7p7-OmWM6PqqCs7ZStPGD.jpeg", "fullname": "Aymeric Roucher", "name": "m-ric", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 494, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/63d10d4e8eaa4831005e92b5/S0GpNkE2ZTHNMMi4jNgyv.png" } ]
[]
[ { "reaction": "👍", "users": [ "umair894", "Pavarissy", "kramp", "victor", "gabrielmbmb", "Taylor658", "sigridjineth", "maywell", "radames", "sosoai", "prithivMLmods", "introvoyz041" ], "count": 12 }, { "reaction": "😎", "users": [ "GPT007" ], "count": 1 }, { "reaction": "🔥", "users": [ "Vanos007" ], "count": 1 } ]
2024-06-18T13:08:27.000Z
2024-09-11T09:57:59.491Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2607, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png", "fullname": "Omar Sanseviero", "name": "osanseviero", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2868, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63d10d4e8eaa4831005e92b5/7p7-OmWM6PqqCs7ZStPGD.jpeg", "fullname": "Aymeric Roucher", "name": "m-ric", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 494, "isFollowing": false } ]
/posts/m-ric/948457903511815
3,126
5
853450311709108
[ { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/nevmenandr/incoming-students-ma-dh-hse-university", "href": null, "resource": { "type": "dataset", "id": "nevmenandr/incoming-students-ma-dh-hse-university", "discussionNum": null }, "url": "https://huggingface.co/datasets/nevmenandr/incoming-students-ma-dh-hse-university", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Dataset visualized by datawrapper", "raw": "Dataset visualized by datawrapper", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "code_fence", "value": null, "raw": "```html\n<div style=\"min-height:494px\"><script type=\"text/javascript\" defer src=\"https://datawrapper.dwcdn.net/q3waH/embed.js?v=2\" charset=\"utf-8\"></script><noscript><img src=\"https://datawrapper.dwcdn.net/q3waH/full.png\" alt=\"\" /></noscript></div>\n```", "href": null, "resource": null, "url": null, "code": "<div style=\"min-height:494px\"><script type=\"text/javascript\" defer src=\"https://datawrapper.dwcdn.net/q3waH/embed.js?v=2\" charset=\"utf-8\"></script><noscript><img src=\"https://datawrapper.dwcdn.net/q3waH/full.png\" alt=\"\" /></noscript></div>", "user": null, "label": null, "lang": "html" }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Data from my talk in February: ", "raw": "Data from my talk in February: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://www.youtube.com/watch?v=ZfXqvIzl5fo", "href": "https://www.youtube.com/watch?v=ZfXqvIzl5fo", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " . Slides: ", "raw": " . Slides: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://nevmenandr.github.io/slides/2024-02-02/slides.pdf", "href": "https://nevmenandr.github.io/slides/2024-02-02/slides.pdf", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ".", "raw": ".", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
https://huggingface.co/datasets/nevmenandr/incoming-students-ma-dh-hse-university Dataset visualized by datawrapper ```html <div style="min-height:494px"><script type="text/javascript" defer src="https://datawrapper.dwcdn.net/q3waH/embed.js?v=2" charset="utf-8"></script><noscript><img src="https://datawrapper.dwcdn.net/q3waH/full.png" alt="" /></noscript></div> ``` Data from my talk in February: https://www.youtube.com/watch?v=ZfXqvIzl5fo . Slides: https://nevmenandr.github.io/slides/2024-02-02/slides.pdf.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/664b25abfebdc298f724bdf0/pPb3xhDAOV_aLS642kPIW.png", "fullname": "Boris Orekhov", "name": "nevmenandr", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 5, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/664b25abfebdc298f724bdf0/SdpAVyGxnkZrd9SSuc9yL.png" } ]
[]
[]
2024-06-18T12:38:10.000Z
2024-06-18T12:47:34.092Z
[]
/posts/nevmenandr/853450311709108
493
0
452616192049684
[ { "type": "text", "value": "Remember Will Smith eating Spaghetti? 🍝😆", "raw": "Remember Will Smith eating Spaghetti? 🍝😆", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "AI has come a long way from generating hilariously low-quality videos to almost unrealistic realistic videos 🎥✨", "raw": "AI has come a long way from generating hilariously low-quality videos to almost unrealistic realistic videos 🎥✨", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "But most models like ", "raw": "But most models like ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@OpenAI", "href": null, "resource": null, "url": null, "code": null, "user": "OpenAI", "label": null, "lang": null }, { "type": "text", "value": " Sora, @Kling_ai , etc are not publicly available. 🚫🖥️", "raw": " Sora, @Kling_ai , etc are not publicly available. 🚫🖥️", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "But now we have ", "raw": "But now we have ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@LumaLabsAI", "href": null, "resource": null, "url": null, "code": null, "user": "LumaLabsAI", "label": null, "lang": null }, { "type": "text", "value": " Dream Machine, which is publicly available for free! 🎉🆓", "raw": " Dream Machine, which is publicly available for free! 🎉🆓", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Here is the dilemma, Sora and Kling posted some excellent examples of what the AI was capable of, and so did Luma AI. 🌟🤖", "raw": "Here is the dilemma, Sora and Kling posted some excellent examples of what the AI was capable of, and so did Luma AI. 🌟🤖", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "But in actual use, they leave so much to be desired. 😕 Are we back to cherry-picking examples and leaking benchmarks in training data? 🍒📊", "raw": "But in actual use, they leave so much to be desired. 😕 Are we back to cherry-picking examples and leaking benchmarks in training data? 🍒📊", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Try Dream Machine 👉 ", "raw": "Try Dream Machine 👉 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://lumalabs.ai/dream-machine", "href": "https://lumalabs.ai/dream-machine", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " 🌐", "raw": " 🌐", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Remember Will Smith eating Spaghetti? 🍝😆 AI has come a long way from generating hilariously low-quality videos to almost unrealistic realistic videos 🎥✨ But most models like @OpenAI Sora, @Kling_ai , etc are not publicly available. 🚫🖥️ But now we have @LumaLabsAI Dream Machine, which is publicly available for free! 🎉🆓 Here is the dilemma, Sora and Kling posted some excellent examples of what the AI was capable of, and so did Luma AI. 🌟🤖 But in actual use, they leave so much to be desired. 😕 Are we back to cherry-picking examples and leaking benchmarks in training data? 🍒📊 Try Dream Machine 👉 https://lumalabs.ai/dream-machine 🌐
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png", "fullname": "Kuldeep Singh Sidhu", "name": "singhsidhukuldeep", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 219, "isFollowing": false }
[ { "type": "video", "url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/0RtLpJA4U7u41nTxo6F1n.mp4" } ]
[]
[ { "reaction": "🔥", "users": [ "john3huggingface" ], "count": 1 } ]
2024-06-18T09:18:58.000Z
2024-06-18T09:18:58.833Z
[]
/posts/singhsidhukuldeep/452616192049684
545
0
426564568525559
[ { "type": "text", "value": "Hey guys! ", "raw": "Hey guys! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@mk230580", "href": null, "resource": null, "url": null, "code": null, "user": "mk230580", "label": null, "lang": null }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@wikeeyang", "href": null, "resource": null, "url": null, "code": null, "user": "wikeeyang", "label": null, "lang": null }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@Yasirkh", "href": null, "resource": null, "url": null, "code": null, "user": "Yasirkh", "label": null, "lang": null }, { "type": "text", "value": " & others asked how to run the Hugging Face spaces outside of the HF environment locally with their source editor and Google Colab. Here is how to do that simply 👇👇.", "raw": " & others asked how to run the Hugging Face spaces outside of the HF environment locally with their source editor and Google Colab. Here is how to do that simply 👇👇.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📍I have just created a step-by-step procedure with a Colab demo link also attached in the repository's README.md.", "raw": "📍I have just created a step-by-step procedure with a Colab demo link also attached in the repository's README.md.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔗: ", "raw": "🔗: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/prithivsakthiur/how-to-run-huggingface-spaces-on-local-machine-demo", "href": "https://github.com/prithivsakthiur/how-to-run-huggingface-spaces-on-local-machine-demo", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Thanks for a read !!", "raw": "Thanks for a read !!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Hey guys! @mk230580 @wikeeyang @Yasirkh & others asked how to run the Hugging Face spaces outside of the HF environment locally with their source editor and Google Colab. Here is how to do that simply 👇👇. 📍I have just created a step-by-step procedure with a Colab demo link also attached in the repository's README.md. 🔗: https://github.com/prithivsakthiur/how-to-run-huggingface-spaces-on-local-machine-demo Thanks for a read !!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65bb837dbfb878f46c77de4c/UVtVbF_3rdt0DC8xTkpL1.jpeg", "fullname": "Prithiv Sakthi", "name": "prithivMLmods", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 393, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/CkgD2vzCzJAdsTDyfWYFE.png" } ]
[ { "avatarUrl": "/avatars/723d56fc40eb5da593bcf00159a4543f.svg", "fullname": "Manoj K Chauhan", "name": "mk230580", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 5 }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64572eba95082f722d1a103a/Q4BuycjA0zi2zWKtirgj8.jpeg", "fullname": "Wikee Yang", "name": "wikeeyang", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 4 }, { "avatarUrl": "/avatars/ab73e02668aeb662d6460a2fe5418b91.svg", "fullname": "Yasir hamid", "name": "Yasirkh", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null } ]
[ { "reaction": "❤️", "users": [ "wikeeyang", "osanseviero", "xi0v", "ashail", "mk230580", "ezzdev", "prithivMLmods" ], "count": 7 }, { "reaction": "🤗", "users": [ "Ngrthm" ], "count": 1 } ]
2024-06-18T04:56:12.000Z
2024-06-25T12:17:18.247Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64572eba95082f722d1a103a/Q4BuycjA0zi2zWKtirgj8.jpeg", "fullname": "Wikee Yang", "name": "wikeeyang", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 4, "isFollowing": false }, { "avatarUrl": "/avatars/723d56fc40eb5da593bcf00159a4543f.svg", "fullname": "Manoj K Chauhan", "name": "mk230580", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 5, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1669530082268-6332d879eb5a160f2240a45d.png", "fullname": "Mo. Ezz", "name": "ezzdev", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65bb837dbfb878f46c77de4c/UVtVbF_3rdt0DC8xTkpL1.jpeg", "fullname": "Prithiv Sakthi", "name": "prithivMLmods", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 393, "isFollowing": false } ]
/posts/prithivMLmods/426564568525559
4,831
6
214393344089717
[ { "type": "text", "value": "🚀 Sarashina1-65B", "raw": "🚀 Sarashina1-65B", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "SB Intuitions has announced the release of Japanese Large Language Models (LLMs) with 7 billion, 13 billion, and 65 billion parameters to aid academic and industrial research and development. The company plans to develop a 390 billion parameter model by the end of 2024. The models, named Sarashina1 and Sarashina2, show significant performance improvements, especially Sarashina2 which is an enhanced version of Sarashina1. ", "raw": "SB Intuitions has announced the release of Japanese Large Language Models (LLMs) with 7 billion, 13 billion, and 65 billion parameters to aid academic and industrial research and development. The company plans to develop a 390 billion parameter model by the end of 2024. The models, named Sarashina1 and Sarashina2, show significant performance improvements, especially Sarashina2 which is an enhanced version of Sarashina1. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Performance evaluations using five Japanese language datasets reveal that Sarashina2 outperforms other models, including continued pre-trained models. The name \"Sarashina\" originates from a historical diary linked to the headquarters' location in Tokyo's Takeshiba area, symbolizing the company's ambition to create globally utilized models from Japan.", "raw": "Performance evaluations using five Japanese language datasets reveal that Sarashina2 outperforms other models, including continued pre-trained models. The name \"Sarashina\" originates from a historical diary linked to the headquarters' location in Tokyo's Takeshiba area, symbolizing the company's ambition to create globally utilized models from Japan.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Model URL:", "raw": "Model URL:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- ", "raw": "- ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/sbintuitions/sarashina1-65b", "href": null, "resource": { "type": "model", "id": "sbintuitions/sarashina1-65b", "discussionNum": null }, "url": "https://huggingface.co/sbintuitions/sarashina1-65b", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- ", "raw": "- ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/sbintuitions/sarashina2-13b", "href": null, "resource": { "type": "model", "id": "sbintuitions/sarashina2-13b", "discussionNum": null }, "url": "https://huggingface.co/sbintuitions/sarashina2-13b", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Detailed press release (in Japanese):", "raw": "Detailed press release (in Japanese):", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://www.sbintuitions.co.jp/news/press/20240614_01/", "href": "https://www.sbintuitions.co.jp/news/press/20240614_01/", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
🚀 Sarashina1-65B SB Intuitions has announced the release of Japanese Large Language Models (LLMs) with 7 billion, 13 billion, and 65 billion parameters to aid academic and industrial research and development. The company plans to develop a 390 billion parameter model by the end of 2024. The models, named Sarashina1 and Sarashina2, show significant performance improvements, especially Sarashina2 which is an enhanced version of Sarashina1. Performance evaluations using five Japanese language datasets reveal that Sarashina2 outperforms other models, including continued pre-trained models. The name "Sarashina" originates from a historical diary linked to the headquarters' location in Tokyo's Takeshiba area, symbolizing the company's ambition to create globally utilized models from Japan. Model URL: - https://huggingface.co/sbintuitions/sarashina1-65b - https://huggingface.co/sbintuitions/sarashina2-13b Detailed press release (in Japanese): https://www.sbintuitions.co.jp/news/press/20240614_01/
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61a32e422172c41f121589d2/8jExNd-9fenpqw_Z1rvL6.jpeg", "fullname": "Kaito Sugimoto", "name": "kaisugi", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 12, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "osanseviero", "julien-c", "victor", "zafina", "yjernite", "Nulooper" ], "count": 6 } ]
2024-06-18T03:18:27.000Z
2024-06-18T03:18:27.832Z
[]
/posts/kaisugi/214393344089717
2,267
0
693024356063149
[ { "type": "text", "value": "Join us at our remaining CVPR presentations this week! Members of PRS-ETH will be around to connect with you and discuss our presented and ongoing works:", "raw": "Join us at our remaining CVPR presentations this week! Members of PRS-ETH will be around to connect with you and discuss our presented and ongoing works:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "💐 Marigold: Discover our work on sharp diffusion-based computer vision techniques, presented in Orals 3A track on \"3D from Single View\", Thu, June 20, 9:00-9:15 AM. Also, drop by Poster Session 3 later that day for more tangible matters! 🌚 ", "raw": "💐 Marigold: Discover our work on sharp diffusion-based computer vision techniques, presented in Orals 3A track on \"3D from Single View\", Thu, June 20, 9:00-9:15 AM. Also, drop by Poster Session 3 later that day for more tangible matters! 🌚 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Project page: ", "raw": "Project page: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://marigoldmonodepth.github.io/", "href": "https://marigoldmonodepth.github.io/", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Paper: ", "raw": "Paper: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2312.02145", "href": null, "resource": { "type": "paper", "id": "2312.02145", "discussionNum": null }, "url": "https://huggingface.co/papers/2312.02145", "code": null, "user": null, "label": "Repurposing Diffusion-Based Image Generators for Monocular Depth\n Estimation (2312.02145)", "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Collection: ", "raw": "Collection: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/collections/prs-eth/marigold-6669e9e3d3ee30f48214b9ba", "href": "https://huggingface.co/collections/prs-eth/marigold-6669e9e3d3ee30f48214b9ba", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Space: ", "raw": "Space: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/prs-eth/marigold-lcm", "href": null, "resource": { "type": "space", "id": "prs-eth/marigold-lcm", "discussionNum": null }, "url": "https://huggingface.co/spaces/prs-eth/marigold-lcm", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Diffusers 🧨 tutorial: ", "raw": "Diffusers 🧨 tutorial: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/docs/diffusers/using-diffusers/marigold_usage", "href": "https://huggingface.co/docs/diffusers/using-diffusers/marigold_usage", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "⚙️ Point2CAD: Learn about our mechanical CAD model reconstruction from point clouds, presented in Poster Session 1, Wed, June 19, 10:30 AM - 12:00 PM. ", "raw": "⚙️ Point2CAD: Learn about our mechanical CAD model reconstruction from point clouds, presented in Poster Session 1, Wed, June 19, 10:30 AM - 12:00 PM. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Project page: ", "raw": "Project page: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://www.obukhov.ai/point2cad.html", "href": "https://www.obukhov.ai/point2cad.html", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Paper: ", "raw": "Paper: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2312.04962", "href": null, "resource": { "type": "paper", "id": "2312.04962", "discussionNum": null }, "url": "https://huggingface.co/papers/2312.04962", "code": null, "user": null, "label": "Point2CAD: Reverse Engineering CAD Models from 3D Point Clouds (2312.04962)", "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🎭 DGInStyle: Explore our generative data synthesis approach as a cost-efficient alternative to real and synthetic data, presented in the Workshop on Synthetic Data for Computer Vision, Tue, June 18, at Summit 423-425. ", "raw": "🎭 DGInStyle: Explore our generative data synthesis approach as a cost-efficient alternative to real and synthetic data, presented in the Workshop on Synthetic Data for Computer Vision, Tue, June 18, at Summit 423-425. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Details and schedule: ", "raw": "Details and schedule: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://syndata4cv.github.io/", "href": "https://syndata4cv.github.io/", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Project page: ", "raw": "Project page: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://dginstyle.github.io/", "href": "https://dginstyle.github.io/", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Paper: ", "raw": "Paper: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2312.03048", "href": null, "resource": { "type": "paper", "id": "2312.03048", "discussionNum": null }, "url": "https://huggingface.co/papers/2312.03048", "code": null, "user": null, "label": "DGInStyle: Domain-Generalizable Semantic Segmentation with Image\n Diffusion Models and Stylized Semantic Control (2312.03048)", "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Model: ", "raw": "Model: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/yurujaja/DGInStyle", "href": null, "resource": { "type": "model", "id": "yurujaja/DGInStyle", "discussionNum": null }, "url": "https://huggingface.co/yurujaja/DGInStyle", "code": null, "user": null, "label": null, "lang": null } ]
Join us at our remaining CVPR presentations this week! Members of PRS-ETH will be around to connect with you and discuss our presented and ongoing works: 💐 Marigold: Discover our work on sharp diffusion-based computer vision techniques, presented in Orals 3A track on "3D from Single View", Thu, June 20, 9:00-9:15 AM. Also, drop by Poster Session 3 later that day for more tangible matters! 🌚 Project page: https://marigoldmonodepth.github.io/ Paper: https://huggingface.co/papers/2312.02145 Collection: https://huggingface.co/collections/prs-eth/marigold-6669e9e3d3ee30f48214b9ba Space: https://huggingface.co/spaces/prs-eth/marigold-lcm Diffusers 🧨 tutorial: https://huggingface.co/docs/diffusers/using-diffusers/marigold_usage ⚙️ Point2CAD: Learn about our mechanical CAD model reconstruction from point clouds, presented in Poster Session 1, Wed, June 19, 10:30 AM - 12:00 PM. Project page: https://www.obukhov.ai/point2cad.html Paper: https://huggingface.co/papers/2312.04962 🎭 DGInStyle: Explore our generative data synthesis approach as a cost-efficient alternative to real and synthetic data, presented in the Workshop on Synthetic Data for Computer Vision, Tue, June 18, at Summit 423-425. Details and schedule: https://syndata4cv.github.io/ Project page: https://dginstyle.github.io/ Paper: https://huggingface.co/papers/2312.03048 Model: https://huggingface.co/yurujaja/DGInStyle
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62f93abbc4817cfc0756b6f8/rGYLaq-rmoJJYotkC1VXk.jpeg", "fullname": "Anton Obukhov", "name": "toshas", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 68, "isFollowing": false }
[]
[]
[]
2024-06-17T21:07:33.000Z
2024-06-17T21:07:33.492Z
[]
/posts/toshas/693024356063149
959
0
834281122109841
[ { "type": "text", "value": "A nice improvement for Hugging Face on Sheets: You can now customize your prompt and select the model of your choice directly on the sheet.", "raw": "A nice improvement for Hugging Face on Sheets: You can now customize your prompt and select the model of your choice directly on the sheet.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Thanks to ", "raw": "Thanks to ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@louisbrulenaudet", "href": null, "resource": null, "url": null, "code": null, "user": "louisbrulenaudet", "label": null, "lang": null }, { "type": "text", "value": " for the contribution. Really cool to see the community improving this tool! ", "raw": " for the contribution. Really cool to see the community improving this tool! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Try it here: ", "raw": "Try it here: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/JournalistsonHF/huggingface-on-sheets", "href": null, "resource": { "type": "space", "id": "JournalistsonHF/huggingface-on-sheets", "discussionNum": null }, "url": "https://huggingface.co/spaces/JournalistsonHF/huggingface-on-sheets", "code": null, "user": null, "label": null, "lang": null } ]
A nice improvement for Hugging Face on Sheets: You can now customize your prompt and select the model of your choice directly on the sheet. Thanks to @louisbrulenaudet for the contribution. Really cool to see the community improving this tool! Try it here: https://huggingface.co/spaces/JournalistsonHF/huggingface-on-sheets
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg", "fullname": "Florent Daudens", "name": "fdaudens", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 384, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/647f36a8454af0237bd49574/aVkknz-S2_YGCcFoXChZc.gif" } ]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6459fa0f5b3111fbe83286e1/UhCa7JNbtTjC6dgOjZtH0.jpeg", "fullname": "Louis Brulé Naudet", "name": "louisbrulenaudet", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 174 } ]
[ { "reaction": "❤️", "users": [ "anakin87", "osanseviero", "davanstrien", "Ramikan-BR", "not-lain", "thomwolf", "cminja", "thangvip", "boapps" ], "count": 9 }, { "reaction": "😎", "users": [ "louisbrulenaudet", "Ramikan-BR", "not-lain" ], "count": 3 }, { "reaction": "🔥", "users": [ "Leemooon", "Ramikan-BR", "not-lain" ], "count": 3 }, { "reaction": "🚀", "users": [ "Ramikan-BR", "not-lain" ], "count": 2 }, { "reaction": "👀", "users": [ "Ramikan-BR" ], "count": 1 } ]
2024-06-17T20:09:07.000Z
2024-06-17T20:09:07.655Z
[]
/posts/fdaudens/834281122109841
3,415
0
405118229122059
[ { "type": "text", "value": "📁✨ Meet Corpus Creator! ", "raw": "📁✨ Meet Corpus Creator! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This Gradio app (", "raw": "This Gradio app (", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/davanstrien/corpus-creator", "href": null, "resource": { "type": "space", "id": "davanstrien/corpus-creator", "discussionNum": null }, "url": "https://huggingface.co/spaces/davanstrien/corpus-creator", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ") takes you from your local files to a Hugging Face Dataset via Llama Index. ", "raw": ") takes you from your local files to a Hugging Face Dataset via Llama Index. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The goal of the tool is to make it quicker and easier to quickly get some local files you want to get ready for ML tasks into a Hugging Face Dataset. Perfect for building datasets for:", "raw": "The goal of the tool is to make it quicker and easier to quickly get some local files you want to get ready for ML tasks into a Hugging Face Dataset. Perfect for building datasets for:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- synthetic data pipelines", "raw": "- synthetic data pipelines", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- annotation", "raw": "- annotation", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- RAG", "raw": "- RAG", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- Other ML tasks that start from a HF dataset ", "raw": "- Other ML tasks that start from a HF dataset ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "I'll share something more substantial that uses this tomorrow 🤗", "raw": "I'll share something more substantial that uses this tomorrow 🤗", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
📁✨ Meet Corpus Creator! This Gradio app (https://huggingface.co/spaces/davanstrien/corpus-creator) takes you from your local files to a Hugging Face Dataset via Llama Index. The goal of the tool is to make it quicker and easier to quickly get some local files you want to get ready for ML tasks into a Hugging Face Dataset. Perfect for building datasets for: - synthetic data pipelines - annotation - RAG - Other ML tasks that start from a HF dataset I'll share something more substantial that uses this tomorrow 🤗
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1627505688463-60107b385ac3e86b3ea4fc34.jpeg", "fullname": "Daniel van Strien", "name": "davanstrien", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 410, "isFollowing": false }
[]
[]
[ { "reaction": "👍", "users": [ "osanseviero", "Elouarn", "Pclanglais", "Nymbo" ], "count": 4 }, { "reaction": "🔥", "users": [ "louisbrulenaudet" ], "count": 1 } ]
2024-06-17T17:04:32.000Z
2024-06-17T17:04:54.912Z
[]
/posts/davanstrien/405118229122059
2,211
0
587491598259528
[ { "type": "text", "value": "Finally ", "raw": "Finally ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@CVPR2024", "href": null, "resource": null, "url": null, "code": null, "user": "CVPR2024", "label": null, "lang": null }, { "type": "text", "value": " is here! 🩷", "raw": " is here! 🩷", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Have you claimed your papers and linked your ", "raw": "Have you claimed your papers and linked your ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "models/datasets/demos", "raw": "models/datasets/demos", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "? ", "raw": "? ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This will increase visibility and impact of your paper 💫", "raw": "This will increase visibility and impact of your paper 💫", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "To index your papers, go here", "raw": "To index your papers, go here", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/CVPR2024/CVPR2024-papers", "href": null, "resource": { "type": "space", "id": "CVPR2024/CVPR2024-papers", "discussionNum": null }, "url": "https://huggingface.co/spaces/CVPR2024/CVPR2024-papers", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Find your paper, click on paper page link, index the paper, then click on your name (workflow is below 👇🏻)", "raw": "Find your paper, click on paper page link, index the paper, then click on your name (workflow is below 👇🏻)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "If you'd like to add links to your paper, go here ", "raw": "If you'd like to add links to your paper, go here ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/CVPR2024/update-CVPR2024-papers", "href": null, "resource": { "type": "space", "id": "CVPR2024/update-CVPR2024-papers", "discussionNum": null }, "url": "https://huggingface.co/spaces/CVPR2024/update-CVPR2024-papers", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "login, find your paper's id, retrieve the paper, fill in the info and submit!", "raw": "login, find your paper's id, retrieve the paper, fill in the info and submit!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Finally @CVPR2024 is here! 🩷 Have you claimed your papers and linked your models/datasets/demos? This will increase visibility and impact of your paper 💫 To index your papers, go here https://huggingface.co/spaces/CVPR2024/CVPR2024-papers Find your paper, click on paper page link, index the paper, then click on your name (workflow is below 👇🏻) If you'd like to add links to your paper, go here https://huggingface.co/spaces/CVPR2024/update-CVPR2024-papers login, find your paper's id, retrieve the paper, fill in the info and submit!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5589, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/1dPcVT8s4tim6fLr4nSis.png" } ]
[]
[ { "reaction": "🔥", "users": [ "KnutJaegersberg", "Tonic", "Hev832", "KingNish" ], "count": 4 } ]
2024-06-17T17:00:16.000Z
2024-06-17T17:00:16.422Z
[]
/posts/merve/587491598259528
3,011
0
387693543890506
[ { "type": "text", "value": "🧪 RAG Evaluation with 🔥 Prometheus 2 + Haystack", "raw": "🧪 RAG Evaluation with 🔥 Prometheus 2 + Haystack", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📝 Blog post: ", "raw": "📝 Blog post: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://haystack.deepset.ai/blog/rag-evaluation-with-prometheus-2", "href": "https://haystack.deepset.ai/blog/rag-evaluation-with-prometheus-2", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📓 Notebook: ", "raw": "📓 Notebook: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/deepset-ai/haystack-cookbook/blob/main/notebooks/prometheus2_evaluation.ipynb", "href": "https://github.com/deepset-ai/haystack-cookbook/blob/main/notebooks/prometheus2_evaluation.ipynb", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "─── ⋆⋅☆⋅⋆ ───", "raw": "─── ⋆⋅☆⋅⋆ ───", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "When evaluating LLMs' responses, 𝐩𝐫𝐨𝐩𝐫𝐢𝐞𝐭𝐚𝐫𝐲 𝐦𝐨𝐝𝐞𝐥𝐬 like GPT-4 are commonly used due to their strong performance.", "raw": "When evaluating LLMs' responses, 𝐩𝐫𝐨𝐩𝐫𝐢𝐞𝐭𝐚𝐫𝐲 𝐦𝐨𝐝𝐞𝐥𝐬 like GPT-4 are commonly used due to their strong performance.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "However, relying on closed models presents challenges related to data privacy 🔒, transparency, controllability, and cost 💸.", "raw": "However, relying on closed models presents challenges related to data privacy 🔒, transparency, controllability, and cost 💸.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "On the other hand, 𝐨𝐩𝐞𝐧 𝐦𝐨𝐝𝐞𝐥𝐬 typically do not correlate well with human judgments and lack flexibility.", "raw": "On the other hand, 𝐨𝐩𝐞𝐧 𝐦𝐨𝐝𝐞𝐥𝐬 typically do not correlate well with human judgments and lack flexibility.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔥 Prometheus 2 is a new family of open-source models designed to address these gaps:", "raw": "🔥 Prometheus 2 is a new family of open-source models designed to address these gaps:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔹 two variants: ", "raw": "🔹 two variants: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/prometheus-eval/prometheus-7b-v2.0", "href": null, "resource": { "type": "model", "id": "prometheus-eval/prometheus-7b-v2.0", "discussionNum": null }, "url": "https://huggingface.co/prometheus-eval/prometheus-7b-v2.0", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "; ", "raw": "; ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/prometheus-eval/prometheus-8x7b-v2.0", "href": null, "resource": { "type": "model", "id": "prometheus-eval/prometheus-8x7b-v2.0", "discussionNum": null }, "url": "https://huggingface.co/prometheus-eval/prometheus-8x7b-v2.0", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔹 trained on open-source data", "raw": "🔹 trained on open-source data", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔹 high correlation with human evaluations and proprietary models", "raw": "🔹 high correlation with human evaluations and proprietary models", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔹 highly flexible: capable of performing direct assessments and pairwise rankings, and allowing the definition of custom evaluation criteria.", "raw": "🔹 highly flexible: capable of performing direct assessments and pairwise rankings, and allowing the definition of custom evaluation criteria.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "See my experiments with RAG evaluation in the links above.", "raw": "See my experiments with RAG evaluation in the links above.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
🧪 RAG Evaluation with 🔥 Prometheus 2 + Haystack 📝 Blog post: https://haystack.deepset.ai/blog/rag-evaluation-with-prometheus-2 📓 Notebook: https://github.com/deepset-ai/haystack-cookbook/blob/main/notebooks/prometheus2_evaluation.ipynb ─── ⋆⋅☆⋅⋆ ─── When evaluating LLMs' responses, 𝐩𝐫𝐨𝐩𝐫𝐢𝐞𝐭𝐚𝐫𝐲 𝐦𝐨𝐝𝐞𝐥𝐬 like GPT-4 are commonly used due to their strong performance. However, relying on closed models presents challenges related to data privacy 🔒, transparency, controllability, and cost 💸. On the other hand, 𝐨𝐩𝐞𝐧 𝐦𝐨𝐝𝐞𝐥𝐬 typically do not correlate well with human judgments and lack flexibility. 🔥 Prometheus 2 is a new family of open-source models designed to address these gaps: 🔹 two variants: https://huggingface.co/prometheus-eval/prometheus-7b-v2.0; https://huggingface.co/prometheus-eval/prometheus-8x7b-v2.0 🔹 trained on open-source data 🔹 high correlation with human evaluations and proprietary models 🔹 highly flexible: capable of performing direct assessments and pairwise rankings, and allowing the definition of custom evaluation criteria. See my experiments with RAG evaluation in the links above.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/626505d493e0b04d75710566/9rfJc9ORXU9J5a42Ev3v6.png", "fullname": "Stefano Fiorucci", "name": "anakin87", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 66, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/626505d493e0b04d75710566/bBvFoOnzZdF7ZJLsCsvO6.png" } ]
[]
[ { "reaction": "🔥", "users": [ "leonardlin", "Marvin73" ], "count": 2 } ]
2024-06-17T14:25:49.000Z
2024-06-17T15:14:47.445Z
[]
/posts/anakin87/387693543890506
925
0
498473804740956
[ { "type": "text", "value": "My weekened project ended up being doing some testing between torchtune, axolotl, and unsloth. I *think* it's a 1:1 comparison of what LoRA fine-tuning performance looks like between the different hardware I have in my dev boxes (4090, 3090, 7900 XTX, W7900) with a few other interesting tidbits.", "raw": "My weekened project ended up being doing some testing between torchtune, axolotl, and unsloth. I *think* it's a 1:1 comparison of what LoRA fine-tuning performance looks like between the different hardware I have in my dev boxes (4090, 3090, 7900 XTX, W7900) with a few other interesting tidbits.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Tonight I wrote up a WandB report (the panel editor is super broken in Firefox 😔) that sums up some of the more interesting bits from the results: ", "raw": "Tonight I wrote up a WandB report (the panel editor is super broken in Firefox 😔) that sums up some of the more interesting bits from the results: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://wandb.ai/augmxnt/train-bench/reports/torchtune-vs-axolotl-vs-unsloth-Trainer-Comparison--Vmlldzo4MzU3NTAx", "href": "https://wandb.ai/augmxnt/train-bench/reports/torchtune-vs-axolotl-vs-unsloth-Trainer-Comparison--Vmlldzo4MzU3NTAx", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
My weekened project ended up being doing some testing between torchtune, axolotl, and unsloth. I *think* it's a 1:1 comparison of what LoRA fine-tuning performance looks like between the different hardware I have in my dev boxes (4090, 3090, 7900 XTX, W7900) with a few other interesting tidbits. Tonight I wrote up a WandB report (the panel editor is super broken in Firefox 😔) that sums up some of the more interesting bits from the results: https://wandb.ai/augmxnt/train-bench/reports/torchtune-vs-axolotl-vs-unsloth-Trainer-Comparison--Vmlldzo4MzU3NTAx
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63a7422854f1d0225b075bfc/XGYAcDPZG5ZEsNBWG6guw.jpeg", "fullname": "lhl", "name": "leonardlin", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 56, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/63a7422854f1d0225b075bfc/LgeEK39znDpCXYpHu9txh.png" } ]
[]
[ { "reaction": "👍", "users": [ "brainhome", "louisbrulenaudet", "Weyaxi", "ManniX-ITA" ], "count": 4 } ]
2024-06-17T13:14:37.000Z
2024-06-17T13:14:37.450Z
[]
/posts/leonardlin/498473804740956
1,857
0
507372006066673
[ { "type": "text", "value": "🌟 Progress in the German FineWeb edu reproduction 🌟", "raw": "🌟 Progress in the German FineWeb edu reproduction 🌟", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "We're delighted to share the launch of our new Data Quality Classification Model, designed specifically for evaluating educational content in German. This tool uses advanced machine learning techniques to assess texts across all educational levels, from primary school to university.", "raw": "We're delighted to share the launch of our new Data Quality Classification Model, designed specifically for evaluating educational content in German. This tool uses advanced machine learning techniques to assess texts across all educational levels, from primary school to university.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔍 Inspired by Huggingface's fine web edu dataset, we've worked hard to refine data classification methods ensuring educators and learners access top-quality resources.", "raw": "🔍 Inspired by Huggingface's fine web edu dataset, we've worked hard to refine data classification methods ensuring educators and learners access top-quality resources.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "We're excited about the future as we continue improving our models and expanding our datasets.", "raw": "We're excited about the future as we continue improving our models and expanding our datasets.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Access the model here: ", "raw": "Access the model here: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/pL-Community/GermanEduScorer-Qwen2-1.5b", "href": null, "resource": { "type": "model", "id": "pL-Community/GermanEduScorer-Qwen2-1.5b", "discussionNum": null }, "url": "https://huggingface.co/pL-Community/GermanEduScorer-Qwen2-1.5b", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🙏 A huge thank you to David and Daryoush from Vago Solutions; Björn and Jan from Ellamind / DiscoResearch for their expert insights throughout this project. Your support has been crucial.", "raw": "🙏 A huge thank you to David and Daryoush from Vago Solutions; Björn and Jan from Ellamind / DiscoResearch for their expert insights throughout this project. Your support has been crucial.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This project was made possible by the support of PrimeLine AI.", "raw": "This project was made possible by the support of PrimeLine AI.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
🌟 Progress in the German FineWeb edu reproduction 🌟 We're delighted to share the launch of our new Data Quality Classification Model, designed specifically for evaluating educational content in German. This tool uses advanced machine learning techniques to assess texts across all educational levels, from primary school to university. 🔍 Inspired by Huggingface's fine web edu dataset, we've worked hard to refine data classification methods ensuring educators and learners access top-quality resources. We're excited about the future as we continue improving our models and expanding our datasets. Access the model here: https://huggingface.co/pL-Community/GermanEduScorer-Qwen2-1.5b 🙏 A huge thank you to David and Daryoush from Vago Solutions; Björn and Jan from Ellamind / DiscoResearch for their expert insights throughout this project. Your support has been crucial. This project was made possible by the support of PrimeLine AI.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/605b1cf890a4b6bc0eef99ad/LDP6-QcCGlzMi8n5IK4Y2.jpeg", "fullname": "Florian Zimmermeister", "name": "flozi00", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 81, "isFollowing": false }
[]
[]
[ { "reaction": "❤️", "users": [ "philschmid", "radames", "DavidGF", "neuralworm" ], "count": 4 }, { "reaction": "🤝", "users": [ "philschmid" ], "count": 1 } ]
2024-06-17T09:46:15.000Z
2024-06-18T09:39:39.792Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1624629516652-5ff5d596f244529b3ec0fb89.png", "fullname": "Philipp Schmid", "name": "philschmid", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 657, "isFollowing": false } ]
/posts/flozi00/507372006066673
1,844
1
907095261791565
[ { "type": "text", "value": "Mixtral or Llama 70B on Google Spreadsheet thanks to Hugging Face's Serverless Inference API 🤗", "raw": "Mixtral or Llama 70B on Google Spreadsheet thanks to Hugging Face's Serverless Inference API 🤗", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The Add-on is now available on the HF repo \"Journalists on Hugging Face\" and allows rapid generation of synthetic data, automatic translation, answering questions and more from simple spreadsheet cells 🖥️", "raw": "The Add-on is now available on the HF repo \"Journalists on Hugging Face\" and allows rapid generation of synthetic data, automatic translation, answering questions and more from simple spreadsheet cells 🖥️", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Link to the 🤗 Space : ", "raw": "Link to the 🤗 Space : ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/JournalistsonHF/huggingface-on-sheets", "href": null, "resource": { "type": "space", "id": "JournalistsonHF/huggingface-on-sheets", "discussionNum": null }, "url": "https://huggingface.co/spaces/JournalistsonHF/huggingface-on-sheets", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Although this tool was initially developed for journalists, it actually finds a much wider inking among daily users of the Google suite and the remaining use cases to be explored are numerous.", "raw": "Although this tool was initially developed for journalists, it actually finds a much wider inking among daily users of the Google suite and the remaining use cases to be explored are numerous.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Only a free Hugging Face API key is required to start using this no-code extension.", "raw": "Only a free Hugging Face API key is required to start using this no-code extension.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Do not hesitate to submit ideas for features that we could add!", "raw": "Do not hesitate to submit ideas for features that we could add!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Thanks to ", "raw": "Thanks to ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@fdaudens", "href": null, "resource": null, "url": null, "code": null, "user": "fdaudens", "label": null, "lang": null }, { "type": "text", "value": " for initiating this development.", "raw": " for initiating this development.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Mixtral or Llama 70B on Google Spreadsheet thanks to Hugging Face's Serverless Inference API 🤗 The Add-on is now available on the HF repo "Journalists on Hugging Face" and allows rapid generation of synthetic data, automatic translation, answering questions and more from simple spreadsheet cells 🖥️ Link to the 🤗 Space : https://huggingface.co/spaces/JournalistsonHF/huggingface-on-sheets Although this tool was initially developed for journalists, it actually finds a much wider inking among daily users of the Google suite and the remaining use cases to be explored are numerous. Only a free Hugging Face API key is required to start using this no-code extension. Do not hesitate to submit ideas for features that we could add! Thanks to @fdaudens for initiating this development.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6459fa0f5b3111fbe83286e1/UhCa7JNbtTjC6dgOjZtH0.jpeg", "fullname": "Louis Brulé Naudet", "name": "louisbrulenaudet", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 174, "isFollowing": false }
[ { "type": "video", "url": "https://cdn-uploads.huggingface.co/production/uploads/6459fa0f5b3111fbe83286e1/KXbHC3pQ8sI9rXXa77GBp.qt" } ]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg", "fullname": "Florent Daudens", "name": "fdaudens", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 384 } ]
[ { "reaction": "👍", "users": [ "victor", "meiaienable", "JuliusSandmann", "wsuff", "SengTak", "kargaranamir", "umair894", "Lucianocosta", "aidystark", "kramp" ], "count": 10 }, { "reaction": "🚀", "users": [ "victor", "JuliusSandmann", "MaziyarPanahi", "nvhf", "louisbrulenaudet" ], "count": 5 } ]
2024-06-17T08:57:26.000Z
2024-06-18T07:26:32.733Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65eee3cdc7a83c458f2c0eba/jlhGpJtInU0zCBU61fy2M.jpeg", "fullname": "Julius Sandmann", "name": "JuliusSandmann", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 6, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6459fa0f5b3111fbe83286e1/UhCa7JNbtTjC6dgOjZtH0.jpeg", "fullname": "Louis Brulé Naudet", "name": "louisbrulenaudet", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 174, "isFollowing": false } ]
/posts/louisbrulenaudet/907095261791565
4,056
4
194006265320510
[ { "type": "text", "value": "A great work based on ChemLLM from Open-source community!", "raw": "A great work based on ChemLLM from Open-source community!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Automatic Scientific Discovery guided by LLM!", "raw": "Automatic Scientific Discovery guided by LLM!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/zyzisastudyreallyhardguy/LLM4SD", "href": "https://github.com/zyzisastudyreallyhardguy/LLM4SD", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
A great work based on ChemLLM from Open-source community! Automatic Scientific Discovery guided by LLM! https://github.com/zyzisastudyreallyhardguy/LLM4SD
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64bce15bafd1e46c5504ad38/bQFX1iFbXEBXcQvUNL811.png", "fullname": "Di Zhang", "name": "qq8933", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 108, "isFollowing": false }
[]
[]
[ { "reaction": "👀", "users": [ "louisbrulenaudet" ], "count": 1 } ]
2024-06-17T08:55:49.000Z
2024-06-17T08:56:44.419Z
[]
/posts/qq8933/194006265320510
736
0
702375370510170
[ { "type": "text", "value": "📊 Lovely to share the unique reasoning capabilities 🧠 findings of Qwen2-7B 🇨🇳 in Target Sentiment Analysis (TSA) for original texts (🇷🇺) and their translated version in English (🇺🇸), in zero-shot-learning mode.", "raw": "📊 Lovely to share the unique reasoning capabilities 🧠 findings of Qwen2-7B 🇨🇳 in Target Sentiment Analysis (TSA) for original texts (🇷🇺) and their translated version in English (🇺🇸), in zero-shot-learning mode.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Since the last update on 1.5, I have to say:", "raw": "Since the last update on 1.5, I have to say:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "☑️ 1. Qwen2-7B is the first model in my list that reasons 🔥 better 🔥 in Russian rather than in English; it strongly surpasses other 7B LLMs and LLaMA3-70B by correctly distributing sentiment cases (F1(PN) metric).", "raw": "☑️ 1. Qwen2-7B is the first model in my list that reasons 🔥 better 🔥 in Russian rather than in English; it strongly surpasses other 7B LLMs and LLaMA3-70B by correctly distributing sentiment cases (F1(PN) metric).", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "☑️ 2. Surprisingly, but Qwen2-7B significantly underperformed to the \"earlier bro\" Qwen1.5-7B on texts in English. The key problem is that ~17% of answers has mixed entries of labels, so for such cases the automatic and accurate assessment is difficult. Therefore, I believe it is more about particular evaluation, rather something wrong with the model in TSA domain.", "raw": "☑️ 2. Surprisingly, but Qwen2-7B significantly underperformed to the \"earlier bro\" Qwen1.5-7B on texts in English. The key problem is that ~17% of answers has mixed entries of labels, so for such cases the automatic and accurate assessment is difficult. Therefore, I believe it is more about particular evaluation, rather something wrong with the model in TSA domain.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "What's next? I have to checkout ", "raw": "What's next? I have to checkout ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/Qwen/Qwen2-72B-Instruct", "href": null, "resource": { "type": "model", "id": "Qwen/Qwen2-72B-Instruct", "discussionNum": null }, "url": "https://huggingface.co/Qwen/Qwen2-72B-Instruct", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " then 🧪 If you know the best hosting for infering, please let me know 🙏", "raw": " then 🧪 If you know the best hosting for infering, please let me know 🙏", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Model: ", "raw": "Model: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/Qwen/Qwen1.5-7B-Chat", "href": null, "resource": { "type": "model", "id": "Qwen/Qwen1.5-7B-Chat", "discussionNum": null }, "url": "https://huggingface.co/Qwen/Qwen1.5-7B-Chat", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
📊 Lovely to share the unique reasoning capabilities 🧠 findings of Qwen2-7B 🇨🇳 in Target Sentiment Analysis (TSA) for original texts (🇷🇺) and their translated version in English (🇺🇸), in zero-shot-learning mode. Since the last update on 1.5, I have to say: ☑️ 1. Qwen2-7B is the first model in my list that reasons 🔥 better 🔥 in Russian rather than in English; it strongly surpasses other 7B LLMs and LLaMA3-70B by correctly distributing sentiment cases (F1(PN) metric). ☑️ 2. Surprisingly, but Qwen2-7B significantly underperformed to the "earlier bro" Qwen1.5-7B on texts in English. The key problem is that ~17% of answers has mixed entries of labels, so for such cases the automatic and accurate assessment is difficult. Therefore, I believe it is more about particular evaluation, rather something wrong with the model in TSA domain. What's next? I have to checkout https://huggingface.co/Qwen/Qwen2-72B-Instruct then 🧪 If you know the best hosting for infering, please let me know 🙏 Model: https://huggingface.co/Qwen/Qwen1.5-7B-Chat
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg", "fullname": "Nicolay Rusnachenko", "name": "nicolay-r", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 49, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/e_VBOz3jb7Jr6AkxrC1_C.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/xNtOWDuXhcDhUcL6EGcWX.png" } ]
[]
[]
2024-06-17T07:36:36.000Z
2024-06-17T07:37:05.591Z
[]
/posts/nicolay-r/702375370510170
686
0
746490498971097
[ { "type": "text", "value": "I had a backlog of LoRA model weights for SDXL that I decided to prioritize this weekend and publish. I know many are using SD3 right now, however if you have the time to try them, I hope you enjoy them.", "raw": "I had a backlog of LoRA model weights for SDXL that I decided to prioritize this weekend and publish. I know many are using SD3 right now, however if you have the time to try them, I hope you enjoy them.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "I intend to start writing more fully on the thought process behind my approach to curating and training style and subject finetuning, beginning this next week.", "raw": "I intend to start writing more fully on the thought process behind my approach to curating and training style and subject finetuning, beginning this next week.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Thank you for reading this post! You can find the models on my page and I'll drop a few previews here.", "raw": "Thank you for reading this post! You can find the models on my page and I'll drop a few previews here.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
I had a backlog of LoRA model weights for SDXL that I decided to prioritize this weekend and publish. I know many are using SD3 right now, however if you have the time to try them, I hope you enjoy them. I intend to start writing more fully on the thought process behind my approach to curating and training style and subject finetuning, beginning this next week. Thank you for reading this post! You can find the models on my page and I'll drop a few previews here.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png", "fullname": "araminta_k", "name": "alvdansen", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 496, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/HH1Tkb1iypD6tdzQ4Hex4.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/VQq46kKoXIXq4z4Anlg-t.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/zmh6iVKeofazeYzBCipQQ.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/AYb_cocrG0E9SzaZIzz-s.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/635dd6cd4fabde0df74aeae6/0DVxXtq3Ukar1-Q1jEOPc.jpeg" } ]
[]
[ { "reaction": "❤️", "users": [ "fffiloni", "alvdansen", "LaughterOnWater", "mmarrder", "thliang01", "dicksondickson", "MaziyarPanahi", "victor", "Brukolakos", "s3nh", "not-lain", "xumijiezi622", "Citaman", "LizzyAsf", "ijohn07", "louisbrulenaudet", "BennyKok", "yagmurx", "zhaoyafei", "multimodalart", "MQSI", "adamelliotfields", "dillfrescott", "SengTak", "milkowski", "KingNish", "comarproject", "ZekiJ", "E2GO", "Cordobian", "Viktor1233", "clem" ], "count": 32 }, { "reaction": "👍", "users": [ "Norod78", "Brukolakos", "clefourrier", "Dennyanswer", "s3nh", "not-lain", "zhaoyafei", "multimodalart", "dillfrescott", "Cordobian", "clem" ], "count": 11 } ]
2024-06-16T21:48:32.000Z
2024-06-19T13:37:00.717Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/CuGNmF1Et8KMQ0mCd1NEJ.jpeg", "fullname": "Lain", "name": "not-lain", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 941, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png", "fullname": "araminta_k", "name": "alvdansen", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 496, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/FSEOb6LpQ2TSgQbl67Kpw.jpeg", "fullname": "wangsai", "name": "CHINAwangsai", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/alvdansen/746490498971097
6,791
4
459721346578286
[ { "type": "text", "value": "Observability and Retrieval Augmented Generation in 10 lines of Code", "raw": "Observability and Retrieval Augmented Generation in 10 lines of Code", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Tutorial: ", "raw": "Tutorial: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://www.youtube.com/watch?v=VCQ0Cw-GF2U", "href": "https://www.youtube.com/watch?v=VCQ0Cw-GF2U", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This video covers:", "raw": "This video covers:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- Why we need observability?", "raw": "- Why we need observability?", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- Implementation of RAG using BeyondLLM", "raw": "- Implementation of RAG using BeyondLLM", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- Monitor and Track LLM Observability using Phoenix ", "raw": "- Monitor and Track LLM Observability using Phoenix ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Observability and Retrieval Augmented Generation in 10 lines of Code Tutorial: https://www.youtube.com/watch?v=VCQ0Cw-GF2U This video covers: - Why we need observability? - Implementation of RAG using BeyondLLM - Monitor and Track LLM Observability using Phoenix
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630f3058236215d0b7078806/TRTdqAZpT1bJg_RvGgxlg.jpeg", "fullname": "Tarun Jain", "name": "lucifertrj", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 23, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "donovan0902" ], "count": 1 } ]
2024-06-16T13:02:49.000Z
2024-06-16T13:02:49.101Z
[]
/posts/lucifertrj/459721346578286
1,681
0
279432787574723
[ { "type": "text", "value": "🖥️ Do you have 1TB+ VRAM?", "raw": "🖥️ Do you have 1TB+ VRAM?", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🎉 Well, good news for you!", "raw": "🎉 Well, good news for you!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "👨‍🔬 Good folks at ", "raw": "👨‍🔬 Good folks at ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@nvidia", "href": null, "resource": null, "url": null, "code": null, "user": "nvidia", "label": null, "lang": null }, { "type": "text", "value": " have released Nemotron 4 340B, the new open-source LLM king, rivalling GPT-4! 🚀", "raw": " have released Nemotron 4 340B, the new open-source LLM king, rivalling GPT-4! 🚀", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📊 340B parameter models in 3 flavours: base, reward, and instruct models", "raw": "📊 340B parameter models in 3 flavours: base, reward, and instruct models", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🎯 It's a dense model, not MoE", "raw": "🎯 It's a dense model, not MoE", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "👓 4k context window", "raw": "👓 4k context window", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📚 9T tokens training data, 2 phase training (8T pre-train + 1T continued pre-training)", "raw": "📚 9T tokens training data, 2 phase training (8T pre-train + 1T continued pre-training)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🌍 Trained on 50+ languages and 40+ coding languages (70% training data is English, 15% multi-lingual, 15% code)", "raw": "🌍 Trained on 50+ languages and 40+ coding languages (70% training data is English, 15% multi-lingual, 15% code)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📅 June 2023 training data cut-off", "raw": "📅 June 2023 training data cut-off", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "💻 To deploy needs 8x H200/ 16x H100/ 16x A100 80GB for BF16 Inference (about 8x H100 in int4)", "raw": "💻 To deploy needs 8x H200/ 16x H100/ 16x A100 80GB for BF16 Inference (about 8x H100 in int4)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🏆 Of course, it beats Llama 3 70B on MMLU (81.1), Arena Hard (54.2), and GSM8K (92.4) ", "raw": "🏆 Of course, it beats Llama 3 70B on MMLU (81.1), Arena Hard (54.2), and GSM8K (92.4) ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🤖 But beaten by Qwen 2 on HumanEval and MTBench which is a 72B parameter model", "raw": "🤖 But beaten by Qwen 2 on HumanEval and MTBench which is a 72B parameter model", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔧 Used SFT, DPO, and RPO. RLHF via Nemo Aligner framework to align the model", "raw": "🔧 Used SFT, DPO, and RPO. RLHF via Nemo Aligner framework to align the model", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📊 98% of alignment data was synthetically generated", "raw": "📊 98% of alignment data was synthetically generated", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📄 Nvidia open licence with commercial use allowed", "raw": "📄 Nvidia open licence with commercial use allowed", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "¯\\_(ツ)_/¯", "raw": "¯\\_(ツ)_/¯", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "😅 Glad to see more open models but this is one confusing fellow! ", "raw": "😅 Glad to see more open models but this is one confusing fellow! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🤨340B parameter model that is narrowly beating 70B models? Starts failing against 72B models? Sounds like a model for synthetic data generation! But then it has 4k context?", "raw": "🤨340B parameter model that is narrowly beating 70B models? Starts failing against 72B models? Sounds like a model for synthetic data generation! But then it has 4k context?", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔗 Models: ", "raw": "🔗 Models: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911", "href": null, "resource": { "type": "collection", "id": "nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911", "discussionNum": null }, "url": "https://huggingface.co/collections/nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📑 Paper: ", "raw": "📑 Paper: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://research.nvidia.com/publication/2024-06_nemotron-4-340b", "href": "https://research.nvidia.com/publication/2024-06_nemotron-4-340b", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
🖥️ Do you have 1TB+ VRAM? 🎉 Well, good news for you! 👨‍🔬 Good folks at @nvidia have released Nemotron 4 340B, the new open-source LLM king, rivalling GPT-4! 🚀 📊 340B parameter models in 3 flavours: base, reward, and instruct models 🎯 It's a dense model, not MoE 👓 4k context window 📚 9T tokens training data, 2 phase training (8T pre-train + 1T continued pre-training) 🌍 Trained on 50+ languages and 40+ coding languages (70% training data is English, 15% multi-lingual, 15% code) 📅 June 2023 training data cut-off 💻 To deploy needs 8x H200/ 16x H100/ 16x A100 80GB for BF16 Inference (about 8x H100 in int4) 🏆 Of course, it beats Llama 3 70B on MMLU (81.1), Arena Hard (54.2), and GSM8K (92.4) 🤖 But beaten by Qwen 2 on HumanEval and MTBench which is a 72B parameter model 🔧 Used SFT, DPO, and RPO. RLHF via Nemo Aligner framework to align the model 📊 98% of alignment data was synthetically generated 📄 Nvidia open licence with commercial use allowed ¯\_(ツ)_/¯ 😅 Glad to see more open models but this is one confusing fellow! 🤨340B parameter model that is narrowly beating 70B models? Starts failing against 72B models? Sounds like a model for synthetic data generation! But then it has 4k context? 🔗 Models: https://huggingface.co/collections/nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911 📑 Paper: https://research.nvidia.com/publication/2024-06_nemotron-4-340b
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png", "fullname": "Kuldeep Singh Sidhu", "name": "singhsidhukuldeep", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 219, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/nZKkW8jBNopLPLWadsX1K.png" } ]
[]
[ { "reaction": "🔥", "users": [ "Carlainsworth", "osanseviero" ], "count": 2 } ]
2024-06-16T05:29:04.000Z
2024-06-16T05:29:04.427Z
[]
/posts/singhsidhukuldeep/279432787574723
1,669
0
814965230274582
[ { "type": "resource", "value": null, "raw": "https://huggingface.co/nevmenandr/w2v-russian-tolstoy", "href": null, "resource": { "type": "model", "id": "nevmenandr/w2v-russian-tolstoy", "discussionNum": null }, "url": "https://huggingface.co/nevmenandr/w2v-russian-tolstoy", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "code_fence", "value": null, "raw": "```python\nimport gensim\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\n%matplotlib inline\n\nimport seaborn as sns\nsns.set_style(\"darkgrid\")\n\nfrom sklearn.decomposition import PCA\nfrom sklearn.manifold import TSNE\n\nmodelLNT2 = Word2Vec.load(\"cbow_300_10.model\")\n\n# skip some code... for full version see model's card\n\ntsnescatterplot(modelLNT2, 'жизнь_S', [i[0] for i in modelLNT2.wv.most_similar(negative=[\"жизнь_S\"])])\n```", "href": null, "resource": null, "url": null, "code": "import gensim\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\n%matplotlib inline\n\nimport seaborn as sns\nsns.set_style(\"darkgrid\")\n\nfrom sklearn.decomposition import PCA\nfrom sklearn.manifold import TSNE\n\nmodelLNT2 = Word2Vec.load(\"cbow_300_10.model\")\n\n# skip some code... for full version see model's card\n\ntsnescatterplot(modelLNT2, 'жизнь_S', [i[0] for i in modelLNT2.wv.most_similar(negative=[\"жизнь_S\"])])", "user": null, "label": null, "lang": "python" }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "life by Tolstoy (w2v):", "raw": "life by Tolstoy (w2v):", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
ERROR: type should be string, got "https://huggingface.co/nevmenandr/w2v-russian-tolstoy\n\n```python\nimport gensim\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\n%matplotlib inline\n\nimport seaborn as sns\nsns.set_style(\"darkgrid\")\n\nfrom sklearn.decomposition import PCA\nfrom sklearn.manifold import TSNE\n\nmodelLNT2 = Word2Vec.load(\"cbow_300_10.model\")\n\n# skip some code... for full version see model's card\n\ntsnescatterplot(modelLNT2, 'жизнь_S', [i[0] for i in modelLNT2.wv.most_similar(negative=[\"жизнь_S\"])])\n```\n\nlife by Tolstoy (w2v):\n\n"
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/664b25abfebdc298f724bdf0/pPb3xhDAOV_aLS642kPIW.png", "fullname": "Boris Orekhov", "name": "nevmenandr", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 5, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/664b25abfebdc298f724bdf0/HTMZl_iQa7SN1ykAz_1gr.png" } ]
[]
[]
2024-06-16T01:06:57.000Z
2024-06-16T01:06:57.721Z
[]
/posts/nevmenandr/814965230274582
1,311
0
778066171755094
[ { "type": "text", "value": "Just published \"CryptGPT: A Simple Approach to Privacy-Preserving Language Models Using the Vigenere Cipher\".", "raw": "Just published \"CryptGPT: A Simple Approach to Privacy-Preserving Language Models Using the Vigenere Cipher\".", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/blog/diwank/cryptgpt-part1", "href": "https://huggingface.co/blog/diwank/cryptgpt-part1", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "tl;dr - we pretrained a gpt-2 tokenizer and model from scratch on a dataset encrypted with Vigenere cipher and it performs as well as regular gpt-2. Except in order to use it, you need to know the encryption key.", "raw": "tl;dr - we pretrained a gpt-2 tokenizer and model from scratch on a dataset encrypted with Vigenere cipher and it performs as well as regular gpt-2. Except in order to use it, you need to know the encryption key.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "links:", "raw": "links:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/creatorrr/cryptgpt", "href": "https://github.com/creatorrr/cryptgpt", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/diwank/cryptgpt", "href": null, "resource": { "type": "model", "id": "diwank/cryptgpt", "discussionNum": null }, "url": "https://huggingface.co/diwank/cryptgpt", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/diwank/cryptgpt-large", "href": null, "resource": { "type": "model", "id": "diwank/cryptgpt-large", "discussionNum": null }, "url": "https://huggingface.co/diwank/cryptgpt-large", "code": null, "user": null, "label": null, "lang": null } ]
Just published "CryptGPT: A Simple Approach to Privacy-Preserving Language Models Using the Vigenere Cipher". https://huggingface.co/blog/diwank/cryptgpt-part1 tl;dr - we pretrained a gpt-2 tokenizer and model from scratch on a dataset encrypted with Vigenere cipher and it performs as well as regular gpt-2. Except in order to use it, you need to know the encryption key. links: https://github.com/creatorrr/cryptgpt https://huggingface.co/diwank/cryptgpt https://huggingface.co/diwank/cryptgpt-large
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6093a02dc4a92d63a91c5236/yUte6V0FU0BvVFAbON-9n.jpeg", "fullname": "Diwank Tomer", "name": "diwank", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 29, "isFollowing": false }
[]
[]
[ { "reaction": "👍", "users": [ "algorithm" ], "count": 1 }, { "reaction": "🤗", "users": [ "pduf" ], "count": 1 } ]
2024-06-15T23:06:38.000Z
2024-06-20T14:15:59.714Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6093a02dc4a92d63a91c5236/yUte6V0FU0BvVFAbON-9n.jpeg", "fullname": "Diwank Tomer", "name": "diwank", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 29, "isFollowing": false }, { "avatarUrl": "/avatars/744eddaa7dfc34a57df9ce32a78059a0.svg", "fullname": "Tyrone Pierce", "name": "piercyy", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 3, "isFollowing": false } ]
/posts/diwank/778066171755094
2,155
2
379860890167829
[ { "type": "text", "value": "I've tried out my new Space for copying Websites with Gemini 1.5 Flash and i gave it a image of Huggingchat. The results were interesting, but you can see it for yourself.", "raw": "I've tried out my new Space for copying Websites with Gemini 1.5 Flash and i gave it a image of Huggingchat. The results were interesting, but you can see it for yourself.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Space:", "raw": "Space:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/L-AI/Gemini-UI-Generator", "href": null, "resource": { "type": "space", "id": "L-AI/Gemini-UI-Generator", "discussionNum": null }, "url": "https://huggingface.co/spaces/L-AI/Gemini-UI-Generator", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Website-Demo: ", "raw": "Website-Demo: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://leunos.com/hf-chat-fake", "href": "https://leunos.com/hf-chat-fake", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Screenshot:", "raw": "Screenshot:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
I've tried out my new Space for copying Websites with Gemini 1.5 Flash and i gave it a image of Huggingchat. The results were interesting, but you can see it for yourself. Space: https://huggingface.co/spaces/L-AI/Gemini-UI-Generator Website-Demo: https://leunos.com/hf-chat-fake Screenshot:
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641a05a7f5e9c66105fec9b2/INWVc96PQFO0ZPciozg7w.jpeg", "fullname": "Artur Lauche", "name": "Artples", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 29, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/641a05a7f5e9c66105fec9b2/0cnjG-eFIuwzV4zx7nQc9.png" } ]
[]
[ { "reaction": "➕", "users": [ "victor" ], "count": 1 }, { "reaction": "👀", "users": [ "victor" ], "count": 1 }, { "reaction": "🔥", "users": [ "victor" ], "count": 1 } ]
2024-06-15T16:07:23.000Z
2024-07-06T16:51:28.391Z
[ { "avatarUrl": "/avatars/08bf9559d8046f18f608960dd08b6e8d.svg", "fullname": "Roger C", "name": "allknowingroger", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 54, "isFollowing": false } ]
/posts/Artples/379860890167829
2,740
1
502634149971890
[ { "type": "text", "value": "Hello!", "raw": "Hello!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "I was experimenting with multi-bot interactions for practical solutions, such as code synthesis and editing. This has, so far, led to many well-made templates and no working code, but I still feel a template this lovely is worthy of use. Enjoy! 🤗 ", "raw": "I was experimenting with multi-bot interactions for practical solutions, such as code synthesis and editing. This has, so far, led to many well-made templates and no working code, but I still feel a template this lovely is worthy of use. Enjoy! 🤗 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://colab.research.google.com/gist/SMeyersMrOvkill/2ed6cbc305bc5bd62fcf1f7aab15f7b9/voice_memos.ipynb", "href": "https://colab.research.google.com/gist/SMeyersMrOvkill/2ed6cbc305bc5bd62fcf1f7aab15f7b9/voice_memos.ipynb", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Hello! I was experimenting with multi-bot interactions for practical solutions, such as code synthesis and editing. This has, so far, led to many well-made templates and no working code, but I still feel a template this lovely is worthy of use. Enjoy! 🤗 https://colab.research.google.com/gist/SMeyersMrOvkill/2ed6cbc305bc5bd62fcf1f7aab15f7b9/voice_memos.ipynb
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/652ff5ee7aab9cfb619400bf/cIdrUic40uXoRbAylFiM8.png", "fullname": "Samuel L Meyers", "name": "MrOvkill", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 31, "isFollowing": false }
[]
[]
[]
2024-06-15T14:06:51.000Z
2024-06-15T14:06:51.279Z
[]
/posts/MrOvkill/502634149971890
931
0
358807807171232
[ { "type": "text", "value": "Together MoA is a really interesting approach based on open source models!", "raw": "Together MoA is a really interesting approach based on open source models!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "\"We introduce Mixture of Agents (MoA), an approach to harness the collective strengths of multiple LLMs to improve state-of-the-art quality. And we provide a reference implementation, Together MoA, which leverages several open-source LLM agents to achieve a score of 65.1% on AlpacaEval 2.0, surpassing prior leader GPT-4o (57.5%).\"", "raw": "\"We introduce Mixture of Agents (MoA), an approach to harness the collective strengths of multiple LLMs to improve state-of-the-art quality. And we provide a reference implementation, Together MoA, which leverages several open-source LLM agents to achieve a score of 65.1% on AlpacaEval 2.0, surpassing prior leader GPT-4o (57.5%).\"", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Read more here: ", "raw": "Read more here: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://www.together.ai/blog/together-moa", "href": "https://www.together.ai/blog/together-moa", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "PS: they provide some demo code: (", "raw": "PS: they provide some demo code: (", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/togethercomputer/MoA/blob/main/bot.py", "href": "https://github.com/togethercomputer/MoA/blob/main/bot.py", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ") - if someone release a Space for it it could go 🚀", "raw": ") - if someone release a Space for it it could go 🚀", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Together MoA is a really interesting approach based on open source models! "We introduce Mixture of Agents (MoA), an approach to harness the collective strengths of multiple LLMs to improve state-of-the-art quality. And we provide a reference implementation, Together MoA, which leverages several open-source LLM agents to achieve a score of 65.1% on AlpacaEval 2.0, surpassing prior leader GPT-4o (57.5%)." Read more here: https://www.together.ai/blog/together-moa PS: they provide some demo code: (https://github.com/togethercomputer/MoA/blob/main/bot.py) - if someone release a Space for it it could go 🚀
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2607, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/5f17f0a0925b9863e28ad517/-xZS1DKoHtfjG0r_hfcl8.png" } ]
[]
[ { "reaction": "🔥", "users": [ "KingNish", "GPT007", "SixOpen", "Choms", "SizorCloud", "nicolay-r", "osanseviero", "louisbrulenaudet" ], "count": 8 }, { "reaction": "❤️", "users": [ "Jose7juanFdz", "Carlainsworth" ], "count": 2 }, { "reaction": "😎", "users": [ "Jose7juanFdz" ], "count": 1 } ]
2024-06-15T12:28:11.000Z
2024-06-16T11:24:06.295Z
[ { "avatarUrl": "/avatars/084b2b4c764adb79422f4ec7f604ffd9.svg", "fullname": "E", "name": "SixOpen", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 8, "isFollowing": false } ]
/posts/victor/358807807171232
3,998
1
258338325590711
[ { "type": "text", "value": "📊 Just measured reasoning capabilities 🧠 of Qwen1.5-7B 🇨🇳 in Target Sentiment Analysis (TSA) both for original texts (🇷🇺) and translated in English (🇺🇸), in zero-shot-learning mode. Here is what I've noticed:", "raw": "📊 Just measured reasoning capabilities 🧠 of Qwen1.5-7B 🇨🇳 in Target Sentiment Analysis (TSA) both for original texts (🇷🇺) and translated in English (🇺🇸), in zero-shot-learning mode. Here is what I've noticed:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "☑️ 1. Huge gap 📈 with the smaller Qwen1.5 and Qwen2 (1.8B and 1.8B). Qwen1.5-7B strongly outperforms their \"smaller bros\" so that case when scale of the model matters.", "raw": "☑️ 1. Huge gap 📈 with the smaller Qwen1.5 and Qwen2 (1.8B and 1.8B). Qwen1.5-7B strongly outperforms their \"smaller bros\" so that case when scale of the model matters.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "☑️ 2. Qwen1.5-7B in english (🇺🇸) behaves similar but slightly underperforming 📉 to the most latest 7B alternatives ... and even including Phi-3-small (3.4B)", "raw": "☑️ 2. Qwen1.5-7B in english (🇺🇸) behaves similar but slightly underperforming 📉 to the most latest 7B alternatives ... and even including Phi-3-small (3.4B)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "☑️ 3. On texts in (🇷🇺) there is a certain underperforming 📉 gap between the most latest 7B alternatives: F1=34.1, other 7B starts with 40.23.", "raw": "☑️ 3. On texts in (🇷🇺) there is a certain underperforming 📉 gap between the most latest 7B alternatives: F1=34.1, other 7B starts with 40.23.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "In terms of responses, for non-english texts (🇷🇺) model answers strict and behaves similar to FlanT5. ", "raw": "In terms of responses, for non-english texts (🇷🇺) model answers strict and behaves similar to FlanT5. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Curious about improvements in Qwen2-7B 🔥", "raw": "Curious about improvements in Qwen2-7B 🔥", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Model: ", "raw": "Model: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/Qwen/Qwen1.5-7B-Chat", "href": null, "resource": { "type": "model", "id": "Qwen/Qwen1.5-7B-Chat", "discussionNum": null }, "url": "https://huggingface.co/Qwen/Qwen1.5-7B-Chat", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Benchmark: ", "raw": "Benchmark: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark", "href": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Dataset: ", "raw": "Dataset: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/dialogue-evaluation/RuSentNE-evaluation", "href": "https://github.com/dialogue-evaluation/RuSentNE-evaluation", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)", "raw": "Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Collection: ", "raw": "Collection: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101", "href": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
📊 Just measured reasoning capabilities 🧠 of Qwen1.5-7B 🇨🇳 in Target Sentiment Analysis (TSA) both for original texts (🇷🇺) and translated in English (🇺🇸), in zero-shot-learning mode. Here is what I've noticed: ☑️ 1. Huge gap 📈 with the smaller Qwen1.5 and Qwen2 (1.8B and 1.8B). Qwen1.5-7B strongly outperforms their "smaller bros" so that case when scale of the model matters. ☑️ 2. Qwen1.5-7B in english (🇺🇸) behaves similar but slightly underperforming 📉 to the most latest 7B alternatives ... and even including Phi-3-small (3.4B) ☑️ 3. On texts in (🇷🇺) there is a certain underperforming 📉 gap between the most latest 7B alternatives: F1=34.1, other 7B starts with 40.23. In terms of responses, for non-english texts (🇷🇺) model answers strict and behaves similar to FlanT5. Curious about improvements in Qwen2-7B 🔥 Model: https://huggingface.co/Qwen/Qwen1.5-7B-Chat Benchmark: https://github.com/nicolay-r/RuSentNE-LLM-Benchmark Dataset: https://github.com/dialogue-evaluation/RuSentNE-evaluation Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342) Collection: https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg", "fullname": "Nicolay Rusnachenko", "name": "nicolay-r", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 49, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/7n8fhrAzRv_e8fcUaOqff.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/Br57pmXy2Hsi96wKlVwl-.png" } ]
[]
[ { "reaction": "🔥", "users": [ "victor" ], "count": 1 } ]
2024-06-15T11:06:27.000Z
2024-06-15T15:18:06.539Z
[ { "avatarUrl": "/avatars/d7fdc6472f7221dd56af8f3267605133.svg", "fullname": "yaw", "name": "megoyaw3", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 6, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg", "fullname": "Nicolay Rusnachenko", "name": "nicolay-r", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 49, "isFollowing": false } ]
/posts/nicolay-r/258338325590711
871
2
519779997448966
[ { "type": "text", "value": "I've published several older versions of Vokan! Sometimes, they may sound more natural, but less like the target speaker.", "raw": "I've published several older versions of Vokan! Sometimes, they may sound more natural, but less like the target speaker.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Please check em out!", "raw": "Please check em out!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/Korakoe/Vokan-V0.5", "href": null, "resource": { "type": "space", "id": "Korakoe/Vokan-V0.5", "discussionNum": null }, "url": "https://huggingface.co/spaces/Korakoe/Vokan-V0.5", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/ShoukanLabs/Vokan", "href": null, "resource": { "type": "model", "id": "ShoukanLabs/Vokan", "discussionNum": null }, "url": "https://huggingface.co/ShoukanLabs/Vokan", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
I've published several older versions of Vokan! Sometimes, they may sound more natural, but less like the target speaker. Please check em out! https://huggingface.co/spaces/Korakoe/Vokan-V0.5 https://huggingface.co/ShoukanLabs/Vokan
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/616263112bae832775ff27bb/xhEDE94JRvG9r-FT5MTYE.jpeg", "fullname": "Buttercream", "name": "Korakoe", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 30, "isFollowing": false }
[]
[]
[ { "reaction": "🚀", "users": [ "victor", "YaTharThShaRma999", "not-lain", "Gatozu35", "Kaiden423" ], "count": 5 } ]
2024-06-15T07:12:06.000Z
2024-06-22T16:08:49.017Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2607, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/CuGNmF1Et8KMQ0mCd1NEJ.jpeg", "fullname": "Lain", "name": "not-lain", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 941, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/616263112bae832775ff27bb/xhEDE94JRvG9r-FT5MTYE.jpeg", "fullname": "Buttercream", "name": "Korakoe", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 30, "isFollowing": false } ]
/posts/Korakoe/519779997448966
2,886
4
156016237962695
[ { "type": "text", "value": "𝗧𝗵𝗲 𝗻𝗲𝘅𝘁 𝗯𝗶𝗴 𝘀𝗼𝗰𝗶𝗮𝗹 𝗻𝗲𝘁𝘄𝗼𝗿𝗸 𝗶𝘀 𝗻𝗼𝘁 🦋, 𝗶𝘁'𝘀 𝗛𝘂𝗯 𝗣𝗼𝘀𝘁𝘀! [INSERT STONKS MEME WITH LASER EYES]", "raw": "𝗧𝗵𝗲 𝗻𝗲𝘅𝘁 𝗯𝗶𝗴 𝘀𝗼𝗰𝗶𝗮𝗹 𝗻𝗲𝘁𝘄𝗼𝗿𝗸 𝗶𝘀 𝗻𝗼𝘁 🦋, 𝗶𝘁'𝘀 𝗛𝘂𝗯 𝗣𝗼𝘀𝘁𝘀! [INSERT STONKS MEME WITH LASER EYES]", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "See below: I got 105k impressions since regularly posting Hub Posts, coming close to my 275k on Twitter!", "raw": "See below: I got 105k impressions since regularly posting Hub Posts, coming close to my 275k on Twitter!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "⚙️ Computed with the great dataset ", "raw": "⚙️ Computed with the great dataset ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/maxiw/hf-posts", "href": null, "resource": { "type": "dataset", "id": "maxiw/hf-posts", "discussionNum": null }, "url": "https://huggingface.co/datasets/maxiw/hf-posts", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "⚙️ Thanks to Qwen2.5-Coder-32B for showing me how to access dict attributes in a SQL request!", "raw": "⚙️ Thanks to Qwen2.5-Coder-32B for showing me how to access dict attributes in a SQL request!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "cc ", "raw": "cc ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@merve", "href": null, "resource": null, "url": null, "code": null, "user": "merve", "label": null, "lang": null }, { "type": "text", "value": " who's far in front of me", "raw": " who's far in front of me", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
𝗧𝗵𝗲 𝗻𝗲𝘅𝘁 𝗯𝗶𝗴 𝘀𝗼𝗰𝗶𝗮𝗹 𝗻𝗲𝘁𝘄𝗼𝗿𝗸 𝗶𝘀 𝗻𝗼𝘁 🦋, 𝗶𝘁'𝘀 𝗛𝘂𝗯 𝗣𝗼𝘀𝘁𝘀! [INSERT STONKS MEME WITH LASER EYES] See below: I got 105k impressions since regularly posting Hub Posts, coming close to my 275k on Twitter! ⚙️ Computed with the great dataset https://huggingface.co/datasets/maxiw/hf-posts ⚙️ Thanks to Qwen2.5-Coder-32B for showing me how to access dict attributes in a SQL request! cc @merve who's far in front of me
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63d10d4e8eaa4831005e92b5/7p7-OmWM6PqqCs7ZStPGD.jpeg", "fullname": "Aymeric Roucher", "name": "m-ric", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 494, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/63d10d4e8eaa4831005e92b5/drNgF5BX7r1Rm-lTDZ2nb.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/63d10d4e8eaa4831005e92b5/h6q6fZF09SM_robYgG2ot.png" } ]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5589 } ]
[ { "reaction": "🔥", "users": [ "BrigitteTousi", "clem", "cfahlgren1", "Nymbo", "not-lain", "andrewrreed", "Overlaiapp", "FranckAbgrall", "celinah", "pierrci", "Fishfishfishfishfish", "veeraleto", "Niansuh", "davidberenstein1957", "jhparmar", "jcudit", "jsulz", "s3nh" ], "count": 18 }, { "reaction": "❤️", "users": [ "clem", "Nymbo", "not-lain", "maxiw", "celinah", "pierrci", "fffiloni", "Fishfishfishfishfish", "davidberenstein1957", "s3nh" ], "count": 10 }, { "reaction": "👀", "users": [ "clem", "cfahlgren1", "Nymbo", "John6666", "Fishfishfishfishfish", "davidberenstein1957" ], "count": 6 } ]
2024-11-14T17:11:28.000Z
2024-11-16T09:11:22.732Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1583857146757-5e67bdd61009063689407479.jpeg", "fullname": "Clem 🤗", "name": "clem", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 1763, "isFollowing": false }, { "avatarUrl": "/avatars/0bc16a7447cd71ac18828a678313bd83.svg", "fullname": "Mike Young", "name": "mikelabs", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 10, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/648a374f00f7a3374ee64b99/YPwSOrronoozwHbJchPn3.jpeg", "fullname": "Caleb Fahlgren", "name": "cfahlgren1", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 123, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2607, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635964636a61954080850e1d/0bfExuDTrHTtm8c-40cDM.png", "fullname": "William Lamkin", "name": "phanes", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 16, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png", "fullname": "Kuldeep Singh Sidhu", "name": "singhsidhukuldeep", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 219, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677141720071-634ff41ff32062e9eb7b06a3.jpeg", "fullname": "David Berenstein", "name": "davidberenstein1957", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 167, "isFollowing": false } ]
/posts/m-ric/156016237962695
3,661
9
743470956265691
[ { "type": "text", "value": "Microsoft released LLM2CLIP: a CLIP model with longer context window for complex text inputs 🤯", "raw": "Microsoft released LLM2CLIP: a CLIP model with longer context window for complex text inputs 🤯", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "All models with Apache 2.0 license here ", "raw": "All models with Apache 2.0 license here ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/microsoft/llm2clip-672323a266173cfa40b32d4c", "href": null, "resource": { "type": "collection", "id": "microsoft/llm2clip-672323a266173cfa40b32d4c", "discussionNum": null }, "url": "https://huggingface.co/collections/microsoft/llm2clip-672323a266173cfa40b32d4c", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "TLDR; they replaced CLIP's text encoder with various LLMs fine-tuned on captioning, better top-k accuracy on retrieval.", "raw": "TLDR; they replaced CLIP's text encoder with various LLMs fine-tuned on captioning, better top-k accuracy on retrieval.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This will enable better image-text retrieval, better zero-shot image classification, better vision language models 🔥", "raw": "This will enable better image-text retrieval, better zero-shot image classification, better vision language models 🔥", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Read the paper to learn more: ", "raw": "Read the paper to learn more: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2411.04997", "href": null, "resource": { "type": "paper", "id": "2411.04997", "discussionNum": null }, "url": "https://huggingface.co/papers/2411.04997", "code": null, "user": null, "label": "LLM2CLIP: Powerful Language Model Unlock Richer Visual Representation (2411.04997)", "lang": null } ]
Microsoft released LLM2CLIP: a CLIP model with longer context window for complex text inputs 🤯 All models with Apache 2.0 license here https://huggingface.co/collections/microsoft/llm2clip-672323a266173cfa40b32d4c TLDR; they replaced CLIP's text encoder with various LLMs fine-tuned on captioning, better top-k accuracy on retrieval. This will enable better image-text retrieval, better zero-shot image classification, better vision language models 🔥 Read the paper to learn more: https://huggingface.co/papers/2411.04997
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5589, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/6AHHSQtOkWBrvXKBLjm58.png" } ]
[]
[ { "reaction": "🚀", "users": [ "John6666", "Yif29", "Chroma111" ], "count": 3 }, { "reaction": "🤗", "users": [ "prithivMLmods", "Yif29", "Chroma111" ], "count": 3 }, { "reaction": "😎", "users": [ "maxiw", "Yif29" ], "count": 2 }, { "reaction": "🔥", "users": [ "Chroma111", "theospeak" ], "count": 2 }, { "reaction": "❤️", "users": [ "Chroma111" ], "count": 1 } ]
2024-11-14T15:59:33.000Z
2024-11-14T17:26:33.214Z
[]
/posts/merve/743470956265691
1,636
1
516685438262911
[ { "type": "text", "value": "🎙️ Listen to the audio \"Podcast\" of every single Hugging Face Daily Papers.", "raw": "🎙️ Listen to the audio \"Podcast\" of every single Hugging Face Daily Papers.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Now, \"AI Paper Reviewer\" project can automatically generates audio podcasts on any papers published on arXiv, and this is integrated into the GitHub Action pipeline. I sounds pretty similar to hashtag#NotebookLM in my opinion.", "raw": "Now, \"AI Paper Reviewer\" project can automatically generates audio podcasts on any papers published on arXiv, and this is integrated into the GitHub Action pipeline. I sounds pretty similar to hashtag#NotebookLM in my opinion.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🎙️ Try out yourself at ", "raw": "🎙️ Try out yourself at ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://deep-diver.github.io/ai-paper-reviewer/", "href": "https://deep-diver.github.io/ai-paper-reviewer/", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This audio podcast is powered by Google technologies: 1) Google DeepMind Gemini 1.5 Flash model to generate scripts of a podcast, then 2) Google Cloud Vertex AI's Text to Speech model to synthesize the voice turning the scripts into the natural sounding voices (with latest addition of \"Journey\" voice style)", "raw": "This audio podcast is powered by Google technologies: 1) Google DeepMind Gemini 1.5 Flash model to generate scripts of a podcast, then 2) Google Cloud Vertex AI's Text to Speech model to synthesize the voice turning the scripts into the natural sounding voices (with latest addition of \"Journey\" voice style)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "\"AI Paper Reviewer\" is also an open source project. Anyone can use it to build and own a personal blog on any papers of your interests. Hence, checkout the project repository below if you are interested in! ", "raw": "\"AI Paper Reviewer\" is also an open source project. Anyone can use it to build and own a personal blog on any papers of your interests. Hence, checkout the project repository below if you are interested in! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ": ", "raw": ": ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/deep-diver/paper-reviewer", "href": "https://github.com/deep-diver/paper-reviewer", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This project is going to support other models including open weights soon for both text-based content generation and voice synthesis for the podcast. The only reason I chose Gemini model is that it offers a \"free-tier\" which is enough to shape up this projects with non-realtime batch generations. I'm excited to see how others will use this tool to explore the world of AI research, hence feel free to share your feedback and suggestions!", "raw": "This project is going to support other models including open weights soon for both text-based content generation and voice synthesis for the podcast. The only reason I chose Gemini model is that it offers a \"free-tier\" which is enough to shape up this projects with non-realtime batch generations. I'm excited to see how others will use this tool to explore the world of AI research, hence feel free to share your feedback and suggestions!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
🎙️ Listen to the audio "Podcast" of every single Hugging Face Daily Papers. Now, "AI Paper Reviewer" project can automatically generates audio podcasts on any papers published on arXiv, and this is integrated into the GitHub Action pipeline. I sounds pretty similar to hashtag#NotebookLM in my opinion. 🎙️ Try out yourself at https://deep-diver.github.io/ai-paper-reviewer/ This audio podcast is powered by Google technologies: 1) Google DeepMind Gemini 1.5 Flash model to generate scripts of a podcast, then 2) Google Cloud Vertex AI's Text to Speech model to synthesize the voice turning the scripts into the natural sounding voices (with latest addition of "Journey" voice style) "AI Paper Reviewer" is also an open source project. Anyone can use it to build and own a personal blog on any papers of your interests. Hence, checkout the project repository below if you are interested in! : https://github.com/deep-diver/paper-reviewer This project is going to support other models including open weights soon for both text-based content generation and voice synthesis for the podcast. The only reason I chose Gemini model is that it offers a "free-tier" which is enough to shape up this projects with non-realtime batch generations. I'm excited to see how others will use this tool to explore the world of AI research, hence feel free to share your feedback and suggestions!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1659971187637-60d3b57ad7b174177faabd6e.jpeg", "fullname": "chansung park", "name": "chansung", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 2695, "isFollowing": false }
[ { "type": "video", "url": "https://cdn-uploads.huggingface.co/production/uploads/60d3b57ad7b174177faabd6e/cvDRwbtt-OT_wz6bfe3O4.mp4" } ]
[]
[ { "reaction": "👍", "users": [ "John6666", "The-Rat-King", "lab212", "ethanker" ], "count": 4 }, { "reaction": "🤗", "users": [ "chansung", "hitchhiker3010", "pierrci" ], "count": 3 }, { "reaction": "🔥", "users": [ "Csplk" ], "count": 1 } ]
2024-11-14T15:38:31.000Z
2024-11-15T14:45:54.033Z
[ { "avatarUrl": "/avatars/36795bf621d1666323075a5eb5329017.svg", "fullname": "lab", "name": "lab212", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 3, "isFollowing": false } ]
/posts/chansung/516685438262911
1,621
1
673209818651305
[ { "type": "mention", "value": null, "raw": "@maxiw", "href": null, "resource": null, "url": null, "code": null, "user": "maxiw", "label": null, "lang": null }, { "type": "text", "value": " just created a dataset of the posts on the Hub and gathered some stats: ", "raw": " just created a dataset of the posts on the Hub and gathered some stats: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/posts/maxiw/833289193510507", "href": "https://huggingface.co/posts/maxiw/833289193510507", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The :heart: is winning on the Hub! ", "raw": "The :heart: is winning on the Hub! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
@maxiw just created a dataset of the posts on the Hub and gathered some stats: https://huggingface.co/posts/maxiw/833289193510507 The :heart: is winning on the Hub!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg", "fullname": "Florent Daudens", "name": "fdaudens", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 384, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/647f36a8454af0237bd49574/2_Lx-9hPqJrT5kFM7uzI-.png" } ]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6313a26b2c7ffdd9f50187ed/MTBOHg2bMcuOMWFLCZ86L.png", "fullname": "Maxi", "name": "maxiw", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 48 } ]
[ { "reaction": "🤝", "users": [ "John6666" ], "count": 1 }, { "reaction": "❤️", "users": [ "Hooo5" ], "count": 1 } ]
2024-11-14T15:06:05.000Z
2024-11-14T15:06:05.671Z
[]
/posts/fdaudens/673209818651305
745
0
250853608450398
[ { "type": "text", "value": "⚠️ People selling AI chatbots for websites hate us.", "raw": "⚠️ People selling AI chatbots for websites hate us.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Add an open source chat assistant on your website in 5 minutes: ", "raw": "Add an open source chat assistant on your website in 5 minutes: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/phospho-app/ai-chat-bubble", "href": "https://github.com/phospho-app/ai-chat-bubble", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "How does it work ? ", "raw": "How does it work ? ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- You give an URL", "raw": "- You give an URL", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- The AI assistant crawls the website content and embed it", "raw": "- The AI assistant crawls the website content and embed it", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- Add it to your frontend in one line of code", "raw": "- Add it to your frontend in one line of code", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- People on your website can ask the assistant questions", "raw": "- People on your website can ask the assistant questions", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Powered by ", "raw": "Powered by ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/BAAI/bge-small-en-v1.5", "href": null, "resource": { "type": "model", "id": "BAAI/bge-small-en-v1.5", "discussionNum": null }, "url": "https://huggingface.co/BAAI/bge-small-en-v1.5", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " and Mistral AI", "raw": " and Mistral AI", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
⚠️ People selling AI chatbots for websites hate us. Add an open source chat assistant on your website in 5 minutes: https://github.com/phospho-app/ai-chat-bubble How does it work ? - You give an URL - The AI assistant crawls the website content and embed it - Add it to your frontend in one line of code - People on your website can ask the assistant questions Powered by https://huggingface.co/BAAI/bge-small-en-v1.5 and Mistral AI
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/636902eda256bbb73f7c149a/qt3J96eNDQET3jva7mVyu.jpeg", "fullname": "Pierre-Louis B", "name": "PLB", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 13, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/636902eda256bbb73f7c149a/DIyBHQyG57TPR8gf6NUMX.gif" } ]
[]
[ { "reaction": "🚀", "users": [ "flams", "oulianov", "John6666", "victor", "julien-c", "blacktok", "wsuff", "pierrci", "no-mad", "jgitsolutions", "Platinn", "Aurelien-Morgan" ], "count": 12 }, { "reaction": "❤️", "users": [ "stinkyyy", "Platinn" ], "count": 2 } ]
2024-11-14T15:04:30.000Z
2024-11-20T11:28:23.862Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5dd96eb166059660ed1ee413/NQtzmrDdbG0H8qkZvRyGk.jpeg", "fullname": "Julien Chaumond", "name": "julien-c", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 1580, "isFollowing": false }, { "avatarUrl": "/avatars/973db41f23cd375c588e7828c5efe5ce.svg", "fullname": "Pierric", "name": "pierrci", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 115, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/636902eda256bbb73f7c149a/qt3J96eNDQET3jva7mVyu.jpeg", "fullname": "Pierre-Louis B", "name": "PLB", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 13, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6687a5362608865be251284a/UZjI-znpQ2sh7jrCnAcYo.jpeg", "fullname": "Wandrille Flamant", "name": "flams", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 3, "isFollowing": false } ]
/posts/PLB/250853608450398
1,832
5
804363097933724
[ { "type": "text", "value": "ever wondered how you can make an API call to a visual-question-answering model without sending an image url 👀 ", "raw": "ever wondered how you can make an API call to a visual-question-answering model without sending an image url 👀 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "you can do that by converting your local image to base64 and sending it to the API.", "raw": "you can do that by converting your local image to base64 and sending it to the API.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "recently I made some changes to my library \"loadimg\" that allows you to make converting images to base64 a breeze.", "raw": "recently I made some changes to my library \"loadimg\" that allows you to make converting images to base64 a breeze.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔗 ", "raw": "🔗 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/not-lain/loadimg", "href": "https://github.com/not-lain/loadimg", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "API request example 🛠️: ", "raw": "API request example 🛠️: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "code_fence", "value": null, "raw": "```python\nfrom loadimg import load_img\nfrom huggingface_hub import InferenceClient\n\n# or load a local image\nmy_b64_img = load_img(imgPath_url_pillow_or_numpy ,output_type=\"base64\" ) \n\nclient = InferenceClient(api_key=\"hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\")\n\nmessages = [\n\t{\n\t\t\"role\": \"user\",\n\t\t\"content\": [\n\t\t\t{\n\t\t\t\t\"type\": \"text\",\n\t\t\t\t\"text\": \"Describe this image in one sentence.\"\n\t\t\t},\n\t\t\t{\n\t\t\t\t\"type\": \"image_url\",\n\t\t\t\t\"image_url\": {\n\t\t\t\t\t\"url\": my_b64_img # base64 allows using images without uploading them to the web\n\t\t\t\t}\n\t\t\t}\n\t\t]\n\t}\n]\n\nstream = client.chat.completions.create(\n model=\"meta-llama/Llama-3.2-11B-Vision-Instruct\", \n\tmessages=messages, \n\tmax_tokens=500,\n\tstream=True\n)\n\nfor chunk in stream:\n print(chunk.choices[0].delta.content, end=\"\")\n```", "href": null, "resource": null, "url": null, "code": "from loadimg import load_img\nfrom huggingface_hub import InferenceClient\n\n# or load a local image\nmy_b64_img = load_img(imgPath_url_pillow_or_numpy ,output_type=\"base64\" ) \n\nclient = InferenceClient(api_key=\"hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\")\n\nmessages = [\n\t{\n\t\t\"role\": \"user\",\n\t\t\"content\": [\n\t\t\t{\n\t\t\t\t\"type\": \"text\",\n\t\t\t\t\"text\": \"Describe this image in one sentence.\"\n\t\t\t},\n\t\t\t{\n\t\t\t\t\"type\": \"image_url\",\n\t\t\t\t\"image_url\": {\n\t\t\t\t\t\"url\": my_b64_img # base64 allows using images without uploading them to the web\n\t\t\t\t}\n\t\t\t}\n\t\t]\n\t}\n]\n\nstream = client.chat.completions.create(\n model=\"meta-llama/Llama-3.2-11B-Vision-Instruct\", \n\tmessages=messages, \n\tmax_tokens=500,\n\tstream=True\n)\n\nfor chunk in stream:\n print(chunk.choices[0].delta.content, end=\"\")", "user": null, "label": null, "lang": "python" }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
ever wondered how you can make an API call to a visual-question-answering model without sending an image url 👀 you can do that by converting your local image to base64 and sending it to the API. recently I made some changes to my library "loadimg" that allows you to make converting images to base64 a breeze. 🔗 https://github.com/not-lain/loadimg API request example 🛠️: ```python from loadimg import load_img from huggingface_hub import InferenceClient # or load a local image my_b64_img = load_img(imgPath_url_pillow_or_numpy ,output_type="base64" ) client = InferenceClient(api_key="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx") messages = [ { "role": "user", "content": [ { "type": "text", "text": "Describe this image in one sentence." }, { "type": "image_url", "image_url": { "url": my_b64_img # base64 allows using images without uploading them to the web } } ] } ] stream = client.chat.completions.create( model="meta-llama/Llama-3.2-11B-Vision-Instruct", messages=messages, max_tokens=500, stream=True ) for chunk in stream: print(chunk.choices[0].delta.content, end="") ```
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/CuGNmF1Et8KMQ0mCd1NEJ.jpeg", "fullname": "Lain", "name": "not-lain", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 941, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "Muhammadreza", "John6666", "Nymbo", "jcudit" ], "count": 4 } ]
2024-11-14T14:19:54.000Z
2024-11-14T14:22:14.446Z
[]
/posts/not-lain/804363097933724
1,305
0
728799715966492
[ { "type": "text", "value": "I'm curating an AI-powered web search software timeline at ", "raw": "I'm curating an AI-powered web search software timeline at ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/felladrin/awesome-ai-web-search", "href": "https://github.com/felladrin/awesome-ai-web-search", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The list covers three main categories:", "raw": "The list covers three main categories:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "1. Web Search with LLM summarization and follow-up capabilities", "raw": "1. Web Search with LLM summarization and follow-up capabilities", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "2. LLM chat interfaces with Web Search integration", "raw": "2. LLM chat interfaces with Web Search integration", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "3. Agent-driven research tools using LLM + Web Search", "raw": "3. Agent-driven research tools using LLM + Web Search", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The timeline helps track the evolution of this space and serves as a reference for anyone looking for alternatives. If you know of any tools that should be included, please contribute by:", "raw": "The timeline helps track the evolution of this space and serves as a reference for anyone looking for alternatives. If you know of any tools that should be included, please contribute by:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- opening a PR to edit the readme: ", "raw": "- opening a PR to edit the readme: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/felladrin/awesome-ai-web-search/edit/main/readme.md", "href": "https://github.com/felladrin/awesome-ai-web-search/edit/main/readme.md", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- creating an issue in the repository: ", "raw": "- creating an issue in the repository: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/felladrin/awesome-ai-web-search/issues/new/choose", "href": "https://github.com/felladrin/awesome-ai-web-search/issues/new/choose", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- or sharing in the comments below.", "raw": "- or sharing in the comments below.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
I'm curating an AI-powered web search software timeline at https://github.com/felladrin/awesome-ai-web-search The list covers three main categories: 1. Web Search with LLM summarization and follow-up capabilities 2. LLM chat interfaces with Web Search integration 3. Agent-driven research tools using LLM + Web Search The timeline helps track the evolution of this space and serves as a reference for anyone looking for alternatives. If you know of any tools that should be included, please contribute by: - opening a PR to edit the readme: https://github.com/felladrin/awesome-ai-web-search/edit/main/readme.md - creating an issue in the repository: https://github.com/felladrin/awesome-ai-web-search/issues/new/choose - or sharing in the comments below.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6454aff9273f649830234978/cvVV08YHJpJx9xWVZqgVW.jpeg", "fullname": "Victor Nogueira", "name": "Felladrin", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 88, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6454aff9273f649830234978/kNKjOF4GECeCPiz3yQeHr.png" } ]
[]
[ { "reaction": "👀", "users": [ "John6666", "victor" ], "count": 2 } ]
2024-11-14T12:56:16.000Z
2024-11-15T09:26:38.440Z
[ { "avatarUrl": "/avatars/0c7ad5e3394d0466db87dddc767cd8a6.svg", "fullname": "Shivam", "name": "shivvamm", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false } ]
/posts/Felladrin/728799715966492
1,271
1
635559840639131
[ { "type": "text", "value": "I’ve published a new dataset to simplify model merging 🤗", "raw": "I’ve published a new dataset to simplify model merging 🤗", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This dataset facilitates the search for compatible architectures for model merging with @arcee_ai’s mergekit, streamlining the automation of high-performance merge searches 📖", "raw": "This dataset facilitates the search for compatible architectures for model merging with @arcee_ai’s mergekit, streamlining the automation of high-performance merge searches 📖", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Dataset : ", "raw": "Dataset : ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/louisbrulenaudet/mergekit-configs", "href": null, "resource": { "type": "dataset", "id": "louisbrulenaudet/mergekit-configs", "discussionNum": null }, "url": "https://huggingface.co/datasets/louisbrulenaudet/mergekit-configs", "code": null, "user": null, "label": null, "lang": null } ]
I’ve published a new dataset to simplify model merging 🤗 This dataset facilitates the search for compatible architectures for model merging with @arcee_ai’s mergekit, streamlining the automation of high-performance merge searches 📖 Dataset : https://huggingface.co/datasets/louisbrulenaudet/mergekit-configs
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6459fa0f5b3111fbe83286e1/UhCa7JNbtTjC6dgOjZtH0.jpeg", "fullname": "Louis Brulé Naudet", "name": "louisbrulenaudet", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 174, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6459fa0f5b3111fbe83286e1/l2qOopUXel-zLr-GCeSv-.jpeg" } ]
[]
[ { "reaction": "🤗", "users": [ "prithivMLmods", "ethanker", "not-lain", "djuna", "John6666" ], "count": 5 } ]
2024-11-14T09:20:21.000Z
2024-11-18T09:32:11.916Z
[]
/posts/louisbrulenaudet/635559840639131
1,578
0
362918599308283
[ { "type": "text", "value": "✍️ the last few weeks has been very intense! ", "raw": "✍️ the last few weeks has been very intense! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔴 I have been out all weekends", "raw": "🔴 I have been out all weekends", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔴 Participated in 4 hackathons in a row (2 more to come!)", "raw": "🔴 Participated in 4 hackathons in a row (2 more to come!)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔴 Even threw a big hackathon myself! ", "raw": "🔴 Even threw a big hackathon myself! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Nonetheless, I am in school again 🏫, which meant... ✨homework✨", "raw": "Nonetheless, I am in school again 🏫, which meant... ✨homework✨", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "➡️ Head out to here ", "raw": "➡️ Head out to here ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://x.com/_fracapuano/status/1856415612202799243", "href": "https://x.com/_fracapuano/status/1856415612202799243", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " to read more about how I used ", "raw": " to read more about how I used ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@mistralai", "href": null, "resource": null, "url": null, "code": null, "user": "mistralai", "label": null, "lang": null }, { "type": "text", "value": " models to help me with my assignments (not how you think I did hihi 😏)", "raw": " models to help me with my assignments (not how you think I did hihi 😏)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "➡️ Check outhttps://huggingface.co/spaces/fracapuano/texstral if you want to use the tool yourself! ", "raw": "➡️ Check outhttps://huggingface.co/spaces/fracapuano/texstral if you want to use the tool yourself! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
✍️ the last few weeks has been very intense! 🔴 I have been out all weekends 🔴 Participated in 4 hackathons in a row (2 more to come!) 🔴 Even threw a big hackathon myself! Nonetheless, I am in school again 🏫, which meant... ✨homework✨ ➡️ Head out to here https://x.com/_fracapuano/status/1856415612202799243 to read more about how I used @mistralai models to help me with my assignments (not how you think I did hihi 😏) ➡️ Check outhttps://huggingface.co/spaces/fracapuano/texstral if you want to use the tool yourself!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63d67eac6f49aa8230601996/djvtWdy718whUgh7tu1Ko.jpeg", "fullname": "Francesco Capuano", "name": "fracapuano", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 4, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/63d67eac6f49aa8230601996/Sue-HV0pDt903ncVucSkd.jpeg" } ]
[]
[ { "reaction": "👀", "users": [ "John6666", "clem" ], "count": 2 }, { "reaction": "❤️", "users": [ "clem" ], "count": 1 } ]
2024-11-14T08:33:14.000Z
2024-11-14T08:44:24.197Z
[]
/posts/fracapuano/362918599308283
535
0
550129088053025
[ { "type": "text", "value": "My Hypothesis:", "raw": "My Hypothesis:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Concepts like entropy, energy, and the second law of thermodynamics are not intrinsic to physical matter but are emergent properties of any sufficiently complex system where probabilistic decision-making, optimization, and information flow occur. These principles arise naturally in artificial environments that are structured with rules governing uncertainty, even without explicit definitions of physical thermodynamic laws.", "raw": "Concepts like entropy, energy, and the second law of thermodynamics are not intrinsic to physical matter but are emergent properties of any sufficiently complex system where probabilistic decision-making, optimization, and information flow occur. These principles arise naturally in artificial environments that are structured with rules governing uncertainty, even without explicit definitions of physical thermodynamic laws.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Proven Via:", "raw": "Proven Via:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The Second Law of Thermodynamics", "raw": "The Second Law of Thermodynamics", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Geometric Langlands Program", "raw": "Geometric Langlands Program", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Lagrangean Mechanics", "raw": "Lagrangean Mechanics", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "TL;DR: When I create a simulated environment, I do not need to code entropy and energy into the simulated environment. I can utilize Entropy and the Second Law of Thermodynamics and I can use Conservation of Energy, but I do not need to explicitly code these into the environment. That is peculiar. ", "raw": "TL;DR: When I create a simulated environment, I do not need to code entropy and energy into the simulated environment. I can utilize Entropy and the Second Law of Thermodynamics and I can use Conservation of Energy, but I do not need to explicitly code these into the environment. That is peculiar. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "I made a video with a clickbait title but a bunch of code that breaks this observation down further. Would love for someone to prove my simple observation false: ", "raw": "I made a video with a clickbait title but a bunch of code that breaks this observation down further. Would love for someone to prove my simple observation false: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://youtu.be/8n7SXLj7P1o", "href": "https://youtu.be/8n7SXLj7P1o", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
My Hypothesis: Concepts like entropy, energy, and the second law of thermodynamics are not intrinsic to physical matter but are emergent properties of any sufficiently complex system where probabilistic decision-making, optimization, and information flow occur. These principles arise naturally in artificial environments that are structured with rules governing uncertainty, even without explicit definitions of physical thermodynamic laws. Proven Via: The Second Law of Thermodynamics Geometric Langlands Program Lagrangean Mechanics TL;DR: When I create a simulated environment, I do not need to code entropy and energy into the simulated environment. I can utilize Entropy and the Second Law of Thermodynamics and I can use Conservation of Energy, but I do not need to explicitly code these into the environment. That is peculiar. I made a video with a clickbait title but a bunch of code that breaks this observation down further. Would love for someone to prove my simple observation false: https://youtu.be/8n7SXLj7P1o
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/cA64Ix1vh75C7HoClUBhx.png", "fullname": "Richard A Aragon", "name": "TuringsSolutions", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 146, "isFollowing": false }
[]
[]
[ { "reaction": "🚀", "users": [ "p3nGu1nZz" ], "count": 1 }, { "reaction": "🧠", "users": [ "John6666" ], "count": 1 } ]
2024-11-14T02:25:34.000Z
2024-11-14T09:20:43.872Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/cA64Ix1vh75C7HoClUBhx.png", "fullname": "Richard A Aragon", "name": "TuringsSolutions", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 146, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65f2c47c8000c6a096f8f189/a1zEyog6VLHnPtqXZ0AY2.png", "fullname": "p3nGu1nZz", "name": "p3nGu1nZz", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 6, "isFollowing": false } ]
/posts/TuringsSolutions/550129088053025
1,345
4
546664231772692
[ { "type": "text", "value": "🚀 llava-calm2-siglip", "raw": "🚀 llava-calm2-siglip", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "CyberAgent Inc. has announced the public release of \"llava-calm2-siglip,\" a 7.5 billion parameter Vision Language Model (VLM) for Japanese, available for commercial use. This model, trained primarily on a high-quality Japanese dataset, is accessible on Hugging Face Hub under an Apache-2.0 license. The advancement aims to improve Japanese language-specific VLMs, which are fewer compared to English-centric models.", "raw": "CyberAgent Inc. has announced the public release of \"llava-calm2-siglip,\" a 7.5 billion parameter Vision Language Model (VLM) for Japanese, available for commercial use. This model, trained primarily on a high-quality Japanese dataset, is accessible on Hugging Face Hub under an Apache-2.0 license. The advancement aims to improve Japanese language-specific VLMs, which are fewer compared to English-centric models.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Model URL:", "raw": "Model URL:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/cyberagent/llava-calm2-siglip", "href": null, "resource": { "type": "model", "id": "cyberagent/llava-calm2-siglip", "discussionNum": null }, "url": "https://huggingface.co/cyberagent/llava-calm2-siglip", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Demo URL:", "raw": "Demo URL:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/cyberagent/llava-calm2-preview", "href": null, "resource": { "type": "space", "id": "cyberagent/llava-calm2-preview", "discussionNum": null }, "url": "https://huggingface.co/spaces/cyberagent/llava-calm2-preview", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Detailed press release (in Japanese): ", "raw": "Detailed press release (in Japanese): ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://www.cyberagent.co.jp/news/detail/id=30344", "href": "https://www.cyberagent.co.jp/news/detail/id=30344", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
🚀 llava-calm2-siglip CyberAgent Inc. has announced the public release of "llava-calm2-siglip," a 7.5 billion parameter Vision Language Model (VLM) for Japanese, available for commercial use. This model, trained primarily on a high-quality Japanese dataset, is accessible on Hugging Face Hub under an Apache-2.0 license. The advancement aims to improve Japanese language-specific VLMs, which are fewer compared to English-centric models. Model URL: https://huggingface.co/cyberagent/llava-calm2-siglip Demo URL: https://huggingface.co/spaces/cyberagent/llava-calm2-preview Detailed press release (in Japanese): https://www.cyberagent.co.jp/news/detail/id=30344
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61a32e422172c41f121589d2/8jExNd-9fenpqw_Z1rvL6.jpeg", "fullname": "Kaito Sugimoto", "name": "kaisugi", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 12, "isFollowing": false }
[]
[]
[ { "reaction": "🚀", "users": [ "victor", "osanseviero" ], "count": 2 } ]
2024-06-15T05:49:23.000Z
2024-06-15T06:49:48.023Z
[]
/posts/kaisugi/546664231772692
869
0
502102160707781
[ { "type": "text", "value": "Chatting with llava is tricky", "raw": "Chatting with llava is tricky", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/nroggendorff/llava", "href": null, "resource": { "type": "space", "id": "nroggendorff/llava", "discussionNum": null }, "url": "https://huggingface.co/spaces/nroggendorff/llava", "code": null, "user": null, "label": null, "lang": null } ]
Chatting with llava is tricky https://huggingface.co/spaces/nroggendorff/llava
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/659f000b83abded48e190901/BnXL_XYbVX6PHngfQLECW.png", "fullname": "Noa Roggendorff", "name": "nroggendorff", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 141, "isFollowing": false }
[]
[]
[ { "reaction": "👀", "users": [ "victor" ], "count": 1 } ]
2024-06-14T21:05:01.000Z
2024-06-14T21:05:01.978Z
[]
/posts/nroggendorff/502102160707781
1,147
0
886963574754876
[ { "type": "text", "value": "🔍 Remember Tensorboard graph visualizer?", "raw": "🔍 Remember Tensorboard graph visualizer?", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🚀 ", "raw": "🚀 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@Google", "href": null, "resource": null, "url": null, "code": null, "user": "Google", "label": null, "lang": null }, { "type": "text", "value": " just released Model Explorer, a Tensorboard graph visualizer on steroids 💪.", "raw": " just released Model Explorer, a Tensorboard graph visualizer on steroids 💪.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🛠️ Model Explorer is a graph visualization tool designed to improve understanding, debugging, and optimizing machine learning (ML) models, especially large ones.", "raw": "🛠️ Model Explorer is a graph visualization tool designed to improve understanding, debugging, and optimizing machine learning (ML) models, especially large ones.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🎯 It addresses challenges in traditional graph visualization tools by implementing a hierarchical layout and GPU-accelerated graph rendering, which enhances performance and usability.", "raw": "🎯 It addresses challenges in traditional graph visualization tools by implementing a hierarchical layout and GPU-accelerated graph rendering, which enhances performance and usability.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🌐 The tool supports visualization of large-scale ML models by displaying hierarchical information, which simplifies understanding complex model architectures.", "raw": "🌐 The tool supports visualization of large-scale ML models by displaying hierarchical information, which simplifies understanding complex model architectures.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔑 Key features include layer-by-layer exploration 🔍, side-by-side graph comparison for debugging conversion errors 🐛, and per-node data overlays for identifying performance issues 📈.", "raw": "🔑 Key features include layer-by-layer exploration 🔍, side-by-side graph comparison for debugging conversion errors 🐛, and per-node data overlays for identifying performance issues 📈.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "👨‍💻 Originally developed for Google's internal use, Model Explorer is now available publicly as part of the Google AI Edge family of products and even runs directly in colab!", "raw": "👨‍💻 Originally developed for Google's internal use, Model Explorer is now available publicly as part of the Google AI Edge family of products and even runs directly in colab!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔗 Colab: ", "raw": "🔗 Colab: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/google-ai-edge/model-explorer/blob/main/example_colabs/quick_start.ipynb", "href": "https://github.com/google-ai-edge/model-explorer/blob/main/example_colabs/quick_start.ipynb", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📰 Blog: ", "raw": "📰 Blog: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://research.google/blog/model-explorer/", "href": "https://research.google/blog/model-explorer/", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
🔍 Remember Tensorboard graph visualizer? 🚀 @Google just released Model Explorer, a Tensorboard graph visualizer on steroids 💪. 🛠️ Model Explorer is a graph visualization tool designed to improve understanding, debugging, and optimizing machine learning (ML) models, especially large ones. 🎯 It addresses challenges in traditional graph visualization tools by implementing a hierarchical layout and GPU-accelerated graph rendering, which enhances performance and usability. 🌐 The tool supports visualization of large-scale ML models by displaying hierarchical information, which simplifies understanding complex model architectures. 🔑 Key features include layer-by-layer exploration 🔍, side-by-side graph comparison for debugging conversion errors 🐛, and per-node data overlays for identifying performance issues 📈. 👨‍💻 Originally developed for Google's internal use, Model Explorer is now available publicly as part of the Google AI Edge family of products and even runs directly in colab! 🔗 Colab: https://github.com/google-ai-edge/model-explorer/blob/main/example_colabs/quick_start.ipynb 📰 Blog: https://research.google/blog/model-explorer/
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png", "fullname": "Kuldeep Singh Sidhu", "name": "singhsidhukuldeep", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 219, "isFollowing": false }
[ { "type": "video", "url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/yIEFwrPxuBLJdaqumGF5f.mp4" } ]
[]
[ { "reaction": "👍", "users": [ "victor" ], "count": 1 } ]
2024-06-14T21:00:34.000Z
2024-06-15T12:37:26.597Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2607, "isFollowing": false } ]
/posts/singhsidhukuldeep/886963574754876
974
1
901426166160716
[ { "type": "text", "value": "Wow, impressive 340B model by nvidia with a nice permissive license! 🚀 The technical report is full of insights and seems to use a different learning rate schedule than cosine, probably a variant of WSD. Hope to get more info on that! 👀", "raw": "Wow, impressive 340B model by nvidia with a nice permissive license! 🚀 The technical report is full of insights and seems to use a different learning rate schedule than cosine, probably a variant of WSD. Hope to get more info on that! 👀", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911", "href": null, "resource": { "type": "collection", "id": "nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911", "discussionNum": null }, "url": "https://huggingface.co/collections/nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911", "code": null, "user": null, "label": null, "lang": null } ]
Wow, impressive 340B model by nvidia with a nice permissive license! 🚀 The technical report is full of insights and seems to use a different learning rate schedule than cosine, probably a variant of WSD. Hope to get more info on that! 👀 https://huggingface.co/collections/nvidia/nemotron-4-340b-666b7ebaf1b3867caf2f1911
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/651e96991b97c9f33d26bde6/-Bqs6qrmz0yCfwtB2e-6q.jpeg", "fullname": "Elie Bakouch", "name": "eliebak", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 53, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/651e96991b97c9f33d26bde6/EX_C_dnpQGFJzhEhX07SF.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/651e96991b97c9f33d26bde6/-RHYI8wd5O1XkIJgEnDQ3.png" } ]
[]
[ { "reaction": "🤗", "users": [ "paulglx" ], "count": 1 } ]
2024-06-14T18:51:23.000Z
2024-06-14T18:51:23.515Z
[]
/posts/eliebak/901426166160716
1,038
0
341059555590197
[ { "type": "text", "value": "Me: I want on device AI: fast, without latency, with real privacy, convenient for use and development. ", "raw": "Me: I want on device AI: fast, without latency, with real privacy, convenient for use and development. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Microsoft: The best I can do is Copilot+. You need a special Qualcomm chip and Windows 11 24H2. Today I can give you only Recall, taking screenshots and running a visual model to write context about what you are doing in the unencrypted Semantic Index database for embeddings. I'm giving you SLMs Phi Silica, accessible only via API and SDK. In the autumn I can give you the developer tools for C#/C++ and you can use them.", "raw": "Microsoft: The best I can do is Copilot+. You need a special Qualcomm chip and Windows 11 24H2. Today I can give you only Recall, taking screenshots and running a visual model to write context about what you are doing in the unencrypted Semantic Index database for embeddings. I'm giving you SLMs Phi Silica, accessible only via API and SDK. In the autumn I can give you the developer tools for C#/C++ and you can use them.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Apple: The best I can do is Apple Intelligence. You need a special Apple chip and macOS 15. Today I can give you only marketing. In the autumn I can give you on-device 3B quantized to 3.5bit mysterious SLMs and diffusion models with LoRA adapters. We will have an encrypted Semantic Index database for embeddings and agentic flows with function calling. We will call all of them with different names. In the autumn I will give you the developer tools in Swift and you can use them.", "raw": "Apple: The best I can do is Apple Intelligence. You need a special Apple chip and macOS 15. Today I can give you only marketing. In the autumn I can give you on-device 3B quantized to 3.5bit mysterious SLMs and diffusion models with LoRA adapters. We will have an encrypted Semantic Index database for embeddings and agentic flows with function calling. We will call all of them with different names. In the autumn I will give you the developer tools in Swift and you can use them.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Open Source: The best I can do is llama.cpp. You can run it on any chip and OS. Today you can run AI inferencing on device and add other open source components for your solution. I can give you local AI models SLMs/LLMs - from wqen2-0.5B to Llama3-70B. You can have an encrypted local embeddings database with PostgreSQL/pgvector or SQLite-Vec. I can give you a wide choice of integrations and open-source components for your solution- from UIs to agentic workflows with function calling. Today I can give you the developer tools in Python/C/C++/Rust/Go/Node.js/JS/C#/Scala/Java and you can use them.", "raw": "Open Source: The best I can do is llama.cpp. You can run it on any chip and OS. Today you can run AI inferencing on device and add other open source components for your solution. I can give you local AI models SLMs/LLMs - from wqen2-0.5B to Llama3-70B. You can have an encrypted local embeddings database with PostgreSQL/pgvector or SQLite-Vec. I can give you a wide choice of integrations and open-source components for your solution- from UIs to agentic workflows with function calling. Today I can give you the developer tools in Python/C/C++/Rust/Go/Node.js/JS/C#/Scala/Java and you can use them.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it.", "raw": "Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Me: I want on device AI: fast, without latency, with real privacy, convenient for use and development. Microsoft: The best I can do is Copilot+. You need a special Qualcomm chip and Windows 11 24H2. Today I can give you only Recall, taking screenshots and running a visual model to write context about what you are doing in the unencrypted Semantic Index database for embeddings. I'm giving you SLMs Phi Silica, accessible only via API and SDK. In the autumn I can give you the developer tools for C#/C++ and you can use them. Apple: The best I can do is Apple Intelligence. You need a special Apple chip and macOS 15. Today I can give you only marketing. In the autumn I can give you on-device 3B quantized to 3.5bit mysterious SLMs and diffusion models with LoRA adapters. We will have an encrypted Semantic Index database for embeddings and agentic flows with function calling. We will call all of them with different names. In the autumn I will give you the developer tools in Swift and you can use them. Open Source: The best I can do is llama.cpp. You can run it on any chip and OS. Today you can run AI inferencing on device and add other open source components for your solution. I can give you local AI models SLMs/LLMs - from wqen2-0.5B to Llama3-70B. You can have an encrypted local embeddings database with PostgreSQL/pgvector or SQLite-Vec. I can give you a wide choice of integrations and open-source components for your solution- from UIs to agentic workflows with function calling. Today I can give you the developer tools in Python/C/C++/Rust/Go/Node.js/JS/C#/Scala/Java and you can use them. Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63f731c7d36951307fcca6bf/DMd5-Pt7YHC0agbAQ1xUc.png", "fullname": "Mitko Vasilev", "name": "mitkox", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 119, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/63f731c7d36951307fcca6bf/uWGSM6SgokFnqoRD4frLr.png" } ]
[]
[ { "reaction": "🔥", "users": [ "Ramikan-BR", "nrmtvv", "DeathGodlike", "adamelliotfields", "SizorCloud", "lout33", "ToKrCZ", "noh-au-00", "TechWTy", "ArslanMehmood" ], "count": 10 }, { "reaction": "❤️", "users": [ "Ramikan-BR", "yukiarimo", "nrmtvv", "DeathGodlike", "lout33", "nicoism" ], "count": 6 }, { "reaction": "👍", "users": [ "dashfunnydashdash", "GPT007", "Metin", "Zeldazackman" ], "count": 4 }, { "reaction": "👀", "users": [ "Ramikan-BR" ], "count": 1 } ]
2024-06-14T15:32:31.000Z
2024-06-16T12:55:25.497Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630cf5d14ca0a22768bbe10c/R6qfkfeKCNdiSl5clsorr.png", "fullname": "Aaron Day", "name": "aaronday3", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 20, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1676245424479-noauth.jpeg", "fullname": "Yuki Arimo", "name": "yukiarimo", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 24, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63f731c7d36951307fcca6bf/DMd5-Pt7YHC0agbAQ1xUc.png", "fullname": "Mitko Vasilev", "name": "mitkox", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 119, "isFollowing": false }, { "avatarUrl": "/avatars/e4d319ec0d00a5568405bf3b5dda5c5b.svg", "fullname": "Nick Emb", "name": "nicoism", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false } ]
/posts/mitkox/341059555590197
2,354
4
305695708413284
[ { "type": "mention", "value": null, "raw": "@CHANEFO", "href": null, "resource": null, "url": null, "code": null, "user": "CHANEFO", "label": null, "lang": null }, { "type": "text", "value": " suite à votre post.", "raw": " suite à votre post.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Je peux essayer peut-être de vous guider ? ", "raw": "Je peux essayer peut-être de vous guider ? ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "« Si je souhaite paramétrer un assistant orienté vers un sujet spécifique concernant l'application du droit du travail dans mon entreprise, comment procéder ?", "raw": "« Si je souhaite paramétrer un assistant orienté vers un sujet spécifique concernant l'application du droit du travail dans mon entreprise, comment procéder ?", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Le but de faire référence à un ensemble de document en lien avec des accords collectif qui sont dans des document type PDF ou WORD. Quel limite sur la taille des documents et ou téléchargé les fichier pour y faire référence ? »", "raw": "Le but de faire référence à un ensemble de document en lien avec des accords collectif qui sont dans des document type PDF ou WORD. Quel limite sur la taille des documents et ou téléchargé les fichier pour y faire référence ? »", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
@CHANEFO suite à votre post. Je peux essayer peut-être de vous guider ? « Si je souhaite paramétrer un assistant orienté vers un sujet spécifique concernant l'application du droit du travail dans mon entreprise, comment procéder ? Le but de faire référence à un ensemble de document en lien avec des accords collectif qui sont dans des document type PDF ou WORD. Quel limite sur la taille des documents et ou téléchargé les fichier pour y faire référence ? »
{ "avatarUrl": "/avatars/de82986483cb104838058f1ab8842693.svg", "fullname": "Jerome LOT", "name": "JeromeMore", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }
[]
[ { "avatarUrl": "/avatars/fbebcdf993f057c144547e81c185b2d0.svg", "fullname": "Patrick CHANE-FO", "name": "CHANEFO", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null } ]
[]
2024-06-14T15:26:10.000Z
2024-06-14T15:38:46.659Z
[ { "avatarUrl": "/avatars/de82986483cb104838058f1ab8842693.svg", "fullname": "Jerome LOT", "name": "JeromeMore", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/JeromeMore/305695708413284
631
1
438676498093439
[ { "type": "text", "value": "Wow, this is amazing! 🤯", "raw": "Wow, this is amazing! 🤯", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Samba is a powerful hybrid model with an unlimited context length, combining Mamba, MLP, Sliding Window Attention, and MLP stacking. Samba largest version, Samba-3.8B, trained on 3.2 trillion tokens, excels in benchmarks like MMLU, GSM8K, and HumanEval, and shines in long-context tasks with minimal tuning.", "raw": "Samba is a powerful hybrid model with an unlimited context length, combining Mamba, MLP, Sliding Window Attention, and MLP stacking. Samba largest version, Samba-3.8B, trained on 3.2 trillion tokens, excels in benchmarks like MMLU, GSM8K, and HumanEval, and shines in long-context tasks with minimal tuning.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "---", "raw": "---", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Official implementation of \"Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling\"", "raw": "Official implementation of \"Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling\"", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Github: ", "raw": "Github: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/microsoft/Samba", "href": "https://github.com/microsoft/Samba", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Wow, this is amazing! 🤯 Samba is a powerful hybrid model with an unlimited context length, combining Mamba, MLP, Sliding Window Attention, and MLP stacking. Samba largest version, Samba-3.8B, trained on 3.2 trillion tokens, excels in benchmarks like MMLU, GSM8K, and HumanEval, and shines in long-context tasks with minimal tuning. --- Official implementation of "Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling" Github: https://github.com/microsoft/Samba
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/600ae38cc92b79f54efd4556/cSqRIslYl5L3I4WK3a31f.png", "fullname": "Hieu Lam", "name": "lamhieu", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 74, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/BEO3koSl1kKwFCBbsTHQH.png" } ]
[]
[ { "reaction": "🔥", "users": [ "Srulikbdd", "anakin87", "seyf1elislam", "ZeroWw", "dillfrescott", "satyamt", "Felladrin", "den0620", "victor", "GPT007", "mihaylovnikitos", "NHLOCAL", "AtAndDev" ], "count": 13 }, { "reaction": "🚀", "users": [ "ToKrCZ", "Felladrin", "victor", "AtAndDev" ], "count": 4 }, { "reaction": "❤️", "users": [ "dillfrescott", "rmdhirr", "victor", "AtAndDev" ], "count": 4 } ]
2024-06-14T05:06:17.000Z
2024-06-14T06:38:55.347Z
[]
/posts/lamhieu/438676498093439
2,893
0
357243974851378
[ { "type": "text", "value": "Tools Ready!", "raw": "Tools Ready!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Thanks to ChemCrow's great work, ChemLLM supports proficiency toolkits Now, Include,", "raw": "Thanks to ChemCrow's great work, ChemLLM supports proficiency toolkits Now, Include,", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Molecule Name Retrivel", "raw": "Molecule Name Retrivel", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Molecule Property Query", "raw": "Molecule Property Query", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Patent Check", "raw": "Patent Check", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Molecule Safety Query", "raw": "Molecule Safety Query", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Try it on chemllm.org", "raw": "Try it on chemllm.org", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Tools Ready! Thanks to ChemCrow's great work, ChemLLM supports proficiency toolkits Now, Include, Molecule Name Retrivel Molecule Property Query Patent Check Molecule Safety Query Try it on chemllm.org
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64bce15bafd1e46c5504ad38/bQFX1iFbXEBXcQvUNL811.png", "fullname": "Di Zhang", "name": "qq8933", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 108, "isFollowing": false }
[]
[]
[ { "reaction": "😎", "users": [ "qq8933", "YaTharThShaRma999", "osanseviero" ], "count": 3 }, { "reaction": "🚀", "users": [ "MaziyarPanahi", "lighteternal" ], "count": 2 } ]
2024-06-14T03:06:53.000Z
2024-07-23T16:21:56.220Z
[ { "avatarUrl": "/avatars/4a5f3734b60494cafde31590f20a1be7.svg", "fullname": "renq", "name": "armstrong-2023", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64bce15bafd1e46c5504ad38/bQFX1iFbXEBXcQvUNL811.png", "fullname": "Di Zhang", "name": "qq8933", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 108, "isFollowing": false } ]
/posts/qq8933/357243974851378
2,613
2
737507638350087
[ { "type": "text", "value": "📢 Suprisingly, there are so many works on imputing personalities in LLM and vice versa. However, there is a gap in literature novels 📚 for mining that personalities from book itself. With that I am happy to release worflow that 🔥 solely 🔥 relies on book content only 📖 for personalities extraction:", "raw": "📢 Suprisingly, there are so many works on imputing personalities in LLM and vice versa. However, there is a gap in literature novels 📚 for mining that personalities from book itself. With that I am happy to release worflow that 🔥 solely 🔥 relies on book content only 📖 for personalities extraction:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/nicolay-r/book-persona-retriever", "href": "https://github.com/nicolay-r/book-persona-retriever", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "💡 The downstream goal of this workflow is to enhance charactes understanding ... and not just through their mentions in books, but through their personalities (⛏ retrieved with the given lexicon from the 📖 itself)", "raw": "💡 The downstream goal of this workflow is to enhance charactes understanding ... and not just through their mentions in books, but through their personalities (⛏ retrieved with the given lexicon from the 📖 itself)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The most closest studies such as PERSONA-CHAT (arXiv:1801.07243v5), BookEmbeddingEval (2022.findings-acl.81.pdf), ALOHA-Chatbot ( arXiv:1910.08293v4), Meet your favorite Character (arXiv:2204.10825), and PRODIGy (arXiv:2311.05195v1) were so valuable 💎 ! 👏", "raw": "The most closest studies such as PERSONA-CHAT (arXiv:1801.07243v5), BookEmbeddingEval (2022.findings-acl.81.pdf), ALOHA-Chatbot ( arXiv:1910.08293v4), Meet your favorite Character (arXiv:2204.10825), and PRODIGy (arXiv:2311.05195v1) were so valuable 💎 ! 👏", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Curious on existance of the fine-tuned LLM for detecting personalities in text passages on huggingface hub 🤗 If you aware about the one coud be potentially embedded into system for further advances, please feel free to recomend 🙌 ", "raw": "Curious on existance of the fine-tuned LLM for detecting personalities in text passages on huggingface hub 🤗 If you aware about the one coud be potentially embedded into system for further advances, please feel free to recomend 🙌 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
📢 Suprisingly, there are so many works on imputing personalities in LLM and vice versa. However, there is a gap in literature novels 📚 for mining that personalities from book itself. With that I am happy to release worflow that 🔥 solely 🔥 relies on book content only 📖 for personalities extraction: https://github.com/nicolay-r/book-persona-retriever 💡 The downstream goal of this workflow is to enhance charactes understanding ... and not just through their mentions in books, but through their personalities (⛏ retrieved with the given lexicon from the 📖 itself) The most closest studies such as PERSONA-CHAT (arXiv:1801.07243v5), BookEmbeddingEval (2022.findings-acl.81.pdf), ALOHA-Chatbot ( arXiv:1910.08293v4), Meet your favorite Character (arXiv:2204.10825), and PRODIGy (arXiv:2311.05195v1) were so valuable 💎 ! 👏 Curious on existance of the fine-tuned LLM for detecting personalities in text passages on huggingface hub 🤗 If you aware about the one coud be potentially embedded into system for further advances, please feel free to recomend 🙌
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg", "fullname": "Nicolay Rusnachenko", "name": "nicolay-r", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 49, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/8uK0KXO93hih2-du-p6UL.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/PifD-0NSsdXiwPB3skfr9.png" } ]
[]
[ { "reaction": "❤️", "users": [ "spacemonkAI87", "ThatoH", "Ervist", "victor", "Wolter8711", "MrF-Qwerty", "diwank" ], "count": 7 }, { "reaction": "🤯", "users": [ "GPT007", "Wolter8711" ], "count": 2 }, { "reaction": "👀", "users": [ "WesPro" ], "count": 1 }, { "reaction": "🚀", "users": [ "prithivMLmods" ], "count": 1 } ]
2024-06-13T19:19:02.000Z
2024-06-16T09:10:29.143Z
[]
/posts/nicolay-r/737507638350087
2,441
0
203008804842390
[ { "type": "text", "value": "Today is a huge day in Argilla’s history. We couldn’t be more excited to share this with the community: we’re joining Hugging Face! ", "raw": "Today is a huge day in Argilla’s history. We couldn’t be more excited to share this with the community: we’re joining Hugging Face! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "We’re embracing a larger mission, becoming part of a brilliant and kind team and a shared vision about the future of AI. ", "raw": "We’re embracing a larger mission, becoming part of a brilliant and kind team and a shared vision about the future of AI. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Over the past year, we’ve been collaborating with Hugging Face on countless projects: launching partner of Docker Spaces, empowering the community to clean Alpaca translations into Spanish and other languages, launching ", "raw": "Over the past year, we’ve been collaborating with Hugging Face on countless projects: launching partner of Docker Spaces, empowering the community to clean Alpaca translations into Spanish and other languages, launching ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/argilla/notus-7b-v1", "href": null, "resource": { "type": "model", "id": "argilla/notus-7b-v1", "discussionNum": null }, "url": "https://huggingface.co/argilla/notus-7b-v1", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " building on Zephyr’s learnings, the Data is Better Together initiative with hundreds of community contributors, or releasing ", "raw": " building on Zephyr’s learnings, the Data is Better Together initiative with hundreds of community contributors, or releasing ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/argilla/OpenHermesPreferences", "href": null, "resource": { "type": "dataset", "id": "argilla/OpenHermesPreferences", "discussionNum": null }, "url": "https://huggingface.co/datasets/argilla/OpenHermesPreferences", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ", one of the largest open preference tuning datasets ", "raw": ", one of the largest open preference tuning datasets ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "After more than 2,000 Slack messages and over 60 people collaborating for over a year, it already felt like we were part of the same team, pushing in the same direction. After a week of the smoothest transition you can imagine, we’re now the same team. ", "raw": "After more than 2,000 Slack messages and over 60 people collaborating for over a year, it already felt like we were part of the same team, pushing in the same direction. After a week of the smoothest transition you can imagine, we’re now the same team. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "To those of you who’ve been following us, this won’t be a huge surprise, but it will be a big deal in the coming months. This acquisition means we’ll double down on empowering the community to build and collaborate on high quality datasets, we’ll bring full support for multimodal datasets, and we’ll be in a better place to collaborate with the Open Source AI community. For enterprises, this means that the Enterprise Hub will unlock highly requested features like single sign-on and integration with Inference Endpoints.", "raw": "To those of you who’ve been following us, this won’t be a huge surprise, but it will be a big deal in the coming months. This acquisition means we’ll double down on empowering the community to build and collaborate on high quality datasets, we’ll bring full support for multimodal datasets, and we’ll be in a better place to collaborate with the Open Source AI community. For enterprises, this means that the Enterprise Hub will unlock highly requested features like single sign-on and integration with Inference Endpoints.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "As a founder, I am proud of the Argilla team. We're now part of something bigger and a larger team but with the same values, culture, and goals. Grateful to have shared this journey with my beloved co-founders Paco and Amélie.", "raw": "As a founder, I am proud of the Argilla team. We're now part of something bigger and a larger team but with the same values, culture, and goals. Grateful to have shared this journey with my beloved co-founders Paco and Amélie.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Finally, huge thanks to the Chief Llama Officer ", "raw": "Finally, huge thanks to the Chief Llama Officer ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@osanseviero", "href": null, "resource": null, "url": null, "code": null, "user": "osanseviero", "label": null, "lang": null }, { "type": "text", "value": " for sparking this and being such a great partner during the acquisition process.", "raw": " for sparking this and being such a great partner during the acquisition process.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Would love to answer any questions you have so feel free to add them below! ", "raw": "Would love to answer any questions you have so feel free to add them below! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Today is a huge day in Argilla’s history. We couldn’t be more excited to share this with the community: we’re joining Hugging Face! We’re embracing a larger mission, becoming part of a brilliant and kind team and a shared vision about the future of AI. Over the past year, we’ve been collaborating with Hugging Face on countless projects: launching partner of Docker Spaces, empowering the community to clean Alpaca translations into Spanish and other languages, launching https://huggingface.co/argilla/notus-7b-v1 building on Zephyr’s learnings, the Data is Better Together initiative with hundreds of community contributors, or releasing https://huggingface.co/datasets/argilla/OpenHermesPreferences, one of the largest open preference tuning datasets After more than 2,000 Slack messages and over 60 people collaborating for over a year, it already felt like we were part of the same team, pushing in the same direction. After a week of the smoothest transition you can imagine, we’re now the same team. To those of you who’ve been following us, this won’t be a huge surprise, but it will be a big deal in the coming months. This acquisition means we’ll double down on empowering the community to build and collaborate on high quality datasets, we’ll bring full support for multimodal datasets, and we’ll be in a better place to collaborate with the Open Source AI community. For enterprises, this means that the Enterprise Hub will unlock highly requested features like single sign-on and integration with Inference Endpoints. As a founder, I am proud of the Argilla team. We're now part of something bigger and a larger team but with the same values, culture, and goals. Grateful to have shared this journey with my beloved co-founders Paco and Amélie. Finally, huge thanks to the Chief Llama Officer @osanseviero for sparking this and being such a great partner during the acquisition process. Would love to answer any questions you have so feel free to add them below!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60420dccc15e823a685f2b03/Dn7QTyy9SZ7jKN6xpufVD.png", "fullname": "Daniel Vila", "name": "dvilasuero", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 231, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/60420dccc15e823a685f2b03/JoCMu1cw33wI2iR-ka1EO.jpeg" } ]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png", "fullname": "Omar Sanseviero", "name": "osanseviero", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2868 } ]
[ { "reaction": "🔥", "users": [ "osanseviero", "gabrielmbmb", "fdaudens", "marcsun13", "Leiyre", "alvarobartt", "victor", "loubnabnl", "frascuchon", "Wauplin", "lhoestq", "Xenova", "burtenshaw", "lysandre", "Narsil", "andrewrreed", "mcpotato", "plaguss", "mlabonne", "lunarflu", "ybelkada", "VictorSanh", "louisguitton", "Molbap", "alielfilali01", "ceyda", "Citaman", "jeffboudier", "eliebak", "pierrci", "MKdir98", "philschmid", "kevinostoll", "giux78", "jphme", "Taylor658", "mgoin", "wath5", "strickvl", "tomaarsen", "not-lain", "julien-c", "GloriaMK", "alexsherstinsky", "merve", "nara-simba", "KingNish", "bartowski", "monsoon-nlp", "santiviquez", "KonradSzafer", "pcuenq", "olivierrousseau07", "prepsyched", "cloderic", "bergr7f", "chargoddard", "haritzpuerto", "4eyez", "GPT007", "yjernite", "deanwampler", "mattupson", "rbgo", "MoritzLaurer", "oza75", "sergiopaniego", "abidlabs", "gsarti", "medmac01", "radames", "lewtun", "munish0838", "eitanturok", "sugatoray", "flozi00", "acelik", "louisbrulenaudet", "philipp-zettl", "Lin-Rexter", "alexcombessie", "drt14", "mikv39", "amcasari", "severo", "pacoid", "nthakur", "bullerwins", "JJoe206", "ngxson", "petricevich", "mohamedsaeed823", "jessicagab", "aust-t", "clem", "beta3", "jimmy", "agenkit", "bielrv", "davanstrien", "Prakash-chokalingam", "Ramikan-BR", "taufiqdp", "blefaudeux", "afondiel", "zaanind", "HappyCat123" ], "count": 107 }, { "reaction": "🚀", "users": [ "vicgalle", "gabrielmbmb", "nataliaElv", "marcsun13", "alvarobartt", "victor", "loubnabnl", "frascuchon", "Wauplin", "lhoestq", "Xenova", "burtenshaw", "lysandre", "andrewrreed", "mcpotato", "plaguss", "mlabonne", "lunarflu", "ybelkada", "mpjuhasz", "VictorSanh", "Molbap", "alielfilali01", "ceyda", "jeffboudier", "eliebak", "pierrci", "philschmid", "Yasbok", "kevinostoll", "giux78", "strickvl", "tomaarsen", "not-lain", "julien-c", "GloriaMK", "alexsherstinsky", "KingNish", "monsoon-nlp", "KonradSzafer", "pcuenq", "osanseviero", "NickyNicky", "4eyez", "mdouglas", "yjernite", "InferenceIllusionist", "mattupson", "rbgo", "MoritzLaurer", "sergiopaniego", "abidlabs", "gsarti", "medmac01", "radames", "lewtun", "munish0838", "secularwarden", "bewizz", "FM-1976", "louisbrulenaudet", "Lin-Rexter", "drt14", "ZennyKenny", "JJoe206", "stanbiryukov", "clem", "agenkit", "Ramikan-BR", "Haleyok", "sbrandeis" ], "count": 71 }, { "reaction": "❤️", "users": [ "burtenshaw", "andrewrreed", "plaguss", "mlabonne", "lunarflu", "ybelkada", "VictorSanh", "alielfilali01", "jeffboudier", "eliebak", "philschmid", "kevinostoll", "giux78", "strickvl", "tomaarsen", "not-lain", "julien-c", "Hev832", "GloriaMK", "alexsherstinsky", "santiviquez", "KonradSzafer", "pcuenq", "bergr7f", "4eyez", "peter2000", "yjernite", "mattupson", "rbgo", "ijohn07", "gsarti", "medmac01", "Moibe", "lewtun", "munish0838", "louisbrulenaudet", "Lin-Rexter", "drt14", "shaikatasif", "LizzyAsf", "amcasari", "anakin87", "JJoe206", "krisshen", "clem", "agenkit", "Ankush-Chander", "Ramikan-BR" ], "count": 48 }, { "reaction": "🤗", "users": [ "Narsil", "andrewrreed", "plaguss", "mlabonne", "lunarflu", "ybelkada", "Aurelien-Morgan", "VictorSanh", "Molbap", "sgans", "alielfilali01", "ceyda", "Citaman", "jeffboudier", "eliebak", "philschmid", "kevinostoll", "giux78", "tomaarsen", "not-lain", "julien-c", "GloriaMK", "alexsherstinsky", "alvarobartt", "KingNish", "KonradSzafer", "pcuenq", "4eyez", "mdouglas", "yjernite", "mattupson", "rbgo", "sergiopaniego", "gsarti", "lewtun", "munish0838", "kramp", "Lin-Rexter", "drt14", "JJoe206", "apol", "clem", "agenkit", "Ramikan-BR" ], "count": 44 }, { "reaction": "🤝", "users": [ "kevinostoll", "not-lain", "julien-c", "GloriaMK", "pcuenq", "mdouglas", "rbgo", "ABX-AI", "gsarti", "lewtun", "munish0838", "drt14", "apol", "clem", "Ramikan-BR" ], "count": 15 }, { "reaction": "👍", "users": [ "shamy777", "FilipeR", "drt14", "clem", "jimmy", "Ramikan-BR", "Danioken" ], "count": 7 } ]
2024-06-13T14:06:17.000Z
2024-06-20T13:45:27.964Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6580a1101aa0a67bf7a6233e/STSR2FmgKxT4xojka38A7.jpeg", "fullname": "Josef Fukano", "name": "JJoe206", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 9, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60f2fc91b92afccb7c34b8ed/whF6nGtyTAhbtiWJJnL9e.png", "fullname": "Gabriel Martín Blázquez", "name": "gabrielmbmb", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 90, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62d648291fa3e4e7ae3fa6e8/oatOwf8Xqe5eDbCSuYqCd.png", "fullname": "ben burtenshaw", "name": "burtenshaw", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 67, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6340651b388c3fa40f9a5bc0/av1C4_S7bHGxAzOu8lOmG.jpeg", "fullname": "Adam Molnar", "name": "lunarflu", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 333, "isFollowing": false }, { "avatarUrl": "/avatars/4a0cff546914b0f094f4a33e376a2f16.svg", "fullname": "Björn Plüster", "name": "bjoernp", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 67, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/626237d9bbcbd1c34f1bb231/EJrOjvAL-68qMCYdnvOrq.png", "fullname": "Ali El Filali", "name": "alielfilali01", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 186, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1623134857336-5f7c2cbbb1a525442ff96e39.jpeg", "fullname": "Ceyda Cinarel", "name": "ceyda", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 80, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/1gCpz_Og6-LyCBXDmuOd1.jpeg", "fullname": "Jan Philipp Harries", "name": "jphme", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 81, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641b754d1911d3be6745cce9/GXN8mEmaq3rfITRrw7GeZ.jpeg", "fullname": "atayloraerospace", "name": "Taylor658", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 76, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60420dccc15e823a685f2b03/Dn7QTyy9SZ7jKN6xpufVD.png", "fullname": "Daniel Vila", "name": "dvilasuero", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 231, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/CuGNmF1Et8KMQ0mCd1NEJ.jpeg", "fullname": "Lain", "name": "not-lain", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 941, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62a3bb1cd0d8c2c2169f0b88/eT2TS0IlQbZtz-F_zHLz9.jpeg", "fullname": "Joseph [open/acc] Pollack", "name": "Tonic", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 313, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/znjzltT1HCw0Hb8pyqhTD.jpeg", "fullname": "a", "name": "imagineadil", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1635172230970-613f3f6bfbfd59f147a88c77.jpeg", "fullname": "Matthew Upson", "name": "mattupson", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 3, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1613511937628-5fb15d1e84389b139cf3b508.jpeg", "fullname": "Moritz Laurer", "name": "MoritzLaurer", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 236, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648966381588-6064e095abd8d3692e3e2ed6.jpeg", "fullname": "Radamés Ajna", "name": "radames", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2401, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1594651707950-noauth.jpeg", "fullname": "Lewis Tunstall", "name": "lewtun", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 678, "isFollowing": false }, { "avatarUrl": "/avatars/0386c33cdf9e7b72b2e4ab0791bc1af8.svg", "fullname": "shamyji", "name": "shamy777", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6548ef90ce27ff7e8cbc5efa/fFBvdSyaTA4Fj6360K0x-.png", "fullname": "Youdiowei Eteimorde", "name": "Eteims", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 5, "isFollowing": false } ]
/posts/dvilasuero/203008804842390
7,948
28
722015921448875
[ { "type": "text", "value": "Automatically generate docstrings for your code using LLMs. We just released a new patchflow that can generate docstrings - ", "raw": "Automatically generate docstrings for your code using LLMs. We just released a new patchflow that can generate docstrings - ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/patched-codes/patchwork/tree/main/patchwork/patchflows/GenerateDocstring", "href": "https://github.com/patched-codes/patchwork/tree/main/patchwork/patchflows/GenerateDocstring", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Here is an example PR that does it - ", "raw": "Here is an example PR that does it - ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/codelion/example-java-maven/pull/4", "href": "https://github.com/codelion/example-java-maven/pull/4", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "You can check out other patchflows to automate developer chores with patchwork ", "raw": "You can check out other patchflows to automate developer chores with patchwork ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/patched-codes/patchwork", "href": "https://github.com/patched-codes/patchwork", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Automatically generate docstrings for your code using LLMs. We just released a new patchflow that can generate docstrings - https://github.com/patched-codes/patchwork/tree/main/patchwork/patchflows/GenerateDocstring Here is an example PR that does it - https://github.com/codelion/example-java-maven/pull/4 You can check out other patchflows to automate developer chores with patchwork https://github.com/patched-codes/patchwork
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1677134945205-62f32eab52ad88c930bb3f3b.png", "fullname": "Asankhaya Sharma", "name": "codelion", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 46, "isFollowing": false }
[]
[]
[ { "reaction": "😎", "users": [ "codelion", "lunarflu" ], "count": 2 }, { "reaction": "🔥", "users": [ "codelion", "lunarflu" ], "count": 2 }, { "reaction": "🚀", "users": [ "codelion", "lunarflu" ], "count": 2 } ]
2024-06-13T11:21:18.000Z
2024-06-13T11:21:18.717Z
[]
/posts/codelion/722015921448875
2,520
0
726113103947287
[ { "type": "text", "value": "I've spent some time checking the promises vs reality of on-device AI between Apple Intelligence and Microsoft Copilot+. Reading the marketing documentation is good, but not enough. Hands-on tests are the best, unfortunately, both are not there yet.", "raw": "I've spent some time checking the promises vs reality of on-device AI between Apple Intelligence and Microsoft Copilot+. Reading the marketing documentation is good, but not enough. Hands-on tests are the best, unfortunately, both are not there yet.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Both are looking to lock developers behind local API to the SLM inferencing engine and SDK mix of open source and proprietary code. Both can not work air-gapped and offline for meaningful workflows, only some basic ones and both require the hybrid AI local/remote plane calling back either APIs on Azure or the Apple Private Cloud Compute. ", "raw": "Both are looking to lock developers behind local API to the SLM inferencing engine and SDK mix of open source and proprietary code. Both can not work air-gapped and offline for meaningful workflows, only some basic ones and both require the hybrid AI local/remote plane calling back either APIs on Azure or the Apple Private Cloud Compute. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Some of the Copilot+ functionally is available in Windows App SDK 1.6 exp2. It's focused on the old-school enterprise developers and not sure if they will be the early adaptors of GenAI-backed apps... I still have the Recall on my dev-PC as they have removed it.", "raw": "Some of the Copilot+ functionally is available in Windows App SDK 1.6 exp2. It's focused on the old-school enterprise developers and not sure if they will be the early adaptors of GenAI-backed apps... I still have the Recall on my dev-PC as they have removed it.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Apple Intelligence is hard to get beyond the vague description and the State of the Union video. Even the current beta of macOS 15 and xcode don't have any \"A.I.\" in them. At the moment it is all promises and a lack of technical documentation and code. ", "raw": "Apple Intelligence is hard to get beyond the vague description and the State of the Union video. Even the current beta of macOS 15 and xcode don't have any \"A.I.\" in them. At the moment it is all promises and a lack of technical documentation and code. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it.", "raw": "Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
I've spent some time checking the promises vs reality of on-device AI between Apple Intelligence and Microsoft Copilot+. Reading the marketing documentation is good, but not enough. Hands-on tests are the best, unfortunately, both are not there yet. Both are looking to lock developers behind local API to the SLM inferencing engine and SDK mix of open source and proprietary code. Both can not work air-gapped and offline for meaningful workflows, only some basic ones and both require the hybrid AI local/remote plane calling back either APIs on Azure or the Apple Private Cloud Compute. Some of the Copilot+ functionally is available in Windows App SDK 1.6 exp2. It's focused on the old-school enterprise developers and not sure if they will be the early adaptors of GenAI-backed apps... I still have the Recall on my dev-PC as they have removed it. Apple Intelligence is hard to get beyond the vague description and the State of the Union video. Even the current beta of macOS 15 and xcode don't have any "A.I." in them. At the moment it is all promises and a lack of technical documentation and code. Make sure you own your AI. AI in the cloud is not aligned with you; it's aligned with the company that owns it.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63f731c7d36951307fcca6bf/DMd5-Pt7YHC0agbAQ1xUc.png", "fullname": "Mitko Vasilev", "name": "mitkox", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 119, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/63f731c7d36951307fcca6bf/I4zp2ui8MIqG_6M3jjV1M.png" } ]
[]
[ { "reaction": "❤️", "users": [ "prince-canuma", "lunarflu", "tranhoangnguyen03", "JohnMai", "Pretergeek", "aaronday3", "Joseph717171" ], "count": 7 }, { "reaction": "🤗", "users": [ "Joseph717171" ], "count": 1 }, { "reaction": "🧠", "users": [ "Joseph717171" ], "count": 1 } ]
2024-06-13T10:17:07.000Z
2024-06-14T19:18:52.539Z
[ { "avatarUrl": "/avatars/54483699273ac58a4a6fe1fa4aab65fe.svg", "fullname": "Robert Sinclair", "name": "ZeroWw", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 76, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630cf5d14ca0a22768bbe10c/R6qfkfeKCNdiSl5clsorr.png", "fullname": "Aaron Day", "name": "aaronday3", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 20, "isFollowing": false } ]
/posts/mitkox/726113103947287
2,422
2
736885573513189
[ { "type": "text", "value": "Luma AI has just launched Dream Machine, a Sora and Kling AI-like tool that generates videos from simple text and images. 🎥", "raw": "Luma AI has just launched Dream Machine, a Sora and Kling AI-like tool that generates videos from simple text and images. 🎥", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Dream Machine is out of beta and offers a free tier to test it out.", "raw": "Dream Machine is out of beta and offers a free tier to test it out.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "I tried this extremely simple prompt with the pic below and thought the capture of my prompt into a drone camera-like video was decent:", "raw": "I tried this extremely simple prompt with the pic below and thought the capture of my prompt into a drone camera-like video was decent:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "code_fence", "value": null, "raw": "```\nYou are a drone operator. Create a 30-second video from a drone heading eastbound over the western suburbs of Bismarck, North Dakota, looking east towards the city on an overcast summer evening during the golden hour from an altitude of 200 ft.\n```", "href": null, "resource": null, "url": null, "code": "You are a drone operator. Create a 30-second video from a drone heading eastbound over the western suburbs of Bismarck, North Dakota, looking east towards the city on an overcast summer evening during the golden hour from an altitude of 200 ft.", "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Dream Machine also has a paid tier. However, like its paid tier text-to-image brethren from 2023 (who all fared EXTREMELY badly once good text-to-image capabilities became the norm in open and closed source LLMs), time will tell if the pay tier model will work for text and image to video. ⏳ ", "raw": "Dream Machine also has a paid tier. However, like its paid tier text-to-image brethren from 2023 (who all fared EXTREMELY badly once good text-to-image capabilities became the norm in open and closed source LLMs), time will tell if the pay tier model will work for text and image to video. ⏳ ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "This will be evident in 3 to 5 months once GPT-5, Gemini-2, Mistral-9, Llama 4, et al., all models with enhanced multimodal capabilities, are released. 🚀", "raw": "This will be evident in 3 to 5 months once GPT-5, Gemini-2, Mistral-9, Llama 4, et al., all models with enhanced multimodal capabilities, are released. 🚀", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Luma AI has just launched Dream Machine, a Sora and Kling AI-like tool that generates videos from simple text and images. 🎥 Dream Machine is out of beta and offers a free tier to test it out. I tried this extremely simple prompt with the pic below and thought the capture of my prompt into a drone camera-like video was decent: ``` You are a drone operator. Create a 30-second video from a drone heading eastbound over the western suburbs of Bismarck, North Dakota, looking east towards the city on an overcast summer evening during the golden hour from an altitude of 200 ft. ``` Dream Machine also has a paid tier. However, like its paid tier text-to-image brethren from 2023 (who all fared EXTREMELY badly once good text-to-image capabilities became the norm in open and closed source LLMs), time will tell if the pay tier model will work for text and image to video. ⏳ This will be evident in 3 to 5 months once GPT-5, Gemini-2, Mistral-9, Llama 4, et al., all models with enhanced multimodal capabilities, are released. 🚀
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641b754d1911d3be6745cce9/GXN8mEmaq3rfITRrw7GeZ.jpeg", "fullname": "atayloraerospace", "name": "Taylor658", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 76, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/641b754d1911d3be6745cce9/xqt1lVLm8jl7bFg6d3P7m.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/641b754d1911d3be6745cce9/ReCFlVDee1uBnHkINw8LF.png" }, { "type": "video", "url": "https://cdn-uploads.huggingface.co/production/uploads/641b754d1911d3be6745cce9/fD-SrbUWDH5hqMPkbx_rl.mp4" } ]
[]
[ { "reaction": "👀", "users": [ "louisbrulenaudet", "victor", "lunarflu", "damerajee", "thethinkmachine", "privategeek24", "sugatoray", "angelfail", "Artples" ], "count": 9 } ]
2024-06-13T02:46:58.000Z
2024-06-13T02:54:15.290Z
[]
/posts/Taylor658/736885573513189
4,256
0
457113949821942
[ { "type": "text", "value": "Hello everyone,", "raw": "Hello everyone,", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "I am pleased to announce that I have founded the University of Glasgow organization on Huggingface. If you are affiliated with the University of Glasgow or have a relative who is, you can log in through the relevant link.", "raw": "I am pleased to announce that I have founded the University of Glasgow organization on Huggingface. If you are affiliated with the University of Glasgow or have a relative who is, you can log in through the relevant link.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/UniversityofGlasgow", "href": "https://huggingface.co/UniversityofGlasgow", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Hello everyone, I am pleased to announce that I have founded the University of Glasgow organization on Huggingface. If you are affiliated with the University of Glasgow or have a relative who is, you can log in through the relevant link. https://huggingface.co/UniversityofGlasgow
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61c8cf95ccae6d3b4a6c006d/H4hBAZ_R-HZpajTAmj2hW.jpeg", "fullname": "Yunus Serhat Bıçakçı", "name": "yunusserhat", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 7, "isFollowing": false }
[]
[]
[ { "reaction": "🚀", "users": [ "yunusserhat", "trade1co", "nbroad", "osanseviero", "julien-c", "SixOpen", "not-lain", "lunarflu", "thomwolf", "gsarti", "SaylorTwift" ], "count": 11 } ]
2024-06-12T19:56:41.000Z
2024-06-13T10:27:40.227Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5dd96eb166059660ed1ee413/NQtzmrDdbG0H8qkZvRyGk.jpeg", "fullname": "Julien Chaumond", "name": "julien-c", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 1580, "isFollowing": false } ]
/posts/yunusserhat/457113949821942
3,131
1
464018005818901
[ { "type": "text", "value": "There are 2.2 billion active ", "raw": "There are 2.2 billion active ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@Apple", "href": null, "resource": null, "url": null, "code": null, "user": "Apple", "label": null, "lang": null }, { "type": "text", "value": " devices 🍏 and all of them just got smarter thanks to Apple Intelligence (AI) 🧠", "raw": " devices 🍏 and all of them just got smarter thanks to Apple Intelligence (AI) 🧠", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Well, almost all devices... 🤔", "raw": "Well, almost all devices... 🤔", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Your device needs:", "raw": "Your device needs:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- A17 Pro chip or later if it's an iPhone 📱,", "raw": "- A17 Pro chip or later if it's an iPhone 📱,", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- M1 chip or later if iPad 📱,", "raw": "- M1 chip or later if iPad 📱,", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- M1 chip or later if Mac 💻.", "raw": "- M1 chip or later if Mac 💻.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "All this aside, this is probably the largest deployment of on-device LLMs 🌍.", "raw": "All this aside, this is probably the largest deployment of on-device LLMs 🌍.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Here is the technical goodness:", "raw": "Here is the technical goodness:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- AI will run ~3B LLM on device (Mac, iPhone, iPad) with grouped-query-attention, activation, and embedding quantization (Talaria bit rate selection) running on the neural engine 🚀.", "raw": "- AI will run ~3B LLM on device (Mac, iPhone, iPad) with grouped-query-attention, activation, and embedding quantization (Talaria bit rate selection) running on the neural engine 🚀.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- Will be using fine-tuned LoRA Adapters for different tasks, claiming to outperform other 7B and 3B LLMs! 🥇", "raw": "- Will be using fine-tuned LoRA Adapters for different tasks, claiming to outperform other 7B and 3B LLMs! 🥇", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- iPhone 15 Pro 0.6 ms time-to-first-token with 30 tokens/second latency ⏱.", "raw": "- iPhone 15 Pro 0.6 ms time-to-first-token with 30 tokens/second latency ⏱.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- No server model size or details 🤐.", "raw": "- No server model size or details 🤐.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- Will be dynamically loading, caching, and swapping LoRA adapters (think LoRA Land) 🔄.", "raw": "- Will be dynamically loading, caching, and swapping LoRA adapters (think LoRA Land) 🔄.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- On-device model has 49K vocab size, while the server model goes 100K 📚.", "raw": "- On-device model has 49K vocab size, while the server model goes 100K 📚.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- Using rejection sampling fine-tuning and RLHF in post-processing 📈.", "raw": "- Using rejection sampling fine-tuning and RLHF in post-processing 📈.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- A rejection sampling fine-tuning algorithm with teacher committee 🎓.", "raw": "- A rejection sampling fine-tuning algorithm with teacher committee 🎓.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- And reinforcement learning from human feedback (RLHF) algorithm with mirror descent policy optimization and a leave-one-out advantage estimator 🧮.", "raw": "- And reinforcement learning from human feedback (RLHF) algorithm with mirror descent policy optimization and a leave-one-out advantage estimator 🧮.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- Used synthetic data generation (from bigger models, does not mention which) for tasks like summaries 📝.", "raw": "- Used synthetic data generation (from bigger models, does not mention which) for tasks like summaries 📝.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- 750 evaluation samples for each production use case to evaluate summarization (dataset not released) 📊.", "raw": "- 750 evaluation samples for each production use case to evaluate summarization (dataset not released) 📊.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- No mention of multilingual support 🌐.", "raw": "- No mention of multilingual support 🌐.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- Used Apple's AXLearn framework (JAX) and FSP to train on TPUs and GPUs 💪.", "raw": "- Used Apple's AXLearn framework (JAX) and FSP to train on TPUs and GPUs 💪.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- 3B + Adapter outperforms Phi-3 mini, Gemma 7B, Mistral 7B on summarization 🏆.", "raw": "- 3B + Adapter outperforms Phi-3 mini, Gemma 7B, Mistral 7B on summarization 🏆.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- 3B + Adapter achieves 78.7% on IFEval beating Phi-3 mini, Gemma 7B, Mistral 7B; Server Model matches GPT-4-Turbo and beats Mixtral 8x22B and GPT-3.5-turbo ✨.", "raw": "- 3B + Adapter achieves 78.7% on IFEval beating Phi-3 mini, Gemma 7B, Mistral 7B; Server Model matches GPT-4-Turbo and beats Mixtral 8x22B and GPT-3.5-turbo ✨.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "LoRA for the win! 🎉", "raw": "LoRA for the win! 🎉", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Blog: ", "raw": "Blog: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://machinelearning.apple.com/research/introducing-apple-foundation-models", "href": "https://machinelearning.apple.com/research/introducing-apple-foundation-models", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
There are 2.2 billion active @Apple devices 🍏 and all of them just got smarter thanks to Apple Intelligence (AI) 🧠 Well, almost all devices... 🤔 Your device needs: - A17 Pro chip or later if it's an iPhone 📱, - M1 chip or later if iPad 📱, - M1 chip or later if Mac 💻. All this aside, this is probably the largest deployment of on-device LLMs 🌍. Here is the technical goodness: - AI will run ~3B LLM on device (Mac, iPhone, iPad) with grouped-query-attention, activation, and embedding quantization (Talaria bit rate selection) running on the neural engine 🚀. - Will be using fine-tuned LoRA Adapters for different tasks, claiming to outperform other 7B and 3B LLMs! 🥇 - iPhone 15 Pro 0.6 ms time-to-first-token with 30 tokens/second latency ⏱. - No server model size or details 🤐. - Will be dynamically loading, caching, and swapping LoRA adapters (think LoRA Land) 🔄. - On-device model has 49K vocab size, while the server model goes 100K 📚. - Using rejection sampling fine-tuning and RLHF in post-processing 📈. - A rejection sampling fine-tuning algorithm with teacher committee 🎓. - And reinforcement learning from human feedback (RLHF) algorithm with mirror descent policy optimization and a leave-one-out advantage estimator 🧮. - Used synthetic data generation (from bigger models, does not mention which) for tasks like summaries 📝. - 750 evaluation samples for each production use case to evaluate summarization (dataset not released) 📊. - No mention of multilingual support 🌐. - Used Apple's AXLearn framework (JAX) and FSP to train on TPUs and GPUs 💪. - 3B + Adapter outperforms Phi-3 mini, Gemma 7B, Mistral 7B on summarization 🏆. - 3B + Adapter achieves 78.7% on IFEval beating Phi-3 mini, Gemma 7B, Mistral 7B; Server Model matches GPT-4-Turbo and beats Mixtral 8x22B and GPT-3.5-turbo ✨. LoRA for the win! 🎉 Blog: https://machinelearning.apple.com/research/introducing-apple-foundation-models
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png", "fullname": "Kuldeep Singh Sidhu", "name": "singhsidhukuldeep", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 219, "isFollowing": false }
[ { "type": "video", "url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/UBQixgojYZ8BmVJXP0Dnn.mp4" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/aBu_teLZZ4xfwS8b1tXlY.png" } ]
[]
[ { "reaction": "🤝", "users": [ "louisbrulenaudet", "zzffss", "SamChaTICE", "thethinkmachine" ], "count": 4 } ]
2024-06-12T18:53:33.000Z
2024-06-14T18:36:32.254Z
[ { "avatarUrl": "/avatars/54483699273ac58a4a6fe1fa4aab65fe.svg", "fullname": "Robert Sinclair", "name": "ZeroWw", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 76, "isFollowing": false } ]
/posts/singhsidhukuldeep/464018005818901
2,080
1
196157605184646
[ { "type": "text", "value": "MobileNetV4 weights are now in timm! So far these are the only weights for these models as the offiicial Tensorflow impl remains weightless.", "raw": "MobileNetV4 weights are now in timm! So far these are the only weights for these models as the offiicial Tensorflow impl remains weightless.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Guided by paper hparams with a few tweaks, I've managed to match or beat the paper results training the medium models. I'm still working on large and improving the small result. They appear to be solid models for on-device use.", "raw": "Guided by paper hparams with a few tweaks, I've managed to match or beat the paper results training the medium models. I'm still working on large and improving the small result. They appear to be solid models for on-device use.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/timm/mobilenetv4-pretrained-weights-6669c22cda4db4244def9637", "href": null, "resource": { "type": "collection", "id": "timm/mobilenetv4-pretrained-weights-6669c22cda4db4244def9637", "discussionNum": null }, "url": "https://huggingface.co/collections/timm/mobilenetv4-pretrained-weights-6669c22cda4db4244def9637", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2404.10518", "href": null, "resource": { "type": "paper", "id": "2404.10518", "discussionNum": null }, "url": "https://huggingface.co/papers/2404.10518", "code": null, "user": null, "label": "MobileNetV4 -- Universal Models for the Mobile Ecosystem (2404.10518)", "lang": null } ]
MobileNetV4 weights are now in timm! So far these are the only weights for these models as the offiicial Tensorflow impl remains weightless. Guided by paper hparams with a few tweaks, I've managed to match or beat the paper results training the medium models. I'm still working on large and improving the small result. They appear to be solid models for on-device use. https://huggingface.co/collections/timm/mobilenetv4-pretrained-weights-6669c22cda4db4244def9637 https://huggingface.co/papers/2404.10518
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1667002643224-604a5184dca2c7ac7508b849.jpeg", "fullname": "Ross Wightman", "name": "rwightman", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 221, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "osanseviero", "merve", "adamelliotfields", "lathashree01", "kylewascher" ], "count": 5 } ]
2024-06-12T16:08:43.000Z
2024-07-27T04:34:48.224Z
[ { "avatarUrl": "/avatars/be26fc0df5a96df67e01f4e9b812d79f.svg", "fullname": "Kyle Wascher", "name": "kylewascher", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false } ]
/posts/rwightman/196157605184646
2,450
1
764069086101800
[ { "type": "text", "value": "Stable Diffusion 3: Scaling Rectified Flow Transformers for High-Resolution Image Synthesis ", "raw": "Stable Diffusion 3: Scaling Rectified Flow Transformers for High-Resolution Image Synthesis ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Demo(Zero A100): ", "raw": "Demo(Zero A100): ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/kadirnar/Stable-Diffusion-3", "href": null, "resource": { "type": "space", "id": "kadirnar/Stable-Diffusion-3", "discussionNum": null }, "url": "https://huggingface.co/spaces/kadirnar/Stable-Diffusion-3", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Paper: ", "raw": "Paper: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://arxiv.org/pdf/2403.03206", "href": "https://arxiv.org/pdf/2403.03206", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Model Page: ", "raw": "Model Page: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/stabilityai/stable-diffusion-3-medium", "href": null, "resource": { "type": "model", "id": "stabilityai/stable-diffusion-3-medium", "discussionNum": null }, "url": "https://huggingface.co/stabilityai/stable-diffusion-3-medium", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Thanks ❤️ ", "raw": "Thanks ❤️ ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@dn6", "href": null, "resource": null, "url": null, "code": null, "user": "dn6", "label": null, "lang": null }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@sayakpaul", "href": null, "resource": null, "url": null, "code": null, "user": "sayakpaul", "label": null, "lang": null }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Stable Diffusion 3: Scaling Rectified Flow Transformers for High-Resolution Image Synthesis Demo(Zero A100): https://huggingface.co/spaces/kadirnar/Stable-Diffusion-3 Paper: https://arxiv.org/pdf/2403.03206 Model Page: https://huggingface.co/stabilityai/stable-diffusion-3-medium Thanks ❤️ @dn6 @sayakpaul
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1678181702571-619f7ba90df8731e0d8b6c54.jpeg", "fullname": "Kadir Nar", "name": "kadirnar", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 198, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/619f7ba90df8731e0d8b6c54/K-5PkIlxqxkwKYBuuDynR.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/619f7ba90df8731e0d8b6c54/EbVCx2E4hgzXIVQozXSlk.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/619f7ba90df8731e0d8b6c54/E_ttf8GRdw1w7qxRe3pQW.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/619f7ba90df8731e0d8b6c54/nMxCBDjxAcamlJN_HuEAY.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/619f7ba90df8731e0d8b6c54/RcQyR9XFoZ9flkb3rJAb4.png" } ]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1630334896986-6126e46848005fa9ca5c578c.jpeg", "fullname": "Dhruv Nair", "name": "dn6", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 34 }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1649681653581-5f7fbd813e94f16a85448745.jpeg", "fullname": "Sayak Paul", "name": "sayakpaul", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 459 } ]
[ { "reaction": "👍", "users": [ "victor", "Norod78", "osanseviero", "MrDigger", "DiamanteAmarelo", "Hev832", "merve", "Sohaibsoussi", "medmac01", "sugatoray", "whitebill" ], "count": 11 }, { "reaction": "👀", "users": [ "louisbrulenaudet", "osanseviero" ], "count": 2 }, { "reaction": "🤯", "users": [ "Sohaibsoussi", "M3DCHAK" ], "count": 2 } ]
2024-06-12T15:51:39.000Z
2024-06-12T15:51:39.184Z
[]
/posts/kadirnar/764069086101800
4,131
0
146689464936084
[ { "type": "text", "value": "New Appearance from Ollama Open WebUI!", "raw": "New Appearance from Ollama Open WebUI!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "And Also web search, Realtime talking and File RAG!", "raw": "And Also web search, Realtime talking and File RAG!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://chemllm.org/", "href": "https://chemllm.org/", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
New Appearance from Ollama Open WebUI! And Also web search, Realtime talking and File RAG! https://chemllm.org/
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64bce15bafd1e46c5504ad38/bQFX1iFbXEBXcQvUNL811.png", "fullname": "Di Zhang", "name": "qq8933", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 108, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64bce15bafd1e46c5504ad38/jqmfsSZs1sn3Rp5Ll8_Zn.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64bce15bafd1e46c5504ad38/i9y-iLZoUWs8UoWqxdfXs.png" } ]
[]
[ { "reaction": "😎", "users": [ "louisbrulenaudet" ], "count": 1 } ]
2024-06-12T15:19:50.000Z
2024-06-12T15:43:57.096Z
[]
/posts/qq8933/146689464936084
996
0
751393350745146
[ { "type": "text", "value": "🤗 I trained what is probably the smallest (600k ~) TinyStories model! It really can write grammatically correct stories!", "raw": "🤗 I trained what is probably the smallest (600k ~) TinyStories model! It really can write grammatically correct stories!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/raincandy-u/TinyStories-656K", "href": null, "resource": { "type": "model", "id": "raincandy-u/TinyStories-656K", "discussionNum": null }, "url": "https://huggingface.co/raincandy-u/TinyStories-656K", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Try this space based on this minuscule model!", "raw": "Try this space based on this minuscule model!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/raincandy-u/Story-Teller", "href": null, "resource": { "type": "space", "id": "raincandy-u/Story-Teller", "discussionNum": null }, "url": "https://huggingface.co/spaces/raincandy-u/Story-Teller", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Edit: Moreover, the model weight size is only 1.31MB under bf16, and can be reduced to the 700KB level when using Q8_0 quantization U•ェ•*U", "raw": "Edit: Moreover, the model weight size is only 1.31MB under bf16, and can be reduced to the 700KB level when using Q8_0 quantization U•ェ•*U", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Edit: Now 1000K params chat model!", "raw": "Edit: Now 1000K params chat model!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/raincandy-u/TinyChat-1776K", "href": null, "resource": { "type": "model", "id": "raincandy-u/TinyChat-1776K", "discussionNum": null }, "url": "https://huggingface.co/raincandy-u/TinyChat-1776K", "code": null, "user": null, "label": null, "lang": null } ]
🤗 I trained what is probably the smallest (600k ~) TinyStories model! It really can write grammatically correct stories! https://huggingface.co/raincandy-u/TinyStories-656K Try this space based on this minuscule model! https://huggingface.co/spaces/raincandy-u/Story-Teller Edit: Moreover, the model weight size is only 1.31MB under bf16, and can be reduced to the 700KB level when using Q8_0 quantization U•ェ•*U Edit: Now 1000K params chat model! https://huggingface.co/raincandy-u/TinyChat-1776K
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/657eb5b256c9c67605a6e8b5/RPblnGJX57oiIcASEz_S8.png", "fullname": "raincandy_U", "name": "raincandy-u", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 30, "isFollowing": false }
[]
[]
[ { "reaction": "🚀", "users": [ "raincandy-u", "victor", "Clausss" ], "count": 3 }, { "reaction": "🔥", "users": [ "victor", "raincandy-u", "Clausss" ], "count": 3 }, { "reaction": "👀", "users": [ "Clausss", "raincandy-u" ], "count": 2 }, { "reaction": "🤯", "users": [ "raincandy-u", "Ballzlver49" ], "count": 2 } ]
2024-06-12T12:19:13.000Z
2024-06-13T01:10:38.214Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/638a1f3258afc73b9c64a761/A6lqaOhd6Rt4bdIkdYOB6.png", "fullname": "Shaikat", "name": "shaikatasif", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 8, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/657eb5b256c9c67605a6e8b5/RPblnGJX57oiIcASEz_S8.png", "fullname": "raincandy_U", "name": "raincandy-u", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 30, "isFollowing": false } ]
/posts/raincandy-u/751393350745146
2,330
2
230575412081053
[ { "type": "text", "value": "Advanced RAG - Hybrid Search using HuggingFace Models", "raw": "Advanced RAG - Hybrid Search using HuggingFace Models", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Chat with PDF in 10 lines of code:", "raw": "Chat with PDF in 10 lines of code:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "code_fence", "value": null, "raw": "```\n# pip install beyondllm\n# pip install llama-index-embeddings-fastembed\n\nfrom beyondllm import source,retrieve,embeddings,llms,generator\nimport os\nfrom getpass import getpass\nos.environ['HUGGINGFACE_ACCESS_TOKEN'] = getpass(\"Enter your HF API token:\")\n\ndata = source.fit(\"sample.pdf\", dtype=\"pdf\")\nembed_model = embeddings.FastEmbedEmbeddings()\n\nretriever = auto_retriever(\n data=data, embed_model=embed_model,\n type=\"hybrid\", top_k=5, mode=\"OR\"\n)\n\nllm = HuggingFaceHubModel(model=\"mistralai/Mistral-7B-Instruct-v0.2\")\npipeline = generator.Generate(question=\"<replace-with-your-query>\",llm=llm,retriever=retriever)\nprint(pipeline.call())\n```", "href": null, "resource": null, "url": null, "code": "# pip install beyondllm\n# pip install llama-index-embeddings-fastembed\n\nfrom beyondllm import source,retrieve,embeddings,llms,generator\nimport os\nfrom getpass import getpass\nos.environ['HUGGINGFACE_ACCESS_TOKEN'] = getpass(\"Enter your HF API token:\")\n\ndata = source.fit(\"sample.pdf\", dtype=\"pdf\")\nembed_model = embeddings.FastEmbedEmbeddings()\n\nretriever = auto_retriever(\n data=data, embed_model=embed_model,\n type=\"hybrid\", top_k=5, mode=\"OR\"\n)\n\nllm = HuggingFaceHubModel(model=\"mistralai/Mistral-7B-Instruct-v0.2\")\npipeline = generator.Generate(question=\"<replace-with-your-query>\",llm=llm,retriever=retriever)\nprint(pipeline.call())", "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Cookbook: ", "raw": "Cookbook: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/aiplanethub/beyondllm/blob/main/cookbook/Implementing_Hybrid_Search.ipynb", "href": "https://github.com/aiplanethub/beyondllm/blob/main/cookbook/Implementing_Hybrid_Search.ipynb", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Support the project by giving a ⭐️ to the repo", "raw": "Support the project by giving a ⭐️ to the repo", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Advanced RAG - Hybrid Search using HuggingFace Models Chat with PDF in 10 lines of code: ``` # pip install beyondllm # pip install llama-index-embeddings-fastembed from beyondllm import source,retrieve,embeddings,llms,generator import os from getpass import getpass os.environ['HUGGINGFACE_ACCESS_TOKEN'] = getpass("Enter your HF API token:") data = source.fit("sample.pdf", dtype="pdf") embed_model = embeddings.FastEmbedEmbeddings() retriever = auto_retriever( data=data, embed_model=embed_model, type="hybrid", top_k=5, mode="OR" ) llm = HuggingFaceHubModel(model="mistralai/Mistral-7B-Instruct-v0.2") pipeline = generator.Generate(question="<replace-with-your-query>",llm=llm,retriever=retriever) print(pipeline.call()) ``` Cookbook: https://github.com/aiplanethub/beyondllm/blob/main/cookbook/Implementing_Hybrid_Search.ipynb Support the project by giving a ⭐️ to the repo
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630f3058236215d0b7078806/TRTdqAZpT1bJg_RvGgxlg.jpeg", "fullname": "Tarun Jain", "name": "lucifertrj", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 23, "isFollowing": false }
[]
[]
[ { "reaction": "👀", "users": [ "victor", "daltheman", "lucifertrj", "Ramikan-BR", "lunarflu", "ToKrCZ", "catastropiyush" ], "count": 7 }, { "reaction": "😎", "users": [ "METASPORTSFUMEZ" ], "count": 1 }, { "reaction": "🔥", "users": [ "umair894" ], "count": 1 } ]
2024-06-12T09:38:59.000Z
2024-06-12T09:39:32.540Z
[]
/posts/lucifertrj/230575412081053
2,243
0
824565620118854
[ { "type": "text", "value": "📢Delighted to share personal findings 🔎 East Asian LLM Qwen1.5 🇨🇳 reasoning capabilities 🧠 Target Sentiment Analysis (TSA). Starting with the one of the smallest Qwen1.5-1.8B-Chat version, for the original Eastern-European texts (🇷🇺) and their translated versions (🇺🇸) in zero-shot-learning mode setup, the key takeaways of such experiments were as follows:", "raw": "📢Delighted to share personal findings 🔎 East Asian LLM Qwen1.5 🇨🇳 reasoning capabilities 🧠 Target Sentiment Analysis (TSA). Starting with the one of the smallest Qwen1.5-1.8B-Chat version, for the original Eastern-European texts (🇷🇺) and their translated versions (🇺🇸) in zero-shot-learning mode setup, the key takeaways of such experiments were as follows:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "✅ 1. Model is capable to perform reasoning in Eastern Eropean languages (🇷🇺) (remember it is 1.8B), switching to Qwen2 results in strong improvement, with results that surpasses LLaMA2-70B-chat (more on difference below). ", "raw": "✅ 1. Model is capable to perform reasoning in Eastern Eropean languages (🇷🇺) (remember it is 1.8B), switching to Qwen2 results in strong improvement, with results that surpasses LLaMA2-70B-chat (more on difference below). ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "✅ 2. Despite the size of 1.8B, reasoning in English has a significant gap in underpeforming (F1=~34%) to the most closest Flan-T5-XL (2.8B) which showcases F1=43%.", "raw": "✅ 2. Despite the size of 1.8B, reasoning in English has a significant gap in underpeforming (F1=~34%) to the most closest Flan-T5-XL (2.8B) which showcases F1=43%.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "💡 The most intriguing fact that Qwen1.5-1.8B-Chat: ", "raw": "💡 The most intriguing fact that Qwen1.5-1.8B-Chat: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "it generates new words in Russian I've never seen before: \"неретеневая\" (negativitively), and imputes the entries in Chinese. The reason of such a low results, is that model was not been able to follow the input instruction and shares all the opinions per each class. All of that has been improved though in Qwen2-1.5B.", "raw": "it generates new words in Russian I've never seen before: \"неретеневая\" (negativitively), and imputes the entries in Chinese. The reason of such a low results, is that model was not been able to follow the input instruction and shares all the opinions per each class. All of that has been improved though in Qwen2-1.5B.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Benchmark: ", "raw": "Benchmark: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark", "href": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Model: ", "raw": "Model: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat", "href": null, "resource": { "type": "model", "id": "Qwen/Qwen1.5-1.8B-Chat", "discussionNum": null }, "url": "https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Dataset: ", "raw": "Dataset: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/dialogue-evaluation/RuSentNE-evaluation", "href": "https://github.com/dialogue-evaluation/RuSentNE-evaluation", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)", "raw": "Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Collection: ", "raw": "Collection: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101", "href": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
📢Delighted to share personal findings 🔎 East Asian LLM Qwen1.5 🇨🇳 reasoning capabilities 🧠 Target Sentiment Analysis (TSA). Starting with the one of the smallest Qwen1.5-1.8B-Chat version, for the original Eastern-European texts (🇷🇺) and their translated versions (🇺🇸) in zero-shot-learning mode setup, the key takeaways of such experiments were as follows: ✅ 1. Model is capable to perform reasoning in Eastern Eropean languages (🇷🇺) (remember it is 1.8B), switching to Qwen2 results in strong improvement, with results that surpasses LLaMA2-70B-chat (more on difference below). ✅ 2. Despite the size of 1.8B, reasoning in English has a significant gap in underpeforming (F1=~34%) to the most closest Flan-T5-XL (2.8B) which showcases F1=43%. 💡 The most intriguing fact that Qwen1.5-1.8B-Chat: it generates new words in Russian I've never seen before: "неретеневая" (negativitively), and imputes the entries in Chinese. The reason of such a low results, is that model was not been able to follow the input instruction and shares all the opinions per each class. All of that has been improved though in Qwen2-1.5B. Benchmark: https://github.com/nicolay-r/RuSentNE-LLM-Benchmark Model: https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat Dataset: https://github.com/dialogue-evaluation/RuSentNE-evaluation Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342) Collection: https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg", "fullname": "Nicolay Rusnachenko", "name": "nicolay-r", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 49, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/Xz0buOX80UKWZEkAl34AY.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/nRO2mjT7FRyl8QOGQDR47.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/qj1dyp6QPMfoA72bjkE1S.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/Qt0ikA3YU5YFBk480lBqA.png" } ]
[]
[ { "reaction": "👍", "users": [ "victor", "kristaller486", "louisbrulenaudet", "ZeroWw" ], "count": 4 } ]
2024-06-12T07:51:39.000Z
2024-06-12T14:40:12.326Z
[]
/posts/nicolay-r/824565620118854
1,687
0
185242785650522
[ { "type": "text", "value": "All You Need To Know About Apple Intelligence Architecture And Models!!", "raw": "All You Need To Know About Apple Intelligence Architecture And Models!!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "One key challenge with running llms on device is a balance between compute, performance and model size. Apple Intelligence solves this using small/specialized chunks (Adapters) of the on-device foundation model when needed.", "raw": "One key challenge with running llms on device is a balance between compute, performance and model size. Apple Intelligence solves this using small/specialized chunks (Adapters) of the on-device foundation model when needed.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "For compute, they engineered a new framework that uses LoRA adapters of rank 16, allowing a merged 2-bit and 4-bit config that yields up to 3.5 bits per weight, achieving the same performance as the uncompressed models.", "raw": "For compute, they engineered a new framework that uses LoRA adapters of rank 16, allowing a merged 2-bit and 4-bit config that yields up to 3.5 bits per weight, achieving the same performance as the uncompressed models.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "With the help of an OSS model latency and power analysis tool (Talaria), they were able to optimize the bit rate selection for each operation. This along with activation & embedding quantizations plus efficient key-value caching, achieved up to 30 tokens/sec on iPhone 15 pro.", "raw": "With the help of an OSS model latency and power analysis tool (Talaria), they were able to optimize the bit rate selection for each operation. This along with activation & embedding quantizations plus efficient key-value caching, achieved up to 30 tokens/sec on iPhone 15 pro.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "When the model is prompted (e.g to rewrite an email in the mail app), the app draws from the app intents toolbox which sends the prompt to the adapter specialized for writing, the model responds through the same pipeline with a real-time update of the text to rewrite.", "raw": "When the model is prompted (e.g to rewrite an email in the mail app), the app draws from the app intents toolbox which sends the prompt to the adapter specialized for writing, the model responds through the same pipeline with a real-time update of the text to rewrite.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The coolest feature of these models is their ability to adapt and dynamically specialize on user’s everyday activities. For this they adapt the attention matrices, the attention projection matrix, and the fully connected layers in the point-wise feedforward networks for a suitable set of the decoding layers of the transformer architecture.", "raw": "The coolest feature of these models is their ability to adapt and dynamically specialize on user’s everyday activities. For this they adapt the attention matrices, the attention projection matrix, and the fully connected layers in the point-wise feedforward networks for a suitable set of the decoding layers of the transformer architecture.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "For tasks that require more capable models, the arch utilizes server/larger models on a private cloud compute infrastructure that delivers SOTA secured and verifiable privacy experience.", "raw": "For tasks that require more capable models, the arch utilizes server/larger models on a private cloud compute infrastructure that delivers SOTA secured and verifiable privacy experience.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "More on the private cloud compute: ", "raw": "More on the private cloud compute: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://developer.apple.com/videos/play/wwdc2024/102/", "href": "https://developer.apple.com/videos/play/wwdc2024/102/", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
All You Need To Know About Apple Intelligence Architecture And Models!! One key challenge with running llms on device is a balance between compute, performance and model size. Apple Intelligence solves this using small/specialized chunks (Adapters) of the on-device foundation model when needed. For compute, they engineered a new framework that uses LoRA adapters of rank 16, allowing a merged 2-bit and 4-bit config that yields up to 3.5 bits per weight, achieving the same performance as the uncompressed models. With the help of an OSS model latency and power analysis tool (Talaria), they were able to optimize the bit rate selection for each operation. This along with activation & embedding quantizations plus efficient key-value caching, achieved up to 30 tokens/sec on iPhone 15 pro. When the model is prompted (e.g to rewrite an email in the mail app), the app draws from the app intents toolbox which sends the prompt to the adapter specialized for writing, the model responds through the same pipeline with a real-time update of the text to rewrite. The coolest feature of these models is their ability to adapt and dynamically specialize on user’s everyday activities. For this they adapt the attention matrices, the attention projection matrix, and the fully connected layers in the point-wise feedforward networks for a suitable set of the decoding layers of the transformer architecture. For tasks that require more capable models, the arch utilizes server/larger models on a private cloud compute infrastructure that delivers SOTA secured and verifiable privacy experience. More on the private cloud compute: https://developer.apple.com/videos/play/wwdc2024/102/
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg", "fullname": "Jaward Sesay", "name": "Jaward", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 191, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/ltFwRuY0CvMWILnYDv8Pn.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/r7RVkSbaVsRjjw0S5vn9D.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/3tDGKd7ac-dzVL_1aXexB.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/yaQ174B_pwa78oFLtD73P.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/W19Pi3EqSP6nz9O2Fvtz6.png" } ]
[]
[ { "reaction": "🔥", "users": [ "KingNish", "kinokritik", "den0620", "rreed-pha", "gksriharsha", "theainerd", "jlzhou", "Korakoe" ], "count": 8 }, { "reaction": "👍", "users": [ "dillfrescott", "jungmin76park" ], "count": 2 }, { "reaction": "🤝", "users": [ "victor" ], "count": 1 } ]
2024-06-12T06:45:07.000Z
2024-06-13T00:54:01.876Z
[]
/posts/Jaward/185242785650522
2,213
0
620151738757120
[ { "type": "text", "value": "Introducing GUICourse! 🎉 ", "raw": "Introducing GUICourse! 🎉 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "By leveraging extensive OCR pretraining with grounding ability, we unlock the potential of parsing-free methods for GUIAgent. ", "raw": "By leveraging extensive OCR pretraining with grounding ability, we unlock the potential of parsing-free methods for GUIAgent. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📄 Paper: (", "raw": "📄 Paper: (", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2406.11317", "href": null, "resource": { "type": "paper", "id": "2406.11317", "discussionNum": null }, "url": "https://huggingface.co/papers/2406.11317", "code": null, "user": null, "label": "GUICourse: From General Vision Language Models to Versatile GUI Agents (2406.11317)", "lang": null }, { "type": "text", "value": ")", "raw": ")", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🌐 Github Repo: (", "raw": "🌐 Github Repo: (", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/yiye3/GUICourse", "href": "https://github.com/yiye3/GUICourse", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ")", "raw": ")", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📖 Dataset: (", "raw": "📖 Dataset: (", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/yiye2023/GUIAct", "href": null, "resource": { "type": "dataset", "id": "yiye2023/GUIAct", "discussionNum": null }, "url": "https://huggingface.co/datasets/yiye2023/GUIAct", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ") / (", "raw": ") / (", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/yiye2023/GUIChat", "href": null, "resource": { "type": "dataset", "id": "yiye2023/GUIChat", "discussionNum": null }, "url": "https://huggingface.co/datasets/yiye2023/GUIChat", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ") / (", "raw": ") / (", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/yiye2023/GUIEnv", "href": null, "resource": { "type": "dataset", "id": "yiye2023/GUIEnv", "discussionNum": null }, "url": "https://huggingface.co/datasets/yiye2023/GUIEnv", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ")", "raw": ")", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🎯 Model: (", "raw": "🎯 Model: (", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/RhapsodyAI/minicpm-guidance", "href": null, "resource": { "type": "model", "id": "RhapsodyAI/minicpm-guidance", "discussionNum": null }, "url": "https://huggingface.co/RhapsodyAI/minicpm-guidance", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ") / (", "raw": ") / (", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/RhapsodyAI/qwen_vl_guidance", "href": null, "resource": { "type": "model", "id": "RhapsodyAI/qwen_vl_guidance", "discussionNum": null }, "url": "https://huggingface.co/RhapsodyAI/qwen_vl_guidance", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ")", "raw": ")", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Introducing GUICourse! 🎉 By leveraging extensive OCR pretraining with grounding ability, we unlock the potential of parsing-free methods for GUIAgent. 📄 Paper: (https://huggingface.co/papers/2406.11317) 🌐 Github Repo: (https://github.com/yiye3/GUICourse) 📖 Dataset: (https://huggingface.co/datasets/yiye2023/GUIAct) / (https://huggingface.co/datasets/yiye2023/GUIChat) / (https://huggingface.co/datasets/yiye2023/GUIEnv) 🎯 Model: (https://huggingface.co/RhapsodyAI/minicpm-guidance) / (https://huggingface.co/RhapsodyAI/qwen_vl_guidance)
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63f706dfe94ed998c463ed66/tAGil2qiFNev6CfEEDseV.png", "fullname": "Cuiunbo", "name": "Cuiunbo", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 22, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/63f706dfe94ed998c463ed66/boKfVz9_OBUCX5PIIS3kY.gif" } ]
[]
[ { "reaction": "🔥", "users": [ "jwls333", "victor", "thibaultM", "Norod78", "bokesyo" ], "count": 5 }, { "reaction": "👍", "users": [ "Eyel", "catastropiyush", "Chars", "victor" ], "count": 4 }, { "reaction": "😎", "users": [ "Cuiunbo", "Taylor658" ], "count": 2 } ]
2024-06-11T20:56:35.000Z
2024-07-18T15:21:24.390Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63f706dfe94ed998c463ed66/tAGil2qiFNev6CfEEDseV.png", "fullname": "Cuiunbo", "name": "Cuiunbo", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 22, "isFollowing": false }, { "avatarUrl": "/avatars/9be2a3096db5e369f9e616215dc30550.svg", "fullname": "Another Coder", "name": "anothercoder2", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false } ]
/posts/Cuiunbo/620151738757120
2,466
16
855680325748217
[ { "type": "text", "value": "Congrats to ", "raw": "Congrats to ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@alvdansen", "href": null, "resource": null, "url": null, "code": null, "user": "alvdansen", "label": null, "lang": null }, { "type": "text", "value": " for one of the nicest SD LoRA ever. It's so sharp and beautiful! ", "raw": " for one of the nicest SD LoRA ever. It's so sharp and beautiful! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Check the model page to try it on your own prompts: ", "raw": "Check the model page to try it on your own prompts: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/alvdansen/BandW-Manga", "href": null, "resource": { "type": "model", "id": "alvdansen/BandW-Manga", "discussionNum": null }, "url": "https://huggingface.co/alvdansen/BandW-Manga", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "And follow ", "raw": "And follow ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@alvdansen", "href": null, "resource": null, "url": null, "code": null, "user": "alvdansen", "label": null, "lang": null }, { "type": "text", "value": " for more 😙", "raw": " for more 😙", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Congrats to @alvdansen for one of the nicest SD LoRA ever. It's so sharp and beautiful! Check the model page to try it on your own prompts: https://huggingface.co/alvdansen/BandW-Manga And follow @alvdansen for more 😙
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2607, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/5f17f0a0925b9863e28ad517/tXjxX-Xja4SSx-YDkriQi.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/5f17f0a0925b9863e28ad517/KqPjySZmQJ-0-DhYWcBFG.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/5f17f0a0925b9863e28ad517/wtk9zdKCNHTdRmSzjpv3W.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/5f17f0a0925b9863e28ad517/L_JxKncStuixlJmT6I8RT.png" } ]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png", "fullname": "araminta_k", "name": "alvdansen", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 496 } ]
[ { "reaction": "❤️", "users": [ "not-lain", "s3nh", "Delik", "louisbrulenaudet", "fynnkroeger", "pcuenq", "nbroad", "Svngoku", "t1u1", "Francesco", "ZeroWw" ], "count": 11 }, { "reaction": "🔥", "users": [ "not-lain", "s3nh", "Hev832", "mattmdjaga", "kramp", "pcuenq", "nbroad", "catastropiyush" ], "count": 8 } ]
2024-06-11T20:49:25.000Z
2024-07-10T10:55:31.697Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/635dd6cd4fabde0df74aeae6/23c0uEOr7RWDtSLDBzkPD.png", "fullname": "araminta_k", "name": "alvdansen", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 496, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/CuGNmF1Et8KMQ0mCd1NEJ.jpeg", "fullname": "Lain", "name": "not-lain", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 941, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2607, "isFollowing": false } ]
/posts/victor/855680325748217
2,390
5
683959932996666
[ { "type": "text", "value": "Who said you couldn't build a big business based on open-source AI? Congrats Mistral team: ", "raw": "Who said you couldn't build a big business based on open-source AI? Congrats Mistral team: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/mistralai", "href": "https://huggingface.co/mistralai", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Who said you couldn't build a big business based on open-source AI? Congrats Mistral team: https://huggingface.co/mistralai
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1583857146757-5e67bdd61009063689407479.jpeg", "fullname": "Clem 🤗", "name": "clem", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 1763, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/5e67bdd61009063689407479/6hYgQrX5eOWT6sQksqDIa.png" } ]
[]
[ { "reaction": "🚀", "users": [ "Dref360", "merve", "SkalskiP", "YaTharThShaRma999", "osanseviero", "Taylor658", "nroggendorff", "ElhamAryanpur", "victor", "dillfrescott", "nbroad", "Jdkee", "beomi", "KingNish", "umseeker", "kramp", "bwang0911", "not-lain", "enzostvs", "shamrockmuffin13", "pepsighan", "celsowm", "vivek-r7", "denver1603", "IlyasMoutawwakil" ], "count": 25 }, { "reaction": "❤️", "users": [ "Svngoku", "ToKrCZ", "osanseviero", "nroggendorff", "ElhamAryanpur", "codehouze", "dillfrescott", "nbroad", "beomi", "KingNish", "Darkknight12", "srisree", "louisbrulenaudet", "michelgi", "not-lain", "UniLLMer", "ZeroWw" ], "count": 17 }, { "reaction": "👍", "users": [ "waveydaveygravy", "nicolay-r", "not-lain", "devalnor", "JoPmt" ], "count": 5 }, { "reaction": "🤗", "users": [ "umseeker", "Tonic", "not-lain" ], "count": 3 } ]
2024-06-11T17:06:00.000Z
2024-06-11T17:06:00.165Z
[]
/posts/clem/683959932996666
3,648
0
512274540286082
[ { "type": "text", "value": "releasing: smol vision 🌼 ", "raw": "releasing: smol vision 🌼 ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "A repository with notebooks on shrinking, optimizing, speeding-up, customizing large vision models! ", "raw": "A repository with notebooks on shrinking, optimizing, speeding-up, customizing large vision models! ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/merveenoyan/smol-vision", "href": "https://github.com/merveenoyan/smol-vision", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
releasing: smol vision 🌼 A repository with notebooks on shrinking, optimizing, speeding-up, customizing large vision models! https://github.com/merveenoyan/smol-vision
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5589, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/8FUCfUE8UOpPIYgfWzq4T.png" } ]
[]
[ { "reaction": "🔥", "users": [ "gabrielmbmb", "Dref360", "SixOpen", "osanseviero", "jgitsolutions", "Taylor658", "byoussef", "louisbrulenaudet", "fynnkroeger", "tolgacangoz", "vikas", "shaikatasif", "nbroad", "kramp", "afondiel", "tensorkelechi", "AxAI" ], "count": 17 }, { "reaction": "❤️", "users": [ "dillfrescott", "Norod78", "anakin87", "tolgacangoz" ], "count": 4 }, { "reaction": "🚀", "users": [ "Tonic", "tolgacangoz", "tensorkelechi" ], "count": 3 }, { "reaction": "🤗", "users": [ "tolgacangoz", "philipp-zettl" ], "count": 2 }, { "reaction": "👍", "users": [ "tolgacangoz" ], "count": 1 }, { "reaction": "🤝", "users": [ "tolgacangoz" ], "count": 1 }, { "reaction": "🧠", "users": [ "tolgacangoz" ], "count": 1 }, { "reaction": "🤯", "users": [ "tolgacangoz" ], "count": 1 }, { "reaction": "➕", "users": [ "tolgacangoz" ], "count": 1 }, { "reaction": "👀", "users": [ "tolgacangoz" ], "count": 1 }, { "reaction": "😎", "users": [ "tolgacangoz" ], "count": 1 } ]
2024-06-11T16:03:36.000Z
2024-06-12T18:43:18.862Z
[ { "avatarUrl": "/avatars/cf7ead21d345b925a7da873f2a5d85a5.svg", "fullname": "Prasad Naik", "name": "nprasad24", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/merve/512274540286082
3,014
1
602300950760867
[ { "type": "text", "value": "Fast Tachyon SDXL Demo:", "raw": "Fast Tachyon SDXL Demo:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Demo(Zero A100): ", "raw": "Demo(Zero A100): ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/kadirnar/BlackHole-Lightning", "href": null, "resource": { "type": "space", "id": "kadirnar/BlackHole-Lightning", "discussionNum": null }, "url": "https://huggingface.co/spaces/kadirnar/BlackHole-Lightning", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Model Page: ", "raw": "Model Page: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://civitai.com/models/414108/black-hole", "href": "https://civitai.com/models/414108/black-hole", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Fast Tachyon SDXL Demo: Demo(Zero A100): https://huggingface.co/spaces/kadirnar/BlackHole-Lightning Model Page: https://civitai.com/models/414108/black-hole
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1678181702571-619f7ba90df8731e0d8b6c54.jpeg", "fullname": "Kadir Nar", "name": "kadirnar", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 198, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/619f7ba90df8731e0d8b6c54/TisG7IQ1WFlQWVJFnTCpe.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/619f7ba90df8731e0d8b6c54/1mYEKMHGDXDztekBybJm-.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/619f7ba90df8731e0d8b6c54/cyFNoVm6RrApJpsojLJic.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/619f7ba90df8731e0d8b6c54/5SeWEpOZRRJGrkF5KPWyf.png" } ]
[]
[ { "reaction": "🔥", "users": [ "DmitryRyumin", "louisbrulenaudet", "victor", "osanseviero", "prithivMLmods", "merve", "Ramikan-BR", "stancobridge", "MatrixIA" ], "count": 9 }, { "reaction": "🚀", "users": [ "Ramikan-BR" ], "count": 1 }, { "reaction": "👀", "users": [ "Ramikan-BR" ], "count": 1 }, { "reaction": "❤️", "users": [ "Ramikan-BR" ], "count": 1 } ]
2024-06-11T12:28:09.000Z
2024-06-11T12:28:09.940Z
[]
/posts/kadirnar/602300950760867
3,906
0
692698814184175
[ { "type": "text", "value": "😀😲😐😡 New Research Alert - CVPRW 2024 (Facial Expressions Recognition Collection)! 😡😥🥴😱", "raw": "😀😲😐😡 New Research Alert - CVPRW 2024 (Facial Expressions Recognition Collection)! 😡😥🥴😱", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📄 Title: Zero-Shot Audio-Visual Compound Expression Recognition Method based on Emotion Probability Fusion 🔝", "raw": "📄 Title: Zero-Shot Audio-Visual Compound Expression Recognition Method based on Emotion Probability Fusion 🔝", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📝 Description: AVCER is a novel audio-visual method for compound expression recognition based on pair-wise sum of emotion probability, evaluated in multi- and cross-corpus setups without task-specific training data, demonstrating its potential for intelligent emotion annotation tools.", "raw": "📝 Description: AVCER is a novel audio-visual method for compound expression recognition based on pair-wise sum of emotion probability, evaluated in multi- and cross-corpus setups without task-specific training data, demonstrating its potential for intelligent emotion annotation tools.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "👥 Authors: ", "raw": "👥 Authors: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@ElenaRyumina", "href": null, "resource": null, "url": null, "code": null, "user": "ElenaRyumina", "label": null, "lang": null }, { "type": "text", "value": ", Maxim Markitantov, ", "raw": ", Maxim Markitantov, ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@DmitryRyumin", "href": null, "resource": null, "url": null, "code": null, "user": "DmitryRyumin", "label": null, "lang": null }, { "type": "text", "value": ", Heysem Kaya, and Alexey Karpov", "raw": ", Heysem Kaya, and Alexey Karpov", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📅 Conference: CVPRW, Jun 17-21, 2024 | Seattle WA, USA 🇺🇸", "raw": "📅 Conference: CVPRW, Jun 17-21, 2024 | Seattle WA, USA 🇺🇸", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🤗 Demo: ", "raw": "🤗 Demo: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/ElenaRyumina/AVCER", "href": null, "resource": { "type": "space", "id": "ElenaRyumina/AVCER", "discussionNum": null }, "url": "https://huggingface.co/spaces/ElenaRyumina/AVCER", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📄 Paper: ", "raw": "📄 Paper: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2403.12687", "href": null, "resource": { "type": "paper", "id": "2403.12687", "discussionNum": null }, "url": "https://huggingface.co/papers/2403.12687", "code": null, "user": null, "label": "Audio-Visual Compound Expression Recognition Method based on Late\n Modality Fusion and Rule-based Decision (2403.12687)", "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🌐 Github Page: ", "raw": "🌐 Github Page: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://elenaryumina.github.io/AVCER", "href": "https://elenaryumina.github.io/AVCER", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📁 Repository: ", "raw": "📁 Repository: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/ElenaRyumina/AVCER/tree/main/src", "href": "https://github.com/ElenaRyumina/AVCER/tree/main/src", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🚀 CVPR-2023-24-Papers: ", "raw": "🚀 CVPR-2023-24-Papers: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/DmitryRyumin/CVPR-2023-24-Papers", "href": "https://github.com/DmitryRyumin/CVPR-2023-24-Papers", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "📚 More Papers: more cutting-edge research presented at other conferences in the ", "raw": "📚 More Papers: more cutting-edge research presented at other conferences in the ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers", "href": null, "resource": { "type": "space", "id": "DmitryRyumin/NewEraAI-Papers", "discussionNum": null }, "url": "https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " curated by ", "raw": " curated by ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@DmitryRyumin", "href": null, "resource": null, "url": null, "code": null, "user": "DmitryRyumin", "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🚀 Added to the Facial Expressions Recognition Collection: ", "raw": "🚀 Added to the Facial Expressions Recognition Collection: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/DmitryRyumin/facial-expressions-recognition-65f22574e0724601636ddaf7", "href": null, "resource": { "type": "collection", "id": "DmitryRyumin/facial-expressions-recognition-65f22574e0724601636ddaf7", "discussionNum": null }, "url": "https://huggingface.co/collections/DmitryRyumin/facial-expressions-recognition-65f22574e0724601636ddaf7", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔍 Keywords: #AVCER #AudioVisual #CompoundExpressions #EmotionRecognition #ModalityFusion #RuleBasedAI #ABAWCompetition #AIResearch #HumanEmotion #IntelligentTools #MachineLearning #DeepLearning #MultiCorpus #CrossCorpus #CVPR2024", "raw": "🔍 Keywords: #AVCER #AudioVisual #CompoundExpressions #EmotionRecognition #ModalityFusion #RuleBasedAI #ABAWCompetition #AIResearch #HumanEmotion #IntelligentTools #MachineLearning #DeepLearning #MultiCorpus #CrossCorpus #CVPR2024", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
😀😲😐😡 New Research Alert - CVPRW 2024 (Facial Expressions Recognition Collection)! 😡😥🥴😱 📄 Title: Zero-Shot Audio-Visual Compound Expression Recognition Method based on Emotion Probability Fusion 🔝 📝 Description: AVCER is a novel audio-visual method for compound expression recognition based on pair-wise sum of emotion probability, evaluated in multi- and cross-corpus setups without task-specific training data, demonstrating its potential for intelligent emotion annotation tools. 👥 Authors: @ElenaRyumina, Maxim Markitantov, @DmitryRyumin, Heysem Kaya, and Alexey Karpov 📅 Conference: CVPRW, Jun 17-21, 2024 | Seattle WA, USA 🇺🇸 🤗 Demo: https://huggingface.co/spaces/ElenaRyumina/AVCER 📄 Paper: https://huggingface.co/papers/2403.12687 🌐 Github Page: https://elenaryumina.github.io/AVCER 📁 Repository: https://github.com/ElenaRyumina/AVCER/tree/main/src 🚀 CVPR-2023-24-Papers: https://github.com/DmitryRyumin/CVPR-2023-24-Papers 📚 More Papers: more cutting-edge research presented at other conferences in the https://huggingface.co/spaces/DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin 🚀 Added to the Facial Expressions Recognition Collection: https://huggingface.co/collections/DmitryRyumin/facial-expressions-recognition-65f22574e0724601636ddaf7 🔍 Keywords: #AVCER #AudioVisual #CompoundExpressions #EmotionRecognition #ModalityFusion #RuleBasedAI #ABAWCompetition #AIResearch #HumanEmotion #IntelligentTools #MachineLearning #DeepLearning #MultiCorpus #CrossCorpus #CVPR2024
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg", "fullname": "Dmitry Ryumin", "name": "DmitryRyumin", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 377, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/UNbpqwEUXN2V-UPJ0EqCe.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/BIeUqiLiHqbwfVvrrQvTD.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/UxZ1xbqzTsH-Z31RcCCOn.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/9pd9jIwi_A9s0SqEiCljT.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/gyWqBmR4uQHb3hDmGe1dJ.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/vHzFBC046zm59T_Cwm2Lw.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6493306970d925ae80523a53/5ziGKiP3eAZwK0P0O12sF.png" } ]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/nRCxbVng_PPBqKd-Z3KVc.jpeg", "fullname": "Dmitry Ryumin", "name": "DmitryRyumin", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 377 }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/yQDxSx0Il0jwma_u2UyJe.jpeg", "fullname": "Elena Ryumina", "name": "ElenaRyumina", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 15 } ]
[ { "reaction": "🚀", "users": [ "DmitryRyumin", "ElenaRyumina", "louisbrulenaudet", "victor", "osanseviero", "not-lain", "rreed-pha" ], "count": 7 }, { "reaction": "🤗", "users": [ "DmitryRyumin", "ElenaRyumina", "TaifAlrubeaan", "s3nh" ], "count": 4 }, { "reaction": "🔥", "users": [ "DmitryRyumin", "ElenaRyumina", "s3nh" ], "count": 3 }, { "reaction": "👍", "users": [ "adxalex", "waveydaveygravy" ], "count": 2 } ]
2024-06-11T12:14:18.000Z
2024-06-11T13:36:27.112Z
[]
/posts/DmitryRyumin/692698814184175
2,360
0
279169416150564
[ { "type": "text", "value": "appreciation post for ", "raw": "appreciation post for ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@osanseviero", "href": null, "resource": null, "url": null, "code": null, "user": "osanseviero", "label": null, "lang": null }, { "type": "text", "value": " + huggingface staff (", "raw": " + huggingface staff (", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@reach-vb", "href": null, "resource": null, "url": null, "code": null, "user": "reach-vb", "label": null, "lang": null }, { "type": "text", "value": " , ", "raw": " , ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@merve", "href": null, "resource": null, "url": null, "code": null, "user": "merve", "label": null, "lang": null }, { "type": "text", "value": " , many others many many others) , that fight hard for many weeks / months to fix the releases in many organisations to make it easier for us to test out so many things ... 🤗🤗🤗 thanks for that folks !", "raw": " , many others many many others) , that fight hard for many weeks / months to fix the releases in many organisations to make it easier for us to test out so many things ... 🤗🤗🤗 thanks for that folks !", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
appreciation post for @osanseviero + huggingface staff (@reach-vb , @merve , many others many many others) , that fight hard for many weeks / months to fix the releases in many organisations to make it easier for us to test out so many things ... 🤗🤗🤗 thanks for that folks !
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62a3bb1cd0d8c2c2169f0b88/eT2TS0IlQbZtz-F_zHLz9.jpeg", "fullname": "Joseph [open/acc] Pollack", "name": "Tonic", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 313, "isFollowing": false }
[]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5589 }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png", "fullname": "Omar Sanseviero", "name": "osanseviero", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2868 }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1655385361868-61b85ce86eb1f2c5e6233736.jpeg", "fullname": "Vaibhav Srivastav", "name": "reach-vb", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 460 } ]
[ { "reaction": "❤️", "users": [ "merve", "SixOpen", "osanseviero", "shamikbosefj", "beomi", "s3nh", "philipp-zettl", "louisbrulenaudet", "not-lain", "from-the-ashes" ], "count": 10 } ]
2024-06-11T11:24:48.000Z
2024-06-11T12:59:38.422Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5589, "isFollowing": false } ]
/posts/Tonic/279169416150564
2,480
1
330289940135868
[ { "type": "text", "value": "🚀 Excited to announce the release of our new research paper, \"LLAVAGUARD: VLM-based Safeguards for Vision Dataset Curation and Safety Assessment\"!", "raw": "🚀 Excited to announce the release of our new research paper, \"LLAVAGUARD: VLM-based Safeguards for Vision Dataset Curation and Safety Assessment\"!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "In this work, we introduce LLAVAGUARD, a family of cutting-edge Vision-Language Model (VLM) judges designed to enhance the safety and integrity of vision datasets and generative models. Our approach leverages flexible policies for assessing safety in diverse settings. This context awareness ensures robust data curation and model safeguarding alongside comprehensive safety assessments, setting a new standard for vision datasets and models. We provide three versions (7B, 13B, and 34B) and our data, see below. This achievement wouldn't have been possible without the incredible teamwork and dedication of my great colleagues ", "raw": "In this work, we introduce LLAVAGUARD, a family of cutting-edge Vision-Language Model (VLM) judges designed to enhance the safety and integrity of vision datasets and generative models. Our approach leverages flexible policies for assessing safety in diverse settings. This context awareness ensures robust data curation and model safeguarding alongside comprehensive safety assessments, setting a new standard for vision datasets and models. We provide three versions (7B, 13B, and 34B) and our data, see below. This achievement wouldn't have been possible without the incredible teamwork and dedication of my great colleagues ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@LukasHug", "href": null, "resource": null, "url": null, "code": null, "user": "LukasHug", "label": null, "lang": null }, { "type": "text", "value": " , ", "raw": " , ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@PSaiml", "href": null, "resource": null, "url": null, "code": null, "user": "PSaiml", "label": null, "lang": null }, { "type": "text", "value": " , ", "raw": " , ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@mbrack", "href": null, "resource": null, "url": null, "code": null, "user": "mbrack", "label": null, "lang": null }, { "type": "text", "value": " . 🙏 Together, we've pushed the boundaries of what’s possible at the intersection of large generative models and safety.", "raw": " . 🙏 Together, we've pushed the boundaries of what’s possible at the intersection of large generative models and safety.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔍 Dive into our paper to explore:", "raw": "🔍 Dive into our paper to explore:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Innovative methodologies for dataset curation and model safeguarding.", "raw": "Innovative methodologies for dataset curation and model safeguarding.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "State-of-the-art safety assessments.", "raw": "State-of-the-art safety assessments.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Practical implications for AI development and deployment.", "raw": "Practical implications for AI development and deployment.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Find more at ", "raw": "Find more at ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/AIML-TUDA/llavaguard-665b42e89803408ee8ec1086", "href": null, "resource": { "type": "collection", "id": "AIML-TUDA/llavaguard-665b42e89803408ee8ec1086", "discussionNum": null }, "url": "https://huggingface.co/collections/AIML-TUDA/llavaguard-665b42e89803408ee8ec1086", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " and ", "raw": " and ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://ml-research.github.io/human-centered-genai/projects/llavaguard/index.html", "href": "https://ml-research.github.io/human-centered-genai/projects/llavaguard/index.html", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
🚀 Excited to announce the release of our new research paper, "LLAVAGUARD: VLM-based Safeguards for Vision Dataset Curation and Safety Assessment"! In this work, we introduce LLAVAGUARD, a family of cutting-edge Vision-Language Model (VLM) judges designed to enhance the safety and integrity of vision datasets and generative models. Our approach leverages flexible policies for assessing safety in diverse settings. This context awareness ensures robust data curation and model safeguarding alongside comprehensive safety assessments, setting a new standard for vision datasets and models. We provide three versions (7B, 13B, and 34B) and our data, see below. This achievement wouldn't have been possible without the incredible teamwork and dedication of my great colleagues @LukasHug , @PSaiml , @mbrack . 🙏 Together, we've pushed the boundaries of what’s possible at the intersection of large generative models and safety. 🔍 Dive into our paper to explore: Innovative methodologies for dataset curation and model safeguarding. State-of-the-art safety assessments. Practical implications for AI development and deployment. Find more at https://huggingface.co/collections/AIML-TUDA/llavaguard-665b42e89803408ee8ec1086 and https://ml-research.github.io/human-centered-genai/projects/llavaguard/index.html
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62e7dd4036a8e8a82700041c/Dgk9mXYLVd4LpiNLWjn-q.jpeg", "fullname": "Felix Friedrich", "name": "felfri", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 8, "isFollowing": false }
[]
[ { "avatarUrl": "/avatars/52307c5b80f7ffecd14f942f88b0ecdf.svg", "fullname": "Lukas Helff", "name": "LukasHug", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 3 }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62fa1d95e8c9c532aa75331c/WFfk_n8gOj845pSkfdazA.jpeg", "fullname": "Manuel Brack", "name": "mbrack", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 11 }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62d021a3dd7bdfc5e5c61c5c/bnQW2SqirfGaQmI84HW_c.jpeg", "fullname": "Patrick Schramowski", "name": "PSaiml", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 4 } ]
[ { "reaction": "🚀", "users": [ "felfri", "LukasHug", "osanseviero", "NickyNicky", "SixOpen", "linoyts", "Ramikan-BR", "SilentWraith", "mbrack", "shimatar0" ], "count": 10 }, { "reaction": "👍", "users": [ "kap9911", "Ramikan-BR" ], "count": 2 } ]
2024-06-11T09:19:45.000Z
2024-06-11T13:35:29.032Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png", "fullname": "Omar Sanseviero", "name": "osanseviero", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2868, "isFollowing": false } ]
/posts/felfri/330289940135868
2,261
2
327837385579681
[ { "type": "text", "value": "Today we are introducing YaFSDP, Yandex’s tool for efficient distributed LLM training. YaFSDP can be used in conjunction with huggingface workflows and is up to 25% faster compared to FSDP.", "raw": "Today we are introducing YaFSDP, Yandex’s tool for efficient distributed LLM training. YaFSDP can be used in conjunction with huggingface workflows and is up to 25% faster compared to FSDP.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Learn more here: ", "raw": "Learn more here: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/yandex/YaFSDP", "href": "https://github.com/yandex/YaFSDP", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Today we are introducing YaFSDP, Yandex’s tool for efficient distributed LLM training. YaFSDP can be used in conjunction with huggingface workflows and is up to 25% faster compared to FSDP. Learn more here: https://github.com/yandex/YaFSDP
{ "avatarUrl": "/avatars/aa880f8154840d70c7ec7d75373b8a30.svg", "fullname": "Ruslan Vasilev", "name": "artnitolog", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 15, "isFollowing": false }
[]
[]
[ { "reaction": "👍", "users": [ "shikari7", "kap9911", "Tonic", "ikomarov", "mihaylovnikitos", "victor", "Chuanming", "osanseviero", "leidernicht", "kristaller486", "Viac", "Dimaspidor", "FabioJJ" ], "count": 13 }, { "reaction": "🔥", "users": [ "leidernicht" ], "count": 1 } ]
2024-06-11T09:02:01.000Z
2024-06-11T09:02:01.049Z
[]
/posts/artnitolog/327837385579681
2,057
0
129292371593982
[ { "type": "text", "value": "I propose a novel approach to training large language models (LLMs), inspired by the layered learning process observed in humans. Instead of training on all data simultaneously, this method would introduce increasingly complex information in stages, prioritizing foundational knowledge and relevance to the modern world. This \"back-to-front\" training approach could potentially improve the efficiency and effectiveness of LLM training. I've outlined the concept in more detail in this Gist:", "raw": "I propose a novel approach to training large language models (LLMs), inspired by the layered learning process observed in humans. Instead of training on all data simultaneously, this method would introduce increasingly complex information in stages, prioritizing foundational knowledge and relevance to the modern world. This \"back-to-front\" training approach could potentially improve the efficiency and effectiveness of LLM training. I've outlined the concept in more detail in this Gist:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " ", "raw": " ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://gist.github.com/SMeyersMrOvkill/14ff37ffb955831897b177fb3d2d540e", "href": "https://gist.github.com/SMeyersMrOvkill/14ff37ffb955831897b177fb3d2d540e", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ".", "raw": ".", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "While the core idea and solutions presented in the Gist are my own, I'd like to acknowledge the valuable assistance I received from a language model in refining the presentation of this concept, making it clearer and more engaging for the community. I'm eager to hear your thoughts and feedback!", "raw": "While the core idea and solutions presented in the Gist are my own, I'd like to acknowledge the valuable assistance I received from a language model in refining the presentation of this concept, making it clearer and more engaging for the community. I'm eager to hear your thoughts and feedback!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
I propose a novel approach to training large language models (LLMs), inspired by the layered learning process observed in humans. Instead of training on all data simultaneously, this method would introduce increasingly complex information in stages, prioritizing foundational knowledge and relevance to the modern world. This "back-to-front" training approach could potentially improve the efficiency and effectiveness of LLM training. I've outlined the concept in more detail in this Gist: https://gist.github.com/SMeyersMrOvkill/14ff37ffb955831897b177fb3d2d540e. While the core idea and solutions presented in the Gist are my own, I'd like to acknowledge the valuable assistance I received from a language model in refining the presentation of this concept, making it clearer and more engaging for the community. I'm eager to hear your thoughts and feedback!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/652ff5ee7aab9cfb619400bf/cIdrUic40uXoRbAylFiM8.png", "fullname": "Samuel L Meyers", "name": "MrOvkill", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 31, "isFollowing": false }
[]
[]
[]
2024-06-11T08:46:58.000Z
2024-06-11T08:46:58.781Z
[]
/posts/MrOvkill/129292371593982
738
0
560425192506443
[ { "type": "text", "value": "Hey Hugging Face Community 🤗", "raw": "Hey Hugging Face Community 🤗", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "I'm excited to share my latest project that combines my passion for deep learning and racing cars. I recently created a simple method to predict Formula 1 lap times using machine learning . This is the first solution of its kind in the open-source community, and I'm thrilled to present it to you all.", "raw": "I'm excited to share my latest project that combines my passion for deep learning and racing cars. I recently created a simple method to predict Formula 1 lap times using machine learning . This is the first solution of its kind in the open-source community, and I'm thrilled to present it to you all.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🏎️ The project leverages historical telemetry data to predict lap times, providing a new tool for race strategy and performance analysis. You can check out the notebook on Kaggle here ", "raw": "🏎️ The project leverages historical telemetry data to predict lap times, providing a new tool for race strategy and performance analysis. You can check out the notebook on Kaggle here ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://www.kaggle.com/code/lucasdraichi/hamilton-lap-time-prediction", "href": "https://www.kaggle.com/code/lucasdraichi/hamilton-lap-time-prediction", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": " and see the detailed breakdown of the model and its predictions.", "raw": " and see the detailed breakdown of the model and its predictions.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "I invite you all to take a look at the lap time predictor, provide feedback, and join the discussion. Your insights and participation would be invaluable as we continue to develop and enhance these tools.", "raw": "I invite you all to take a look at the lap time predictor, provide feedback, and join the discussion. Your insights and participation would be invaluable as we continue to develop and enhance these tools.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Let's push the boundaries of what's possible with AI in motorsports together!", "raw": "Let's push the boundaries of what's possible with AI in motorsports together!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Hey Hugging Face Community 🤗 I'm excited to share my latest project that combines my passion for deep learning and racing cars. I recently created a simple method to predict Formula 1 lap times using machine learning . This is the first solution of its kind in the open-source community, and I'm thrilled to present it to you all. 🏎️ The project leverages historical telemetry data to predict lap times, providing a new tool for race strategy and performance analysis. You can check out the notebook on Kaggle here https://www.kaggle.com/code/lucasdraichi/hamilton-lap-time-prediction and see the detailed breakdown of the model and its predictions. I invite you all to take a look at the lap time predictor, provide feedback, and join the discussion. Your insights and participation would be invaluable as we continue to develop and enhance these tools. Let's push the boundaries of what's possible with AI in motorsports together!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65282ccb591c20f2dec4e31c/vF5NUi52zVcBdHloXLzXF.jpeg", "fullname": "Lucas Draichi", "name": "Draichi", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 11, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65282ccb591c20f2dec4e31c/v0LT564RzTMzKy5LC9vML.png" } ]
[]
[ { "reaction": "🤗", "users": [ "Draichi", "s3nh", "Ramikan-BR", "Tonic", "osanseviero", "Joseph717171", "raincandy-u", "lunarflu" ], "count": 8 }, { "reaction": "🔥", "users": [ "Ramikan-BR", "Tonic", "Joseph717171", "catastropiyush", "lunarflu" ], "count": 5 }, { "reaction": "🚀", "users": [ "Ramikan-BR", "Tonic", "louisbrulenaudet", "Joseph717171", "lunarflu" ], "count": 5 }, { "reaction": "👀", "users": [ "Ramikan-BR", "Tonic", "Joseph717171", "lunarflu" ], "count": 4 }, { "reaction": "👍", "users": [ "AMfeta99", "Joseph717171", "lunarflu" ], "count": 3 } ]
2024-06-11T04:06:42.000Z
2024-06-13T07:43:46.893Z
[ { "avatarUrl": "/avatars/6913414828cac50f528fd8bef69dcdb4.svg", "fullname": "Adi", "name": "GameBoy12", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png", "fullname": "Omar Sanseviero", "name": "osanseviero", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2868, "isFollowing": false } ]
/posts/Draichi/560425192506443
2,273
3
545887980065525
[ { "type": "text", "value": "🤖 Would you like to chat with Groq, Anthropic, OpenAI and Cohere models? Now you can comfortably do it on Hugging Face Spaces!", "raw": "🤖 Would you like to chat with Groq, Anthropic, OpenAI and Cohere models? Now you can comfortably do it on Hugging Face Spaces!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "💬 I'm thrilled to introduce you: ", "raw": "💬 I'm thrilled to introduce you: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/as-cle-bert/chat-with-em", "href": null, "resource": { "type": "space", "id": "as-cle-bert/chat-with-em", "discussionNum": null }, "url": "https://huggingface.co/spaces/as-cle-bert/chat-with-em", "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": ", the Space that lets you build a customizable chat model by specifying system instructions, temperature and maximum number of output tokens", "raw": ", the Space that lets you build a customizable chat model by specifying system instructions, temperature and maximum number of output tokens", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🦜🔗 Thanks to LangChain, you can easily choose and switch among Claude models, Command-R, GPT-3.5, GPT-4o, Llama-3-8B, Llama-3-70B and Mixtral 8x7b: you just need to provide an API key!", "raw": "🦜🔗 Thanks to LangChain, you can easily choose and switch among Claude models, Command-R, GPT-3.5, GPT-4o, Llama-3-8B, Llama-3-70B and Mixtral 8x7b: you just need to provide an API key!", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Enjoy!🤗", "raw": "Enjoy!🤗", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
🤖 Would you like to chat with Groq, Anthropic, OpenAI and Cohere models? Now you can comfortably do it on Hugging Face Spaces! 💬 I'm thrilled to introduce you: https://huggingface.co/spaces/as-cle-bert/chat-with-em, the Space that lets you build a customizable chat model by specifying system instructions, temperature and maximum number of output tokens 🦜🔗 Thanks to LangChain, you can easily choose and switch among Claude models, Command-R, GPT-3.5, GPT-4o, Llama-3-8B, Llama-3-70B and Mixtral 8x7b: you just need to provide an API key! Enjoy!🤗
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65e330e7edc2f7306e252448/ucpk9c8x0UafGM4mXTrRy.jpeg", "fullname": "Astra Clelia Bertelli", "name": "as-cle-bert", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 650, "isFollowing": false }
[]
[]
[ { "reaction": "🚀", "users": [ "victor" ], "count": 1 } ]
2024-06-10T21:52:05.000Z
2024-06-10T21:59:20.542Z
[]
/posts/as-cle-bert/545887980065525
1,325
0
946492067786718
[ { "type": "text", "value": "Researchers at Carnegie Mellon University have introduced Sotopia, a platform designed to evaluate and enhance AI’s social capabilities. Sotopia focuses on assessing AI’s performance in goal-oriented social interactions, like collaboration, negotiation, and competition. ", "raw": "Researchers at Carnegie Mellon University have introduced Sotopia, a platform designed to evaluate and enhance AI’s social capabilities. Sotopia focuses on assessing AI’s performance in goal-oriented social interactions, like collaboration, negotiation, and competition. ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔍 Key Findings:", "raw": "🔍 Key Findings:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Performance Evaluation: The platform enables testing and comparison of different AI systems, with a specific emphasis on refining Mistral-7B. 🛠️", "raw": "Performance Evaluation: The platform enables testing and comparison of different AI systems, with a specific emphasis on refining Mistral-7B. 🛠️", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Benchmarking: Sotopia uses GPT-4 as a benchmark to evaluate other AI systems’ capabilities. 📏", "raw": "Benchmarking: Sotopia uses GPT-4 as a benchmark to evaluate other AI systems’ capabilities. 📏", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🔧 Technical Points:", "raw": "🔧 Technical Points:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Foundation: Sotopia builds upon Mistral-7B, focusing on behavior cloning and self-reinforcement. 🏗️", "raw": "Foundation: Sotopia builds upon Mistral-7B, focusing on behavior cloning and self-reinforcement. 🏗️", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Multi-Dimensional Assessment: Sotopia evaluates AI performance across 7 social dimensions, including believability, adherence to social norms, and successful goal completion. 🌐", "raw": "Multi-Dimensional Assessment: Sotopia evaluates AI performance across 7 social dimensions, including believability, adherence to social norms, and successful goal completion. 🌐", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Data Collection: The platform gathers data from human-human, human-AI, and AI-AI interactions. 📂", "raw": "Data Collection: The platform gathers data from human-human, human-AI, and AI-AI interactions. 📂", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Sotopia Project Page: ", "raw": "Sotopia Project Page: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://www.sotopia.world/", "href": "https://www.sotopia.world/", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Check out the HF space here: ", "raw": "Check out the HF space here: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/cmu-lti/sotopia-space", "href": null, "resource": { "type": "space", "id": "cmu-lti/sotopia-space", "discussionNum": null }, "url": "https://huggingface.co/spaces/cmu-lti/sotopia-space", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Additional details are in the HF Collection: ", "raw": "Additional details are in the HF Collection: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/cmu-lti/sotopia-65f312c1bd04a8c4a9225e5b", "href": null, "resource": { "type": "collection", "id": "cmu-lti/sotopia-65f312c1bd04a8c4a9225e5b", "discussionNum": null }, "url": "https://huggingface.co/collections/cmu-lti/sotopia-65f312c1bd04a8c4a9225e5b", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Researchers at Carnegie Mellon University have introduced Sotopia, a platform designed to evaluate and enhance AI’s social capabilities. Sotopia focuses on assessing AI’s performance in goal-oriented social interactions, like collaboration, negotiation, and competition. 🔍 Key Findings: Performance Evaluation: The platform enables testing and comparison of different AI systems, with a specific emphasis on refining Mistral-7B. 🛠️ Benchmarking: Sotopia uses GPT-4 as a benchmark to evaluate other AI systems’ capabilities. 📏 🔧 Technical Points: Foundation: Sotopia builds upon Mistral-7B, focusing on behavior cloning and self-reinforcement. 🏗️ Multi-Dimensional Assessment: Sotopia evaluates AI performance across 7 social dimensions, including believability, adherence to social norms, and successful goal completion. 🌐 Data Collection: The platform gathers data from human-human, human-AI, and AI-AI interactions. 📂 Sotopia Project Page: https://www.sotopia.world/ Check out the HF space here: https://huggingface.co/spaces/cmu-lti/sotopia-space Additional details are in the HF Collection: https://huggingface.co/collections/cmu-lti/sotopia-65f312c1bd04a8c4a9225e5b
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641b754d1911d3be6745cce9/GXN8mEmaq3rfITRrw7GeZ.jpeg", "fullname": "atayloraerospace", "name": "Taylor658", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 76, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/641b754d1911d3be6745cce9/-66K4XpT8CWp3aMXSryS2.png" } ]
[]
[ { "reaction": "👍", "users": [ "Tonic", "kap9911", "victor", "hamaHedi" ], "count": 4 }, { "reaction": "👀", "users": [ "osanseviero" ], "count": 1 } ]
2024-06-10T19:31:01.000Z
2024-06-10T19:45:03.153Z
[]
/posts/Taylor658/946492067786718
2,532
0
478048459969517
[ { "type": "text", "value": "🦾 Hello, I present Visionix Alpha - a new hyper-realistic model based on SDXL. The main difference from all existing realism models is the attention to detail, that is, I improved not only hyperrealism, but also the overall aesthetics, anatomy, the beauty of nature, and more, and the model also has the most different faces. This model is suitable not only for realistic photos, but also for generating 2.5d anime, realistic cartoons and more.", "raw": "🦾 Hello, I present Visionix Alpha - a new hyper-realistic model based on SDXL. The main difference from all existing realism models is the attention to detail, that is, I improved not only hyperrealism, but also the overall aesthetics, anatomy, the beauty of nature, and more, and the model also has the most different faces. This model is suitable not only for realistic photos, but also for generating 2.5d anime, realistic cartoons and more.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🤗 Model on HF: ", "raw": "🤗 Model on HF: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/ehristoforu/Visionix-alpha", "href": null, "resource": { "type": "model", "id": "ehristoforu/Visionix-alpha", "discussionNum": null }, "url": "https://huggingface.co/ehristoforu/Visionix-alpha", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🥏 Model on CivitAI: ", "raw": "🥏 Model on CivitAI: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://civitai.com/models/505719", "href": "https://civitai.com/models/505719", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🪄 Playground (with base and inpaint model): ", "raw": "🪄 Playground (with base and inpaint model): ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/ehristoforu/Visionix-Playground", "href": null, "resource": { "type": "space", "id": "ehristoforu/Visionix-Playground", "discussionNum": null }, "url": "https://huggingface.co/spaces/ehristoforu/Visionix-Playground", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "✏️ Inpaint version on HF: ", "raw": "✏️ Inpaint version on HF: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/ehristoforu/Visionix-alpha-inpainting", "href": null, "resource": { "type": "model", "id": "ehristoforu/Visionix-alpha-inpainting", "discussionNum": null }, "url": "https://huggingface.co/ehristoforu/Visionix-alpha-inpainting", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🖋️ Inpaint version on CivitAI: ", "raw": "🖋️ Inpaint version on CivitAI: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://civitai.com/models/505719?modelVersionId=563519", "href": "https://civitai.com/models/505719?modelVersionId=563519", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
🦾 Hello, I present Visionix Alpha - a new hyper-realistic model based on SDXL. The main difference from all existing realism models is the attention to detail, that is, I improved not only hyperrealism, but also the overall aesthetics, anatomy, the beauty of nature, and more, and the model also has the most different faces. This model is suitable not only for realistic photos, but also for generating 2.5d anime, realistic cartoons and more. 🤗 Model on HF: https://huggingface.co/ehristoforu/Visionix-alpha 🥏 Model on CivitAI: https://civitai.com/models/505719 🪄 Playground (with base and inpaint model): https://huggingface.co/spaces/ehristoforu/Visionix-Playground ✏️ Inpaint version on HF: https://huggingface.co/ehristoforu/Visionix-alpha-inpainting 🖋️ Inpaint version on CivitAI: https://civitai.com/models/505719?modelVersionId=563519
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/o-5N9QyjHgmSMk69e3O55.png", "fullname": "Evgeniy Hristoforu", "name": "ehristoforu", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 235, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/EpPcSIEwubhOgfYIaW3wM.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/I48PGuYZGkOwYPzvkzDbX.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/PUxDiZm4q7Pp0Vv8L_0uc.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/flymH1SKLnIlmwzygQXeF.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/B030BsJqool_ZaP5c13rt.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/86AXTRtvTWI7J6ndYH2vh.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/3o-YGru3g4R3JDLFEJT3U.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/lfdGLE7aK09MHqJSxmhJ5.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/XdvApPLlZkod-h77fEt2e.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/XZtwGwm1c1hglxqV0ZQGB.jpeg" } ]
[]
[ { "reaction": "🔥", "users": [ "ehristoforu", "jgitsolutions", "Martins6", "Kushagra-777", "KingNish", "Delik", "hsh20171030", "lxe" ], "count": 8 }, { "reaction": "❤️", "users": [ "ehristoforu", "ijohn07", "cantbesubh", "hsh20171030", "KhalidKarami" ], "count": 5 }, { "reaction": "👍", "users": [ "ehristoforu", "louisbrulenaudet" ], "count": 2 }, { "reaction": "🚀", "users": [ "ehristoforu", "hsh20171030" ], "count": 2 }, { "reaction": "🤗", "users": [ "ehristoforu" ], "count": 1 } ]
2024-06-10T17:10:33.000Z
2024-06-11T09:16:59.842Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65af0a0da560bc9329dc2daf/pLNxJNw4xkgDNahgmqFwH.jpeg", "fullname": "ijohn free life", "name": "ijohn07", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 37, "isFollowing": false } ]
/posts/ehristoforu/478048459969517
3,860
1
299240947014348
[ { "type": "text", "value": "Here is a thought, instead of telling LLMs what to do, show them! 🎭", "raw": "Here is a thought, instead of telling LLMs what to do, show them! 🎭", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Language models are aligned to emulate the collective voice of many, resulting in outputs that align with no one in particular. 🗣️🌍", "raw": "Language models are aligned to emulate the collective voice of many, resulting in outputs that align with no one in particular. 🗣️🌍", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "DITTO from Stanford University proposes that LLMs can be tuned with less than 10 samples! 🤯", "raw": "DITTO from Stanford University proposes that LLMs can be tuned with less than 10 samples! 🤯", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "What's DITTO? Demonstration ITerated Task Optimization (definitely came up with the acronym first! 😂)", "raw": "What's DITTO? Demonstration ITerated Task Optimization (definitely came up with the acronym first! 😂)", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Here is the step-by-step implementation: 🛠️", "raw": "Here is the step-by-step implementation: 🛠️", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Initialization: Start with a reference language model (LM), a set of expert demonstrations, a sample size, and a frequency of sampling. 🏁", "raw": "Initialization: Start with a reference language model (LM), a set of expert demonstrations, a sample size, and a frequency of sampling. 🏁", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Supervised Fine-Tuning (SFT): Begin by fine-tuning the reference LM on the set of expert demonstrations to create an initial policy P0. 🎚️", "raw": "Supervised Fine-Tuning (SFT): Begin by fine-tuning the reference LM on the set of expert demonstrations to create an initial policy P0. 🎚️", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Iterative Comparison Sampling: For each iteration t:", "raw": "Iterative Comparison Sampling: For each iteration t:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Sample multiple completions from the policy Pt for each demonstration to create a new dataset Dt.", "raw": "Sample multiple completions from the policy Pt for each demonstration to create a new dataset Dt.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Construct a batch of comparisons where the demonstrations are ranked higher than all sampled model outputs from the current and previous iterations. 🔄", "raw": "Construct a batch of comparisons where the demonstrations are ranked higher than all sampled model outputs from the current and previous iterations. 🔄", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Policy Update:", "raw": "Policy Update:", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Update the policy Pt using a Direct Preference Optimization (DPO) algorithm, which incorporates feedback from the batch of comparisons.", "raw": "Update the policy Pt using a Direct Preference Optimization (DPO) algorithm, which incorporates feedback from the batch of comparisons.", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Increment the iteration and repeat the sampling and updating process until convergence. ⏭️", "raw": "Increment the iteration and repeat the sampling and updating process until convergence. ⏭️", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Result: The final policy P after sufficient iterations aligns more closely with the expert demonstrations, effectively tuning the LM to reflect user-specific preferences and behaviors. 🎯", "raw": "Result: The final policy P after sufficient iterations aligns more closely with the expert demonstrations, effectively tuning the LM to reflect user-specific preferences and behaviors. 🎯", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "DITTO outperforms few-shot prompting. 🚀", "raw": "DITTO outperforms few-shot prompting. 🚀", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Paper: ", "raw": "Paper: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2406.00888", "href": null, "resource": { "type": "paper", "id": "2406.00888", "discussionNum": null }, "url": "https://huggingface.co/papers/2406.00888", "code": null, "user": null, "label": "Show, Don't Tell: Aligning Language Models with Demonstrated Feedback (2406.00888)", "lang": null }, { "type": "text", "value": " 📄", "raw": " 📄", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Here is a thought, instead of telling LLMs what to do, show them! 🎭 Language models are aligned to emulate the collective voice of many, resulting in outputs that align with no one in particular. 🗣️🌍 DITTO from Stanford University proposes that LLMs can be tuned with less than 10 samples! 🤯 What's DITTO? Demonstration ITerated Task Optimization (definitely came up with the acronym first! 😂) Here is the step-by-step implementation: 🛠️ Initialization: Start with a reference language model (LM), a set of expert demonstrations, a sample size, and a frequency of sampling. 🏁 Supervised Fine-Tuning (SFT): Begin by fine-tuning the reference LM on the set of expert demonstrations to create an initial policy P0. 🎚️ Iterative Comparison Sampling: For each iteration t: Sample multiple completions from the policy Pt for each demonstration to create a new dataset Dt. Construct a batch of comparisons where the demonstrations are ranked higher than all sampled model outputs from the current and previous iterations. 🔄 Policy Update: Update the policy Pt using a Direct Preference Optimization (DPO) algorithm, which incorporates feedback from the batch of comparisons. Increment the iteration and repeat the sampling and updating process until convergence. ⏭️ Result: The final policy P after sufficient iterations aligns more closely with the expert demonstrations, effectively tuning the LM to reflect user-specific preferences and behaviors. 🎯 DITTO outperforms few-shot prompting. 🚀 Paper: https://huggingface.co/papers/2406.00888 📄
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png", "fullname": "Kuldeep Singh Sidhu", "name": "singhsidhukuldeep", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 219, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/JARYlXl81oH5WrKXT80LF.jpeg" } ]
[]
[ { "reaction": "🔥", "users": [ "osanseviero", "GPT007", "graphicaldot", "DavidGF" ], "count": 4 }, { "reaction": "👍", "users": [ "pduf", "kap9911" ], "count": 2 }, { "reaction": "🤝", "users": [ "pduf" ], "count": 1 }, { "reaction": "😔", "users": [ "pduf" ], "count": 1 }, { "reaction": "🤗", "users": [ "Tonic" ], "count": 1 } ]
2024-06-09T23:30:34.000Z
2024-06-09T23:30:34.460Z
[]
/posts/singhsidhukuldeep/299240947014348
3,181
0
822789934095847
[ { "type": "text", "value": "Introducing Whisper WebGPU: Blazingly-fast ML-powered speech recognition directly in your browser! 🚀 It supports multilingual transcription and translation across 100 languages! 🤯", "raw": "Introducing Whisper WebGPU: Blazingly-fast ML-powered speech recognition directly in your browser! 🚀 It supports multilingual transcription and translation across 100 languages! 🤯", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The model runs locally, meaning no data leaves your device! 😍", "raw": "The model runs locally, meaning no data leaves your device! 😍", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Check it out! 👇", "raw": "Check it out! 👇", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- Demo: ", "raw": "- Demo: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/Xenova/whisper-webgpu", "href": null, "resource": { "type": "space", "id": "Xenova/whisper-webgpu", "discussionNum": null }, "url": "https://huggingface.co/spaces/Xenova/whisper-webgpu", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "- Source code: ", "raw": "- Source code: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/xenova/whisper-web/tree/experimental-webgpu", "href": "https://github.com/xenova/whisper-web/tree/experimental-webgpu", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Introducing Whisper WebGPU: Blazingly-fast ML-powered speech recognition directly in your browser! 🚀 It supports multilingual transcription and translation across 100 languages! 🤯 The model runs locally, meaning no data leaves your device! 😍 Check it out! 👇 - Demo: https://huggingface.co/spaces/Xenova/whisper-webgpu - Source code: https://github.com/xenova/whisper-web/tree/experimental-webgpu
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61b253b7ac5ecaae3d1efe0c/hwiQ0uvz3t-L5a-NtBIO6.png", "fullname": "Joshua", "name": "Xenova", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 3792, "isFollowing": false }
[ { "type": "video", "url": "https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/6Ra5WhXe4vhRRYLZ1CGwA.mp4" } ]
[]
[ { "reaction": "🔥", "users": [ "Best-codes", "radames", "pimenov", "Mathieu1979", "sandorkonya", "catastropiyush", "victor", "taufiqdp", "osanseviero", "abdullah", "kramp", "graphicaldot", "nktu1", "SixOpen", "Angelwin", "sds20", "rios-ai", "Martins6", "shubham24", "Taylor658", "Qwertic", "sigrlami", "Evansmills1", "joamag", "mfeldman143", "abdoeid", "hammeiam", "cahya", "gerred", "vladholubiev" ], "count": 30 }, { "reaction": "❤️", "users": [ "ijohn07", "JohnyFive", "dillfrescott", "zacksiri", "BoscoTheDog", "victor", "osanseviero", "nktu1", "davidmoore-io", "SixOpen", "Martins6", "louisbrulenaudet" ], "count": 12 }, { "reaction": "🚀", "users": [ "Best-codes", "radames", "Mathieu1979", "hushell", "victor", "osanseviero", "nktu1", "Martins6" ], "count": 8 }, { "reaction": "🤗", "users": [ "praeclarum", "victor", "nktu1" ], "count": 3 } ]
2024-06-09T18:01:39.000Z
2024-06-15T22:50:03.841Z
[ { "avatarUrl": "/avatars/27f87fb1fb957f8f4267398b37168e42.svg", "fullname": "Nigel Powell", "name": "ntp777", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false }, { "avatarUrl": "/avatars/2d2164d9bdd9a917573892426766b501.svg", "fullname": "David Moore", "name": "davidmoore-io", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/GAdZkV_K8hen5pRw6D7B8.png", "fullname": "Best Codes", "name": "Best-codes", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 5, "isFollowing": false }, { "avatarUrl": "/avatars/3bd7aa1826b3e21d11f6c16ed785924b.svg", "fullname": "Neil Stoker ", "name": "nmstoker", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 4, "isFollowing": false }, { "avatarUrl": "/avatars/369df3497b78e198273976c89996dc1f.svg", "fullname": "David Hamme", "name": "hammeiam", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "/avatars/48e8459dcefd19585d52e05aebf056af.svg", "fullname": "Chaos", "name": "chaosbasicly", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/Xenova/822789934095847
10,172
7
548490610509545
[ { "type": "text", "value": "Upgraded our Image generation application with new Gradio infrastructure: ", "raw": "Upgraded our Image generation application with new Gradio infrastructure: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/sourceoftruthdata/sot_autotrain_dreambooth_v1.1", "href": null, "resource": { "type": "space", "id": "sourceoftruthdata/sot_autotrain_dreambooth_v1.1", "discussionNum": null }, "url": "https://huggingface.co/spaces/sourceoftruthdata/sot_autotrain_dreambooth_v1.1", "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "🙂", "raw": "🙂", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null } ]
Upgraded our Image generation application with new Gradio infrastructure: https://huggingface.co/spaces/sourceoftruthdata/sot_autotrain_dreambooth_v1.1 🙂
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/IPtQulJIe7DlzL3GT5LOk.png", "fullname": "Source of Truth Data Labs", "name": "sourceoftruthdata", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 10, "isFollowing": false }
[]
[]
[ { "reaction": "🚀", "users": [ "osanseviero" ], "count": 1 }, { "reaction": "👍", "users": [ "ijohn07" ], "count": 1 } ]
2024-06-09T17:36:38.000Z
2024-06-09T17:36:38.816Z
[]
/posts/sourceoftruthdata/548490610509545
2,350
0
939903038463273
[ { "type": "text", "value": "🔔 Release: small-text v1.4.0", "raw": "🔔 Release: small-text v1.4.0", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "The new version provides a small-text-compatible implementation for the recent AnchorAL strategy by ", "raw": "The new version provides a small-text-compatible implementation for the recent AnchorAL strategy by ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "mention", "value": null, "raw": "@pietrolesci", "href": null, "resource": null, "url": null, "code": null, "user": "pietrolesci", "label": null, "lang": null }, { "type": "text", "value": ".", "raw": ".", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Github: ", "raw": "Github: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://github.com/webis-de/small-text", "href": "https://github.com/webis-de/small-text", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "Paper: ", "raw": "Paper: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "link", "value": null, "raw": "https://aclanthology.org/2023.eacl-demo.11/", "href": "https://aclanthology.org/2023.eacl-demo.11/", "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "new_line", "value": null, "raw": "\n", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "text", "value": "AnchorAL: ", "raw": "AnchorAL: ", "href": null, "resource": null, "url": null, "code": null, "user": null, "label": null, "lang": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2404.05623", "href": null, "resource": { "type": "paper", "id": "2404.05623", "discussionNum": null }, "url": "https://huggingface.co/papers/2404.05623", "code": null, "user": null, "label": "AnchorAL: Computationally Efficient Active Learning for Large and\n Imbalanced Datasets (2404.05623)", "lang": null } ]
🔔 Release: small-text v1.4.0 The new version provides a small-text-compatible implementation for the recent AnchorAL strategy by @pietrolesci. Github: https://github.com/webis-de/small-text Paper: https://aclanthology.org/2023.eacl-demo.11/ AnchorAL: https://huggingface.co/papers/2404.05623
{ "avatarUrl": "/avatars/f32291df2054c1bb4a01889d1b41c0d5.svg", "fullname": "Christopher Schröder", "name": "cschroeder", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 18, "isFollowing": false }
[]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61927a5329a3ab51aa2417c5/0BL0-SdpodzNfcn4Ci4VB.png", "fullname": "Pietro Lesci", "name": "pietrolesci", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 12 } ]
[ { "reaction": "🚀", "users": [ "osanseviero" ], "count": 1 } ]
2024-06-09T13:12:51.000Z
2024-06-09T13:12:51.690Z
[]
/posts/cschroeder/939903038463273
1,470
0