metadata
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: transcripts
dtype: string
- name: input_features
sequence:
sequence: float32
- name: labels
sequence: int64
splits:
- name: train
num_bytes: 51771863183.692795
num_examples: 45045
- name: test
num_bytes: 6471913899.1536045
num_examples: 5631
- name: valid
num_bytes: 6471913899.1536045
num_examples: 5631
download_size: 21995215147
dataset_size: 64715690982
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: valid
path: data/valid-*
컬럼 제거가 필요해요.
- 로컬 컴퓨터에서, 다음 코드를 통해 작성했어요.
# !pip install -U accelerate
# !pip install -U transformers
# !pip install datasets
# !pip install evaluate
# !pip install mlflow
# !pip install transformers[torch]
# !pip install jiwer
# !pip install nlptutti
import os
import json
from pydub import AudioSegment
from tqdm import tqdm
import re
from datasets import Audio, Dataset, DatasetDict, load_from_disk, concatenate_datasets
from transformers import WhisperFeatureExtractor, WhisperTokenizer
import pandas as pd
import shutil
# 사용자 지정 변수를 설정해요.
output_dir = './set_4' # 가공된 데이터셋이 저장될 폴더
token = "hf_" # 허깅페이스 토큰
CACHE_DIR = './.cache' # 허깅페이스 캐시 저장소 지정
dataset_name = "maxseats/aihub-464-preprocessed-680GB-set-4" # 허깅페이스에 올라갈 데이터셋 이름
model_name = "SungBeom/whisper-small-ko" # 대상 모델 / "openai/whisper-base"
batch_size = 2000 # 배치사이즈 지정, 8000이면 에러 발생
os.environ['HF_DATASETS_CACHE'] = CACHE_DIR
'''
가공된 mp3, txt 데이터를 학습 가능한 허깅페이스 데이터셋 형태로 변환해요.
'''
# 캐시 디렉토리 설정
os.environ['HF_HOME'] = CACHE_DIR
os.environ["HF_DATASETS_CACHE"] = CACHE_DIR
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_name, cache_dir=CACHE_DIR)
tokenizer = WhisperTokenizer.from_pretrained(model_name, language="Korean", task="transcribe", cache_dir=CACHE_DIR)
def exclude_json_files(file_names: list) -> list:
# .json으로 끝나는 원소 제거
return [file_name for file_name in file_names if not file_name.endswith('.json')]
def get_label_list(directory):
# 빈 리스트 생성
label_files = []
# 디렉토리 내 파일 목록 불러오기
for filename in os.listdir(directory):
# 파일 이름이 '.txt'로 끝나는지 확인
if filename.endswith('.txt'):
label_files.append(os.path.join(directory, filename))
return label_files
def get_audio_list(directory):
# 빈 리스트 생성
audio_files = []
# 디렉토리 내 파일 목록 불러오기
for filename in os.listdir(directory):
# 파일 이름이 '.wav'나 '.mp3'로 끝나는지 확인
if filename.endswith('.wav') or filename.endswith('mp3'):
audio_files.append(os.path.join(directory, filename))
return audio_files
def prepare_dataset(batch):
# 오디오 파일을 16kHz로 로드
audio = batch["audio"]
# input audio array로부터 log-Mel spectrogram 변환
batch["input_features"] = feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0]
# target text를 label ids로 변환
batch["labels"] = tokenizer(batch["transcripts"]).input_ids
# 'audio'와 'transcripts' 컬럼 제거
# del batch["audio"]
# del batch["transcripts"]
# 'input_features'와 'labels'만 포함한 새로운 딕셔너리 생성
return {"input_features": batch["input_features"], "labels": batch["labels"]}
label_data = get_label_list(output_dir)
audio_data = get_audio_list(output_dir)
transcript_list = []
for label in tqdm(label_data):
with open(label, 'r', encoding='UTF8') as f:
line = f.readline()
transcript_list.append(line)
df = pd.DataFrame(data=transcript_list, columns = ["transcript"]) # 정답 label
df['audio_data'] = audio_data # 오디오 파일 경로
# 오디오 파일 경로를 dict의 "audio" 키의 value로 넣고 이를 데이터셋으로 변환
# 이때, Whisper가 요구하는 사양대로 Sampling rate는 16,000으로 설정한다.
# 데이터셋 배치 처리
batches = []
print("len(df) : ", len(df))
for i in tqdm(range(0, len(df), batch_size), desc="Processing batches"):
batch_df = df.iloc[i:i+batch_size]
ds = Dataset.from_dict(
{"audio": [path for path in batch_df["audio_data"]],
"transcripts": [transcript for transcript in batch_df["transcript"]]}
).cast_column("audio", Audio(sampling_rate=16000))
batch_datasets = DatasetDict({"batch": ds})
batch_datasets = batch_datasets.map(prepare_dataset, num_proc=1)
batch_datasets.save_to_disk(os.path.join(CACHE_DIR, f'batch_{i//batch_size}'))
batches.append(os.path.join(CACHE_DIR, f'batch_{i//batch_size}'))
print(f"Processed and saved batch {i//batch_size}")
# 모든 배치 데이터셋 로드
loaded_batches = [load_from_disk(path) for path in batches]
# 배치 데이터셋을 하나로 병합
full_dataset = concatenate_datasets([batch['batch'] for batch in loaded_batches])
# 데이터셋을 훈련 데이터와 테스트 데이터, 밸리데이션 데이터로 분할
train_testvalid = full_dataset.train_test_split(test_size=0.2)
test_valid = train_testvalid["test"].train_test_split(test_size=0.5)
datasets = DatasetDict(
{"train": train_testvalid["train"],
"test": test_valid["test"],
"valid": test_valid["train"]}
)
# # 열 제거 전 데이터셋 크기 확인
# print(f"Dataset sizes before column removal: Train: {len(datasets['train'])}, Test: {len(datasets['test'])}, Valid: {len(datasets['valid'])}")
# datasets = datasets.remove_columns(['audio', 'transcripts']) # 불필요한 부분 제거
# # 열 제거 후 데이터셋 크기 확인
# print(f"Dataset sizes after column removal: Train: {len(datasets['train'])}, Test: {len(datasets['test'])}, Valid: {len(datasets['valid'])}")
# #datasets = datasets.remove_columns(['audio', 'transcripts']) # 불필요한 부분 제거
'''
허깅페이스 로그인 후, 최종 데이터셋을 업로드해요.
'''
while True:
if token =="exit":
break
try:
datasets.push_to_hub(dataset_name, token=token)
print(f"Dataset {dataset_name} pushed to hub successfully. 넘나 축하.")
break
except Exception as e:
print(f"Failed to push dataset: {e}")
token = input("Please enter your Hugging Face API token: ")
# 캐시 디렉토리 삭제
shutil.rmtree(CACHE_DIR)
print(f"Deleted cache directory: {CACHE_DIR}")