mumospee_small / mumospee_small.py
jayliqinzhang's picture
Upload mumospee_small.py with huggingface_hub
c55b167 verified
raw
history blame
5.81 kB
import csv
import os
import datasets
import pandas as pd
# Metadata
_DESCRIPTION = """\
Mumospee is a continuously growing, comprehensive, multilingual dataset across different modalities.
This is the small version include no more 1000 rows.
"""
_LICENSE = "Creative Commons Attribution 4.0 International"
_LANGUAGES = ["en", "bg", "de", "ar"]
_TAGS = ["CoVoST", "GigaSpeech", "peoples_speech", "Librispeech", "LibriTTS", "Emilia", "MOSEL"]
_SPLITS = ["train", "validation", "test"]
# BuilderConfig class for your dataset
class MumospeeDatasetConfig(datasets.BuilderConfig):
def __init__(self, split, language=None, tag=None, **kwargs):
super().__init__(**kwargs)
self.split=split
self.language = language
self.tag = tag
class MumospeeDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
# Define the available configurations (could be subsets like split or language)
BUILDER_CONFIGS = [
MumospeeDatasetConfig(
name="default",
version=datasets.Version("1.0.0"),
description=_DESCRIPTION,
split="train",
language=None,
tag=None
)
]
DEFAULT_CONFIG_NAME = "default"
def _info(self):
# Define the features of your dataset
features = datasets.Features({
"path": datasets.Value("string"),
"url": datasets.Value("string"),
"type": datasets.Value("string"),
"duration": datasets.Value("string"),
"language": datasets.Value("string"),
"transcript": datasets.Value("string"),
"tag": datasets.Value("string"),
"split": datasets.Value("string"),
"license": datasets.Value("string")
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
license=_LICENSE,
)
def _adapt_args(self, arg, accepted_arg):
"""
Adpat the input and make sure it outs as list
and all the elements within the list are accpeted.
"""
if arg:
if isinstance(arg, str):
adapted_arg = [arg]
else:
adapted_arg = arg
for aa in adapted_arg:
if aa not in accepted_arg:
raise ValueError(f"Invalid input: '{aa}'. Accepted values are: {', '.join(accepted_arg)}.")
else:
adapted_arg = accepted_arg
return adapted_arg
def _split_generators(self, dl_manager):
"""Split the dataset into train, validation, and test."""
# Your dataset might have specific splits like "train", "dev", "test"
splits = ["train", "validation", "test"]
csv_path = dl_manager.download_and_extract("dataset.csv")
# ===To download the url
# Load CSV to retrieve URLs for audio files
# data = pd.read_csv(csv_path)
# url_list = data["url"].tolist() # List of all URLs in the CSV file
# url_list = list(set(url_list))
# # Download all files listed in the 'url' column and store the local paths
# downloaded_files = dl_manager.download(url_list)
# # Add the downloaded file paths to the DataFrame to make them accessible in `_generate_examples`
# data["local_path"] = downloaded_files
#===
# Define the splits and pass the language and tag filters to _generate_examples
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": csv_path}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": csv_path}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": csv_path}
),
]
def _generate_examples(self, filepath):
data = pd.read_csv(filepath)
split = self.config.split
language = self.config.language
tag = self.config.tag
print(f'Return {split} dataset in langauge of {language}, originally from {tag}.')
data_split = data[data["split"] == split]
language_list = self._adapt_args(language, _LANGUAGES)
tag_list = self._adapt_args(tag, _TAGS)
print(f"Following langauges will be loaded: {language_list}")
print(f"Following dataset will be loaded: {tag_list}")
data_split = data_split[data_split["language"].isin(language_list)]
data_split = data_split[data_split["tag"].isin(tag_list)]
if data_split.empty:
print(f"No data found for split='{split}', language='{language}', tag='{tag}'. Returning None.")
return # This exits the generator without yielding any examples
else:
for i, row in data_split.iterrows():
yield i, {
"path": row["path"],
#"local_path": row["local_path"],
"url": row["url"],
"type": row["type"],
"duration": float(row["duration"]),
"language": row["language"],
"transcript": row["transcript"],
"tag": row["tag"],
"split": row["split"],
"license": row["license"]
}
def _download_audio(self, audio_url):
"""Download audio from a URL if needed (you could also implement streaming)."""
# This is an example function for downloading audio if it's needed
# You can integrate this within your data processing pipeline if required
pass