Datasets:
License:
import csv | |
import os | |
import datasets | |
import pandas as pd | |
from datasets import Split | |
# Metadata | |
_DESCRIPTION = """\ | |
Mumospee is a continuously growing, comprehensive, multilingual dataset across different modalities. | |
This is the small version include no more 1000 rows. | |
""" | |
_LICENSE = "cc0-1.0" | |
_LANGUAGES = ["en", "bg", "de", "ar", "fr"] | |
_TAGS = ["CoVoST", "GigaSpeech", "PeopleSpeech", "Librispeech", "LibriTTS", "Emilia", "MOSEL"] | |
_SPLITS = ["train", "validation", "test"] | |
# BuilderConfig class for your dataset | |
class MumospeeDatasetConfig(datasets.BuilderConfig): | |
def __init__(self, name, download_audio=None, language=None, tag=None, **kwargs): | |
super().__init__(**kwargs) | |
self.name = name | |
self.language = language | |
self.tag = tag | |
self.download_audio = download_audio | |
class MumospeeDataset(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
# Define the available configurations (could be subsets like split or language) | |
BUILDER_CONFIGS = [ | |
MumospeeDatasetConfig( | |
version=datasets.Version("1.0.0"), | |
description=_DESCRIPTION, | |
name="train", | |
download_audio=None, | |
language=None, | |
tag=None | |
), | |
MumospeeDatasetConfig( | |
version=datasets.Version("1.0.0"), | |
description=_DESCRIPTION, | |
name="test", | |
download_audio=None, | |
language=None, | |
tag=None | |
), | |
MumospeeDatasetConfig( | |
version=datasets.Version("1.0.0"), | |
description=_DESCRIPTION, | |
name="validation", | |
download_audio=None, | |
language=None, | |
tag=None | |
) | |
] | |
DEFAULT_CONFIG_NAME = "train" | |
def _info(self): | |
# Define the features of your dataset | |
features = datasets.Features({ | |
"path": datasets.Value("string"), | |
"url": datasets.Value("string"), | |
"type": datasets.Value("string"), | |
"duration": datasets.Value("string"), | |
"language": datasets.Value("string"), | |
"transcript": datasets.Value("string"), | |
"tag": datasets.Value("string"), | |
"split": datasets.Value("string"), | |
"license": datasets.Value("string") | |
}) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
license=_LICENSE, | |
) | |
def _adapt_args(self, arg, accepted_arg): | |
""" | |
Adpat the input and make sure it outs as list | |
and all the elements within the list are accpeted. | |
""" | |
if arg: | |
if isinstance(arg, str): | |
adapted_arg = [arg] | |
else: | |
adapted_arg = arg | |
for aa in adapted_arg: | |
if aa not in accepted_arg: | |
raise ValueError(f"Invalid input: '{aa}'. Accepted values are: {', '.join(accepted_arg)}.") | |
else: | |
adapted_arg = accepted_arg | |
return adapted_arg | |
def _split_generators(self, dl_manager): | |
csv_path = dl_manager.download_and_extract("dataset.csv") | |
if self.config.name==None: | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": csv_path, "dl_manager": dl_manager} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": csv_path, "dl_manager": dl_manager} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": csv_path, "dl_manager": dl_manager} | |
), | |
] | |
else: | |
return [ | |
datasets.SplitGenerator( | |
name = getattr(Split, self.config.name.upper()), | |
gen_kwargs={"filepath": csv_path, "dl_manager": dl_manager} | |
), | |
] | |
def _generate_examples(self, filepath, dl_manager): | |
data = pd.read_csv(filepath) | |
name = self.config.name | |
language = self.config.language | |
tag = self.config.tag | |
download_audio = self.config.download_audio | |
all_splits=[] | |
# If split is None, generate examples for all splits | |
if name is None: | |
all_splits = _SPLITS | |
else: | |
all_splits = [name] | |
print(f"Split input is {name}, so get split of {all_splits}.") | |
# Split base on name split train, test, validation. | |
data_split = data[data["split"]==name] | |
if data_split.empty: | |
print(f"No data found for split='{name}'. Skipping this split.") | |
return | |
# Split based on tags. | |
if tag is not None: | |
tag_list = self._adapt_args(tag, _TAGS) | |
data_split = data_split[data_split["tag"].isin(tag_list)] | |
else: | |
print(f"No specific tag provided, including all tags in split='{name}', language='{language or 'all'}'.") | |
# split based on language. | |
if language is not None: | |
language_list = self._adapt_args(language, _LANGUAGES) | |
data_split = data_split[data_split["language"].isin(language_list)] | |
else: | |
print(f"No specific language provided, including all languages in split='{name}', tag='{tag or 'all'}'.") | |
if data_split.empty: | |
print(f"No data found for split='{name}', language='{language}', tag='{tag}'. Skip this one.") | |
return | |
# Generate examples | |
for i, row in data_split.iterrows(): | |
# download the url file | |
if download_audio: | |
external_url = row["url"] | |
dl_manager.download(external_url) | |
yield i, { | |
"path": row["path"], | |
#"local_path": row["local_path"], | |
"url": row["url"], | |
"type": row["type"], | |
"duration": float(row["duration"]), | |
"language": row["language"], | |
"transcript": row["transcript"], | |
"tag": row["tag"], | |
"split": row["split"], | |
"license": row["license"] | |
} | |