dibyaaaaax
commited on
Commit
•
d955afd
1
Parent(s):
410276e
Upload kptimes.py
Browse files- kptimes.py +155 -0
kptimes.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import datasets
|
3 |
+
|
4 |
+
# _SPLIT = ['train', 'test', 'valid']
|
5 |
+
_CITATION = """\
|
6 |
+
@inproceedings{gallina2019kptimes,
|
7 |
+
title={KPTimes: A Large-Scale Dataset for Keyphrase Generation on News Documents},
|
8 |
+
author={Gallina, Ygor and Boudin, Florian and Daille, B{\'e}atrice},
|
9 |
+
booktitle={Proceedings of the 12th International Conference on Natural Language Generation},
|
10 |
+
pages={130--135},
|
11 |
+
year={2019}
|
12 |
+
}
|
13 |
+
"""
|
14 |
+
|
15 |
+
_DESCRIPTION = """\
|
16 |
+
|
17 |
+
"""
|
18 |
+
|
19 |
+
_HOMEPAGE = "https://github.com/ygorg/KPTimes"
|
20 |
+
|
21 |
+
# TODO: Add the licence for the dataset here if you can find it
|
22 |
+
_LICENSE = "Apache License 2.0"
|
23 |
+
|
24 |
+
# TODO: Add link to the official dataset URLs here
|
25 |
+
|
26 |
+
_URLS = {
|
27 |
+
"test": "test.jsonl",
|
28 |
+
"train": "train.jsonl",
|
29 |
+
"valid": "valid.jsonl"
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
34 |
+
class KPTimes(datasets.GeneratorBasedBuilder):
|
35 |
+
"""TODO: Short description of my dataset."""
|
36 |
+
|
37 |
+
VERSION = datasets.Version("0.0.1")
|
38 |
+
|
39 |
+
BUILDER_CONFIGS = [
|
40 |
+
datasets.BuilderConfig(name="extraction", version=VERSION,
|
41 |
+
description="This part of my dataset covers extraction"),
|
42 |
+
datasets.BuilderConfig(name="generation", version=VERSION,
|
43 |
+
description="This part of my dataset covers generation"),
|
44 |
+
datasets.BuilderConfig(name="raw", version=VERSION, description="This part of my dataset covers the raw data"),
|
45 |
+
]
|
46 |
+
|
47 |
+
DEFAULT_CONFIG_NAME = "extraction"
|
48 |
+
|
49 |
+
def _info(self):
|
50 |
+
if self.config.name == "extraction": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
51 |
+
features = datasets.Features(
|
52 |
+
{
|
53 |
+
"id": datasets.Value("int64"),
|
54 |
+
"document": datasets.features.Sequence(datasets.Value("string")),
|
55 |
+
"doc_bio_tags": datasets.features.Sequence(datasets.Value("string"))
|
56 |
+
|
57 |
+
}
|
58 |
+
)
|
59 |
+
elif self.config.name == "generation":
|
60 |
+
features = datasets.Features(
|
61 |
+
{
|
62 |
+
"id": datasets.Value("int64"),
|
63 |
+
"document": datasets.features.Sequence(datasets.Value("string")),
|
64 |
+
"extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
|
65 |
+
"abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string"))
|
66 |
+
|
67 |
+
}
|
68 |
+
)
|
69 |
+
else:
|
70 |
+
features = datasets.Features(
|
71 |
+
{
|
72 |
+
"id": datasets.Value("int64"),
|
73 |
+
"document": datasets.features.Sequence(datasets.Value("string")),
|
74 |
+
"doc_bio_tags": datasets.features.Sequence(datasets.Value("string")),
|
75 |
+
"extractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
|
76 |
+
"abstractive_keyphrases": datasets.features.Sequence(datasets.Value("string")),
|
77 |
+
"other_metadata": datasets.features.Sequence(
|
78 |
+
{
|
79 |
+
"text": datasets.features.Sequence(datasets.Value("string")),
|
80 |
+
"bio_tags": datasets.features.Sequence(datasets.Value("string"))
|
81 |
+
}
|
82 |
+
)
|
83 |
+
|
84 |
+
}
|
85 |
+
)
|
86 |
+
return datasets.DatasetInfo(
|
87 |
+
# This is the description that will appear on the datasets page.
|
88 |
+
description=_DESCRIPTION,
|
89 |
+
# This defines the different columns of the dataset and their types
|
90 |
+
features=features,
|
91 |
+
homepage=_HOMEPAGE,
|
92 |
+
# License for the dataset if available
|
93 |
+
license=_LICENSE,
|
94 |
+
# Citation for the dataset
|
95 |
+
citation=_CITATION,
|
96 |
+
)
|
97 |
+
|
98 |
+
def _split_generators(self, dl_manager):
|
99 |
+
|
100 |
+
data_dir = dl_manager.download_and_extract(_URLS)
|
101 |
+
return [
|
102 |
+
datasets.SplitGenerator(
|
103 |
+
name=datasets.Split.TRAIN,
|
104 |
+
# These kwargs will be passed to _generate_examples
|
105 |
+
gen_kwargs={
|
106 |
+
"filepath": data_dir['train'],
|
107 |
+
"split": "train",
|
108 |
+
},
|
109 |
+
),
|
110 |
+
datasets.SplitGenerator(
|
111 |
+
name=datasets.Split.TEST,
|
112 |
+
# These kwargs will be passed to _generate_examples
|
113 |
+
gen_kwargs={
|
114 |
+
"filepath": data_dir['test'],
|
115 |
+
"split": "test"
|
116 |
+
},
|
117 |
+
),
|
118 |
+
datasets.SplitGenerator(
|
119 |
+
name=datasets.Split.VALIDATION,
|
120 |
+
# These kwargs will be passed to _generate_examples
|
121 |
+
gen_kwargs={
|
122 |
+
"filepath": data_dir['valid'],
|
123 |
+
"split": "valid",
|
124 |
+
},
|
125 |
+
),
|
126 |
+
]
|
127 |
+
|
128 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
129 |
+
def _generate_examples(self, filepath, split):
|
130 |
+
with open(filepath, encoding="utf-8") as f:
|
131 |
+
for key, row in enumerate(f):
|
132 |
+
data = json.loads(row)
|
133 |
+
if self.config.name == "extraction":
|
134 |
+
# Yields examples as (key, example) tuples
|
135 |
+
yield key, {
|
136 |
+
"id": data['paper_id'],
|
137 |
+
"document": data["document"],
|
138 |
+
"doc_bio_tags": data.get("doc_bio_tags")
|
139 |
+
}
|
140 |
+
elif self.config.name == "generation":
|
141 |
+
yield key, {
|
142 |
+
"id": data['paper_id'],
|
143 |
+
"document": data["document"],
|
144 |
+
"extractive_keyphrases": data.get("extractive_keyphrases"),
|
145 |
+
"abstractive_keyphrases": data.get("abstractive_keyphrases")
|
146 |
+
}
|
147 |
+
else:
|
148 |
+
yield key, {
|
149 |
+
"id": data['paper_id'],
|
150 |
+
"document": data["document"],
|
151 |
+
"doc_bio_tags": data.get("doc_bio_tags"),
|
152 |
+
"extractive_keyphrases": data.get("extractive_keyphrases"),
|
153 |
+
"abstractive_keyphrases": data.get("abstractive_keyphrases"),
|
154 |
+
"other_metadata": data["other_metadata"]
|
155 |
+
}
|