code
stringlengths 193
97.3k
| apis
sequencelengths 1
8
| extract_api
stringlengths 113
214k
|
---|---|---|
import lancedb
from langchain.vectorstores import LanceDB
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
def test_lancedb() -> None:
embeddings = FakeEmbeddings()
db = lancedb.connect("/tmp/lancedb")
texts = ["text 1", "text 2", "item 3"]
vectors = embeddings.embed_documents(texts)
table = db.create_table(
"my_table",
data=[
{"vector": vectors[idx], "id": text, "text": text}
for idx, text in enumerate(texts)
],
mode="overwrite",
)
store = LanceDB(table, embeddings)
result = store.similarity_search("text 1")
result_texts = [doc.page_content for doc in result]
assert "text 1" in result_texts
def test_lancedb_add_texts() -> None:
embeddings = FakeEmbeddings()
db = lancedb.connect("/tmp/lancedb")
texts = ["text 1"]
vectors = embeddings.embed_documents(texts)
table = db.create_table(
"my_table",
data=[
{"vector": vectors[idx], "id": text, "text": text}
for idx, text in enumerate(texts)
],
mode="overwrite",
)
store = LanceDB(table, embeddings)
store.add_texts(["text 2"])
result = store.similarity_search("text 2")
result_texts = [doc.page_content for doc in result]
assert "text 2" in result_texts
| [
"lancedb.connect"
] | [((186, 202), 'tests.integration_tests.vectorstores.fake_embeddings.FakeEmbeddings', 'FakeEmbeddings', ([], {}), '()\n', (200, 202), False, 'from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings\n'), ((212, 243), 'lancedb.connect', 'lancedb.connect', (['"""/tmp/lancedb"""'], {}), "('/tmp/lancedb')\n", (227, 243), False, 'import lancedb\n'), ((563, 589), 'langchain.vectorstores.LanceDB', 'LanceDB', (['table', 'embeddings'], {}), '(table, embeddings)\n', (570, 589), False, 'from langchain.vectorstores import LanceDB\n'), ((786, 802), 'tests.integration_tests.vectorstores.fake_embeddings.FakeEmbeddings', 'FakeEmbeddings', ([], {}), '()\n', (800, 802), False, 'from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings\n'), ((812, 843), 'lancedb.connect', 'lancedb.connect', (['"""/tmp/lancedb"""'], {}), "('/tmp/lancedb')\n", (827, 843), False, 'import lancedb\n'), ((1143, 1169), 'langchain.vectorstores.LanceDB', 'LanceDB', (['table', 'embeddings'], {}), '(table, embeddings)\n', (1150, 1169), False, 'from langchain.vectorstores import LanceDB\n')] |
import lancedb
from langchain.vectorstores import LanceDB
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
def test_lancedb() -> None:
embeddings = FakeEmbeddings()
db = lancedb.connect("/tmp/lancedb")
texts = ["text 1", "text 2", "item 3"]
vectors = embeddings.embed_documents(texts)
table = db.create_table(
"my_table",
data=[
{"vector": vectors[idx], "id": text, "text": text}
for idx, text in enumerate(texts)
],
mode="overwrite",
)
store = LanceDB(table, embeddings)
result = store.similarity_search("text 1")
result_texts = [doc.page_content for doc in result]
assert "text 1" in result_texts
def test_lancedb_add_texts() -> None:
embeddings = FakeEmbeddings()
db = lancedb.connect("/tmp/lancedb")
texts = ["text 1"]
vectors = embeddings.embed_documents(texts)
table = db.create_table(
"my_table",
data=[
{"vector": vectors[idx], "id": text, "text": text}
for idx, text in enumerate(texts)
],
mode="overwrite",
)
store = LanceDB(table, embeddings)
store.add_texts(["text 2"])
result = store.similarity_search("text 2")
result_texts = [doc.page_content for doc in result]
assert "text 2" in result_texts
| [
"lancedb.connect"
] | [((186, 202), 'tests.integration_tests.vectorstores.fake_embeddings.FakeEmbeddings', 'FakeEmbeddings', ([], {}), '()\n', (200, 202), False, 'from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings\n'), ((212, 243), 'lancedb.connect', 'lancedb.connect', (['"""/tmp/lancedb"""'], {}), "('/tmp/lancedb')\n", (227, 243), False, 'import lancedb\n'), ((563, 589), 'langchain.vectorstores.LanceDB', 'LanceDB', (['table', 'embeddings'], {}), '(table, embeddings)\n', (570, 589), False, 'from langchain.vectorstores import LanceDB\n'), ((786, 802), 'tests.integration_tests.vectorstores.fake_embeddings.FakeEmbeddings', 'FakeEmbeddings', ([], {}), '()\n', (800, 802), False, 'from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings\n'), ((812, 843), 'lancedb.connect', 'lancedb.connect', (['"""/tmp/lancedb"""'], {}), "('/tmp/lancedb')\n", (827, 843), False, 'import lancedb\n'), ((1143, 1169), 'langchain.vectorstores.LanceDB', 'LanceDB', (['table', 'embeddings'], {}), '(table, embeddings)\n', (1150, 1169), False, 'from langchain.vectorstores import LanceDB\n')] |
import lancedb
from langchain.vectorstores import LanceDB
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
def test_lancedb() -> None:
embeddings = FakeEmbeddings()
db = lancedb.connect("/tmp/lancedb")
texts = ["text 1", "text 2", "item 3"]
vectors = embeddings.embed_documents(texts)
table = db.create_table(
"my_table",
data=[
{"vector": vectors[idx], "id": text, "text": text}
for idx, text in enumerate(texts)
],
mode="overwrite",
)
store = LanceDB(table, embeddings)
result = store.similarity_search("text 1")
result_texts = [doc.page_content for doc in result]
assert "text 1" in result_texts
def test_lancedb_add_texts() -> None:
embeddings = FakeEmbeddings()
db = lancedb.connect("/tmp/lancedb")
texts = ["text 1"]
vectors = embeddings.embed_documents(texts)
table = db.create_table(
"my_table",
data=[
{"vector": vectors[idx], "id": text, "text": text}
for idx, text in enumerate(texts)
],
mode="overwrite",
)
store = LanceDB(table, embeddings)
store.add_texts(["text 2"])
result = store.similarity_search("text 2")
result_texts = [doc.page_content for doc in result]
assert "text 2" in result_texts
| [
"lancedb.connect"
] | [((186, 202), 'tests.integration_tests.vectorstores.fake_embeddings.FakeEmbeddings', 'FakeEmbeddings', ([], {}), '()\n', (200, 202), False, 'from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings\n'), ((212, 243), 'lancedb.connect', 'lancedb.connect', (['"""/tmp/lancedb"""'], {}), "('/tmp/lancedb')\n", (227, 243), False, 'import lancedb\n'), ((563, 589), 'langchain.vectorstores.LanceDB', 'LanceDB', (['table', 'embeddings'], {}), '(table, embeddings)\n', (570, 589), False, 'from langchain.vectorstores import LanceDB\n'), ((786, 802), 'tests.integration_tests.vectorstores.fake_embeddings.FakeEmbeddings', 'FakeEmbeddings', ([], {}), '()\n', (800, 802), False, 'from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings\n'), ((812, 843), 'lancedb.connect', 'lancedb.connect', (['"""/tmp/lancedb"""'], {}), "('/tmp/lancedb')\n", (827, 843), False, 'import lancedb\n'), ((1143, 1169), 'langchain.vectorstores.LanceDB', 'LanceDB', (['table', 'embeddings'], {}), '(table, embeddings)\n', (1150, 1169), False, 'from langchain.vectorstores import LanceDB\n')] |
import lancedb
from langchain.vectorstores import LanceDB
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
def test_lancedb() -> None:
embeddings = FakeEmbeddings()
db = lancedb.connect("/tmp/lancedb")
texts = ["text 1", "text 2", "item 3"]
vectors = embeddings.embed_documents(texts)
table = db.create_table(
"my_table",
data=[
{"vector": vectors[idx], "id": text, "text": text}
for idx, text in enumerate(texts)
],
mode="overwrite",
)
store = LanceDB(table, embeddings)
result = store.similarity_search("text 1")
result_texts = [doc.page_content for doc in result]
assert "text 1" in result_texts
def test_lancedb_add_texts() -> None:
embeddings = FakeEmbeddings()
db = lancedb.connect("/tmp/lancedb")
texts = ["text 1"]
vectors = embeddings.embed_documents(texts)
table = db.create_table(
"my_table",
data=[
{"vector": vectors[idx], "id": text, "text": text}
for idx, text in enumerate(texts)
],
mode="overwrite",
)
store = LanceDB(table, embeddings)
store.add_texts(["text 2"])
result = store.similarity_search("text 2")
result_texts = [doc.page_content for doc in result]
assert "text 2" in result_texts
| [
"lancedb.connect"
] | [((186, 202), 'tests.integration_tests.vectorstores.fake_embeddings.FakeEmbeddings', 'FakeEmbeddings', ([], {}), '()\n', (200, 202), False, 'from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings\n'), ((212, 243), 'lancedb.connect', 'lancedb.connect', (['"""/tmp/lancedb"""'], {}), "('/tmp/lancedb')\n", (227, 243), False, 'import lancedb\n'), ((563, 589), 'langchain.vectorstores.LanceDB', 'LanceDB', (['table', 'embeddings'], {}), '(table, embeddings)\n', (570, 589), False, 'from langchain.vectorstores import LanceDB\n'), ((786, 802), 'tests.integration_tests.vectorstores.fake_embeddings.FakeEmbeddings', 'FakeEmbeddings', ([], {}), '()\n', (800, 802), False, 'from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings\n'), ((812, 843), 'lancedb.connect', 'lancedb.connect', (['"""/tmp/lancedb"""'], {}), "('/tmp/lancedb')\n", (827, 843), False, 'import lancedb\n'), ((1143, 1169), 'langchain.vectorstores.LanceDB', 'LanceDB', (['table', 'embeddings'], {}), '(table, embeddings)\n', (1150, 1169), False, 'from langchain.vectorstores import LanceDB\n')] |
import argparse
from pprint import pprint
import pandas as pd
from mlx_lm import generate, load
import lancedb.embeddings.gte
TEMPLATE = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible using the context text provided. Your answers should only answer the question once and not have any text after the answer is done.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
CONTEXT:
{context}
Question: {question}
Answer:
"""
if __name__ == "__main__":
import lancedb
parser = argparse.ArgumentParser(description="Query a vector DB")
# Input
parser.add_argument(
"--question",
help="The question that needs to be answered",
default="what is flash attention?",
)
# Input
parser.add_argument(
"--db_path",
type=str,
default="/tmp/lancedb",
help="The path to read the vector DB",
)
args = parser.parse_args()
db = lancedb.connect(args.db_path)
tbl = db.open_table("test")
resp = tbl.search(args.question).limit(10).to_pandas()
context = "\n".join(resp["text"].values)
context = "\n".join(pd.Series(context.split("\n")).drop_duplicates())
prompt = TEMPLATE.format(context=context, question=args.question)
model, tokenizer = load("mlx-community/NeuralBeagle14-7B-4bit-mlx")
ans = generate(model, tokenizer, prompt=prompt, verbose=False, max_tokens=512)
pprint(ans)
| [
"lancedb.connect"
] | [((689, 745), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Query a vector DB"""'}), "(description='Query a vector DB')\n", (712, 745), False, 'import argparse\n'), ((1112, 1141), 'lancedb.connect', 'lancedb.connect', (['args.db_path'], {}), '(args.db_path)\n', (1127, 1141), False, 'import lancedb\n'), ((1446, 1494), 'mlx_lm.load', 'load', (['"""mlx-community/NeuralBeagle14-7B-4bit-mlx"""'], {}), "('mlx-community/NeuralBeagle14-7B-4bit-mlx')\n", (1450, 1494), False, 'from mlx_lm import generate, load\n'), ((1505, 1577), 'mlx_lm.generate', 'generate', (['model', 'tokenizer'], {'prompt': 'prompt', 'verbose': '(False)', 'max_tokens': '(512)'}), '(model, tokenizer, prompt=prompt, verbose=False, max_tokens=512)\n', (1513, 1577), False, 'from mlx_lm import generate, load\n'), ((1583, 1594), 'pprint.pprint', 'pprint', (['ans'], {}), '(ans)\n', (1589, 1594), False, 'from pprint import pprint\n')] |
import lancedb
uri = "./.lancedb"
db = lancedb.connect(uri)
table = db.open_table("my_table")
# table.delete("createAt = '1690358416394516300'") # 此条莫名失败了。Column createat does not exist in the dataset
table.delete("item = 'foo'")
df = table.to_pandas()
print(df)
| [
"lancedb.connect"
] | [((40, 60), 'lancedb.connect', 'lancedb.connect', (['uri'], {}), '(uri)\n', (55, 60), False, 'import lancedb\n')] |
import requests
import time
import numpy as np
import pyarrow as pa
import lancedb
import logging
import os
from tqdm import tqdm
from pathlib import Path
from transformers import AutoConfig
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
TEI_URL= os.getenv("EMBED_URL") + "/embed"
DIRPATH = "/usr/src/docs_dir"
TABLE_NAME = "docs"
config = AutoConfig.from_pretrained(os.getenv("EMBED_MODEL"))
EMB_DIM = config.hidden_size
CREATE_INDEX = int(os.getenv("CREATE_INDEX"))
BATCH_SIZE = int(os.getenv("BATCH_SIZE"))
NUM_PARTITIONS = int(os.getenv("NUM_PARTITIONS"))
NUM_SUB_VECTORS = int(os.getenv("NUM_SUB_VECTORS"))
HEADERS = {
"Content-Type": "application/json"
}
def embed_and_index():
files = Path(DIRPATH).rglob("*")
texts = []
for file in files:
if file.is_file():
try:
text = file.open().read()
if text:
texts.append(text)
except (OSError, UnicodeDecodeError) as e:
logger.error("Error reading file: ", e)
except Exception as e:
logger.error("Unhandled exception: ", e)
raise
logger.info(f"Successfully read {len(texts)} files")
db = lancedb.connect("/usr/src/.lancedb")
schema = pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), EMB_DIM)),
pa.field("text", pa.string()),
]
)
tbl = db.create_table(TABLE_NAME, schema=schema, mode="overwrite")
start = time.time()
for i in tqdm(range(int(np.ceil(len(texts) / BATCH_SIZE)))):
payload = {
"inputs": texts[i * BATCH_SIZE:(i + 1) * BATCH_SIZE],
"truncate": True
}
resp = requests.post(TEI_URL, json=payload, headers=HEADERS)
if resp.status_code != 200:
raise RuntimeError(resp.text)
vectors = resp.json()
data = [
{"vector": vec, "text": text}
for vec, text in zip(vectors, texts[i * BATCH_SIZE:(i + 1) * BATCH_SIZE])
]
tbl.add(data=data)
logger.info(f"Embedding and ingestion of {len(texts)} items took {time.time() - start}")
# IVF-PQ indexing
if CREATE_INDEX:
tbl.create_index(num_partitions=NUM_PARTITIONS, num_sub_vectors=NUM_SUB_VECTORS)
if __name__ == "__main__":
embed_and_index() | [
"lancedb.connect"
] | [((194, 233), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (213, 233), False, 'import logging\n'), ((243, 270), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (260, 270), False, 'import logging\n'), ((281, 303), 'os.getenv', 'os.getenv', (['"""EMBED_URL"""'], {}), "('EMBED_URL')\n", (290, 303), False, 'import os\n'), ((401, 425), 'os.getenv', 'os.getenv', (['"""EMBED_MODEL"""'], {}), "('EMBED_MODEL')\n", (410, 425), False, 'import os\n'), ((475, 500), 'os.getenv', 'os.getenv', (['"""CREATE_INDEX"""'], {}), "('CREATE_INDEX')\n", (484, 500), False, 'import os\n'), ((519, 542), 'os.getenv', 'os.getenv', (['"""BATCH_SIZE"""'], {}), "('BATCH_SIZE')\n", (528, 542), False, 'import os\n'), ((565, 592), 'os.getenv', 'os.getenv', (['"""NUM_PARTITIONS"""'], {}), "('NUM_PARTITIONS')\n", (574, 592), False, 'import os\n'), ((616, 644), 'os.getenv', 'os.getenv', (['"""NUM_SUB_VECTORS"""'], {}), "('NUM_SUB_VECTORS')\n", (625, 644), False, 'import os\n'), ((1244, 1280), 'lancedb.connect', 'lancedb.connect', (['"""/usr/src/.lancedb"""'], {}), "('/usr/src/.lancedb')\n", (1259, 1280), False, 'import lancedb\n'), ((1523, 1534), 'time.time', 'time.time', ([], {}), '()\n', (1532, 1534), False, 'import time\n'), ((1746, 1799), 'requests.post', 'requests.post', (['TEI_URL'], {'json': 'payload', 'headers': 'HEADERS'}), '(TEI_URL, json=payload, headers=HEADERS)\n', (1759, 1799), False, 'import requests\n'), ((737, 750), 'pathlib.Path', 'Path', (['DIRPATH'], {}), '(DIRPATH)\n', (741, 750), False, 'from pathlib import Path\n'), ((1409, 1420), 'pyarrow.string', 'pa.string', ([], {}), '()\n', (1418, 1420), True, 'import pyarrow as pa\n'), ((1355, 1367), 'pyarrow.float32', 'pa.float32', ([], {}), '()\n', (1365, 1367), True, 'import pyarrow as pa\n'), ((2166, 2177), 'time.time', 'time.time', ([], {}), '()\n', (2175, 2177), False, 'import time\n')] |
import lancedb
from datasets import Dataset
from homematch.config import DATA_DIR, TABLE_NAME
from homematch.data.types import ImageData
def datagen() -> list[ImageData]:
dataset = Dataset.load_from_disk(DATA_DIR / "properties_dataset")
# return Image instances
return [ImageData(**batch) for batch in dataset]
def main() -> None:
uri = str(DATA_DIR) + "/.lancedb/"
db = lancedb.connect(uri)
table = db.create_table(TABLE_NAME, schema=ImageData, exist_ok=True)
data = datagen()
table.add(data)
if __name__ == "__main__":
main()
| [
"lancedb.connect"
] | [((188, 243), 'datasets.Dataset.load_from_disk', 'Dataset.load_from_disk', (["(DATA_DIR / 'properties_dataset')"], {}), "(DATA_DIR / 'properties_dataset')\n", (210, 243), False, 'from datasets import Dataset\n'), ((397, 417), 'lancedb.connect', 'lancedb.connect', (['uri'], {}), '(uri)\n', (412, 417), False, 'import lancedb\n'), ((286, 304), 'homematch.data.types.ImageData', 'ImageData', ([], {}), '(**batch)\n', (295, 304), False, 'from homematch.data.types import ImageData\n')] |
import openai
import os
import lancedb
import pickle
import requests
from pathlib import Path
from bs4 import BeautifulSoup
import re
from langchain.document_loaders import UnstructuredHTMLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import LanceDB
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
# Function to fetch and save a page as an HTML file
def save_page(url, save_dir):
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.content, 'html.parser')
title = soup.find('title').text
filename = f"{title}.html"
with open(os.path.join(save_dir, filename), 'w', encoding='utf-8') as file:
file.write(str(soup))
def get_document_title(document):
m = str(document.metadata["source"])
title = re.findall("(.*)\.html", m)
print("PRINTING TITLES")
print(title)
if title[0] is not None:
return(title[0])
return ''
# if "OPENAI_API_KEY" not in os.environ:
openai.api_key = "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"
assert len(openai.Model.list()["data"]) > 0
print("fetching data")
# Base URL of Wikivoyage
base_url = "https://en.wikivoyage.org/wiki/"
# List of page titles to download
page_titles = ["London", "Paris", "New_York_City"] # Add more as needed
# Directory to save the HTML files
save_directory = "./wikivoyage_pages"
# Create the save directory if it doesn't exist
if not os.path.exists(save_directory):
os.makedirs(save_directory)
# Loop through the page titles and download the pages
for title in page_titles:
url = f"{base_url}{title}"
save_page(url, save_directory)
docs_path = Path("cities.pkl")
docs = []
if not docs_path.exists():
for p in Path("./wikivoyage_pages").rglob("*.html"):
if p.is_dir():
continue
loader = UnstructuredHTMLLoader(p)
raw_document = loader.load()
m = {}
m["title"] = get_document_title(raw_document[0])
raw_document[0].metadata = raw_document[0].metadata | m
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
docs = docs + raw_document
with docs_path.open("wb") as fh:
pickle.dump(docs, fh)
else:
with docs_path.open("rb") as fh:
docs = pickle.load(fh)
#split text
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50,
)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings(openai_api_key="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")
db = lancedb.connect('/tmp/lancedb')
table = db.create_table("city_docs", data=[
{"vector": embeddings.embed_query("Hello World"), "text": "Hello World"}
], mode="overwrite")
print("generated embeddings!")
docsearch = LanceDB.from_documents(documents[5:], embeddings, connection=table)
qa = RetrievalQA.from_chain_type(llm=OpenAI(openai_api_key="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"), chain_type="stuff", retriever=docsearch.as_retriever())
query_file = open('query.pkl', 'wb')
pickle.dump(qa, query_file)
query_file.close()
print("returning query object") | [
"lancedb.connect"
] | [((1848, 1866), 'pathlib.Path', 'Path', (['"""cities.pkl"""'], {}), "('cities.pkl')\n", (1852, 1866), False, 'from pathlib import Path\n'), ((2545, 2609), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': '(500)', 'chunk_overlap': '(50)'}), '(chunk_size=500, chunk_overlap=50)\n', (2575, 2609), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((2691, 2782), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {'openai_api_key': '"""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"""'}), "(openai_api_key=\n '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')\n", (2707, 2782), False, 'from langchain.embeddings import OpenAIEmbeddings\n'), ((2786, 2817), 'lancedb.connect', 'lancedb.connect', (['"""/tmp/lancedb"""'], {}), "('/tmp/lancedb')\n", (2801, 2817), False, 'import lancedb\n'), ((3012, 3079), 'langchain.vectorstores.LanceDB.from_documents', 'LanceDB.from_documents', (['documents[5:]', 'embeddings'], {'connection': 'table'}), '(documents[5:], embeddings, connection=table)\n', (3034, 3079), False, 'from langchain.vectorstores import LanceDB\n'), ((3293, 3320), 'pickle.dump', 'pickle.dump', (['qa', 'query_file'], {}), '(qa, query_file)\n', (3304, 3320), False, 'import pickle\n'), ((548, 565), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (560, 565), False, 'import requests\n'), ((959, 987), 're.findall', 're.findall', (['"""(.*)\\\\.html"""', 'm'], {}), "('(.*)\\\\.html', m)\n", (969, 987), False, 'import re\n'), ((1616, 1646), 'os.path.exists', 'os.path.exists', (['save_directory'], {}), '(save_directory)\n', (1630, 1646), False, 'import os\n'), ((1653, 1680), 'os.makedirs', 'os.makedirs', (['save_directory'], {}), '(save_directory)\n', (1664, 1680), False, 'import os\n'), ((619, 665), 'bs4.BeautifulSoup', 'BeautifulSoup', (['response.content', '"""html.parser"""'], {}), "(response.content, 'html.parser')\n", (632, 665), False, 'from bs4 import BeautifulSoup\n'), ((2030, 2055), 'langchain.document_loaders.UnstructuredHTMLLoader', 'UnstructuredHTMLLoader', (['p'], {}), '(p)\n', (2052, 2055), False, 'from langchain.document_loaders import UnstructuredHTMLLoader\n'), ((2414, 2435), 'pickle.dump', 'pickle.dump', (['docs', 'fh'], {}), '(docs, fh)\n', (2425, 2435), False, 'import pickle\n'), ((2497, 2512), 'pickle.load', 'pickle.load', (['fh'], {}), '(fh)\n', (2508, 2512), False, 'import pickle\n'), ((3118, 3194), 'langchain.llms.OpenAI', 'OpenAI', ([], {'openai_api_key': '"""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"""'}), "(openai_api_key='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')\n", (3124, 3194), False, 'from langchain.llms import OpenAI\n'), ((1238, 1257), 'openai.Model.list', 'openai.Model.list', ([], {}), '()\n', (1255, 1257), False, 'import openai\n'), ((1922, 1948), 'pathlib.Path', 'Path', (['"""./wikivoyage_pages"""'], {}), "('./wikivoyage_pages')\n", (1926, 1948), False, 'from pathlib import Path\n'), ((762, 794), 'os.path.join', 'os.path.join', (['save_dir', 'filename'], {}), '(save_dir, filename)\n', (774, 794), False, 'import os\n')] |
import queue
import threading
from dataclasses import dataclass
import lancedb
import pyarrow as pa
import numpy as np
import torch
import torch.nn.functional as F
from safetensors import safe_open
from tqdm import tqdm
from .app.schemas.task import TaskCompletion
from .ops.object_detectors import YOLOV8TRTEngine
from .ops.ocr import PaddlePaddleOCRV4TRTEngine
from .ops.optical_flow_estimators import RAFT
from .ops.video_decoders import VPFVideoDecoder
from .ops.clip import ClipVisionEncoder, ClipVisionEncoderTRTEngine
from .utils.cvt import rgb_to_hsv_nhwc_uint8
@dataclass
class FrameQueueItem:
type: str
task_id: str
video_path: str
result_queue: queue.Queue
frames: torch.Tensor | None = None
frame_idx: int | None = None
fps: float | None = None
total_frames: int | None = None
width: int | None = None
height: int | None = None
@dataclass
class PostProcessQueueItem:
type: str
task_id: str
video_path: str
batch_idx: int
shape: tuple[int, int]
preds: torch.Tensor
result_queue: queue.Queue
class Saver:
def __init__(self, output_path: str):
self.output_path = output_path
self.db = lancedb.connect(output_path)
table_names = self.db.table_names()
if "clip" in table_names:
self.clip_table = self.db.open_table("clip")
else:
schema = pa.schema([
pa.field("video_id", pa.utf8()),
pa.field("frame_idx", pa.int32()),
pa.field("clip_feature", pa.list_(pa.float32(), list_size=768)),
])
self.clip_table = self.db.create_table("clip", schema=schema)
if "optical_flow" in table_names:
self.optical_flow_table = self.db.open_table("optical_flow")
else:
schema = pa.schema([
pa.field("video_id", pa.utf8()),
pa.field("frame_idx", pa.int32()),
pa.field("optical_flow_score", pa.float32()),
])
self.optical_flow_table = self.db.create_table("optical_flow", schema=schema)
if "cut_scores" in table_names:
self.cut_scores_table = self.db.open_table("cut_scores")
else:
schema = pa.schema([
pa.field("video_id", pa.utf8()),
pa.field("fps", pa.float32()),
pa.field("cut_scores", pa.list_(pa.float32())),
])
self.cut_scores_table = self.db.create_table("cut_scores", schema=schema)
if "ocr" in table_names:
self.ocr_table = self.db.open_table("ocr")
else:
schema = pa.schema([
pa.field("video_id", pa.utf8()),
pa.field("frame_idx", pa.int32()),
pa.field("ocr_score", pa.float32()),
pa.field("boxes", pa.list_(pa.list_(pa.list_(pa.int32, list_size=2), list_size=4))),
pa.field("scores", pa.list_(pa.float32())),
])
self.ocr_table = self.db.create_table("ocr", schema=schema)
def put_clip_features(self, clip_features: torch.Tensor):
...
def put_optical_flow(self, optical_flow: torch.Tensor):
...
def put_cut_scores(self, cut_scores: torch.Tensor):
...
def put_ocr_results(self, ocr_score: float, boxes, scores):
...
def put_det_results(self):
...
class Pipeline:
def __init__(
self,
batch_size: int,
device_id: int = 0,
raft_model_path: str = "./weights/raft_things.safetensors",
ocr_model_path: str = "./weights/pp-ocr-v4-det-fp16.engine",
det_model_path: str = "./weights/yolov8m-fp16.engine",
):
self.batch_size = batch_size
self.device_id = device_id
device_id = 0
self.device_str = f"cuda:{device_id}"
self.device = torch.device(self.device_str)
self.clip_encoder = ClipVisionEncoder(
model_name="ViT-L/14",
device=self.device,
)
self.clip_encoder = ClipVisionEncoderTRTEngine(
"./weights/clip_vit_l14-fp16.engine",
self.device,
)
state_dict = {}
with safe_open(raft_model_path, framework="pt", device=self.device_str) as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
raft = RAFT()
raft.load_state_dict(state_dict)
raft.eval()
raft.to(self.device)
self.raft = raft
self.pp_ocr = PaddlePaddleOCRV4TRTEngine(ocr_model_path, self.device)
self.yolo_v8 = YOLOV8TRTEngine(det_model_path, self.device)
self.frame_queue: queue.Queue[FrameQueueItem | None] = queue.Queue(maxsize=64)
self.post_process_queue: queue.Queue[PostProcessQueueItem | None] = queue.Queue(maxsize=64)
self.process_thread = threading.Thread(target=self.process_thread_fn)
self.post_process_thread = threading.Thread(target=self.post_process_thread_fn)
def compute_cut_scores(
self,
frames: torch.Tensor,
last_hsv_frame: torch.Tensor | None,
last_hsv_frame_2fps: torch.Tensor | None,
last_hsv_frame_8fps: torch.Tensor | None,
start_2fps: float,
start_8fps: float,
stride_2fps: float,
stride_8fps: float,
):
hsv_frames = rgb_to_hsv_nhwc_uint8(frames)
cur = start_2fps
indices_2fps = []
while round(cur) < frames.shape[0]:
indices_2fps.append(round(cur))
cur += stride_2fps
start_2fps = cur - frames.shape[0]
indices_2fps_tensor = torch.as_tensor(indices_2fps, dtype=torch.int64, device=frames.device)
cur = start_8fps
indices_8fps = []
while round(cur) < frames.shape[0]:
indices_8fps.append(round(cur))
cur += stride_8fps
start_8fps = cur - frames.shape[0]
indices_8fps_tensor = torch.as_tensor(indices_8fps, dtype=torch.int64, device=frames.device)
hsv_frames_2fps = hsv_frames[indices_2fps_tensor]
hsv_frames_8fps = hsv_frames[indices_8fps_tensor]
if last_hsv_frame is None:
diff = (hsv_frames[:-1] - hsv_frames[1:]).abs().to(torch.float32)
else:
prev_hsv_frames = torch.cat([last_hsv_frame[None], hsv_frames[:-1]], dim=0)
diff = (prev_hsv_frames - hsv_frames).abs().to(torch.float32)
if hsv_frames_2fps.shape[0] > 0:
if last_hsv_frame_2fps is None:
diff_2fps = (hsv_frames_2fps[:-1] - hsv_frames_2fps[1:]).abs().to(torch.float32)
else:
prev_hsv_frames_2fps = torch.cat([
last_hsv_frame_2fps[None], hsv_frames_2fps[:-1]
], dim=0)
diff_2fps = (prev_hsv_frames_2fps - hsv_frames_2fps).abs().to(torch.float32)
if hsv_frames_8fps.shape[0] > 0:
if last_hsv_frame_8fps is None:
diff_8fps = (hsv_frames_8fps[:-1] - hsv_frames_8fps[1:]).abs().to(torch.float32)
else:
prev_hsv_frames_8fps = torch.cat([
last_hsv_frame_8fps[None], hsv_frames_8fps[:-1]
], dim=0)
diff_8fps = (prev_hsv_frames_8fps - hsv_frames_8fps).abs().to(torch.float32)
last_hsv_frame = hsv_frames[-1]
cut_scores = diff.flatten(1, 2).mean(dim=1)
if hsv_frames_2fps.shape[0] > 0:
cut_scores_2fps = diff_2fps.flatten(1, 2).mean(dim=1)
last_hsv_frame_2fps = hsv_frames_2fps[-1]
else:
cut_scores_2fps = []
if hsv_frames_8fps.shape[0] > 0:
cut_scores_8fps = diff_8fps.flatten(1, 2).mean(dim=1)
last_hsv_frame_8fps = hsv_frames_8fps[-1]
else:
cut_scores_8fps = []
return (
cut_scores, cut_scores_2fps, cut_scores_8fps,
last_hsv_frame, last_hsv_frame_2fps, last_hsv_frame_8fps,
start_2fps, start_8fps,
indices_2fps_tensor, indices_2fps, indices_8fps,
)
def apply_resize(self, images: torch.Tensor, size: int) -> torch.Tensor:
height, width = images.shape[-2:]
if height < width:
resize_to = (size, round(width * size / height))
else:
resize_to = (round(height * size / width), size)
return F.interpolate(images, size=resize_to, mode="bicubic")
def apply_center_crop(self, images: torch.Tensor, factor: int = 32) -> torch.Tensor:
height, width = images.shape[-2:]
new_height = height // factor * factor
new_width = width // factor * factor
if new_height != height or new_width != width:
start_h = (height - new_height) // 2
end_h = start_h + new_height
start_w = (width - new_width) // 2
end_w = start_w + new_width
images = images[..., start_h:end_h, start_w:end_w]
return images
@torch.no_grad()
def process_thread_fn(self):
while True:
try:
item = self.frame_queue.get(timeout=1)
if item is None:
break
except queue.Empty:
continue
try:
if item.type == "start":
task_id = item.task_id
video_path = item.video_path
fps = item.fps
stride_2fps = fps / 2.0
stride_8fps = fps / 8.0
frames_2fps_det_list = []
total_frames_2fps = 0
last_hsv_frame = None
last_hsv_frame_2fps = None
last_hsv_frame_8fps = None
start_2fps = 0
start_8fps = 0
last_frame_2fps = None
batch_idx_det = 0
batch_idx_flow = 0
results = []
elif item.type == "frames":
frames = item.frames
result_queue = item.result_queue
(
cut_scores, cut_scores_2fps, cut_scores_8fps,
last_hsv_frame, last_hsv_frame_2fps, last_hsv_frame_8fps,
start_2fps, start_8fps,
indices_2fps_tensor, indices_2fps, indices_8fps,
) = self.compute_cut_scores(
frames, last_hsv_frame, last_hsv_frame_2fps, last_hsv_frame_8fps,
start_2fps, start_8fps, stride_2fps, stride_8fps,
)
results.append({
"type": "cut_scores",
"task_id": task_id,
"video_path": video_path,
"frame_idx": item.frame_idx,
"cut_scores": cut_scores,
"cut_scores_2fps": cut_scores_2fps,
"cut_scores_8fps": cut_scores_8fps,
"indices_2fps": indices_2fps,
"indices_8fps": indices_8fps,
})
# -> b, 3, h, w
frames = frames.permute(0, 3, 1, 2).float()
frames.div_(255.0)
frames.clamp_(0.0, 1.0)
frames_2fps = frames[indices_2fps_tensor]
if frames_2fps.shape[0] > 0:
frames_2fps_resized_clip = self.apply_resize(frames_2fps, self.clip_encoder.input_res)
height, width = frames.shape[-2:]
frames_2fps_resized_det = self.apply_resize(frames_2fps, min(height, width) // 2)
# clip
clip_features = self.clip_encoder.encode(frames_2fps_resized_clip)
clip_features = clip_features
results.append({
"type": "clip",
"task_id": task_id,
"video_path": video_path,
"frame_idx": item.frame_idx,
"clip_features": clip_features,
})
# center crop for det
frames_2fps_det = self.apply_center_crop(frames_2fps_resized_det, factor=32)
frames_2fps_det_list.append(frames_2fps_det)
total_frames_2fps += frames_2fps_det.shape[0]
# optical flow
if total_frames_2fps >= 64:
frames_2fps_det = torch.cat(frames_2fps_det_list, dim=0)
total_frames = frames_2fps_det.shape[0]
pp_ocr_preds = self.pp_ocr.detect(frames_2fps_det)
self.post_process_queue.put(
PostProcessQueueItem(
type="pp_orc",
task_id=task_id,
video_path=video_path,
batch_idx=batch_idx_det,
shape=tuple(frames_2fps_det.shape[-2:]),
preds=pp_ocr_preds,
result_queue=result_queue,
)
)
yolo_v8_preds = self.yolo_v8.detect(frames_2fps_det)
self.post_process_queue.put(
PostProcessQueueItem(
type="yolo_v8",
task_id=task_id,
video_path=video_path,
batch_idx=batch_idx_det,
shape=tuple(frames_2fps_det.shape[-2:]),
preds=yolo_v8_preds,
result_queue=result_queue,
)
)
batch_idx_det += 1
if last_frame_2fps is not None:
frames_2fps_det = torch.cat([last_frame_2fps[None], frames_2fps_det], dim=0)
offset = 1
else:
offset = 0
frames_2fps_flow = frames_2fps_det * 2 - 1
batch_size = 32
for i in range(0 + offset, total_frames + offset, batch_size):
if i + batch_size > total_frames + offset:
break
start = max(i - 1, 0)
end = min(i + batch_size, total_frames)
frames1 = frames_2fps_flow[start:end - 1]
frames2 = frames_2fps_flow[start + 1:end]
flows = self.raft(frames1, frames2, update_iters=12)
mag = torch.sqrt(flows[:, 0, ...] ** 2 + flows[:, 1, ...] ** 2)
optical_flow_scores = mag.flatten(1).mean(dim=1)
results.append({
"type": "optical_flow",
"task_id": task_id,
"video_path": video_path,
"batch_idx": batch_idx_flow,
"optical_flow_scores": optical_flow_scores,
})
batch_idx_flow += 1
last_frame_2fps = frames_2fps_det[-1]
frames_2fps_det_list = [frames_2fps_det[i:]]
total_frames_2fps = frames_2fps_det_list[-1].shape[0]
elif item.type == "end":
# optical flow
if total_frames_2fps > 0:
frames_2fps_det = torch.cat(frames_2fps_det_list, dim=0)
total_frames = frames_2fps_det.shape[0]
pp_ocr_preds = self.pp_ocr.detect(frames_2fps_det)
self.post_process_queue.put(
PostProcessQueueItem(
type="pp_orc",
task_id=task_id,
video_path=video_path,
batch_idx=batch_idx_det,
shape=tuple(frames_2fps_det.shape[-2:]),
preds=pp_ocr_preds,
result_queue=result_queue,
)
)
yolo_v8_preds = self.yolo_v8.detect(frames_2fps_det)
self.post_process_queue.put(
PostProcessQueueItem(
type="yolo_v8",
task_id=task_id,
video_path=video_path,
batch_idx=batch_idx_det,
shape=tuple(frames_2fps_det.shape[-2:]),
preds=yolo_v8_preds,
result_queue=result_queue,
)
)
batch_idx_det += 1
if last_frame_2fps is not None:
frames_2fps_det = torch.cat([last_frame_2fps[None], frames_2fps_det], dim=0)
offset = 1
else:
offset = 0
frames_2fps_flow = frames_2fps_det * 2 - 1
batch_size = 32
if frames_2fps_det.shape[0] > 1:
for i in range(0 + offset, total_frames + offset, batch_size):
start = max(i - 1, 0)
end = min(i + batch_size, total_frames)
frames1 = frames_2fps_flow[start:end - 1]
frames2 = frames_2fps_flow[start + 1:end]
if frames1.shape[0] > 0 and frames2.shape[0] > 0:
flows = self.raft(frames1, frames2, update_iters=12)
mag = torch.sqrt(flows[:, 0, ...] ** 2 + flows[:, 1, ...] ** 2)
optical_flow_scores = mag.flatten(1).mean(dim=1)
results.append({
"type": "optical_flow",
"task_id": task_id,
"video_path": video_path,
"batch_idx": batch_idx_flow,
"optical_flow_scores": optical_flow_scores,
})
batch_idx_flow += 1
last_frame_2fps = None
frames_2fps_det_list = []
total_frames_2fps = 0
for res in results:
new_res = {}
for key, val in res.items():
if isinstance(val, torch.Tensor):
new_res[key] = val.cpu().tolist()
else:
new_res[key] = val
result_queue.put(new_res)
torch.cuda.empty_cache()
item.result_queue.put(
TaskCompletion(
id=task_id,
status="completed",
fps=item.fps,
total_frames=item.total_frames,
width=item.width,
height=item.height,
)
)
else:
raise ValueError(f"unknown item type: {item.type}")
except Exception as e:
import io
import traceback
str_io = io.StringIO()
traceback.print_exc(file=str_io)
item.result_queue.put(
TaskCompletion(
id=task_id,
status="failed",
message=str_io.getvalue() + f"\nitem: {item}" + f"\n{frames_2fps_det.shape}",
)
)
print("process_thread_fn stopped.")
def post_process_thread_fn(self):
while True:
try:
item = self.post_process_queue.get(timeout=1)
if item is None:
break
except queue.Empty:
continue
if item.type == "yolo_v8":
results = self.yolo_v8.post_process(item.preds.cpu().numpy())
item.result_queue.put({
"type": "det",
"detector": "yolo_v8",
"task_id": item.task_id,
"batch_idx": item.batch_idx,
"shape": item.shape,
"results": results,
})
elif item.type == "pp_orc":
boxes, scores, ocr_scores = self.pp_ocr.post_process(item.preds.cpu().numpy())
item.result_queue.put({
"type": "ocr",
"detector": "pp_orc",
"task_id": item.task_id,
"batch_idx": item.batch_idx,
"shape": item.shape,
"boxes": boxes,
"scores": scores,
"ocr_scores": ocr_scores,
})
else:
raise ValueError(f"unknown item type: {item.type}")
print("post_process_thread_fn stopped.")
def start(self):
self.process_thread.start()
self.post_process_thread.start()
def close(self):
self.frame_queue.put(None)
self.post_process_queue.put(None)
self.process_thread.join()
self.post_process_thread.join()
@torch.no_grad()
def __call__(
self,
task_id: str,
video_path: str,
result_queue: queue.Queue,
verbose: bool = False,
):
print("video_path", video_path)
decoder = VPFVideoDecoder(
video_path=video_path,
batch_size=self.batch_size,
device_id=self.device_id,
)
if decoder.width != 1280 or decoder.height != 720:
result_queue.put(
TaskCompletion(
id=task_id,
status="failed",
message=(
"video resolution is not 720x1280 "
f"({decoder.height}x{decoder.width})."
),
)
)
return
self.frame_queue.put(
FrameQueueItem(
type="start",
task_id=task_id,
video_path=video_path,
fps=decoder.fps,
result_queue=result_queue,
),
)
frame_idx = 0
for frames in tqdm(decoder.iter_frames(pixel_format="rgb"), disable=not verbose):
self.frame_queue.put(
FrameQueueItem(
type="frames",
task_id=task_id,
video_path=video_path,
frames=frames,
frame_idx=frame_idx,
result_queue=result_queue,
),
)
frame_idx += frames.shape[0]
self.frame_queue.put(
FrameQueueItem(
type="end",
task_id=task_id,
video_path=video_path,
fps=decoder.fps,
total_frames=decoder.total_frames,
width=decoder.width,
height=decoder.height,
result_queue=result_queue,
)
)
| [
"lancedb.connect"
] | [((8969, 8984), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8982, 8984), False, 'import torch\n'), ((22228, 22243), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (22241, 22243), False, 'import torch\n'), ((1191, 1219), 'lancedb.connect', 'lancedb.connect', (['output_path'], {}), '(output_path)\n', (1206, 1219), False, 'import lancedb\n'), ((3869, 3898), 'torch.device', 'torch.device', (['self.device_str'], {}), '(self.device_str)\n', (3881, 3898), False, 'import torch\n'), ((4711, 4734), 'queue.Queue', 'queue.Queue', ([], {'maxsize': '(64)'}), '(maxsize=64)\n', (4722, 4734), False, 'import queue\n'), ((4811, 4834), 'queue.Queue', 'queue.Queue', ([], {'maxsize': '(64)'}), '(maxsize=64)\n', (4822, 4834), False, 'import queue\n'), ((4866, 4913), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.process_thread_fn'}), '(target=self.process_thread_fn)\n', (4882, 4913), False, 'import threading\n'), ((4949, 5001), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.post_process_thread_fn'}), '(target=self.post_process_thread_fn)\n', (4965, 5001), False, 'import threading\n'), ((5632, 5702), 'torch.as_tensor', 'torch.as_tensor', (['indices_2fps'], {'dtype': 'torch.int64', 'device': 'frames.device'}), '(indices_2fps, dtype=torch.int64, device=frames.device)\n', (5647, 5702), False, 'import torch\n'), ((5947, 6017), 'torch.as_tensor', 'torch.as_tensor', (['indices_8fps'], {'dtype': 'torch.int64', 'device': 'frames.device'}), '(indices_8fps, dtype=torch.int64, device=frames.device)\n', (5962, 6017), False, 'import torch\n'), ((8366, 8419), 'torch.nn.functional.interpolate', 'F.interpolate', (['images'], {'size': 'resize_to', 'mode': '"""bicubic"""'}), "(images, size=resize_to, mode='bicubic')\n", (8379, 8419), True, 'import torch.nn.functional as F\n'), ((4204, 4270), 'safetensors.safe_open', 'safe_open', (['raft_model_path'], {'framework': '"""pt"""', 'device': 'self.device_str'}), "(raft_model_path, framework='pt', device=self.device_str)\n", (4213, 4270), False, 'from safetensors import safe_open\n'), ((6293, 6350), 'torch.cat', 'torch.cat', (['[last_hsv_frame[None], hsv_frames[:-1]]'], {'dim': '(0)'}), '([last_hsv_frame[None], hsv_frames[:-1]], dim=0)\n', (6302, 6350), False, 'import torch\n'), ((6665, 6732), 'torch.cat', 'torch.cat', (['[last_hsv_frame_2fps[None], hsv_frames_2fps[:-1]]'], {'dim': '(0)'}), '([last_hsv_frame_2fps[None], hsv_frames_2fps[:-1]], dim=0)\n', (6674, 6732), False, 'import torch\n'), ((7104, 7171), 'torch.cat', 'torch.cat', (['[last_hsv_frame_8fps[None], hsv_frames_8fps[:-1]]'], {'dim': '(0)'}), '([last_hsv_frame_8fps[None], hsv_frames_8fps[:-1]], dim=0)\n', (7113, 7171), False, 'import torch\n'), ((20200, 20213), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (20211, 20213), False, 'import io\n'), ((20230, 20262), 'traceback.print_exc', 'traceback.print_exc', ([], {'file': 'str_io'}), '(file=str_io)\n', (20249, 20262), False, 'import traceback\n'), ((1441, 1450), 'pyarrow.utf8', 'pa.utf8', ([], {}), '()\n', (1448, 1450), True, 'import pyarrow as pa\n'), ((1491, 1501), 'pyarrow.int32', 'pa.int32', ([], {}), '()\n', (1499, 1501), True, 'import pyarrow as pa\n'), ((1874, 1883), 'pyarrow.utf8', 'pa.utf8', ([], {}), '()\n', (1881, 1883), True, 'import pyarrow as pa\n'), ((1924, 1934), 'pyarrow.int32', 'pa.int32', ([], {}), '()\n', (1932, 1934), True, 'import pyarrow as pa\n'), ((1984, 1996), 'pyarrow.float32', 'pa.float32', ([], {}), '()\n', (1994, 1996), True, 'import pyarrow as pa\n'), ((2298, 2307), 'pyarrow.utf8', 'pa.utf8', ([], {}), '()\n', (2305, 2307), True, 'import pyarrow as pa\n'), ((2342, 2354), 'pyarrow.float32', 'pa.float32', ([], {}), '()\n', (2352, 2354), True, 'import pyarrow as pa\n'), ((2695, 2704), 'pyarrow.utf8', 'pa.utf8', ([], {}), '()\n', (2702, 2704), True, 'import pyarrow as pa\n'), ((2745, 2755), 'pyarrow.int32', 'pa.int32', ([], {}), '()\n', (2753, 2755), True, 'import pyarrow as pa\n'), ((2796, 2808), 'pyarrow.float32', 'pa.float32', ([], {}), '()\n', (2806, 2808), True, 'import pyarrow as pa\n'), ((1554, 1566), 'pyarrow.float32', 'pa.float32', ([], {}), '()\n', (1564, 1566), True, 'import pyarrow as pa\n'), ((2405, 2417), 'pyarrow.float32', 'pa.float32', ([], {}), '()\n', (2415, 2417), True, 'import pyarrow as pa\n'), ((2956, 2968), 'pyarrow.float32', 'pa.float32', ([], {}), '()\n', (2966, 2968), True, 'import pyarrow as pa\n'), ((12642, 12680), 'torch.cat', 'torch.cat', (['frames_2fps_det_list'], {'dim': '(0)'}), '(frames_2fps_det_list, dim=0)\n', (12651, 12680), False, 'import torch\n'), ((19547, 19571), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (19569, 19571), False, 'import torch\n'), ((2863, 2894), 'pyarrow.list_', 'pa.list_', (['pa.int32'], {'list_size': '(2)'}), '(pa.int32, list_size=2)\n', (2871, 2894), True, 'import pyarrow as pa\n'), ((14150, 14208), 'torch.cat', 'torch.cat', (['[last_frame_2fps[None], frames_2fps_det]'], {'dim': '(0)'}), '([last_frame_2fps[None], frames_2fps_det], dim=0)\n', (14159, 14208), False, 'import torch\n'), ((14998, 15055), 'torch.sqrt', 'torch.sqrt', (['(flows[:, 0, ...] ** 2 + flows[:, 1, ...] ** 2)'], {}), '(flows[:, 0, ...] ** 2 + flows[:, 1, ...] ** 2)\n', (15008, 15055), False, 'import torch\n'), ((15935, 15973), 'torch.cat', 'torch.cat', (['frames_2fps_det_list'], {'dim': '(0)'}), '(frames_2fps_det_list, dim=0)\n', (15944, 15973), False, 'import torch\n'), ((17443, 17501), 'torch.cat', 'torch.cat', (['[last_frame_2fps[None], frames_2fps_det]'], {'dim': '(0)'}), '([last_frame_2fps[None], frames_2fps_det], dim=0)\n', (17452, 17501), False, 'import torch\n'), ((18356, 18413), 'torch.sqrt', 'torch.sqrt', (['(flows[:, 0, ...] ** 2 + flows[:, 1, ...] ** 2)'], {}), '(flows[:, 0, ...] ** 2 + flows[:, 1, ...] ** 2)\n', (18366, 18413), False, 'import torch\n')] |
import os
import openai
import json
import numpy as np
from numpy.linalg import norm
import re
from time import time, sleep
from uuid import uuid4
import datetime
import lancedb
import pandas as pd
def open_file(filepath):
with open(filepath, 'r', encoding='utf-8') as infile:
return infile.read()
def save_file(filepath, content):
with open(filepath, 'w', encoding='utf-8') as outfile:
outfile.write(content)
def timestamp_to_datetime(unix_time):
return datetime.datetime.fromtimestamp(unix_time).strftime("%A, %B %d, %Y at %I:%M%p %Z")
def gpt3_embedding(content, engine='text-embedding-ada-002'):
content = content.encode(encoding='ASCII', errors='ignore').decode()
response = openai.Embedding.create(input=content, engine=engine)
vector = response['data'][0]['embedding']
return vector
def ai_completion(prompt, engine='gpt-3.5-turbo', temp=0.0, top_p=1.0, tokens=400, freq_pen=0.0, pres_pen=0.0, stop=['USER:', 'RAVEN:']):
max_retry = 5
retry = 0
prompt = prompt.encode(encoding='ASCII',errors='ignore' ).decode()
while True:
try:
response = openai.Completion.createChatCompletion(
model=engine,
prompt=prompt,
temperature=temp,
max_tokens=tokens,
top_p=top_p,
frequency_penalty=freq_pen,
presence_penalty=pres_pen,
stop=stop)
text = response[ 'choices' ][0][ 'text' ].strip()
text = re.sub( '[\r\n]+', '\n', text )
text = re.sub( '[\t ]+', ' ', text )
filename = '%s_gpt3.txt' % time()
if not os.path.exists( 'gpt3_logs' ):
os.makedirs( 'gpt3_logs' )
save_file( 'gpt3_logs/%s' % filename, prompt + '\n\n==========\n\n' + text )
return text
except Exception as oops:
retry += 1
if retry >= max_retry:
return "GPT3 error: %s" % oops
print( 'Error communicating with OpenAI:', oops )
sleep(1)
initialization_data = {
'unique_id': '2c9a93d5-3631-4faa-8eac-a99b92e45d50',
'vector': [-0.07254597, -0.00345811, 0.038447 , 0.025837 , -0.01153462,
0.05443505, 0.04415885, -0.03636164, 0.04025393, 0.07552634,
0.05359982, 0.00822271, -0.01921194, 0.09719925, -0.05354664,
0.06897003, 0.01113722, 0.06425729, 0.04223888, -0.05898998,
-0.01620383, 0.01389384, 0.02873985, -0.00392985, -0.02874645,
0.02680893, -0.01051578, -0.0792539 , -0.03293172, -0.00302758,
-0.03745122, -0.02573149, -0.00473748, -0.04199643, -0.03275133,
0.00779039, 0.00624639, 0.06108246, -0.03870484, 0.06269313,
-0.06609031, -0.01554973, -0.04453023, -0.00073963, 0.01021871,
-0.02984073, 0.00474442, 0.00195324, -0.02518238, -0.00426692,
0.00750736, 0.10541135, 0.08878568, 0.05580394, -0.01232905,
-0.04016594, 0.04829635, -0.05689557, -0.01863352, 0.03308525,
0.06468356, -0.03367596, 0.03575945, -0.02212196, -0.01714826,
-0.00585904, -0.09612011, -0.00102483, 0.06920582, 0.05855923,
-0.04266937, -0.03763324, -0.02187943, -0.00141346, -0.086646 ,
0.02106668, 0.00786448, 0.04093482, -0.00187637, 0.02952651,
-0.03702659, -0.02844533, 0.00322303, -0.02380866, -0.05954637,
0.07149482, -0.0065098 , 0.06807149, -0.00099369, 0.05040864,
0.04761266, 0.01862198, -0.05431763, 0.00940712, -0.00970824,
-0.02216387, 0.024306 , 0.03772607, -0.01540066, 0.03771403,
0.01400787, -0.09354229, -0.06321603, -0.09549774, 0.00895245,
-0.01175102, 0.03934404, 0.00956635, -0.04152715, 0.04295438,
0.02825363, 0.02063269, 0.02212336, -0.06888197, 0.01428573,
0.04887657, 0.00304061, 0.03196091, 0.03902192, 0.02360773,
-0.02807535, 0.01558309, 0.02165642, 0.01129555, 0.0567826 ,
-0.00659211, -0.01081236, 0.01809447, 0.00318123, -0.01214105,
-0.05691559, -0.01717793, 0.05293235, 0.01663713, 0.04678147,
-0.02094 , -0.05482098, 0.05463412, 0.00163532, 0.00956752,
-0.03624124, -0.02359207, 0.01571903, -0.01502842, 0.03324307,
0.01896691, 0.02235259, 0.02551061, -0.02953271, 0.05505196,
-0.03115846, -0.01975026, -0.05484571, -0.01757487, -0.01038232,
-0.06098176, -0.01663185, -0.06602633, -0.00643233, 0.00167366,
-0.04243006, 0.01024193, -0.02288529, -0.06190364, 0.03787598,
0.03914008, -0.04915332, 0.0182827 , 0.0136188 , 0.02917461,
0.03118066, -0.03110682, -0.04193405, -0.01370175, -0.03901035,
0.00850587, 0.01056607, -0.00084098, -0.01737773, 0.00836137,
0.01500763, 0.00917414, -0.07946376, 0.02008886, 0.04600394,
0.01271509, -0.01654603, -0.04405601, 0.01442427, 0.00967625,
0.01212494, 0.01189141, 0.03507042, -0.00291006, 0.04226362,
-0.0958102 , 0.04722575, -0.02520623, -0.00780957, -0.01983704,
-0.02350736, -0.03137485, 0.00325953, 0.10679087, -0.08251372,
0.02922777, -0.05723861, -0.05683867, -0.04093323, -0.04769454,
-0.02704669, -0.04450696, 0.03854201, 0.05599346, -0.07225747,
-0.01060745, -0.01285277, -0.02004824, 0.00567907, -0.01130959,
0.03845671, -0.06483931, -0.00013804, 0.00342195, -0.00497795,
0.03194252, 0.06014316, 0.07774884, -0.02778566, -0.06470748,
0.02103901, 0.02202238, 0.02044025, 0.10802107, 0.00356093,
-0.01817842, 0.09661267, -0.05937773, -0.08208849, -0.05190327,
-0.0302214 , 0.05572621, -0.06395542, -0.03078226, 0.00083952,
0.09572925, -0.04516173, -0.0123177 , 0.09613901, -0.05666108,
-0.00537586, 0.04220096, 0.00019196, 0.00295547, -0.07350546,
-0.00707971, -0.01553643, -0.05214835, 0.00311794, 0.00742682,
-0.02943217, 0.06675503, 0.04113274, -0.0809793 , 0.03398148,
0.01721729, 0.03014007, -0.04178908, 0.01025263, 0.03336379,
0.05700357, 0.10388609, 0.00663307, -0.05146715, -0.02173147,
-0.02297893, -0.01923811, 0.03292958, 0.0521661 , 0.03923552,
0.01330443, 0.02524009, 0.06507587, -0.01531762, -0.04601574,
0.0499142 , 0.06374968, 0.06080135, -0.08060206, 0.03382473,
-0.03596291, -0.06714796, -0.08815136, 0.02092835, 0.10282409,
0.07779143, -0.01839681, -0.03541641, 0.00666599, 0.0029895 ,
-0.08307225, -0.06535257, 0.01114002, -0.06142527, -0.01779631,
0.04441926, 0.02008377, 0.03211711, -0.02073815, -0.01346437,
0.02578364, -0.01888524, 0.03310522, -0.02017466, 0.0198052 ,
-0.01019527, -0.02200533, -0.02650121, -0.02987311, -0.04946938,
-0.05915657, -0.0779579 , 0.03368903, 0.01859711, 0.02692219,
0.04209578, -0.01279042, -0.00151735, -0.03290961, 0.00719433,
-0.05409581, 0.04818217, -0.00339916, 0.01444317, -0.04898094,
-0.02065373, -0.04324449, -0.01409152, -0.02882394, 0.0129813 ,
-0.03886433, -0.08824961, 0.02457459, -0.03383131, 0.04405662,
0.03947931, 0.02983763, 0.00124698, 0.01098392, 0.05948395,
0.08565806, 0.02848131, -0.00725272, -0.04415287, -0.03293212,
-0.01364554, -0.09744117, -0.05662472, 0.03124948, -0.04624591,
-0.00605065, -0.06229377, 0.08636316, -0.03645795, 0.08642905,
0.03093746, -0.08031843, 0.01407037, 0.09892832, 0.03219265,
0.02964027, -0.00517425, -0.03442131, -0.01141241, -0.06644958,
-0.07285954, 0.00890575, -0.01360151, 0.00057073, -0.08988309,
0.00797763, 0.0176619 , 0.00745209, -0.07096376, 0.07894821,
-0.08301938, 0.0990236 , 0.03789177, -0.01905026, 0.0547296 ,
-0.06224509, 0.01964617, 0.08179896, -0.0852924 , 0.00475453,
-0.01451678, 0.03582037, -0.04732088, -0.041508 , 0.05553002,
-0.00753875, -0.02849884, 0.04659286, -0.05146529, -0.0661836 ,
-0.00761966, 0.01581906, 0.02444271, -0.01438573, -0.03466942,
-0.06876651, -0.02311521, -0.00312491, 0.03457906, -0.04614082,
0.03010868, 0.0206049 , 0.08378315, -0.03001363, -0.00827654,
0.01580172, -0.04855691, 0.00014473, -0.01702366, 0.06371997,
0.00924862, -0.01441237, 0.0184262 , 0.03586025, 0.07453281,
-0.01822053, 0.00263505, -0.07093351, -0.02956585, 0.0937797 ,
-0.03792839, 0.03657963, -0.01717029, 0.0077794 , 0.06886019,
0.04470135, 0.04228634, 0.06212147, -0.05456647, -0.02041842,
0.02251387, 0.06653161, -0.00503211, 0.03463385, -0.02718318,
0.00118317, -0.02953942, -0.04361469, 0.01001209, 0.01472133,
-0.07398187, 0.00152049, -0.02058817, -0.03011479, -0.03247686,
-0.03999605, 0.00089937, 0.06058171, -0.1016895 , 0.07500667,
0.03293885, -0.05828201, -0.01353116, 0.06867946, -0.03266895,
-0.02314214, 0.03284731, 0.02857622, 0.05733896, 0.05395727,
0.06677917, -0.01256167, 0.01832761, 0.01509516, 0.08785269,
-0.01094873, -0.09930896, -0.00904166, 0.01920987, 0.01392063,
-0.03855692, 0.04157091, -0.05284394, 0.01217607, -0.00495155,
-0.02351189, 0.03753581, 0.03075539, 0.0635642 , 0.05873286,
0.00987345, 0.05255824, -0.08698288, 0.10400596, -0.00647114,
-0.00831464, 0.0055213 , 0.01613558, -0.10711982, 0.00563591,
0.03591603, 0.00221161, -0.01541905, -0.0879847 , -0.05289326,
-0.04107964, -0.04039652],
'speaker': 'USER',
'time': 1695146425.0193892,
'message': 'this is a test.',
'timestring': 'Tuesday, September 19, 2023 at 02:00PM '
}
import pyarrow as pa
class LanceTable:
def __init__(self):
# Initialize lancedb
self.db = lancedb.connect( "/tmp/fresh-lancedb" )
# self.schema = pa.schema([
# pa.field("unique_id", pa.string()),
# pa.field("vector", pa.list_(pa.float32())),
# pa.field("speaker", pa.string()),
# pa.field("time", pa.float64()),
# pa.field("message", pa.string()),
# pa.field("timestring", pa.string()),
# ])
# Create the table with the defined schema
panda_data_frame = pd.DataFrame([ initialization_data ])
table_name = "lance-table"
if table_name in self.db.table_names():
print( "table %s already exists" % table_name )
self.db.drop_table(table_name) # Drop the table if it already exists
self.table = self.db.create_table( table_name, panda_data_frame )
else:
print( "creating table: %s" % table_name )
self.table = self.db.create_table( table_name, panda_data_frame )
# Insert the provided data into the table
# self.table_initialized = False
# self.table = None
print(json.dumps(initialization_data, indent=4))
# Ensure 'embedded_user_input' is a numpy array
# embedded_user_input = np.array(initialization_data['vector'])
# # Flatten the array
# flattened_input = embedded_user_input.flatten().tolist()
# initialization_data[ "vector" ] = flattened_input
# dataframe = pd.DataFrame([ initialization_data ])
# arrow_table = pa.Table.from_pandas(dataframe, panda_data_frame)
# self.table.add( arrow_table )
# self.table.add( dataframe )
def add(self, unique_id_arg, embedded_message, speaker, timestamp, message, timestring ):
# Ensure 'embedded_user_input' is a numpy array
# embedded_user_input = np.array( embedded_message )
# Flatten the array
# flattened_input = embedded_user_input.flatten().tolist()
# embedded_user_input = flattened_input
# embedded_user_input = np.array(embedded_message['vector'])
# Flatten the array
# flattened_input = embedded_user_input.flatten().tolist()
# embedded_message[ "vector" ] = flattened_input
data = {
"unique_id": unique_id_arg,
"vector": embedded_message,
"speaker": speaker,
"time": timestamp,
"message": message,
"timestring": timestring
}
# print( data )
dataframe = pd.DataFrame([ data ])
# arrow_table = pa.Table.from_pandas(dataframe, panda_data_frame )
# self.table.add( arrow_table )
self.table.add( dataframe )
lanceTable = LanceTable()
import tensorflow_hub as hub
# Load the Universal Sentence Encoder
encoder = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4')
if __name__ == '__main__':
openai.api_key = open_file('/home/adamsl/linuxBash/pinecone_chat_dave_s/key_openai.txt')
while True:
# user_input = input('\n\nUSER: ')
user_input = "hi"
timestamp = time()
timestring = timestamp_to_datetime(timestamp)
unique_id = str(uuid4())
# embedded_user_input = encoder([ user_input ]).numpy() # Convert the text into vector form
# embedded_user_input = gpt3_embedding( user_input )
embedded_user_input = lanceTable.table.embedding_functions[ 'vector' ].function.compute_query_embeddings( user_input )[ 0 ]
speaker = 'USER'
message = user_input
# embedded_user_input = np.array( embedded_user_input )
# flattened_input = [float(item) for item in embedded_user_input.flatten().tolist()]
# Insert User's input to lancedb
lanceTable.add( unique_id, embedded_user_input, speaker, timestamp, message, timestring )
query_builder = lanceTable.LanceVectorQueryBuilder( lanceTable.table, embedded_user_input, 'vector' )
# Search for relevant message unique ids in lancedb
# results = lanceTable.table.search( embedded_user_input ).limit( 30 ).to_df()
results = query_builder.to_arrow()
dataframe = results.to_pandas()
print ( dataframe )
chance_to_quit = input( "Press q to quit: " )
if chance_to_quit == "q":
break
break
# print ( results )
# conversation = "\n".join(results['message'].tolist())
# prompt = open_file('prompt_response.txt').replace('<<CONVERSATION>>', conversation).replace('<<MESSAGE>>', user_input)
# ai_completion_text = ai_completion(prompt)
# timestamp = time()
# timestring = timestamp_to_datetime(timestamp)
# embedded_ai_completion = gpt3_embedding(ai_completion_text)
# unique_id = str(uuid4())
# speaker = 'RAVEN'
# thetimestamp = timestamp
# message = ai_completion_text
# timestring = timestring
# Insert AI's response to lancedb
# lanceTable.table.add([( unique_id, embedded_ai_completion, speaker, timestamp, timestring )])
# print('\n\nRAVEN: %s' % ai_completion_text)
| [
"lancedb.connect"
] | [((12752, 12817), 'tensorflow_hub.load', 'hub.load', (['"""https://tfhub.dev/google/universal-sentence-encoder/4"""'], {}), "('https://tfhub.dev/google/universal-sentence-encoder/4')\n", (12760, 12817), True, 'import tensorflow_hub as hub\n'), ((720, 773), 'openai.Embedding.create', 'openai.Embedding.create', ([], {'input': 'content', 'engine': 'engine'}), '(input=content, engine=engine)\n', (743, 773), False, 'import openai\n'), ((9917, 9954), 'lancedb.connect', 'lancedb.connect', (['"""/tmp/fresh-lancedb"""'], {}), "('/tmp/fresh-lancedb')\n", (9932, 9954), False, 'import lancedb\n'), ((10396, 10431), 'pandas.DataFrame', 'pd.DataFrame', (['[initialization_data]'], {}), '([initialization_data])\n', (10408, 10431), True, 'import pandas as pd\n'), ((12464, 12484), 'pandas.DataFrame', 'pd.DataFrame', (['[data]'], {}), '([data])\n', (12476, 12484), True, 'import pandas as pd\n'), ((13049, 13055), 'time.time', 'time', ([], {}), '()\n', (13053, 13055), False, 'from time import time, sleep\n'), ((486, 528), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (['unix_time'], {}), '(unix_time)\n', (517, 528), False, 'import datetime\n'), ((1132, 1324), 'openai.Completion.createChatCompletion', 'openai.Completion.createChatCompletion', ([], {'model': 'engine', 'prompt': 'prompt', 'temperature': 'temp', 'max_tokens': 'tokens', 'top_p': 'top_p', 'frequency_penalty': 'freq_pen', 'presence_penalty': 'pres_pen', 'stop': 'stop'}), '(model=engine, prompt=prompt,\n temperature=temp, max_tokens=tokens, top_p=top_p, frequency_penalty=\n freq_pen, presence_penalty=pres_pen, stop=stop)\n', (1170, 1324), False, 'import openai\n'), ((1526, 1555), 're.sub', 're.sub', (["'[\\r\\n]+'", '"""\n"""', 'text'], {}), "('[\\r\\n]+', '\\n', text)\n", (1532, 1555), False, 'import re\n'), ((1577, 1604), 're.sub', 're.sub', (['"""[\t ]+"""', '""" """', 'text'], {}), "('[\\t ]+', ' ', text)\n", (1583, 1604), False, 'import re\n'), ((11026, 11067), 'json.dumps', 'json.dumps', (['initialization_data'], {'indent': '(4)'}), '(initialization_data, indent=4)\n', (11036, 11067), False, 'import json\n'), ((13134, 13141), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (13139, 13141), False, 'from uuid import uuid4\n'), ((1646, 1652), 'time.time', 'time', ([], {}), '()\n', (1650, 1652), False, 'from time import time, sleep\n'), ((1672, 1699), 'os.path.exists', 'os.path.exists', (['"""gpt3_logs"""'], {}), "('gpt3_logs')\n", (1686, 1699), False, 'import os\n'), ((1719, 1743), 'os.makedirs', 'os.makedirs', (['"""gpt3_logs"""'], {}), "('gpt3_logs')\n", (1730, 1743), False, 'import os\n'), ((2072, 2080), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (2077, 2080), False, 'from time import time, sleep\n')] |
import logging
import chainlit as cl
import lancedb
import pandas as pd
from langchain import LLMChain
from langchain.agents.agent_toolkits import create_conversational_retrieval_agent
from langchain.agents.agent_toolkits import create_retriever_tool
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.schema import SystemMessage
from langchain.vectorstores import LanceDB
OPENAI_MODEL = "gpt-3.5-turbo-16k" # "gpt-3.5-turbo"
logger = logging.getLogger(__name__)
recipes = pd.read_pickle("data/preprocessed/recipes.pkl")
recipes.drop_duplicates(subset=["id"], inplace=True) # Must for this dataset
recipes.drop("target", axis=1, inplace=True)
uri = "dataset/chainlit-recipes-lancedb"
db = lancedb.connect(uri)
table = db.create_table("recipes", recipes, mode="overwrite")
@cl.on_chat_start
async def main():
embeddings = OpenAIEmbeddings()
docsearch = await cl.make_async(LanceDB)(connection=table, embedding=embeddings)
llm = ChatOpenAI(model=OPENAI_MODEL, temperature=0)
tool = create_retriever_tool(
docsearch.as_retriever(search_kwargs={"k": 10}), # kan kalle denne dynamisk for menyer
"recommend_recipes_or_menus",
"Recommends dinner recipes or menus based on user preferences. Invocations must be in norwegian.",
)
tools = [tool]
system_message = SystemMessage(
content=(
"""You are a recommender chatting with the user to provide dinner recipe recommendation. You must follow the instructions below during chat. You can recommend either a recipe plan for a week or single recipes.
If you do not have enough information about user preference, you should ask the user for his preference.
If you have enough information about user preference, you can give recommendation. The recommendation list can contain items that the dialog mentioned before.
Recommendations are given by using the tool recommend_recipes_or_menus with a query you think matches the conversation and user preferences. The query must be in norwegian."""
)
)
qa = create_conversational_retrieval_agent(
llm,
tools,
system_message=system_message,
remember_intermediate_steps=True,
# max_tokens_limit=4000,
verbose=True,
)
# Store the chain in the user session
cl.user_session.set("llm_chain", qa)
@cl.on_message
async def main(message: cl.Message):
print(message)
# Retrieve the chain from the user session
llm_chain = cl.user_session.get("llm_chain") # type: LLMChain
# Call the chain asynchronously
res = await llm_chain.acall(message.content, callbacks=[cl.AsyncLangchainCallbackHandler()])
# Do any post-processing here
await cl.Message(content=res["output"]).send()
# HOW TO RUN: chainlit run app.py -w
| [
"lancedb.connect"
] | [((498, 525), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (515, 525), False, 'import logging\n'), ((537, 584), 'pandas.read_pickle', 'pd.read_pickle', (['"""data/preprocessed/recipes.pkl"""'], {}), "('data/preprocessed/recipes.pkl')\n", (551, 584), True, 'import pandas as pd\n'), ((755, 775), 'lancedb.connect', 'lancedb.connect', (['uri'], {}), '(uri)\n', (770, 775), False, 'import lancedb\n'), ((893, 911), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {}), '()\n', (909, 911), False, 'from langchain.embeddings import OpenAIEmbeddings\n'), ((1007, 1052), 'langchain.chat_models.ChatOpenAI', 'ChatOpenAI', ([], {'model': 'OPENAI_MODEL', 'temperature': '(0)'}), '(model=OPENAI_MODEL, temperature=0)\n', (1017, 1052), False, 'from langchain.chat_models import ChatOpenAI\n'), ((1375, 2106), 'langchain.schema.SystemMessage', 'SystemMessage', ([], {'content': '"""You are a recommender chatting with the user to provide dinner recipe recommendation. You must follow the instructions below during chat. You can recommend either a recipe plan for a week or single recipes. \n If you do not have enough information about user preference, you should ask the user for his preference.\n If you have enough information about user preference, you can give recommendation. The recommendation list can contain items that the dialog mentioned before.\n Recommendations are given by using the tool recommend_recipes_or_menus with a query you think matches the conversation and user preferences. The query must be in norwegian."""'}), '(content=\n """You are a recommender chatting with the user to provide dinner recipe recommendation. You must follow the instructions below during chat. You can recommend either a recipe plan for a week or single recipes. \n If you do not have enough information about user preference, you should ask the user for his preference.\n If you have enough information about user preference, you can give recommendation. The recommendation list can contain items that the dialog mentioned before.\n Recommendations are given by using the tool recommend_recipes_or_menus with a query you think matches the conversation and user preferences. The query must be in norwegian."""\n )\n', (1388, 2106), False, 'from langchain.schema import SystemMessage\n'), ((2145, 2278), 'langchain.agents.agent_toolkits.create_conversational_retrieval_agent', 'create_conversational_retrieval_agent', (['llm', 'tools'], {'system_message': 'system_message', 'remember_intermediate_steps': '(True)', 'verbose': '(True)'}), '(llm, tools, system_message=\n system_message, remember_intermediate_steps=True, verbose=True)\n', (2182, 2278), False, 'from langchain.agents.agent_toolkits import create_conversational_retrieval_agent\n'), ((2401, 2437), 'chainlit.user_session.set', 'cl.user_session.set', (['"""llm_chain"""', 'qa'], {}), "('llm_chain', qa)\n", (2420, 2437), True, 'import chainlit as cl\n'), ((2574, 2606), 'chainlit.user_session.get', 'cl.user_session.get', (['"""llm_chain"""'], {}), "('llm_chain')\n", (2593, 2606), True, 'import chainlit as cl\n'), ((934, 956), 'chainlit.make_async', 'cl.make_async', (['LanceDB'], {}), '(LanceDB)\n', (947, 956), True, 'import chainlit as cl\n'), ((2804, 2837), 'chainlit.Message', 'cl.Message', ([], {'content': "res['output']"}), "(content=res['output'])\n", (2814, 2837), True, 'import chainlit as cl\n'), ((2722, 2756), 'chainlit.AsyncLangchainCallbackHandler', 'cl.AsyncLangchainCallbackHandler', ([], {}), '()\n', (2754, 2756), True, 'import chainlit as cl\n')] |
import streamlit as st
import pandas as pd
import json
import requests
from pathlib import Path
from datetime import datetime
from jinja2 import Template
import lancedb
import sqlite3
from services.lancedb_notes import IndexDocumentsNotes
st.set_page_config(layout='wide',
page_title='Notes')
@st.cache_data
def summarize_text(text, prompt):
system_prompt = '\n'.join(prompt['system_prompt'])
content_prompt = Template('\n'.join(prompt['content_prompt']))
content_prompt = content_prompt.render({'text':text})
results = requests.post('http://localhost:8001/summarize',
json={'system_prompt':system_prompt, 'content_prompt':content_prompt})
return results.json()['summary']
# @st.cache_data
def keyphrase_text(text, strength_cutoff=0.3):
results = requests.post('http://localhost:8001/phrases',
json={'text':text})
results = results.json()
phrases = list()
for phrase, strength in zip(results['phrases'], results['strengths']):
if strength >= strength_cutoff:
phrases.append(phrase)
return phrases
@st.cache_data
def entities_extract(text):
results = requests.post('http://localhost:8001/ner',
json={'text':text})
# st.write(results.json()['entities'])
return results.json()['entities']
@st.cache_data
def store_note(note):
with open('tmp_json.json','w') as f:
json.dump(note, f)
return note
notes_folder = Path('data/notes')
collections_folder = Path('data/collections')
tmp_folder = Path('data/tmp')
config_folder = Path('data/config')
with open(config_folder.joinpath('prompt_templates.json'), 'r') as f:
prompt_options = json.load(f)
index_folder = Path('indexes')
sqlite_location = Path('data/indexes/documents.sqlite')
lance_index = lancedb.connect(index_folder)
available_indexes = lance_index.table_names()
selected_collections = st.multiselect('Which note collections to load', options=available_indexes)
index_to_search = st.selectbox(label='Available Indexes', options=available_indexes)
prompt_option_choices = [x['Name'] for x in prompt_options]
for collection_idx, collection_name in enumerate(selected_collections):
sqlite_conn = sqlite3.connect(sqlite_location)
notes = sqlite_conn.execute(f"""SELECT * from {collection_name}""").fetchall()
fields = sqlite_conn.execute(f"PRAGMA table_info({collection_name})").fetchall()
fields = [x[1] for x in fields]
notes = [dict(zip(fields, note)) for note in notes]
for note in notes:
note['metadata'] = json.loads(note['metadata'])
with st.expander(collection_name):
st.markdown("""Batch processing is possible. Select what you want and whether you want to overwrite the files or save to a new collection.\n\n*If you want to overwrite, leave the collection name as is.*""")
batch_phrase, batch_entity, batch_summary = st.columns([1,1,1])
with batch_phrase:
batch_phrase_extract = st.toggle('Batch Phrase Extract', key=f'batch_phrase_extract_{collection_name}')
with batch_entity:
batch_entity_extract = st.toggle('Batch Entity Extract', key=f'batch_entity_extract_{collection_name}')
with batch_summary:
batch_summary_extract = st.toggle('Batch Summary Extract', key=f'batch_summary_extract_{collection_name}')
selected_prompt_name = st.selectbox("Which prompt template?", prompt_option_choices, index=0)
selected_prompt = prompt_options[prompt_option_choices.index(selected_prompt_name)]
print(selected_prompt)
save_collection_name = st.text_input('Saved Notes Collection Name', value=collection_name, key=f'batch_collection_save_{collection_name}')
if st.button('Batch Process!', key=f'batch_process_{collection_name}'):
progress_text = "Processing Progress (May take some time if summarizing)"
batch_progress_bar = st.progress(0, text=progress_text)
for i, note in enumerate(notes, start=1):
if batch_entity_extract:
entities = entities_extract(note['text'])
note['entities'] = entities
if batch_summary_extract:
note['summary'] = summarize_text(note['text'], selected_prompt).strip()
batch_progress_bar.progress(i/len(notes), text=progress_text)
st.write("Collection Processed!")
with st.container():
for index, note in enumerate(notes):
st.markdown(f"**:blue[{note['title']}]**")
if st.toggle('Show Note', key=f'show_note_{collection_name}_{index}'):
text_col, note_col = st.columns([0.6,0.4])
with text_col:
st.markdown(f"**Date:** {note['date']}")
st.markdown(f"**Title:** {note['title']}")
if 'tags' in note and len(note['tags']) > 0:
st.markdown(f"**Tags:** {note['tags']}")
if 'phrases' in note['metadata']:
st.markdown(f"**Keyphrases:** {note['metadata']['phrases']}")
if 'entities' in note['metadata']:
st.markdown(f"Entities:** {note['metadata']['entities']}")
st.markdown("**Text**")
st.markdown(note['text'].replace('\n','\n\n'))
st.json(note['metadata'], expanded=False)
with note_col:
## Create session state for the text
## add button to make rest api call to populate and then update text
## Add button to save the note
save_note, local_collection = st.columns([1,3])
with save_note:
_save_note = st.button('Save', key=f'save_note_{collection_name}_{index}')
### Keyphrase extraction using Keybert/Keyphrase Vectorizers/Spacy NLP
if st.toggle('\nPhrase Extract', key=f'phrase_extract_{collection_name}_{index}'):
phrases = keyphrase_text(note['text'])
if 'phrases' not in note['metadata']:
note['metadata']['phrases'] = ','.join(phrases)
else:
note['metadata']['phrases'] = note['metadata']['phrases'] +'\n' + ','.join(phrases)
if 'phrases' in note['metadata']:
note['metadata']['phrases'] = st.text_area('Keyphrases', value=note['metadata']['phrases'],
height=100, key=f'phrase_input_{collection_name}_{index}')
else:
note['metadata']['phrases'] = st.text_area('Keyphrases', value='',
height=100, key=f'phrase_input_{collection_name}_{index}')
### Entity extraction using Spacy NLP backend
if st.toggle('Entity Extract', key=f'entity_extract_{collection_name}_{index}'):
if 'entities' not in note['metadata']:
note['metadata']['entities'] = dict()
entities = entities_extract(note['text'])
note['metadata']['entities'].update(entities)
# st.write(note['metadata']['entities'])
entities_formatted = ''
if 'entities' in note['metadata']:
entities_formatted = ''
for ent_type, ents in note['metadata']['entities'].items():
ents_text = ', '.join(ents)
entities_formatted += f'{ent_type}: {ents_text};\n\n'
entities_formatted = entities_formatted.strip()
entities_formatted = st.text_area('Entities', value=entities_formatted,
height=200, key=f'entity_input_{collection_name}_{index}')
else:
entities = st.text_area('Entities', value='',
height=200, key=f'entity_input_{collection_name}_{index}')
note_json = dict()
for entity in entities_formatted.split(';'):
if len(entity) == 0:
continue
entity_type, entity_values = entity.split(':')
entity_values = [x.strip() for x in entity_values.split(',')]
note_json[entity_type.strip()] = entity_values
note['metadata']['entities'] = note_json
#### Summarization using Llama CPP backend
selected_prompt_name = st.selectbox("Which prompt template?", prompt_option_choices, index=0,
key=f'doc_prompt_template_{collection_name}_{index}')
selected_prompt = prompt_options[prompt_option_choices.index(selected_prompt_name)]
if st.toggle('Summarize', key=f'summary_extract_{collection_name}_{index}'):
if 'summary' not in note['metadata']:
note['metadata']['summary'] = ''
summary = summarize_text(note['text'], selected_prompt).strip()
note['metadata']['summary'] = summary
if 'summary' in note['metadata']:
note['metadata']['summary'] = st.text_area('Summary', value=note['metadata']['summary'], height=500,
key=f'summary_input_{collection_name}_{index}')
else:
note['metadata']['summary'] = st.text_area('Summary', value='', height=500,
key=f'summary_input_{collection_name}_{index}')
if _save_note:
note['metadata'] = json.dumps(note['metadata'])
lance_table = lance_index.open_table(collection_name)
st.write(note['uuid'])
# LanceDB current can't (or more likely I don't know) how to update its metadata fields
# Sqlite will be used instead as it's the document repository anyways
# To create searchable notes, I'll have to think up something with lancedb_notes
# lance_table.update(where=f"uuid =' {note['uuid']}'", values={'metadata':note['metadata']})
sqlite_conn.execute(f"""UPDATE {collection_name} SET metadata='{note['metadata'].replace("'","''")}' WHERE uuid='{note['uuid']}'""")
sqlite_conn.commit()
with st.sidebar:
new_collection_name = st.text_input(label='New Collection Name', value='')
if st.button('Create Collection'):
collections_folder.joinpath(new_collection_name).mkdir(parents=True, exist_ok=True)
st.rerun() | [
"lancedb.connect"
] | [((240, 293), 'streamlit.set_page_config', 'st.set_page_config', ([], {'layout': '"""wide"""', 'page_title': '"""Notes"""'}), "(layout='wide', page_title='Notes')\n", (258, 293), True, 'import streamlit as st\n'), ((1504, 1522), 'pathlib.Path', 'Path', (['"""data/notes"""'], {}), "('data/notes')\n", (1508, 1522), False, 'from pathlib import Path\n'), ((1544, 1568), 'pathlib.Path', 'Path', (['"""data/collections"""'], {}), "('data/collections')\n", (1548, 1568), False, 'from pathlib import Path\n'), ((1582, 1598), 'pathlib.Path', 'Path', (['"""data/tmp"""'], {}), "('data/tmp')\n", (1586, 1598), False, 'from pathlib import Path\n'), ((1615, 1634), 'pathlib.Path', 'Path', (['"""data/config"""'], {}), "('data/config')\n", (1619, 1634), False, 'from pathlib import Path\n'), ((1756, 1771), 'pathlib.Path', 'Path', (['"""indexes"""'], {}), "('indexes')\n", (1760, 1771), False, 'from pathlib import Path\n'), ((1790, 1827), 'pathlib.Path', 'Path', (['"""data/indexes/documents.sqlite"""'], {}), "('data/indexes/documents.sqlite')\n", (1794, 1827), False, 'from pathlib import Path\n'), ((1843, 1872), 'lancedb.connect', 'lancedb.connect', (['index_folder'], {}), '(index_folder)\n', (1858, 1872), False, 'import lancedb\n'), ((1942, 2017), 'streamlit.multiselect', 'st.multiselect', (['"""Which note collections to load"""'], {'options': 'available_indexes'}), "('Which note collections to load', options=available_indexes)\n", (1956, 2017), True, 'import streamlit as st\n'), ((2037, 2103), 'streamlit.selectbox', 'st.selectbox', ([], {'label': '"""Available Indexes"""', 'options': 'available_indexes'}), "(label='Available Indexes', options=available_indexes)\n", (2049, 2103), True, 'import streamlit as st\n'), ((557, 682), 'requests.post', 'requests.post', (['"""http://localhost:8001/summarize"""'], {'json': "{'system_prompt': system_prompt, 'content_prompt': content_prompt}"}), "('http://localhost:8001/summarize', json={'system_prompt':\n system_prompt, 'content_prompt': content_prompt})\n", (570, 682), False, 'import requests\n'), ((821, 888), 'requests.post', 'requests.post', (['"""http://localhost:8001/phrases"""'], {'json': "{'text': text}"}), "('http://localhost:8001/phrases', json={'text': text})\n", (834, 888), False, 'import requests\n'), ((1193, 1256), 'requests.post', 'requests.post', (['"""http://localhost:8001/ner"""'], {'json': "{'text': text}"}), "('http://localhost:8001/ner', json={'text': text})\n", (1206, 1256), False, 'import requests\n'), ((1726, 1738), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1735, 1738), False, 'import json\n'), ((2256, 2288), 'sqlite3.connect', 'sqlite3.connect', (['sqlite_location'], {}), '(sqlite_location)\n', (2271, 2288), False, 'import sqlite3\n'), ((11349, 11401), 'streamlit.text_input', 'st.text_input', ([], {'label': '"""New Collection Name"""', 'value': '""""""'}), "(label='New Collection Name', value='')\n", (11362, 11401), True, 'import streamlit as st\n'), ((11409, 11439), 'streamlit.button', 'st.button', (['"""Create Collection"""'], {}), "('Create Collection')\n", (11418, 11439), True, 'import streamlit as st\n'), ((1452, 1470), 'json.dump', 'json.dump', (['note', 'f'], {}), '(note, f)\n', (1461, 1470), False, 'import json\n'), ((2599, 2627), 'json.loads', 'json.loads', (["note['metadata']"], {}), "(note['metadata'])\n", (2609, 2627), False, 'import json\n'), ((2638, 2666), 'streamlit.expander', 'st.expander', (['collection_name'], {}), '(collection_name)\n', (2649, 2666), True, 'import streamlit as st\n'), ((2676, 2890), 'streamlit.markdown', 'st.markdown', (['"""Batch processing is possible. Select what you want and whether you want to overwrite the files or save to a new collection.\n\n*If you want to overwrite, leave the collection name as is.*"""'], {}), '(\n """Batch processing is possible. Select what you want and whether you want to overwrite the files or save to a new collection.\n\n*If you want to overwrite, leave the collection name as is.*"""\n )\n', (2687, 2890), True, 'import streamlit as st\n'), ((2935, 2956), 'streamlit.columns', 'st.columns', (['[1, 1, 1]'], {}), '([1, 1, 1])\n', (2945, 2956), True, 'import streamlit as st\n'), ((3420, 3490), 'streamlit.selectbox', 'st.selectbox', (['"""Which prompt template?"""', 'prompt_option_choices'], {'index': '(0)'}), "('Which prompt template?', prompt_option_choices, index=0)\n", (3432, 3490), True, 'import streamlit as st\n'), ((3645, 3765), 'streamlit.text_input', 'st.text_input', (['"""Saved Notes Collection Name"""'], {'value': 'collection_name', 'key': 'f"""batch_collection_save_{collection_name}"""'}), "('Saved Notes Collection Name', value=collection_name, key=\n f'batch_collection_save_{collection_name}')\n", (3658, 3765), True, 'import streamlit as st\n'), ((3773, 3840), 'streamlit.button', 'st.button', (['"""Batch Process!"""'], {'key': 'f"""batch_process_{collection_name}"""'}), "('Batch Process!', key=f'batch_process_{collection_name}')\n", (3782, 3840), True, 'import streamlit as st\n'), ((11541, 11551), 'streamlit.rerun', 'st.rerun', ([], {}), '()\n', (11549, 11551), True, 'import streamlit as st\n'), ((3017, 3102), 'streamlit.toggle', 'st.toggle', (['"""Batch Phrase Extract"""'], {'key': 'f"""batch_phrase_extract_{collection_name}"""'}), "('Batch Phrase Extract', key=f'batch_phrase_extract_{collection_name}'\n )\n", (3026, 3102), True, 'import streamlit as st\n'), ((3160, 3245), 'streamlit.toggle', 'st.toggle', (['"""Batch Entity Extract"""'], {'key': 'f"""batch_entity_extract_{collection_name}"""'}), "('Batch Entity Extract', key=f'batch_entity_extract_{collection_name}'\n )\n", (3169, 3245), True, 'import streamlit as st\n'), ((3305, 3392), 'streamlit.toggle', 'st.toggle', (['"""Batch Summary Extract"""'], {'key': 'f"""batch_summary_extract_{collection_name}"""'}), "('Batch Summary Extract', key=\n f'batch_summary_extract_{collection_name}')\n", (3314, 3392), True, 'import streamlit as st\n'), ((3961, 3995), 'streamlit.progress', 'st.progress', (['(0)'], {'text': 'progress_text'}), '(0, text=progress_text)\n', (3972, 3995), True, 'import streamlit as st\n'), ((4427, 4460), 'streamlit.write', 'st.write', (['"""Collection Processed!"""'], {}), "('Collection Processed!')\n", (4435, 4460), True, 'import streamlit as st\n'), ((4475, 4489), 'streamlit.container', 'st.container', ([], {}), '()\n', (4487, 4489), True, 'import streamlit as st\n'), ((4556, 4598), 'streamlit.markdown', 'st.markdown', (['f"""**:blue[{note[\'title\']}]**"""'], {}), '(f"**:blue[{note[\'title\']}]**")\n', (4567, 4598), True, 'import streamlit as st\n'), ((4618, 4684), 'streamlit.toggle', 'st.toggle', (['"""Show Note"""'], {'key': 'f"""show_note_{collection_name}_{index}"""'}), "('Show Note', key=f'show_note_{collection_name}_{index}')\n", (4627, 4684), True, 'import streamlit as st\n'), ((4727, 4749), 'streamlit.columns', 'st.columns', (['[0.6, 0.4]'], {}), '([0.6, 0.4])\n', (4737, 4749), True, 'import streamlit as st\n'), ((4808, 4848), 'streamlit.markdown', 'st.markdown', (['f"""**Date:** {note[\'date\']}"""'], {}), '(f"**Date:** {note[\'date\']}")\n', (4819, 4848), True, 'import streamlit as st\n'), ((4873, 4915), 'streamlit.markdown', 'st.markdown', (['f"""**Title:** {note[\'title\']}"""'], {}), '(f"**Title:** {note[\'title\']}")\n', (4884, 4915), True, 'import streamlit as st\n'), ((5373, 5396), 'streamlit.markdown', 'st.markdown', (['"""**Text**"""'], {}), "('**Text**')\n", (5384, 5396), True, 'import streamlit as st\n'), ((5492, 5533), 'streamlit.json', 'st.json', (["note['metadata']"], {'expanded': '(False)'}), "(note['metadata'], expanded=False)\n", (5499, 5533), True, 'import streamlit as st\n'), ((5833, 5851), 'streamlit.columns', 'st.columns', (['[1, 3]'], {}), '([1, 3])\n', (5843, 5851), True, 'import streamlit as st\n'), ((6118, 6196), 'streamlit.toggle', 'st.toggle', (['"""\nPhrase Extract"""'], {'key': 'f"""phrase_extract_{collection_name}_{index}"""'}), "('\\nPhrase Extract', key=f'phrase_extract_{collection_name}_{index}')\n", (6127, 6196), True, 'import streamlit as st\n'), ((7211, 7287), 'streamlit.toggle', 'st.toggle', (['"""Entity Extract"""'], {'key': 'f"""entity_extract_{collection_name}_{index}"""'}), "('Entity Extract', key=f'entity_extract_{collection_name}_{index}')\n", (7220, 7287), True, 'import streamlit as st\n'), ((9176, 9305), 'streamlit.selectbox', 'st.selectbox', (['"""Which prompt template?"""', 'prompt_option_choices'], {'index': '(0)', 'key': 'f"""doc_prompt_template_{collection_name}_{index}"""'}), "('Which prompt template?', prompt_option_choices, index=0, key=\n f'doc_prompt_template_{collection_name}_{index}')\n", (9188, 9305), True, 'import streamlit as st\n'), ((9496, 9568), 'streamlit.toggle', 'st.toggle', (['"""Summarize"""'], {'key': 'f"""summary_extract_{collection_name}_{index}"""'}), "('Summarize', key=f'summary_extract_{collection_name}_{index}')\n", (9505, 9568), True, 'import streamlit as st\n'), ((5013, 5053), 'streamlit.markdown', 'st.markdown', (['f"""**Tags:** {note[\'tags\']}"""'], {}), '(f"**Tags:** {note[\'tags\']}")\n', (5024, 5053), True, 'import streamlit as st\n'), ((5140, 5201), 'streamlit.markdown', 'st.markdown', (['f"""**Keyphrases:** {note[\'metadata\'][\'phrases\']}"""'], {}), '(f"**Keyphrases:** {note[\'metadata\'][\'phrases\']}")\n', (5151, 5201), True, 'import streamlit as st\n'), ((5289, 5347), 'streamlit.markdown', 'st.markdown', (['f"""Entities:** {note[\'metadata\'][\'entities\']}"""'], {}), '(f"Entities:** {note[\'metadata\'][\'entities\']}")\n', (5300, 5347), True, 'import streamlit as st\n'), ((5933, 5994), 'streamlit.button', 'st.button', (['"""Save"""'], {'key': 'f"""save_note_{collection_name}_{index}"""'}), "('Save', key=f'save_note_{collection_name}_{index}')\n", (5942, 5994), True, 'import streamlit as st\n'), ((6679, 6803), 'streamlit.text_area', 'st.text_area', (['"""Keyphrases"""'], {'value': "note['metadata']['phrases']", 'height': '(100)', 'key': 'f"""phrase_input_{collection_name}_{index}"""'}), "('Keyphrases', value=note['metadata']['phrases'], height=100,\n key=f'phrase_input_{collection_name}_{index}')\n", (6691, 6803), True, 'import streamlit as st\n'), ((6953, 7053), 'streamlit.text_area', 'st.text_area', (['"""Keyphrases"""'], {'value': '""""""', 'height': '(100)', 'key': 'f"""phrase_input_{collection_name}_{index}"""'}), "('Keyphrases', value='', height=100, key=\n f'phrase_input_{collection_name}_{index}')\n", (6965, 7053), True, 'import streamlit as st\n'), ((8153, 8267), 'streamlit.text_area', 'st.text_area', (['"""Entities"""'], {'value': 'entities_formatted', 'height': '(200)', 'key': 'f"""entity_input_{collection_name}_{index}"""'}), "('Entities', value=entities_formatted, height=200, key=\n f'entity_input_{collection_name}_{index}')\n", (8165, 8267), True, 'import streamlit as st\n'), ((8396, 8494), 'streamlit.text_area', 'st.text_area', (['"""Entities"""'], {'value': '""""""', 'height': '(200)', 'key': 'f"""entity_input_{collection_name}_{index}"""'}), "('Entities', value='', height=200, key=\n f'entity_input_{collection_name}_{index}')\n", (8408, 8494), True, 'import streamlit as st\n'), ((9975, 10098), 'streamlit.text_area', 'st.text_area', (['"""Summary"""'], {'value': "note['metadata']['summary']", 'height': '(500)', 'key': 'f"""summary_input_{collection_name}_{index}"""'}), "('Summary', value=note['metadata']['summary'], height=500, key=\n f'summary_input_{collection_name}_{index}')\n", (9987, 10098), True, 'import streamlit as st\n'), ((10245, 10343), 'streamlit.text_area', 'st.text_area', (['"""Summary"""'], {'value': '""""""', 'height': '(500)', 'key': 'f"""summary_input_{collection_name}_{index}"""'}), "('Summary', value='', height=500, key=\n f'summary_input_{collection_name}_{index}')\n", (10257, 10343), True, 'import streamlit as st\n'), ((10489, 10517), 'json.dumps', 'json.dumps', (["note['metadata']"], {}), "(note['metadata'])\n", (10499, 10517), False, 'import json\n'), ((10628, 10650), 'streamlit.write', 'st.write', (["note['uuid']"], {}), "(note['uuid'])\n", (10636, 10650), True, 'import streamlit as st\n')] |
from langchain.vectorstores import LanceDB
import lancedb
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
# load agents and tools modules
import pandas as pd
from io import StringIO
from langchain.tools.python.tool import PythonAstREPLTool
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain import LLMMathChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import CTransformers
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from scripts.load_llm import llm_openai
class HRChatbot:
def __init__(self, df_path, text_data_path, user):
self.df_path = df_path
self.text_data_path = text_data_path
self.user = user
self.llm = llm_openai().llm
self.df = None
self.timekeeping_policy = None
self.agent = None
self.load_data()
self.initialize_tools()
def load_data(self):
# Load text documents
loader = TextLoader(self.text_data_path)
docs = loader.load()
# Split documents into smaller chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=100,
chunk_overlap=30,
)
documents = text_splitter.split_documents(docs)
# Create Hugging Face embeddings
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"},
)
# create lancedb vectordb
db = lancedb.connect("/tmp/lancedb")
table = db.create_table(
"pandas_docs",
data=[
{
"vector": embeddings.embed_query("Hello World"),
"text": "Hello World",
"id": "1",
}
],
mode="overwrite",
)
self.vectorstore = LanceDB.from_documents(
documents, embeddings, connection=table
)
self.df = pd.read_csv(self.df_path)
def initialize_tools(self):
# Initialize retrieval question-answering model
# Initialize tools for the agent
timekeeping_policy = RetrievalQA.from_chain_type(
llm=self.llm,
chain_type="stuff",
retriever=self.vectorstore.as_retriever(),
)
python = PythonAstREPLTool(locals={"df": self.df})
calculator = LLMMathChain.from_llm(llm=self.llm, verbose=True)
# Set up variables and descriptions for the tools
user = self.user
df_columns = self.df.columns.to_list()
tools = [
Tool(
name="Timekeeping Policies",
func=timekeeping_policy.run,
description="""
Useful for when you need to answer questions about employee timekeeping policies.
<user>: What is the policy on unused vacation leave?
<assistant>: I need to check the timekeeping policies to answer this question.
<assistant>: Action: Timekeeping Policies
<assistant>: Action Input: Vacation Leave Policy - Unused Leave
...
""",
),
Tool(
name="Employee Data",
func=python.run,
description=f"""
Useful for when you need to answer questions about employee data stored in pandas dataframe 'df'.
Run python pandas operations on 'df' to help you get the right answer.
'df' has the following columns: {df_columns}
<user>: How many Sick Leave do I have left?
<assistant>: df[df['name'] == '{user}']['vacation_leave']
<assistant>: You have n vacation_leave left.
""",
),
Tool(
name="Calculator",
func=calculator.run,
description=f"""
Useful when you need to do math operations or arithmetic operations.
""",
),
]
# Initialize the LLM agent
agent_kwargs = {
"prefix": f"You are friendly HR assistant. You are tasked to assist the current user: {user} on questions related to HR. ..."
}
self.timekeeping_policy = timekeeping_policy
self.agent = initialize_agent(
tools,
self.llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True,
agent_kwargs=agent_kwargs,
)
def get_response(self, user_input):
response = self.agent.run(user_input)
return response
| [
"lancedb.connect"
] | [((1254, 1285), 'langchain.document_loaders.TextLoader', 'TextLoader', (['self.text_data_path'], {}), '(self.text_data_path)\n', (1264, 1285), False, 'from langchain.document_loaders import TextLoader\n'), ((1386, 1450), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': '(100)', 'chunk_overlap': '(30)'}), '(chunk_size=100, chunk_overlap=30)\n', (1416, 1450), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((1605, 1715), 'langchain.embeddings.HuggingFaceEmbeddings', 'HuggingFaceEmbeddings', ([], {'model_name': '"""sentence-transformers/all-MiniLM-L6-v2"""', 'model_kwargs': "{'device': 'cpu'}"}), "(model_name='sentence-transformers/all-MiniLM-L6-v2',\n model_kwargs={'device': 'cpu'})\n", (1626, 1715), False, 'from langchain.embeddings import HuggingFaceEmbeddings\n'), ((1795, 1826), 'lancedb.connect', 'lancedb.connect', (['"""/tmp/lancedb"""'], {}), "('/tmp/lancedb')\n", (1810, 1826), False, 'import lancedb\n'), ((2167, 2230), 'langchain.vectorstores.LanceDB.from_documents', 'LanceDB.from_documents', (['documents', 'embeddings'], {'connection': 'table'}), '(documents, embeddings, connection=table)\n', (2189, 2230), False, 'from langchain.vectorstores import LanceDB\n'), ((2272, 2297), 'pandas.read_csv', 'pd.read_csv', (['self.df_path'], {}), '(self.df_path)\n', (2283, 2297), True, 'import pandas as pd\n'), ((2626, 2667), 'langchain.tools.python.tool.PythonAstREPLTool', 'PythonAstREPLTool', ([], {'locals': "{'df': self.df}"}), "(locals={'df': self.df})\n", (2643, 2667), False, 'from langchain.tools.python.tool import PythonAstREPLTool\n'), ((2689, 2738), 'langchain.LLMMathChain.from_llm', 'LLMMathChain.from_llm', ([], {'llm': 'self.llm', 'verbose': '(True)'}), '(llm=self.llm, verbose=True)\n', (2710, 2738), False, 'from langchain import LLMMathChain\n'), ((4670, 4794), 'langchain.agents.initialize_agent', 'initialize_agent', (['tools', 'self.llm'], {'agent': 'AgentType.ZERO_SHOT_REACT_DESCRIPTION', 'verbose': '(True)', 'agent_kwargs': 'agent_kwargs'}), '(tools, self.llm, agent=AgentType.\n ZERO_SHOT_REACT_DESCRIPTION, verbose=True, agent_kwargs=agent_kwargs)\n', (4686, 4794), False, 'from langchain.agents import initialize_agent, Tool\n'), ((1018, 1030), 'scripts.load_llm.llm_openai', 'llm_openai', ([], {}), '()\n', (1028, 1030), False, 'from scripts.load_llm import llm_openai\n'), ((2900, 3430), 'langchain.agents.Tool', 'Tool', ([], {'name': '"""Timekeeping Policies"""', 'func': 'timekeeping_policy.run', 'description': '"""\n Useful for when you need to answer questions about employee timekeeping policies.\n\n <user>: What is the policy on unused vacation leave?\n <assistant>: I need to check the timekeeping policies to answer this question.\n <assistant>: Action: Timekeeping Policies\n <assistant>: Action Input: Vacation Leave Policy - Unused Leave\n ...\n """'}), '(name=\'Timekeeping Policies\', func=timekeeping_policy.run, description=\n """\n Useful for when you need to answer questions about employee timekeeping policies.\n\n <user>: What is the policy on unused vacation leave?\n <assistant>: I need to check the timekeeping policies to answer this question.\n <assistant>: Action: Timekeeping Policies\n <assistant>: Action Input: Vacation Leave Policy - Unused Leave\n ...\n """\n )\n', (2904, 3430), False, 'from langchain.agents import initialize_agent, Tool\n'), ((3497, 4078), 'langchain.agents.Tool', 'Tool', ([], {'name': '"""Employee Data"""', 'func': 'python.run', 'description': 'f"""\n Useful for when you need to answer questions about employee data stored in pandas dataframe \'df\'. \n Run python pandas operations on \'df\' to help you get the right answer.\n \'df\' has the following columns: {df_columns}\n \n <user>: How many Sick Leave do I have left?\n <assistant>: df[df[\'name\'] == \'{user}\'][\'vacation_leave\']\n <assistant>: You have n vacation_leave left. \n """'}), '(name=\'Employee Data\', func=python.run, description=\n f"""\n Useful for when you need to answer questions about employee data stored in pandas dataframe \'df\'. \n Run python pandas operations on \'df\' to help you get the right answer.\n \'df\' has the following columns: {df_columns}\n \n <user>: How many Sick Leave do I have left?\n <assistant>: df[df[\'name\'] == \'{user}\'][\'vacation_leave\']\n <assistant>: You have n vacation_leave left. \n """\n )\n', (3501, 4078), False, 'from langchain.agents import initialize_agent, Tool\n'), ((4145, 4322), 'langchain.agents.Tool', 'Tool', ([], {'name': '"""Calculator"""', 'func': 'calculator.run', 'description': 'f"""\n Useful when you need to do math operations or arithmetic operations.\n """'}), '(name=\'Calculator\', func=calculator.run, description=\n f"""\n Useful when you need to do math operations or arithmetic operations.\n """\n )\n', (4149, 4322), False, 'from langchain.agents import initialize_agent, Tool\n')] |
import lancedb
import numpy as np
import pandas as pd
global data
data = []
global table
table = None
def get_recommendations(title):
pd_data = pd.DataFrame(data)
# Table Search
result = (
table.search(pd_data[pd_data["title"] == title]["vector"].values[0])
.limit(5)
.to_pandas()
)
# Get IMDB links
links = pd.read_csv(
"./ml-latest-small/links.csv",
header=0,
names=["movie id", "imdb id", "tmdb id"],
converters={"imdb id": str},
)
ret = result["title"].values.tolist()
# Loop to add links
for i in range(len(ret)):
link = links[links["movie id"] == result["id"].values[i]]["imdb id"].values[0]
link = "https://www.imdb.com/title/tt" + link
ret[i] = [ret[i], link]
return ret
if __name__ == "__main__":
# Load and prepare data
ratings = pd.read_csv(
"./ml-latest-small/ratings.csv",
header=None,
names=["user id", "movie id", "rating", "timestamp"],
)
ratings = ratings.drop(columns=["timestamp"])
ratings = ratings.drop(0)
ratings["rating"] = ratings["rating"].values.astype(np.float32)
ratings["user id"] = ratings["user id"].values.astype(np.int32)
ratings["movie id"] = ratings["movie id"].values.astype(np.int32)
reviewmatrix = ratings.pivot(
index="user id", columns="movie id", values="rating"
).fillna(0)
# SVD
matrix = reviewmatrix.values
u, s, vh = np.linalg.svd(matrix, full_matrices=False)
vectors = np.rot90(np.fliplr(vh))
# Metadata
movies = pd.read_csv(
"./ml-latest-small/movies.csv", header=0, names=["movie id", "title", "genres"]
)
movies = movies[movies["movie id"].isin(reviewmatrix.columns)]
data = []
for i in range(len(movies)):
data.append(
{
"id": movies.iloc[i]["movie id"],
"title": movies.iloc[i]["title"],
"vector": vectors[i],
"genre": movies.iloc[i]["genres"],
}
)
# Connect to LanceDB
db_url = "your-project-name"
api_key = "sk_..."
region = "us-east-1"
db = lancedb.connect(db_url, api_key=api_key, region=region)
try:
table = db.create_table("movie_set", data=data)
except:
table = db.open_table("movie_set")
print(get_recommendations("Moana (2016)"))
print(get_recommendations("Rogue One: A Star Wars Story (2016)"))
| [
"lancedb.connect"
] | [((152, 170), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {}), '(data)\n', (164, 170), True, 'import pandas as pd\n'), ((361, 488), 'pandas.read_csv', 'pd.read_csv', (['"""./ml-latest-small/links.csv"""'], {'header': '(0)', 'names': "['movie id', 'imdb id', 'tmdb id']", 'converters': "{'imdb id': str}"}), "('./ml-latest-small/links.csv', header=0, names=['movie id',\n 'imdb id', 'tmdb id'], converters={'imdb id': str})\n", (372, 488), True, 'import pandas as pd\n'), ((880, 995), 'pandas.read_csv', 'pd.read_csv', (['"""./ml-latest-small/ratings.csv"""'], {'header': 'None', 'names': "['user id', 'movie id', 'rating', 'timestamp']"}), "('./ml-latest-small/ratings.csv', header=None, names=['user id',\n 'movie id', 'rating', 'timestamp'])\n", (891, 995), True, 'import pandas as pd\n'), ((1480, 1522), 'numpy.linalg.svd', 'np.linalg.svd', (['matrix'], {'full_matrices': '(False)'}), '(matrix, full_matrices=False)\n', (1493, 1522), True, 'import numpy as np\n'), ((1591, 1687), 'pandas.read_csv', 'pd.read_csv', (['"""./ml-latest-small/movies.csv"""'], {'header': '(0)', 'names': "['movie id', 'title', 'genres']"}), "('./ml-latest-small/movies.csv', header=0, names=['movie id',\n 'title', 'genres'])\n", (1602, 1687), True, 'import pandas as pd\n'), ((2178, 2233), 'lancedb.connect', 'lancedb.connect', (['db_url'], {'api_key': 'api_key', 'region': 'region'}), '(db_url, api_key=api_key, region=region)\n', (2193, 2233), False, 'import lancedb\n'), ((1547, 1560), 'numpy.fliplr', 'np.fliplr', (['vh'], {}), '(vh)\n', (1556, 1560), True, 'import numpy as np\n')] |
import lancedb
from datasets import load_dataset
import pandas as pd
import numpy as np
from hyperdemocracy.embedding.models import BGESmallEn
class Lance:
def __init__(self):
self.model = BGESmallEn()
uri = "data/sample-lancedb"
self.db = lancedb.connect(uri)
def create_table(self):
ds = load_dataset("hyperdemocracy/uscb.s1024.o256.bge-small-en", split="train")
df = pd.DataFrame(ds)
df.rename(columns={"vec": "vector"}, inplace=True)
table = self.db.create_table("congress",
data=df)
return
def query_table(self, queries, n=5) -> pd.DataFrame:
q_embeddings = self.model.model.encode_queries(queries)
table = self.db.open_table("congress")
result = table.search(q_embeddings.reshape(384,)).limit(n).to_df()
return result | [
"lancedb.connect"
] | [((203, 215), 'hyperdemocracy.embedding.models.BGESmallEn', 'BGESmallEn', ([], {}), '()\n', (213, 215), False, 'from hyperdemocracy.embedding.models import BGESmallEn\n'), ((270, 290), 'lancedb.connect', 'lancedb.connect', (['uri'], {}), '(uri)\n', (285, 290), False, 'import lancedb\n'), ((333, 407), 'datasets.load_dataset', 'load_dataset', (['"""hyperdemocracy/uscb.s1024.o256.bge-small-en"""'], {'split': '"""train"""'}), "('hyperdemocracy/uscb.s1024.o256.bge-small-en', split='train')\n", (345, 407), False, 'from datasets import load_dataset\n'), ((421, 437), 'pandas.DataFrame', 'pd.DataFrame', (['ds'], {}), '(ds)\n', (433, 437), True, 'import pandas as pd\n')] |
import lancedb
uri = "test_data"
db = lancedb.connect(uri)
tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]) | [
"lancedb.connect"
] | [((38, 58), 'lancedb.connect', 'lancedb.connect', (['uri'], {}), '(uri)\n', (53, 58), False, 'import lancedb\n')] |
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
from unittest import mock
import lancedb as ldb
import numpy as np
import pandas as pd
import pytest
pytest.importorskip("lancedb.fts")
tantivy = pytest.importorskip("tantivy")
@pytest.fixture
def table(tmp_path) -> ldb.table.LanceTable:
db = ldb.connect(tmp_path)
vectors = [np.random.randn(128) for _ in range(100)]
nouns = ("puppy", "car", "rabbit", "girl", "monkey")
verbs = ("runs", "hits", "jumps", "drives", "barfs")
adv = ("crazily.", "dutifully.", "foolishly.", "merrily.", "occasionally.")
adj = ("adorable", "clueless", "dirty", "odd", "stupid")
text = [
" ".join(
[
nouns[random.randrange(0, 5)],
verbs[random.randrange(0, 5)],
adv[random.randrange(0, 5)],
adj[random.randrange(0, 5)],
]
)
for _ in range(100)
]
table = db.create_table(
"test",
data=pd.DataFrame(
{
"vector": vectors,
"id": [i % 2 for i in range(100)],
"text": text,
"text2": text,
"nested": [{"text": t} for t in text],
}
),
)
return table
def test_create_index(tmp_path):
index = ldb.fts.create_index(str(tmp_path / "index"), ["text"])
assert isinstance(index, tantivy.Index)
assert os.path.exists(str(tmp_path / "index"))
def test_populate_index(tmp_path, table):
index = ldb.fts.create_index(str(tmp_path / "index"), ["text"])
assert ldb.fts.populate_index(index, table, ["text"]) == len(table)
def test_search_index(tmp_path, table):
index = ldb.fts.create_index(str(tmp_path / "index"), ["text"])
ldb.fts.populate_index(index, table, ["text"])
index.reload()
results = ldb.fts.search_index(index, query="puppy", limit=10)
assert len(results) == 2
assert len(results[0]) == 10 # row_ids
assert len(results[1]) == 10 # _distance
def test_create_index_from_table(tmp_path, table):
table.create_fts_index("text")
df = table.search("puppy").limit(10).select(["text"]).to_pandas()
assert len(df) <= 10
assert "text" in df.columns
# Check whether it can be updated
table.add(
[
{
"vector": np.random.randn(128),
"id": 101,
"text": "gorilla",
"text2": "gorilla",
"nested": {"text": "gorilla"},
}
]
)
with pytest.raises(ValueError, match="already exists"):
table.create_fts_index("text")
table.create_fts_index("text", replace=True)
assert len(table.search("gorilla").limit(1).to_pandas()) == 1
def test_create_index_multiple_columns(tmp_path, table):
table.create_fts_index(["text", "text2"])
df = table.search("puppy").limit(10).to_pandas()
assert len(df) == 10
assert "text" in df.columns
assert "text2" in df.columns
def test_empty_rs(tmp_path, table, mocker):
table.create_fts_index(["text", "text2"])
mocker.patch("lancedb.fts.search_index", return_value=([], []))
df = table.search("puppy").limit(10).to_pandas()
assert len(df) == 0
def test_nested_schema(tmp_path, table):
table.create_fts_index("nested.text")
rs = table.search("puppy").limit(10).to_list()
assert len(rs) == 10
def test_search_index_with_filter(table):
table.create_fts_index("text")
orig_import = __import__
def import_mock(name, *args):
if name == "duckdb":
raise ImportError
return orig_import(name, *args)
# no duckdb
with mock.patch("builtins.__import__", side_effect=import_mock):
rs = table.search("puppy").where("id=1").limit(10)
# test schema
assert rs.to_arrow().drop("score").schema.equals(table.schema)
rs = rs.to_list()
for r in rs:
assert r["id"] == 1
# yes duckdb
rs2 = table.search("puppy").where("id=1").limit(10).to_list()
for r in rs2:
assert r["id"] == 1
assert rs == rs2
rs = table.search("puppy").where("id=1").with_row_id(True).limit(10).to_list()
for r in rs:
assert r["id"] == 1
assert r["_rowid"] is not None
def test_null_input(table):
table.add(
[
{
"vector": np.random.randn(128),
"id": 101,
"text": None,
"text2": None,
"nested": {"text": None},
}
]
)
table.create_fts_index("text")
def test_syntax(table):
# https://github.com/lancedb/lancedb/issues/769
table.create_fts_index("text")
with pytest.raises(ValueError, match="Syntax Error"):
table.search("they could have been dogs OR cats").limit(10).to_list()
# these should work
# terms queries
table.search('"they could have been dogs" OR cats').limit(10).to_list()
table.search("(they AND could) OR (have AND been AND dogs) OR cats").limit(
10
).to_list()
# phrase queries
table.search("they could have been dogs OR cats").phrase_query().limit(10).to_list()
table.search('"they could have been dogs OR cats"').limit(10).to_list()
table.search('''"the cats OR dogs were not really 'pets' at all"''').limit(
10
).to_list()
table.search('the cats OR dogs were not really "pets" at all').phrase_query().limit(
10
).to_list()
table.search('the cats OR dogs were not really "pets" at all').phrase_query().limit(
10
).to_list()
| [
"lancedb.connect",
"lancedb.fts.populate_index",
"lancedb.fts.search_index"
] | [((716, 750), 'pytest.importorskip', 'pytest.importorskip', (['"""lancedb.fts"""'], {}), "('lancedb.fts')\n", (735, 750), False, 'import pytest\n'), ((761, 791), 'pytest.importorskip', 'pytest.importorskip', (['"""tantivy"""'], {}), "('tantivy')\n", (780, 791), False, 'import pytest\n'), ((864, 885), 'lancedb.connect', 'ldb.connect', (['tmp_path'], {}), '(tmp_path)\n', (875, 885), True, 'import lancedb as ldb\n'), ((2318, 2364), 'lancedb.fts.populate_index', 'ldb.fts.populate_index', (['index', 'table', "['text']"], {}), "(index, table, ['text'])\n", (2340, 2364), True, 'import lancedb as ldb\n'), ((2398, 2450), 'lancedb.fts.search_index', 'ldb.fts.search_index', (['index'], {'query': '"""puppy"""', 'limit': '(10)'}), "(index, query='puppy', limit=10)\n", (2418, 2450), True, 'import lancedb as ldb\n'), ((901, 921), 'numpy.random.randn', 'np.random.randn', (['(128)'], {}), '(128)\n', (916, 921), True, 'import numpy as np\n'), ((2143, 2189), 'lancedb.fts.populate_index', 'ldb.fts.populate_index', (['index', 'table', "['text']"], {}), "(index, table, ['text'])\n", (2165, 2189), True, 'import lancedb as ldb\n'), ((3096, 3145), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""already exists"""'}), "(ValueError, match='already exists')\n", (3109, 3145), False, 'import pytest\n'), ((4216, 4274), 'unittest.mock.patch', 'mock.patch', (['"""builtins.__import__"""'], {'side_effect': 'import_mock'}), "('builtins.__import__', side_effect=import_mock)\n", (4226, 4274), False, 'from unittest import mock\n'), ((5261, 5308), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""Syntax Error"""'}), "(ValueError, match='Syntax Error')\n", (5274, 5308), False, 'import pytest\n'), ((2889, 2909), 'numpy.random.randn', 'np.random.randn', (['(128)'], {}), '(128)\n', (2904, 2909), True, 'import numpy as np\n'), ((4922, 4942), 'numpy.random.randn', 'np.random.randn', (['(128)'], {}), '(128)\n', (4937, 4942), True, 'import numpy as np\n'), ((1266, 1288), 'random.randrange', 'random.randrange', (['(0)', '(5)'], {}), '(0, 5)\n', (1282, 1288), False, 'import random\n'), ((1313, 1335), 'random.randrange', 'random.randrange', (['(0)', '(5)'], {}), '(0, 5)\n', (1329, 1335), False, 'import random\n'), ((1358, 1380), 'random.randrange', 'random.randrange', (['(0)', '(5)'], {}), '(0, 5)\n', (1374, 1380), False, 'import random\n'), ((1403, 1425), 'random.randrange', 'random.randrange', (['(0)', '(5)'], {}), '(0, 5)\n', (1419, 1425), False, 'import random\n')] |
import pytest
import os
import openai
import argparse
import lancedb
import re
import pickle
import requests
import zipfile
from pathlib import Path
from main import get_document_title
from langchain.document_loaders import BSHTMLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import LanceDB
from langchain.llms import OpenAI
from langchain.chains import RetrievalQA
# TESTING ===============================================================
@pytest.fixture
def mock_embed(monkeypatch):
def mock_embed_query(query, x):
return [0.5, 0.5]
monkeypatch.setattr(OpenAIEmbeddings, "embed_query", mock_embed_query)
def test_main(mock_embed):
os.mkdir("./tmp")
args = argparse.Namespace(query="test", openai_key="test")
os.environ["OPENAI_API_KEY"] = "test"
docs_path = Path("docs.pkl")
docs = []
pandas_docs = requests.get(
"https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip"
)
with open("./tmp/pandas.documentation.zip", "wb") as f:
f.write(pandas_docs.content)
file = zipfile.ZipFile("./tmp/pandas.documentation.zip")
file.extractall(path="./tmp/pandas_docs")
if not docs_path.exists():
for p in Path("./tmp/pandas_docs/pandas.documentation").rglob("*.html"):
print(p)
if p.is_dir():
continue
loader = BSHTMLLoader(p, open_encoding="utf8")
raw_document = loader.load()
m = {}
m["title"] = get_document_title(raw_document[0])
m["version"] = "2.0rc0"
raw_document[0].metadata = raw_document[0].metadata | m
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
docs = docs + raw_document
with docs_path.open("wb") as fh:
pickle.dump(docs, fh)
else:
with docs_path.open("rb") as fh:
docs = pickle.load(fh)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs)
db = lancedb.connect("./tmp/lancedb")
table = db.create_table(
"pandas_docs",
data=[
{
"vector": OpenAIEmbeddings().embed_query("Hello World"),
"text": "Hello World",
"id": "1",
}
],
mode="overwrite",
)
# docsearch = LanceDB.from_documents(documents, OpenAIEmbeddings, connection=table)
# qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever())
# result = qa.run(args.query)
# print(result)
| [
"lancedb.connect"
] | [((766, 783), 'os.mkdir', 'os.mkdir', (['"""./tmp"""'], {}), "('./tmp')\n", (774, 783), False, 'import os\n'), ((795, 846), 'argparse.Namespace', 'argparse.Namespace', ([], {'query': '"""test"""', 'openai_key': '"""test"""'}), "(query='test', openai_key='test')\n", (813, 846), False, 'import argparse\n'), ((906, 922), 'pathlib.Path', 'Path', (['"""docs.pkl"""'], {}), "('docs.pkl')\n", (910, 922), False, 'from pathlib import Path\n'), ((956, 1073), 'requests.get', 'requests.get', (['"""https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip"""'], {}), "(\n 'https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip'\n )\n", (968, 1073), False, 'import requests\n'), ((1187, 1236), 'zipfile.ZipFile', 'zipfile.ZipFile', (['"""./tmp/pandas.documentation.zip"""'], {}), "('./tmp/pandas.documentation.zip')\n", (1202, 1236), False, 'import zipfile\n'), ((2065, 2131), 'langchain.text_splitter.RecursiveCharacterTextSplitter', 'RecursiveCharacterTextSplitter', ([], {'chunk_size': '(1000)', 'chunk_overlap': '(200)'}), '(chunk_size=1000, chunk_overlap=200)\n', (2095, 2131), False, 'from langchain.text_splitter import RecursiveCharacterTextSplitter\n'), ((2217, 2249), 'lancedb.connect', 'lancedb.connect', (['"""./tmp/lancedb"""'], {}), "('./tmp/lancedb')\n", (2232, 2249), False, 'import lancedb\n'), ((1490, 1527), 'langchain.document_loaders.BSHTMLLoader', 'BSHTMLLoader', (['p'], {'open_encoding': '"""utf8"""'}), "(p, open_encoding='utf8')\n", (1502, 1527), False, 'from langchain.document_loaders import BSHTMLLoader\n'), ((1614, 1649), 'main.get_document_title', 'get_document_title', (['raw_document[0]'], {}), '(raw_document[0])\n', (1632, 1649), False, 'from main import get_document_title\n'), ((1936, 1957), 'pickle.dump', 'pickle.dump', (['docs', 'fh'], {}), '(docs, fh)\n', (1947, 1957), False, 'import pickle\n'), ((2028, 2043), 'pickle.load', 'pickle.load', (['fh'], {}), '(fh)\n', (2039, 2043), False, 'import pickle\n'), ((1332, 1378), 'pathlib.Path', 'Path', (['"""./tmp/pandas_docs/pandas.documentation"""'], {}), "('./tmp/pandas_docs/pandas.documentation')\n", (1336, 1378), False, 'from pathlib import Path\n'), ((2357, 2375), 'langchain.embeddings.OpenAIEmbeddings', 'OpenAIEmbeddings', ([], {}), '()\n', (2373, 2375), False, 'from langchain.embeddings import OpenAIEmbeddings\n')] |