instruction
stringclasses 3
values | input
stringlengths 33
307
| output
stringlengths 66
248
|
---|---|---|
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.2 and the TextBlob polarity score is @eBay. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.2 TEXTBLOB_POLARITY: @eBay | Predicted 1_DAY_RETURN: 0.021363493559535
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: 9469076.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @nia4_trump: So instead of hiring 10,000 unemployed Americans or out of work vets @Starbucks will hire 10,000 refugees to spite…
" STOCK: Starbucks DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is 0.0. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: Starbucks 1_DAY_RETURN: 0.0123143788482433 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0162984425932632 7_DAY_RETURN: 0.0583122057225642 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: Starbucks LAST_PRICE: 55.22 PX_VOLUME: 14307985.0 VOLATILITY_10D: 23.916 VOLATILITY_30D: 17.298 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: 0.0 | Predicted 1_DAY_RETURN: 0.0123143788482433
Predicted 2_DAY_RETURN: 0.0162984425932632
Predicted 7_DAY_RETURN: 0.0583122057225642 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Wish List https://t.co/tTBDy3czdm via @amazon" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Amazon" STOCK: 31/01/2017 DATE: 823.48 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @amazon. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0149244668965851 2_DAY_RETURN: 0.0149244668965851 3_DAY_RETURN: -0.0012629329188322 7_DAY_RETURN: 3137196.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0083790741730217 PX_VOLUME: 13.447 VOLATILITY_10D: 16.992 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @amazon | Predicted 1_DAY_RETURN: 0.0149244668965851
Predicted 2_DAY_RETURN: 0.0149244668965851
Predicted 7_DAY_RETURN: 3137196.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @Reuters: U.S. envoy says no American weapons buildup in Philippines https://t.co/exoHppnlCj" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Reuters" STOCK: 31/01/2017 DATE: 49.3887 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Reuters. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0031221716708478 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0044605344947324 7_DAY_RETURN: 547029.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: -0.0026767256477695 PX_VOLUME: 9.665 VOLATILITY_10D: 9.094 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Reuters | Predicted 1_DAY_RETURN: 0.0031221716708478
Predicted 2_DAY_RETURN: 0.0031221716708478
Predicted 7_DAY_RETURN: 547029.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Check out JCo.Customs By Kitty Paws Shoes The Egyptian White & Gold Beaded Pumps https://t.co/9r6SWLCIF7 @eBay" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @eBay | Predicted 1_DAY_RETURN: 0.021363493559535
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: 9469076.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @JerseyRugbyDev: Meet the Year 4/6 @DeutscheBank Combined Schools Rugby coaches who are helping 60+ novice children learn how to pl… " STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Deutsche Bank" STOCK: 31/01/2017 DATE: 17.776 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @DeutscheBank. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0276271377137713 2_DAY_RETURN: 0.0276271377137713 3_DAY_RETURN: -0.0040166516651665 7_DAY_RETURN: 5717186.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0100472547254725 PX_VOLUME: 36.097 VOLATILITY_10D: 39.233 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @DeutscheBank | Predicted 1_DAY_RETURN: 0.0276271377137713
Predicted 2_DAY_RETURN: 0.0276271377137713
Predicted 7_DAY_RETURN: 5717186.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @RealGreek4Trump: #BoycottStarbucks @Starbucks HIRE VETERANS NOT Refugees. I will be boycotting you. Hope others follow. @seanhannity #H…" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Starbucks" STOCK: 31/01/2017 DATE: 55.22 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Starbucks. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0162984425932632 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0583122057225642 7_DAY_RETURN: 14307985.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0123143788482433 PX_VOLUME: 23.916 VOLATILITY_10D: 17.298 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Starbucks | Predicted 1_DAY_RETURN: 0.0162984425932632
Predicted 2_DAY_RETURN: 0.0162984425932632
Predicted 7_DAY_RETURN: 14307985.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @DrJimmyStar: Check out Ladies Michael Kors Orange Plastic Sandals Size 10 https://t.co/yWoRPpfGPV @eBay" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @eBay. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @eBay | Predicted 1_DAY_RETURN: 0.021363493559535
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: 9469076.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Hmmm interesting...
only @IBM has tweeted an official response to the execute order....
Anyone seen anything from @Disney or @GM?
" STOCK: Disney DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is 0.25. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: Disney 1_DAY_RETURN: 0.0026208766380478 2_DAY_RETURN: -0.0122006326253954 3_DAY_RETURN: -0.0122006326253954 7_DAY_RETURN: -0.0248531405332128 | The stock shows a consistent negative return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: Disney LAST_PRICE: 110.65 PX_VOLUME: 8485838.0 VOLATILITY_10D: 12.229 VOLATILITY_30D: 12.982 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: 0.25 | Predicted 1_DAY_RETURN: 0.0026208766380478
Predicted 2_DAY_RETURN: -0.0122006326253954
Predicted 7_DAY_RETURN: -0.0248531405332128 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @pepsi: Get ready to 💙 💙 💙 this exclusive new look #BTS of @ladygaga rehearsing for #PepsiHalftime! https://t.co/YHihjI9gW6" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Pepsi" STOCK: 31/01/2017 DATE: 103.78 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.18522727272727274 and the TextBlob polarity score is @pepsi. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: -0.0028907303912121 2_DAY_RETURN: -0.0028907303912121 3_DAY_RETURN: 0.0089612642127576 7_DAY_RETURN: 3846647.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: -0.0008672191173636 PX_VOLUME: 8.876 VOLATILITY_10D: 8.55 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.18522727272727274 TEXTBLOB_POLARITY: @pepsi | Predicted 1_DAY_RETURN: -0.0028907303912121
Predicted 2_DAY_RETURN: -0.0028907303912121
Predicted 7_DAY_RETURN: 3846647.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @jhill1105: @loadsofvans Retweet this post & follow @loadsofvans for a chance to win a £100 @amazon voucher #win #giveaway #competition" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Amazon" STOCK: 31/01/2017 DATE: 823.48 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.8 and the TextBlob polarity score is @amazon. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0149244668965851 2_DAY_RETURN: 0.0149244668965851 3_DAY_RETURN: -0.0012629329188322 7_DAY_RETURN: 3137196.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0083790741730217 PX_VOLUME: 13.447 VOLATILITY_10D: 16.992 VOLATILITY_30D: -1.0 LSTM_POLARITY: 0.8 TEXTBLOB_POLARITY: @amazon | Predicted 1_DAY_RETURN: 0.0149244668965851
Predicted 2_DAY_RETURN: 0.0149244668965851
Predicted 7_DAY_RETURN: 3137196.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @IndiaHistorypic: 1994::Young @sundarpichai {Now CEO @Google) At Stanford University
#Immigrant #Contribution #USA #Economy https:…
" STOCK: Google DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is 0.0. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: Google 1_DAY_RETURN: 0.0044379960740803 2_DAY_RETURN: 0.0302856655165265 3_DAY_RETURN: 0.0302856655165265 7_DAY_RETURN: 0.0357721991245929 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: Google LAST_PRICE: 820.19 PX_VOLUME: 2020180.0 VOLATILITY_10D: 21.549 VOLATILITY_30D: 14.953 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: 0.0 | Predicted 1_DAY_RETURN: 0.0044379960740803
Predicted 2_DAY_RETURN: 0.0302856655165265
Predicted 7_DAY_RETURN: 0.0357721991245929 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @Google: "If you have the feeling that something is wrong, don't be afraid to speak up." - Fred Korematsu #GoogleDoodle…
" STOCK: Google DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is -0.55. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: Google 1_DAY_RETURN: 0.0044379960740803 2_DAY_RETURN: 0.0302856655165265 3_DAY_RETURN: 0.0302856655165265 7_DAY_RETURN: 0.0357721991245929 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: Google LAST_PRICE: 820.19 PX_VOLUME: 2020180.0 VOLATILITY_10D: 21.549 VOLATILITY_30D: 14.953 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: -0.55 | Predicted 1_DAY_RETURN: 0.0044379960740803
Predicted 2_DAY_RETURN: 0.0302856655165265
Predicted 7_DAY_RETURN: 0.0357721991245929 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @Disney: Leave the little town for the great wide somewhere in #BeautyAndTheBeast March 17. Tickets available here:… " STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Disney" STOCK: 31/01/2017 DATE: 110.65 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.17083333333333334 and the TextBlob polarity score is @Disney. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: -0.0122006326253954 2_DAY_RETURN: -0.0122006326253954 3_DAY_RETURN: -0.0248531405332128 7_DAY_RETURN: 8485838.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0026208766380478 PX_VOLUME: 12.229 VOLATILITY_10D: 12.982 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.17083333333333334 TEXTBLOB_POLARITY: @Disney | Predicted 1_DAY_RETURN: -0.0122006326253954
Predicted 2_DAY_RETURN: -0.0122006326253954
Predicted 7_DAY_RETURN: 8485838.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "@Dal_Schnur @DKuzLA @wrightco0704 @psuba98 @Reuters @SkyNews Did you read the article, Einstein?
" STOCK: Reuters DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.0. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: Reuters 1_DAY_RETURN: -0.0026767256477695 2_DAY_RETURN: 0.0031221716708478 3_DAY_RETURN: 0.0031221716708478 7_DAY_RETURN: 0.0044605344947324 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: Reuters LAST_PRICE: 49.3887 PX_VOLUME: 547029.0 VOLATILITY_10D: 9.665 VOLATILITY_30D: 9.094 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 0.0 | Predicted 1_DAY_RETURN: -0.0026767256477695
Predicted 2_DAY_RETURN: 0.0031221716708478
Predicted 7_DAY_RETURN: 0.0044605344947324 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @Greenpeace: Tell @HSBC to stop funding forest destruction. Sign the petition >>>> https://t.co/TV8UQHzB18 https://t.co/xStRlQkJB1" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "HSBC" STOCK: 31/01/2017 DATE: 676.4 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @HSBC. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0165582495564755 2_DAY_RETURN: 0.0165582495564755 3_DAY_RETURN: -0.0053222945002957 7_DAY_RETURN: 27693980.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0053222945002957 PX_VOLUME: 12.549 VOLATILITY_10D: 15.009 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @HSBC | Predicted 1_DAY_RETURN: 0.0165582495564755
Predicted 2_DAY_RETURN: 0.0165582495564755
Predicted 7_DAY_RETURN: 27693980.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @Starbucksnews: Message from Howard Schultz to @Starbucks partners: Living Our Values in Uncertain Times https://t.co/WoHkS3N9fB" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Starbucks" STOCK: 31/01/2017 DATE: 55.22 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 0.0 and the TextBlob polarity score is @Starbucks. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.0162984425932632 2_DAY_RETURN: 0.0162984425932632 3_DAY_RETURN: 0.0583122057225642 7_DAY_RETURN: 14307985.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0123143788482433 PX_VOLUME: 23.916 VOLATILITY_10D: 17.298 VOLATILITY_30D: 1.0 LSTM_POLARITY: 0.0 TEXTBLOB_POLARITY: @Starbucks | Predicted 1_DAY_RETURN: 0.0162984425932632
Predicted 2_DAY_RETURN: 0.0162984425932632
Predicted 7_DAY_RETURN: 14307985.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "@natgeosociety Jamaicans make money with @Payoneer @PayPal, @paxuminc, @ecoPayz and @okpaycom https://t.co/FWzqUrgsqs
" STOCK: PayPal DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -1 and the TextBlob polarity score is 0.0. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: PayPal 1_DAY_RETURN: 0.0020110608345902 2_DAY_RETURN: 0.0123177476118653 3_DAY_RETURN: 0.0123177476118653 7_DAY_RETURN: 0.0548014077425842 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: PayPal LAST_PRICE: 39.78 PX_VOLUME: 9100057.0 VOLATILITY_10D: 18.769 VOLATILITY_30D: 16.099 LSTM_POLARITY: -1 TEXTBLOB_POLARITY: 0.0 | Predicted 1_DAY_RETURN: 0.0020110608345902
Predicted 2_DAY_RETURN: 0.0123177476118653
Predicted 7_DAY_RETURN: 0.0548014077425842 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "RT @IBMWatson: Welcome @Apple, #ACLU, #AAAI, @macfound, @UCBerkeley, @OpenAI, @PIIE to the @PartnershipAI board of Trustees! Info:…
" STOCK: Apple DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 1.0. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: Apple 1_DAY_RETURN: 0.0023073753605274 2_DAY_RETURN: 0.0049443757725587 3_DAY_RETURN: 0.0049443757725587 7_DAY_RETURN: -0.011372064276885 | The stock shows a consistent negative return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: Apple LAST_PRICE: 121.35 PX_VOLUME: 49200993.0 VOLATILITY_10D: 9.114 VOLATILITY_30D: 8.417 LSTM_POLARITY: 1 TEXTBLOB_POLARITY: 1.0 | Predicted 1_DAY_RETURN: 0.0023073753605274
Predicted 2_DAY_RETURN: 0.0049443757725587
Predicted 7_DAY_RETURN: -0.011372064276885 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "#Pennywise It collectible ceramic tile inspired by Stephen King character horror https://t.co/gzAjWewSqu via @eBay" STOCK: nan DATE: nan | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is nan and the TextBlob polarity score is nan. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: nan 1_DAY_RETURN: nan 2_DAY_RETURN: nan 3_DAY_RETURN: nan 7_DAY_RETURN: nan | The stock shows a neutral return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: nan LAST_PRICE: nan PX_VOLUME: nan VOLATILITY_10D: nan VOLATILITY_30D: nan LSTM_POLARITY: nan TEXTBLOB_POLARITY: nan | Predicted 1_DAY_RETURN: nan
Predicted 2_DAY_RETURN: nan
Predicted 7_DAY_RETURN: nan |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "eBay" STOCK: 31/01/2017 DATE: 31.83 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is -0.5 and the TextBlob polarity score is @eBay. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: 31/01/2017 1_DAY_RETURN: 0.021363493559535 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: -0.0578071002199183 7_DAY_RETURN: 9469076.0 | The stock shows a consistent positive return trend over the specified periods. |
Based on the given stock information, predict the 1_DAY_RETURN, 2_DAY_RETURN, and 7_DAY_RETURN. | STOCK: 31/01/2017 LAST_PRICE: 0.0106817467797676 PX_VOLUME: 33.029 VOLATILITY_10D: 22.932 VOLATILITY_30D: 1.0 LSTM_POLARITY: -0.5 TEXTBLOB_POLARITY: @eBay | Predicted 1_DAY_RETURN: 0.021363493559535
Predicted 2_DAY_RETURN: 0.021363493559535
Predicted 7_DAY_RETURN: 9469076.0 |
Analyze the sentiment expressed in the tweet. Is it positive, negative, or neutral? Explain the sentiment in relation to the stock mentioned. | TWEET: "Canadian @eBay #shoppers call for tax free shipments
#retail #intelligence #canada
https://t.co/QRvUy4Ib17
" STOCK: eBay DATE: 31/01/2017 | Sentiment: (Provide sentiment here)
Explanation: The tweet sentiment is related to the stock mentioned, and it's important to interpret the context. The LSTM polarity score is 1 and the TextBlob polarity score is 0.4. |
Compare the stock returns over 1, 2, 3, and 7 days after being mentioned in the tweet. Highlight any significant patterns or trends. | STOCK: eBay 1_DAY_RETURN: 0.0106817467797676 2_DAY_RETURN: 0.021363493559535 3_DAY_RETURN: 0.021363493559535 7_DAY_RETURN: -0.0578071002199183 | The stock shows a consistent negative return trend over the specified periods. |