|
--- |
|
license: apache-2.0 |
|
language: |
|
- zh |
|
tags: |
|
- game |
|
- hoyoverse |
|
- video |
|
- audio |
|
- multimodal |
|
- vision-language |
|
- text |
|
--- |
|
|
|
# Game Playthrough |
|
|
|
## Description (English) |
|
|
|
This is a collection of playthrough videos of Honkai Impact 3rd from Hoyoverse, along with efforts to build a Chinese text corpus (with OCR and MLLM-based parsing). |
|
|
|
The language setting is Chinese. |
|
|
|
All credits to [the source author from BiliBili](https://www.bilibili.com/video/BV12W411h76f) |
|
|
|
The dataset contains the following contents: |
|
|
|
- [x] Videos: The video-only files, corresponding to all videos in the [source](https://www.bilibili.com/video/BV12W411h76f). Mostly in 1280x720 aspect ratio, HEVC encoding. |
|
- [x] Audios: The audio-only files, coresponding to all the videos. Mostly in M4A format with various kbps. |
|
- [ ] OCR-Results (Raw): The OCR results for all the frames every 1 second. This process is done by using [Paddle-OCR](https://github.com/PaddlePaddle/PaddleOCR). |
|
- [ ] VLM-Parsed corpus: Given the OCR-results and image frames, hopefully we will parse the raw info into structured story narrations and dialogues (with associated speaker & content). This process will be done by using strong vision language models. |
|
|
|
Up-to-date: 2024.08.08 |
|
|
|
Latest video: [P186]主线第二部03间章:一个梦游者的苦痛-02[720P 高清] |
|
|
|
## Description (Chinese) |
|
|
|
本 Repo 收集了崩坏3的CG + 剧情对话视频,同时基于 OCR 和多模态大语言模型构造相应的中文崩坏3剧情语料。 |
|
|
|
感谢 [B站视频Up主](https://www.bilibili.com/video/BV12W411h76f)。 |
|
|
|
数据集包括以下部分: |
|
|
|
- [x] 视频:纯视频文件 [source](https://www.bilibili.com/video/BV12W411h76f). 大部分都在 1280x720 分辨率, HEVC 编码。 |
|
- [x] 音频:纯音频文件. 均为 M4A 格式,不同的 kbps。 |
|
- [ ] OCR 结果 (无任何后处理):对所有视频每隔1秒取一帧,使用 [Paddle-OCR](https://github.com/PaddlePaddle/PaddleOCR) 对每一帧执行 OCR,获取画面上的任何可识别文字。 |
|
- [ ] 多模态大模型解析结果:对所有 OCR 结果 + 图像信息,调用多模态大模型将其解析成结构化剧情数据,包含旁白、说话人、说话内容等信息。 |
|
|
|
时间截止:2024.08.08 |
|
|
|
最新视频:[P186]主线第二部03间章:一个梦游者的苦痛-02[720P 高清] |
|
|
|
|
|
## Illustration for text corpus construction pipeline |
|
|
|
Here we show how text information is parsed from raw videos. |
|
|
|
1. Extracting Video Frames |
|
|
|
Save each frame as a image. |
|
|
|
![frame_130.jpg](img%2Fframe_130.jpg) |
|
|
|
2. OCR on video frame |
|
|
|
Apply an OCR model to recognize texts that appear in a frame. |
|
|
|
```json |
|
[{"box": [[1161.0, 17.0], [1250.0, 20.0], [1249.0, 49.0], [1160.0, 46.0]], "text": "跳过I", "score": 0.8165686130523682}, {"box": [[539.0, 154.0], [724.0, 136.0], [726.0, 158.0], [542.0, 177.0]], "text": "SOURCEUNKNOWN", "score": 0.9888437986373901}, {"box": [[541.0, 475.0], [645.0, 475.0], [645.0, 499.0], [541.0, 499.0]], "text": "不明通讯", "score": 0.9979484677314758}, {"box": [[807.0, 476.0], [976.0, 481.0], [976.0, 508.0], [806.0, 504.0]], "text": "无量塔姬子", "score": 0.9982650876045227}, {"box": [[544.0, 509.0], [1107.0, 534.0], [1106.0, 567.0], [542.0, 542.0]], "text": "防御系统已经解除,我们暂时安全了。但还是", "score": 0.9949256777763367}, {"box": [[548.0, 545.0], [786.0, 558.0], [784.0, 585.0], [546.0, 573.0]], "text": "不知道琪亚娜在哪里。", "score": 0.9898449182510376}] |
|
``` |
|
|
|
3. Vision-Language Understanding |
|
|
|
Prompt a performant VLM to understand the frame image as well as OCR result (prevent hallucinations), and output structured information as follows: |
|
|
|
```json |
|
{ |
|
"role": "无量塔姬子", |
|
"content": "防御系统已经解除,我们暂时安全了。但还是不知道琪亚娜在哪里。" |
|
} |
|
``` |
|
|