Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
sileod commited on
Commit
05b3c59
1 Parent(s): 8b4ae5e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -18
README.md CHANGED
@@ -836,7 +836,7 @@ configs:
836
 
837
  Disrpt is a multilingual, multi-framework unified discourse analysis benchmark.
838
 
839
- This repo only contains the disrpt dataset when the underlying data is permissively licensed. Some datasets rely on corpora like the PTB.
840
  To load these datasets, do the following:
841
  `pip install disrpt-utils`
842
 
@@ -844,7 +844,7 @@ To load these datasets, do the following:
844
  from disrpt_utils import load_dataset
845
 
846
  corpora_paths={
847
- #🚩 TODO Input your own paths 🚩
848
  "tur.pdtb.tdb": "/mnt/nfs_share_magnet2/dsileo/data/disrpt/TDB1.0/raw/",
849
  "eng.rst.rstdt": "/mnt/nfs_share_magnet2/dsileo/data/disrpt/RSTtrees-WSJ-main-1.0-20231128T125253Z-001/"
850
  }
@@ -853,26 +853,22 @@ config_name="eng.rst.rstdt"
853
  load_dataset(config_name,'conllu',corpora_paths=corpora_paths)
854
  ```
855
 
856
- Otherwise, most datasets are
857
  ```python
858
  from huggingface import load_dataset
859
  load_dataset(/multilingual-discourse-hub/disrpt/'','eng.dep.scidtb.rels')
860
  ```
861
 
862
- scditb:
 
863
  ```
864
- @inproceedings{yang-li-2018-scidtb,
865
- title = "{S}ci{DTB}: Discourse Dependency {T}ree{B}ank for Scientific Abstracts",
866
- author = "Yang, An and
867
- Li, Sujian",
868
- booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
869
- month = jul,
870
- year = "2018",
871
- address = "Melbourne, Australia",
872
- publisher = "Association for Computational Linguistics",
873
- url = "https://aclanthology.org/P18-2071",
874
- doi = "10.18653/v1/P18-2071",
875
- pages = "444--449",
876
- abstract = "Annotation corpus for discourse relations benefits NLP tasks such as machine translation and question answering. In this paper, we present SciDTB, a domain-specific discourse treebank annotated on scientific articles. Different from widely-used RST-DT and PDTB, SciDTB uses dependency trees to represent discourse structure, which is flexible and simplified to some extent but do not sacrifice structural integrity. We discuss the labeling framework, annotation workflow and some statistics about SciDTB. Furthermore, our treebank is made as a benchmark for evaluating discourse dependency parsers, on which we provide several baselines as fundamental work.",
877
  }
878
- ```
 
 
 
 
836
 
837
  Disrpt is a multilingual, multi-framework unified discourse analysis benchmark.
838
 
839
+ ⚠️ This repo only contains the disrpt dataset when the underlying data is permissively licensed. Some datasets rely on corpora like the PTB.
840
  To load these datasets, do the following:
841
  `pip install disrpt-utils`
842
 
 
844
  from disrpt_utils import load_dataset
845
 
846
  corpora_paths={
847
+ #TODO Input your own paths
848
  "tur.pdtb.tdb": "/mnt/nfs_share_magnet2/dsileo/data/disrpt/TDB1.0/raw/",
849
  "eng.rst.rstdt": "/mnt/nfs_share_magnet2/dsileo/data/disrpt/RSTtrees-WSJ-main-1.0-20231128T125253Z-001/"
850
  }
 
853
  load_dataset(config_name,'conllu',corpora_paths=corpora_paths)
854
  ```
855
 
856
+ Otherwise, most datasets are directly accessible:
857
  ```python
858
  from huggingface import load_dataset
859
  load_dataset(/multilingual-discourse-hub/disrpt/'','eng.dep.scidtb.rels')
860
  ```
861
 
862
+ # Citations
863
+
864
  ```
865
+ @inproceedings{braud2024disrpt,
866
+ title={{DISRPT}: A Multilingual, Multi-domain, Cross-framework Benchmark for Discourse Processing},
867
+ author={Braud, Chloé and Zeldes, Amir and Rivière, Laura and Liu, Yang Janet and Muller, Philippe and Sileo, Damien and Aoyama, Tatsuya},
868
+ booktitle={Proceedings of LREC-COLING 2024},
869
+ year={2024}
 
 
 
 
 
 
 
 
870
  }
871
+ ```
872
+
873
+ ## Underline datasets:
874
+ https://huggingface.co/datasets/multilingual-discourse-hub/disrpt/raw/main/bibtex.json