Datasets:
annotations_creators:
- crowdsourced
license: cc-by-nc-sa-4.0
size_categories:
- 10K<n<100K
task_categories:
- image-classification
- image-feature-extraction
pretty_name: Galaxy Zoo CANDELS
arxiv: 2404.02973
tags:
- galaxy zoo
- physics
- astronomy
- galaxies
- citizen science
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: tiny
data_files:
- split: train
path: tiny/train-*
- split: test
path: tiny/test-*
dataset_info:
- config_name: default
features:
- name: image
dtype: image
- name: id_str
dtype: string
- name: dataset_name
dtype: string
- name: ra
dtype: float64
- name: dec
dtype: float64
- name: smooth-or-featured-candels_smooth
dtype: int32
- name: smooth-or-featured-candels_smooth_fraction
dtype: float32
- name: smooth-or-featured-candels_total-votes
dtype: int32
- name: smooth-or-featured-candels_features
dtype: int32
- name: smooth-or-featured-candels_features_fraction
dtype: float32
- name: smooth-or-featured-candels_artifact
dtype: int32
- name: smooth-or-featured-candels_artifact_fraction
dtype: float32
- name: how-rounded-candels_completely
dtype: int32
- name: how-rounded-candels_completely_fraction
dtype: float32
- name: how-rounded-candels_total-votes
dtype: int32
- name: how-rounded-candels_in-between
dtype: int32
- name: how-rounded-candels_in-between_fraction
dtype: float32
- name: how-rounded-candels_cigar-shaped
dtype: int32
- name: how-rounded-candels_cigar-shaped_fraction
dtype: float32
- name: clumpy-appearance-candels_yes
dtype: int32
- name: clumpy-appearance-candels_yes_fraction
dtype: float32
- name: clumpy-appearance-candels_total-votes
dtype: int32
- name: clumpy-appearance-candels_no
dtype: int32
- name: clumpy-appearance-candels_no_fraction
dtype: float32
- name: disk-edge-on-candels_yes
dtype: int32
- name: disk-edge-on-candels_yes_fraction
dtype: float32
- name: disk-edge-on-candels_total-votes
dtype: int32
- name: disk-edge-on-candels_no
dtype: int32
- name: disk-edge-on-candels_no_fraction
dtype: float32
- name: edge-on-bulge-candels_yes
dtype: int32
- name: edge-on-bulge-candels_yes_fraction
dtype: float32
- name: edge-on-bulge-candels_total-votes
dtype: int32
- name: edge-on-bulge-candels_no
dtype: int32
- name: edge-on-bulge-candels_no_fraction
dtype: float32
- name: bar-candels_yes
dtype: int32
- name: bar-candels_yes_fraction
dtype: float32
- name: bar-candels_total-votes
dtype: int32
- name: bar-candels_no
dtype: int32
- name: bar-candels_no_fraction
dtype: float32
- name: has-spiral-arms-candels_yes
dtype: int32
- name: has-spiral-arms-candels_yes_fraction
dtype: float32
- name: has-spiral-arms-candels_total-votes
dtype: int32
- name: has-spiral-arms-candels_no
dtype: int32
- name: has-spiral-arms-candels_no_fraction
dtype: float32
- name: spiral-winding-candels_tight
dtype: int32
- name: spiral-winding-candels_tight_fraction
dtype: float32
- name: spiral-winding-candels_total-votes
dtype: int32
- name: spiral-winding-candels_medium
dtype: int32
- name: spiral-winding-candels_medium_fraction
dtype: float32
- name: spiral-winding-candels_loose
dtype: int32
- name: spiral-winding-candels_loose_fraction
dtype: float32
- name: spiral-arm-count-candels_1
dtype: int32
- name: spiral-arm-count-candels_1_fraction
dtype: float32
- name: spiral-arm-count-candels_total-votes
dtype: int32
- name: spiral-arm-count-candels_2
dtype: int32
- name: spiral-arm-count-candels_2_fraction
dtype: float32
- name: spiral-arm-count-candels_3
dtype: int32
- name: spiral-arm-count-candels_3_fraction
dtype: float32
- name: spiral-arm-count-candels_4
dtype: int32
- name: spiral-arm-count-candels_4_fraction
dtype: float32
- name: spiral-arm-count-candels_5-plus
dtype: int32
- name: spiral-arm-count-candels_5-plus_fraction
dtype: float32
- name: spiral-arm-count-candels_cant-tell
dtype: int32
- name: spiral-arm-count-candels_cant-tell_fraction
dtype: float32
- name: bulge-size-candels_none
dtype: int32
- name: bulge-size-candels_none_fraction
dtype: float32
- name: bulge-size-candels_total-votes
dtype: int32
- name: bulge-size-candels_obvious
dtype: int32
- name: bulge-size-candels_obvious_fraction
dtype: float32
- name: bulge-size-candels_dominant
dtype: int32
- name: bulge-size-candels_dominant_fraction
dtype: float32
- name: merging-candels_merger
dtype: int32
- name: merging-candels_merger_fraction
dtype: float32
- name: merging-candels_total-votes
dtype: int32
- name: merging-candels_tidal-debris
dtype: int32
- name: merging-candels_tidal-debris_fraction
dtype: float32
- name: merging-candels_both
dtype: int32
- name: merging-candels_both_fraction
dtype: float32
- name: merging-candels_neither
dtype: int32
- name: merging-candels_neither_fraction
dtype: float32
- name: summary
dtype: string
splits:
- name: train
num_bytes: 5053927898.354
num_examples: 38478
download_size: 5019368249
dataset_size: 5053927898.354
- config_name: tiny
features:
- name: image
dtype: image
- name: id_str
dtype: string
- name: dataset_name
dtype: string
- name: ra
dtype: float64
- name: dec
dtype: float64
- name: smooth-or-featured-candels_smooth
dtype: int32
- name: smooth-or-featured-candels_smooth_fraction
dtype: float32
- name: smooth-or-featured-candels_total-votes
dtype: int32
- name: smooth-or-featured-candels_features
dtype: int32
- name: smooth-or-featured-candels_features_fraction
dtype: float32
- name: smooth-or-featured-candels_artifact
dtype: int32
- name: smooth-or-featured-candels_artifact_fraction
dtype: float32
- name: how-rounded-candels_completely
dtype: int32
- name: how-rounded-candels_completely_fraction
dtype: float32
- name: how-rounded-candels_total-votes
dtype: int32
- name: how-rounded-candels_in-between
dtype: int32
- name: how-rounded-candels_in-between_fraction
dtype: float32
- name: how-rounded-candels_cigar-shaped
dtype: int32
- name: how-rounded-candels_cigar-shaped_fraction
dtype: float32
- name: clumpy-appearance-candels_yes
dtype: int32
- name: clumpy-appearance-candels_yes_fraction
dtype: float32
- name: clumpy-appearance-candels_total-votes
dtype: int32
- name: clumpy-appearance-candels_no
dtype: int32
- name: clumpy-appearance-candels_no_fraction
dtype: float32
- name: disk-edge-on-candels_yes
dtype: int32
- name: disk-edge-on-candels_yes_fraction
dtype: float32
- name: disk-edge-on-candels_total-votes
dtype: int32
- name: disk-edge-on-candels_no
dtype: int32
- name: disk-edge-on-candels_no_fraction
dtype: float32
- name: edge-on-bulge-candels_yes
dtype: int32
- name: edge-on-bulge-candels_yes_fraction
dtype: float32
- name: edge-on-bulge-candels_total-votes
dtype: int32
- name: edge-on-bulge-candels_no
dtype: int32
- name: edge-on-bulge-candels_no_fraction
dtype: float32
- name: bar-candels_yes
dtype: int32
- name: bar-candels_yes_fraction
dtype: float32
- name: bar-candels_total-votes
dtype: int32
- name: bar-candels_no
dtype: int32
- name: bar-candels_no_fraction
dtype: float32
- name: has-spiral-arms-candels_yes
dtype: int32
- name: has-spiral-arms-candels_yes_fraction
dtype: float32
- name: has-spiral-arms-candels_total-votes
dtype: int32
- name: has-spiral-arms-candels_no
dtype: int32
- name: has-spiral-arms-candels_no_fraction
dtype: float32
- name: spiral-winding-candels_tight
dtype: int32
- name: spiral-winding-candels_tight_fraction
dtype: float32
- name: spiral-winding-candels_total-votes
dtype: int32
- name: spiral-winding-candels_medium
dtype: int32
- name: spiral-winding-candels_medium_fraction
dtype: float32
- name: spiral-winding-candels_loose
dtype: int32
- name: spiral-winding-candels_loose_fraction
dtype: float32
- name: spiral-arm-count-candels_1
dtype: int32
- name: spiral-arm-count-candels_1_fraction
dtype: float32
- name: spiral-arm-count-candels_total-votes
dtype: int32
- name: spiral-arm-count-candels_2
dtype: int32
- name: spiral-arm-count-candels_2_fraction
dtype: float32
- name: spiral-arm-count-candels_3
dtype: int32
- name: spiral-arm-count-candels_3_fraction
dtype: float32
- name: spiral-arm-count-candels_4
dtype: int32
- name: spiral-arm-count-candels_4_fraction
dtype: float32
- name: spiral-arm-count-candels_5-plus
dtype: int32
- name: spiral-arm-count-candels_5-plus_fraction
dtype: float32
- name: spiral-arm-count-candels_cant-tell
dtype: int32
- name: spiral-arm-count-candels_cant-tell_fraction
dtype: float32
- name: bulge-size-candels_none
dtype: int32
- name: bulge-size-candels_none_fraction
dtype: float32
- name: bulge-size-candels_total-votes
dtype: int32
- name: bulge-size-candels_obvious
dtype: int32
- name: bulge-size-candels_obvious_fraction
dtype: float32
- name: bulge-size-candels_dominant
dtype: int32
- name: bulge-size-candels_dominant_fraction
dtype: float32
- name: merging-candels_merger
dtype: int32
- name: merging-candels_merger_fraction
dtype: float32
- name: merging-candels_total-votes
dtype: int32
- name: merging-candels_tidal-debris
dtype: int32
- name: merging-candels_tidal-debris_fraction
dtype: float32
- name: merging-candels_both
dtype: int32
- name: merging-candels_both_fraction
dtype: float32
- name: merging-candels_neither
dtype: int32
- name: merging-candels_neither_fraction
dtype: float32
- name: summary
dtype: string
splits:
- name: train
num_bytes: 50923554
num_examples: 384
- name: test
num_bytes: 11408334
num_examples: 96
download_size: 62397933
dataset_size: 62331888
GZ Campaign Datasets
Dataset Summary
Galaxy Zoo volunteers label telescope images of galaxies according to their visible features: spiral arms, galaxy-galaxy collisions, and so on. These datasets share the galaxy images and volunteer labels in a machine-learning-friendly format. We use these datasets to train our foundation models. We hope they'll help you too.
- Curated by: Mike Walmsley
- License: cc-by-nc-sa-4.0. We specifically require all models trained on these datasets to be released as source code by publication.
Downloading
Install the Datasets library
pip install datasets
and then log in to your HuggingFace account
huggingface-cli login
All unpublished* datasets are temporarily "gated" i.e. you must have requested and been approved for access. Galaxy Zoo team members should go to https://huggingface.co/mwalmsley/datasets/gz_candels, click "request access", ping Mike, then wait for approval. Gating will be removed on publication.
*Currently: the gz_h2o
and gz_ukidss
datasets
Usage
from datasets import load_dataset
# . split='train' picks which split to load
dataset = load_dataset(
'mwalmsley/gz_candels', # each dataset has a random fixed train/test split
split='train'
# some datasets also allow name=subset (e.g. name="tiny" for gz_evo). see the viewer for subset options
)
dataset.set_format('torch') # your framework of choice e.g. numpy, tensorflow, jax, etc
print(dataset_name, dataset[0]['image'].shape)
Then use the dataset
object as with any other HuggingFace dataset, e.g.,
from torch.utils.data import DataLoader
dataloader = DataLoader(ds, batch_size=4, num_workers=1)
for batch in dataloader:
print(batch.keys())
# the image key, plus a key counting the volunteer votes for each answer
# (e.g. smooth-or-featured-gz2_smooth)
print(batch['image'].shape)
break
You may find these HuggingFace docs useful:
- PyTorch loading options.
- Applying transforms/augmentations.
- Frameworks supported by
set_format
.
Dataset Structure
Each dataset is structured like:
{
'image': ..., # image of a galaxy
'smooth-or-featured-[campaign]_smooth': 4,
'smooth-or-featured-[campaign]_featured-or-disk': 12,
... # and so on for many questions and answers
}
Images are loaded according to your set_format
choice above. For example, set_format("torch")
gives a (3, 424, 424) CHW Torch.Tensor
.
The other keys are formatted like [question]_[answer]
, where question
is what the volunteers were asked (e.g. "smooth or featured?" and answer
is the choice selected (e.g. "smooth"). The values are the count of volunteers who selected each answer.
question
is appended with a string noting in which Galaxy Zoo campaign this question was asked e.g. smooth-or-featured-gz2
. For most datasets, all questions were asked during the same campaign. For GZ DESI, there are three campaigns (dr12
, dr5
, and dr8
) with very similar questions.
GZ Evo combines all the published datasets (currently GZ2, GZ DESI, GZ CANDELS, GZ Hubble, and GZ UKIDSS) into a single dataset aimed at multi-task learning. This is helpful for building models that adapt to new tasks and new telescopes.
(we will shortly add keys for the astronomical identifiers i.e. the sky coordinates and telescope source unique ids)
Key Limitations
Because the volunteers are answering a decision tree, the questions asked depend on the previous answers, and so each galaxy and each question can have very different total numbers of votes. This interferes with typical metrics that use aggregated labels (e.g. classification of the most voted, regression on the mean vote fraction, etc.) because we have different levels of confidence in the aggregated labels for each galaxy. We suggest a custom loss to handle this. Please see the Datasets and Benchmarks paper for more details (under review, sorry).
All labels are imperfect. The vote counts may not always reflect the true appearance of each galaxy. Additionally, the true appearance of each galaxy may be uncertain - even to expert astronomers. We therefore caution against over-interpreting small changes in performance to indicate a method is "superior". These datasets should not be used as a precise performance benchmark.
Citation Information
The machine-learning friendly versions of each dataset are described in a recently-submitted paper. Citation information will be added if accepted.
For each specific dataset you use, please also cite the original Galaxy Zoo data release paper (listed below) and the telescope description paper (cited therein).
Galaxy Zoo 2
@article{10.1093/mnras/stt1458,
author = {Willett, Kyle W. and Lintott, Chris J. and Bamford, Steven P. and Masters, Karen L. and Simmons, Brooke D. and Casteels, Kevin R. V. and Edmondson, Edward M. and Fortson, Lucy F. and Kaviraj, Sugata and Keel, William C. and Melvin, Thomas and Nichol, Robert C. and Raddick, M. Jordan and Schawinski, Kevin and Simpson, Robert J. and Skibba, Ramin A. and Smith, Arfon M. and Thomas, Daniel},
title = "{Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {435},
number = {4},
pages = {2835-2860},
year = {2013},
month = {09},
issn = {0035-8711},
doi = {10.1093/mnras/stt1458},
}
Galaxy Zoo Hubble
@article{2017MNRAS.464.4176W,
author = {Willett, Kyle W. and Galloway, Melanie A. and Bamford, Steven P. and Lintott, Chris J. and Masters, Karen L. and Scarlata, Claudia and Simmons, B.~D. and Beck, Melanie and {Cardamone}, Carolin N. and Cheung, Edmond and Edmondson, Edward M. and Fortson, Lucy F. and Griffith, Roger L. and H{\"a}u{\ss}ler, Boris and Han, Anna and Hart, Ross and Melvin, Thomas and Parrish, Michael and Schawinski, Kevin and Smethurst, R.~J. and {Smith}, Arfon M.},
title = "{Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging}",
journal = {Monthly Notices of the Royal Astronomical Society},
year = 2017,
month = feb,
volume = {464},
number = {4},
pages = {4176-4203},
doi = {10.1093/mnras/stw2568}
}
Galaxy Zoo CANDELS
@article{10.1093/mnras/stw2587,
author = {Simmons, B. D. and Lintott, Chris and Willett, Kyle W. and Masters, Karen L. and Kartaltepe, Jeyhan S. and Häußler, Boris and Kaviraj, Sugata and Krawczyk, Coleman and Kruk, S. J. and McIntosh, Daniel H. and Smethurst, R. J. and Nichol, Robert C. and Scarlata, Claudia and Schawinski, Kevin and Conselice, Christopher J. and Almaini, Omar and Ferguson, Henry C. and Fortson, Lucy and Hartley, William and Kocevski, Dale and Koekemoer, Anton M. and Mortlock, Alice and Newman, Jeffrey A. and Bamford, Steven P. and Grogin, N. A. and Lucas, Ray A. and Hathi, Nimish P. and McGrath, Elizabeth and Peth, Michael and Pforr, Janine and Rizer, Zachary and Wuyts, Stijn and Barro, Guillermo and Bell, Eric F. and Castellano, Marco and Dahlen, Tomas and Dekel, Avishai and Ownsworth, Jamie and Faber, Sandra M. and Finkelstein, Steven L. and Fontana, Adriano and Galametz, Audrey and Grützbauch, Ruth and Koo, David and Lotz, Jennifer and Mobasher, Bahram and Mozena, Mark and Salvato, Mara and Wiklind, Tommy},
title = "{Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS★}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {464},
number = {4},
pages = {4420-4447},
year = {2016},
month = {10},
doi = {10.1093/mnras/stw2587}
}
Galaxy Zoo DESI
(two citations due to being released over two papers)
@article{10.1093/mnras/stab2093,
author = {Walmsley, Mike and Lintott, Chris and Géron, Tobias and Kruk, Sandor and Krawczyk, Coleman and Willett, Kyle W and Bamford, Steven and Kelvin, Lee S and Fortson, Lucy and Gal, Yarin and Keel, William and Masters, Karen L and Mehta, Vihang and Simmons, Brooke D and Smethurst, Rebecca and Smith, Lewis and Baeten, Elisabeth M and Macmillan, Christine},
title = "{Galaxy Zoo DECaLS: Detailed visual morphology measurements from volunteers and deep learning for 314 000 galaxies}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {509},
number = {3},
pages = {3966-3988},
year = {2021},
month = {09},
issn = {0035-8711},
doi = {10.1093/mnras/stab2093}
}
@article{10.1093/mnras/stad2919,
author = {Walmsley, Mike and Géron, Tobias and Kruk, Sandor and Scaife, Anna M M and Lintott, Chris and Masters, Karen L and Dawson, James M and Dickinson, Hugh and Fortson, Lucy and Garland, Izzy L and Mantha, Kameswara and O’Ryan, David and Popp, Jürgen and Simmons, Brooke and Baeten, Elisabeth M and Macmillan, Christine},
title = "{Galaxy Zoo DESI: Detailed morphology measurements for 8.7M galaxies in the DESI Legacy Imaging Surveys}",
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {526},
number = {3},
pages = {4768-4786},
year = {2023},
month = {09},
issn = {0035-8711},
doi = {10.1093/mnras/stad2919}
}
Galaxy Zoo UKIDSS
Not yet published.
Galaxy Zoo Cosmic Dawn (a.k.a. H2O)
Not yet published.