Datasets:
image
imagewidth (px) 28
28
| label
class label 10
classes | text_label
stringclasses 814
values | p_label
sequence | is_ambiguous
bool 1
class |
---|---|---|---|---|
7Sneaker
| p(T - shirt / top)=0.52, p(Sneaker)=0.48 | [
0.5187385,
0,
0,
0,
0,
0,
0,
0.48126143,
0,
0
] | true |
|
9Ankle boot
| p(Coat)=0.61, p(Ankle boot)=0.39 | [
0,
0,
0,
0,
0.6070133,
0,
0,
0,
0,
0.3929867
] | true |
|
1Trouser
| p(Trouser)=0.49, p(Sandal)=0.51 | [
0,
0.4891382,
0,
0,
0,
0.5108618,
0,
0,
0,
0
] | true |
|
1Trouser
| p(Trouser)=0.50, p(Coat)=0.50 | [
0,
0.49825296,
0,
0,
0.5017471,
0,
0,
0,
0,
0
] | true |
|
3Dress
| p(Dress)=0.52, p(Ankle boot)=0.48 | [
0,
0,
0,
0.51985276,
0,
0,
0,
0,
0,
0.48014727
] | true |
|
3Dress
| p(Dress)=0.57, p(Ankle boot)=0.43 | [
0,
0,
0,
0.5742685,
0,
0,
0,
0,
0,
0.42573148
] | true |
|
5Sandal
| p(T - shirt / top)=0.60, p(Sandal)=0.40 | [
0.5970116,
0,
0,
0,
0,
0.40298834,
0,
0,
0,
0
] | true |
|
2Pullover
| p(Pullover)=0.62, p(Dress)=0.38 | [
0,
0,
0.62012184,
0.3798782,
0,
0,
0,
0,
0,
0
] | true |
|
8Bag
| p(Sneaker)=0.47, p(Bag)=0.53 | [
0,
0,
0,
0,
0,
0,
0,
0.46791252,
0.53208745,
0
] | true |
|
9Ankle boot
| p(Pullover)=0.44, p(Ankle boot)=0.56 | [
0,
0,
0.44453195,
0,
0,
0,
0,
0,
0,
0.555468
] | true |
|
9Ankle boot
| p(Coat)=0.59, p(Ankle boot)=0.41 | [
0,
0,
0,
0,
0.5905709,
0,
0,
0,
0,
0.40942898
] | true |
|
7Sneaker
| p(Pullover)=0.46, p(Sneaker)=0.54 | [
0,
0,
0.46132502,
0,
0,
0,
0,
0.538675,
0,
0
] | true |
|
4Coat
| p(Coat)=0.48, p(Sneaker)=0.52 | [
0,
0,
0,
0,
0.47928792,
0,
0,
0.5207121,
0,
0
] | true |
|
8Bag
| p(Trouser)=0.60, p(Bag)=0.40 | [
0,
0.5969963,
0,
0,
0,
0,
0,
0,
0.40300366,
0
] | true |
|
7Sneaker
| p(Coat)=0.53, p(Sneaker)=0.47 | [
0,
0,
0,
0,
0.53238153,
0,
0,
0.4676184,
0,
0
] | true |
|
1Trouser
| p(Trouser)=0.47, p(Sneaker)=0.53 | [
0,
0.4698799,
0,
0,
0,
0,
0,
0.5301201,
0,
0
] | true |
|
5Sandal
| p(Trouser)=0.40, p(Sandal)=0.60 | [
0,
0.40021524,
0,
0,
0,
0.5997847,
0,
0,
0,
0
] | true |
|
8Bag
| p(Sneaker)=0.56, p(Bag)=0.44 | [
0,
0,
0,
0,
0,
0,
0,
0.5627538,
0.43724626,
0
] | true |
|
9Ankle boot
| p(Shirt)=0.41, p(Ankle boot)=0.59 | [
0,
0,
0,
0,
0,
0,
0.4118045,
0,
0,
0.5881955
] | true |
|
7Sneaker
| p(Dress)=0.54, p(Sneaker)=0.46 | [
0,
0,
0,
0.5380847,
0,
0,
0,
0.46191537,
0,
0
] | true |
|
0T - shirt / top
| p(T - shirt / top)=0.60, p(Sneaker)=0.40 | [
0.60282606,
0,
0,
0,
0,
0,
0,
0.3971739,
0,
0
] | true |
|
8Bag
| p(Sneaker)=0.50, p(Bag)=0.50 | [
0,
0,
0,
0,
0,
0,
0,
0.4997344,
0.50026554,
0
] | true |
|
9Ankle boot
| p(Bag)=0.57, p(Ankle boot)=0.43 | [
0,
0,
0,
0,
0,
0,
0,
0,
0.5712593,
0.42874068
] | true |
|
7Sneaker
| p(Pullover)=0.51, p(Sneaker)=0.49 | [
0,
0,
0.50903004,
0,
0,
0,
0,
0.49096996,
0,
0
] | true |
|
0T - shirt / top
| p(T - shirt / top)=0.59, p(Trouser)=0.41 | [
0.5943323,
0.40566775,
0,
0,
0,
0,
0,
0,
0,
0
] | true |
|
3Dress
| p(Dress)=0.54, p(Ankle boot)=0.46 | [
0,
0,
0,
0.5420524,
0,
0,
0,
0,
0,
0.45794755
] | true |
|
1Trouser
| p(Trouser)=0.54, p(Coat)=0.46 | [
0,
0.53584886,
0,
0,
0.4641511,
0,
0,
0,
0,
0
] | true |
|
9Ankle boot
| p(Bag)=0.45, p(Ankle boot)=0.55 | [
0,
0,
0,
0,
0,
0,
0,
0,
0.45377246,
0.5462275
] | true |
|
9Ankle boot
| p(T - shirt / top)=0.40, p(Ankle boot)=0.60 | [
0.39645728,
0,
0,
0,
0,
0,
0,
0,
0,
0.60354275
] | true |
|
3Dress
| p(Trouser)=0.52, p(Dress)=0.48 | [
0,
0.5195861,
0,
0.48041394,
0,
0,
0,
0,
0,
0
] | true |
|
6Shirt
| p(Sandal)=0.43, p(Shirt)=0.57 | [
0,
0,
0,
0,
0,
0.42718804,
0.57281196,
0,
0,
0
] | true |
|
5Sandal
| p(Trouser)=0.46, p(Sandal)=0.54 | [
0,
0.45876583,
0,
0,
0,
0.5412342,
0,
0,
0,
0
] | true |
|
1Trouser
| p(Trouser)=0.62, p(Pullover)=0.38 | [
0,
0.6214669,
0.37853312,
0,
0,
0,
0,
0,
0,
0
] | true |
|
3Dress
| p(Trouser)=0.40, p(Dress)=0.60 | [
0,
0.39628354,
0,
0.6037165,
0,
0,
0,
0,
0,
0
] | true |
|
7Sneaker
| p(Shirt)=0.38, p(Sneaker)=0.62 | [
0,
0,
0,
0,
0,
0,
0.37864992,
0.62135005,
0,
0
] | true |
|
7Sneaker
| p(Sneaker)=0.52, p(Bag)=0.48 | [
0,
0,
0,
0,
0,
0,
0,
0.5177166,
0.48228344,
0
] | true |
|
4Coat
| p(Trouser)=0.57, p(Coat)=0.43 | [
0,
0.56619704,
0,
0,
0.43380296,
0,
0,
0,
0,
0
] | true |
|
0T - shirt / top
| p(T - shirt / top)=0.47, p(Sandal)=0.53 | [
0.46600613,
0,
0,
0,
0,
0.5339939,
0,
0,
0,
0
] | true |
|
9Ankle boot
| p(Sneaker)=0.52, p(Ankle boot)=0.48 | [
0,
0,
0,
0,
0,
0,
0,
0.5244951,
0,
0.47550485
] | true |
|
9Ankle boot
| p(Shirt)=0.53, p(Ankle boot)=0.47 | [
0,
0,
0,
0,
0,
0,
0.5319667,
0,
0,
0.4680333
] | true |
|
0T - shirt / top
| p(T - shirt / top)=0.56, p(Sneaker)=0.44 | [
0.55881816,
0,
0,
0,
0,
0,
0,
0.4411819,
0,
0
] | true |
|
5Sandal
| p(Sandal)=0.59, p(Shirt)=0.41 | [
0,
0,
0,
0,
0,
0.5945596,
0.40544042,
0,
0,
0
] | true |
|
5Sandal
| p(T - shirt / top)=0.58, p(Sandal)=0.42 | [
0.57649297,
0,
0,
0,
0,
0.42350703,
0,
0,
0,
0
] | true |
|
3Dress
| p(Dress)=0.59, p(Sandal)=0.41 | [
0,
0,
0,
0.58521914,
0,
0.41478086,
0,
0,
0,
0
] | true |
|
2Pullover
| p(Pullover)=0.53, p(Ankle boot)=0.47 | [
0,
0,
0.52878404,
0,
0,
0,
0,
0,
0,
0.47121596
] | true |
|
7Sneaker
| p(Shirt)=0.41, p(Sneaker)=0.59 | [
0,
0,
0,
0,
0,
0,
0.41070366,
0.58929634,
0,
0
] | true |
|
1Trouser
| p(Trouser)=0.57, p(Shirt)=0.43 | [
0,
0.5674638,
0,
0,
0,
0,
0.43253613,
0,
0,
0
] | true |
|
7Sneaker
| p(Shirt)=0.38, p(Sneaker)=0.62 | [
0,
0,
0,
0,
0,
0,
0.376742,
0.623258,
0,
0
] | true |
|
0T - shirt / top
| p(T - shirt / top)=0.54, p(Ankle boot)=0.46 | [
0.5357206,
0,
0,
0,
0,
0,
0,
0,
0,
0.46427932
] | true |
|
8Bag
| p(Trouser)=0.53, p(Bag)=0.47 | [
0,
0.5330483,
0,
0,
0,
0,
0,
0,
0.46695173,
0
] | true |
|
2Pullover
| p(Trouser)=0.50, p(Pullover)=0.50 | [
0,
0.5018117,
0.4981883,
0,
0,
0,
0,
0,
0,
0
] | true |
|
1Trouser
| p(Trouser)=0.46, p(Pullover)=0.54 | [
0,
0.46478975,
0.5352103,
0,
0,
0,
0,
0,
0,
0
] | true |
|
8Bag
| p(Bag)=0.59, p(Ankle boot)=0.41 | [
0,
0,
0,
0,
0,
0,
0,
0,
0.5934688,
0.40653118
] | true |
|
5Sandal
| p(Sandal)=0.44, p(Shirt)=0.56 | [
0,
0,
0,
0,
0,
0.4372347,
0.5627653,
0,
0,
0
] | true |
|
9Ankle boot
| p(Pullover)=0.46, p(Ankle boot)=0.54 | [
0,
0,
0.4587775,
0,
0,
0,
0,
0,
0,
0.54122245
] | true |
|
5Sandal
| p(Pullover)=0.62, p(Sandal)=0.38 | [
0,
0,
0.62196046,
0,
0,
0.37803963,
0,
0,
0,
0
] | true |
|
4Coat
| p(Coat)=0.56, p(Ankle boot)=0.44 | [
0,
0,
0,
0,
0.56369615,
0,
0,
0,
0,
0.43630382
] | true |
|
0T - shirt / top
| p(T - shirt / top)=0.61, p(Sandal)=0.39 | [
0.60986423,
0,
0,
0,
0,
0.3901358,
0,
0,
0,
0
] | true |
|
8Bag
| p(Trouser)=0.60, p(Bag)=0.40 | [
0,
0.6003064,
0,
0,
0,
0,
0,
0,
0.39969358,
0
] | true |
|
5Sandal
| p(Sandal)=0.57, p(Shirt)=0.43 | [
0,
0,
0,
0,
0,
0.57009953,
0.42990044,
0,
0,
0
] | true |
|
8Bag
| p(Sneaker)=0.56, p(Bag)=0.44 | [
0,
0,
0,
0,
0,
0,
0,
0.55714446,
0.44285548,
0
] | true |
|
5Sandal
| p(Sandal)=0.59, p(Shirt)=0.41 | [
0,
0,
0,
0,
0,
0.59389764,
0.4061024,
0,
0,
0
] | true |
|
9Ankle boot
| p(Trouser)=0.60, p(Ankle boot)=0.40 | [
0,
0.5957152,
0,
0,
0,
0,
0,
0,
0,
0.40428478
] | true |
|
7Sneaker
| p(Coat)=0.57, p(Sneaker)=0.43 | [
0,
0,
0,
0,
0.56520146,
0,
0,
0.4347986,
0,
0
] | true |
|
7Sneaker
| p(Dress)=0.58, p(Sneaker)=0.42 | [
0,
0,
0,
0.57574904,
0,
0,
0,
0.424251,
0,
0
] | true |
|
7Sneaker
| p(Pullover)=0.38, p(Sneaker)=0.62 | [
0,
0,
0.37675917,
0,
0,
0,
0,
0.62324077,
0,
0
] | true |
|
9Ankle boot
| p(Shirt)=0.46, p(Ankle boot)=0.54 | [
0,
0,
0,
0,
0,
0,
0.45791498,
0,
0,
0.54208505
] | true |
|
7Sneaker
| p(Sneaker)=0.58, p(Ankle boot)=0.42 | [
0,
0,
0,
0,
0,
0,
0,
0.5779256,
0,
0.42207435
] | true |
|
1Trouser
| p(Trouser)=0.59, p(Pullover)=0.41 | [
0,
0.5902805,
0.40971956,
0,
0,
0,
0,
0,
0,
0
] | true |
|
1Trouser
| p(Trouser)=0.48, p(Coat)=0.52 | [
0,
0.47856587,
0,
0,
0.52143407,
0,
0,
0,
0,
0
] | true |
|
1Trouser
| p(Trouser)=0.50, p(Dress)=0.50 | [
0,
0.5035156,
0,
0.4964844,
0,
0,
0,
0,
0,
0
] | true |
|
1Trouser
| p(Trouser)=0.51, p(Sneaker)=0.49 | [
0,
0.5078996,
0,
0,
0,
0,
0,
0.49210045,
0,
0
] | true |
|
7Sneaker
| p(Coat)=0.49, p(Sneaker)=0.51 | [
0,
0,
0,
0,
0.48648492,
0,
0,
0.5135151,
0,
0
] | true |
|
7Sneaker
| p(Pullover)=0.41, p(Sneaker)=0.59 | [
0,
0,
0.41107702,
0,
0,
0,
0,
0.588923,
0,
0
] | true |
|
0T - shirt / top
| p(T - shirt / top)=0.61, p(Ankle boot)=0.39 | [
0.6121228,
0,
0,
0,
0,
0,
0,
0,
0,
0.38787714
] | true |
|
1Trouser
| p(Trouser)=0.60, p(Coat)=0.40 | [
0,
0.59511507,
0,
0,
0.40488493,
0,
0,
0,
0,
0
] | true |
|
7Sneaker
| p(T - shirt / top)=0.58, p(Sneaker)=0.42 | [
0.57788914,
0,
0,
0,
0,
0,
0,
0.4221109,
0,
0
] | true |
|
9Ankle boot
| p(Bag)=0.53, p(Ankle boot)=0.47 | [
0,
0,
0,
0,
0,
0,
0,
0,
0.5274373,
0.47256267
] | true |
|
9Ankle boot
| p(Bag)=0.60, p(Ankle boot)=0.40 | [
0,
0,
0,
0,
0,
0,
0,
0,
0.60191137,
0.39808866
] | true |
|
5Sandal
| p(Coat)=0.39, p(Sandal)=0.61 | [
0,
0,
0,
0,
0.38997948,
0.6100205,
0,
0,
0,
0
] | true |
|
7Sneaker
| p(Pullover)=0.39, p(Sneaker)=0.61 | [
0,
0,
0.39051065,
0,
0,
0,
0,
0.6094894,
0,
0
] | true |
|
7Sneaker
| p(T - shirt / top)=0.43, p(Sneaker)=0.57 | [
0.4265473,
0,
0,
0,
0,
0,
0,
0.5734528,
0,
0
] | true |
|
2Pullover
| p(Pullover)=0.60, p(Bag)=0.40 | [
0,
0,
0.59879297,
0,
0,
0,
0,
0,
0.4012071,
0
] | true |
|
1Trouser
| p(Trouser)=0.58, p(Coat)=0.42 | [
0,
0.5765896,
0,
0,
0.4234104,
0,
0,
0,
0,
0
] | true |
|
7Sneaker
| p(Coat)=0.62, p(Sneaker)=0.38 | [
0,
0,
0,
0,
0.61984843,
0,
0,
0.38015154,
0,
0
] | true |
|
7Sneaker
| p(Sneaker)=0.62, p(Bag)=0.38 | [
0,
0,
0,
0,
0,
0,
0,
0.6243923,
0.3756078,
0
] | true |
|
9Ankle boot
| p(Dress)=0.46, p(Ankle boot)=0.54 | [
0,
0,
0,
0.46073708,
0,
0,
0,
0,
0,
0.53926283
] | true |
|
9Ankle boot
| p(Bag)=0.44, p(Ankle boot)=0.56 | [
0,
0,
0,
0,
0,
0,
0,
0,
0.4429186,
0.55708134
] | true |
|
4Coat
| p(Trouser)=0.49, p(Coat)=0.51 | [
0,
0.49368295,
0,
0,
0.5063171,
0,
0,
0,
0,
0
] | true |
|
3Dress
| p(T - shirt / top)=0.44, p(Dress)=0.56 | [
0.4413921,
0,
0,
0.5586079,
0,
0,
0,
0,
0,
0
] | true |
|
1Trouser
| p(T - shirt / top)=0.62, p(Trouser)=0.38 | [
0.62115365,
0.37884638,
0,
0,
0,
0,
0,
0,
0,
0
] | true |
|
7Sneaker
| p(Dress)=0.51, p(Sneaker)=0.49 | [
0,
0,
0,
0.505025,
0,
0,
0,
0.49497503,
0,
0
] | true |
|
5Sandal
| p(Coat)=0.43, p(Sandal)=0.57 | [
0,
0,
0,
0,
0.4284471,
0.57155293,
0,
0,
0,
0
] | true |
|
6Shirt
| p(Sandal)=0.39, p(Shirt)=0.61 | [
0,
0,
0,
0,
0,
0.39407426,
0.60592574,
0,
0,
0
] | true |
|
7Sneaker
| p(T - shirt / top)=0.42, p(Sneaker)=0.58 | [
0.42332634,
0,
0,
0,
0,
0,
0,
0.5766737,
0,
0
] | true |
|
1Trouser
| p(T - shirt / top)=0.43, p(Trouser)=0.57 | [
0.43416956,
0.5658304,
0,
0,
0,
0,
0,
0,
0,
0
] | true |
|
8Bag
| p(Dress)=0.55, p(Bag)=0.45 | [
0,
0,
0,
0.54835534,
0,
0,
0,
0,
0.4516447,
0
] | true |
|
1Trouser
| p(Trouser)=0.47, p(Sneaker)=0.53 | [
0,
0.4719012,
0,
0,
0,
0,
0,
0.52809876,
0,
0
] | true |
|
3Dress
| p(Trouser)=0.44, p(Dress)=0.56 | [
0,
0.43877617,
0,
0.5612238,
0,
0,
0,
0,
0,
0
] | true |
|
1Trouser
| p(Trouser)=0.62, p(Coat)=0.38 | [
0,
0.6160946,
0,
0,
0.38390547,
0,
0,
0,
0,
0
] | true |
Fashion-Mnist-Ambiguous
This dataset contains fashion-mnist-like images, but with an unclear ground truth. For each image, there are two classes that could be considered true. Robust and uncertainty-aware DNNs should thus detect and flag these issues.
Features
Same as fashion-mnist, the supervised dataset has an image
(28x28 int array) and a label
(int).
Additionally, the following features are exposed for your convenience:
text_label
(str): A textual representation of the probabilistic label, e.g.p(Pullover)=0.54, p(Shirt)=0.46
p_label
(list of floats): Ground-Truth probabilities for each class (two nonzero values for our ambiguous images)is_ambiguous
(bool): Flag indicating if this is one of our ambiguous images (see 'splits' below)
Splits
We provide four splits:
test
: 10'000 ambiguous imagestrain
: 10'000 ambiguous images - adding ambiguous images to the training set makes sure test-time ambiguous images are in-distribution.test_mixed
: 20'000 images, consisting of the (shuffled) concatenation of our ambiguoustest
set and the nominal original fashion mnist test settrain_mixed
: 70'000 images, consisting of the (shuffled) concatenation of our ambiguoustraining
and the nominal training set.
Note that the ambiguous train images are highly ambiguous (i.e., the two classes have very similar ground truth likelihoods), the training set images allow for more unbalanced ambiguity. This is to make the training set more closely connected to the nominal data, while still keeping the test set clearly ambiguous.
For research targeting explicitly aleatoric uncertainty, we recommend training the model using train_mixed
.
Otherwise, our test
set will lead to both epistemic and aleatoric uncertainty.
In related literature, such 'mixed' splits are sometimes denoted as dirty splits.
Assessment and Validity
For a brief discussion of the strength and weaknesses of this dataset we refer to our paper. Please note that our images are not typically realistic - i.e., while they represent multiple classes and thus have an ambiguous ground truth, they do not resemble real-world photographs.
Paper
Pre-print here: https://arxiv.org/abs/2207.10495
Citation:
@misc{https://doi.org/10.48550/arxiv.2207.10495,
doi = {10.48550/ARXIV.2207.10495},
url = {https://arxiv.org/abs/2207.10495},
author = {Weiss, Michael and Gómez, André García and Tonella, Paolo},
title = {A Forgotten Danger in DNN Supervision Testing: Generating and Detecting True Ambiguity},
publisher = {arXiv},
year = {2022}
}
Related Datasets
- Ambiguous Mnist Dataset: https://huggingface.co/datasets/mweiss/mnist_ambiguous
- Corrupted Fashion-Mnist Dataset: https://huggingface.co/datasets/mweiss/fashion_mnist_corrupted
- Downloads last month
- 196