test_spans_dataset / README.md
librarian-bot's picture
Librarian Bot: Add language metadata for dataset
2736152 verified
|
raw
history blame
16.9 kB
metadata
language:
  - en
size_categories: n<1K
tags:
  - rlfh
  - argilla
  - human-feedback

Dataset Card for test_spans_dataset

This dataset has been created with Argilla.

As shown in the sections below, this dataset can be loaded into Argilla as explained in Load with Argilla, or used directly with the datasets library in Load with datasets.

Dataset Description

Dataset Summary

This dataset contains:

  • A dataset configuration file conforming to the Argilla dataset format named argilla.yaml. This configuration file will be used to configure the dataset when using the FeedbackDataset.from_huggingface method in Argilla.

  • Dataset records in a format compatible with HuggingFace datasets. These records will be loaded automatically when using FeedbackDataset.from_huggingface and can be loaded independently using the datasets library via load_dataset.

  • The annotation guidelines that have been used for building and curating the dataset, if they've been defined in Argilla.

Load with Argilla

To load with Argilla, you'll just need to install Argilla as pip install argilla --upgrade and then use the following code:

import argilla as rg

ds = rg.FeedbackDataset.from_huggingface("nataliaElv/test_spans_dataset")

Load with datasets

To load this dataset with datasets, you'll just need to install datasets as pip install datasets --upgrade and then use the following code:

from datasets import load_dataset

ds = load_dataset("nataliaElv/test_spans_dataset")

Supported Tasks and Leaderboards

This dataset can contain multiple fields, questions and responses so it can be used for different NLP tasks, depending on the configuration. The dataset structure is described in the Dataset Structure section.

There are no leaderboards associated with this dataset.

Languages

[More Information Needed]

Dataset Structure

Data in Argilla

The dataset is created in Argilla with: fields, questions, suggestions, metadata, vectors, and guidelines.

The fields are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions.

Field Name Title Type Required Markdown
prompt Prompt-(Ents) text True False
input Input-(Ents) text True False
input2 Input-(Info Extraction) text True False

The questions are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking.

Question Name Title Type Required Description Values/Labels
prompt-ents Highlight the entities inside Prompt-(Ents): span True N/A N/A
input-ents Highlight the entities inside Input-(Ents): span True N/A N/A
info-extraction Highlight the information inside Input-(Info Extraction) that is relevant to the prompt span True N/A N/A
final-response Provide a correct response given the prompt and the input: text True Only make the necessary corrections. You can submit the text as it is, if it's correct. N/A

The suggestions are human or machine generated recommendations for each question to assist the annotator during the annotation process, so those are always linked to the existing questions, and named appending "-suggestion" and "-suggestion-metadata" to those, containing the value/s of the suggestion and its metadata, respectively. So on, the possible values are the same as in the table above, but the column name is appended with "-suggestion" and the metadata is appended with "-suggestion-metadata".

The metadata is a dictionary that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the metadata_properties defined in the dataset configuration file in argilla.yaml.

Metadata Name Title Type Values Visible for Annotators

The guidelines, are optional as well, and are just a plain string that can be used to provide instructions to the annotators. Find those in the annotation guidelines section.

Data Instances

An example of a dataset instance in Argilla looks as follows:

{
    "external_id": null,
    "fields": {
        "input": "Virgin Australia, the trading name of Virgin Australia Airlines Pty Ltd, is an Australian-based airline. It is the largest airline by fleet size to use the Virgin brand. It commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route. It suddenly found itself as a major airline in Australia\u0027s domestic market after the collapse of Ansett Australia in September 2001. The airline has since grown to directly serve 32 cities in Australia, from hubs in Brisbane, Melbourne and Sydney.",
        "input2": "Virgin Australia, the trading name of Virgin Australia Airlines Pty Ltd, is an Australian-based airline. It is the largest airline by fleet size to use the Virgin brand. It commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route. It suddenly found itself as a major airline in Australia\u0027s domestic market after the collapse of Ansett Australia in September 2001. The airline has since grown to directly serve 32 cities in Australia, from hubs in Brisbane, Melbourne and Sydney.",
        "prompt": "When did Virgin Australia start operating?"
    },
    "metadata": {},
    "responses": [],
    "suggestions": [
        {
            "agent": null,
            "question_name": "prompt-ents",
            "score": null,
            "type": null,
            "value": [
                {
                    "end": 25,
                    "label": "ORG",
                    "score": 0.9999854564666748,
                    "start": 9
                }
            ]
        },
        {
            "agent": null,
            "question_name": "input-ents",
            "score": null,
            "type": null,
            "value": [
                {
                    "end": 16,
                    "label": "ORG",
                    "score": 0.9998990297317505,
                    "start": 0
                },
                {
                    "end": 71,
                    "label": "ORG",
                    "score": 0.9999301433563232,
                    "start": 38
                },
                {
                    "end": 162,
                    "label": "ORG",
                    "score": 0.9961417317390442,
                    "start": 156
                },
                {
                    "end": 224,
                    "label": "ORG",
                    "score": 0.9999250173568726,
                    "start": 213
                },
                {
                    "end": 319,
                    "label": "LOC",
                    "score": 0.9998377561569214,
                    "start": 310
                },
                {
                    "end": 376,
                    "label": "ORG",
                    "score": 0.9999576807022095,
                    "start": 360
                },
                {
                    "end": 464,
                    "label": "LOC",
                    "score": 0.9998786449432373,
                    "start": 455
                },
                {
                    "end": 487,
                    "label": "LOC",
                    "score": 0.9998598098754883,
                    "start": 479
                },
                {
                    "end": 498,
                    "label": "LOC",
                    "score": 0.9997498393058777,
                    "start": 489
                },
                {
                    "end": 509,
                    "label": "LOC",
                    "score": 0.9998868703842163,
                    "start": 503
                }
            ]
        },
        {
            "agent": null,
            "question_name": "final-response",
            "score": null,
            "type": null,
            "value": "Virgin Australia commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route."
        }
    ],
    "vectors": {}
}

While the same record in HuggingFace datasets looks as follows:

{
    "external_id": null,
    "final-response": [],
    "final-response-suggestion": "Virgin Australia commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route.",
    "final-response-suggestion-metadata": {
        "agent": null,
        "score": null,
        "type": null
    },
    "info-extraction": [],
    "info-extraction-suggestion": null,
    "info-extraction-suggestion-metadata": {
        "agent": null,
        "score": null,
        "type": null
    },
    "input": "Virgin Australia, the trading name of Virgin Australia Airlines Pty Ltd, is an Australian-based airline. It is the largest airline by fleet size to use the Virgin brand. It commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route. It suddenly found itself as a major airline in Australia\u0027s domestic market after the collapse of Ansett Australia in September 2001. The airline has since grown to directly serve 32 cities in Australia, from hubs in Brisbane, Melbourne and Sydney.",
    "input-ents": [],
    "input-ents-suggestion": {
        "end": [
            16,
            71,
            162,
            224,
            319,
            376,
            464,
            487,
            498,
            509
        ],
        "label": [
            "ORG",
            "ORG",
            "ORG",
            "ORG",
            "LOC",
            "ORG",
            "LOC",
            "LOC",
            "LOC",
            "LOC"
        ],
        "score": [
            0.9998990297317505,
            0.9999301433563232,
            0.9961417317390442,
            0.9999250173568726,
            0.9998377561569214,
            0.9999576807022095,
            0.9998786449432373,
            0.9998598098754883,
            0.9997498393058777,
            0.9998868703842163
        ],
        "start": [
            0,
            38,
            156,
            213,
            310,
            360,
            455,
            479,
            489,
            503
        ],
        "text": [
            "Virgin Australia",
            "Virgin Australia Airlines Pty Ltd",
            "Virgin",
            "Virgin Blue",
            "Australia",
            "Ansett Australia",
            "Australia",
            "Brisbane",
            "Melbourne",
            "Sydney"
        ]
    },
    "input-ents-suggestion-metadata": {
        "agent": null,
        "score": null,
        "type": null
    },
    "input2": "Virgin Australia, the trading name of Virgin Australia Airlines Pty Ltd, is an Australian-based airline. It is the largest airline by fleet size to use the Virgin brand. It commenced services on 31 August 2000 as Virgin Blue, with two aircraft on a single route. It suddenly found itself as a major airline in Australia\u0027s domestic market after the collapse of Ansett Australia in September 2001. The airline has since grown to directly serve 32 cities in Australia, from hubs in Brisbane, Melbourne and Sydney.",
    "metadata": "{}",
    "prompt": "When did Virgin Australia start operating?",
    "prompt-ents": [],
    "prompt-ents-suggestion": {
        "end": [
            25
        ],
        "label": [
            "ORG"
        ],
        "score": [
            0.9999854564666748
        ],
        "start": [
            9
        ],
        "text": [
            "Virgin Australia"
        ]
    },
    "prompt-ents-suggestion-metadata": {
        "agent": null,
        "score": null,
        "type": null
    }
}

Data Fields

Among the dataset fields, we differentiate between the following:

  • Fields: These are the dataset records themselves, for the moment just text fields are supported. These are the ones that will be used to provide responses to the questions.

    • prompt is of type text.
    • input is of type text.
    • input2 is of type text.
  • Questions: These are the questions that will be asked to the annotators. They can be of different types, such as RatingQuestion, TextQuestion, LabelQuestion, MultiLabelQuestion, and RankingQuestion.

    • prompt-ents is of type span.
    • input-ents is of type span.
    • info-extraction is of type span.
    • final-response is of type text, and description "Only make the necessary corrections. You can submit the text as it is, if it's correct.".
  • Suggestions: As of Argilla 1.13.0, the suggestions have been included to provide the annotators with suggestions to ease or assist during the annotation process. Suggestions are linked to the existing questions, are always optional, and contain not just the suggestion itself, but also the metadata linked to it, if applicable.

    • (optional) prompt-ents-suggestion is of type span.
    • (optional) input-ents-suggestion is of type span.
    • (optional) info-extraction-suggestion is of type span.
    • (optional) final-response-suggestion is of type text.

Additionally, we also have two more fields that are optional and are the following:

  • metadata: This is an optional field that can be used to provide additional information about the dataset record. This can be useful to provide additional context to the annotators, or to provide additional information about the dataset record itself. For example, you can use this to provide a link to the original source of the dataset record, or to provide additional information about the dataset record itself, such as the author, the date, or the source. The metadata is always optional, and can be potentially linked to the metadata_properties defined in the dataset configuration file in argilla.yaml.
  • external_id: This is an optional field that can be used to provide an external ID for the dataset record. This can be useful if you want to link the dataset record to an external resource, such as a database or a file.

Data Splits

The dataset contains a single split, which is train.

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation guidelines

This is a subset of the Dolly dataset with prompts classified as being Closed QA or Information Extractions tasks.
In the record, you will find the prompt and the input of the task. In the first two fields, you will need to highlight and classify all entities found in the prompt and the input. These are marked as (Ents) for easier recognition.
The input field is then repeated as "Input-(Info Extraction)". Using the "Relevant Info" tag, highlight all pieces of information in the input that are relevant to answer the prompt.
Finally, you will be asked to provide a correct response following the prompt and the given input. You may submit the text as it is, if it's correct, or make any necessary amendments.

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

[More Information Needed]

Contributions

[More Information Needed]