Datasets:
metadata
annotations_creators: []
language_creators:
- crowdsourced
- expert-generated
language:
- code
license:
- mit
multilinguality:
- monolingual
size_categories:
- unknown
source_datasets:
- original
task_categories:
- text2text-generation
task_ids: []
pretty_name: DocPrompting-CoNaLa
tags:
- code-generation
- doc retrieval
- retrieval augmented generation
Dataset Description
- Repository: https://github.com/shuyanzhou/docprompting
- Paper: DocPrompting: Generating Code by Retrieving the Docs
Dataset Summary
This is the natural language to bash generation dataset we harvested from the English subset of tldr
We split the dataset by bash commands. Every command in the dev and test set is held out from the training set.
Supported Tasks and Leaderboards
This dataset is used to evaluate code generations.
Languages
English - Bash
Dataset Structure
dataset = load_dataset("neulab/tldr")
DatasetDict({
train: Dataset({
features: ['question_id', 'nl', 'cmd', 'oracle_man', 'cmd_name', 'tldr_cmd_name', 'manual_exist', 'matching_info'],
num_rows: 6414
})
test: Dataset({
features: ['question_id', 'nl', 'cmd', 'oracle_man', 'cmd_name', 'tldr_cmd_name', 'manual_exist', 'matching_info'],
num_rows: 928
})
validation: Dataset({
features: ['question_id', 'nl', 'cmd', 'oracle_man', 'cmd_name', 'tldr_cmd_name', 'manual_exist', 'matching_info'],
num_rows: 1845
})
})
code_docs = load_dataset("neulab/docprompting-conala", "docs")
DatasetDict({
train: Dataset({
features: ['doc_id', 'doc_content'],
num_rows: 439064
})
})
Data Fields
train/dev/test:
- nl: The natural language intent
- cmd: The reference code snippet
- question_id: the unique id of a question
- oracle_man: The
doc_id
of the functions used in the reference code snippet. The corresponding contents are indoc
split - cmd_name: the bash command of this code snippet
- tldr_cmd_name: the bash command used in tldr github repo. The
cmd_name
andtldr_cmd_name
can be different due to naming difference - manual_exist: whether the manual exists in https://manned.org
- matching_info: each code snippets have multiple tokens, this is the detailed reference doc matching on each token.
docs:
- doc_id: the id of a doc
- doc_content: the content of the doc
Dataset Creation
The dataset was curated from tldr
.
The project aims to provide frequent usage of bash commands with natural language intents.
For more details, please check the repo.
Citation Information
@article{zhou2022doccoder,
title={DocCoder: Generating Code by Retrieving and Reading Docs},
author={Zhou, Shuyan and Alon, Uri and Xu, Frank F and Jiang, Zhengbao and Neubig, Graham},
journal={arXiv preprint arXiv:2207.05987},
year={2022}
}