text
stringlengths
0
1.16k
2025-01-20 16:11:41.614099: Epoch 47
2025-01-20 16:11:41.614175: Current learning rate: 0.00958
2025-01-20 16:12:29.321267: train_loss -0.6536
2025-01-20 16:12:29.356431: val_loss -0.6672
2025-01-20 16:12:29.356491: Pseudo dice [np.float32(0.7206), np.float32(0.7253), np.float32(0.8455), np.float32(0.7242), np.float32(0.8642), np.float32(0.7345)]
2025-01-20 16:12:29.356530: Epoch time: 47.71 s
2025-01-20 16:12:29.356558: Yayy! New best EMA pseudo Dice: 0.7569000124931335
2025-01-20 16:12:30.179679:
2025-01-20 16:12:30.179777: Epoch 48
2025-01-20 16:12:30.179850: Current learning rate: 0.00957
2025-01-20 16:13:17.883385: train_loss -0.6757
2025-01-20 16:13:17.918494: val_loss -0.6659
2025-01-20 16:13:17.918548: Pseudo dice [np.float32(0.7352), np.float32(0.7314), np.float32(0.8393), np.float32(0.7112), np.float32(0.8844), np.float32(0.7575)]
2025-01-20 16:13:17.918582: Epoch time: 47.7 s
2025-01-20 16:13:17.918604: Yayy! New best EMA pseudo Dice: 0.7588000297546387
2025-01-20 16:13:18.755468:
2025-01-20 16:13:18.790868: Epoch 49
2025-01-20 16:13:18.790985: Current learning rate: 0.00956
2025-01-20 16:14:06.543533: train_loss -0.6677
2025-01-20 16:14:06.578557: val_loss -0.6698
2025-01-20 16:14:06.578618: Pseudo dice [np.float32(0.7307), np.float32(0.7288), np.float32(0.8432), np.float32(0.689), np.float32(0.8777), np.float32(0.7504)]
2025-01-20 16:14:06.578664: Epoch time: 47.79 s
2025-01-20 16:14:06.732530: Yayy! New best EMA pseudo Dice: 0.7599999904632568
2025-01-20 16:14:07.723407:
2025-01-20 16:14:07.726026: Epoch 50
2025-01-20 16:14:07.726090: Current learning rate: 0.00955
2025-01-20 16:14:55.500875: train_loss -0.6707
2025-01-20 16:14:55.535902: val_loss -0.6496
2025-01-20 16:14:55.535976: Pseudo dice [np.float32(0.7301), np.float32(0.7272), np.float32(0.8497), np.float32(0.7217), np.float32(0.8735), np.float32(0.7435)]
2025-01-20 16:14:55.536011: Epoch time: 47.78 s
2025-01-20 16:14:55.536032: Yayy! New best EMA pseudo Dice: 0.7613999843597412
2025-01-20 16:14:56.374443:
2025-01-20 16:14:56.374524: Epoch 51
2025-01-20 16:14:56.374570: Current learning rate: 0.00954
2025-01-20 16:15:44.132235: train_loss -0.6709
2025-01-20 16:15:44.167429: val_loss -0.6542
2025-01-20 16:15:44.167484: Pseudo dice [np.float32(0.6996), np.float32(0.728), np.float32(0.8436), np.float32(0.6763), np.float32(0.8847), np.float32(0.751)]
2025-01-20 16:15:44.167521: Epoch time: 47.76 s
2025-01-20 16:15:44.167542: Yayy! New best EMA pseudo Dice: 0.7616000175476074
2025-01-20 16:15:45.006838:
2025-01-20 16:15:45.042115: Epoch 52
2025-01-20 16:15:45.042201: Current learning rate: 0.00953
2025-01-20 16:16:32.763815: train_loss -0.6679
2025-01-20 16:16:32.763926: val_loss -0.6717
2025-01-20 16:16:32.763963: Pseudo dice [np.float32(0.7296), np.float32(0.7431), np.float32(0.8406), np.float32(0.7206), np.float32(0.8755), np.float32(0.7459)]
2025-01-20 16:16:32.763998: Epoch time: 47.76 s
2025-01-20 16:16:32.764023: Yayy! New best EMA pseudo Dice: 0.7631000280380249
2025-01-20 16:16:33.546527:
2025-01-20 16:16:33.549748: Epoch 53
2025-01-20 16:16:33.549810: Current learning rate: 0.00952
2025-01-20 16:17:21.339648: train_loss -0.6691
2025-01-20 16:17:21.374812: val_loss -0.6722
2025-01-20 16:17:21.374867: Pseudo dice [np.float32(0.7377), np.float32(0.7706), np.float32(0.845), np.float32(0.7139), np.float32(0.8505), np.float32(0.7563)]
2025-01-20 16:17:21.374905: Epoch time: 47.79 s
2025-01-20 16:17:21.374927: Yayy! New best EMA pseudo Dice: 0.7646999955177307
2025-01-20 16:17:22.220579:
2025-01-20 16:17:22.222890: Epoch 54
2025-01-20 16:17:22.222975: Current learning rate: 0.00951
2025-01-20 16:18:09.966436: train_loss -0.6759
2025-01-20 16:18:10.001594: val_loss -0.6732
2025-01-20 16:18:10.001655: Pseudo dice [np.float32(0.7231), np.float32(0.7397), np.float32(0.8426), np.float32(0.7128), np.float32(0.8706), np.float32(0.7461)]
2025-01-20 16:18:10.001692: Epoch time: 47.75 s
2025-01-20 16:18:10.001722: Yayy! New best EMA pseudo Dice: 0.7653999924659729
2025-01-20 16:18:10.854009:
2025-01-20 16:18:10.889399: Epoch 55
2025-01-20 16:18:10.889465: Current learning rate: 0.0095
2025-01-20 16:18:58.654514: train_loss -0.6754
2025-01-20 16:18:58.654719: val_loss -0.6291
2025-01-20 16:18:58.654770: Pseudo dice [np.float32(0.7179), np.float32(0.7065), np.float32(0.8501), np.float32(0.656), np.float32(0.8666), np.float32(0.7185)]
2025-01-20 16:18:58.654813: Epoch time: 47.8 s
2025-01-20 16:18:59.115009:
2025-01-20 16:18:59.149476: Epoch 56
2025-01-20 16:18:59.149537: Current learning rate: 0.00949
2025-01-20 16:19:46.902361: train_loss -0.6714
2025-01-20 16:19:46.937525: val_loss -0.6754
2025-01-20 16:19:46.937592: Pseudo dice [np.float32(0.747), np.float32(0.7815), np.float32(0.8401), np.float32(0.7098), np.float32(0.8803), np.float32(0.7566)]
2025-01-20 16:19:46.937644: Epoch time: 47.79 s
2025-01-20 16:19:46.937679: Yayy! New best EMA pseudo Dice: 0.7663000226020813
2025-01-20 16:19:47.774703:
2025-01-20 16:19:47.778114: Epoch 57
2025-01-20 16:19:47.778212: Current learning rate: 0.00949
2025-01-20 16:20:35.535872: train_loss -0.6811
2025-01-20 16:20:35.571099: val_loss -0.6901
2025-01-20 16:20:35.571170: Pseudo dice [np.float32(0.7374), np.float32(0.7609), np.float32(0.8472), np.float32(0.7006), np.float32(0.8912), np.float32(0.7806)]
2025-01-20 16:20:35.571206: Epoch time: 47.76 s
2025-01-20 16:20:35.571227: Yayy! New best EMA pseudo Dice: 0.7682999968528748
2025-01-20 16:20:36.513244:
2025-01-20 16:20:36.548691: Epoch 58
2025-01-20 16:20:36.548805: Current learning rate: 0.00948
2025-01-20 16:21:24.347113: train_loss -0.6716
2025-01-20 16:21:24.382209: val_loss -0.677
2025-01-20 16:21:24.382276: Pseudo dice [np.float32(0.7355), np.float32(0.7619), np.float32(0.8485), np.float32(0.697), np.float32(0.8856), np.float32(0.7494)]
2025-01-20 16:21:24.382317: Epoch time: 47.83 s
2025-01-20 16:21:24.382344: Yayy! New best EMA pseudo Dice: 0.7695000171661377
2025-01-20 16:21:25.225990:
2025-01-20 16:21:25.230244: Epoch 59
2025-01-20 16:21:25.230322: Current learning rate: 0.00947
2025-01-20 16:22:12.994329: train_loss -0.6875
2025-01-20 16:22:13.029545: val_loss -0.6798
2025-01-20 16:22:13.029634: Pseudo dice [np.float32(0.7306), np.float32(0.743), np.float32(0.849), np.float32(0.6601), np.float32(0.8837), np.float32(0.7513)]