|
--- |
|
dataset_info: |
|
features: |
|
- name: id |
|
dtype: string |
|
- name: url |
|
dtype: string |
|
- name: title |
|
dtype: string |
|
- name: text |
|
dtype: string |
|
- name: embedding |
|
sequence: float32 |
|
splits: |
|
- name: train |
|
num_bytes: 73850973 |
|
num_examples: 3001 |
|
download_size: 49787145 |
|
dataset_size: 73850973 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
license: gfdl |
|
task_categories: |
|
- text-generation |
|
- fill-mask |
|
language: |
|
- en |
|
size_categories: |
|
- 1K<n<10K |
|
--- |
|
|
|
this is a subset of the [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset |
|
code for creating this dataset : |
|
|
|
```python |
|
from datasets import load_dataset, Dataset |
|
from sentence_transformers import SentenceTransformer |
|
model = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1") |
|
|
|
# load dataset in streaming mode (no download and it's fast) |
|
dataset = load_dataset( |
|
"wikimedia/wikipedia", "20231101.en", split="train", streaming=True |
|
) |
|
|
|
# select 3000 samples |
|
from tqdm import tqdm |
|
data = Dataset.from_dict({}) |
|
for i, entry in enumerate(dataset): |
|
# each entry has the following columns |
|
# ['id', 'url', 'title', 'text'] |
|
data = data.add_item(entry) |
|
if i == 3000: |
|
break |
|
# free memory |
|
del dataset |
|
|
|
# embed the dataset |
|
def embed(batch): |
|
return {"embedding" : model.encode(batch["text"])} |
|
data = data.map(embed) |
|
|
|
# push to hub |
|
data.push_to_hub("not-lain/wikipedia-small-3000-embedded") |
|
``` |