metadata
dataset_info:
features:
- name: query_id
dtype: string
- name: query
dtype: string
- name: positive_passages
list:
- name: docid
dtype: string
- name: text
dtype: string
- name: title
dtype: string
- name: negative_passages
list:
- name: docid
dtype: string
- name: text
dtype: string
- name: title
dtype: string
- name: subset
dtype: string
splits:
- name: train
num_bytes: 101651201606
num_examples: 1602667
download_size: 57281610524
dataset_size: 101651201606
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
task_categories:
- text-retrieval
size_categories:
- 10M<n<100M
BGE Training Dataset (Only Retrieval Datasets)
This is a ported version of the original cfli/bge-full-data
into Tevatron format containing the following 15 retrieval splits on HF:
# Splits used for training
'sts',
'msmarco_passage',
'hotpotqa',
'msmarco_document',
'nli',
'eli5',
'squad',
'fiqa',
'nq',
'arguana',
'trivial',
'fever',
'quora',
'stack_overflow_dup_questions',
'scidocsrr'
Note (Postprocessing Updates)
- We pushed the whole document available in the original dataset into the
text
field, so thetitle
field is empty. - The original document or query IDs were unavailable, so we created a unique query and document ID by computing the md5 hash of the text.
import hashlib
def get_md5_hash(text):
"""Calculates the MD5 hash of a given string.
Args:
text: The string to hash.
Returns:
The MD5 hash of the string as a hexadecimal string.
"""
text_bytes = text.encode('utf-8') # Encode the string to bytes
md5_hash = hashlib.md5(text_bytes).hexdigest()
return md5_hash
Please refer to cfli/bge-full-data for details and the License.