|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Cleaned and split version of the English Wikipedia.""" |
|
|
|
|
|
import json |
|
import gzip |
|
import textwrap |
|
import datasets |
|
import random |
|
from itertools import zip_longest |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
|
|
""" |
|
|
|
_HOMEPAGE = "" |
|
|
|
_LICENSE = "" |
|
|
|
_DATA_URL = "https://huggingface.co/datasets/pdelobelle/enwiki-yearly-cleaned/resolve/main/enwiki-yearly-cleaned/{split}/enwiki_{index}_{split}.jsonl.gz" |
|
_CONFIG_NAMES = ["tiny", "small", "medium", "large", "full"] |
|
|
|
_CONFIGS = dict( |
|
tiny={"train": 2, "validation": 1, "estimate": "0.1GB"}, |
|
small={"train": 100, "validation": 2, "estimate": "4GB"}, |
|
medium={"train": 750, "validation": 2, "estimate": "30GB"}, |
|
large={"train": 1500, "validation": 3, "estimate": "59GB"}, |
|
full={"train": 3497, "validation": 4, "estimate": "137GB"}, |
|
) |
|
|
|
class Wikipedia(datasets.GeneratorBasedBuilder): |
|
"""Cleaned and split version of the English Wikipedia.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name=name, |
|
version=datasets.Version("1.0.0"), |
|
description=textwrap.dedent( |
|
f"""\ |
|
A {name} version of the English Wikipedia. |
|
Estimated size of compressed files: {_CONFIGS[name]['estimate']} |
|
""" |
|
), |
|
) |
|
for name in _CONFIG_NAMES |
|
] |
|
|
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"year": datasets.Value("string"), |
|
"tlsh": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
|
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_urls = {} |
|
config = _CONFIGS[self.config.name] |
|
for split in ["train", "validation"]: |
|
start_file = config.get("start", 1) if split == "train" else 1 |
|
num_files = config.get(split) |
|
|
|
data_urls[split] = [] |
|
for index in range(start_file, start_file + num_files): |
|
data_urls[split].append( |
|
_DATA_URL.format( |
|
split=split, |
|
index=index, |
|
) |
|
) |
|
|
|
|
|
if dl_manager.is_streaming: |
|
random.shuffle(data_urls["train"]) |
|
train_downloaded_files = dl_manager.download(data_urls["train"]) |
|
validation_downloaded_files = dl_manager.download(data_urls["validation"]) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepaths": train_downloaded_files}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepaths": validation_downloaded_files}, |
|
), |
|
] |
|
|
|
@staticmethod |
|
def grouper(iterable, n, fillvalue=None): |
|
"""Collect data into fixed-length chunks or blocks""" |
|
|
|
args = [iter(iterable)] * n |
|
return zip_longest(*args, fillvalue=fillvalue) |
|
|
|
@staticmethod |
|
def gzip_open(filepath): |
|
if filepath: |
|
return gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") |
|
|
|
def _generate_examples(self, filepaths): |
|
"""This function returns the examples in the raw (text) form by iterating on all the files.""" |
|
id_ = 0 |
|
for files in self.grouper(filepaths, 2, None): |
|
logger.info(f"Generating examples from {files}") |
|
gzip_iters = [self.gzip_open(file) for file in files if file is not None] |
|
for lines in zip(*gzip_iters): |
|
for line in lines: |
|
example = json.loads(line) |
|
yield id_, example |
|
id_ += 1 |