file_path
stringlengths
21
202
content
stringlengths
19
1.02M
size
int64
19
1.02M
lang
stringclasses
8 values
avg_line_length
float64
5.88
100
max_line_length
int64
12
993
alphanum_fraction
float64
0.27
0.93
NVlabs/ACID/ACID/src/layers.py
import torch import torch.nn as nn # Resnet Blocks class ResnetBlockFC(nn.Module): ''' Fully connected ResNet Block class. Args: size_in (int): input dimension size_out (int): output dimension size_h (int): hidden dimension ''' def __init__(self, size_in, size_out=None, size_h=None): super().__init__() # Attributes if size_out is None: size_out = size_in if size_h is None: size_h = min(size_in, size_out) self.size_in = size_in self.size_h = size_h self.size_out = size_out # Submodules self.fc_0 = nn.Linear(size_in, size_h) self.fc_1 = nn.Linear(size_h, size_out) self.actvn = nn.ReLU() if size_in == size_out: self.shortcut = None else: self.shortcut = nn.Linear(size_in, size_out, bias=False) # Initialization nn.init.zeros_(self.fc_1.weight) def forward(self, x): net = self.fc_0(self.actvn(x)) dx = self.fc_1(self.actvn(net)) if self.shortcut is not None: x_s = self.shortcut(x) else: x_s = x return x_s + dx
1,203
Python
24.083333
68
0.532835
NVlabs/ACID/ACID/src/conv_onet/training.py
import os import numpy as np import torch from torch.nn import functional as F from src.common import compute_iou from src.utils import common_util, plushsim_util from src.training import BaseTrainer from sklearn.metrics import roc_curve from scipy import interp import matplotlib.pyplot as plt from collections import defaultdict from tqdm import tqdm from src.utils.plushsim_util import find_nn_cpu, find_emd_cpu class PlushTrainer(BaseTrainer): ''' Trainer object for the Occupancy Network. Args: model (nn.Module): Occupancy Network model optimizer (optimizer): pytorch optimizer object device (device): pytorch device input_type (str): input type vis_dir (str): visualization directory threshold (float): threshold value eval_sample (bool): whether to evaluate samples ''' def __init__(self, model, optimizer, cfg, device=None, vis_dir=None, ): self.model = model self.optimizer = optimizer self.device = device self.vis_dir = vis_dir self.threshold = cfg['test']['threshold'] self.pos_weight = torch.FloatTensor([cfg['training']['pos_weight']]).to(device) if 'corr_dim' in cfg['model']['decoder_kwargs'] and cfg['model']['decoder_kwargs']['corr_dim'] > 0: self.contrastive_threshold = cfg['loss']['contrastive_threshold'] self.use_geodesics = cfg['loss']['use_geodesics'] self.loss_type = cfg['loss']['type'] self.contrastive_coeff_neg = cfg['loss'].get('contrastive_coeff_neg', 1.) self.contrastive_neg_thres = cfg['loss'].get('contrastive_neg_thres', 1.) self.contrastive_coeff_pos = cfg['loss'].get('contrastive_coeff_pos', 1.) self.contrastive_pos_thres= cfg['loss'].get('contrastive_pos_thres', 0.1) self.scale_with_geodesics = cfg['loss'].get('scale_with_geodesics', False) if vis_dir is not None and not os.path.exists(vis_dir): os.makedirs(vis_dir) self.max_thres = 0.2 self.discretization = 1000 self.base_fpr = np.linspace(0,1,101) self.base_thres = np.linspace(0,self.max_thres,self.discretization) def train_step(self, data, it): ''' Performs a training step. Args: data (dict): data dictionary ''' self.model.train() self.optimizer.zero_grad() losses = self.compute_loss(data, it) loss = 0 for v in losses.values(): loss += v loss.backward() self.optimizer.step() return {k:v.item() for k,v in losses.items()} def evaluate(self, val_loader): ''' Performs an evaluation. Args: val_loader (dataloader): pytorch dataloader ''' eval_list = defaultdict(list) agg_list = defaultdict(list) for data in tqdm(val_loader): eval_step_dict, agg_step_dict = self.eval_step(data) for k, v in eval_step_dict.items(): eval_list[k].append(v) for k, v in agg_step_dict.items(): agg_list[k].append(v) eval_dict = {k: np.mean(v) for k, v in eval_list.items()} # - shape completion ROC figs = {} if 'tpr' in agg_list: figs['OCC_ROC'] = self._get_shape_completion_ROC(agg_list['tpr']) if 'fmr_hits' in agg_list: fmr = np.array(agg_list['fmr_hits']) idx01 = int(0.01 * (self.discretization-1) / self.max_thres) idx02 = int(0.02 * (self.discretization-1) / self.max_thres) idx05 = int(0.05 * (self.discretization-1) / self.max_thres) idx10 = int(0.10 * (self.discretization-1) / self.max_thres) eval_dict['FMR.01m_5%'] = np.mean(fmr[:,idx01] > 0.05) eval_dict['FMR.02m_5%'] = np.mean(fmr[:,idx02] > 0.05) eval_dict['FMR.05m_5%'] = np.mean(fmr[:,idx05] > 0.05) eval_dict['FMR.10m_5%'] = np.mean(fmr[:,idx10] > 0.05) fmr_std = fmr.std(axis=0) eval_dict['FMR.01m_5%_std'] = fmr_std[idx01] eval_dict['FMR.02m_5%_std'] = fmr_std[idx02] eval_dict['FMR.05m_5%_std'] = fmr_std[idx05] eval_dict['FMR.10m_5%_std'] = fmr_std[idx10] for tau2 in np.linspace(0.01,0.2,5): figs[f'FMR_tau1_wrt_tau2={tau2:.3f}']= self._get_FMR_curve_tau1(fmr, tau2=tau2) figs['FMR_tau1']= self._get_FMR_curve_tau1(fmr) for tau1 in np.linspace(0.01,0.1,5): figs[f'FMR_tau2_wrt_tau1={tau1:.3f}']= self._get_FMR_curve_tau2(fmr, tau1=tau1) #ax.scatter(fpr, tpr, s=100, alpha=0.5, color="blue") if 'pair_dist' in agg_list: all_dists = np.concatenate(agg_list['pair_dist']) eval_dict['pair_dist'] = all_dists.mean() eval_dict['pair_dist_std'] = all_dists.std() figs['dist_hist'] = self._get_pair_distance_histogram(all_dists) return eval_dict, figs def _get_pair_distance_histogram(self, all_dists): fig, ax = plt.subplots(figsize=(10,7)) counts, bins, patches = ax.hist(all_dists, density=True, bins=40) # density=False would make counts ax.set_ylabel('Density') ax.set_xlabel('Pair Distance') return fig def _get_shape_completion_ROC(self, tpr): tprs = np.array(tpr) mean_tprs = tprs.mean(axis=0) std = tprs.std(axis=0) tprs_upper = np.minimum(mean_tprs + std, 1) tprs_lower = np.maximum(mean_tprs - std, 0) fig, ax = plt.subplots(figsize=(10,7)) ax.plot(self.base_fpr, mean_tprs, 'b') ax.fill_between(self.base_fpr, tprs_lower, tprs_upper, color='grey', alpha=0.3) ax.plot([0, 1], [0, 1],'r--') ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.0]) ax.set_ylabel('True Positive Rate') ax.set_xlabel('False Positive Rate') return fig def _get_FMR_curve_tau2(self, fmrs, tau1=0.1): idx05 = int(tau1 * (self.discretization-1) / self.max_thres) # fix tau 1 means = [] tau1_min = 0.001 tau1_max = 0.25 tau1_ticks = np.linspace(tau1_min, tau1_max, 1000) for t in tau1_ticks: means.append(np.mean(fmrs[:,idx05] > t, axis=0)) fig, ax = plt.subplots(figsize=(10,7)) ax.plot(tau1_ticks, means, 'b') ax.set_xlim([tau1_min, tau1_max]) ax.set_ylim([0.0, 1.0]) ax.set_ylabel('Feature Match Recall') ax.set_xlabel('Inlier Ratio threshold') return fig def _get_FMR_curve_tau1(self, fmrs, tau2=0.05): # tau2 = 0.05 is the inlier ratio # fix tau 2 mean_fmrs = np.mean(fmrs > tau2, axis=0) fig, ax = plt.subplots(figsize=(10,7)) ax.plot(self.base_thres, mean_fmrs, 'b') ax.set_xlim([0.0, self.max_thres]) ax.set_ylim([0.0, 1.0]) ax.set_ylabel('Feature Match Recall') ax.set_xlabel('Inlier Distance Threshold') return fig def eval_step(self, data): ''' Performs an evaluation step. Args: data (dict): data dictionary ''' self.model.eval() device = self.device for k,v in data.items(): data[k] = v.to(device) eval_dict = {} agg = {} idx = data['idx'].item() # Compute iou with torch.no_grad(): outputs = self.model(data) gt_occ = data['sampled_occ'] B,_,N = gt_occ.shape gt_occ = gt_occ.reshape([B*2, N]) occ_iou_np = (gt_occ >= 0.5).cpu().numpy() occ_iou_hat_np = (outputs['occ'].probs >= self.threshold).cpu().numpy() iou = compute_iou(occ_iou_np, occ_iou_hat_np).mean() eval_dict['iou'] = iou eval_dict[f'iou_{self.threshold}'] = iou occ_iou_hat_np_2 = (outputs['occ'].probs >= 0.5).cpu().numpy() iou = compute_iou(occ_iou_np, occ_iou_hat_np_2).mean() eval_dict['iou_0.5'] = iou intermediate = (self.threshold + 0.5) / 2 occ_iou_hat_np_3 = (outputs['occ'].probs >= intermediate).cpu().numpy() iou = compute_iou(occ_iou_np, occ_iou_hat_np_3).mean() eval_dict[f'iou_{intermediate}'] = iou if 'flow' in outputs: gt_flow = data['sampled_flow'] gt_flow = gt_flow.reshape([B*2, N, 3]) constant = torch.from_numpy(np.array((12.,12.,4.)) / 10. / (1.1,1.1,1.1)).float().cuda() loss_flow = F.mse_loss( outputs['flow'] * constant, gt_flow * constant, reduction='none') eval_dict['flow_all_field'] = loss_flow.sum(-1).mean().item() loss_flow_np = loss_flow.sum(-1).cpu().numpy() loss_flow_pos = loss_flow_np[occ_iou_np] # if empty scene, no flow of the object will be present if len(loss_flow_pos) > 0: eval_dict['flow'] = loss_flow_pos.mean() gt_pts = data['sampled_pts'].reshape([B*2, N, 3]).cpu().numpy() if 'flow' in outputs: flow_vis_mean = [] for i in range(B*2): gt_occ_pts = gt_pts[i][occ_iou_np[i]] * (1200, 1200, 400) / (1.1,1.1,1.1) + (0,0,180) vis_idx = plushsim_util.render_points(gt_occ_pts, plushsim_util.CAM_EXTR, plushsim_util.CAM_INTR, return_index=True) vis_pts = gt_occ_pts[vis_idx] flow_vis_mean.append(loss_flow_np[i][occ_iou_np[i]][vis_idx].mean()) eval_dict['flow_only_vis'] = np.mean(flow_vis_mean) if idx % 10000 == 9999: # do expensive evaluations # occupancy ROC curve fpr, tpr, _ = roc_curve(occ_iou_np.flatten(), outputs['occ'].probs.cpu().numpy().flatten()) base_fpr = np.linspace(0, 1, 101) tpr = interp(base_fpr, fpr, tpr) tpr[0] = 0.0 agg['tpr'] = tpr f1 = [] for i in range(B*2): gt_occ_pts = common_util.subsample_points(gt_pts[i][occ_iou_np[i]], return_index=False) pred_pts = common_util.subsample_points(gt_pts[i][occ_iou_hat_np[i]], return_index=False) f1.append(common_util.f1_score(pred_pts, gt_occ_pts)) f1 = np.array(f1) f1score, precision, recall = f1.mean(axis=0) eval_dict['f1'] = f1score eval_dict['precision'] = precision eval_dict['recall'] = recall if 'corr' in outputs: # data prep corr corr_f = outputs['corr'] num_pairs = corr_f.shape[1] gt_match = np.arange(num_pairs) src_f = corr_f[0].cpu().numpy() tgt_f = corr_f[1].cpu().numpy() # data prep pts pts = data['sampled_pts'].cpu().numpy().squeeze() src_pts = pts[0][:num_pairs] * (12,12,4) / (1.1,1.1,1.1) tgt_pts = pts[1][:num_pairs] * (12,12,4) / (1.1,1.1,1.1) # normalize points to maximum length of 1. tgt_pts = tgt_pts / np.ptp(tgt_pts, axis=0).max() _, nn_inds_st = find_emd_cpu(src_f, tgt_f) # doing Feature-match recall. eval_dict['match_exact'] = np.mean(gt_match == nn_inds_st) dist_st = np.linalg.norm(tgt_pts - tgt_pts[nn_inds_st], axis=1) eval_dict['match_0.05'] = np.mean(dist_st < 0.05) eval_dict['match_0.1'] = np.mean(dist_st < 0.1) hits = np.array([np.mean(dist_st < f) for f in self.base_thres]) agg['fmr_hits'] = hits agg['pair_dist'] = dist_st return eval_dict, agg def compute_loss(self, data, it): ''' Computes the loss. Args: data (dict): data dictionary ''' device = self.device for k,v in data.items(): data[k] = v.to(device) outputs = self.model(data) loss = {} eval_dict = {} # Occupancy Loss if 'occ' in outputs: # gt points gt_occ = data['sampled_occ'] B,_,N = gt_occ.shape gt_occ = gt_occ.reshape([B*2, N]) occ_iou_np = (gt_occ >= 0.5).cpu().numpy() # pred logits = outputs['occ'].logits loss_i = F.binary_cross_entropy_with_logits( logits, gt_occ, reduction='none', pos_weight=self.pos_weight) loss['occ'] = loss_i.mean() # eval infos occ_iou_hat_np = (outputs['occ'].probs >= self.threshold).cpu().numpy() iou = compute_iou(occ_iou_np, occ_iou_hat_np).mean() eval_dict['iou'] = iou if 'flow' in outputs : gt_occ = data['sampled_occ'] B,_,N = gt_occ.shape gt_occ = gt_occ.reshape([B*2, N]) mask = (gt_occ > 0.5).bool() gt_flow = data['sampled_flow'] gt_flow = gt_flow.reshape([B*2, N, 3]) flow_gt_0 = gt_flow[~mask] flow_gt_1 = gt_flow[mask] flow_pred = outputs['flow'] flow_pred_0 = flow_pred[~mask] flow_pred_1 = flow_pred[mask] loss['flow'] = F.mse_loss(flow_pred_1, flow_gt_1) + 0.01 * F.mse_loss(flow_pred_0, flow_gt_0) if 'corr' in outputs: dist_vec = data['geo_dists'] corr_f = outputs['corr'] src_f = corr_f[0] src_pos = src_f[dist_vec <= self.contrastive_threshold] num_positive = (dist_vec <= self.contrastive_threshold).sum() tgt_f = corr_f[1] tgt_pos = tgt_f[dist_vec <= self.contrastive_threshold] if self.loss_type == "contrastive": if num_positive > 0: src_neg = src_f[dist_vec > self.contrastive_threshold] tgt_neg = tgt_f[dist_vec > self.contrastive_threshold] # Positive loss pos_loss = F.relu(((src_pos - tgt_pos).pow(2).sum(1) + 1e-4).sqrt() - self.contrastive_pos_thres).pow(2) pos_loss_mean = pos_loss.mean() loss['contrastive_pos'] = self.contrastive_coeff_pos * pos_loss_mean # Negative loss neg_dist = (dist_vec[dist_vec > self.contrastive_threshold] / self.contrastive_threshold).log() + 1. neg_dist = torch.clamp(neg_dist, max=2) neg_loss = F.relu(neg_dist - ((src_neg - tgt_neg).pow(2).sum(1) + 1e-4).sqrt()).pow(2) if self.scale_with_geodesics: neg_loss = neg_loss / neg_dist neg_loss_mean = neg_loss.mean() loss['contrastive_neg'] = self.contrastive_coeff_neg * neg_loss_mean return loss
15,474
Python
42.105849
109
0.511439
NVlabs/ACID/ACID/src/conv_onet/config.py
import os from src.encoder import encoder_dict from src.conv_onet import models, training from src.conv_onet import generation from src import data def get_model(cfg,device=None, dataset=None, **kwargs): if cfg['model']['type'] == 'geom': return get_geom_model(cfg,device,dataset) elif cfg['model']['type'] == 'combined': return get_combined_model(cfg,device,dataset) def get_combined_model(cfg, device=None, dataset=None, **kwargs): ''' Return the Occupancy Network model. Args: cfg (dict): imported yaml config device (device): pytorch device dataset (dataset): dataset ''' dim = cfg['data']['dim'] act_dim = cfg['data']['act_dim'] obj_c_dim = cfg['model']['obj_c_dim'] decoder_kwargs = cfg['model']['decoder_kwargs'] obj_encoder_kwargs = cfg['model']['obj_encoder_kwargs'] padding = cfg['data']['padding'] decoder = 'combined_decoder' encoder = 'geom_encoder' if 'env_c_dim' in cfg['model'] and 'env_c_dim' != 0: env_c_dim = cfg['model']['env_c_dim'] env_encoder_kwargs = cfg['model']['env_encoder_kwargs'] env_encoder = encoder_dict[encoder]( dim=dim, c_dim=env_c_dim, padding=padding, **env_encoder_kwargs ) else: env_c_dim = 0 env_encoder=None decoder = models.decoder_dict[decoder]( dim=dim, c_per_dim=obj_c_dim+env_c_dim, c_act_dim=obj_c_dim+env_c_dim, padding=padding, **decoder_kwargs ) obj_per_encoder = encoder_dict[encoder]( dim=dim, c_dim=obj_c_dim, padding=padding, **obj_encoder_kwargs ) obj_act_encoder = encoder_dict[encoder]( dim=act_dim, c_dim=obj_c_dim, padding=padding, **obj_encoder_kwargs ) model = models.ConvImpDyn( obj_per_encoder, obj_act_encoder, env_encoder, decoder, device=device ) return model def get_geom_model(cfg, device=None, dataset=None, **kwargs): ''' Return the Occupancy Network model. Args: cfg (dict): imported yaml config device (device): pytorch device dataset (dataset): dataset ''' dim = cfg['data']['dim'] obj_c_dim = cfg['model']['obj_c_dim'] decoder_kwargs = cfg['model']['decoder_kwargs'] obj_encoder_kwargs = cfg['model']['obj_encoder_kwargs'] padding = cfg['data']['padding'] decoder = 'geom_decoder' encoder = 'geom_encoder' if 'env_c_dim' in cfg['model'] and 'env_c_dim' != 0: env_c_dim = cfg['model']['env_c_dim'] env_encoder_kwargs = cfg['model']['env_encoder_kwargs'] env_encoder = encoder_dict[encoder]( dim=dim, c_dim=env_c_dim, padding=padding, **env_encoder_kwargs ) else: env_c_dim = 0 env_encoder=None decoder = models.decoder_dict[decoder]( dim=dim, c_dim=obj_c_dim+env_c_dim, padding=padding, **decoder_kwargs ) obj_encoder = encoder_dict[encoder]( dim=dim, c_dim=obj_c_dim, padding=padding, **obj_encoder_kwargs ) model = models.ConvOccGeom( obj_encoder, env_encoder, decoder, device=device ) return model def get_trainer(model, optimizer, cfg, device, **kwargs): ''' Returns the trainer object. Args: model (nn.Module): the Occupancy Network model optimizer (optimizer): pytorch optimizer object cfg (dict): imported yaml config device (device): pytorch device ''' out_dir = cfg['training']['out_dir'] vis_dir = os.path.join(out_dir, 'vis') trainer = training.PlushTrainer( model, optimizer, cfg, device=device, vis_dir=vis_dir ) return trainer def get_generator(model, cfg, device, **kwargs): ''' Returns the generator object. Args: model (nn.Module): Occupancy Network model cfg (dict): imported yaml config device (device): pytorch device ''' generator = generation.Generator3D( model, device=device, threshold=cfg['test']['threshold'], resolution0=cfg['generation']['resolution_0'], upsampling_steps=cfg['generation']['upsampling_steps'], sample=cfg['generation']['use_sampling'], refinement_step=cfg['generation']['refinement_step'], simplify_nfaces=cfg['generation']['simplify_nfaces'], padding=cfg['data']['padding'], vol_info = None, vol_bound = None, ) return generator
4,514
Python
29.1
77
0.597475
NVlabs/ACID/ACID/src/conv_onet/__init__.py
from src.conv_onet import ( config, generation, training, models ) __all__ = [ config, generation, training, models ]
127
Python
14.999998
40
0.661417
NVlabs/ACID/ACID/src/conv_onet/generation.py
import torch import torch.optim as optim from torch import autograd import numpy as np from tqdm import trange, tqdm import trimesh from src.utils import libmcubes, common_util from src.common import make_3d_grid, normalize_coord, add_key, coord2index from src.utils.libmise import MISE import time import math counter = 0 class Generator3D(object): ''' Generator class for Occupancy Networks. It provides functions to generate the final mesh as well refining options. Args: model (nn.Module): trained Occupancy Network model points_batch_size (int): batch size for points evaluation threshold (float): threshold value refinement_step (int): number of refinement steps device (device): pytorch device resolution0 (int): start resolution for MISE upsampling steps (int): number of upsampling steps with_normals (bool): whether normals should be estimated padding (float): how much padding should be used for MISE sample (bool): whether z should be sampled input_type (str): type of input vol_info (dict): volume infomation vol_bound (dict): volume boundary simplify_nfaces (int): number of faces the mesh should be simplified to ''' def __init__(self, model, points_batch_size=100000, threshold=0.5, refinement_step=0, device=None, resolution0=16, upsampling_steps=3, with_normals=False, padding=0.1, sample=False, input_type = None, vol_info = None, vol_bound = None, simplify_nfaces=None): self.model = model.to(device) self.points_batch_size = points_batch_size self.refinement_step = refinement_step self.threshold = threshold self.device = device self.resolution0 = resolution0 self.upsampling_steps = upsampling_steps self.with_normals = with_normals self.input_type = input_type self.padding = padding self.sample = sample self.simplify_nfaces = simplify_nfaces # for pointcloud_crop self.vol_bound = vol_bound if vol_info is not None: self.input_vol, _, _ = vol_info def generate_mesh(self, data, return_stats=True): ''' Generates the output mesh. Args: data (tensor): data tensor return_stats (bool): whether stats should be returned ''' self.model.eval() device = self.device for k,v in data.items(): data[k] = v.to(device) stats_dict = {} t0 = time.time() # obtain features for all crops with torch.no_grad(): c = self.model.encode_inputs(data) if type(c) is tuple: for cs in c: for k,v in cs.items(): cs[k] = v[0].unsqueeze(0) else: for k,v in c.items(): c[k] = v[0].unsqueeze(0) stats_dict['time (encode inputs)'] = time.time() - t0 mesh = self.generate_from_latent(c, stats_dict=stats_dict) if return_stats: return mesh, stats_dict else: return mesh def generate_from_latent(self, c=None, stats_dict={}, **kwargs): ''' Generates mesh from latent. Works for shapes normalized to a unit cube Args: c (tensor): latent conditioned code c stats_dict (dict): stats dictionary ''' threshold = np.log(self.threshold) - np.log(1. - self.threshold) t0 = time.time() # Compute bounding box size box_size = 1 + self.padding # Shortcut if self.upsampling_steps == 0: nx = self.resolution0 pointsf = box_size * make_3d_grid( (-0.5,)*3, (0.5,)*3, (nx,)*3 ) values = self.eval_points(pointsf, c, **kwargs).cpu().numpy() value_grid = values.reshape(nx, nx, nx) else: mesh_extractor = MISE( self.resolution0, self.upsampling_steps, threshold) points = mesh_extractor.query() while points.shape[0] != 0: # Query points pointsf = points / mesh_extractor.resolution # Normalize to bounding box pointsf = box_size * (pointsf - 0.5) pointsf = torch.FloatTensor(pointsf).to(self.device) # Evaluate model and update values = self.eval_points(pointsf, c, **kwargs).cpu().numpy() values = values.astype(np.float64) mesh_extractor.update(points, values) points = mesh_extractor.query() value_grid = mesh_extractor.to_dense() # Extract mesh stats_dict['time (eval points)'] = time.time() - t0 mesh = self.extract_mesh(value_grid, c, stats_dict=stats_dict) return mesh def eval_points(self, p, c=None, vol_bound=None, **kwargs): ''' Evaluates the occupancy values for the points. Args: p (tensor): points c (tensor): encoded feature volumes ''' p_split = torch.split(p, self.points_batch_size) occ_hats = [] for pi in p_split: pi = pi.unsqueeze(0).to(self.device) with torch.no_grad(): occ_hat = self.model.eval_points(pi, c, **kwargs)['occ'].logits occ_hats.append(occ_hat.squeeze(0).detach().cpu()) occ_hat = torch.cat(occ_hats, dim=0) return occ_hat def extract_mesh(self, occ_hat, c=None, stats_dict=dict()): ''' Extracts the mesh from the predicted occupancy grid. Args: occ_hat (tensor): value grid of occupancies c (tensor): encoded feature volumes stats_dict (dict): stats dictionary ''' # Some short hands n_x, n_y, n_z = occ_hat.shape box_size = 1 + self.padding threshold = np.log(self.threshold) - np.log(1. - self.threshold) # Make sure that mesh is watertight t0 = time.time() occ_hat_padded = np.pad( occ_hat, 1, 'constant', constant_values=-1e6) vertices, triangles = libmcubes.marching_cubes( occ_hat_padded, threshold) stats_dict['time (marching cubes)'] = time.time() - t0 # Strange behaviour in libmcubes: vertices are shifted by 0.5 vertices -= 0.5 # # Undo padding vertices -= 1 if self.vol_bound is not None: # Scale the mesh back to its original metric bb_min = self.vol_bound['query_vol'][:, 0].min(axis=0) bb_max = self.vol_bound['query_vol'][:, 1].max(axis=0) mc_unit = max(bb_max - bb_min) / (self.vol_bound['axis_n_crop'].max() * self.resolution0*2**self.upsampling_steps) vertices = vertices * mc_unit + bb_min else: # Normalize to bounding box vertices /= np.array([n_x-1, n_y-1, n_z-1]) vertices = box_size * (vertices - 0.5) # Create mesh mesh = trimesh.Trimesh(vertices / (1., 1., 3), triangles, vertex_normals=None, process=False) # Directly return if mesh is empty if vertices.shape[0] == 0: return mesh # TODO: normals are lost here if self.simplify_nfaces is not None: t0 = time.time() from src.utils.libsimplify import simplify_mesh mesh = simplify_mesh(mesh, self.simplify_nfaces, 5.) stats_dict['time (simplify)'] = time.time() - t0 # Refine mesh if self.refinement_step > 0: t0 = time.time() self.refine_mesh(mesh, occ_hat, c) stats_dict['time (refine)'] = time.time() - t0 return mesh def generate_pointcloud(self, data, threshold=0.75, use_gt_occ=False): self.model.eval() device = self.device self.model.eval() device = self.device for k,v in data.items(): data[k] = v.to(device) stats_dict = {} t0 = time.time() # obtain features for all crops with torch.no_grad(): c = self.model.encode_inputs(data) pts = data['sampled_pts'] B,_,N,C = pts.shape pts = pts.reshape([B*2,N,C]) p_split = torch.split(pts, self.points_batch_size, dim=-1) occ_hats = [] features = [] flows = [] for pi in p_split: with torch.no_grad(): outputs = self.model.eval_points(pi, c) occ_hats.append((outputs['occ'].probs > threshold).detach().cpu()) if 'corr' in outputs: features.append(outputs['corr'].detach().cpu()) if 'flow' in outputs: flows.append(outputs['flow'].detach().cpu()) pts = pts.cpu().numpy() occ_hat = torch.cat(occ_hats, dim=1).numpy() if use_gt_occ: occ_hat = data['sampled_occ'].reshape([B*2, N]).cpu().numpy() pos_pts0 = pts[0][occ_hat[0] == 1.].reshape((-1,3)) pos_idx0 = common_util.subsample_points(pos_pts0, resolution=0.013) pos_pts0 = pos_pts0[pos_idx0] pos_pts1 = pts[1][occ_hat[1] == 1.].reshape((-1,3)) pos_idx1 = common_util.subsample_points(pos_pts1, resolution=0.013) pos_pts1 = pos_pts1[pos_idx1] pos_pts = np.concatenate([pos_pts0, pos_pts1], axis=0) / (1.,1.,3.) if len(features) != 0: feature = torch.cat(features, dim=1).numpy() f_dim = feature.shape[-1] pos_f0 = feature[0][occ_hat[0] == 1.].reshape((-1,f_dim)) pos_f1 = feature[1][occ_hat[1] == 1.].reshape((-1,f_dim)) pos_f0 = pos_f0[pos_idx0] pos_f1 = pos_f1[pos_idx1] pos_f = np.concatenate([pos_f0, pos_f1], axis=0) if pos_f.shape[0] < 100: pcloud_both = pos_pts else: tsne_result = common_util.embed_tsne(pos_f) colors = common_util.get_color_map(tsne_result) pcloud_both = np.concatenate([pos_pts, colors], axis=1) else: pcloud_both = pos_pts pcloud0 = pcloud_both[:pos_pts0.shape[0]] pcloud1 = pcloud_both[pos_pts0.shape[0]:] if len(flows) != 0: flow = torch.cat(flows, dim=1).numpy() / 10. pos_f0 = flow[0][occ_hat[0] == 1.].reshape((-1,3)) pos_f1 = flow[1][occ_hat[1] == 1.].reshape((-1,3)) pos_f0 = pos_f0[pos_idx0] pos_f1 = pos_f1[pos_idx1] pcloud_unroll_0 = pcloud0.copy() pcloud_unroll_0[:,:3] += pos_f0 / (1.,1.,3.) pcloud_unroll_1 = pcloud1.copy() pcloud_unroll_1[:,:3] += pos_f1 / (1.,1.,3.) return pcloud0, pcloud1,pcloud_unroll_0,pcloud_unroll_1 return pcloud0, pcloud1 def refine_mesh(self, mesh, occ_hat, c=None): ''' Refines the predicted mesh. Args: mesh (trimesh object): predicted mesh occ_hat (tensor): predicted occupancy grid c (tensor): latent conditioned code c ''' self.model.eval() # Some shorthands n_x, n_y, n_z = occ_hat.shape assert(n_x == n_y == n_z) # threshold = np.log(self.threshold) - np.log(1. - self.threshold) threshold = self.threshold # Vertex parameter v0 = torch.FloatTensor(mesh.vertices).to(self.device) v = torch.nn.Parameter(v0.clone()) # Faces of mesh faces = torch.LongTensor(mesh.faces).to(self.device) # Start optimization optimizer = optim.RMSprop([v], lr=1e-4) for it_r in trange(self.refinement_step): optimizer.zero_grad() # Loss face_vertex = v[faces] eps = np.random.dirichlet((0.5, 0.5, 0.5), size=faces.shape[0]) eps = torch.FloatTensor(eps).to(self.device) face_point = (face_vertex * eps[:, :, None]).sum(dim=1) face_v1 = face_vertex[:, 1, :] - face_vertex[:, 0, :] face_v2 = face_vertex[:, 2, :] - face_vertex[:, 1, :] face_normal = torch.cross(face_v1, face_v2) face_normal = face_normal / \ (face_normal.norm(dim=1, keepdim=True) + 1e-10) face_value = torch.sigmoid( self.model.eval_points(face_point.unsqueeze(0), c)['occ'].logits ) normal_target = -autograd.grad( [face_value.sum()], [face_point], create_graph=True)[0] normal_target = \ normal_target / \ (normal_target.norm(dim=1, keepdim=True) + 1e-10) loss_target = (face_value - threshold).pow(2).mean() loss_normal = \ (face_normal - normal_target).pow(2).sum(dim=1).mean() loss = loss_target + 0.01 * loss_normal # Update loss.backward() optimizer.step() mesh.vertices = v.data.cpu().numpy() return mesh def generate_occ_grid(self, c=None, stats_dict={}, **kwargs): ''' Generates mesh from latent. Works for shapes normalized to a unit cube Args: c (tensor): latent conditioned code c stats_dict (dict): stats dictionary ''' threshold = np.log(self.threshold) - np.log(1. - self.threshold) t0 = time.time() # Compute bounding box size box_size = 1 + self.padding # Shortcut if self.upsampling_steps == 0: nx = self.resolution0 pointsf = box_size * make_3d_grid( (-0.5,)*3, (0.5,)*3, (nx,)*3 ) values = self.eval_points(pointsf, c, **kwargs).cpu().numpy() value_grid = values.reshape(nx, nx, nx) else: mesh_extractor = MISE( self.resolution0, self.upsampling_steps, threshold) points = mesh_extractor.query() while points.shape[0] != 0: # Query points pointsf = points / mesh_extractor.resolution # Normalize to bounding box pointsf = box_size * (pointsf - 0.5) pointsf = torch.FloatTensor(pointsf).to(self.device) # Evaluate model and update values = self.eval_points(pointsf, c, **kwargs).cpu().numpy() values = values.astype(np.float64) mesh_extractor.update(points, values) points = mesh_extractor.query() value_grid = mesh_extractor.to_dense() return value_grid
14,928
Python
36.044665
126
0.536509
NVlabs/ACID/ACID/src/conv_onet/models/decoder.py
import torch import torch.nn as nn import torch.nn.functional as F from src.layers import ResnetBlockFC from src.common import normalize_coordinate, normalize_3d_coordinate, map2local class GeomDecoder(nn.Module): ''' Decoder. Instead of conditioning on global features, on plane/volume local features. Args: dim (int): input dimension c_dim (int): dimension of latent conditioned code c hidden_size (int): hidden size of Decoder network n_blocks (int): number of blocks ResNetBlockFC layers leaky (bool): whether to use leaky ReLUs sample_mode (str): sampling feature strategy, bilinear|nearest padding (float): conventional padding paramter of ONet for unit cube, so [-0.5, 0.5] -> [-0.55, 0.55] ''' def __init__(self, dim=3, c_dim=128, corr_dim=0, corr_head=True, hidden_size=256, n_blocks=5, leaky=False, sample_mode='bilinear', padding=0.1): super().__init__() self.c_dim = c_dim self.n_blocks = n_blocks self.corr_dim = corr_dim self.corr_head = corr_head self.fc_c_occ = nn.ModuleList([ nn.Linear(c_dim, hidden_size) for i in range(n_blocks) ]) self.fc_p = nn.Linear(dim, hidden_size) self.blocks_occ = nn.ModuleList([ ResnetBlockFC(hidden_size) for i in range(n_blocks) ]) self.fc_occ = nn.Linear(hidden_size, 1) if self.corr_dim != 0 and corr_head: self.fc_out_corr = nn.Linear(hidden_size, corr_dim) if not leaky: self.actvn = F.relu else: self.actvn = lambda x: F.leaky_relu(x, 0.2) self.sample_mode = sample_mode self.padding = padding def sample_plane_feature(self, p, c, plane='xz'): xy = normalize_coordinate(p.clone(), plane=plane, padding=self.padding) # normalize to the range of (0, 1) xy = xy[:, :, None].float() vgrid = 2.0 * xy - 1.0 # normalize to (-1, 1) c = F.grid_sample(c, vgrid, padding_mode='border', align_corners=True, mode=self.sample_mode).squeeze(-1) return c def forward(self, p, c_plane, **kwargs): c = 0 c += self.sample_plane_feature(p, c_plane['xz'], plane='xz') c += self.sample_plane_feature(p, c_plane['xy'], plane='xy') c += self.sample_plane_feature(p, c_plane['yz'], plane='yz') c = c.transpose(1, 2) p = p.float() x = self.fc_p(p) net = x for i in range(self.n_blocks): net = net + self.fc_c_occ[i](c) net = self.blocks_occ[i](net) results = {} if self.corr_dim != 0 and not self.corr_head: results['corr'] = net net = self.actvn(net) results['occ'] = self.fc_occ(net).squeeze(-1) if self.corr_dim != 0 and self.corr_head: results['corr'] = self.fc_out_corr(net) return results class CombinedDecoder(nn.Module): ''' Decoder. Instead of conditioning on global features, on plane/volume local features. Args: dim (int): input dimension c_dim (int): dimension of latent conditioned code c hidden_size (int): hidden size of Decoder network n_blocks (int): number of blocks ResNetBlockFC layers leaky (bool): whether to use leaky ReLUs sample_mode (str): sampling feature strategy, bilinear|nearest padding (float): conventional padding paramter of ONet for unit cube, so [-0.5, 0.5] -> [-0.55, 0.55] ''' def __init__(self, dim=3, c_per_dim=128, c_act_dim=128, corr_dim=0, corr_head=True, hidden_size=256, n_blocks=5, leaky=False, sample_mode='bilinear', padding=0.1, fuse=True, detach=False, anneal_gradient=True): super().__init__() self.c_per_dim = c_per_dim self.c_act_dim = c_act_dim self.n_blocks = n_blocks self.corr_dim = corr_dim self.corr_head = corr_head self.fuse = fuse self.detach = detach self.anneal_gradient = anneal_gradient self.fc_c_per = nn.ModuleList([ nn.Linear(c_per_dim, hidden_size) for i in range(n_blocks) ]) self.fc_c_act = nn.ModuleList([ nn.Linear(c_act_dim, hidden_size) for i in range(n_blocks) ]) if self.fuse: self.fc_c_merge = nn.ModuleList([ nn.Linear(hidden_size*2, hidden_size) for i in range(n_blocks) ]) self.fc_p_per = nn.Linear(dim, hidden_size) self.fc_p_act = nn.Linear(dim, hidden_size) self.blocks_per = nn.ModuleList([ ResnetBlockFC(hidden_size) for i in range(n_blocks) ]) self.blocks_act = nn.ModuleList([ ResnetBlockFC(hidden_size) for i in range(n_blocks) ]) self.fc_occ = nn.Linear(hidden_size, 1) self.fc_flow= nn.Linear(hidden_size, 3) if self.corr_dim != 0 and corr_head: self.fc_out_corr = nn.Linear(hidden_size, corr_dim) if self.fuse: self.fc_act_corr_merge = nn.Linear(hidden_size+corr_dim, hidden_size) if not leaky: self.actvn = F.relu else: self.actvn = lambda x: F.leaky_relu(x, 0.2) self.sample_mode = sample_mode self.padding = padding def sample_plane_feature(self, p, c, plane='xz'): xy = normalize_coordinate(p.clone(), plane=plane, padding=self.padding) # normalize to the range of (0, 1) xy = xy[:, :, None].float() vgrid = 2.0 * xy - 1.0 # normalize to (-1, 1) c = F.grid_sample(c, vgrid, padding_mode='border', align_corners=True, mode=self.sample_mode).squeeze(-1) return c def decode_perception(self, p, c_per_plane): c_per = 0 c_per += self.sample_plane_feature(p, c_per_plane['xz'], plane='xz') c_per += self.sample_plane_feature(p, c_per_plane['xy'], plane='xy') c_per += self.sample_plane_feature(p, c_per_plane['yz'], plane='yz') c_per = c_per.transpose(1, 2) p = p.float() net_per = self.fc_p_per(p) features = [] for i in range(self.n_blocks): net_per = net_per + self.fc_c_per[i](c_per) net_per = self.blocks_per[i](net_per) if self.detach: features.append(net_per.detach()) else: features.append(net_per) net_per = self.actvn(net_per) results = {} results['occ'] = self.fc_occ(net_per).squeeze(-1) if self.corr_dim != 0 and self.corr_head: corr = self.fc_out_corr(net_per) features.append(corr) results['corr'] = corr # if self.anneal_gradient: # for i,p in enumerate(features): # features[i] = p * 0.1 + p.detach() * 0.9 return results, features def decode_action(self, p, c_act_plane, per_features): c_act = 0 c_act += self.sample_plane_feature(p, c_act_plane['xz'], plane='xz') c_act += self.sample_plane_feature(p, c_act_plane['xy'], plane='xy') c_act += self.sample_plane_feature(p, c_act_plane['yz'], plane='yz') c_act = c_act.transpose(1, 2) p = p.float() net_act = self.fc_p_act(p) for i in range(self.n_blocks): net_act = net_act + self.fc_c_act[i](c_act) if self.fuse: net_act = self.blocks_act[i]( self.fc_c_merge[i]( torch.cat( ( net_act, per_features[i]), dim=-1))) # (net_per.detach()*0.9+net_per * 0.1)), dim=-1))) else: net_act = self.blocks_act[i](net_act) net_act = self.actvn(net_act) if self.corr_dim != 0 and self.corr_head: if self.fuse: net_act = self.fc_act_corr_merge( torch.cat((net_act, per_features[-1].detach()), dim=-1)) return {'flow':self.fc_flow(net_act)} def forward(self, p, c_per_plane, c_act_plane): results, per_features = self.decode_perception(p, c_per_plane) results['flow'] = self.decode_action(p, c_act_plane, per_features)['flow'] return results
8,333
Python
35.876106
114
0.554062
NVlabs/ACID/ACID/src/conv_onet/models/__init__.py
import torch import numpy as np import torch.nn as nn from torch import distributions as dist from src.conv_onet.models import decoder from src.utils import plushsim_util # Decoder dictionary decoder_dict = { 'geom_decoder': decoder.GeomDecoder, 'combined_decoder': decoder.CombinedDecoder, } class ConvImpDyn(nn.Module): def __init__(self, obj_per_encoder, obj_act_encoder, env_encoder, decoder, device=None, env_scale_factor=2.): super().__init__() self.decoder = decoder.to(device) self.obj_per_encoder = obj_per_encoder.to(device) self.obj_act_encoder = obj_act_encoder.to(device) if env_encoder is None: self.env_encoder = env_encoder else: self.env_encoder = env_encoder.to(device) self.env_upsample = torch.nn.UpsamplingBilinear2d(scale_factor=env_scale_factor) self._device = device def forward(self, inputs, sample=True, **kwargs): ''' Performs a forward pass through the network. Args: p (tensor): sampled points inputs (tensor): conditioning input sample (bool): whether to sample for z ''' ############# c_per, c_act = self.encode_inputs(inputs) return self.decode(inputs, c_per, c_act, **kwargs) def forward_perception(self, inputs, filter=True,): c_per, c_env = self.encode_perception(inputs, merge_env_feature=False) for k in c_per.keys(): env_f = self.env_upsample(c_env[k]) c_env[k] = env_f c_per[k] = torch.cat([c_per[k], env_f], dim=1) # get curr observation state and features p = inputs['sampled_pts'] if len(p.shape) > 3: B,_,N,C = p.shape curr_p = p.reshape([B*2,N,C]) else: curr_p = p curr_state, per_features = self.decoder.decode_perception(curr_p, c_per) occ_pred = dist.Bernoulli(logits=curr_state['occ']).probs >= 0.5 curr_state['occ'] = occ_pred if filter: curr_p = curr_p[occ_pred] if 'corr' in curr_state: curr_state['corr'] = curr_state['corr'][occ_pred] for i,p in enumerate(per_features): per_features[i] = p[occ_pred] return c_per, c_env, curr_p, curr_state, per_features def rollout(self, pts, per_features, c_env, actions): actions = actions.squeeze() num_sequence = actions.shape[0] num_actions = actions.shape[-2] all_traj = [] total_time_act_render = 0 total_time_act_decode = 0 import time # from functools import partial # render_pts_func = partial(plushsim_util.render_points, return_index=True) curr_pts = [pts for _ in range(num_sequence)] for j in range(num_actions): act_traj = [] points_world = [p.cpu().numpy().squeeze() * (1200, 1200, 400) / (1.1,1.1,1.1) + (0, 0, 180) for p in curr_pts] for i in range(num_sequence): g,t = actions[i,0,j], actions[i,1,j] start_time = time.time() c_act, act_partial = self.get_action_encoding(curr_pts[i], g, t, c_env) total_time_act_render += time.time() - start_time act_traj.append(act_partial) start_time = time.time() flow = self.decoder.decode_action(curr_pts[i], c_act, per_features)['flow'] curr_pts[i] = curr_pts[i] + flow / 10. total_time_act_decode += time.time() - start_time all_traj.append((curr_pts.copy(), act_traj)) print("total time render: ",total_time_act_render) print("total time decode: ",total_time_act_decode) return all_traj def rollout_async(self, pts, per_features, c_env, actions): actions = actions.squeeze() num_sequence = actions.shape[0] num_actions = actions.shape[-2] all_traj = [] total_time_act_render = 0 total_time_act_decode = 0 total_async_time_act_render = 0 import time from functools import partial render_pts_func = partial(plushsim_util.render_points, return_index=True) curr_pts = [pts for _ in range(num_sequence)] for j in range(num_actions): start_time = time.time() points_world = [p.cpu().numpy().squeeze() * (1200, 1200, 400) / (1.1,1.1,1.1) + (0, 0, 180) for p in curr_pts] from multiprocessing import Pool with Pool(16) as p: vis_idxes = p.map(render_pts_func, points_world) xyzs, acts = [],[] for i in range(num_sequence): g,t = actions[i,0,j], actions[i,1,j] # c_act, act_partial = self.get_action_encoding( # curr_pts[i], g, t, c_env, vis_idx=vis_idxes[i]) obj_xyz, obj_act = self.get_action_encoding_new( curr_pts[i], g, t, c_env, vis_idx=vis_idxes[i]) xyzs.append(obj_xyz) acts.append(obj_act) total_time_act_render += time.time() - start_time n = 20 start_time = time.time() xyz_chunks = [xyzs[i:i+n] for i in range(0, num_sequence, n)] act_chunks = [acts[i:i+n] for i in range(0, num_sequence, n)] c_acts = [] for xyz, act in zip(xyz_chunks, act_chunks): obj_xyz = torch.as_tensor(np.stack(xyz).astype(np.float32)).to(self._device) obj_act = torch.as_tensor(np.stack(act).astype(np.float32)).to(self._device) c_act_new = self.obj_act_encoder((obj_xyz, obj_act)) for chunk_i in range(len(xyz)): c_act = {} for k in c_act_new.keys(): c_act[k] = torch.cat([c_act_new[k][chunk_i].unsqueeze(0), c_env[k]], dim=1) c_acts.append(c_act) total_time_act_decode += time.time() - start_time from src.utils import common_util from PIL import Image for k,v in c_acts[0].items(): v_np = v.squeeze().permute(1,2,0).cpu().numpy() feature_plane = v_np.reshape([-1, v_np.shape[-1]]) tsne_result = common_util.embed_tsne(feature_plane) colors = common_util.get_color_map(tsne_result) colors = colors.reshape((128,128,-1)).astype(np.float32) colors = (colors * 255 / np.max(colors)).astype('uint8') img = Image.fromarray(colors) img.save(f"act_{k}.png") import pdb; pdb.set_trace() for i in range(num_sequence): flow = self.decoder.decode_action(curr_pts[i], c_acts[i], per_features)['flow'] curr_pts[i] = curr_pts[i] + flow / 10. all_traj.append(([p.cpu().numpy().squeeze() for p in curr_pts], xyzs)) return all_traj def get_action_encoding_new(self, pts, grasp_loc, target_loc, c_env, vis_idx=None): # pts: B*2, N, 3 import time start_time = time.time() B,N,_ = pts.shape pts = pts.cpu().numpy() xyzs, acts = [], [] # get visable points by rendering pts occ_pts = pts[0] occ_pts_t = occ_pts * (1200, 1200, 400) / (1.1,1.1,1.1) + (0,0,180) if vis_idx is None: vis_idx = plushsim_util.render_points(occ_pts_t, plushsim_util.CAM_EXTR, plushsim_util.CAM_INTR, return_index=True) obj_xyz = occ_pts[vis_idx] #print("time split 1: ", time.time() - start_time) start_time = time.time() # subsample pts indices = np.random.randint(obj_xyz.shape[0], size=5000) obj_xyz = obj_xyz[indices] # make action feature tiled_grasp_loc = np.tile(grasp_loc.cpu().numpy(), (len(obj_xyz), 1)).astype(np.float32) tiled_target_loc = np.tile(target_loc.cpu().numpy(), (len(obj_xyz), 1)).astype(np.float32) obj_act = np.concatenate([tiled_target_loc, obj_xyz - tiled_grasp_loc], axis=-1) return obj_xyz, obj_act def get_action_encoding(self, pts, grasp_loc, target_loc, c_env, vis_idx=None): # pts: B*2, N, 3 import time start_time = time.time() B,N,_ = pts.shape pts = pts.cpu().numpy() xyzs, acts = [], [] # get visable points by rendering pts occ_pts = pts[0] occ_pts_t = occ_pts * (1200, 1200, 400) / (1.1,1.1,1.1) + (0,0,180) if vis_idx is None: vis_idx = plushsim_util.render_points(occ_pts_t, plushsim_util.CAM_EXTR, plushsim_util.CAM_INTR, return_index=True) obj_xyz = occ_pts[vis_idx] #print("time split 1: ", time.time() - start_time) start_time = time.time() # subsample pts indices = np.random.randint(obj_xyz.shape[0], size=5000) obj_xyz = obj_xyz[indices] # make action feature tiled_grasp_loc = np.tile(grasp_loc.cpu().numpy(), (len(obj_xyz), 1)).astype(np.float32) tiled_target_loc = np.tile(target_loc.cpu().numpy(), (len(obj_xyz), 1)).astype(np.float32) obj_act = np.concatenate([tiled_target_loc, obj_xyz - tiled_grasp_loc], axis=-1) xyzs.append(obj_xyz) acts.append(obj_act) obj_xyz = torch.as_tensor(np.stack(xyzs).astype(np.float32)).to(self._device) obj_act = torch.as_tensor(np.stack(acts).astype(np.float32)).to(self._device) #print("time split 2: ", time.time() - start_time) start_time = time.time() c_act_new = self.obj_act_encoder((obj_xyz, obj_act)) #print("time split 3: ", time.time() - start_time) start_time = time.time() for k in c_act_new.keys(): c_act_new[k] = torch.cat([c_act_new[k], c_env[k]], dim=1) #print("time split 4: ", time.time() - start_time) start_time = time.time() return c_act_new, obj_xyz def encode_perception(self, inputs, merge_env_feature=True): obj_pcloud = inputs['obj_obs'] if len(obj_pcloud.shape) > 3: B,_,N,C = obj_pcloud.shape obj_pcloud = obj_pcloud.reshape([B*2,N,C]) obj_xyz, obj_rgb = obj_pcloud[...,:3],obj_pcloud[...,3:6] c_per = self.obj_per_encoder((obj_xyz, obj_rgb)) if self.env_encoder is not None: env_pcloud = inputs['env_obs'].cuda() if len(env_pcloud.shape) > 3: B,_,N,C = env_pcloud.shape env_pcloud = env_pcloud.reshape([B*2,N,C]) env_xyz, env_rgb = env_pcloud[...,:3],env_pcloud[...,3:] env_features = self.env_encoder((env_xyz, env_rgb)) if merge_env_feature: for k in c_per.keys(): env_f = self.env_upsample(env_features[k]) c_per[k] = torch.cat([c_per[k], env_f], dim=1) else: return c_per, env_features return c_per def encode_inputs(self, inputs): ''' Encodes the input. Args: input (tensor): the input ''' obj_pcloud = inputs['obj_obs'] B,_,N,C = obj_pcloud.shape obj_pcloud = obj_pcloud.reshape([B*2,N,C]) obj_xyz, obj_rgb, obj_act = obj_pcloud[...,:3],obj_pcloud[...,3:6],obj_pcloud[...,6:] c_per = self.obj_per_encoder((obj_xyz, obj_rgb)) c_act = self.obj_act_encoder((obj_xyz, obj_act)) if self.env_encoder is not None: env_pcloud = inputs['env_obs'].cuda() B,_,N,C = env_pcloud.shape env_pcloud = env_pcloud.reshape([B*2,N,C]) env_xyz, env_rgb = env_pcloud[...,:3],env_pcloud[...,3:] env_features = self.env_encoder((env_xyz, env_rgb)) for k in c_per.keys(): env_f = self.env_upsample(env_features[k]) c_per[k] = torch.cat([c_per[k], env_f], dim=1) c_act[k] = torch.cat([c_act[k], env_f], dim=1) return c_per, c_act def eval_points(self, pts, c): outputs = self.decoder(pts, *c) if 'occ' in outputs: outputs['occ'] = dist.Bernoulli(logits=outputs['occ']) return outputs def decode(self, inputs, c1, c2, **kwargs): ''' Returns occupancy probabilities for the sampled points. Args: p (tensor): points c (tensor): latent conditioned code c ''' p = inputs['sampled_pts'] B,_,N,C = p.shape p = p.reshape([B*2,N,C]) outputs = self.decoder(p, c1, c2) if 'occ' in outputs: outputs['occ'] = dist.Bernoulli(logits=outputs['occ']) if 'corr' in outputs: _,N,C = outputs['corr'].shape corr_f = outputs['corr'].reshape([B,2,N,C]) if 'skip_indexing' not in kwargs: corr_f = torch.transpose(corr_f, 0, 1) corr_f = torch.flatten(corr_f, 1, 2) inds = inputs['pair_indices'] corr_f = corr_f[:,inds] outputs['corr'] = corr_f return outputs def to(self, device): ''' Puts the model to the device. Args: device (device): pytorch device ''' model = super().to(device) model._device = device return model class ConvOccGeom(nn.Module): ''' Occupancy Network class. Args: decoder (nn.Module): decoder network encoder (nn.Module): encoder network device (device): torch device ''' def __init__(self, obj_encoder, env_encoder, decoder, device=None, env_scale_factor=2.): super().__init__() self.decoder = decoder.to(device) self.obj_encoder = obj_encoder.to(device) if env_encoder is None: self.env_encoder = env_encoder else: self.env_encoder = env_encoder.to(device) self.env_upsample = torch.nn.UpsamplingBilinear2d(scale_factor=env_scale_factor) self._device = device def forward(self, inputs, sample=True, **kwargs): ''' Performs a forward pass through the network. Args: p (tensor): sampled points inputs (tensor): conditioning input sample (bool): whether to sample for z ''' ############# c = self.encode_inputs(inputs) return self.decode(inputs, c, **kwargs) def encode_inputs(self, inputs): ''' Encodes the input. Args: input (tensor): the input ''' obj_pcloud = inputs['obj_obs'] B,_,N,C = obj_pcloud.shape obj_pcloud = obj_pcloud.reshape([B*2,N,C]) obj_xyz, obj_rgb = obj_pcloud[...,:3],obj_pcloud[...,3:] obj_features = self.obj_encoder((obj_xyz, obj_rgb)) if self.env_encoder is None: return obj_features env_pcloud = inputs['env_obs'].cuda() B,_,N,C = env_pcloud.shape env_pcloud = env_pcloud.reshape([B*2,N,C]) env_xyz, env_rgb = env_pcloud[...,:3],env_pcloud[...,3:] env_features = self.env_encoder((env_xyz, env_rgb)) joint_features = {} for k in obj_features.keys(): env_f = self.env_upsample(env_features[k]) joint_features[k] = torch.cat([obj_features[k], env_f], dim=1) return joint_features def eval_points(self, pts, c): outputs = self.decoder(pts, c) if 'occ' in outputs: outputs['occ'] = dist.Bernoulli(logits=outputs['occ']) return outputs def decode(self, inputs, c, **kwargs): ''' Returns occupancy probabilities for the sampled points. Args: p (tensor): points c (tensor): latent conditioned code c ''' p = inputs['sampled_pts'] B,_,N,C = p.shape p = p.reshape([B*2,N,C]) outputs = self.decoder(p, c, **kwargs) if 'occ' in outputs: outputs['occ'] = dist.Bernoulli(logits=outputs['occ']) if 'corr' in outputs: _,N,C = outputs['corr'].shape corr_f = outputs['corr'].reshape([B,2,N,C]) corr_f = torch.transpose(corr_f, 0, 1) corr_f = torch.flatten(corr_f, 1, 2) inds = inputs['pair_indices'] corr_f = corr_f[:,inds] outputs['corr'] = corr_f return outputs def to(self, device): ''' Puts the model to the device. Args: device (device): pytorch device ''' model = super().to(device) model._device = device return model
17,056
Python
39.80622
113
0.525797
NVlabs/ACID/ACID/src/encoder/__init__.py
from src.encoder import ( pointnet ) encoder_dict = { 'geom_encoder': pointnet.GeomEncoder, }
104
Python
10.666665
41
0.663462
NVlabs/ACID/ACID/src/encoder/pointnet.py
import torch import torch.nn as nn import torch.nn.functional as F from src.layers import ResnetBlockFC from torch_scatter import scatter_mean, scatter_max from src.common import coordinate2index, normalize_coordinate from src.encoder.unet import UNet class GeomEncoder(nn.Module): ''' PointNet-based encoder network with ResNet blocks for each point. Number of input points are fixed. Args: c_dim (int): dimension of latent code c dim (int): input points dimension hidden_dim (int): hidden dimension of the network scatter_type (str): feature aggregation when doing local pooling unet (bool): weather to use U-Net unet_kwargs (str): U-Net parameters unet3d (bool): weather to use 3D U-Net unet3d_kwargs (str): 3D U-Net parameters plane_resolution (int): defined resolution for plane feature grid_resolution (int): defined resolution for grid feature plane_type (str): feature type, 'xz' - 1-plane, ['xz', 'xy', 'yz'] - 3-plane, ['grid'] - 3D grid volume padding (float): conventional padding paramter of ONet for unit cube, so [-0.5, 0.5] -> [-0.55, 0.55] n_blocks (int): number of blocks ResNetBlockFC layers ''' def __init__(self, c_dim=128, dim=3, f_dim=9, hidden_dim=128, scatter_type='max', unet_kwargs=None, plane_resolution=None, padding=0.1, n_blocks=5): super().__init__() self.c_dim = c_dim self.fc_pos = nn.Linear(dim+f_dim, 2*hidden_dim) self.blocks = nn.ModuleList([ ResnetBlockFC(2*hidden_dim, hidden_dim) for i in range(n_blocks) ]) self.fc_c = nn.Linear(hidden_dim, c_dim) self.actvn = nn.ReLU() self.hidden_dim = hidden_dim self.unet = UNet(c_dim, in_channels=c_dim, **unet_kwargs) self.reso_plane = plane_resolution self.padding = padding if scatter_type == 'max': self.scatter = scatter_max elif scatter_type == 'mean': self.scatter = scatter_mean else: raise ValueError('incorrect scatter type') def generate_plane_features(self, p, c, plane='xz'): # acquire indices of features in plane xy = normalize_coordinate(p.clone(), plane=plane, padding=self.padding) # normalize to the range of (0, 1) index = coordinate2index(xy, self.reso_plane) # scatter plane features from points fea_plane = c.new_zeros(p.size(0), self.c_dim, self.reso_plane**2) c = c.permute(0, 2, 1) # B x 512 x T fea_plane = scatter_mean(c, index, out=fea_plane) # B x 512 x reso^2 fea_plane = fea_plane.reshape(p.size(0), self.c_dim, self.reso_plane, self.reso_plane) # sparce matrix (B x 512 x reso x reso) # process the plane features with UNet fea_plane = self.unet(fea_plane) return fea_plane def pool_local(self, xy, index, c): bs, fea_dim = c.size(0), c.size(2) keys = xy.keys() c_out = 0 for key in keys: # scatter plane features from points fea = self.scatter(c.permute(0, 2, 1), index[key], dim_size=self.reso_plane**2) if self.scatter == scatter_max: fea = fea[0] # gather feature back to points fea = fea.gather(dim=2, index=index[key].expand(-1, fea_dim, -1)) c_out += fea return c_out.permute(0, 2, 1) def forward(self, p): if type(p) is tuple: p, pf = p else: pf = None # acquire the index for each point coord = {} index = {} coord['xz'] = normalize_coordinate(p.clone(), plane='xz', padding=self.padding) index['xz'] = coordinate2index(coord['xz'], self.reso_plane) coord['xy'] = normalize_coordinate(p.clone(), plane='xy', padding=self.padding) index['xy'] = coordinate2index(coord['xy'], self.reso_plane) coord['yz'] = normalize_coordinate(p.clone(), plane='yz', padding=self.padding) index['yz'] = coordinate2index(coord['yz'], self.reso_plane) net = self.fc_pos(torch.cat([p, pf],dim=-1)) net = self.blocks[0](net) for block in self.blocks[1:]: pooled = self.pool_local(coord, index, net) net = torch.cat([net, pooled], dim=2) net = block(net) c = self.fc_c(net) fea = {} fea['xz'] = self.generate_plane_features(p, c, plane='xz') fea['xy'] = self.generate_plane_features(p, c, plane='xy') fea['yz'] = self.generate_plane_features(p, c, plane='yz') return fea
4,654
Python
37.791666
134
0.592609
NVlabs/ACID/ACID/src/encoder/unet.py
''' Codes are from: https://github.com/jaxony/unet-pytorch/blob/master/model.py ''' import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from collections import OrderedDict from torch.nn import init import numpy as np def conv3x3(in_channels, out_channels, stride=1, padding=1, bias=True, groups=1): return nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=stride, padding=padding, bias=bias, groups=groups) def upconv2x2(in_channels, out_channels, mode='transpose'): if mode == 'transpose': return nn.ConvTranspose2d( in_channels, out_channels, kernel_size=2, stride=2) else: # out_channels is always going to be the same # as in_channels return nn.Sequential( nn.Upsample(mode='bilinear', scale_factor=2), conv1x1(in_channels, out_channels)) def conv1x1(in_channels, out_channels, groups=1): return nn.Conv2d( in_channels, out_channels, kernel_size=1, groups=groups, stride=1) class DownConv(nn.Module): """ A helper Module that performs 2 convolutions and 1 MaxPool. A ReLU activation follows each convolution. """ def __init__(self, in_channels, out_channels, pooling=True): super(DownConv, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.pooling = pooling self.conv1 = conv3x3(self.in_channels, self.out_channels) self.conv2 = conv3x3(self.out_channels, self.out_channels) if self.pooling: self.pool = nn.MaxPool2d(kernel_size=2, stride=2) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) before_pool = x if self.pooling: x = self.pool(x) return x, before_pool class UpConv(nn.Module): """ A helper Module that performs 2 convolutions and 1 UpConvolution. A ReLU activation follows each convolution. """ def __init__(self, in_channels, out_channels, merge_mode='concat', up_mode='transpose'): super(UpConv, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.merge_mode = merge_mode self.up_mode = up_mode self.upconv = upconv2x2(self.in_channels, self.out_channels, mode=self.up_mode) if self.merge_mode == 'concat': self.conv1 = conv3x3( 2*self.out_channels, self.out_channels) else: # num of input channels to conv2 is same self.conv1 = conv3x3(self.out_channels, self.out_channels) self.conv2 = conv3x3(self.out_channels, self.out_channels) def forward(self, from_down, from_up): """ Forward pass Arguments: from_down: tensor from the encoder pathway from_up: upconv'd tensor from the decoder pathway """ from_up = self.upconv(from_up) if self.merge_mode == 'concat': x = torch.cat((from_up, from_down), 1) else: x = from_up + from_down x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) return x class UNet(nn.Module): """ `UNet` class is based on https://arxiv.org/abs/1505.04597 The U-Net is a convolutional encoder-decoder neural network. Contextual spatial information (from the decoding, expansive pathway) about an input tensor is merged with information representing the localization of details (from the encoding, compressive pathway). Modifications to the original paper: (1) padding is used in 3x3 convolutions to prevent loss of border pixels (2) merging outputs does not require cropping due to (1) (3) residual connections can be used by specifying UNet(merge_mode='add') (4) if non-parametric upsampling is used in the decoder pathway (specified by upmode='upsample'), then an additional 1x1 2d convolution occurs after upsampling to reduce channel dimensionality by a factor of 2. This channel halving happens with the convolution in the tranpose convolution (specified by upmode='transpose') """ def __init__(self, num_classes, in_channels=3, depth=5, start_filts=64, up_mode='transpose', merge_mode='concat', **kwargs): """ Arguments: in_channels: int, number of channels in the input tensor. Default is 3 for RGB images. depth: int, number of MaxPools in the U-Net. start_filts: int, number of convolutional filters for the first conv. up_mode: string, type of upconvolution. Choices: 'transpose' for transpose convolution or 'upsample' for nearest neighbour upsampling. """ super(UNet, self).__init__() if up_mode in ('transpose', 'upsample'): self.up_mode = up_mode else: raise ValueError("\"{}\" is not a valid mode for " "upsampling. Only \"transpose\" and " "\"upsample\" are allowed.".format(up_mode)) if merge_mode in ('concat', 'add'): self.merge_mode = merge_mode else: raise ValueError("\"{}\" is not a valid mode for" "merging up and down paths. " "Only \"concat\" and " "\"add\" are allowed.".format(up_mode)) # NOTE: up_mode 'upsample' is incompatible with merge_mode 'add' if self.up_mode == 'upsample' and self.merge_mode == 'add': raise ValueError("up_mode \"upsample\" is incompatible " "with merge_mode \"add\" at the moment " "because it doesn't make sense to use " "nearest neighbour to reduce " "depth channels (by half).") self.num_classes = num_classes self.in_channels = in_channels self.start_filts = start_filts self.depth = depth self.down_convs = [] self.up_convs = [] # create the encoder pathway and add to a list for i in range(depth): ins = self.in_channels if i == 0 else outs outs = self.start_filts*(2**i) pooling = True if i < depth-1 else False down_conv = DownConv(ins, outs, pooling=pooling) self.down_convs.append(down_conv) # create the decoder pathway and add to a list # - careful! decoding only requires depth-1 blocks for i in range(depth-1): ins = outs outs = ins // 2 up_conv = UpConv(ins, outs, up_mode=up_mode, merge_mode=merge_mode) self.up_convs.append(up_conv) # add the list of modules to current module self.down_convs = nn.ModuleList(self.down_convs) self.up_convs = nn.ModuleList(self.up_convs) self.conv_final = conv1x1(outs, self.num_classes) self.reset_params() @staticmethod def weight_init(m): if isinstance(m, nn.Conv2d): init.xavier_normal_(m.weight) init.constant_(m.bias, 0) def reset_params(self): for i, m in enumerate(self.modules()): self.weight_init(m) def forward(self, x): encoder_outs = [] # encoder pathway, save outputs for merging for i, module in enumerate(self.down_convs): x, before_pool = module(x) encoder_outs.append(before_pool) for i, module in enumerate(self.up_convs): before_pool = encoder_outs[-(i+2)] x = module(before_pool, x) # No softmax is used. This means you need to use # nn.CrossEntropyLoss is your training script, # as this module includes a softmax already. x = self.conv_final(x) return x if __name__ == "__main__": """ testing """ model = UNet(1, depth=5, merge_mode='concat', in_channels=1, start_filts=32) print(model) print(sum(p.numel() for p in model.parameters())) reso = 176 x = np.zeros((1, 1, reso, reso)) x[:,:,int(reso/2-1), int(reso/2-1)] = np.nan x = torch.FloatTensor(x) out = model(x) print('%f'%(torch.sum(torch.isnan(out)).detach().cpu().numpy()/(reso*reso))) # loss = torch.sum(out) # loss.backward()
8,696
Python
32.57915
80
0.575092
NVlabs/ACID/ACID/src/utils/common_util.py
import os import glob import json import scipy import itertools import numpy as np from PIL import Image from scipy.spatial.transform import Rotation from sklearn.neighbors import NearestNeighbors from sklearn.manifold import TSNE from matplotlib import pyplot as plt def get_color_map(x): colours = plt.cm.Spectral(x) return colours[:, :3] def embed_tsne(data): """ N x D np.array data """ tsne = TSNE(n_components=1, verbose=0, perplexity=40, n_iter=300, random_state=0) tsne_results = tsne.fit_transform(data) tsne_results = np.squeeze(tsne_results) tsne_min = np.min(tsne_results) tsne_max = np.max(tsne_results) return (tsne_results - tsne_min) / (tsne_max - tsne_min) ######################################################################## # Viewpoint transform ######################################################################## view_to_order = { 'cam0': ('X', 'Y', 'Z'), 'cam1': ('-Z', 'Y', 'X'), 'cam2': ('Z', 'Y', '-X'), 'cam3': ('-X', 'Y', '-Z'), } def get_axis_pt(val, x, y, z): multiplier = -1 if '-' in val else 1 if "X" in val: return x * multiplier elif "Y" in val: return y * multiplier elif "Z" in val: return z * multiplier def world_coord_view_augmentation(view, pts): order = view_to_order[view] pts = pts.reshape([-1,3]) x,y,z = np.moveaxis(pts, 1, 0) return np.array([get_axis_pt(o,x,y,z) for o in order]).T ######################################################################## # partial observation projection / transform / rendering utilities ######################################################################## def transform_points_cam_to_world(cam_pts, camera_pose): world_pts = np.transpose( np.dot(camera_pose[0:3, 0:3], np.transpose(cam_pts)) + np.tile(camera_pose[0:3, 3:], (1, cam_pts.shape[0]))) return world_pts def transform_points_world_to_cam(world_points, cam_extr): return np.transpose( np.dot( np.linalg.inv( cam_extr[0:3, 0:3]), np.transpose(world_points) - np.tile(cam_extr[0:3, 3:], (1, world_points.shape[0])))) def render_points_slowest(world_points, cam_extr, cam_intr): cam_points = transform_points_world_to_cam(world_points, cam_extr) cam_pts_x = cam_points[:,0] cam_pts_y = cam_points[:,1] cam_pts_z = cam_points[:,2] cam_pts_x = -cam_pts_x / cam_pts_z * cam_intr[0,0] + cam_intr[1,2] cam_pts_y = cam_pts_y / cam_pts_z * cam_intr[1,1] + cam_intr[0,2] cam_pts_x = np.rint(cam_pts_x).astype(int) cam_pts_y = np.rint(cam_pts_y).astype(int) points = np.stack([cam_pts_y, cam_pts_x, cam_pts_z, np.arange(len(cam_pts_x))]).T sorted_pts = sorted(points, key=lambda x: (x[0], x[1])) grouped_pts = [[*j] for i, j in itertools.groupby( sorted_pts, key=lambda x: (x[0] // 3, x[1] // 3))] min_depth = np.array([sorted(p, key=lambda x: -x[2])[0] for p in grouped_pts]) min_idx = min_depth[:,-1] min_depth = min_depth[:,:-1] return world_points[min_idx.astype(int)] def render_points_slow(world_points, cam_extr, cam_intr): cam_points = transform_points_world_to_cam(world_points, cam_extr) cam_pts_x = cam_points[:,0] cam_pts_y = cam_points[:,1] cam_pts_z = cam_points[:,2] cam_pts_x = -cam_pts_x / cam_pts_z * cam_intr[0,0] + cam_intr[1,2] cam_pts_y = cam_pts_y / cam_pts_z * cam_intr[1,1] + cam_intr[0,2] points = np.stack([cam_pts_y, cam_pts_x, cam_pts_z, np.arange(len(cam_pts_x))]).T points[:,:2] = np.rint(points[:,:2] / 2) points = points[points[:,1].argsort()] points = points[points[:,0].argsort(kind='mergesort')] grouped_pts = np.split(points[:,2:], np.unique(points[:, :2], axis=0, return_index=True)[1][1:]) min_depth = np.array([p[p[:,0].argsort()][-1] for p in grouped_pts]) min_idx = min_depth[:,-1].astype(int) return world_points[min_idx] def render_points(world_points, cam_extr, cam_intr, return_index=False): cam_points = transform_points_world_to_cam(world_points, cam_extr) cam_pts_x = cam_points[:,0] cam_pts_y = cam_points[:,1] cam_pts_z = cam_points[:,2] cam_pts_x = -cam_pts_x / cam_pts_z * cam_intr[0,0] + cam_intr[1,2] cam_pts_y = cam_pts_y / cam_pts_z * cam_intr[1,1] + cam_intr[0,2] idx = np.rint(cam_pts_y / 2) * 1000 + np.rint(cam_pts_x / 2) val = np.stack([cam_pts_z, np.arange(len(cam_pts_x))]).T order = idx.argsort() idx = idx[order] val = val[order] grouped_pts = np.split(val, np.unique(idx, return_index=True)[1][1:]) min_depth = np.array([p[p[:,0].argsort()][-1] for p in grouped_pts]) min_idx = min_depth[:,-1].astype(int) if return_index: return min_idx return world_points[min_idx] def project_depth_world_space(depth_image, camera_intr, camera_pose, keep_dim=False, project_factor=1.): cam_pts = project_depth_cam_space(depth_image, camera_intr, keep_dim=False,project_factor=project_factor) world_pts = transform_points_cam_to_world(cam_pts, camera_pose) W, H = depth_image.shape if keep_dim: world_pts = world_pts.reshape([W, H, 3]) return world_pts def project_depth_cam_space(depth_img, camera_intrinsics, keep_dim=True, project_factor=1.): # Get depth image size im_h = depth_img.shape[0] im_w = depth_img.shape[1] # Project depth into 3D point cloud in camera coordinates pix_x, pix_y = np.meshgrid(np.linspace(0, im_w - 1, im_w), np.linspace(0, im_h - 1, im_h)) cam_pts_x = np.multiply(pix_x - im_w / 2., -depth_img / camera_intrinsics[0, 0]) cam_pts_y = np.multiply(pix_y - im_h / 2., depth_img / camera_intrinsics[1, 1]) cam_pts_z = depth_img.copy() cam_pts_x.shape = (im_h * im_w, 1) cam_pts_y.shape = (im_h * im_w, 1) cam_pts_z.shape = (im_h * im_w, 1) cam_pts = np.concatenate((cam_pts_x, cam_pts_y, cam_pts_z), axis=1) * project_factor if keep_dim: cam_pts = cam_pts.reshape([im_h, im_w, 3]) return cam_pts def get_trunc_ab(mean, std, a, b): return (a - mean) / std, (b - mean) /std def get_trunc_ab_range(mean_min, mean_max, std, a, b): return (a - mean_min) / std, (b - mean_max) /std def transform_points(pointcloud, from_range, to_range): if len(pointcloud.shape) == 1: pointcloud = pointcloud.reshape([1,-1]) if pointcloud.shape[1] == 6: xyz = pointcloud[:,:3] rgb = pointcloud[:,3:] else: xyz = pointcloud rgb = None from_center = np.mean(from_range, axis=0) from_size = np.ptp(from_range, axis=0) to_center = np.mean(to_range, axis=0) to_size = np.ptp(to_range, axis=0) xyz = (xyz - from_center) / from_size * to_size + to_center if rgb is None: return xyz else: return np.concatenate([xyz, rgb], axis=-1) def extent_to_cube(extent): min_x,min_y,min_z = extent[0] max_x,max_y,max_z = extent[1] verts = np.array([ (max_x,max_y,max_z), (max_x,max_y,min_z), (max_x,min_y,max_z), (max_x,min_y,min_z), (min_x,max_y,max_z), (min_x,max_y,min_z), (min_x,min_y,max_z), (min_x,min_y,min_z),]) faces = np.array([ (1,5,7,3), (4,3,7,8), (8,7,5,6), (6,2,4,8), (2,1,3,4), (6,5,1,2),]) return verts, faces ######################################################################## # Visualization ######################################################################## import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import math def set_axes_equal(ax): '''Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.. This is one possible solution to Matplotlib's ax.set_aspect('equal') and ax.axis('equal') not working for 3D. Input ax: a matplotlib axis, e.g., as output from plt.gca(). ''' x_limits = ax.get_xlim3d() y_limits = ax.get_ylim3d() z_limits = ax.get_zlim3d() x_range = abs(x_limits[1] - x_limits[0]) x_middle = np.mean(x_limits) y_range = abs(y_limits[1] - y_limits[0]) y_middle = np.mean(y_limits) z_range = abs(z_limits[1] - z_limits[0]) z_middle = np.mean(z_limits) # The plot bounding box is a sphere in the sense of the infinity # norm, hence I call half the max range the plot radius. plot_radius = 0.5*max([x_range, y_range, z_range]) ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius]) ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius]) ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius]) def set_background_blank(ax): # Hide grid lines ax.grid(False) ax.set_axis_off() # Hide axes ticks ax.set_xticks([]) ax.set_yticks([]) ax.set_zticks([]) # First remove fill ax.xaxis.pane.fill = False ax.yaxis.pane.fill = False ax.zaxis.pane.fill = False # Now set color to white (or whatever is "invisible") ax.xaxis.pane.set_edgecolor((1.0, 1.0, 1.0, 0.0)) ax.yaxis.pane.set_edgecolor((1.0, 1.0, 1.0, 0.0)) ax.zaxis.pane.set_edgecolor((1.0, 1.0, 1.0, 0.0)) def side_by_side_point_clouds(point_clouds, angle=(90,0)): fig = plt.figure() W = int(len(point_clouds) ** 0.5) H = math.ceil(len(point_clouds) / W) for i, pcloud in enumerate(point_clouds): action = None flow = None pts = pcloud['pts'] title = pcloud['title'] col = pcloud.get('col', None) flow = pcloud.get('flow', None) action = pcloud.get('action', None) ax = fig.add_subplot(W, H, i+1,projection='3d') ax.set_title(title) if flow is not None: flow_norm = np.linalg.norm(flow, axis=1) viz_idx = flow_norm > 0.0 flow = flow[viz_idx] ax.quiver( pts[:,0][viz_idx], pts[:,1][viz_idx], pts[:,2][viz_idx], flow[:,0], flow[:,1], flow[:,2], color = 'red', linewidth=3, alpha=0.2 ) if col is None: col = 'blue' ax.scatter(pts[:,0], pts[:,1], pts[:,2], color=col,s=0.5) ax.view_init(*angle) if action is not None: ax.scatter(action[0], action[1], 0., edgecolors='tomato', color='turquoise', marker='*',s=80) set_axes_equal(ax) set_background_blank(ax) fig.tight_layout() return fig def write_pointcoud_as_obj(path, xyzrgb, faces=None): with open(path, 'w') as fp: if xyzrgb.shape[1] == 6: for x,y,z,r,g,b in xyzrgb: fp.write(f"v {x:.3f} {y:.3f} {z:.3f} {r:.3f} {g:.3f} {b:.3f}\n") else: for x,y,z in xyzrgb: fp.write(f"v {x:.3f} {y:.3f} {z:.3f}\n") if faces is not None: for f in faces: f_str = " ".join([str(i) for i in f]) fp.write(f"f {f_str}\n") ################################# # Distance Metric ################################# def subsample_points(points, resolution=0.0125, return_index=True): if points.shape[1] == 6: xyz = points[:,:3] else: xyz = points if points.shape[0] == 0: if return_index: return np.arange(0) return points idx = np.unique(xyz// resolution * resolution, axis=0, return_index=True)[1] if return_index: return idx return points[idx] from sklearn.neighbors import NearestNeighbors def chamfer_distance(x, y, metric='l2', direction='bi'): x_nn = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm='kd_tree', metric=metric).fit(x) min_y_to_x = x_nn.kneighbors(y)[0] y_nn = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm='kd_tree', metric=metric).fit(y) min_x_to_y = y_nn.kneighbors(x)[0] return np.mean(min_y_to_x) + np.mean(min_x_to_y) def f1_score(x, y, metric='l2', th=0.01): # x is pred # y is gt if x.shape[0] == 0: return 0,0,0 x_nn = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm='kd_tree', metric=metric).fit(x) d2 = x_nn.kneighbors(y)[0] y_nn = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm='kd_tree', metric=metric).fit(y) d1 = y_nn.kneighbors(x)[0] recall = float(sum(d < th for d in d2)) / float(len(d2)) precision = float(sum(d < th for d in d1)) / float(len(d1)) if recall+precision > 0: fscore = 2 * recall * precision / (recall + precision) else: fscore = 0 return fscore, precision, recall
12,618
Python
36.005865
116
0.560628
NVlabs/ACID/ACID/src/utils/io.py
import os from plyfile import PlyElement, PlyData import numpy as np def export_pointcloud(vertices, out_file, as_text=True): assert(vertices.shape[1] == 3) vertices = vertices.astype(np.float32) vertices = np.ascontiguousarray(vertices) vector_dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4')] vertices = vertices.view(dtype=vector_dtype).flatten() plyel = PlyElement.describe(vertices, 'vertex') plydata = PlyData([plyel], text=as_text) plydata.write(out_file) def load_pointcloud(in_file): plydata = PlyData.read(in_file) vertices = np.stack([ plydata['vertex']['x'], plydata['vertex']['y'], plydata['vertex']['z'] ], axis=1) return vertices def read_off(file): """ Reads vertices and faces from an off file. :param file: path to file to read :type file: str :return: vertices and faces as lists of tuples :rtype: [(float)], [(int)] """ assert os.path.exists(file), 'file %s not found' % file with open(file, 'r') as fp: lines = fp.readlines() lines = [line.strip() for line in lines] # Fix for ModelNet bug were 'OFF' and the number of vertices and faces # are all in the first line. if len(lines[0]) > 3: assert lines[0][:3] == 'OFF' or lines[0][:3] == 'off', \ 'invalid OFF file %s' % file parts = lines[0][3:].split(' ') assert len(parts) == 3 num_vertices = int(parts[0]) assert num_vertices > 0 num_faces = int(parts[1]) assert num_faces > 0 start_index = 1 # This is the regular case! else: assert lines[0] == 'OFF' or lines[0] == 'off', \ 'invalid OFF file %s' % file parts = lines[1].split(' ') assert len(parts) == 3 num_vertices = int(parts[0]) assert num_vertices > 0 num_faces = int(parts[1]) assert num_faces > 0 start_index = 2 vertices = [] for i in range(num_vertices): vertex = lines[start_index + i].split(' ') vertex = [float(point.strip()) for point in vertex if point != ''] assert len(vertex) == 3 vertices.append(vertex) faces = [] for i in range(num_faces): face = lines[start_index + num_vertices + i].split(' ') face = [index.strip() for index in face if index != ''] # check to be sure for index in face: assert index != '', \ 'found empty vertex index: %s (%s)' \ % (lines[start_index + num_vertices + i], file) face = [int(index) for index in face] assert face[0] == len(face) - 1, \ 'face should have %d vertices but as %d (%s)' \ % (face[0], len(face) - 1, file) assert face[0] == 3, \ 'only triangular meshes supported (%s)' % file for index in face: assert index >= 0 and index < num_vertices, \ 'vertex %d (of %d vertices) does not exist (%s)' \ % (index, num_vertices, file) assert len(face) > 1 faces.append(face) return vertices, faces assert False, 'could not open %s' % file
3,415
Python
29.230088
78
0.513616
NVlabs/ACID/ACID/src/utils/visualize.py
import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D import src.common as common def visualize_data(data, data_type, out_file): r''' Visualizes the data with regard to its type. Args: data (tensor): batch of data data_type (string): data type (img, voxels or pointcloud) out_file (string): output file ''' if data_type == 'voxels': visualize_voxels(data, out_file=out_file) elif data_type == 'pointcloud': visualize_pointcloud(data, out_file=out_file) elif data_type is None or data_type == 'idx': pass else: raise ValueError('Invalid data_type "%s"' % data_type) def visualize_voxels(voxels, out_file=None, show=False): r''' Visualizes voxel data. Args: voxels (tensor): voxel data out_file (string): output file show (bool): whether the plot should be shown ''' # Use numpy voxels = np.asarray(voxels) # Create plot fig = plt.figure() ax = fig.gca(projection=Axes3D.name) voxels = voxels.transpose(2, 0, 1) ax.voxels(voxels, edgecolor='k') ax.set_xlabel('Z') ax.set_ylabel('X') ax.set_zlabel('Y') ax.view_init(elev=30, azim=45) if out_file is not None: plt.savefig(out_file) if show: plt.show() plt.close(fig) def visualize_pointcloud(points, normals=None, out_file=None, show=False): r''' Visualizes point cloud data. Args: points (tensor): point data normals (tensor): normal data (if existing) out_file (string): output file show (bool): whether the plot should be shown ''' # Use numpy points = np.asarray(points) # Create plot fig = plt.figure() ax = fig.gca(projection=Axes3D.name) ax.scatter(points[:, 2], points[:, 0], points[:, 1]) if normals is not None: ax.quiver( points[:, 2], points[:, 0], points[:, 1], normals[:, 2], normals[:, 0], normals[:, 1], length=0.1, color='k' ) ax.set_xlabel('Z') ax.set_ylabel('X') ax.set_zlabel('Y') ax.set_xlim(-0.5, 0.5) ax.set_ylim(-0.5, 0.5) ax.set_zlim(-0.5, 0.5) ax.view_init(elev=30, azim=45) if out_file is not None: plt.savefig(out_file) if show: plt.show() plt.close(fig)
2,378
Python
26.66279
65
0.585786
NVlabs/ACID/ACID/src/utils/mentalsim_util.py
import os import glob import json import scipy import itertools import numpy as np from PIL import Image from scipy.spatial.transform import Rotation from sklearn.neighbors import NearestNeighbors ######################################################################## # Viewpoint transform ######################################################################## view_to_order = { 'cam0': ('X', 'Y', 'Z'), 'cam1': ('-Z', 'Y', 'X'), 'cam2': ('Z', 'Y', '-X'), 'cam3': ('-X', 'Y', '-Z'), } def get_axis_pt(val, x, y, z): multiplier = -1 if '-' in val else 1 if "X" in val: return x * multiplier elif "Y" in val: return y * multiplier elif "Z" in val: return z * multiplier def world_coord_view_augmentation(view, pts): order = view_to_order[view] pts = pts.reshape([-1,3]) x,y,z = np.moveaxis(pts, 1, 0) return np.array([get_axis_pt(o,x,y,z) for o in order]).T ######################################################################## # partial observation projection / transform / rendering utilities ######################################################################## def transform_points_cam_to_world(cam_pts, camera_pose): world_pts = np.transpose( np.dot(camera_pose[0:3, 0:3], np.transpose(cam_pts)) + np.tile(camera_pose[0:3, 3:], (1, cam_pts.shape[0]))) return world_pts def transform_points_world_to_cam(world_points, cam_extr): return np.transpose( np.dot( np.linalg.inv( cam_extr[0:3, 0:3]), np.transpose(world_points) - np.tile(cam_extr[0:3, 3:], (1, world_points.shape[0])))) def render_points_slowest(world_points, cam_extr, cam_intr): cam_points = transform_points_world_to_cam(world_points, cam_extr) cam_pts_x = cam_points[:,0] cam_pts_y = cam_points[:,1] cam_pts_z = cam_points[:,2] cam_pts_x = -cam_pts_x / cam_pts_z * cam_intr[0,0] + cam_intr[1,2] cam_pts_y = cam_pts_y / cam_pts_z * cam_intr[1,1] + cam_intr[0,2] cam_pts_x = np.rint(cam_pts_x).astype(int) cam_pts_y = np.rint(cam_pts_y).astype(int) points = np.stack([cam_pts_y, cam_pts_x, cam_pts_z, np.arange(len(cam_pts_x))]).T sorted_pts = sorted(points, key=lambda x: (x[0], x[1])) grouped_pts = [[*j] for i, j in itertools.groupby( sorted_pts, key=lambda x: (x[0] // 3, x[1] // 3))] min_depth = np.array([sorted(p, key=lambda x: -x[2])[0] for p in grouped_pts]) min_idx = min_depth[:,-1] min_depth = min_depth[:,:-1] return world_points[min_idx.astype(int)] def render_points_slow(world_points, cam_extr, cam_intr): cam_points = transform_points_world_to_cam(world_points, cam_extr) cam_pts_x = cam_points[:,0] cam_pts_y = cam_points[:,1] cam_pts_z = cam_points[:,2] cam_pts_x = -cam_pts_x / cam_pts_z * cam_intr[0,0] + cam_intr[1,2] cam_pts_y = cam_pts_y / cam_pts_z * cam_intr[1,1] + cam_intr[0,2] points = np.stack([cam_pts_y, cam_pts_x, cam_pts_z, np.arange(len(cam_pts_x))]).T points[:,:2] = np.rint(points[:,:2] / 2) points = points[points[:,1].argsort()] points = points[points[:,0].argsort(kind='mergesort')] grouped_pts = np.split(points[:,2:], np.unique(points[:, :2], axis=0, return_index=True)[1][1:]) min_depth = np.array([p[p[:,0].argsort()][-1] for p in grouped_pts]) min_idx = min_depth[:,-1].astype(int) return world_points[min_idx] def render_points(world_points, cam_extr, cam_intr): cam_points = transform_points_world_to_cam(world_points, cam_extr) cam_pts_x = cam_points[:,0] cam_pts_y = cam_points[:,1] cam_pts_z = cam_points[:,2] cam_pts_x = -cam_pts_x / cam_pts_z * cam_intr[0,0] + cam_intr[1,2] cam_pts_y = cam_pts_y / cam_pts_z * cam_intr[1,1] + cam_intr[0,2] idx = np.rint(cam_pts_y / 2) * 1000 + np.rint(cam_pts_x / 2) val = np.stack([cam_pts_z, np.arange(len(cam_pts_x))]).T order = idx.argsort() idx = idx[order] val = val[order] grouped_pts = np.split(val, np.unique(idx, return_index=True)[1][1:]) min_depth = np.array([p[p[:,0].argsort()][-1] for p in grouped_pts]) min_idx = min_depth[:,-1].astype(int) return world_points[min_idx] def project_depth_world_space(depth_image, camera_intr, camera_pose, keep_dim=False, project_factor=1.): cam_pts = project_depth_cam_space(depth_image, camera_intr, keep_dim=False,project_factor=project_factor) world_pts = transform_points_cam_to_world(cam_pts, camera_pose) W, H = depth_image.shape if keep_dim: world_pts = world_pts.reshape([W, H, 3]) return world_pts def project_depth_cam_space(depth_img, camera_intrinsics, keep_dim=True, project_factor=1.): # Get depth image size im_h = depth_img.shape[0] im_w = depth_img.shape[1] # Project depth into 3D point cloud in camera coordinates pix_x, pix_y = np.meshgrid(np.linspace(0, im_w - 1, im_w), np.linspace(0, im_h - 1, im_h)) cam_pts_x = np.multiply(pix_x - im_w / 2., -depth_img / camera_intrinsics[0, 0]) cam_pts_y = np.multiply(pix_y - im_h / 2., depth_img / camera_intrinsics[1, 1]) cam_pts_z = depth_img.copy() cam_pts_x.shape = (im_h * im_w, 1) cam_pts_y.shape = (im_h * im_w, 1) cam_pts_z.shape = (im_h * im_w, 1) cam_pts = np.concatenate((cam_pts_x, cam_pts_y, cam_pts_z), axis=1) * project_factor if keep_dim: cam_pts = cam_pts.reshape([im_h, im_w, 3]) return cam_pts def get_trunc_ab(mean, std, a, b): return (a - mean) / std, (b - mean) /std ######################################################################## # partial observation getter for full experiment ######################################################################## CAM_EXTR = np.array([[1.0, 0.0, 0.0, 0.0], [0.0, 0.6427898318479135, -0.766043895201295, -565.0], [0.0, 0.766047091387779, 0.6427871499290135, 550.0], [0.0, 0.0, 0.0, 1.0]]) CAM_INTR = np.array([[687.1868314210544, 0.0, 360.0], [0.0, 687.1868314210544, 360.0], [0.0, 0.0, 1.0]]) SCENE_RANGE = np.array([[-600, -400, 0], [600, 400, 400]]) def get_scene_partial_pointcloud(model_category, model_name, split_id, int_id, frame_id, data_root): path = f"{data_root}/{split_id}/{model_category}/{model_name}/img/{{}}_{int_id:04d}_{frame_id:06d}.{{}}" depth_img = path.format('depth', 'png') depth_img = np.array(Image.open(depth_img).convert(mode='I')) depth_vals = -np.array(depth_img).astype(float) / 1000. rgb_img = path.format('rgb', 'jpg') rgb_img = np.array(Image.open(rgb_img).convert(mode="RGB")).astype(float) / 255 seg_img = path.format('seg', 'jpg') seg_img = np.array(Image.open(seg_img).convert('L')).squeeze() non_env = np.where(seg_img != 0) env = np.where(seg_img == 0) partial_points = project_depth_world_space(depth_vals, CAM_INTR, CAM_EXTR, keep_dim=True, project_factor=100.) partial_points_rgb = np.concatenate([partial_points, rgb_img], axis=-1) obj_pts = partial_points_rgb[non_env] env_pts = partial_points_rgb[env] return obj_pts, env_pts ######################################################################## # Get geometric state (full experiment) ######################################################################## def get_object_full_points(model_category, model_name, split_id, int_id, frame_id, data_root): path = f"{data_root}/{split_id}/{model_category}/{model_name}/geom/{int_id:04d}_{frame_id:06d}.npz" geom_data = np.load(path) loc = geom_data['loc'] print(geom_data['rot']) w,x,y,z= geom_data['rot'] rot = Rotation.from_quat(np.array([x,y,z,w])) scale = geom_data['scale'] sim_pts = (rot.apply(geom_data['sim'] * scale)) + loc vis_pts = (rot.apply(geom_data['vis'] * scale)) + loc return sim_pts, vis_pts ######################################################################## # partial observation getter for teddy toy example ######################################################################## def get_teddy_partial_pointcloud(int_group, int_id, frame_id, data_root, cam_id='cam0'): #depth_img = glob.glob(f"{data_root}/{int_group}/img/{cam_id}/{int_id:06d}_*{frame_id:03d}_depth.png")[0] depth_img = f"{data_root}/{int_group}/img/{cam_id}/{int_id:06d}_{frame_id:03d}_depth.png" depth_img = np.array(Image.open(depth_img).convert(mode='I')) depth_vals = -np.array(depth_img).astype(float) / 1000. #rgb_img = glob.glob(f"{data_root}/{int_group}/img/{cam_id}/{int_id:06d}_*{frame_id:03d}_rgb.png")[0] rgb_img = f"{data_root}/{int_group}/img/{cam_id}/{int_id:06d}_{frame_id:03d}_rgb.png" rgb_img = np.array(Image.open(rgb_img).convert(mode="RGB")).astype(float) / 255 #seg_img = glob.glob(f"{data_root}/{int_group}/img/{cam_id}/{int_id:06d}_*{frame_id:03d}_seg.png")[0] seg_img = f"{data_root}/{int_group}/img/{cam_id}/{int_id:06d}_{frame_id:03d}_seg.png" seg_img = np.array(Image.open(seg_img)) non_env = np.where(seg_img != 0) ospdir= os.path.dirname root_dir = ospdir(ospdir(ospdir(os.path.realpath(__file__)))) camera_json = os.path.join(root_dir, "metadata", "camera.json") with open(camera_json, 'r') as fp: cam_info = json.load(fp) for k in cam_info.keys(): cam_extr, cam_intr = cam_info[k] cam_info[k] = np.array(cam_extr), np.array(cam_intr) cam_extr, cam_intr = cam_info[cam_id] partial_points = project_depth_world_space(depth_vals, cam_intr, cam_extr, keep_dim=True) partial_points_rgb = np.concatenate([partial_points, rgb_img], axis=-1) xyzrgb = partial_points_rgb[non_env] xyz = xyzrgb[:,:3] xyz = world_coord_view_augmentation(cam_id, xyz) rgb = xyzrgb[:,3:] return xyz/ 10. * 1.1, rgb ######################################################################## # Get meta info (teddy toy example) ######################################################################## def get_teddy_loc(int_group, int_id, frame_id, data_root): obj_info = f"{data_root}/{int_group}/info/{int_id:06d}.json" with open(obj_info, 'r') as fp: int_info = json.load(fp) return np.array(dict(zip(int_info['frames'], int_info['teddy_loc']))[frame_id]) def get_teddy_rot(int_group, int_id, frame_id, data_root): obj_info = f"{data_root}/{int_group}/info/{int_id:06d}.json" with open(obj_info, 'r') as fp: int_info = json.load(fp) w,x,y,z = np.array(dict(zip(int_info['frames'], int_info['teddy_rot']))[frame_id]) return np.array([x,y,z,w]) def get_action_info(int_group, int_id, data_root): obj_info = f"{data_root}/{int_group}/info/{int_id:06d}.json" with open(obj_info, 'r') as fp: int_info = json.load(fp) grasp_loc = np.array(int_info['grasp']) target_loc = np.array(int_info['target']) return grasp_loc, target_loc def get_release_frame(int_group, int_id, data_root): obj_info = f"{data_root}/{int_group}/info/{int_id:06d}.json" with open(obj_info, 'r') as fp: return json.load(fp)['release_frame'] # name = glob.glob( # f"{data_root}/{int_group}/geom/{int_id:06d}_release_*_sim.npy")[0].split("/")[-1] # return int(name.split("_")[-2]) def get_end_frame(int_group, int_id, data_root): obj_info = f"{data_root}/{int_group}/info/{int_id:06d}.json" with open(obj_info, 'r') as fp: return json.load(fp)['end_frame'] # name = glob.glob( # f"{data_root}/{int_group}/geom/{int_id:06d}_static_*_sim.npy")[0].split("/")[-1] # return int(name.split("_")[-2]) ######################################################################## # Get geometric state (teddy toy example) ######################################################################## def get_teddy_full_points(int_group, int_id, frame_id, data_root): #sim_data = glob.glob(f"{data_root}/{int_group}/geom/{int_id:06d}_*{frame_id:03d}_sim.npy")[0] sim_data = f"{data_root}/{int_group}/geom/{int_id:06d}_{frame_id:03d}_sim.npy" points = np.load(sim_data) teddy_loc = get_teddy_loc(int_group, int_id, frame_id, data_root) teddy_rot = Rotation.from_quat(get_teddy_rot(int_group, int_id, frame_id, data_root)) return ( teddy_rot.apply(points) + teddy_loc ) / 10. * 1.1 #return ( points + teddy_loc ) / 10. * 1.1 def get_teddy_vis_points(int_group, int_id, frame_id, data_root): #sim_data = glob.glob(f"{data_root}/{int_group}/geom/{int_id:06d}_*{frame_id:03d}_vis.npy")[0] sim_data = f"{data_root}/{int_group}/geom/{int_id:06d}_{frame_id:03d}_vis.npy" points = np.load(sim_data) teddy_loc = get_teddy_loc(int_group, int_id, frame_id, data_root) teddy_rot = Rotation.from_quat(get_teddy_rot(int_group, int_id, frame_id, data_root)) return ( teddy_rot.apply(points) + teddy_loc ) / 10. * 1.1 #return ( points + teddy_loc ) / 10. * 1.1 ######################################################################## # Get point-based supervision data for implicit functions (teddy toy example) ######################################################################## def sample_occupancies(int_group, int_id, frame_id, data_root, sample_scheme='uniform'): if sample_scheme not in ['uniform', 'gaussian']: raise ValueError('Unsupported sampling scheme for occupancy') num_pts = 100000 if sample_scheme == 'uniform': pts = np.random.rand(num_pts, 3) pts = 1.1 * (pts - 0.5) else: x,y,z= get_teddy_loc(int_group, int_id, frame_id, data_root) / 10. * 1.1 std = 0.18 a, b = -0.55, 0.55 xs = scipy.stats.truncnorm.rvs(*get_trunc_ab(x, std, a, b), loc=x, scale=std, size=num_pts) ys = scipy.stats.truncnorm.rvs(*get_trunc_ab(y, std, a, b), loc=y, scale=std, size=num_pts) zs = scipy.stats.truncnorm.rvs(*get_trunc_ab(z, std, a, b), loc=z, scale=std, size=num_pts) pts = np.array([xs,ys,zs]).T teddy_sim_points = get_teddy_full_points(int_group, int_id, frame_id, data_root) x_nn = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm='kd_tree', metric='l2').fit(teddy_sim_points) dist, ind = x_nn.kneighbors(pts)#[0].squeeze() dist = dist.squeeze() ind = ind.squeeze() occ = dist < 0.01 pt_class = ind[occ != 0] return pts, occ, pt_class def sample_occupancies_with_flow(int_group, int_id, release_frame, end_frame, data_root, sample_scheme='uniform'): pts, occ, ind = sample_occupancies(int_group, int_id, 0, data_root, sample_scheme) xyz0 = get_teddy_full_points(int_group, int_id, 0, data_root) f1 = get_teddy_full_points(int_group, int_id, release_frame, data_root) - xyz0 f2 = get_teddy_full_points(int_group, int_id, end_frame, data_root) - xyz0 return pts, occ, ind, f1[ind],f2[ind] ######################################################################## # Visualization ######################################################################## import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import math def set_axes_equal(ax): '''Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.. This is one possible solution to Matplotlib's ax.set_aspect('equal') and ax.axis('equal') not working for 3D. Input ax: a matplotlib axis, e.g., as output from plt.gca(). ''' x_limits = ax.get_xlim3d() y_limits = ax.get_ylim3d() z_limits = ax.get_zlim3d() x_range = abs(x_limits[1] - x_limits[0]) x_middle = np.mean(x_limits) y_range = abs(y_limits[1] - y_limits[0]) y_middle = np.mean(y_limits) z_range = abs(z_limits[1] - z_limits[0]) z_middle = np.mean(z_limits) # The plot bounding box is a sphere in the sense of the infinity # norm, hence I call half the max range the plot radius. plot_radius = 0.5*max([x_range, y_range, z_range]) ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius]) ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius]) ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius]) def side_by_side_point_clouds(point_clouds, angle=(90,0)): fig = plt.figure() W = int(len(point_clouds) ** 0.5) H = math.ceil(len(point_clouds) / W) for i, pcloud in enumerate(point_clouds): action = None flow = None pts = pcloud['pts'] title = pcloud['title'] col = pcloud.get('col', None) flow = pcloud.get('flow', None) action = pcloud.get('action', None) ax = fig.add_subplot(W, H, i+1,projection='3d') ax.set_title(title) if flow is not None: flow_norm = np.linalg.norm(flow, axis=1) viz_idx = flow_norm > 0.0 flow = flow[viz_idx] ax.quiver( pts[:,0][viz_idx], pts[:,2][viz_idx], pts[:,1][viz_idx], flow[:,0], flow[:,2], flow[:,1], color = 'red', linewidth=3, alpha=0.2 ) if col is None: col = 'blue' ax.scatter(pts[:,0], pts[:,2], pts[:,1], color=col,s=0.5) set_axes_equal(ax) ax.view_init(*angle) if action is not None: ax.scatter(action[0], action[1], 0., edgecolors='tomato', color='turquoise', marker='*',s=80) return fig def write_pointcoud_as_obj(xyzrgb, path): if xyzrgb.shape[1] == 6: with open(path, 'w') as fp: for x,y,z,r,g,b in xyzrgb: fp.write(f"v {x:.3f} {y:.3f} {z:.3f} {r:.3f} {g:.3f} {b:.3f}\n") else: with open(path, 'w') as fp: for x,y,z in xyzrgb: fp.write(f"v {x:.3f} {y:.3f} {z:.3f}\n") ################################# # Distance Metric ################################# def subsample_points(points, resolution=0.0125, return_index=True): idx = np.unique(points// resolution * resolution, axis=0, return_index=True)[1] if return_index: return idx return points[idx] from sklearn.neighbors import NearestNeighbors def chamfer_distance(x, y, metric='l2', direction='bi'): x_nn = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm='kd_tree', metric=metric).fit(x) min_y_to_x = x_nn.kneighbors(y)[0] y_nn = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm='kd_tree', metric=metric).fit(y) min_x_to_y = y_nn.kneighbors(x)[0] return np.mean(min_y_to_x) + np.mean(min_x_to_y) def f1_score(x, y, metric='l2', th=0.01): # x is pred # y is gt x_nn = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm='kd_tree', metric=metric).fit(x) d2 = x_nn.kneighbors(y)[0] y_nn = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm='kd_tree', metric=metric).fit(y) d1 = y_nn.kneighbors(x)[0] recall = float(sum(d < th for d in d2)) / float(len(d2)) precision = float(sum(d < th for d in d1)) / float(len(d1)) if recall+precision > 0: fscore = 2 * recall * precision / (recall + precision) else: fscore = 0 return fscore, precision, recall
19,039
Python
44.118483
116
0.564578
NVlabs/ACID/ACID/src/utils/plushsim_util.py
import os import glob import json import scipy import itertools import numpy as np from PIL import Image from scipy.spatial.transform import Rotation from sklearn.neighbors import NearestNeighbors from .common_util import * ######################################################################## # Some file getters ######################################################################## def get_model_dir(data_root, split_id, model_category, model_name): return f"{data_root}/{split_id}/{model_category}/{model_name}" def get_interaction_info_file(data_root, split_id, model_category, model_name, reset_id): model_dir = get_model_dir(data_root, split_id, model_category, model_name) return f"{model_dir}/info/interaction_info_{reset_id:04d}.npz" def get_geom_file(data_root, split_id, model_category, model_name, reset_id, frame_id): model_dir = get_model_dir(data_root, split_id, model_category, model_name) return f"{model_dir}/geom/{reset_id:04d}_{frame_id:06d}.npz" def get_image_file_template(data_root, split_id, model_category, model_name, reset_id, frame_id): model_dir = get_model_dir(data_root, split_id, model_category, model_name) return f"{model_dir}/img/{{}}_{reset_id:04d}_{frame_id:06d}.{{}}" def get_rgb(data_root, split_id, model_category, model_name, reset_id, frame_id): temp = get_image_file_template(data_root, split_id, model_category, model_name, reset_id, frame_id) return temp.format('rgb', 'jpg') def get_depth(data_root, split_id, model_category, model_name, reset_id, frame_id): temp = get_image_file_template(data_root, split_id, model_category, model_name, reset_id, frame_id) return temp.format('depth', 'png') def get_seg(data_root, split_id, model_category, model_name, reset_id, frame_id): temp = get_image_file_template(data_root, split_id, model_category, model_name, reset_id, frame_id) return temp.format('seg', 'jpg') def get_flow_data_file(flow_root,split_id, model_id, reset_id, int_id): return f"{flow_root}/{split_id}/{model_id}/{reset_id:03d}_{int_id:03d}.npz" def get_flow_pair_data_file(pair_root,split_id, model_id, reset_id, int_id): return f"{pair_root}/{split_id}/{model_id}/pair_{reset_id:03d}_{int_id:03d}.npz" def get_geom_data_file(geom_root,split_id, model_id, reset_id, frame_id): return f"{geom_root}/{split_id}/{model_id}/{reset_id:03d}_{frame_id:06d}.npz" def get_pair_data_file(pair_root,split_id, model_id, reset_id, frame_id): return f"{pair_root}/{split_id}/{model_id}/pair_{reset_id:03d}_{frame_id:06d}.npz" # Getters for plan data def get_plan_geom_file(data_root, split_id, model_category, model_name, scenario_id, sequence_id, frame_id): if sequence_id == 'gt': seq_str = sequence_id else: seq_str = f"{sequence_id:04d}" model_dir = get_model_dir(data_root, split_id, model_category, model_name) return f"{model_dir}/geom/{scenario_id:04d}_{seq_str}_{frame_id}.npz" def get_plan_interaction_info_file(data_root, split_id, model_category, model_name, scenario_id, sequence_id): if sequence_id == 'gt': seq_str = sequence_id else: seq_str = f"{sequence_id:04d}" model_dir = get_model_dir(data_root, split_id, model_category, model_name) return f"{model_dir}/info/interaction_info_{scenario_id:04d}_{seq_str}.npz" def get_plan_image_file_template(data_root, split_id, model_category, model_name, scenario_id, sequence_id, frame_id): if sequence_id == 'gt': seq_str = sequence_id else: seq_str = f"{sequence_id:04d}" model_dir = get_model_dir(data_root, split_id, model_category, model_name) return f"{model_dir}/img/{{}}_{scenario_id:04d}_{seq_str}_{frame_id}.{{}}" def get_plan_rgb(data_root, split_id, model_category, model_name, scenario_id, sequence_id, frame_id): temp = get_plan_image_file_template(data_root, split_id, model_category, model_name, scenario_id, sequence_id, frame_id) return temp.format('rgb', 'jpg') def get_plan_depth(data_root, split_id, model_category, model_name, scenario_id, sequence_id, frame_id): temp = get_plan_image_file_template(data_root, split_id, model_category, model_name, scenario_id, sequence_id, frame_id) return temp.format('depth', 'png') def get_plan_seg(data_root, split_id, model_category, model_name, scenario_id, sequence_id, frame_id): temp = get_plan_image_file_template(data_root, split_id, model_category, model_name, scenario_id, sequence_id, frame_id) return temp.format('seg', 'jpg') def get_plan_perf_file(data_root, split_id, model_category, model_name, scenario_id): model_dir = get_model_dir(data_root, split_id, model_category, model_name) return f"{model_dir}/info/perf_{scenario_id:04d}.npz" ######################################################################## # partial observation getter for full experiment ######################################################################## CAM_EXTR = np.array([[1.0, 0.0, 0.0, 0.0], [0.0, 0.6427898318479135, -0.766043895201295, -565.0], [0.0, 0.766047091387779, 0.6427871499290135, 550.0], [0.0, 0.0, 0.0, 1.0]]) CAM_INTR = np.array([[687.1868314210544, 0.0, 360.0], [0.0, 687.1868314210544, 360.0], [0.0, 0.0, 1.0]]) SCENE_RANGE = np.array([[-600, -600, -20], [600, 600, 380]]) def get_plan_scene_partial_pointcloud( model_category, model_name, split_id, scenario_id, sequence_id, frame_id, data_root): depth_img = get_plan_depth(data_root, split_id, model_category, model_name, scenario_id, sequence_id, frame_id) depth_img = np.array(Image.open(depth_img).convert(mode='I')) depth_vals = -np.array(depth_img).astype(float) / 1000. rgb_img = get_plan_rgb(data_root, split_id, model_category, model_name, scenario_id, sequence_id, frame_id) rgb_img = np.array(Image.open(rgb_img).convert(mode="RGB")).astype(float) / 255 seg_img = get_plan_seg(data_root, split_id, model_category, model_name, scenario_id, sequence_id, frame_id) seg_img = np.array(Image.open(seg_img).convert('L')).squeeze() non_env = np.where(seg_img != 0) env = np.where(seg_img == 0) partial_points = project_depth_world_space(depth_vals, CAM_INTR, CAM_EXTR, keep_dim=True, project_factor=100.) partial_points_rgb = np.concatenate([partial_points, rgb_img], axis=-1) obj_pts = partial_points_rgb[non_env] env_pts = partial_points_rgb[env] return obj_pts, env_pts def get_scene_partial_pointcloud(model_category, model_name, split_id, reset_id, frame_id, data_root): depth_img = get_depth(data_root, split_id, model_category, model_name, reset_id, frame_id) depth_img = np.array(Image.open(depth_img).convert(mode='I')) depth_vals = -np.array(depth_img).astype(float) / 1000. rgb_img = get_rgb(data_root, split_id, model_category, model_name, reset_id, frame_id) rgb_img = np.array(Image.open(rgb_img).convert(mode="RGB")).astype(float) / 255 seg_img = get_seg(data_root, split_id, model_category, model_name, reset_id, frame_id) seg_img = np.array(Image.open(seg_img).convert('L')).squeeze() non_env = np.where(seg_img != 0) env = np.where(seg_img == 0) partial_points = project_depth_world_space(depth_vals, CAM_INTR, CAM_EXTR, keep_dim=True, project_factor=100.) partial_points_rgb = np.concatenate([partial_points, rgb_img], axis=-1) obj_pts = partial_points_rgb[non_env] env_pts = partial_points_rgb[env] return obj_pts, env_pts def render_points(world_points, cam_extr=None, cam_intr=None, return_index=False, filter_in_cam=True): if cam_extr is None: cam_extr = CAM_EXTR if cam_intr is None: cam_intr = CAM_INTR cam_points = transform_points_world_to_cam(world_points, cam_extr) / 100. cam_pts_x = cam_points[:,0] cam_pts_y = cam_points[:,1] cam_pts_z = cam_points[:,2] cam_pts_x = -cam_pts_x / cam_pts_z * cam_intr[0,0] + cam_intr[1,2] cam_pts_y = cam_pts_y / cam_pts_z * cam_intr[1,1] + cam_intr[0,2] idx = np.rint(cam_pts_y / 6) * 1000 + np.rint(cam_pts_x / 6) val = np.stack([cam_pts_z, np.arange(len(cam_pts_x))]).T order = idx.argsort() idx = idx[order] val = val[order] grouped_pts = np.split(val, np.unique(idx, return_index=True)[1][1:]) min_depth = np.array([p[p[:,0].argsort()][-1] for p in grouped_pts]) min_idx = min_depth[:,-1].astype(int) if filter_in_cam: in_cam = np.where(np.logical_and(cam_pts_x > 0, cam_pts_y > 0))[0] min_idx = np.intersect1d(in_cam, min_idx, assume_unique=True) if return_index: return min_idx return world_points[min_idx] ######################################################################## # Get geometric state (full experiment) ######################################################################## def extract_full_points(path): geom_data = np.load(path) loc = geom_data['loc'] w,x,y,z= geom_data['rot'] rot = Rotation.from_quat(np.array([x,y,z,w])) scale = geom_data['scale'] sim_pts = (rot.apply(geom_data['sim'] * scale)) + loc vis_pts = (rot.apply(geom_data['vis'] * scale)) + loc return sim_pts, vis_pts, loc, rot, scale def get_object_full_points(model_category, model_name, split_id, reset_id, frame_id, data_root): path = get_geom_file(data_root, split_id, model_category, model_name, reset_id, frame_id) return extract_full_points(path) def get_action_info(model_category, model_name, split_id, reset_id, interaction_id, data_root): obj_info = get_interaction_info_file(data_root, split_id, model_category, model_name, reset_id) int_info = np.load(obj_info) grasp_loc = np.array(int_info['grasp_points'][interaction_id]) target_loc = np.array(int_info['target_points'][interaction_id]) start_frame = int_info['start_frames'][interaction_id] release_frame = int_info['release_frames'][interaction_id] static_frame = int_info['static_frames'][interaction_id] return grasp_loc, target_loc, start_frame, release_frame, static_frame ######################################################################## # Get point-based supervision data for implicit functions (teddy toy example) ######################################################################## def sample_occupancies(full_pts, center, sample_scheme='gaussian', num_pts = 100000, bound=0.55, std=0.1): if sample_scheme not in ['uniform', 'gaussian', 'object']: raise ValueError('Unsupported sampling scheme for occupancy') if sample_scheme == 'uniform': pts = np.random.rand(num_pts, 3) pts = 1.1 * (pts - 0.5) elif sample_scheme == 'object': displace = full_pts[np.random.randint(full_pts.shape[0], size=num_pts)] x_min,y_min,z_min = full_pts.min(axis=0) x_max,y_max,z_max = full_pts.max(axis=0) a, b = -bound, bound xs = scipy.stats.truncnorm.rvs(*get_trunc_ab_range(x_min, x_max, std, a, b), loc=0, scale=std, size=num_pts) ys = scipy.stats.truncnorm.rvs(*get_trunc_ab_range(y_min, y_max, std, a, b), loc=0, scale=std, size=num_pts) zs = scipy.stats.truncnorm.rvs(*get_trunc_ab_range(z_min, z_max, std, a, b), loc=0, scale=std, size=num_pts) pts = np.array([xs,ys,zs]).T + displace else: x,y,z= center a, b = -bound, bound xs = scipy.stats.truncnorm.rvs(*get_trunc_ab(x, std, a, b), loc=x, scale=std, size=num_pts) ys = scipy.stats.truncnorm.rvs(*get_trunc_ab(y, std, a, b), loc=y, scale=std, size=num_pts) zs = scipy.stats.truncnorm.rvs(*get_trunc_ab(z, std, a, b), loc=z, scale=std, size=num_pts) pts = np.array([xs,ys,zs]).T x_nn = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm='kd_tree', metric='l2').fit(full_pts) dist, ind = x_nn.kneighbors(pts)#[0].squeeze() dist = dist.squeeze() ind = ind.squeeze() #points_in = points_uniform[np.where(points_distance< 0.1)] occ = dist < 0.01 #pt_class = ind[np.where(dist < 0.01)] pt_class = ind[occ != 0] return pts, occ, pt_class ######################################################################## # Visualization ######################################################################## import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import math def set_axes_equal(ax): '''Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.. This is one possible solution to Matplotlib's ax.set_aspect('equal') and ax.axis('equal') not working for 3D. Input ax: a matplotlib axis, e.g., as output from plt.gca(). ''' x_limits = ax.get_xlim3d() y_limits = ax.get_ylim3d() z_limits = ax.get_zlim3d() x_range = abs(x_limits[1] - x_limits[0]) x_middle = np.mean(x_limits) y_range = abs(y_limits[1] - y_limits[0]) y_middle = np.mean(y_limits) z_range = abs(z_limits[1] - z_limits[0]) z_middle = np.mean(z_limits) # The plot bounding box is a sphere in the sense of the infinity # norm, hence I call half the max range the plot radius. plot_radius = 0.5*max([x_range, y_range, z_range]) ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius]) ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius]) ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius]) def side_by_side_point_clouds(point_clouds, angle=(90,0)): fig = plt.figure() W = int(len(point_clouds) ** 0.5) H = math.ceil(len(point_clouds) / W) for i, pcloud in enumerate(point_clouds): action = None flow = None pts = pcloud['pts'] title = pcloud['title'] col = pcloud.get('col', None) flow = pcloud.get('flow', None) action = pcloud.get('action', None) ax = fig.add_subplot(W, H, i+1,projection='3d') ax.set_title(title) if flow is not None: flow_norm = np.linalg.norm(flow, axis=1) viz_idx = flow_norm > 0.0 flow = flow[viz_idx] ax.quiver( pts[:,0][viz_idx], pts[:,2][viz_idx], pts[:,1][viz_idx], flow[:,0], flow[:,2], flow[:,1], color = 'red', linewidth=3, alpha=0.2 ) if col is None: col = 'blue' ax.scatter(pts[:,0], pts[:,2], pts[:,1], color=col,s=0.5) set_axes_equal(ax) ax.view_init(*angle) if action is not None: ax.scatter(action[0], action[1], 0., edgecolors='tomato', color='turquoise', marker='*',s=80) return fig def write_pointcoud_as_obj(xyzrgb, path): if xyzrgb.shape[1] == 6: with open(path, 'w') as fp: for x,y,z,r,g,b in xyzrgb: fp.write(f"v {x:.3f} {y:.3f} {z:.3f} {r:.3f} {g:.3f} {b:.3f}\n") else: with open(path, 'w') as fp: for x,y,z in xyzrgb: fp.write(f"v {x:.3f} {y:.3f} {z:.3f}\n") ################################# # Distance Metric ################################# def subsample_points(points, resolution=0.0125, return_index=True): idx = np.unique(points// resolution * resolution, axis=0, return_index=True)[1] if return_index: return idx return points[idx] def miou(x, y, th=0.01): x = subsample_points(x, resolution=th, return_index=False) // th y = subsample_points(y, resolution=th, return_index=False) // th xset = set([tuple(i) for i in x]) yset = set([tuple(i) for i in y]) return len(xset & yset) / len(xset | yset) from sklearn.neighbors import NearestNeighbors def chamfer_distance(x, y, metric='l2', direction='bi'): x_nn = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm='kd_tree', metric=metric).fit(x) min_y_to_x = x_nn.kneighbors(y)[0] y_nn = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm='kd_tree', metric=metric).fit(y) min_x_to_y = y_nn.kneighbors(x)[0] return np.mean(min_y_to_x) + np.mean(min_x_to_y) def f1_score(x, y, metric='l2', th=0.01): # x is pred # y is gt x_nn = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm='kd_tree', metric=metric).fit(x) d2 = x_nn.kneighbors(y)[0] y_nn = NearestNeighbors(n_neighbors=1, leaf_size=1, algorithm='kd_tree', metric=metric).fit(y) d1 = y_nn.kneighbors(x)[0] recall = float(sum(d < th for d in d2)) / float(len(d2)) precision = float(sum(d < th for d in d1)) / float(len(d1)) if recall+precision > 0: fscore = 2 * recall * precision / (recall + precision) else: fscore = 0 return fscore, precision, recall from scipy.spatial import cKDTree def find_nn_cpu(feat0, feat1, return_distance=False): feat1tree = cKDTree(feat1) dists, nn_inds = feat1tree.query(feat0, k=1, n_jobs=-1) if return_distance: return nn_inds, dists else: return nn_inds def find_emd_cpu(feat0, feat1, return_distance=False): import time from scipy.spatial.distance import cdist from scipy.optimize import linear_sum_assignment d = cdist(feat0, feat1) feat0_inds, feat1_inds = linear_sum_assignment(d) return feat0_inds, feat1_inds def find_nn_cpu_symmetry_consistent(feat0, feat1, pts0, pts1, n_neighbor=10, local_radis=0.05, return_distance=False): feat1tree = cKDTree(feat1) dists, nn_inds = feat1tree.query(feat0, k=n_neighbor, n_jobs=-1) if return_distance: return nn_inds, dists else: return nn_inds ################################# # ranking utilities def overlap(list1, list2, depth): """Overlap which accounts for possible ties. This isn't mentioned in the paper but should be used in the ``rbo*()`` functions below, otherwise overlap at a given depth might be > depth which inflates the result. There are no guidelines in the paper as to what's a good way to calculate this, but a good guess is agreement scaled by the minimum between the requested depth and the lengths of the considered lists (overlap shouldn't be larger than the number of ranks in the shorter list, otherwise results are conspicuously wrong when the lists are of unequal lengths -- rbo_ext is not between rbo_min and rbo_min + rbo_res. >>> overlap("abcd", "abcd", 3) 3.0 >>> overlap("abcd", "abcd", 5) 4.0 >>> overlap(["a", {"b", "c"}, "d"], ["a", {"b", "c"}, "d"], 2) 2.0 >>> overlap(["a", {"b", "c"}, "d"], ["a", {"b", "c"}, "d"], 3) 3.0 """ return agreement(list1, list2, depth) * min(depth, len(list1), len(list2)) def rbo_ext(list1, list2, p=0.9): """RBO point estimate based on extrapolating observed overlap. See equation (32) in paper. NOTE: The doctests weren't verified against manual computations but seem plausible. >>> _round(rbo_ext("abcdefg", "abcdefg", .9)) 1.0 >>> _round(rbo_ext("abcdefg", "bacdefg", .9)) 0.9 """ S, L = sorted((list1, list2), key=len) s, l = len(S), len(L) x_l = overlap(list1, list2, l) x_s = overlap(list1, list2, s) # the paper says overlap(..., d) / d, but it should be replaced by # agreement(..., d) defined as per equation (28) so that ties are handled # properly (otherwise values > 1 will be returned) # sum1 = sum(p**d * overlap(list1, list2, d)[0] / d for d in range(1, l + 1)) sum1 = sum(p ** d * agreement(list1, list2, d) for d in range(1, l + 1)) sum2 = sum(p ** d * x_s * (d - s) / s / d for d in range(s + 1, l + 1)) term1 = (1 - p) / p * (sum1 + sum2) term2 = p ** l * ((x_l - x_s) / l + x_s / s) return term1 + term2 def set_at_depth(lst, depth): ans = set() for v in lst[:depth]: if isinstance(v, set): ans.update(v) else: ans.add(v) return ans def raw_overlap(list1, list2, depth): """Overlap as defined in the article. """ set1, set2 = set_at_depth(list1, depth), set_at_depth(list2, depth) return len(set1.intersection(set2)), len(set1), len(set2) def agreement(list1, list2, depth): """Proportion of shared values between two sorted lists at given depth. >>> _round(agreement("abcde", "abdcf", 1)) 1.0 >>> _round(agreement("abcde", "abdcf", 3)) 0.667 >>> _round(agreement("abcde", "abdcf", 4)) 1.0 >>> _round(agreement("abcde", "abdcf", 5)) 0.8 >>> _round(agreement([{1, 2}, 3], [1, {2, 3}], 1)) 0.667 >>> _round(agreement([{1, 2}, 3], [1, {2, 3}], 2)) 1.0 """ len_intersection, len_set1, len_set2 = raw_overlap(list1, list2, depth) return 2 * len_intersection / (len_set1 + len_set2)
20,693
Python
43.407725
124
0.605905
NVlabs/ACID/ACID/src/utils/libmise/__init__.py
from .mise import MISE __all__ = [ MISE ]
47
Python
6.999999
22
0.531915
NVlabs/ACID/ACID/src/utils/libmise/test.py
import numpy as np from mise import MISE import time t0 = time.time() extractor = MISE(1, 2, 0.) p = extractor.query() i = 0 while p.shape[0] != 0: print(i) print(p) v = 2 * (p.sum(axis=-1) > 2).astype(np.float64) - 1 extractor.update(p, v) p = extractor.query() i += 1 if (i >= 8): break print(extractor.to_dense()) # p, v = extractor.get_points() # print(p) # print(v) print('Total time: %f' % (time.time() - t0))
456
Python
16.576922
55
0.570175
NVlabs/ACID/ACID/src/utils/libsimplify/__init__.py
from .simplify_mesh import ( mesh_simplify ) import trimesh def simplify_mesh(mesh, f_target=10000, agressiveness=7.): vertices = mesh.vertices faces = mesh.faces vertices, faces = mesh_simplify(vertices, faces, f_target, agressiveness) mesh_simplified = trimesh.Trimesh(vertices, faces, process=False) return mesh_simplified
355
Python
21.249999
77
0.723944
NVlabs/ACID/ACID/src/utils/libsimplify/test.py
from simplify_mesh import mesh_simplify import numpy as np v = np.random.rand(100, 3) f = np.random.choice(range(100), (50, 3)) mesh_simplify(v, f, 50)
153
Python
20.999997
41
0.705882
NVlabs/ACID/ACID/src/utils/libsimplify/Simplify.h
///////////////////////////////////////////// // // Mesh Simplification Tutorial // // (C) by Sven Forstmann in 2014 // // License : MIT // http://opensource.org/licenses/MIT // //https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification // // 5/2016: Chris Rorden created minimal version for OSX/Linux/Windows compile //#include <iostream> //#include <stddef.h> //#include <functional> //#include <sys/stat.h> //#include <stdbool.h> #include <string.h> //#include <ctype.h> //#include <float.h> #include <stdio.h> #include <stdlib.h> #include <map> #include <vector> #include <string> #include <math.h> #include <float.h> //FLT_EPSILON, DBL_EPSILON #define loopi(start_l,end_l) for ( int i=start_l;i<end_l;++i ) #define loopi(start_l,end_l) for ( int i=start_l;i<end_l;++i ) #define loopj(start_l,end_l) for ( int j=start_l;j<end_l;++j ) #define loopk(start_l,end_l) for ( int k=start_l;k<end_l;++k ) struct vector3 { double x, y, z; }; struct vec3f { double x, y, z; inline vec3f( void ) {} //inline vec3f operator =( vector3 a ) // { vec3f b ; b.x = a.x; b.y = a.y; b.z = a.z; return b;} inline vec3f( vector3 a ) { x = a.x; y = a.y; z = a.z; } inline vec3f( const double X, const double Y, const double Z ) { x = X; y = Y; z = Z; } inline vec3f operator + ( const vec3f& a ) const { return vec3f( x + a.x, y + a.y, z + a.z ); } inline vec3f operator += ( const vec3f& a ) const { return vec3f( x + a.x, y + a.y, z + a.z ); } inline vec3f operator * ( const double a ) const { return vec3f( x * a, y * a, z * a ); } inline vec3f operator * ( const vec3f a ) const { return vec3f( x * a.x, y * a.y, z * a.z ); } inline vec3f v3 () const { return vec3f( x , y, z ); } inline vec3f operator = ( const vector3 a ) { x=a.x;y=a.y;z=a.z;return *this; } inline vec3f operator = ( const vec3f a ) { x=a.x;y=a.y;z=a.z;return *this; } inline vec3f operator / ( const vec3f a ) const { return vec3f( x / a.x, y / a.y, z / a.z ); } inline vec3f operator - ( const vec3f& a ) const { return vec3f( x - a.x, y - a.y, z - a.z ); } inline vec3f operator / ( const double a ) const { return vec3f( x / a, y / a, z / a ); } inline double dot( const vec3f& a ) const { return a.x*x + a.y*y + a.z*z; } inline vec3f cross( const vec3f& a , const vec3f& b ) { x = a.y * b.z - a.z * b.y; y = a.z * b.x - a.x * b.z; z = a.x * b.y - a.y * b.x; return *this; } inline double angle( const vec3f& v ) { vec3f a = v , b = *this; double dot = v.x*x + v.y*y + v.z*z; double len = a.length() * b.length(); if(len==0)len=0.00001f; double input = dot / len; if (input<-1) input=-1; if (input>1) input=1; return (double) acos ( input ); } inline double angle2( const vec3f& v , const vec3f& w ) { vec3f a = v , b= *this; double dot = a.x*b.x + a.y*b.y + a.z*b.z; double len = a.length() * b.length(); if(len==0)len=1; vec3f plane; plane.cross( b,w ); if ( plane.x * a.x + plane.y * a.y + plane.z * a.z > 0 ) return (double) -acos ( dot / len ); return (double) acos ( dot / len ); } inline vec3f rot_x( double a ) { double yy = cos ( a ) * y + sin ( a ) * z; double zz = cos ( a ) * z - sin ( a ) * y; y = yy; z = zz; return *this; } inline vec3f rot_y( double a ) { double xx = cos ( -a ) * x + sin ( -a ) * z; double zz = cos ( -a ) * z - sin ( -a ) * x; x = xx; z = zz; return *this; } inline void clamp( double min, double max ) { if (x<min) x=min; if (y<min) y=min; if (z<min) z=min; if (x>max) x=max; if (y>max) y=max; if (z>max) z=max; } inline vec3f rot_z( double a ) { double yy = cos ( a ) * y + sin ( a ) * x; double xx = cos ( a ) * x - sin ( a ) * y; y = yy; x = xx; return *this; } inline vec3f invert() { x=-x;y=-y;z=-z;return *this; } inline vec3f frac() { return vec3f( x-double(int(x)), y-double(int(y)), z-double(int(z)) ); } inline vec3f integer() { return vec3f( double(int(x)), double(int(y)), double(int(z)) ); } inline double length() const { return (double)sqrt(x*x + y*y + z*z); } inline vec3f normalize( double desired_length = 1 ) { double square = sqrt(x*x + y*y + z*z); /* if (square <= 0.00001f ) { x=1;y=0;z=0; return *this; }*/ //double len = desired_length / square; x/=square;y/=square;z/=square; return *this; } static vec3f normalize( vec3f a ); static void random_init(); static double random_double(); static vec3f random(); static int random_number; double random_double_01(double a){ double rnf=a*14.434252+a*364.2343+a*4213.45352+a*2341.43255+a*254341.43535+a*223454341.3523534245+23453.423412; int rni=((int)rnf)%100000; return double(rni)/(100000.0f-1.0f); } vec3f random01_fxyz(){ x=(double)random_double_01(x); y=(double)random_double_01(y); z=(double)random_double_01(z); return *this; } }; vec3f barycentric(const vec3f &p, const vec3f &a, const vec3f &b, const vec3f &c){ vec3f v0 = b-a; vec3f v1 = c-a; vec3f v2 = p-a; double d00 = v0.dot(v0); double d01 = v0.dot(v1); double d11 = v1.dot(v1); double d20 = v2.dot(v0); double d21 = v2.dot(v1); double denom = d00*d11-d01*d01; double v = (d11 * d20 - d01 * d21) / denom; double w = (d00 * d21 - d01 * d20) / denom; double u = 1.0 - v - w; return vec3f(u,v,w); } vec3f interpolate(const vec3f &p, const vec3f &a, const vec3f &b, const vec3f &c, const vec3f attrs[3]) { vec3f bary = barycentric(p,a,b,c); vec3f out = vec3f(0,0,0); out = out + attrs[0] * bary.x; out = out + attrs[1] * bary.y; out = out + attrs[2] * bary.z; return out; } double min(double v1, double v2) { return fmin(v1,v2); } class SymetricMatrix { public: // Constructor SymetricMatrix(double c=0) { loopi(0,10) m[i] = c; } SymetricMatrix( double m11, double m12, double m13, double m14, double m22, double m23, double m24, double m33, double m34, double m44) { m[0] = m11; m[1] = m12; m[2] = m13; m[3] = m14; m[4] = m22; m[5] = m23; m[6] = m24; m[7] = m33; m[8] = m34; m[9] = m44; } // Make plane SymetricMatrix(double a,double b,double c,double d) { m[0] = a*a; m[1] = a*b; m[2] = a*c; m[3] = a*d; m[4] = b*b; m[5] = b*c; m[6] = b*d; m[7 ] =c*c; m[8 ] = c*d; m[9 ] = d*d; } double operator[](int c) const { return m[c]; } // Determinant double det( int a11, int a12, int a13, int a21, int a22, int a23, int a31, int a32, int a33) { double det = m[a11]*m[a22]*m[a33] + m[a13]*m[a21]*m[a32] + m[a12]*m[a23]*m[a31] - m[a13]*m[a22]*m[a31] - m[a11]*m[a23]*m[a32]- m[a12]*m[a21]*m[a33]; return det; } const SymetricMatrix operator+(const SymetricMatrix& n) const { return SymetricMatrix( m[0]+n[0], m[1]+n[1], m[2]+n[2], m[3]+n[3], m[4]+n[4], m[5]+n[5], m[6]+n[6], m[ 7]+n[ 7], m[ 8]+n[8 ], m[ 9]+n[9 ]); } SymetricMatrix& operator+=(const SymetricMatrix& n) { m[0]+=n[0]; m[1]+=n[1]; m[2]+=n[2]; m[3]+=n[3]; m[4]+=n[4]; m[5]+=n[5]; m[6]+=n[6]; m[7]+=n[7]; m[8]+=n[8]; m[9]+=n[9]; return *this; } double m[10]; }; /////////////////////////////////////////// namespace Simplify { // Global Variables & Strctures enum Attributes { NONE, NORMAL = 2, TEXCOORD = 4, COLOR = 8 }; struct Triangle { int v[3];double err[4];int deleted,dirty,attr;vec3f n;vec3f uvs[3];int material; }; struct Vertex { vec3f p;int tstart,tcount;SymetricMatrix q;int border;}; struct Ref { int tid,tvertex; }; std::vector<Triangle> triangles; std::vector<Vertex> vertices; std::vector<Ref> refs; std::string mtllib; std::vector<std::string> materials; // Helper functions double vertex_error(SymetricMatrix q, double x, double y, double z); double calculate_error(int id_v1, int id_v2, vec3f &p_result); bool flipped(vec3f p,int i0,int i1,Vertex &v0,Vertex &v1,std::vector<int> &deleted); void update_uvs(int i0,const Vertex &v,const vec3f &p,std::vector<int> &deleted); void update_triangles(int i0,Vertex &v,std::vector<int> &deleted,int &deleted_triangles); void update_mesh(int iteration); void compact_mesh(); // // Main simplification function // // target_count : target nr. of triangles // agressiveness : sharpness to increase the threshold. // 5..8 are good numbers // more iterations yield higher quality // void simplify_mesh(int target_count, double agressiveness=7, bool verbose=false) { // init loopi(0,triangles.size()) { triangles[i].deleted=0; } // main iteration loop int deleted_triangles=0; std::vector<int> deleted0,deleted1; int triangle_count=triangles.size(); //int iteration = 0; //loop(iteration,0,100) for (int iteration = 0; iteration < 100; iteration ++) { if(triangle_count-deleted_triangles<=target_count)break; // update mesh once in a while if(iteration%5==0) { update_mesh(iteration); } // clear dirty flag loopi(0,triangles.size()) triangles[i].dirty=0; // // All triangles with edges below the threshold will be removed // // The following numbers works well for most models. // If it does not, try to adjust the 3 parameters // double threshold = 0.000000001*pow(double(iteration+3),agressiveness); // target number of triangles reached ? Then break if ((verbose) && (iteration%5==0)) { printf("iteration %d - triangles %d threshold %g\n",iteration,triangle_count-deleted_triangles, threshold); } // remove vertices & mark deleted triangles loopi(0,triangles.size()) { Triangle &t=triangles[i]; if(t.err[3]>threshold) continue; if(t.deleted) continue; if(t.dirty) continue; loopj(0,3)if(t.err[j]<threshold) { int i0=t.v[ j ]; Vertex &v0 = vertices[i0]; int i1=t.v[(j+1)%3]; Vertex &v1 = vertices[i1]; // Border check if(v0.border != v1.border) continue; // Compute vertex to collapse to vec3f p; calculate_error(i0,i1,p); deleted0.resize(v0.tcount); // normals temporarily deleted1.resize(v1.tcount); // normals temporarily // don't remove if flipped if( flipped(p,i0,i1,v0,v1,deleted0) ) continue; if( flipped(p,i1,i0,v1,v0,deleted1) ) continue; if ( (t.attr & TEXCOORD) == TEXCOORD ) { update_uvs(i0,v0,p,deleted0); update_uvs(i0,v1,p,deleted1); } // not flipped, so remove edge v0.p=p; v0.q=v1.q+v0.q; int tstart=refs.size(); update_triangles(i0,v0,deleted0,deleted_triangles); update_triangles(i0,v1,deleted1,deleted_triangles); int tcount=refs.size()-tstart; if(tcount<=v0.tcount) { // save ram if(tcount)memcpy(&refs[v0.tstart],&refs[tstart],tcount*sizeof(Ref)); } else // append v0.tstart=tstart; v0.tcount=tcount; break; } // done? if(triangle_count-deleted_triangles<=target_count)break; } } // clean up mesh compact_mesh(); } //simplify_mesh() void simplify_mesh_lossless(bool verbose=false) { // init loopi(0,triangles.size()) triangles[i].deleted=0; // main iteration loop int deleted_triangles=0; std::vector<int> deleted0,deleted1; int triangle_count=triangles.size(); //int iteration = 0; //loop(iteration,0,100) for (int iteration = 0; iteration < 9999; iteration ++) { // update mesh constantly update_mesh(iteration); // clear dirty flag loopi(0,triangles.size()) triangles[i].dirty=0; // // All triangles with edges below the threshold will be removed // // The following numbers works well for most models. // If it does not, try to adjust the 3 parameters // double threshold = DBL_EPSILON; //1.0E-3 EPS; if (verbose) { printf("lossless iteration %d\n", iteration); } // remove vertices & mark deleted triangles loopi(0,triangles.size()) { Triangle &t=triangles[i]; if(t.err[3]>threshold) continue; if(t.deleted) continue; if(t.dirty) continue; loopj(0,3)if(t.err[j]<threshold) { int i0=t.v[ j ]; Vertex &v0 = vertices[i0]; int i1=t.v[(j+1)%3]; Vertex &v1 = vertices[i1]; // Border check if(v0.border != v1.border) continue; // Compute vertex to collapse to vec3f p; calculate_error(i0,i1,p); deleted0.resize(v0.tcount); // normals temporarily deleted1.resize(v1.tcount); // normals temporarily // don't remove if flipped if( flipped(p,i0,i1,v0,v1,deleted0) ) continue; if( flipped(p,i1,i0,v1,v0,deleted1) ) continue; if ( (t.attr & TEXCOORD) == TEXCOORD ) { update_uvs(i0,v0,p,deleted0); update_uvs(i0,v1,p,deleted1); } // not flipped, so remove edge v0.p=p; v0.q=v1.q+v0.q; int tstart=refs.size(); update_triangles(i0,v0,deleted0,deleted_triangles); update_triangles(i0,v1,deleted1,deleted_triangles); int tcount=refs.size()-tstart; if(tcount<=v0.tcount) { // save ram if(tcount)memcpy(&refs[v0.tstart],&refs[tstart],tcount*sizeof(Ref)); } else // append v0.tstart=tstart; v0.tcount=tcount; break; } } if(deleted_triangles<=0)break; deleted_triangles=0; } //for each iteration // clean up mesh compact_mesh(); } //simplify_mesh_lossless() // Check if a triangle flips when this edge is removed bool flipped(vec3f p,int i0,int i1,Vertex &v0,Vertex &v1,std::vector<int> &deleted) { loopk(0,v0.tcount) { Triangle &t=triangles[refs[v0.tstart+k].tid]; if(t.deleted)continue; int s=refs[v0.tstart+k].tvertex; int id1=t.v[(s+1)%3]; int id2=t.v[(s+2)%3]; if(id1==i1 || id2==i1) // delete ? { deleted[k]=1; continue; } vec3f d1 = vertices[id1].p-p; d1.normalize(); vec3f d2 = vertices[id2].p-p; d2.normalize(); if(fabs(d1.dot(d2))>0.999) return true; vec3f n; n.cross(d1,d2); n.normalize(); deleted[k]=0; if(n.dot(t.n)<0.2) return true; } return false; } // update_uvs void update_uvs(int i0,const Vertex &v,const vec3f &p,std::vector<int> &deleted) { loopk(0,v.tcount) { Ref &r=refs[v.tstart+k]; Triangle &t=triangles[r.tid]; if(t.deleted)continue; if(deleted[k])continue; vec3f p1=vertices[t.v[0]].p; vec3f p2=vertices[t.v[1]].p; vec3f p3=vertices[t.v[2]].p; t.uvs[r.tvertex] = interpolate(p,p1,p2,p3,t.uvs); } } // Update triangle connections and edge error after a edge is collapsed void update_triangles(int i0,Vertex &v,std::vector<int> &deleted,int &deleted_triangles) { vec3f p; loopk(0,v.tcount) { Ref &r=refs[v.tstart+k]; Triangle &t=triangles[r.tid]; if(t.deleted)continue; if(deleted[k]) { t.deleted=1; deleted_triangles++; continue; } t.v[r.tvertex]=i0; t.dirty=1; t.err[0]=calculate_error(t.v[0],t.v[1],p); t.err[1]=calculate_error(t.v[1],t.v[2],p); t.err[2]=calculate_error(t.v[2],t.v[0],p); t.err[3]=min(t.err[0],min(t.err[1],t.err[2])); refs.push_back(r); } } // compact triangles, compute edge error and build reference list void update_mesh(int iteration) { if(iteration>0) // compact triangles { int dst=0; loopi(0,triangles.size()) if(!triangles[i].deleted) { triangles[dst++]=triangles[i]; } triangles.resize(dst); } // // Init Quadrics by Plane & Edge Errors // // required at the beginning ( iteration == 0 ) // recomputing during the simplification is not required, // but mostly improves the result for closed meshes // if( iteration == 0 ) { loopi(0,vertices.size()) vertices[i].q=SymetricMatrix(0.0); loopi(0,triangles.size()) { Triangle &t=triangles[i]; vec3f n,p[3]; loopj(0,3) p[j]=vertices[t.v[j]].p; n.cross(p[1]-p[0],p[2]-p[0]); n.normalize(); t.n=n; loopj(0,3) vertices[t.v[j]].q = vertices[t.v[j]].q+SymetricMatrix(n.x,n.y,n.z,-n.dot(p[0])); } loopi(0,triangles.size()) { // Calc Edge Error Triangle &t=triangles[i];vec3f p; loopj(0,3) t.err[j]=calculate_error(t.v[j],t.v[(j+1)%3],p); t.err[3]=min(t.err[0],min(t.err[1],t.err[2])); } } // Init Reference ID list loopi(0,vertices.size()) { vertices[i].tstart=0; vertices[i].tcount=0; } loopi(0,triangles.size()) { Triangle &t=triangles[i]; loopj(0,3) vertices[t.v[j]].tcount++; } int tstart=0; loopi(0,vertices.size()) { Vertex &v=vertices[i]; v.tstart=tstart; tstart+=v.tcount; v.tcount=0; } // Write References refs.resize(triangles.size()*3); loopi(0,triangles.size()) { Triangle &t=triangles[i]; loopj(0,3) { Vertex &v=vertices[t.v[j]]; refs[v.tstart+v.tcount].tid=i; refs[v.tstart+v.tcount].tvertex=j; v.tcount++; } } // Identify boundary : vertices[].border=0,1 if( iteration == 0 ) { std::vector<int> vcount,vids; loopi(0,vertices.size()) vertices[i].border=0; loopi(0,vertices.size()) { Vertex &v=vertices[i]; vcount.clear(); vids.clear(); loopj(0,v.tcount) { int k=refs[v.tstart+j].tid; Triangle &t=triangles[k]; loopk(0,3) { int ofs=0,id=t.v[k]; while(ofs<vcount.size()) { if(vids[ofs]==id)break; ofs++; } if(ofs==vcount.size()) { vcount.push_back(1); vids.push_back(id); } else vcount[ofs]++; } } loopj(0,vcount.size()) if(vcount[j]==1) vertices[vids[j]].border=1; } } } // Finally compact mesh before exiting void compact_mesh() { int dst=0; loopi(0,vertices.size()) { vertices[i].tcount=0; } loopi(0,triangles.size()) if(!triangles[i].deleted) { Triangle &t=triangles[i]; triangles[dst++]=t; loopj(0,3)vertices[t.v[j]].tcount=1; } triangles.resize(dst); dst=0; loopi(0,vertices.size()) if(vertices[i].tcount) { vertices[i].tstart=dst; vertices[dst].p=vertices[i].p; dst++; } loopi(0,triangles.size()) { Triangle &t=triangles[i]; loopj(0,3)t.v[j]=vertices[t.v[j]].tstart; } vertices.resize(dst); } // Error between vertex and Quadric double vertex_error(SymetricMatrix q, double x, double y, double z) { return q[0]*x*x + 2*q[1]*x*y + 2*q[2]*x*z + 2*q[3]*x + q[4]*y*y + 2*q[5]*y*z + 2*q[6]*y + q[7]*z*z + 2*q[8]*z + q[9]; } // Error for one edge double calculate_error(int id_v1, int id_v2, vec3f &p_result) { // compute interpolated vertex SymetricMatrix q = vertices[id_v1].q + vertices[id_v2].q; bool border = vertices[id_v1].border & vertices[id_v2].border; double error=0; double det = q.det(0, 1, 2, 1, 4, 5, 2, 5, 7); if ( det != 0 && !border ) { // q_delta is invertible p_result.x = -1/det*(q.det(1, 2, 3, 4, 5, 6, 5, 7 , 8)); // vx = A41/det(q_delta) p_result.y = 1/det*(q.det(0, 2, 3, 1, 5, 6, 2, 7 , 8)); // vy = A42/det(q_delta) p_result.z = -1/det*(q.det(0, 1, 3, 1, 4, 6, 2, 5, 8)); // vz = A43/det(q_delta) error = vertex_error(q, p_result.x, p_result.y, p_result.z); } else { // det = 0 -> try to find best result vec3f p1=vertices[id_v1].p; vec3f p2=vertices[id_v2].p; vec3f p3=(p1+p2)/2; double error1 = vertex_error(q, p1.x,p1.y,p1.z); double error2 = vertex_error(q, p2.x,p2.y,p2.z); double error3 = vertex_error(q, p3.x,p3.y,p3.z); error = min(error1, min(error2, error3)); if (error1 == error) p_result=p1; if (error2 == error) p_result=p2; if (error3 == error) p_result=p3; } return error; } char *trimwhitespace(char *str) { char *end; // Trim leading space while(isspace((unsigned char)*str)) str++; if(*str == 0) // All spaces? return str; // Trim trailing space end = str + strlen(str) - 1; while(end > str && isspace((unsigned char)*end)) end--; // Write new null terminator *(end+1) = 0; return str; } //Option : Load OBJ void load_obj(const char* filename, bool process_uv=false){ vertices.clear(); triangles.clear(); //printf ( "Loading Objects %s ... \n",filename); FILE* fn; if(filename==NULL) return ; if((char)filename[0]==0) return ; if ((fn = fopen(filename, "rb")) == NULL) { printf ( "File %s not found!\n" ,filename ); return; } char line[1000]; memset ( line,0,1000 ); int vertex_cnt = 0; int material = -1; std::map<std::string, int> material_map; std::vector<vec3f> uvs; std::vector<std::vector<int> > uvMap; while(fgets( line, 1000, fn ) != NULL) { Vertex v; vec3f uv; if (strncmp(line, "mtllib", 6) == 0) { mtllib = trimwhitespace(&line[7]); } if (strncmp(line, "usemtl", 6) == 0) { std::string usemtl = trimwhitespace(&line[7]); if (material_map.find(usemtl) == material_map.end()) { material_map[usemtl] = materials.size(); materials.push_back(usemtl); } material = material_map[usemtl]; } if ( line[0] == 'v' && line[1] == 't' ) { if ( line[2] == ' ' ) if(sscanf(line,"vt %lf %lf", &uv.x,&uv.y)==2) { uv.z = 0; uvs.push_back(uv); } else if(sscanf(line,"vt %lf %lf %lf", &uv.x,&uv.y,&uv.z)==3) { uvs.push_back(uv); } } else if ( line[0] == 'v' ) { if ( line[1] == ' ' ) if(sscanf(line,"v %lf %lf %lf", &v.p.x, &v.p.y, &v.p.z)==3) { vertices.push_back(v); } } int integers[9]; if ( line[0] == 'f' ) { Triangle t; bool tri_ok = false; bool has_uv = false; if(sscanf(line,"f %d %d %d", &integers[0],&integers[1],&integers[2])==3) { tri_ok = true; }else if(sscanf(line,"f %d// %d// %d//", &integers[0],&integers[1],&integers[2])==3) { tri_ok = true; }else if(sscanf(line,"f %d//%d %d//%d %d//%d", &integers[0],&integers[3], &integers[1],&integers[4], &integers[2],&integers[5])==6) { tri_ok = true; }else if(sscanf(line,"f %d/%d/%d %d/%d/%d %d/%d/%d", &integers[0],&integers[6],&integers[3], &integers[1],&integers[7],&integers[4], &integers[2],&integers[8],&integers[5])==9) { tri_ok = true; has_uv = true; } else { printf("unrecognized sequence\n"); printf("%s\n",line); while(1); } if ( tri_ok ) { t.v[0] = integers[0]-1-vertex_cnt; t.v[1] = integers[1]-1-vertex_cnt; t.v[2] = integers[2]-1-vertex_cnt; t.attr = 0; if ( process_uv && has_uv ) { std::vector<int> indices; indices.push_back(integers[6]-1-vertex_cnt); indices.push_back(integers[7]-1-vertex_cnt); indices.push_back(integers[8]-1-vertex_cnt); uvMap.push_back(indices); t.attr |= TEXCOORD; } t.material = material; //geo.triangles.push_back ( tri ); triangles.push_back(t); //state_before = state; //state ='f'; } } } if ( process_uv && uvs.size() ) { loopi(0,triangles.size()) { loopj(0,3) triangles[i].uvs[j] = uvs[uvMap[i][j]]; } } fclose(fn); //printf("load_obj: vertices = %lu, triangles = %lu, uvs = %lu\n", vertices.size(), triangles.size(), uvs.size() ); } // load_obj() // Optional : Store as OBJ void write_obj(const char* filename) { FILE *file=fopen(filename, "w"); int cur_material = -1; bool has_uv = (triangles.size() && (triangles[0].attr & TEXCOORD) == TEXCOORD); if (!file) { printf("write_obj: can't write data file \"%s\".\n", filename); exit(0); } if (!mtllib.empty()) { fprintf(file, "mtllib %s\n", mtllib.c_str()); } loopi(0,vertices.size()) { //fprintf(file, "v %lf %lf %lf\n", vertices[i].p.x,vertices[i].p.y,vertices[i].p.z); fprintf(file, "v %g %g %g\n", vertices[i].p.x,vertices[i].p.y,vertices[i].p.z); //more compact: remove trailing zeros } if (has_uv) { loopi(0,triangles.size()) if(!triangles[i].deleted) { fprintf(file, "vt %g %g\n", triangles[i].uvs[0].x, triangles[i].uvs[0].y); fprintf(file, "vt %g %g\n", triangles[i].uvs[1].x, triangles[i].uvs[1].y); fprintf(file, "vt %g %g\n", triangles[i].uvs[2].x, triangles[i].uvs[2].y); } } int uv = 1; loopi(0,triangles.size()) if(!triangles[i].deleted) { if (triangles[i].material != cur_material) { cur_material = triangles[i].material; fprintf(file, "usemtl %s\n", materials[triangles[i].material].c_str()); } if (has_uv) { fprintf(file, "f %d/%d %d/%d %d/%d\n", triangles[i].v[0]+1, uv, triangles[i].v[1]+1, uv+1, triangles[i].v[2]+1, uv+2); uv += 3; } else { fprintf(file, "f %d %d %d\n", triangles[i].v[0]+1, triangles[i].v[1]+1, triangles[i].v[2]+1); } //fprintf(file, "f %d// %d// %d//\n", triangles[i].v[0]+1, triangles[i].v[1]+1, triangles[i].v[2]+1); //more compact: remove trailing zeros } fclose(file); } }; ///////////////////////////////////////////
25,295
C
23.58309
142
0.567108
NVlabs/ACID/ACID/src/utils/libmcubes/pyarray_symbol.h
#define PY_ARRAY_UNIQUE_SYMBOL mcubes_PyArray_API
51
C
16.333328
49
0.803922
NVlabs/ACID/ACID/src/utils/libmcubes/README.rst
======== PyMCubes ======== PyMCubes is an implementation of the marching cubes algorithm to extract isosurfaces from volumetric data. The volumetric data can be given as a three-dimensional NumPy array or as a Python function ``f(x, y, z)``. The first option is much faster, but it requires more memory and becomes unfeasible for very large volumes. PyMCubes also provides a function to export the results of the marching cubes as COLLADA ``(.dae)`` files. This requires the `PyCollada <https://github.com/pycollada/pycollada>`_ library. Installation ============ Just as any standard Python package, clone or download the project and run:: $ cd path/to/PyMCubes $ python setup.py build $ python setup.py install If you do not have write permission on the directory of Python packages, install with the ``--user`` option:: $ python setup.py install --user Example ======= The following example creates a data volume with spherical isosurfaces and extracts one of them (i.e., a sphere) with PyMCubes. The result is exported as ``sphere.dae``:: >>> import numpy as np >>> import mcubes # Create a data volume (30 x 30 x 30) >>> X, Y, Z = np.mgrid[:30, :30, :30] >>> u = (X-15)**2 + (Y-15)**2 + (Z-15)**2 - 8**2 # Extract the 0-isosurface >>> vertices, triangles = mcubes.marching_cubes(u, 0) # Export the result to sphere.dae >>> mcubes.export_mesh(vertices, triangles, "sphere.dae", "MySphere") The second example is very similar to the first one, but it uses a function to represent the volume instead of a NumPy array:: >>> import numpy as np >>> import mcubes # Create the volume >>> f = lambda x, y, z: x**2 + y**2 + z**2 # Extract the 16-isosurface >>> vertices, triangles = mcubes.marching_cubes_func((-10,-10,-10), (10,10,10), ... 100, 100, 100, f, 16) # Export the result to sphere2.dae >>> mcubes.export_mesh(vertices, triangles, "sphere2.dae", "MySphere")
1,939
reStructuredText
28.846153
81
0.682826
NVlabs/ACID/ACID/src/utils/libmcubes/marchingcubes.h
#ifndef _MARCHING_CUBES_H #define _MARCHING_CUBES_H #include <stddef.h> #include <vector> namespace mc { extern int edge_table[256]; extern int triangle_table[256][16]; namespace private_ { double mc_isovalue_interpolation(double isovalue, double f1, double f2, double x1, double x2); void mc_add_vertex(double x1, double y1, double z1, double c2, int axis, double f1, double f2, double isovalue, std::vector<double>* vertices); } template<typename coord_type, typename vector3, typename formula> void marching_cubes(const vector3& lower, const vector3& upper, int numx, int numy, int numz, formula f, double isovalue, std::vector<double>& vertices, std::vector<size_t>& polygons) { using namespace private_; // typedef decltype(lower[0]) coord_type; // numx, numy and numz are the numbers of evaluations in each direction --numx; --numy; --numz; coord_type dx = (upper[0] - lower[0])/static_cast<coord_type>(numx); coord_type dy = (upper[1] - lower[1])/static_cast<coord_type>(numy); coord_type dz = (upper[2] - lower[2])/static_cast<coord_type>(numz); size_t* shared_indices = new size_t[2*numy*numz*3]; const int z3 = numz*3; const int yz3 = numy*z3; for(int i=0; i<numx; ++i) { coord_type x = lower[0] + dx*i + dx/2; coord_type x_dx = lower[0] + dx*(i+1) + dx/2; const int i_mod_2 = i % 2; const int i_mod_2_inv = (i_mod_2 ? 0 : 1); for(int j=0; j<numy; ++j) { coord_type y = lower[1] + dy*j + dy/2; coord_type y_dy = lower[1] + dy*(j+1) + dy/2; for(int k=0; k<numz; ++k) { coord_type z = lower[2] + dz*k + dz/2; coord_type z_dz = lower[2] + dz*(k+1) + dz/2; double v[8]; v[0] = f(x,y,z); v[1] = f(x_dx,y,z); v[2] = f(x_dx,y_dy,z); v[3] = f(x, y_dy, z); v[4] = f(x,y,z_dz); v[5] = f(x_dx,y,z_dz); v[6] = f(x_dx,y_dy,z_dz); v[7] = f(x, y_dy, z_dz); unsigned int cubeindex = 0; for(int m=0; m<8; ++m) if(v[m] <= isovalue) cubeindex |= 1<<m; // Generate vertices AVOIDING DUPLICATES. int edges = edge_table[cubeindex]; std::vector<size_t> indices(12, -1); if(edges & 0x040) { indices[6] = vertices.size() / 3; shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 0] = indices[6]; mc_add_vertex(x_dx, y_dy, z_dz, x, 0, v[6], v[7], isovalue, &vertices); } if(edges & 0x020) { indices[5] = vertices.size() / 3; shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 1] = indices[5]; mc_add_vertex(x_dx, y, z_dz, y_dy, 1, v[5], v[6], isovalue, &vertices); } if(edges & 0x400) { indices[10] = vertices.size() / 3; shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 2] = indices[10]; mc_add_vertex(x_dx, y+dx, z, z_dz, 2, v[2], v[6], isovalue, &vertices); } if(edges & 0x001) { if(j == 0 || k == 0) { indices[0] = vertices.size() / 3; mc_add_vertex(x, y, z, x_dx, 0, v[0], v[1], isovalue, &vertices); } else indices[0] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + (k-1)*3 + 0]; } if(edges & 0x002) { if(k == 0) { indices[1] = vertices.size() / 3; mc_add_vertex(x_dx, y, z, y_dy, 1, v[1], v[2], isovalue, &vertices); } else indices[1] = shared_indices[i_mod_2*yz3 + j*z3 + (k-1)*3 + 1]; } if(edges & 0x004) { if(k == 0) { indices[2] = vertices.size() / 3; mc_add_vertex(x_dx, y_dy, z, x, 0, v[2], v[3], isovalue, &vertices); } else indices[2] = shared_indices[i_mod_2*yz3 + j*z3 + (k-1)*3 + 0]; } if(edges & 0x008) { if(i == 0 || k == 0) { indices[3] = vertices.size() / 3; mc_add_vertex(x, y_dy, z, y, 1, v[3], v[0], isovalue, &vertices); } else indices[3] = shared_indices[i_mod_2_inv*yz3 + j*z3 + (k-1)*3 + 1]; } if(edges & 0x010) { if(j == 0) { indices[4] = vertices.size() / 3; mc_add_vertex(x, y, z_dz, x_dx, 0, v[4], v[5], isovalue, &vertices); } else indices[4] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + k*3 + 0]; } if(edges & 0x080) { if(i == 0) { indices[7] = vertices.size() / 3; mc_add_vertex(x, y_dy, z_dz, y, 1, v[7], v[4], isovalue, &vertices); } else indices[7] = shared_indices[i_mod_2_inv*yz3 + j*z3 + k*3 + 1]; } if(edges & 0x100) { if(i == 0 || j == 0) { indices[8] = vertices.size() / 3; mc_add_vertex(x, y, z, z_dz, 2, v[0], v[4], isovalue, &vertices); } else indices[8] = shared_indices[i_mod_2_inv*yz3 + (j-1)*z3 + k*3 + 2]; } if(edges & 0x200) { if(j == 0) { indices[9] = vertices.size() / 3; mc_add_vertex(x_dx, y, z, z_dz, 2, v[1], v[5], isovalue, &vertices); } else indices[9] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + k*3 + 2]; } if(edges & 0x800) { if(i == 0) { indices[11] = vertices.size() / 3; mc_add_vertex(x, y_dy, z, z_dz, 2, v[3], v[7], isovalue, &vertices); } else indices[11] = shared_indices[i_mod_2_inv*yz3 + j*z3 + k*3 + 2]; } int tri; int* triangle_table_ptr = triangle_table[cubeindex]; for(int m=0; tri = triangle_table_ptr[m], tri != -1; ++m) polygons.push_back(indices[tri]); } } } delete [] shared_indices; } template<typename coord_type, typename vector3, typename formula> void marching_cubes2(const vector3& lower, const vector3& upper, int numx, int numy, int numz, formula f, double isovalue, std::vector<double>& vertices, std::vector<size_t>& polygons) { using namespace private_; // typedef decltype(lower[0]) coord_type; // numx, numy and numz are the numbers of evaluations in each direction --numx; --numy; --numz; coord_type dx = (upper[0] - lower[0])/static_cast<coord_type>(numx); coord_type dy = (upper[1] - lower[1])/static_cast<coord_type>(numy); coord_type dz = (upper[2] - lower[2])/static_cast<coord_type>(numz); size_t* shared_indices = new size_t[2*numy*numz*3]; const int z3 = numz*3; const int yz3 = numy*z3; for(int i=0; i<numx; ++i) { coord_type x = lower[0] + dx*i; coord_type x_dx = lower[0] + dx*(i+1); const int i_mod_2 = i % 2; const int i_mod_2_inv = (i_mod_2 ? 0 : 1); for(int j=0; j<numy; ++j) { coord_type y = lower[1] + dy*j; coord_type y_dy = lower[1] + dy*(j+1); for(int k=0; k<numz; ++k) { coord_type z = lower[2] + dz*k; coord_type z_dz = lower[2] + dz*(k+1); double v[8]; v[0] = f(x,y,z); v[1] = f(x_dx,y,z); v[2] = f(x_dx,y_dy,z); v[3] = f(x, y_dy, z); v[4] = f(x,y,z_dz); v[5] = f(x_dx,y,z_dz); v[6] = f(x_dx,y_dy,z_dz); v[7] = f(x, y_dy, z_dz); unsigned int cubeindex = 0; for(int m=0; m<8; ++m) if(v[m] <= isovalue) cubeindex |= 1<<m; // Generate vertices AVOIDING DUPLICATES. int edges = edge_table[cubeindex]; std::vector<size_t> indices(12, -1); if(edges & 0x040) { indices[6] = vertices.size() / 3; shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 0] = indices[6]; mc_add_vertex(x_dx, y_dy, z_dz, x, 0, v[6], v[7], isovalue, &vertices); } if(edges & 0x020) { indices[5] = vertices.size() / 3; shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 1] = indices[5]; mc_add_vertex(x_dx, y, z_dz, y_dy, 1, v[5], v[6], isovalue, &vertices); } if(edges & 0x400) { indices[10] = vertices.size() / 3; shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 2] = indices[10]; mc_add_vertex(x_dx, y+dx, z, z_dz, 2, v[2], v[6], isovalue, &vertices); } if(edges & 0x001) { if(j == 0 || k == 0) { indices[0] = vertices.size() / 3; mc_add_vertex(x, y, z, x_dx, 0, v[0], v[1], isovalue, &vertices); } else indices[0] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + (k-1)*3 + 0]; } if(edges & 0x002) { if(k == 0) { indices[1] = vertices.size() / 3; mc_add_vertex(x_dx, y, z, y_dy, 1, v[1], v[2], isovalue, &vertices); } else indices[1] = shared_indices[i_mod_2*yz3 + j*z3 + (k-1)*3 + 1]; } if(edges & 0x004) { if(k == 0) { indices[2] = vertices.size() / 3; mc_add_vertex(x_dx, y_dy, z, x, 0, v[2], v[3], isovalue, &vertices); } else indices[2] = shared_indices[i_mod_2*yz3 + j*z3 + (k-1)*3 + 0]; } if(edges & 0x008) { if(i == 0 || k == 0) { indices[3] = vertices.size() / 3; mc_add_vertex(x, y_dy, z, y, 1, v[3], v[0], isovalue, &vertices); } else indices[3] = shared_indices[i_mod_2_inv*yz3 + j*z3 + (k-1)*3 + 1]; } if(edges & 0x010) { if(j == 0) { indices[4] = vertices.size() / 3; mc_add_vertex(x, y, z_dz, x_dx, 0, v[4], v[5], isovalue, &vertices); } else indices[4] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + k*3 + 0]; } if(edges & 0x080) { if(i == 0) { indices[7] = vertices.size() / 3; mc_add_vertex(x, y_dy, z_dz, y, 1, v[7], v[4], isovalue, &vertices); } else indices[7] = shared_indices[i_mod_2_inv*yz3 + j*z3 + k*3 + 1]; } if(edges & 0x100) { if(i == 0 || j == 0) { indices[8] = vertices.size() / 3; mc_add_vertex(x, y, z, z_dz, 2, v[0], v[4], isovalue, &vertices); } else indices[8] = shared_indices[i_mod_2_inv*yz3 + (j-1)*z3 + k*3 + 2]; } if(edges & 0x200) { if(j == 0) { indices[9] = vertices.size() / 3; mc_add_vertex(x_dx, y, z, z_dz, 2, v[1], v[5], isovalue, &vertices); } else indices[9] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + k*3 + 2]; } if(edges & 0x800) { if(i == 0) { indices[11] = vertices.size() / 3; mc_add_vertex(x, y_dy, z, z_dz, 2, v[3], v[7], isovalue, &vertices); } else indices[11] = shared_indices[i_mod_2_inv*yz3 + j*z3 + k*3 + 2]; } int tri; int* triangle_table_ptr = triangle_table[cubeindex]; for(int m=0; tri = triangle_table_ptr[m], tri != -1; ++m) polygons.push_back(indices[tri]); } } } delete [] shared_indices; } template<typename coord_type, typename vector3, typename formula> void marching_cubes3(const vector3& lower, const vector3& upper, int numx, int numy, int numz, formula f, double isovalue, std::vector<double>& vertices, std::vector<size_t>& polygons) { using namespace private_; // typedef decltype(lower[0]) coord_type; // numx, numy and numz are the numbers of evaluations in each direction --numx; --numy; --numz; coord_type dx = (upper[0] - lower[0])/static_cast<coord_type>(numx); coord_type dy = (upper[1] - lower[1])/static_cast<coord_type>(numy); coord_type dz = (upper[2] - lower[2])/static_cast<coord_type>(numz); size_t* shared_indices = new size_t[2*numy*numz*3]; const int z3 = numz*3; const int yz3 = numy*z3; for(int i=0; i<numx; ++i) { coord_type x = lower[0] + dx*i - dx/2; coord_type x_dx = lower[0] + dx*(i+1) - dx/2; const int i_mod_2 = i % 2; const int i_mod_2_inv = (i_mod_2 ? 0 : 1); for(int j=0; j<numy; ++j) { coord_type y = lower[1] + dy*j - dy/2; coord_type y_dy = lower[1] + dy*(j+1) - dy/2; for(int k=0; k<numz; ++k) { coord_type z = lower[2] + dz*k - dz/2; coord_type z_dz = lower[2] + dz*(k+1) - dz/2; double v[8]; v[0] = f(x,y,z); v[1] = f(x_dx,y,z); v[2] = f(x_dx,y_dy,z); v[3] = f(x, y_dy, z); v[4] = f(x,y,z_dz); v[5] = f(x_dx,y,z_dz); v[6] = f(x_dx,y_dy,z_dz); v[7] = f(x, y_dy, z_dz); unsigned int cubeindex = 0; for(int m=0; m<8; ++m) if(v[m] <= isovalue) cubeindex |= 1<<m; // Generate vertices AVOIDING DUPLICATES. int edges = edge_table[cubeindex]; std::vector<size_t> indices(12, -1); if(edges & 0x040) { indices[6] = vertices.size() / 3; shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 0] = indices[6]; mc_add_vertex(x_dx, y_dy, z_dz, x, 0, v[6], v[7], isovalue, &vertices); } if(edges & 0x020) { indices[5] = vertices.size() / 3; shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 1] = indices[5]; mc_add_vertex(x_dx, y, z_dz, y_dy, 1, v[5], v[6], isovalue, &vertices); } if(edges & 0x400) { indices[10] = vertices.size() / 3; shared_indices[i_mod_2*yz3 + j*z3 + k*3 + 2] = indices[10]; mc_add_vertex(x_dx, y+dx, z, z_dz, 2, v[2], v[6], isovalue, &vertices); } if(edges & 0x001) { if(j == 0 || k == 0) { indices[0] = vertices.size() / 3; mc_add_vertex(x, y, z, x_dx, 0, v[0], v[1], isovalue, &vertices); } else indices[0] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + (k-1)*3 + 0]; } if(edges & 0x002) { if(k == 0) { indices[1] = vertices.size() / 3; mc_add_vertex(x_dx, y, z, y_dy, 1, v[1], v[2], isovalue, &vertices); } else indices[1] = shared_indices[i_mod_2*yz3 + j*z3 + (k-1)*3 + 1]; } if(edges & 0x004) { if(k == 0) { indices[2] = vertices.size() / 3; mc_add_vertex(x_dx, y_dy, z, x, 0, v[2], v[3], isovalue, &vertices); } else indices[2] = shared_indices[i_mod_2*yz3 + j*z3 + (k-1)*3 + 0]; } if(edges & 0x008) { if(i == 0 || k == 0) { indices[3] = vertices.size() / 3; mc_add_vertex(x, y_dy, z, y, 1, v[3], v[0], isovalue, &vertices); } else indices[3] = shared_indices[i_mod_2_inv*yz3 + j*z3 + (k-1)*3 + 1]; } if(edges & 0x010) { if(j == 0) { indices[4] = vertices.size() / 3; mc_add_vertex(x, y, z_dz, x_dx, 0, v[4], v[5], isovalue, &vertices); } else indices[4] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + k*3 + 0]; } if(edges & 0x080) { if(i == 0) { indices[7] = vertices.size() / 3; mc_add_vertex(x, y_dy, z_dz, y, 1, v[7], v[4], isovalue, &vertices); } else indices[7] = shared_indices[i_mod_2_inv*yz3 + j*z3 + k*3 + 1]; } if(edges & 0x100) { if(i == 0 || j == 0) { indices[8] = vertices.size() / 3; mc_add_vertex(x, y, z, z_dz, 2, v[0], v[4], isovalue, &vertices); } else indices[8] = shared_indices[i_mod_2_inv*yz3 + (j-1)*z3 + k*3 + 2]; } if(edges & 0x200) { if(j == 0) { indices[9] = vertices.size() / 3; mc_add_vertex(x_dx, y, z, z_dz, 2, v[1], v[5], isovalue, &vertices); } else indices[9] = shared_indices[i_mod_2*yz3 + (j-1)*z3 + k*3 + 2]; } if(edges & 0x800) { if(i == 0) { indices[11] = vertices.size() / 3; mc_add_vertex(x, y_dy, z, z_dz, 2, v[3], v[7], isovalue, &vertices); } else indices[11] = shared_indices[i_mod_2_inv*yz3 + j*z3 + k*3 + 2]; } int tri; int* triangle_table_ptr = triangle_table[cubeindex]; for(int m=0; tri = triangle_table_ptr[m], tri != -1; ++m) polygons.push_back(indices[tri]); } } } delete [] shared_indices; } } #endif // _MARCHING_CUBES_H
20,843
C
37.457565
92
0.372931
NVlabs/ACID/ACID/src/utils/libmcubes/pyarraymodule.h
#ifndef _EXTMODULE_H #define _EXTMODULE_H #include <Python.h> #include <stdexcept> // #define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION #define PY_ARRAY_UNIQUE_SYMBOL mcubes_PyArray_API #define NO_IMPORT_ARRAY #include "numpy/arrayobject.h" #include <complex> template<class T> struct numpy_typemap; #define define_numpy_type(ctype, dtype) \ template<> \ struct numpy_typemap<ctype> \ {static const int type = dtype;}; define_numpy_type(bool, NPY_BOOL); define_numpy_type(char, NPY_BYTE); define_numpy_type(short, NPY_SHORT); define_numpy_type(int, NPY_INT); define_numpy_type(long, NPY_LONG); define_numpy_type(long long, NPY_LONGLONG); define_numpy_type(unsigned char, NPY_UBYTE); define_numpy_type(unsigned short, NPY_USHORT); define_numpy_type(unsigned int, NPY_UINT); define_numpy_type(unsigned long, NPY_ULONG); define_numpy_type(unsigned long long, NPY_ULONGLONG); define_numpy_type(float, NPY_FLOAT); define_numpy_type(double, NPY_DOUBLE); define_numpy_type(long double, NPY_LONGDOUBLE); define_numpy_type(std::complex<float>, NPY_CFLOAT); define_numpy_type(std::complex<double>, NPY_CDOUBLE); define_numpy_type(std::complex<long double>, NPY_CLONGDOUBLE); template<typename T> T PyArray_SafeGet(const PyArrayObject* aobj, const npy_intp* indaux) { // HORROR. npy_intp* ind = const_cast<npy_intp*>(indaux); void* ptr = PyArray_GetPtr(const_cast<PyArrayObject*>(aobj), ind); switch(PyArray_TYPE(aobj)) { case NPY_BOOL: return static_cast<T>(*reinterpret_cast<bool*>(ptr)); case NPY_BYTE: return static_cast<T>(*reinterpret_cast<char*>(ptr)); case NPY_SHORT: return static_cast<T>(*reinterpret_cast<short*>(ptr)); case NPY_INT: return static_cast<T>(*reinterpret_cast<int*>(ptr)); case NPY_LONG: return static_cast<T>(*reinterpret_cast<long*>(ptr)); case NPY_LONGLONG: return static_cast<T>(*reinterpret_cast<long long*>(ptr)); case NPY_UBYTE: return static_cast<T>(*reinterpret_cast<unsigned char*>(ptr)); case NPY_USHORT: return static_cast<T>(*reinterpret_cast<unsigned short*>(ptr)); case NPY_UINT: return static_cast<T>(*reinterpret_cast<unsigned int*>(ptr)); case NPY_ULONG: return static_cast<T>(*reinterpret_cast<unsigned long*>(ptr)); case NPY_ULONGLONG: return static_cast<T>(*reinterpret_cast<unsigned long long*>(ptr)); case NPY_FLOAT: return static_cast<T>(*reinterpret_cast<float*>(ptr)); case NPY_DOUBLE: return static_cast<T>(*reinterpret_cast<double*>(ptr)); case NPY_LONGDOUBLE: return static_cast<T>(*reinterpret_cast<long double*>(ptr)); default: throw std::runtime_error("data type not supported"); } } template<typename T> T PyArray_SafeSet(PyArrayObject* aobj, const npy_intp* indaux, const T& value) { // HORROR. npy_intp* ind = const_cast<npy_intp*>(indaux); void* ptr = PyArray_GetPtr(aobj, ind); switch(PyArray_TYPE(aobj)) { case NPY_BOOL: *reinterpret_cast<bool*>(ptr) = static_cast<bool>(value); break; case NPY_BYTE: *reinterpret_cast<char*>(ptr) = static_cast<char>(value); break; case NPY_SHORT: *reinterpret_cast<short*>(ptr) = static_cast<short>(value); break; case NPY_INT: *reinterpret_cast<int*>(ptr) = static_cast<int>(value); break; case NPY_LONG: *reinterpret_cast<long*>(ptr) = static_cast<long>(value); break; case NPY_LONGLONG: *reinterpret_cast<long long*>(ptr) = static_cast<long long>(value); break; case NPY_UBYTE: *reinterpret_cast<unsigned char*>(ptr) = static_cast<unsigned char>(value); break; case NPY_USHORT: *reinterpret_cast<unsigned short*>(ptr) = static_cast<unsigned short>(value); break; case NPY_UINT: *reinterpret_cast<unsigned int*>(ptr) = static_cast<unsigned int>(value); break; case NPY_ULONG: *reinterpret_cast<unsigned long*>(ptr) = static_cast<unsigned long>(value); break; case NPY_ULONGLONG: *reinterpret_cast<unsigned long long*>(ptr) = static_cast<unsigned long long>(value); break; case NPY_FLOAT: *reinterpret_cast<float*>(ptr) = static_cast<float>(value); break; case NPY_DOUBLE: *reinterpret_cast<double*>(ptr) = static_cast<double>(value); break; case NPY_LONGDOUBLE: *reinterpret_cast<long double*>(ptr) = static_cast<long double>(value); break; default: throw std::runtime_error("data type not supported"); } } #endif
4,645
C
32.666666
93
0.655328
NVlabs/ACID/ACID/src/utils/libmcubes/__init__.py
from src.utils.libmcubes.mcubes import ( marching_cubes, marching_cubes_func ) from src.utils.libmcubes.exporter import ( export_mesh, export_obj, export_off ) __all__ = [ marching_cubes, marching_cubes_func, export_mesh, export_obj, export_off ]
265
Python
19.461537
42
0.70566
NVlabs/ACID/ACID/src/utils/libmcubes/exporter.py
import numpy as np def export_obj(vertices, triangles, filename): """ Exports a mesh in the (.obj) format. """ with open(filename, 'w') as fh: for v in vertices: fh.write("v {} {} {}\n".format(*v)) for f in triangles: fh.write("f {} {} {}\n".format(*(f + 1))) def export_off(vertices, triangles, filename): """ Exports a mesh in the (.off) format. """ with open(filename, 'w') as fh: fh.write('OFF\n') fh.write('{} {} 0\n'.format(len(vertices), len(triangles))) for v in vertices: fh.write("{} {} {}\n".format(*v)) for f in triangles: fh.write("3 {} {} {}\n".format(*f)) def export_mesh(vertices, triangles, filename, mesh_name="mcubes_mesh"): """ Exports a mesh in the COLLADA (.dae) format. Needs PyCollada (https://github.com/pycollada/pycollada). """ import collada mesh = collada.Collada() vert_src = collada.source.FloatSource("verts-array", vertices, ('X','Y','Z')) geom = collada.geometry.Geometry(mesh, "geometry0", mesh_name, [vert_src]) input_list = collada.source.InputList() input_list.addInput(0, 'VERTEX', "#verts-array") triset = geom.createTriangleSet(np.copy(triangles), input_list, "") geom.primitives.append(triset) mesh.geometries.append(geom) geomnode = collada.scene.GeometryNode(geom, []) node = collada.scene.Node(mesh_name, children=[geomnode]) myscene = collada.scene.Scene("mcubes_scene", [node]) mesh.scenes.append(myscene) mesh.scene = myscene mesh.write(filename)
1,697
Python
25.53125
81
0.570418
NVlabs/ACID/ACID/src/utils/libmcubes/marchingcubes.cpp
#include "marchingcubes.h" namespace mc { int edge_table[256] = { 0x000, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00, 0x190, 0x099, 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, 0x230, 0x339, 0x033, 0x13a, 0x636, 0x73f, 0x435, 0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, 0x3a0, 0x2a9, 0x1a3, 0x0aa, 0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, 0x460, 0x569, 0x663, 0x76a, 0x066, 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, 0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0x0ff, 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, 0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x055, 0x15c, 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, 0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0x0cc, 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, 0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0x0cc, 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, 0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x055, 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650, 0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 0x3f5, 0x0ff, 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, 0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x066, 0x76a, 0x663, 0x569, 0x460, 0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0x0aa, 0x1a3, 0x2a9, 0x3a0, 0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x033, 0x339, 0x230, 0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x099, 0x190, 0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x000 }; int triangle_table[256][16] = { {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1}, {3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1}, {3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1}, {3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1}, {9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1}, {2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1}, {8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1}, {4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1}, {3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1}, {1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1}, {4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1}, {4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1}, {5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1}, {2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1}, {9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1}, {0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1}, {2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1}, {10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1}, {5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1}, {5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1}, {9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1}, {1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1}, {10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1}, {8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1}, {2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1}, {7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1}, {2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1}, {11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1}, {5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1}, {11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1}, {11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1}, {9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1}, {2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1}, {6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1}, {3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1}, {6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1}, {10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1}, {6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1}, {8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1}, {7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1}, {3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1}, {5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1}, {0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1}, {9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1}, {8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1}, {5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1}, {0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1}, {6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1}, {10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1}, {10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1}, {8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1}, {1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1}, {0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1}, {10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1}, {3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1}, {6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1}, {9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1}, {8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1}, {3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1}, {6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1}, {0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1}, {10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1}, {10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1}, {2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1}, {7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1}, {7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1}, {2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1}, {1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1}, {11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1}, {8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1}, {0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1}, {7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1}, {10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1}, {2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1}, {6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1}, {7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1}, {2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1}, {1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1}, {10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1}, {10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1}, {0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1}, {7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1}, {6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1}, {8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1}, {9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1}, {6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1}, {4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1}, {10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1}, {8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1}, {0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1}, {1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1}, {8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1}, {10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1}, {4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1}, {10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1}, {5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1}, {11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1}, {9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1}, {6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1}, {7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1}, {3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1}, {7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1}, {3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1}, {6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1}, {9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1}, {1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1}, {4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1}, {7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1}, {6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1}, {3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1}, {0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1}, {6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1}, {0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1}, {11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1}, {6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1}, {5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1}, {9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1}, {1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1}, {1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1}, {10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1}, {0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1}, {5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1}, {10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1}, {11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1}, {9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1}, {7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1}, {2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1}, {8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1}, {9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1}, {9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1}, {1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1}, {9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1}, {9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1}, {5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1}, {0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1}, {10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1}, {2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1}, {0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1}, {0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1}, {9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1}, {5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1}, {3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1}, {5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1}, {8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1}, {0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1}, {9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1}, {0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1}, {1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1}, {3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1}, {4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1}, {9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1}, {11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1}, {11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1}, {2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1}, {9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1}, {3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1}, {1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1}, {4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1}, {4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1}, {0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1}, {3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1}, {3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1}, {0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1}, {9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1}, {1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1} }; namespace private_ { double mc_isovalue_interpolation(double isovalue, double f1, double f2, double x1, double x2) { if(f2==f1) return (x2+x1)/2; return (x2-x1)*(isovalue-f1)/(f2-f1) + x1; } void mc_add_vertex(double x1, double y1, double z1, double c2, int axis, double f1, double f2, double isovalue, std::vector<double>* vertices) { if(axis == 0) { double x = mc_isovalue_interpolation(isovalue, f1, f2, x1, c2); vertices->push_back(x); vertices->push_back(y1); vertices->push_back(z1); return; } if(axis == 1) { double y = mc_isovalue_interpolation(isovalue, f1, f2, y1, c2); vertices->push_back(x1); vertices->push_back(y); vertices->push_back(z1); return; } if(axis == 2) { double z = mc_isovalue_interpolation(isovalue, f1, f2, z1, c2); vertices->push_back(x1); vertices->push_back(y1); vertices->push_back(z); return; } } } }
18,889
C++
56.069486
116
0.339827
NVlabs/ACID/ACID/src/utils/libmcubes/pywrapper.cpp
#include "pywrapper.h" #include "marchingcubes.h" #include <stdexcept> struct PythonToCFunc { PyObject* func; PythonToCFunc(PyObject* func) {this->func = func;} double operator()(double x, double y, double z) { PyObject* res = PyObject_CallFunction(func, "(d,d,d)", x, y, z); // py::extract<double>(func(x,y,z)); if(res == NULL) return 0.0; double result = PyFloat_AsDouble(res); Py_DECREF(res); return result; } }; PyObject* marching_cubes_func(PyObject* lower, PyObject* upper, int numx, int numy, int numz, PyObject* f, double isovalue) { std::vector<double> vertices; std::vector<size_t> polygons; // Copy the lower and upper coordinates to a C array. double lower_[3]; double upper_[3]; for(int i=0; i<3; ++i) { PyObject* l = PySequence_GetItem(lower, i); if(l == NULL) throw std::runtime_error("error"); PyObject* u = PySequence_GetItem(upper, i); if(u == NULL) { Py_DECREF(l); throw std::runtime_error("error"); } lower_[i] = PyFloat_AsDouble(l); upper_[i] = PyFloat_AsDouble(u); Py_DECREF(l); Py_DECREF(u); if(lower_[i]==-1.0 || upper_[i]==-1.0) { if(PyErr_Occurred()) throw std::runtime_error("error"); } } // Marching cubes. mc::marching_cubes<double>(lower_, upper_, numx, numy, numz, PythonToCFunc(f), isovalue, vertices, polygons); // Copy the result to two Python ndarrays. npy_intp size_vertices = vertices.size(); npy_intp size_polygons = polygons.size(); PyArrayObject* verticesarr = reinterpret_cast<PyArrayObject*>(PyArray_SimpleNew(1, &size_vertices, PyArray_DOUBLE)); PyArrayObject* polygonsarr = reinterpret_cast<PyArrayObject*>(PyArray_SimpleNew(1, &size_polygons, PyArray_ULONG)); std::vector<double>::const_iterator it = vertices.begin(); for(int i=0; it!=vertices.end(); ++i, ++it) *reinterpret_cast<double*>(PyArray_GETPTR1(verticesarr, i)) = *it; std::vector<size_t>::const_iterator it2 = polygons.begin(); for(int i=0; it2!=polygons.end(); ++i, ++it2) *reinterpret_cast<unsigned long*>(PyArray_GETPTR1(polygonsarr, i)) = *it2; PyObject* res = Py_BuildValue("(O,O)", verticesarr, polygonsarr); Py_XDECREF(verticesarr); Py_XDECREF(polygonsarr); return res; } struct PyArrayToCFunc { PyArrayObject* arr; PyArrayToCFunc(PyArrayObject* arr) {this->arr = arr;} double operator()(int x, int y, int z) { npy_intp c[3] = {x,y,z}; return PyArray_SafeGet<double>(arr, c); } }; PyObject* marching_cubes(PyArrayObject* arr, double isovalue) { if(PyArray_NDIM(arr) != 3) throw std::runtime_error("Only three-dimensional arrays are supported."); // Prepare data. npy_intp* shape = PyArray_DIMS(arr); double lower[3] = {0,0,0}; double upper[3] = {shape[0]-1, shape[1]-1, shape[2]-1}; long numx = upper[0] - lower[0] + 1; long numy = upper[1] - lower[1] + 1; long numz = upper[2] - lower[2] + 1; std::vector<double> vertices; std::vector<size_t> polygons; // Marching cubes. mc::marching_cubes<double>(lower, upper, numx, numy, numz, PyArrayToCFunc(arr), isovalue, vertices, polygons); // Copy the result to two Python ndarrays. npy_intp size_vertices = vertices.size(); npy_intp size_polygons = polygons.size(); PyArrayObject* verticesarr = reinterpret_cast<PyArrayObject*>(PyArray_SimpleNew(1, &size_vertices, PyArray_DOUBLE)); PyArrayObject* polygonsarr = reinterpret_cast<PyArrayObject*>(PyArray_SimpleNew(1, &size_polygons, PyArray_ULONG)); std::vector<double>::const_iterator it = vertices.begin(); for(int i=0; it!=vertices.end(); ++i, ++it) *reinterpret_cast<double*>(PyArray_GETPTR1(verticesarr, i)) = *it; std::vector<size_t>::const_iterator it2 = polygons.begin(); for(int i=0; it2!=polygons.end(); ++i, ++it2) *reinterpret_cast<unsigned long*>(PyArray_GETPTR1(polygonsarr, i)) = *it2; PyObject* res = Py_BuildValue("(O,O)", verticesarr, polygonsarr); Py_XDECREF(verticesarr); Py_XDECREF(polygonsarr); return res; } PyObject* marching_cubes2(PyArrayObject* arr, double isovalue) { if(PyArray_NDIM(arr) != 3) throw std::runtime_error("Only three-dimensional arrays are supported."); // Prepare data. npy_intp* shape = PyArray_DIMS(arr); double lower[3] = {0,0,0}; double upper[3] = {shape[0]-1, shape[1]-1, shape[2]-1}; long numx = upper[0] - lower[0] + 1; long numy = upper[1] - lower[1] + 1; long numz = upper[2] - lower[2] + 1; std::vector<double> vertices; std::vector<size_t> polygons; // Marching cubes. mc::marching_cubes2<double>(lower, upper, numx, numy, numz, PyArrayToCFunc(arr), isovalue, vertices, polygons); // Copy the result to two Python ndarrays. npy_intp size_vertices = vertices.size(); npy_intp size_polygons = polygons.size(); PyArrayObject* verticesarr = reinterpret_cast<PyArrayObject*>(PyArray_SimpleNew(1, &size_vertices, PyArray_DOUBLE)); PyArrayObject* polygonsarr = reinterpret_cast<PyArrayObject*>(PyArray_SimpleNew(1, &size_polygons, PyArray_ULONG)); std::vector<double>::const_iterator it = vertices.begin(); for(int i=0; it!=vertices.end(); ++i, ++it) *reinterpret_cast<double*>(PyArray_GETPTR1(verticesarr, i)) = *it; std::vector<size_t>::const_iterator it2 = polygons.begin(); for(int i=0; it2!=polygons.end(); ++i, ++it2) *reinterpret_cast<unsigned long*>(PyArray_GETPTR1(polygonsarr, i)) = *it2; PyObject* res = Py_BuildValue("(O,O)", verticesarr, polygonsarr); Py_XDECREF(verticesarr); Py_XDECREF(polygonsarr); return res; } PyObject* marching_cubes3(PyArrayObject* arr, double isovalue) { if(PyArray_NDIM(arr) != 3) throw std::runtime_error("Only three-dimensional arrays are supported."); // Prepare data. npy_intp* shape = PyArray_DIMS(arr); double lower[3] = {0,0,0}; double upper[3] = {shape[0]-1, shape[1]-1, shape[2]-1}; long numx = upper[0] - lower[0] + 1; long numy = upper[1] - lower[1] + 1; long numz = upper[2] - lower[2] + 1; std::vector<double> vertices; std::vector<size_t> polygons; // Marching cubes. mc::marching_cubes3<double>(lower, upper, numx, numy, numz, PyArrayToCFunc(arr), isovalue, vertices, polygons); // Copy the result to two Python ndarrays. npy_intp size_vertices = vertices.size(); npy_intp size_polygons = polygons.size(); PyArrayObject* verticesarr = reinterpret_cast<PyArrayObject*>(PyArray_SimpleNew(1, &size_vertices, PyArray_DOUBLE)); PyArrayObject* polygonsarr = reinterpret_cast<PyArrayObject*>(PyArray_SimpleNew(1, &size_polygons, PyArray_ULONG)); std::vector<double>::const_iterator it = vertices.begin(); for(int i=0; it!=vertices.end(); ++i, ++it) *reinterpret_cast<double*>(PyArray_GETPTR1(verticesarr, i)) = *it; std::vector<size_t>::const_iterator it2 = polygons.begin(); for(int i=0; it2!=polygons.end(); ++i, ++it2) *reinterpret_cast<unsigned long*>(PyArray_GETPTR1(polygonsarr, i)) = *it2; PyObject* res = Py_BuildValue("(O,O)", verticesarr, polygonsarr); Py_XDECREF(verticesarr); Py_XDECREF(polygonsarr); return res; }
7,565
C++
35.907317
120
0.624455
NVlabs/ACID/ACID/src/utils/libmcubes/pywrapper.h
#ifndef _PYWRAPPER_H #define _PYWRAPPER_H #include <Python.h> #include "pyarraymodule.h" #include <vector> PyObject* marching_cubes(PyArrayObject* arr, double isovalue); PyObject* marching_cubes2(PyArrayObject* arr, double isovalue); PyObject* marching_cubes3(PyArrayObject* arr, double isovalue); PyObject* marching_cubes_func(PyObject* lower, PyObject* upper, int numx, int numy, int numz, PyObject* f, double isovalue); #endif // _PYWRAPPER_H
455
C
25.823528
64
0.758242
NVlabs/ACID/ACID/src/data/__init__.py
from src.data.core import ( PlushEnvGeom, collate_remove_none, worker_init_fn, get_plush_loader ) from src.data.transforms import ( PointcloudNoise, SubsamplePointcloud, SubsamplePoints, ) __all__ = [ # Core PlushEnvGeom, get_plush_loader, collate_remove_none, worker_init_fn, PointcloudNoise, SubsamplePointcloud, SubsamplePoints, ]
379
Python
18.999999
71
0.693931
NVlabs/ACID/ACID/src/data/core.py
import os import yaml import pickle import torch import logging import numpy as np from torch.utils import data from torch.utils.data.dataloader import default_collate from src.utils import plushsim_util, common_util scene_range = plushsim_util.SCENE_RANGE.copy() to_range = np.array([[-1.1,-1.1,-1.1],[1.1,1.1,1.1]]) * 0.5 logger = logging.getLogger(__name__) def collate_remove_none(batch): ''' Collater that puts each data field into a tensor with outer dimension batch size. Args: batch: batch ''' batch = list(filter(lambda x: x is not None, batch)) return data.dataloader.default_collate(batch) def worker_init_fn(worker_id): ''' Worker init function to ensure true randomness. ''' def set_num_threads(nt): try: import mkl; mkl.set_num_threads(nt) except: pass torch.set_num_threads(1) os.environ['IPC_ENABLE']='1' for o in ['OPENBLAS_NUM_THREADS','NUMEXPR_NUM_THREADS','OMP_NUM_THREADS','MKL_NUM_THREADS']: os.environ[o] = str(nt) random_data = os.urandom(4) base_seed = int.from_bytes(random_data, byteorder="big") np.random.seed(base_seed + worker_id) def collate_pair_fn(batch): num_points = batch[0]['sampled_pts'].shape[1] collated = {} for key in batch[0]: if key == 'geo_dists': collated[key] = torch.as_tensor(np.concatenate([d[key] for d in batch])) elif key == 'num_pairs': indices = [] for i,d in enumerate(batch): indices.append(np.arange(d['num_pairs']) + i * num_points) collated["pair_indices"] = torch.as_tensor(np.concatenate(indices)) else: collated[key] = default_collate([d[key] for d in batch]) return collated class PlushEnvBoth(data.Dataset): def __init__(self, flow_root, pair_root, num_points, split="train", transform={}, pos_ratio=2): # Attributes self.flow_root = flow_root self.num_points = num_points self.split = split if split != "train": self.num_points = -1 self.pair_root = pair_root self.transform = transform self.pos_ratio = pos_ratio if split == 'train': with open(os.path.join(flow_root, 'train.pkl'), 'rb') as fp: self.models = pickle.load(fp) else: with open(os.path.join(flow_root, 'test.pkl'), 'rb') as fp: self.models = pickle.load(fp) def __len__(self): ''' Returns the length of the dataset. ''' return len(self.models) def __getitem__(self, idx): ''' Returns an item of the dataset. Args: idx (int): ID of data point ''' data = {} split_id, model_id, reset_id, int_id = self.models[idx] # load frame and get partial observation points_dict = np.load( plushsim_util.get_flow_data_file( self.flow_root,split_id, model_id, reset_id, int_id)) obj_pcloud, env_pcloud = self._prepare_partial_obs(points_dict) # load pair frame info pair_info = np.load( plushsim_util.get_flow_pair_data_file( self.pair_root,split_id, model_id, reset_id, int_id)) pair_reset_id, pair_int_id = self._get_pair_id(pair_info) # load pair frame and get partial observation points_dict2 = np.load( plushsim_util.get_flow_data_file( self.flow_root,split_id, model_id, pair_reset_id, pair_int_id)) obj_pcloud2, env_pcloud2 = self._prepare_partial_obs(points_dict2) if self.split == 'train': # if training, load random points # implicit network sampled points pts, occs, sampled_pts, sampled_occ, sampled_flow, sampled_inds = self._prepare_points( points_dict) # get which occupied points are sampled (index is in the occupied subset) occed = occs != 0 num_occed = occed.sum() total_to_occs = np.zeros(pts.shape[0], dtype=np.uint32) total_to_occs[occed] = np.arange(num_occed) sampled_occs_ids = total_to_occs[sampled_inds[sampled_occ == 1.]] # basically sampled_positive ids is used to index the pairs in pair info npz # reorganize sampled_pts sampled_pts = np.concatenate([sampled_pts[sampled_occ == 1.], sampled_pts[sampled_occ == 0.]]) sampled_occ = np.concatenate([sampled_occ[sampled_occ == 1.], sampled_occ[sampled_occ == 0.]]) sampled_flow = np.concatenate([sampled_flow[sampled_occ == 1.], sampled_flow[sampled_occ == 0.]]) geo_dists, tgtids = self._prepare_pair_data(pair_info, sampled_occs_ids) _,_, sampled_pts2, sampled_occ2, sampled_flow2, _ = self._prepare_points(points_dict2, chosen=tgtids) else: # if not training, load matched points sampled_pts, sampled_pts2, \ sampled_occ, sampled_occ2, \ sampled_flow, sampled_flow2, geo_dists = self._prepare_matched_unique(points_dict, points_dict2) data = { "obj_obs":np.stack([obj_pcloud,obj_pcloud2]), "env_obs":np.stack([env_pcloud,env_pcloud2]), "sampled_pts":np.stack([sampled_pts,sampled_pts2]), "sampled_occ":np.stack([sampled_occ,sampled_occ2]), "sampled_flow":np.stack([sampled_flow,sampled_flow2]), "geo_dists":geo_dists.astype(np.float32), "num_pairs":len(geo_dists), "idx":idx, "start_frame":int(points_dict['start_frame']), "end_frame":int(points_dict['end_frame']), } return data def _get_pts_related_info(self, points_dict): pts = points_dict['pts'].astype(np.float32) occs = np.unpackbits(points_dict['occ']) inds = points_dict['ind'] flow = np.zeros((len(pts), 3), dtype=np.float32) flow[occs != 0] = points_dict['flow'].astype(np.float32) * 10. return pts, occs, inds, flow def _prepare_matched_unique(self, points_dict, points_dict2): pts1,occs1,inds1,flow1 = self._get_pts_related_info(points_dict) pts2,occs2,inds2,flow2 = self._get_pts_related_info(points_dict2) cls1, id1 = np.unique(inds1, return_index=True) cls2, id2 = np.unique(inds2, return_index=True) int_cls, int_id1, int_id2 = np.intersect1d(cls1, cls2, assume_unique=True, return_indices=True) geo_dists = np.zeros_like(int_cls) unique_pts_1 = pts1[occs1==1][id1[int_id1]] unique_flow_1 = flow1[occs1==1][id1[int_id1]] unique_occ_1 = np.ones(geo_dists.shape[0], dtype=occs1.dtype) sub_inds = common_util.subsample_points(unique_pts_1, resolution=0.03, return_index=True) unique_pts_1 = unique_pts_1[sub_inds] unique_flow_1 = unique_flow_1[sub_inds] unique_occ_1 = unique_occ_1[sub_inds] sample_others1 = np.random.randint(pts1.shape[0], size=pts1.shape[0] - unique_pts_1.shape[0]) pts_others1 = pts1[sample_others1] occ_others1 = occs1[sample_others1] flow_others1 = flow1[sample_others1] sampled_pts1 = np.concatenate([unique_pts_1, pts_others1]) sampled_occ1 = np.concatenate([unique_occ_1, occ_others1]) sampled_flow1 = np.concatenate([unique_flow_1, flow_others1]) unique_pts_2 = pts2[occs2==1][id2[int_id2]] unique_flow_2 = flow2[occs2==1][id2[int_id2]] unique_occ_2 = np.ones(geo_dists.shape[0], dtype=occs2.dtype) unique_pts_2 = unique_pts_2[sub_inds] unique_flow_2 = unique_flow_2[sub_inds] unique_occ_2 = unique_occ_2[sub_inds] sample_others2 = np.random.randint(pts2.shape[0], size=pts2.shape[0] - unique_pts_2.shape[0]) pts_others2 = pts2[sample_others2] occ_others2 = occs2[sample_others2] flow_others2 = flow2[sample_others2] sampled_pts2 = np.concatenate([unique_pts_2, pts_others2]) sampled_occ2 = np.concatenate([unique_occ_2, occ_others2]) sampled_flow2 = np.concatenate([unique_flow_2, flow_others2]) geo_dists = geo_dists[sub_inds] return sampled_pts1, sampled_pts2,\ sampled_occ1, sampled_occ2, \ sampled_flow1, sampled_flow2, geo_dists def _prepare_partial_obs(self, info_dict): # obj partial observation obj_pcloud = info_dict['obj_pcloud_obs'].astype(np.float32) grasp_loc = common_util.transform_points(info_dict['grasp_loc'], scene_range, to_range) target_loc = common_util.transform_points(info_dict['target_loc'], scene_range, to_range) tiled_grasp_loc = np.tile(grasp_loc, (len(obj_pcloud), 1)).astype(np.float32) tiled_target_loc = np.tile(target_loc, (len(obj_pcloud), 1)).astype(np.float32) obj_pcloud= np.concatenate([obj_pcloud, tiled_target_loc, obj_pcloud[:,:3] - tiled_grasp_loc], axis=-1) if 'obj_pcloud' in self.transform: obj_pcloud = self.transform['obj_pcloud'](obj_pcloud) # scene partial observation env_pcloud = info_dict['env_pcloud'].astype(np.float32) env_pcloud += 1e-4 * np.random.randn(*env_pcloud.shape) if 'env_pcloud' in self.transform: env_pcloud = self.transform['env_pcloud'](env_pcloud) return obj_pcloud, env_pcloud # chosen is the set of positive points that's preselected def _prepare_points(self, points_dict, chosen=None): pts,occs,inds,flow = self._get_pts_related_info(points_dict) if chosen is None: if self.num_points == -1: sampled_pts = pts sampled_occ = occs sampled_flow = flow sampled_inds = np.arange(len(pts)) else: sampled_inds = np.random.randint(pts.shape[0], size=self.num_points) sampled_pts = pts[sampled_inds] sampled_occ = occs[sampled_inds] sampled_flow = flow[sampled_inds] else: pts_chosen = pts[occs!= 0][chosen] occ_chosen = np.ones(chosen.shape[0], dtype=occs.dtype) flow_chosen = flow[occs!= 0][chosen] if self.num_points == -1: sample_others = np.random.randint(pts.shape[0], size=pts.shape[0] - chosen.shape[0]) else: sample_others = np.random.randint(pts.shape[0], size=self.num_points - chosen.shape[0]) pts_others = pts[sample_others] occ_others = occs[sample_others] flow_others = flow[sample_others] sampled_inds = np.concatenate([chosen, sample_others]) sampled_pts = np.concatenate([pts_chosen, pts_others]) sampled_occ = np.concatenate([occ_chosen, occ_others]) sampled_flow= np.concatenate([flow_chosen, flow_others]) return pts, occs, sampled_pts, sampled_occ.astype(np.float32), sampled_flow, sampled_inds def _get_pair_id(self, pair_info): pair_filename = os.path.splitext(str(pair_info["target_file"]))[0] pair_reset_id, pair_frame_id = (int(f) for f in pair_filename.split('_')) return pair_reset_id, pair_frame_id def _prepare_pair_data(self, pair_info, sampled_occs_ids): # load pair info dists_sampled = pair_info['dists'][sampled_occs_ids] tgtid_sampled = pair_info['inds'][sampled_occs_ids] # draw samples, # for half of the points, we draw from their three closests, # for the other half, we draw from the further points H,W = dists_sampled.shape draw_pair_ids = np.random.randint(3, size=H) draw_pair_ids[H // self.pos_ratio:] = np.random.randint(3, high=W, size=H - H // self.pos_ratio) tgtids = tgtid_sampled[np.arange(H), draw_pair_ids] geo_dists = dists_sampled[np.arange(H), draw_pair_ids] # contrastive_mask = geo_dists > self.contrastive_threshold return geo_dists, tgtids def get_model_dict(self, idx): return self.models[idx] class PlushEnvGeom(data.Dataset): def __init__(self, geom_root, pair_root, num_points, split="train", transform={}, pos_ratio=2): # Attributes self.geom_root = geom_root self.num_points = num_points self.split = split if split != "train": self.num_points = -1 self.pair_root = pair_root self.transform = transform self.pos_ratio = pos_ratio if split == 'train': with open(os.path.join(geom_root, 'train.pkl'), 'rb') as fp: self.models = pickle.load(fp) else: with open(os.path.join(geom_root, 'test.pkl'), 'rb') as fp: self.models = pickle.load(fp) def __len__(self): ''' Returns the length of the dataset. ''' return len(self.models) def __getitem__(self, idx): ''' Returns an item of the dataset. Args: idx (int): ID of data point ''' data = {} split_id, model_id, reset_id, frame_id = self.models[idx] # load frame and get partial observation points_dict = np.load( plushsim_util.get_geom_data_file( self.geom_root,split_id, model_id, reset_id, frame_id)) obj_pcloud, env_pcloud = self._prepare_partial_obs(points_dict) # load pair frame info pair_info = np.load( plushsim_util.get_pair_data_file( self.pair_root,split_id, model_id, reset_id, frame_id)) pair_reset_id, pair_frame_id = self._get_pair_id(pair_info) # load pair frame and get partial observation points_dict2 = np.load( plushsim_util.get_geom_data_file( self.geom_root,split_id, model_id, pair_reset_id, pair_frame_id)) obj_pcloud2, env_pcloud2 = self._prepare_partial_obs(points_dict2) if self.split == 'train': # if training, load random points # implicit network sampled points pts, occs, sampled_pts, sampled_occ, sampled_inds = self._prepare_points(points_dict) # get which occupied points are sampled (index is in the occupied subset) occed = occs != 0 num_occed = occed.sum() total_to_occs = np.zeros(pts.shape[0], dtype=np.uint32) total_to_occs[occed] = np.arange(num_occed) sampled_occs_ids = total_to_occs[sampled_inds[sampled_occ == 1.]] # basically sampled_positive ids is used to index the pairs in pair info npz # reorganize sampled_pts sampled_pts = np.concatenate([sampled_pts[sampled_occ == 1.], sampled_pts[sampled_occ == 0.]]) sampled_occ = np.concatenate([sampled_occ[sampled_occ == 1.], sampled_occ[sampled_occ == 0.]]) geo_dists, tgtids = self._prepare_pair_data(pair_info, sampled_occs_ids) _,_, sampled_pts2, sampled_occ2, _ = self._prepare_points(points_dict2, chosen=tgtids) else: # if not training, load matched points sampled_pts, sampled_pts2, sampled_occ, sampled_occ2, geo_dists = self._prepare_matched_unique(points_dict, points_dict2) data = { "obj_obs":np.stack([obj_pcloud,obj_pcloud2]), "env_obs":np.stack([env_pcloud,env_pcloud2]), "sampled_pts":np.stack([sampled_pts,sampled_pts2]), "sampled_occ":np.stack([sampled_occ,sampled_occ2]), "geo_dists":geo_dists.astype(np.float32), "num_pairs":len(geo_dists), "idx":idx, } return data def _prepare_matched_unique(self, points_dict, points_dict2): pts1 = points_dict['pts'].astype(np.float32) occs1 = np.unpackbits(points_dict['occ']) inds1 = points_dict['ind'] pts2 = points_dict2['pts'].astype(np.float32) occs2 = np.unpackbits(points_dict2['occ']) inds2 = points_dict2['ind'] cls1, id1 = np.unique(inds1, return_index=True) cls2, id2 = np.unique(inds2, return_index=True) int_cls, int_id1, int_id2 = np.intersect1d(cls1, cls2, assume_unique=True, return_indices=True) geo_dists = np.zeros_like(int_cls) unique_pts_1 = pts1[occs1==1][id1[int_id1]] unique_pts_2 = pts2[occs2==1][id2[int_id2]] unique_occ_1 = np.ones(geo_dists.shape[0], dtype=occs1.dtype) unique_occ_2 = np.ones(geo_dists.shape[0], dtype=occs2.dtype) sample_others1 = np.random.randint(pts1.shape[0], size=pts1.shape[0] - unique_pts_1.shape[0]) sample_others2 = np.random.randint(pts2.shape[0], size=pts2.shape[0] - unique_pts_2.shape[0]) pts_others1 = pts1[sample_others1] occ_others1 = occs1[sample_others1] pts_others2 = pts2[sample_others2] occ_others2 = occs2[sample_others2] sampled_pts1 = np.concatenate([unique_pts_1, pts_others1]) sampled_occ1 = np.concatenate([unique_occ_1, occ_others1]) sampled_pts2 = np.concatenate([unique_pts_2, pts_others2]) sampled_occ2 = np.concatenate([unique_occ_2, occ_others2]) return sampled_pts1, sampled_pts2, sampled_occ1, sampled_occ2, geo_dists def _prepare_partial_obs(self, info_dict): # obj partial observation obj_pcloud = info_dict['obj_pcloud'].astype(np.float32) obj_pcloud += 1e-4 * np.random.randn(*obj_pcloud.shape) if 'obj_pcloud' in self.transform: obj_pcloud = self.transform['obj_pcloud'](obj_pcloud) # scene partial observation env_pcloud = info_dict['env_pcloud'].astype(np.float32) env_pcloud += 1e-4 * np.random.randn(*env_pcloud.shape) if 'env_pcloud' in self.transform: env_pcloud = self.transform['env_pcloud'](env_pcloud) return obj_pcloud, env_pcloud # chosen is the set of positive points that's preselected def _prepare_points(self, points_dict, chosen=None): pts = points_dict['pts'].astype(np.float32) occs = points_dict['occ'] occs = np.unpackbits(occs)#[:points.shape[0]] if chosen is None: if self.num_points == -1: sampled_pts = pts sampled_occ = occs sampled_inds = np.arange(len(pts)) else: sampled_inds = np.random.randint(pts.shape[0], size=self.num_points) sampled_pts = pts[sampled_inds] sampled_occ = occs[sampled_inds] else: pts_chosen = pts[occs!= 0][chosen] occ_chosen = np.ones(chosen.shape[0], dtype=occs.dtype) if self.num_points == -1: sample_others = np.random.randint(pts.shape[0], size=pts.shape[0] - chosen.shape[0]) else: sample_others = np.random.randint(pts.shape[0], size=self.num_points - chosen.shape[0]) pts_others = pts[sample_others] occ_others = occs[sample_others] sampled_inds = np.concatenate([chosen, sample_others]) sampled_pts = np.concatenate([pts_chosen, pts_others]) sampled_occ = np.concatenate([occ_chosen, occ_others]) return pts, occs, sampled_pts, sampled_occ.astype(np.float32), sampled_inds def _get_pair_id(self, pair_info): pair_filename = os.path.splitext(str(pair_info["target_file"]))[0] pair_reset_id, pair_frame_id = (int(f) for f in pair_filename.split('_')) return pair_reset_id, pair_frame_id def _prepare_pair_data(self, pair_info, sampled_occs_ids): # load pair info dists_sampled = pair_info['dists'][sampled_occs_ids] tgtid_sampled = pair_info['inds'][sampled_occs_ids] # draw samples, # for half of the points, we draw from their three closests, # for the other half, we draw from the further points H,W = dists_sampled.shape draw_pair_ids = np.random.randint(3, size=H) draw_pair_ids[H // self.pos_ratio:] = np.random.randint(3, high=W, size=H - H // self.pos_ratio) tgtids = tgtid_sampled[np.arange(H), draw_pair_ids] geo_dists = dists_sampled[np.arange(H), draw_pair_ids] # contrastive_mask = geo_dists > self.contrastive_threshold return geo_dists, tgtids def get_model_dict(self, idx): return self.models[idx] def build_transform_geom(cfg): from . import transforms as tsf from torchvision import transforms transform = {} transform['obj_pcloud'] = transforms.Compose([ tsf.SubsamplePointcloud(cfg['data']['pointcloud_n_obj']), tsf.PointcloudNoise(cfg['data']['pointcloud_noise']) ]) transform['env_pcloud'] = transforms.Compose([ tsf.SubsamplePointcloud(cfg['data']['pointcloud_n_env']), tsf.PointcloudNoise(cfg['data']['pointcloud_noise']) ]) return transform def get_geom_dataset(cfg, split='train', transform='build'): geom_root = cfg['data']['geom_path'] pair_root = cfg['data']['pair_path'] num_points = cfg['data']['points_subsample'] pos_ratio = cfg['data'].get('pos_ratio', 2) if transform == 'build': transform = build_transform_geom(cfg) return PlushEnvGeom(geom_root, pair_root, num_points, split=split, transform=transform, pos_ratio=pos_ratio) def get_combined_dataset(cfg, split='train', transform='build'): flow_root = cfg['data']['flow_path'] pair_root = cfg['data']['pair_path'] num_points = cfg['data']['points_subsample'] pos_ratio = cfg['data'].get('pos_ratio', 2) if transform == 'build': transform = build_transform_geom(cfg) return PlushEnvBoth(flow_root, pair_root, num_points, split=split, transform=transform, pos_ratio=pos_ratio) def get_plush_loader(cfg, mode, split='train', transform='build', test_shuffle=False, num_workers=None): if mode == 'geom': dataset = get_geom_dataset(cfg, split, transform) elif mode == 'combined': dataset = get_combined_dataset(cfg, split, transform) if split == 'train': loader = torch.utils.data.DataLoader( dataset, batch_size=cfg['training']['batch_size'], num_workers=cfg['training']['n_workers'], shuffle=True, collate_fn=collate_pair_fn, worker_init_fn=worker_init_fn) else: loader = torch.utils.data.DataLoader( dataset, batch_size=1, num_workers=cfg['training']['n_workers_val'] if num_workers is None else num_workers, shuffle=test_shuffle, collate_fn=collate_pair_fn) return loader def get_plan_loader(cfg, transform='build', category="teddy",num_workers=None): transform = build_transform_geom(cfg) dataset = PlushEnvPlan(cfg['data']['plan_path'], category=category, transform=transform) loader = torch.utils.data.DataLoader( dataset, batch_size=1, num_workers=cfg['training']['n_workers_val'] if num_workers is None else num_workers, shuffle=False,) return loader class PlushEnvPlan(data.Dataset): def __init__(self, plan_root, category="teddy",transform={}): # Attributes self.plan_root = plan_root self.transform = transform self.category = category import glob self.scenarios = glob.glob(f'{plan_root}/**/*.npz', recursive=True) self.scenarios = [x for x in self.scenarios if category in x][:-1] self.scenarios.sort() def __len__(self): ''' Returns the length of the dataset. ''' return len(self.scenarios) def __getitem__(self, idx): ''' Returns an item of the dataset. Args: idx (int): ID of data point ''' data = {} # load frame and get partial observation infos = np.load(self.scenarios[idx]) obj_pcloud_start, env_pcloud_start = self._prepare_partial_obs(infos, "start") obj_pcloud_end, env_pcloud_end = self._prepare_partial_obs(infos, "end") action = infos['actions'].astype(np.float32) pts_start, occ_start, ind_start = self._get_pts_related_info(infos, 'start') pts_end, occ_end, ind_end = self._get_pts_related_info(infos, 'end') data = { "obj_obs_start":obj_pcloud_start, "env_obs_start":env_pcloud_start, "obj_obs_end":obj_pcloud_end, "env_obs_end":env_pcloud_end, 'gt_pts_start': infos['sim_pts_start'].astype(np.float32), 'gt_pts_end': infos['sim_pts_end'].astype(np.float32), 'sampled_pts_start': pts_start, 'sampled_occ_start': occ_start, 'sampled_ind_start': ind_start, 'sampled_pts_end': pts_end, 'sampled_occ_end': occ_end, 'sampled_ind_end': ind_end, "actions": action, "sequence_ids":infos['sequence_ids'], "fname":self.scenarios[idx], "idx":idx, } return data def _prepare_partial_obs(self, info_dict, key): # obj partial observation obj_pcloud = info_dict[f'obj_pcloud_{key}'].astype(np.float32) if 'obj_pcloud' in self.transform: obj_pcloud = self.transform['obj_pcloud'](obj_pcloud) # scene partial observation env_pcloud = info_dict[f'env_pcloud_{key}'].astype(np.float32) env_pcloud += 1e-4 * np.random.randn(*env_pcloud.shape) if 'env_pcloud' in self.transform: env_pcloud = self.transform['env_pcloud'](env_pcloud) return obj_pcloud, env_pcloud def _get_pts_related_info(self, points_dict, key): pts = points_dict[f'pts_{key}'].astype(np.float32) occs = np.unpackbits(points_dict[f'occ_{key}']).astype(np.float32) inds = points_dict[f'ind_{key}'].astype(np.int32) return pts, occs, inds
26,177
Python
42.557404
133
0.593154
NVlabs/ACID/ACID/src/data/transforms.py
import numpy as np # Transforms class PointcloudNoise(object): ''' Point cloud noise transformation class. It adds noise to point cloud data. Args: stddev (int): standard deviation ''' def __init__(self, stddev): self.stddev = stddev def __call__(self, data): ''' Calls the transformation. Args: data (dictionary): data dictionary ''' data_out = data.copy() points = data[None] noise = self.stddev * np.random.randn(*points.shape) noise = noise.astype(np.float32) data_out[None] = points + noise return data_out class SubsamplePointcloud(object): ''' Point cloud subsampling transformation class. It subsamples the point cloud data. Args: N (int): number of points to be subsampled ''' def __init__(self, N): self.N = N def __call__(self, data): ''' Calls the transformation. Args: data (dict): data dictionary ''' indices = np.random.randint(data.shape[0], size=self.N) return data[indices] class SubsamplePoints(object): ''' Points subsampling transformation class. It subsamples the points data. Args: N (int): number of points to be subsampled ''' def __init__(self, N): self.N = N def __call__(self, data): ''' Calls the transformation. Args: data (dictionary): data dictionary ''' points = data[None] occ = data['occ'] ind = data['ind'] flow1 = data['flow1'] flow2 = data['flow2'] data_out = data.copy() if isinstance(self.N, int): idx = np.random.randint(points.shape[0], size=self.N) data_out.update({ None: points[idx, :], 'occ': occ[idx], 'ind': ind[idx], 'flow1': flow1[idx], 'flow2': flow2[idx], }) else: Nt_out, Nt_in = self.N occ_binary = (occ >= 0.5) points0 = points[~occ_binary] points1 = points[occ_binary] ind0 = ind[~occ_binary] ind1 = ind[occ_binary] flow10 = flow1[~occ_binary] flow11 = flow1[occ_binary] flow20 = flow2[~occ_binary] flow21 = flow2[occ_binary] idx0 = np.random.randint(points0.shape[0], size=Nt_out) idx1 = np.random.randint(points1.shape[0], size=Nt_in) points0 = points0[idx0, :] points1 = points1[idx1, :] points = np.concatenate([points0, points1], axis=0) ind0 = ind0[idx0] ind1 = ind1[idx1] ind = np.concatenate([ind0, ind1], axis=0) flow10 = flow10[idx0] flow11 = flow11[idx1] flow1 = np.concatenate([flow10, flow11], axis=0) flow20 = flow20[idx0] flow21 = flow21[idx1] flow2 = np.concatenate([flow20, flow21], axis=0) occ0 = np.zeros(Nt_out, dtype=np.float32) occ1 = np.ones(Nt_in, dtype=np.float32) occ = np.concatenate([occ0, occ1], axis=0) volume = occ_binary.sum() / len(occ_binary) volume = volume.astype(np.float32) data_out.update({ None: points, 'occ': occ, 'volume': volume, 'ind': ind, 'flow1': flow1, 'flow2': flow2, }) return data_out
3,578
Python
25.708955
67
0.507546
NVlabs/ACID/ACID/configs/default.yaml
method: conv_onet data: train_split: train val_split: val test_split: test dim: 3 act_dim: 6 padding: 0.1 type: geom model: decoder: simple encoder: resnet18 decoder_kwargs: {} encoder_kwargs: {} multi_gpu: false c_dim: 512 training: out_dir: out/default batch_size: 64 pos_weight: 5 print_every: 200 visualize_every: 1000 visualize_total: 15 checkpoint_every: 1000 validate_every: 2000 backup_every: 100000 eval_sample: false model_selection_metric: loss model_selection_mode: minimize n_workers: 4 n_workers_val: 4 test: threshold: 0.5 eval_mesh: true eval_pointcloud: true remove_wall: false model_file: model_best.pt generation: batch_size: 100000 refinement_step: 0 vis_n_outputs: 30 generate_mesh: true generate_pointcloud: true generation_dir: generation use_sampling: false resolution_0: 32 upsampling_steps: 3 simplify_nfaces: null copy_groundtruth: false copy_input: true latent_number: 4 latent_H: 8 latent_W: 8 latent_ny: 2 latent_nx: 2 latent_repeat: true sliding_window: False # added for crop generation
1,121
YAML
18.68421
51
0.702944
NVlabs/ACID/ACID/configs/plush_dyn_geodesics.yaml
method: conv_onet data: flow_path: train_data/flow pair_path: train_data/pair pointcloud_n_obj: 5000 pointcloud_n_env: 1000 pointcloud_noise: 0.005 points_subsample: 3000 model: type: combined obj_encoder_kwargs: f_dim: 3 hidden_dim: 64 plane_resolution: 128 unet_kwargs: depth: 4 merge_mode: concat start_filts: 64 env_encoder_kwargs: f_dim: 3 hidden_dim: 16 plane_resolution: 64 unet_kwargs: depth: 2 merge_mode: concat start_filts: 16 decoder_kwargs: corr_dim: 32 sample_mode: bilinear # bilinear / nearest hidden_size: 32 obj_c_dim: 64 env_c_dim: 16 loss: type: contrastive contrastive_threshold: 1 use_geodesics: true scale_with_geodesics: False training: out_dir: result/dyn/geodesics batch_size: 4 model_selection_metric: flow model_selection_mode: minimize print_every: 1 visualize_every: 4000 validate_every: 4000 checkpoint_every: 4000 backup_every: 4000 n_workers: 16 n_workers_val: 4 test: threshold: 0.95 eval_mesh: true eval_pointcloud: false model_file: model_best.pt generation: refine: false n_x: 128 n_z: 1
1,175
YAML
18.932203
46
0.67234
NVlabs/ACID/ACID/preprocess/gen_data_flow_plush.py
import numpy as np import os import time, datetime import sys import os.path as osp ACID_dir = osp.dirname(osp.dirname(osp.realpath(__file__))) sys.path.insert(0,ACID_dir) import json from src.utils import plushsim_util from src.utils import common_util import glob import tqdm from multiprocessing import Pool import argparse parser = argparse.ArgumentParser("Training Flow Data Generation") data_plush_default = osp.join(ACID_dir, "data_plush") flow_default = osp.join(ACID_dir, "train_data", "flow") parser.add_argument("--data_root", type=str, default=data_plush_default) parser.add_argument("--save_root", type=str, default=flow_default) args = parser.parse_args() data_root = args.data_root save_root = args.save_root scene_range = plushsim_util.SCENE_RANGE.copy() to_range = np.array([[-1.1,-1.1,-1.1],[1.1,1.1,1.1]]) * 0.5 class_to_std = { 'teddy':0.12, 'elephant':0.15, 'octopus':0.12, 'rabbit':0.08, 'dog':0.08, 'snake':0.04, } def export_train_data(data_id): # try: # load action info split_id, model_category, model_name, reset_id, interaction_id = data_id grasp_loc, target_loc, f1, _, f2 = plushsim_util.get_action_info(model_category, model_name, split_id, reset_id, interaction_id, data_root) # get observations obj_pts1, env_pts1 = plushsim_util.get_scene_partial_pointcloud( model_category, model_name, split_id, reset_id, f1, data_root) obj_pts1=common_util.subsample_points( common_util.transform_points(obj_pts1, scene_range, to_range), resolution=0.005, return_index=False) env_pts1=common_util.subsample_points( common_util.transform_points(env_pts1, scene_range, to_range), resolution=0.020, return_index=False) # calculate flow sim_pts1, _, loc,_,_= plushsim_util.get_object_full_points( model_category, model_name, split_id, reset_id, f1, data_root) sim_pts2, _,_,_,_= plushsim_util.get_object_full_points( model_category, model_name, split_id, reset_id, f2, data_root) sim_pts1=common_util.transform_points(sim_pts1, scene_range, to_range) sim_pts2=common_util.transform_points(sim_pts2, scene_range, to_range) sim_pts_flow = sim_pts2 - sim_pts1 # sample occupancy center =common_util.transform_points(loc, scene_range, to_range)[0] pts, occ, pt_class = plushsim_util.sample_occupancies(sim_pts1, center, std=class_to_std[model_category],sample_scheme='object') # get implicit flows flow = sim_pts_flow[pt_class] # save kwargs = {'sim_pts':sim_pts1.astype(np.float16), 'obj_pcloud_obs':obj_pts1.astype(np.float16), 'env_pcloud':env_pts1.astype(np.float16), 'pts':pts.astype(np.float16), 'occ':np.packbits(occ), 'ind':pt_class.astype(np.uint16), 'flow':flow.astype(np.float16), 'start_frame':f1, 'end_frame':f2, 'grasp_loc':grasp_loc, 'target_loc': target_loc} model_dir = os.path.join(save_root, f"{split_id}", f"{model_name}") save_path = os.path.join(model_dir, f"{reset_id:03d}_{interaction_id:03d}.npz") np.savez_compressed(save_path, **kwargs) def get_all_data_points_flow(data_root): good_interactions = glob.glob(f"{data_root}/*/*/*/info/good_interactions.json") good_ints = [] for g in tqdm.tqdm(good_interactions): split_id, model_category, model_name = g.split('/')[-5:-2] model_dir = os.path.join(save_root, f"{split_id}", f"{model_name}") os.makedirs(model_dir, exist_ok=True) model_dir = plushsim_util.get_model_dir(data_root, split_id, model_category, model_name) with open(g, 'r') as fp: good_ones = json.load(fp) for k,v in good_ones.items(): reset_id = int(k) for int_id in v: good_ints.append((split_id, model_category, model_name, reset_id, int_id)) return good_ints good_ints = get_all_data_points_flow(data_root)#[:100] start_time = time.time() with Pool(40) as p: for _ in tqdm.tqdm(p.imap_unordered(export_train_data, good_ints), total=len(good_ints)): pass end_time = time.time() from datetime import timedelta time_str = str(timedelta(seconds=end_time - start_time)) print(f'Total processing takes: {time_str}')
4,353
Python
39.691588
143
0.64668
NVlabs/ACID/ACID/preprocess/gen_data_contrastive_pairs_flow.py
import os import sys import glob import tqdm import random import argparse import numpy as np import os.path as osp import time from multiprocessing import Pool ACID_dir = osp.dirname(osp.dirname(osp.realpath(__file__))) sys.path.insert(0,ACID_dir) parser = argparse.ArgumentParser("Training Contrastive Pair Data Generation") data_plush_default = osp.join(ACID_dir, "data_plush") meta_default = osp.join(ACID_dir, "data_plush", "metadata") flow_default = osp.join(ACID_dir, "train_data", "flow") pair_default = osp.join(ACID_dir, "train_data", "pair") parser.add_argument("--data_root", type=str, default=data_plush_default) parser.add_argument("--meta_root", type=str, default=meta_default) parser.add_argument("--flow_root", type=str, default=flow_default) parser.add_argument("--save_root", type=str, default=pair_default) args = parser.parse_args() data_root = args.data_root flow_root = args.flow_root save_root = args.save_root meta_root = args.meta_root os.makedirs(save_root, exist_ok=True) def using_complex(a): weight = 1j*np.linspace(0, a.shape[1], a.shape[0], endpoint=False) b = a + weight[:, np.newaxis] u, ind = np.unique(b, return_index=True) b = np.zeros_like(a) + 256 np.put(b, ind, a.flat[ind]) return b def process(pair, num_samples=320, keep=80): split_id, model_name, f,p = pair src_file = np.load(f"{flow_root}/{split_id}/{model_name}/{f}") tgt_file = np.load(f"{flow_root}/{split_id}/{model_name}/{p}") src_inds = src_file['ind'] tgt_inds = tgt_file['ind'] src_inds = np.tile(src_inds, (num_samples,1)).T tgt_samples = np.random.randint(0, high=len(tgt_inds) - 1, size=(len(src_inds), num_samples)) tgt_samples_inds = tgt_inds[tgt_samples] dists = dist_matrix[src_inds.reshape(-1), tgt_samples_inds.reshape(-1)].reshape(*src_inds.shape) dists_unique = using_complex(dists) idx = np.argsort(dists_unique, axis=-1) dists_sorted = np.take_along_axis(dists, idx, axis=-1).astype(np.uint8)[:,:keep] tgt_samples_sorted = np.take_along_axis(tgt_samples, idx, axis=-1)[:,:keep] if tgt_samples_sorted.max() <= np.iinfo(np.uint16).max: tgt_samples_sorted = tgt_samples_sorted.astype(np.uint16) else: tgt_samples_sorted = tgt_samples_sorted.astype(np.uint32) results = {"target_file":p, "dists":dists_sorted, "inds":tgt_samples_sorted} np.savez_compressed(os.path.join(save_dir, f"pair_{f}"), **results) def export_pair_data(data_id): split_id, model_name = data_id all_files = all_geoms[data_id] print(split_id, model_name) global dist_matrix dist_matrix = np.load(f'{meta_root}/{split_id}/{model_name}_dist.npz')['arr_0'] global save_dir save_dir = os.path.join(save_root, split_id, model_name) os.makedirs(save_dir, exist_ok=True) pairs = [ (split_id, model_name, f,random.choice(all_files)) for f in all_files ] start_time = time.time() with Pool(10) as p: for _ in tqdm.tqdm(p.imap_unordered(process, pairs), total=len(all_files)): pass end_time = time.time() from datetime import timedelta time_str = str(timedelta(seconds=end_time - start_time)) print(f'Total processing takes: {time_str}') if __name__ == '__main__': from collections import defaultdict global all_geoms all_geoms = defaultdict(lambda: []) for g in glob.glob(f"{flow_root}/*/*/*"): split_id, model_name, file_name = g.split('/')[-3:] all_geoms[(split_id, model_name)].append(file_name) for k in all_geoms.keys(): export_pair_data(k)
3,584
Python
35.212121
100
0.66183
NVlabs/ACID/ACID/preprocess/gen_data_flow_splits.py
import os import sys import os.path as osp ACID_dir = osp.dirname(osp.dirname(osp.realpath(__file__))) sys.path.insert(0,ACID_dir) import glob import argparse flow_default = osp.join(ACID_dir, "train_data", "flow") parser = argparse.ArgumentParser("Making training / testing splits...") parser.add_argument("--flow_root", type=str, default=flow_default) parser.add_argument("--no_split", action="store_true", default=False) args = parser.parse_args() flow_root = args.flow_root all_npz = glob.glob(f"{flow_root}/*/*/*.npz") print(f"In total {len(all_npz)} data points...") def filename_to_id(fname): split_id, model_name, f = fname.split("/")[-3:] reset_id, frame_id = (int(x) for x in os.path.splitext(f)[0].split('_')) return split_id, model_name, reset_id, frame_id from collections import defaultdict total_files = defaultdict(lambda : defaultdict(lambda : [])) for fname in all_npz: split_id, model_name, reset_id, frame_id = filename_to_id(fname) total_files[(split_id, model_name)][reset_id].append(frame_id) total_files = dict(total_files) for k,v in total_files.items(): total_files[k] = dict(v) import pickle if args.no_split: train = total_files test = total_files else: train = {} test = {} for k,v in total_files.items(): split_id, model_name = k if "teddy" in model_name: test[k] = v else: train[k] = v train_total = [] for k,v in train.items(): for x, u in v.items(): for y in u: train_total.append((*k, x, y)) print(f"training data points: {len(train_total)}") test_total = [] for k,v in test.items(): for x, u in v.items(): for y in u: test_total.append((*k, x, y)) print(f"testing data points: {len(test_total)}") with open(f"{flow_root}/train.pkl", "wb") as fp: pickle.dump(train_total, fp) with open(f"{flow_root}/test.pkl", "wb") as fp: pickle.dump(test_total, fp)
1,972
Python
28.447761
76
0.625761
erasromani/isaac-sim-python/simulate_grasp.py
import os import argparse from grasp.grasp_sim import GraspSimulator from omni.isaac.motion_planning import _motion_planning from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.synthetic_utils import OmniKitHelper def main(args): kit = OmniKitHelper( {"renderer": "RayTracedLighting", "experience": f"{os.environ['EXP_PATH']}/isaac-sim-python.json", "width": args.width, "height": args.height} ) _mp = _motion_planning.acquire_motion_planning_interface() _dc = _dynamic_control.acquire_dynamic_control_interface() if args.video: record = True else: record = False sim = GraspSimulator(kit, _dc, _mp, record=record) # add object path if args.location == 'local': from_server = False else: from_server = True for path in args.path: sim.add_object_path(path, from_server=from_server) # start simulation sim.play() for _ in range(args.num): sim.add_object(position=(40, 0, 10)) sim.wait_for_drop() sim.wait_for_loading() evaluation = sim.execute_grasp(args.position, args.angle) output_string = f"Grasp evaluation: {evaluation}" print('\n' + ''.join(['#'] * len(output_string))) print(output_string) print(''.join(['#'] * len(output_string)) + '\n') # Stop physics simulation sim.stop() if record: sim.save_video(args.video) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Simulate Panda arm planar grasp execution in NVIDIA Omniverse Isaac Sim') required = parser.add_argument_group('required arguments') required.add_argument('-P', '--path', type=str, nargs='+', metavar='', required=True, help='path to usd file or content folder') required.add_argument('-p', '--position', type=float, nargs=3, metavar='', required=True, help='grasp position, X Y Z') required.add_argument('-a', '--angle', type=float, metavar='', required=True, help='grasp angle in degrees') parser.add_argument('-l', '--location', type=str, metavar='', required=False, help='location of usd path, choices={local, nucleus_server}', choices=['local', 'nucleus_server'], default='local') parser.add_argument('-n', '--num', type=int, metavar='', required=False, help='number of objects to spawn in the scene', default=1) parser.add_argument('-v', '--video', type=str, metavar='', required=False, help='output filename of grasp simulation video') parser.add_argument('-W', '--width', type=int, metavar='', required=False, help='width of the viewport and generated images', default=1024) parser.add_argument('-H', '--height', type=int, metavar='', required=False, help='height of the viewport and generated images', default=800) args = parser.parse_args() print(args.path) main(args)
2,835
Python
39.514285
197
0.662434
erasromani/isaac-sim-python/README.md
# isaac-sim-python: Python wrapper for NVIDIA Omniverse Isaac-Sim ## Overview This repository contains a collection of python wrappers for NVIDIA Omniverse Isaac-Sim simulations. `grasp` package simulates a planar grasp execution of a Panda arm in a scene with various rigid objects place in a bin. ## Installation This repository requires installation of NVIDIA Omniverse Isaac-Sim. A comprehensive setup tutorial is provided in the official [NVIDIA Omniverse Isaac-Sim](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/setup.html) documentation. Following installation of Isaac-Sim, a conda environment must also be created that contains all the required packages for the python wrappers. Another comprehensive conda environment setup tutorial is provided in this [link](https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/python_samples.html). `ffmpeg-python` must be installed within the `isaac-sim` conda environment and can be aquired via a typical pip install: ``` conda activate isaac-sim pip install ffmpeg-python ``` Lastly, clone the repository into the `python-samples` sub-directory within the `isaac-sim` directory. ``` git clone https://github.com/erasromani/isaac-sim-python.git ``` ## Quickstart Navigate to the `python-samples` sub-directory within the `isaac-sim` directory, source environment variables, activate conda environment, and run `simulate_grasp.py`. ``` source setenv.sh conda activate isaac-sim cd isaac-sim-python python simulate_grasp.py -P Isaac/Props/Flip_Stack/large_corner_bracket_physics.usd Isaac/Props/Flip_Stack/screw_95_physics.usd Isaac/Props/Flip_Stack/t_connector_physics.usd -l nucleus_server -p 40 0 5 -a 45 -n 5 -v sim.mp4 ``` The code above will simulate grasp execution of Panda arm in a scene with a bin and objects 5 randomly selected objects selected from the collection of usd files given. The specified grasp pose is a planar grasp with grasp position `(40, 0, 5)` and angle `5` degrees. A video of the simulation will be generated and saved as `sim.mp4`. ## Additional Resources - https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/overview.html - https://docs.omniverse.nvidia.com/py/isaacsim/index.html
2,201
Markdown
56.947367
550
0.79055
erasromani/isaac-sim-python/grasp/grasp_sim.py
import os import numpy as np import tempfile import omni.kit from omni.isaac.synthetic_utils import SyntheticDataHelper from grasp.utils.isaac_utils import RigidBody from grasp.grasping_scenarios.grasp_object import GraspObject from grasp.utils.visualize import screenshot, img2vid default_camera_pose = { 'position': (142, -127, 56), # position given by (x, y, z) 'target': (-180, 234, -27) # target given by (x, y , z) } class GraspSimulator(GraspObject): """ Defines a grasping simulation scenario Scenarios define planar grasp execution in a scene of a Panda arm and various rigid objects """ def __init__(self, kit, dc, mp, dt=1/60.0, record=False, record_interval=10): """ Initializes grasp simulator Args: kit (omni.isaac.synthetic_utils.scripts.omnikit.OmniKitHelper): helper class for launching OmniKit from a python environment dc (omni.isaac.motion_planning._motion_planning.MotionPlanning): motion planning interface from RMP extension mp (omni.isaac.dynamic_control._dynamic_control.DynamicControl): dynamic control interface dt (float): simulation time step in seconds record (bool): flag for capturing screenshots throughout simulation for video recording record_interval (int): frame intervals for capturing screenshots """ super().__init__(kit, dc, mp) self.frame = 0 self.dt = dt self.record = record self.record_interval = record_interval self.tmp_dir = tempfile.mkdtemp() self.sd_helper = SyntheticDataHelper() # create initial scene self.create_franka() # set camera pose self.set_camera_pose(default_camera_pose['position'], default_camera_pose['target']) def execute_grasp(self, position, angle): """ Executes a planar grasp with a panda arm. Args: position (list or numpy.darray): grasp position array of length 3 given by [x, y, z] angle (float): grap angle in degrees Returns: evaluation (enum.EnumMeta): GRASP_eval class containing two states {GRASP_eval.FAILURE, GRAPS_eval.SUCCESS} """ self.set_target_angle(angle) self.set_target_position(position) self.perform_tasks() # start simulation if self._kit.editor.is_playing(): previously_playing = True else: previously_playing = False if self.pick_and_place is not None: while True: self.step(0) self.update() if self.pick_and_place.evaluation is not None: break evaluation = self.pick_and_place.evaluation self.stop_tasks() self.step(0) self.update() # Stop physics simulation if not previously_playing: self.stop() return evaluation def wait_for_drop(self, max_steps=2000): """ Waits for all objects to drop. Args: max_steps (int): maximum number of timesteps before aborting wait """ # start simulation if self._kit.editor.is_playing(): previously_playing = True else: previously_playing = False if not previously_playing: self.play() step = 0 while step < max_steps or self._kit.is_loading(): self.step(step) self.update() objects_speed = np.array([o.get_speed() for o in self.objects]) if np.all(objects_speed == 0): break step +=1 # Stop physics simulation if not previously_playing: self.stop() def wait_for_loading(self): """ Waits for all scene visuals to load. """ while self.is_loading(): self.update() def play(self): """ Starts simulation. """ self._kit.play() if not hasattr(self, 'world') or not hasattr(self, 'franka_solid') or not hasattr(self, 'bin_solid') or not hasattr(self, 'pick_and_place'): self.register_scene() def stop(self): """ Stops simulation. """ self._kit.stop() def update(self): """ Simulate one time step. """ if self.record and self.sd_helper is not None and self.frame % self.record_interval == 0: screenshot(self.sd_helper, suffix=self.frame, directory=self.tmp_dir) self._kit.update(self.dt) self.frame += 1 def is_loading(self): """ Determine if all scene visuals are loaded. Returns: (bool): flag for whether or not all scene visuals are loaded """ return self._kit.is_loading() def set_camera_pose(self, position, target): """ Set camera pose. Args: position (list or numpy.darray): camera position array of length 3 given by [x, y, z] target (list or numpy.darray): target position array of length 3 given by [x, y, z] """ self._editor.set_camera_position("/OmniverseKit_Persp", *position, True) self._editor.set_camera_target("/OmniverseKit_Persp", *target, True) def save_video(self, path): """ Save video recording of screenshots taken throughout the simulation. Args: path (str): output video filename """ framerate = int(round(1.0 / (self.record_interval * self.dt))) img2vid(os.path.join(self.tmp_dir, '*.png'), path, framerate=framerate)
5,666
Python
32.532544
148
0.59107
erasromani/isaac-sim-python/grasp/grasping_scenarios/scenario.py
# Credits: The majority of this code is taken from build code associated with nvidia/isaac-sim:2020.2.2_ea with minor modifications. import gc import carb import omni.usd from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server from grasp.utils.isaac_utils import set_up_z_axis class Scenario: """ Defines a block stacking scenario. Scenarios define the life cycle within kit and handle init, startup, shutdown etc. """ def __init__(self, editor, dc, mp): """ Initialize scenario. Args: editor (omni.kit.editor._editor.IEditor): editor object from isaac-sim simulation dc (omni.isaac.motion_planning._motion_planning.MotionPlanning): motion planning interface from RMP extension mp (omni.isaac.dynamic_control._dynamic_control.DynamicControl): dynamic control interface """ self._editor = editor # Reference to the Kit editor self._stage = omni.usd.get_context().get_stage() # Reference to the current USD stage self._dc = dc # Reference to the dynamic control plugin self._mp = mp # Reference to the motion planning plugin self._domains = [] # Contains instances of environment self._obstacles = [] # Containts references to any obstacles in the scenario self._executor = None # Contains the thread pool used to run tasks self._created = False # Is the robot created or not self._running = False # Is the task running or not def __del__(self): """ Cleanup scenario objects when deleted, force garbage collection. """ self.robot_created = False self._domains = [] self._obstacles = [] self._executor = None gc.collect() def reset_blocks(self, *args): """ Funtion called when block poses are reset. """ pass def stop_tasks(self, *args): """ Stop tasks in the scenario if any. """ self._running = False pass def step(self, step): """ Step the scenario, can be used to update things in the scenario per frame. """ pass def create_franka(self, *args): """ Create franka USD objects. """ result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") return self.asset_path = nucleus_server + "/Isaac" # USD paths loaded by scenarios self.franka_table_usd = self.asset_path + "/Samples/Leonardo/Stage/franka_block_stacking.usd" self.franka_ghost_usd = self.asset_path + "/Samples/Leonardo/Robots/franka_ghost.usd" self.background_usd = self.asset_path + "/Environments/Grid/gridroom_curved.usd" self.rubiks_cube_usd = self.asset_path + "/Props/Rubiks_Cube/rubiks_cube.usd" self.red_cube_usd = self.asset_path + "/Props/Blocks/red_block.usd" self.yellow_cube_usd = self.asset_path + "/Props/Blocks/yellow_block.usd" self.green_cube_usd = self.asset_path + "/Props/Blocks/green_block.usd" self.blue_cube_usd = self.asset_path + "/Props/Blocks/blue_block.usd" self._created = True self._stage = omni.usd.get_context().get_stage() set_up_z_axis(self._stage) self.stop_tasks() pass def register_assets(self, *args): """ Connect franka controller to usd assets """ pass def task(self, domain): """ Task to be performed for a given robot. """ pass def perform_tasks(self, *args): """ Perform all tasks in scenario if multiple robots are present. """ self._running = True pass def is_created(self): """ Return if the franka was already created. """ return self._created
3,963
Python
32.880342
132
0.609134
erasromani/isaac-sim-python/grasp/grasping_scenarios/grasp_object.py
# Credits: Starter code taken from build code associated with nvidia/isaac-sim:2020.2.2_ea. import os import random import numpy as np import glob import omni import carb from enum import Enum from collections import deque from pxr import Gf, UsdGeom from copy import copy from omni.physx.scripts.physicsUtils import add_ground_plane from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.utils._isaac_utils import math as math_utils from omni.isaac.samples.scripts.utils.world import World from omni.isaac.utils.scripts.nucleus_utils import find_nucleus_server from omni.physx import _physx from grasp.utils.isaac_utils import create_prim_from_usd, RigidBody, set_translate, set_rotate, setup_physics from grasp.grasping_scenarios.franka import Franka, default_config from grasp.grasping_scenarios.scenario import Scenario statedic = {0: "orig", 1: "axis_x", 2: "axis_y", 3: "axis_z"} class SM_events(Enum): """ State machine events. """ START = 0 WAYPOINT_REACHED = 1 GOAL_REACHED = 2 ATTACHED = 3 DETACHED = 4 TIMEOUT = 5 STOP = 6 NONE = 7 # no event ocurred, just clocks class SM_states(Enum): """ State machine states. """ STANDBY = 0 # Default state, does nothing unless enters with event START PICKING = 1 ATTACH = 2 HOLDING = 3 GRASPING = 4 LIFTING = 5 class GRASP_eval(Enum): """ Grasp execution evaluation. """ FAILURE = 0 SUCCESS = 1 class PickAndPlaceStateMachine(object): """ Self-contained state machine class for Robot Behavior. Each machine state may react to different events, and the handlers are defined as in-class functions. """ def __init__(self, stage, robot, ee_prim, default_position): """ Initialize state machine. Args: stage (pxr.Usd.Stage): usd stage robot (grasp.grasping_scenarios.franka.Franka): robot controller object ee_prim (pxr.Usd.Prim): Panda arm end effector prim default_position (omni.isaac.dynamic_control._dynamic_control.Transform): default position of Panda arm """ self.robot = robot self.dc = robot.dc self.end_effector = ee_prim self.end_effector_handle = None self._stage = stage self.start_time = 0.0 self.start = False self._time = 0.0 self.default_timeout = 10 self.default_position = copy(default_position) self.target_position = default_position self.target_point = default_position.p self.target_angle = 0 # grasp angle in degrees self.reset = False self.evaluation = None self.waypoints = deque() self.thresh = {} # Threshold to clear waypoints/goal # (any waypoint that is not final will be cleared with the least precision) self.precision_thresh = [ [0.0005, 0.0025, 0.0025, 0.0025], [0.0005, 0.005, 0.005, 0.005], [0.05, 0.2, 0.2, 0.2], [0.08, 0.4, 0.4, 0.4], [0.18, 0.6, 0.6, 0.6], ] self.add_object = None # Event management variables # Used to verify if the goal was reached due to robot moving or it had never left previous target self._is_moving = False self._attached = False # Used to flag the Attached/Detached events on a change of state from the end effector self._detached = False self.is_closed = False self.pick_count = 0 # Define the state machine handling functions self.sm = {} # Make empty state machine for all events and states for s in SM_states: self.sm[s] = {} for e in SM_events: self.sm[s][e] = self._empty self.thresh[s] = 0 # Fill in the functions to handle each event for each status self.sm[SM_states.STANDBY][SM_events.START] = self._standby_start self.sm[SM_states.STANDBY][SM_events.GOAL_REACHED] = self._standby_goal_reached self.thresh[SM_states.STANDBY] = 3 self.sm[SM_states.PICKING][SM_events.GOAL_REACHED] = self._picking_goal_reached self.thresh[SM_states.PICKING] = 1 self.sm[SM_states.GRASPING][SM_events.ATTACHED] = self._grasping_attached self.sm[SM_states.LIFTING][SM_events.GOAL_REACHED] = self._lifting_goal_reached for s in SM_states: self.sm[s][SM_events.DETACHED] = self._all_detached self.sm[s][SM_events.TIMEOUT] = self._all_timeout self.current_state = SM_states.STANDBY self.previous_state = -1 self._physxIFace = _physx.acquire_physx_interface() # Auxiliary functions def _empty(self, *args): """ Empty function to use on states that do not react to some specific event. """ pass def change_state(self, new_state, print_state=True): """ Function called every time a event handling changes current state. """ self.current_state = new_state self.start_time = self._time if print_state: carb.log_warn(str(new_state)) def goalReached(self): """ Checks if the robot has reached a certain waypoint in the trajectory. """ if self._is_moving: state = self.robot.end_effector.status.current_frame target = self.robot.end_effector.status.current_target error = 0 for i in [0, 2, 3]: k = statedic[i] state_v = state[k] target_v = target[k] error = np.linalg.norm(state_v - target_v) # General Threshold is the least strict thresh = self.precision_thresh[-1][i] if len(self.waypoints) == 0: thresh = self.precision_thresh[self.thresh[self.current_state]][i] if error > thresh: return False self._is_moving = False return True return False def get_current_state_tr(self): """ Gets current End Effector Transform, converted from Motion position and Rotation matrix. """ # Gets end effector frame state = self.robot.end_effector.status.current_frame orig = state["orig"] * 100.0 mat = Gf.Matrix3f( *state["axis_x"].astype(float), *state["axis_y"].astype(float), *state["axis_z"].astype(float) ) q = mat.ExtractRotation().GetQuaternion() (q_x, q_y, q_z) = q.GetImaginary() q = [q_x, q_y, q_z, q.GetReal()] tr = _dynamic_control.Transform() tr.p = list(orig) tr.r = q return tr def lerp_to_pose(self, pose, n_waypoints=1): """ adds spherical linear interpolated waypoints from last pose in the waypoint list to the provided pose if the waypoit list is empty, use current pose. """ if len(self.waypoints) == 0: start = self.get_current_state_tr() start.p = math_utils.mul(start.p, 0.01) else: start = self.waypoints[-1] if n_waypoints > 1: for i in range(n_waypoints): self.waypoints.append(math_utils.slerp(start, pose, (i + 1.0) / n_waypoints)) else: self.waypoints.append(pose) def move_to_zero(self): self._is_moving = False self.robot.end_effector.go_local( orig=[], axis_x=[], axis_y=[], axis_z=[], use_default_config=True, wait_for_target=False, wait_time=5.0 ) def move_to_target(self): """ Move arm towards target with RMP controller. """ xform_attr = self.target_position self._is_moving = True orig = np.array([xform_attr.p.x, xform_attr.p.y, xform_attr.p.z]) axis_y = np.array(math_utils.get_basis_vector_y(xform_attr.r)) axis_z = np.array(math_utils.get_basis_vector_z(xform_attr.r)) self.robot.end_effector.go_local( orig=orig, axis_x=[], axis_y=axis_y, axis_z=axis_z, use_default_config=True, wait_for_target=False, wait_time=5.0, ) def get_target_orientation(self): """ Gets target gripper orientation given target angle and a plannar grasp. """ angle = self.target_angle * np.pi / 180 mat = Gf.Matrix3f( -np.cos(angle), -np.sin(angle), 0, -np.sin(angle), np.cos(angle), 0, 0, 0, -1 ) q = mat.ExtractRotation().GetQuaternion() (q_x, q_y, q_z) = q.GetImaginary() q = [q_x, q_y, q_z, q.GetReal()] return q def get_target_to_point(self, offset_position=[]): """ Get target Panda arm pose from target position and angle. """ offset = _dynamic_control.Transform() if offset_position: offset.p.x = offset_position[0] offset.p.y = offset_position[1] offset.p.z = offset_position[2] target_pose = _dynamic_control.Transform() target_pose.p = self.target_point target_pose.r = self.get_target_orientation() target_pose = math_utils.mul(target_pose, offset) target_pose.p = math_utils.mul(target_pose.p, 0.01) return target_pose def set_target_to_point(self, offset_position=[], n_waypoints=1, clear_waypoints=True): """ Clears waypoints list, and sets a new waypoint list towards the a given point in space. """ target_position = self.get_target_to_point(offset_position=offset_position) # linear interpolate to target pose if clear_waypoints: self.waypoints.clear() self.lerp_to_pose(target_position, n_waypoints=n_waypoints) # Get first waypoint target self.target_position = self.waypoints.popleft() def step(self, timestamp, start=False, reset=False): """ Steps the State machine, handling which event to call. """ if self.current_state != self.previous_state: self.previous_state = self.current_state if not self.start: self.start = start if self.current_state in [SM_states.GRASPING, SM_states.LIFTING]: # object grasped if not self.robot.end_effector.gripper.is_closed(1e-1) and not self.robot.end_effector.gripper.is_moving(1e-2): self._attached = True # self.is_closed = False # object not grasped elif self.robot.end_effector.gripper.is_closed(1e-1): self._detached = True self.is_closed = True # Process events if reset: # reset to default pose, clear waypoints, and re-initialize event handlers self.current_state = SM_states.STANDBY self.previous_state = -1 self.robot.end_effector.gripper.open() self.evaluation = None self.start = False self._time = 0 self.start_time = self._time self.pick_count = 0 self.waypoints.clear() self._detached = False self._attached = False self.target_position = self.default_position self.move_to_target() elif self._detached: self._detached = False self.sm[self.current_state][SM_events.DETACHED]() elif self.goalReached(): if len(self.waypoints) == 0: self.sm[self.current_state][SM_events.GOAL_REACHED]() else: self.target_position = self.waypoints.popleft() self.move_to_target() # self.start_time = self._time elif self.current_state == SM_states.STANDBY and self.start: self.sm[self.current_state][SM_events.START]() elif self._attached: self._attached = False self.sm[self.current_state][SM_events.ATTACHED]() elif self._time - self.start_time > self.default_timeout: self.sm[self.current_state][SM_events.TIMEOUT]() else: self.sm[self.current_state][SM_events.NONE]() self._time += 1.0 / 60.0 # Event handling functions. Each state has its own event handler function depending on which event happened def _standby_start(self, *args): """ Handles the start event when in standby mode. Proceeds to move towards target grasp pose. """ # Tell motion planner controller to ignore current object as an obstacle self.pick_count = 0 self.evaluation = None self.lerp_to_pose(self.default_position, 1) self.lerp_to_pose(self.default_position, 60) self.robot.end_effector.gripper.open() # set target above the current bin with offset of 10 cm self.set_target_to_point(offset_position=[0.0, 0.0, -10.0], n_waypoints=90, clear_waypoints=False) # pause before lowering to target object self.lerp_to_pose(self.waypoints[-1], 180) self.set_target_to_point(n_waypoints=90, clear_waypoints=False) # start arm movement self.move_to_target() # Move to next state self.change_state(SM_states.PICKING) # NOTE: As is, this method is never executed def _standby_goal_reached(self, *args): """ Reset grasp execution. """ self.move_to_zero() self.start = True def _picking_goal_reached(self, *args): """ Grap pose reached, close gripper. """ self.robot.end_effector.gripper.close() self.is_closed = True # Move to next state self.move_to_target() self.robot.end_effector.gripper.width_history.clear() self.change_state(SM_states.GRASPING) def _grasping_attached(self, *args): """ Object grasped, lift arm. """ self.waypoints.clear() offset = _dynamic_control.Transform() offset.p.z = -10 target_pose = math_utils.mul(self.get_current_state_tr(), offset) target_pose.p = math_utils.mul(target_pose.p, 0.01) self.lerp_to_pose(target_pose, n_waypoints=60) self.lerp_to_pose(target_pose, n_waypoints=120) # Move to next state self.move_to_target() self.robot.end_effector.gripper.width_history.clear() self.change_state(SM_states.LIFTING) def _lifting_goal_reached(self, *args): """ Finished executing grasp successfully, resets for next grasp execution. """ self.is_closed = False self.robot.end_effector.gripper.open() self._all_detached() self.pick_count += 1 self.evaluation = GRASP_eval.SUCCESS carb.log_warn(str(GRASP_eval.SUCCESS)) def _all_timeout(self, *args): """ Timeout reached and reset. """ self.change_state(SM_states.STANDBY, print_state=False) self.robot.end_effector.gripper.open() self.start = False self.waypoints.clear() self.target_position = self.default_position self.lerp_to_pose(self.default_position, 1) self.lerp_to_pose(self.default_position, 10) self.lerp_to_pose(self.default_position, 60) self.move_to_target() self.evaluation = GRASP_eval.FAILURE carb.log_warn(str(GRASP_eval.FAILURE)) def _all_detached(self, *args): """ Object detached and reset. """ self.change_state(SM_states.STANDBY, print_state=False) self.start = False self.waypoints.clear() self.lerp_to_pose(self.target_position, 60) self.lerp_to_pose(self.default_position, 10) self.lerp_to_pose(self.default_position, 60) self.move_to_target() self.evaluation = GRASP_eval.FAILURE carb.log_warn(str(GRASP_eval.FAILURE)) class GraspObject(Scenario): """ Defines an obstacle avoidance scenario Scenarios define the life cycle within kit and handle init, startup, shutdown etc. """ def __init__(self, kit, dc, mp): """ Initialize scenario. Args: kit (omni.isaac.synthetic_utils.scripts.omnikit.OmniKitHelper): helper class for launching OmniKit from a python environment dc (omni.isaac.motion_planning._motion_planning.MotionPlanning): motion planning interface from RMP extension mp (omni.isaac.dynamic_control._dynamic_control.DynamicControl): dynamic control interface """ super().__init__(kit.editor, dc, mp) self._kit = kit self._paused = True self._start = False self._reset = False self._time = 0 self._start_time = 0 self.current_state = SM_states.STANDBY self.timeout_max = 8.0 self.pick_and_place = None self._pending_stop = False self._gripper_open = False self.current_obj = 0 self.max_objs = 100 self.num_objs = 3 self.add_objects_timeout = -1 self.franka_solid = None result, nucleus_server = find_nucleus_server() if result is False: carb.log_error("Could not find nucleus server with /Isaac folder") else: self.nucleus_server = nucleus_server def __del__(self): """ Cleanup scenario objects when deleted, force garbage collection. """ if self.franka_solid: self.franka_solid.end_effector.gripper = None super().__del__() def add_object_path(self, object_path, from_server=False): """ Add object usd path. """ if from_server and hasattr(self, 'nucleus_server'): object_path = os.path.join(self.nucleus_server, object_path) if not from_server and os.path.isdir(object_path): objects_usd = glob.glob(os.path.join(object_path, '**/*.usd'), recursive=True) else: object_usd = [object_path] if hasattr(self, 'objects_usd'): self.objects_usd.extend(object_usd) else: self.objects_usd = object_usd def create_franka(self, *args): """ Create franka USD objects and bin USD objects. """ super().create_franka() if self.asset_path is None: return # Load robot environment and set its transform self.env_path = "/scene" robot_usd = self.asset_path + "/Robots/Franka/franka.usd" robot_path = "/scene/robot" create_prim_from_usd(self._stage, robot_path, robot_usd, Gf.Vec3d(0, 0, 0)) bin_usd = self.asset_path + "/Props/KLT_Bin/large_KLT.usd" bin_path = "/scene/bin" create_prim_from_usd(self._stage, bin_path, bin_usd, Gf.Vec3d(40, 0, 4)) # Set robot end effector Target target_path = "/scene/target" if self._stage.GetPrimAtPath(target_path): return GoalPrim = self._stage.DefinePrim(target_path, "Xform") self.default_position = _dynamic_control.Transform() self.default_position.p = [0.4, 0.0, 0.3] self.default_position.r = [0.0, 1.0, 0.0, 0.0] #TODO: Check values for stability p = self.default_position.p r = self.default_position.r set_translate(GoalPrim, Gf.Vec3d(p.x * 100, p.y * 100, p.z * 100)) set_rotate(GoalPrim, Gf.Matrix3d(Gf.Quatd(r.w, r.x, r.y, r.z))) # Setup physics simulation add_ground_plane(self._stage, "/groundPlane", "Z", 1000.0, Gf.Vec3f(0.0), Gf.Vec3f(1.0)) setup_physics(self._stage) def rand_position(self, bound, margin=0, z_range=None): """ Obtain random position contained within a specified bound. """ x_range = (bound[0][0] * (1 - margin), bound[1][0] * (1 - margin)) y_range = (bound[0][1] * (1 - margin), bound[1][1] * (1 - margin)) if z_range is None: z_range = (bound[0][2] * (1 - margin), bound[1][2] * (1 - margin)) x = np.random.uniform(*x_range) y = np.random.uniform(*y_range) z = np.random.uniform(*z_range) return Gf.Vec3d(x, y, z) # combine add_object and add_and_register_object def add_object(self, *args, register=True, position=None): """ Add object to scene. """ prim = self.create_new_objects(position=position) if not register: return prim self._kit.update() if not hasattr(self, 'objects'): self.objects = [] self.objects.append(RigidBody(prim, self._dc)) def create_new_objects(self, *args, position=None): """ Randomly select and create prim of object in scene. """ if not hasattr(self, 'objects_usd'): return prim_usd_path = self.objects_usd[random.randint(0, len(self.objects_usd) - 1)] prim_env_path = "/scene/objects/object_{}".format(self.current_obj) if position is None: position = self.rand_position(self.bin_solid.get_bound(), margin=0.2, z_range=(10, 10)) prim = create_prim_from_usd(self._stage, prim_env_path, prim_usd_path, position) if hasattr(self, 'current_obj'): self.current_obj += 1 else: self.current_obj = 0 return prim def register_objects(self, *args): """ Register all objects. """ self.objects = [] objects_path = '/scene/objects' objects_prim = self._stage.GetPrimAtPath(objects_path) if objects_prim.IsValid(): for object_prim in objects_prim.GetChildren(): self.objects.append(RigidBody(object_prim, self._dc)) # TODO: Delete method def add_and_register_object(self, *args): prim = self.create_new_objects() self._kit.update() if not hasattr(self, 'objects'): self.objects = [] self.objects.append(RigidBody(prim, self._dc)) def register_scene(self, *args): """ Register world, panda arm, bin, and objects. """ self.world = World(self._dc, self._mp) self.register_assets(args) self.register_objects(args) def register_assets(self, *args): """ Connect franka controller to usd assets. """ # register robot with RMP robot_path = "/scene/robot" self.franka_solid = Franka( self._stage, self._stage.GetPrimAtPath(robot_path), self._dc, self._mp, self.world, default_config ) # register bin bin_path = "/scene/bin" bin_prim = self._stage.GetPrimAtPath(bin_path) self.bin_solid = RigidBody(bin_prim, self._dc) # register stage machine self.pick_and_place = PickAndPlaceStateMachine( self._stage, self.franka_solid, self._stage.GetPrimAtPath("/scene/robot/panda_hand"), self.default_position, ) def perform_tasks(self, *args): """ Perform all tasks in scenario if multiple robots are present. """ self._start = True self._paused = False return False def step(self, step): """ Step the scenario, can be used to update things in the scenario per frame. """ if self._editor.is_playing(): if self._pending_stop: self.stop_tasks() return # Updates current references and locations for the robot. self.world.update() self.franka_solid.update() target = self._stage.GetPrimAtPath("/scene/target") xform_attr = target.GetAttribute("xformOp:transform") if self._reset: self._paused = False if not self._paused: self._time += 1.0 / 60.0 self.pick_and_place.step(self._time, self._start, self._reset) if self._reset: self._paused = True self._time = 0 self._start_time = 0 p = self.default_position.p r = self.default_position.r set_translate(target, Gf.Vec3d(p.x * 100, p.y * 100, p.z * 100)) set_rotate(target, Gf.Matrix3d(Gf.Quatd(r.w, r.x, r.y, r.z))) else: state = self.franka_solid.end_effector.status.current_target state_1 = self.pick_and_place.target_position tr = state["orig"] * 100.0 set_translate(target, Gf.Vec3d(tr[0], tr[1], tr[2])) set_rotate(target, Gf.Matrix3d(Gf.Quatd(state_1.r.w, state_1.r.x, state_1.r.y, state_1.r.z))) self._start = False self._reset = False if self.add_objects_timeout > 0: self.add_objects_timeout -= 1 if self.add_objects_timeout == 0: self.create_new_objects() else: translate_attr = xform_attr.Get().GetRow3(3) rotate_x = xform_attr.Get().GetRow3(0) rotate_y = xform_attr.Get().GetRow3(1) rotate_z = xform_attr.Get().GetRow3(2) orig = np.array(translate_attr) / 100.0 axis_x = np.array(rotate_x) axis_y = np.array(rotate_y) axis_z = np.array(rotate_z) self.franka_solid.end_effector.go_local( orig=orig, axis_x=axis_x, # TODO: consider setting this to [] for stability reasons axis_y=axis_y, axis_z=axis_z, use_default_config=True, wait_for_target=False, wait_time=5.0, ) def stop_tasks(self, *args): """ Stop tasks in the scenario if any. """ if self.pick_and_place is not None: if self._editor.is_playing(): self._reset = True self._pending_stop = False else: self._pending_stop = True def pause_tasks(self, *args): """ Pause tasks in the scenario. """ self._paused = not self._paused return self._paused # TODO: use gripper.width == 0 as a proxy for _gripper_open == False def actuate_gripper(self): """ Actuate Panda gripper. """ if self._gripper_open: self.franka_solid.end_effector.gripper.close() self._gripper_open = False else: self.franka_solid.end_effector.gripper.open() self._gripper_open = True def set_target_angle(self, angle): """ Set grasp angle in degrees. """ if self.pick_and_place is not None: self.pick_and_place.target_angle = angle def set_target_position(self, position): """ Set grasp position. """ if self.pick_and_place is not None: self.pick_and_place.target_point = position
27,230
Python
35.502681
137
0.573265
erasromani/isaac-sim-python/grasp/grasping_scenarios/franka.py
# Credits: The majority of this code is taken from build code associated with nvidia/isaac-sim:2020.2.2_ea with minor modifications. import time import os import numpy as np import carb.tokens import omni.kit.settings from pxr import Usd, UsdGeom, Gf from collections import deque from omni.isaac.dynamic_control import _dynamic_control from omni.isaac.motion_planning import _motion_planning from omni.isaac.samples.scripts.utils import math_utils # default joint configuration default_config = (0.00, -1.3, 0.00, -2.87, 0.00, 2.00, 0.75) # Alternative default config for motion planning alternate_config = [ (1.5356, -1.3813, -1.5151, -2.0015, -1.3937, 1.5887, 1.4597), (-1.5356, -1.3813, 1.5151, -2.0015, 1.3937, 1.5887, 0.4314), ] class Gripper: """ Gripper for franka. """ def __init__(self, dc, ar): """ Initialize gripper. Args: dc (omni.isaac.motion_planning._motion_planning.MotionPlanning): motion planning interface from RMP extension ar (int): articulation identifier """ self.dc = dc self.ar = ar self.finger_j1 = self.dc.find_articulation_dof(self.ar, "panda_finger_joint1") self.finger_j2 = self.dc.find_articulation_dof(self.ar, "panda_finger_joint2") self.width = 0 self.width_history = deque(maxlen=50) def open(self, wait=False): """ Open gripper. """ if self.width < 0.045: self.move(0.045, wait=True) self.move(0.09, wait=wait) def close(self, wait=False, force=0): """ Close gripper. """ self.move(0, wait=wait) def move(self, width=0.03, speed=0.2, wait=False): """ Modify width. """ self.width = width # if wait: # time.sleep(0.5) def update(self): """ Actuate gripper. """ self.dc.set_dof_position_target(self.finger_j1, self.width * 0.5 * 100) self.dc.set_dof_position_target(self.finger_j2, self.width * 0.5 * 100) self.width_history.append(self.get_width()) def get_width(self): """ Get current width. """ return sum(self.get_position()) def get_position(self): """ Get left and right finger local position. """ return self.dc.get_dof_position(self.finger_j1), self.dc.get_dof_position(self.finger_j2) def get_velocity(self, from_articulation=True): """ Get left and right finger local velocity. """ if from_articulation: return (self.dc.get_dof_velocity(self.finger_j1), self.dc.get_dof_velocity(self.finger_j2)) else: leftfinger_handle = self.dc.get_rigid_body(self.dc.get_articulation_path(self.ar) + '/panda_leftfinger') rightfinger_handle = self.dc.get_rigid_body(self.dc.get_articulation_path(self.ar) + '/panda_rightfinger') leftfinger_velocity = np.linalg.norm(np.array(self.dc.get_rigid_body_local_linear_velocity(leftfinger_handle))) rightfinger_velocity = np.linalg.norm(np.array(self.dc.get_rigid_body_local_linear_velocity(rightfinger_handle))) return (leftfinger_velocity, rightfinger_velocity) def is_moving(self, tol=1e-2): """ Determine if gripper fingers are moving """ if len(self.width_history) < self.width_history.maxlen or np.array(self.width_history).std() > tol: return True else: return False def get_state(self): """ Get gripper state. """ dof_states = self.dc.get_articulation_dof_states(self.ar, _dynamic_control.STATE_ALL) return dof_states[-2], dof_states[-1] def is_closed(self, tol=1e-2): """ Determine if gripper is closed. """ if self.get_width() < tol: return True else: return False class Status: """ Class that contains status for end effector """ def __init__(self, mp, rmp_handle): """ Initialize status object. Args: mp (omni.isaac.dynamic_control._dynamic_control.DynamicControl): dynamic control interface rmp_handle (int): RMP handle identifier """ self.mp = mp self.rmp_handle = rmp_handle self.orig = np.array([0, 0, 0]) self.axis_x = np.array([1, 0, 0]) self.axis_y = np.array([0, 1, 0]) self.axis_z = np.array([0, 0, 1]) self.current_frame = {"orig": self.orig, "axis_x": self.axis_x, "axis_y": self.axis_y, "axis_z": self.axis_z} self.target_frame = {"orig": self.orig, "axis_x": self.axis_x, "axis_y": self.axis_y, "axis_z": self.axis_z} self.frame = self.current_frame def update(self): """ Update end effector state. """ state = self.mp.getRMPState(self.rmp_handle) target = self.mp.getRMPTarget(self.rmp_handle) self.orig = np.array([state[0].x, state[0].y, state[0].z]) self.axis_x = np.array([state[1].x, state[1].y, state[1].z]) self.axis_y = np.array([state[2].x, state[2].y, state[2].z]) self.axis_z = np.array([state[3].x, state[3].y, state[3].z]) self.current_frame = {"orig": self.orig, "axis_x": self.axis_x, "axis_y": self.axis_y, "axis_z": self.axis_z} self.frame = self.current_frame self.current_target = { "orig": np.array([target[0].x, target[0].y, target[0].z]), "axis_x": np.array([target[1].x, target[1].y, target[1].z]), "axis_y": np.array([target[2].x, target[2].y, target[2].z]), "axis_z": np.array([target[3].x, target[3].y, target[3].z]), } class EndEffector: """ End effector object that controls movement. """ def __init__(self, dc, mp, ar, rmp_handle): """ Initialize end effector. Args: dc (omni.isaac.motion_planning._motion_planning.MotionPlanning): motion planning interface from RMP extension mp (omni.isaac.dynamic_control._dynamic_control.DynamicControl): dynamic control interface ar (int): articulation identifier rmp_handle (int): RMP handle identifier """ self.dc = dc self.ar = ar self.mp = mp self.rmp_handle = rmp_handle self.gripper = Gripper(dc, ar) self.status = Status(mp, rmp_handle) self.UpRot = Gf.Rotation(Gf.Vec3d(0, 0, 1), 90) def freeze(self): self.go_local( orig=self.status.orig, axis_x=self.status.axis_x, axis_z=self.status.axis_z, wait_for_target=False ) def go_local( self, target=None, orig=[], axis_x=[], axis_y=[], axis_z=[], required_orig_err=0.01, required_axis_x_err=0.01, required_axis_y_err=0.01, required_axis_z_err=0.01, orig_thresh=None, axis_x_thresh=None, axis_y_thresh=None, axis_z_thresh=None, approach_direction=[], approach_standoff=0.1, approach_standoff_std_dev=0.001, use_level_surface_orientation=False, use_target_weight_override=True, use_default_config=False, wait_for_target=True, wait_time=None, ): self.target_weight_override_value = 10000.0 self.target_weight_override_std_dev = 0.03 if orig_thresh: required_orig_err = orig_thresh if axis_x_thresh: required_axis_x_err = axis_x_thresh if axis_y_thresh: required_axis_y_err = axis_y_thresh if axis_z_thresh: required_axis_z_err = axis_z_thresh if target: orig = target["orig"] if "axis_x" in target and target["axis_x"] is not None: axis_x = target["axis_x"] if "axis_y" in target and target["axis_y"] is not None: axis_y = target["axis_y"] if "axis_z" in target and target["axis_z"] is not None: axis_z = target["axis_z"] orig = np.array(orig) axis_x = np.array(axis_x) axis_y = np.array(axis_y) axis_z = np.array(axis_z) approach = _motion_planning.Approach((0, 0, 1), 0, 0) if len(approach_direction) != 0: approach = _motion_planning.Approach(approach_direction, approach_standoff, approach_standoff_std_dev) pose_command = _motion_planning.PartialPoseCommand() if len(orig) > 0: pose_command.set(_motion_planning.Command(orig, approach), int(_motion_planning.FrameElement.ORIG)) if len(axis_x) > 0: pose_command.set(_motion_planning.Command(axis_x), int(_motion_planning.FrameElement.AXIS_X)) if len(axis_y) > 0: pose_command.set(_motion_planning.Command(axis_y), int(_motion_planning.FrameElement.AXIS_Y)) if len(axis_z) > 0: pose_command.set(_motion_planning.Command(axis_z), int(_motion_planning.FrameElement.AXIS_Z)) self.mp.goLocal(self.rmp_handle, pose_command) if wait_for_target and wait_time: error = 1 future_time = time.time() + wait_time while error > required_orig_err and time.time() < future_time: # time.sleep(0.1) error = self.mp.getError(self.rmp_handle) def look_at(self, gripper_pos, target): # Y up works for look at but sometimes flips, go_local might be a safer bet with a locked y_axis orientation = math_utils.lookAt(gripper_pos, target, (0, 1, 0)) mat = Gf.Matrix3d(orientation).GetTranspose() self.go_local( orig=[gripper_pos[0], gripper_pos[1], gripper_pos[2]], axis_x=[mat.GetColumn(0)[0], mat.GetColumn(0)[1], mat.GetColumn(0)[2]], axis_z=[mat.GetColumn(2)[0], mat.GetColumn(2)[1], mat.GetColumn(2)[2]], ) class Franka: """ Franka objects that contains implementation details for robot control. """ def __init__(self, stage, prim, dc, mp, world=None, group_path="", default_config=None, is_ghost=False): """ Initialize Franka controller. Args: stage (pxr.Usd.Stage): usd stage prim (pxr.Usd.Prim): robot prim dc (omni.isaac.motion_planning._motion_planning.MotionPlanning): motion planning interface from RMP extension mp (omni.isaac.dynamic_control._dynamic_control.DynamicControl): dynamic control interface world (omni.isaac.samples.scripts.utils.world.World): simulation world handler default_config (tuple or list): default configuration for robot revolute joint drivers is_ghost (bool): flag for turning off collision and modifying visuals for robot arm """ self.dc = dc self.mp = mp self.prim = prim self.stage = stage # get handle to the articulation for this franka self.ar = self.dc.get_articulation(prim.GetPath().pathString) self.is_ghost = is_ghost self.base = self.dc.get_articulation_root_body(self.ar) body_count = self.dc.get_articulation_body_count(self.ar) for bodyIdx in range(body_count): body = self.dc.get_articulation_body(self.ar, bodyIdx) self.dc.set_rigid_body_disable_gravity(body, True) exec_folder = os.path.abspath( carb.tokens.get_tokens_interface().resolve( f"{os.environ['ISAAC_PATH']}/exts/omni.isaac.motion_planning/resources/lula/lula_franka" ) ) self.rmp_handle = self.mp.registerRmp( exec_folder + "/urdf/lula_franka_gen.urdf", exec_folder + "/config/robot_descriptor.yaml", exec_folder + "/config/franka_rmpflow_common.yaml", prim.GetPath().pathString, "right_gripper", True, ) print("franka rmp handle", self.rmp_handle) if world is not None: self.world = world self.world.rmp_handle = self.rmp_handle self.world.register_parent(self.base, self.prim, "panda_link0") settings = omni.kit.settings.get_settings_interface() self.mp.setFrequency(self.rmp_handle, settings.get("/physics/timeStepsPerSecond"), True) self.end_effector = EndEffector(self.dc, self.mp, self.ar, self.rmp_handle) if default_config: self.mp.setDefaultConfig(self.rmp_handle, default_config) self.target_visibility = True if self.is_ghost: self.target_visibility = False self.imageable = UsdGeom.Imageable(self.prim) def __del__(self): """ Unregister RMP. """ self.mp.unregisterRmp(self.rmp_handle) print(" Delete Franka") def set_pose(self, pos, rot): """ Set robot pose. """ self._mp.setTargetLocal(self.rmp_handle, pos, rot) def set_speed(self, speed_level): """ Set robot speed. """ pass def update(self): """ Update robot state. """ self.end_effector.gripper.update() self.end_effector.status.update() if self.imageable: if self.target_visibility is not self.imageable.ComputeVisibility(Usd.TimeCode.Default()): if self.target_visibility: self.imageable.MakeVisible() else: self.imageable.MakeInvisible() def send_config(self, config): """ Set robot default configuration. """ if self.is_ghost is False: self.mp.setDefaultConfig(self.rmp_handle, config)
13,794
Python
34.371795
132
0.582935
erasromani/isaac-sim-python/grasp/utils/isaac_utils.py
# Credits: All code except class RigidBody and Camera is taken from build code associated with nvidia/isaac-sim:2020.2.2_ea. import numpy as np import omni.kit from pxr import Usd, UsdGeom, Gf, PhysicsSchema, PhysxSchema def create_prim_from_usd(stage, prim_env_path, prim_usd_path, location): """ Create prim from usd. """ envPrim = stage.DefinePrim(prim_env_path, "Xform") # create an empty Xform at the given path envPrim.GetReferences().AddReference(prim_usd_path) # attach the USD to the given path set_translate(envPrim, location) # set pose return stage.GetPrimAtPath(envPrim.GetPath().pathString) def set_up_z_axis(stage): """ Utility function to specify the stage with the z axis as "up". """ rootLayer = stage.GetRootLayer() rootLayer.SetPermissionToEdit(True) with Usd.EditContext(stage, rootLayer): UsdGeom.SetStageUpAxis(stage, UsdGeom.Tokens.z) def set_translate(prim, new_loc): """ Specify position of a given prim, reuse any existing transform ops when possible. """ properties = prim.GetPropertyNames() if "xformOp:translate" in properties: translate_attr = prim.GetAttribute("xformOp:translate") translate_attr.Set(new_loc) elif "xformOp:translation" in properties: translation_attr = prim.GetAttribute("xformOp:translate") translation_attr.Set(new_loc) elif "xformOp:transform" in properties: transform_attr = prim.GetAttribute("xformOp:transform") matrix = prim.GetAttribute("xformOp:transform").Get() matrix.SetTranslateOnly(new_loc) transform_attr.Set(matrix) else: xform = UsdGeom.Xformable(prim) xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeTransform, UsdGeom.XformOp.PrecisionDouble, "") xform_op.Set(Gf.Matrix4d().SetTranslate(new_loc)) def set_rotate(prim, rot_mat): """ Specify orientation of a given prim, reuse any existing transform ops when possible. """ properties = prim.GetPropertyNames() if "xformOp:rotate" in properties: rotate_attr = prim.GetAttribute("xformOp:rotate") rotate_attr.Set(rot_mat) elif "xformOp:transform" in properties: transform_attr = prim.GetAttribute("xformOp:transform") matrix = prim.GetAttribute("xformOp:transform").Get() matrix.SetRotateOnly(rot_mat.ExtractRotation()) transform_attr.Set(matrix) else: xform = UsdGeom.Xformable(prim) xform_op = xform.AddXformOp(UsdGeom.XformOp.TypeTransform, UsdGeom.XformOp.PrecisionDouble, "") xform_op.Set(Gf.Matrix4d().SetRotate(rot_mat)) def create_background(stage, background_stage): """ Create background stage. """ background_path = "/background" if not stage.GetPrimAtPath(background_path): backPrim = stage.DefinePrim(background_path, "Xform") backPrim.GetReferences().AddReference(background_stage) # Move the stage down -104cm so that the floor is below the table wheels, move in y axis to get light closer set_translate(backPrim, Gf.Vec3d(0, -400, -104)) def setup_physics(stage): """ Set default physics parameters. """ # Specify gravity metersPerUnit = UsdGeom.GetStageMetersPerUnit(stage) gravityScale = 9.81 / metersPerUnit gravity = Gf.Vec3f(0.0, 0.0, -gravityScale) scene = PhysicsSchema.PhysicsScene.Define(stage, "/physics/scene") scene.CreateGravityAttr().Set(gravity) PhysxSchema.PhysxSceneAPI.Apply(stage.GetPrimAtPath("/physics/scene")) physxSceneAPI = PhysxSchema.PhysxSceneAPI.Get(stage, "/physics/scene") physxSceneAPI.CreatePhysxSceneEnableCCDAttr(True) physxSceneAPI.CreatePhysxSceneEnableStabilizationAttr(True) physxSceneAPI.CreatePhysxSceneEnableGPUDynamicsAttr(False) physxSceneAPI.CreatePhysxSceneBroadphaseTypeAttr("MBP") physxSceneAPI.CreatePhysxSceneSolverTypeAttr("TGS") class Camera: """ Camera object that contain state information for a camera in the scene. """ def __init__(self, camera_path, translation, rotation): """ Initializes the Camera object. Args: camera_path (str): path of camera in stage hierarchy translation (list or tuple): camera position rotation (list or tuple): camera orientation described by euler angles in degrees """ self.prim = self._kit.create_prim( camera_path, "Camera", translation=translation, rotation=rotatation, ) self.name = self.prim.GetPrimPath().name self.vpi = omni.kit.viewport.get_viewport_interface def set_translate(self, position): """ Set camera position. Args: position (tuple): camera position specified by (X, Y, Z) """ if not isinstance(position, tuple): position = tuple(position) translate_attr = self.prim.GetAttribute("xformOp:translate") translate_attr.Set(position) def set_rotate(self, rotation): """ Set camera position. Args: rotation (tuple): camera orientation specified by three euler angles in degrees """ if not isinstance(rotation, tuple): rotation = tuple(rotation) rotate_attr = self.prim.GetAttribute("xformOp:rotateZYX") rotate_attr.Set(rotation) def activate(self): """ Activate camera to viewport. """ self.vpi.get_viewport_window().set_active_camera(str(self.prim.GetPath())) def __repr__(self): return self.name class Camera: """ Camera object that contain state information for a camera in the scene. """ def __init__(self, camera_path, translation, rotation): """ Initializes the Camera object. Args: camera_path (str): path of camera in stage hierarchy translation (list or tuple): camera position rotation (list or tuple): camera orientation described by euler angles in degrees """ self.prim = self._kit.create_prim( camera_path, "Camera", translation=translation, rotation=rotation, ) self.name = self.prim.GetPrimPath().name self.vpi = omni.kit.viewport.get_viewport_interface def set_translate(self, position): """ Set camera position. Args: position (tuple): camera position specified by (X, Y, Z) """ if not isinstance(position, tuple): position = tuple(position) translate_attr = self.prim.GetAttribute("xformOp:translate") translate_attr.Set(position) def set_rotate(self, rotation): """ Set camera position. Args: rotation (tuple): camera orientation specified by three euler angles in degrees """ if not isinstance(rotation, tuple): rotation = tuple(rotation) rotate_attr = self.prim.GetAttribute("xformOp:rotateZYX") rotate_attr.Set(rotation) def activate(self): """ Activate camera to viewport. """ self.vpi.get_viewport_window().set_active_camera(str(self.prim.GetPath())) def __repr__(self): return self.name class RigidBody: """ RigidBody objects that contains state information of the rigid body. """ def __init__(self, prim, dc): """ Initializes for RigidBody object Args: prim (pxr.Usd.Prim): rigid body prim dc (omni.isaac.motion_planning._motion_planning.MotionPlanning): motion planning interface from RMP extension """ self.prim = prim self._dc = dc self.name = prim.GetPrimPath().name self.handle = self.get_rigid_body_handle() def get_rigid_body_handle(self): """ Get rigid body handle. """ object_children = self.prim.GetChildren() for child in object_children: child_path = child.GetPath().pathString body_handle = self._dc.get_rigid_body(child_path) if body_handle != 0: bin_path = child_path object_handle = self._dc.get_rigid_body(bin_path) if object_handle != 0: return object_handle def get_linear_velocity(self): """ Get linear velocity of rigid body. """ return np.array(self._dc.get_rigid_body_linear_velocity(self.handle)) def get_angular_velocity(self): """ Get angular velocity of rigid body. """ return np.array(self._dc.get_rigid_body_angular_velocity(self.handle)) def get_speed(self): """ Get speed of rigid body given by the l2 norm of the velocity. """ velocity = self.get_linear_velocity() speed = np.linalg.norm(velocity) return speed def get_pose(self): """ Get pose of the rigid body containing the position and orientation information. """ return self._dc.get_rigid_body_pose(self.handle) def get_position(self): """ Get the position of the rigid body object. """ pose = self.get_pose() position = np.array(pose.p) return position def get_orientation(self): """ Get orientation of the rigid body object. """ pose = self.get_pose() orientation = np.array(pose.r) return orientation def get_bound(self): """ Get bounds of the rigid body object in global coordinates. """ bound = UsdGeom.Mesh(self.prim).ComputeWorldBound(0.0, "default").GetBox() return [np.array(bound.GetMin()), np.array(bound.GetMax())] def __repr__(self): return self.name
9,822
Python
32.640411
124
0.633069
erasromani/isaac-sim-python/grasp/utils/visualize.py
import os import ffmpeg import matplotlib.pyplot as plt def screenshot(sd_helper, suffix="", prefix="image", directory="images/"): """ Take a screenshot of the current time step of a running NVIDIA Omniverse Isaac-Sim simulation. Args: sd_helper (omni.isaac.synthetic_utils.SyntheticDataHelper): helper class for visualizing OmniKit simulation suffix (str or int): suffix for output filename of image screenshot of current time step of simulation prefix (str): prefix for output filename of image screenshot of current time step of simulation directory (str): output directory of image screenshot of current time step of simulation """ gt = sd_helper.get_groundtruth( [ "rgb", ] ) image = gt["rgb"][..., :3] plt.imshow(image) if suffix == "": suffix = 0 if isinstance(suffix, int): filename = os.path.join(directory, f'{prefix}_{suffix:05}.png') else: filename = os.path.join(directory, f'{prefix}_{suffix}.png') plt.axis('off') plt.savefig(filename) def img2vid(input_pattern, output_fn, pattern_type='glob', framerate=25): """ Create video from a collection of images. Args: input_pattern (str): input pattern for a path of collection of images output_fn (str): video output filename pattern_type (str): pattern type for input pattern framerate (int): video framerate """ ( ffmpeg .input(input_pattern, pattern_type=pattern_type, framerate=framerate) .output(output_fn) .run(overwrite_output=True, quiet=True) )
1,647
Python
30.692307
115
0.649059
pantelis-classes/omniverse-ai/README.md
# Learning in Simulated Worlds in Omniverse. Please go to the wiki tab. ![image](https://user-images.githubusercontent.com/589439/143660504-bbcdb786-ea5f-4f74-9496-489032fa2e03.png) https://github.com/pantelis-classes/omniverse-ai/wiki <hr /> # Wiki Navigation * [Home][home] * [Isaac-Sim-SDK-Omniverse-Installation][Omniverse] * [Synthetic-Data-Generation][SDG] * [NVIDIA Transfer Learning Toolkit (TLT) Installation][TLT] * [NVIDIA TAO][TAO] * [detectnet_v2 Installation][detectnet_v2] * [Jupyter Notebook][Jupyter-Notebook] [home]: https://github.com/pantelis-classes/omniverse-ai/wiki [Omniverse]: https://github.com/pantelis-classes/omniverse-ai/wiki/Isaac-Sim-SDK-Omniverse-Installation [SDG]: https://github.com/pantelis-classes/omniverse-ai/wiki/Synthetic-Data-Generation-(Python-API) [TLT]: https://github.com/pantelis-classes/omniverse-ai/wiki/NVIDIA-Transfer-Learning-Toolkit-(TLT)-Installation [NTLTSD]: https://github.com/pantelis-classes/omniverse-ai/wiki/Using-NVIDIA-TLT-with-Synthetic-Data [TAO]: https://github.com/pantelis-classes/omniverse-ai/wiki/TAO-(NVIDIA-Train,-Adapt,-and-Optimize) [detectnet_v2]: https://github.com/pantelis-classes/omniverse-ai/wiki/detectnet_v2-Installation [Jupyter-Notebook]: https://github.com/pantelis-classes/omniverse-ai/wiki/Jupyter-Notebook <hr /> <a href="https://docs.google.com/document/d/1WAzdqlWE0RUns41-0P951mnsqMR7I2XV/edit?usp=sharing&ouid=112712585131518554614&rtpof=true&sd=true"> ![image](https://user-images.githubusercontent.com/589439/161171527-4e748031-ff4d-46ed-b1ac-b521cd8ffd3c.png)</a> ## Reports <a href="https://docs.google.com/document/d/1jVXxrNgtOosZw_vAORzomSnmy45G3qK_mmk2B4oJtPg/edit?usp=sharing">Domain Randomization Paper</a><br> This report provides an indepth understanding on how Domain Randomization helps perception machine learning tasks such as object detection and/or segmentation. <a href="https://docs.google.com/document/d/1WAzdqlWE0RUns41-0P951mnsqMR7I2XV/edit?usp=sharing&ouid=112712585131518554614&rtpof=true&sd=true">Final Report</a><br> This final report contains an indepth explanation on the hardware/software used, the methods used to collect the data, an explanation on the data collected, trained and pruned, and the overall conclusions made from the trained and pruned datasets. <a href="https://docs.google.com/document/d/1WAzdqlWE0RUns41-0P951mnsqMR7I2XV/edit?usp=sharing&ouid=112712585131518554614&rtpof=true&sd=true">![image](https://user-images.githubusercontent.com/589439/161171433-d2359618-b3dc-4839-b509-c938ce401f73.png)</a> ## Authors <a href="https://github.com/dfsanchez999">Diego Sanchez</a> | <a href="https://harp.njit.edu/~jga26/">Jibran Absarulislam</a> | <a href="https://github.com/markkcruz">Mark Cruz</a> | <a href="https://github.com/sppatel2112">Sapan Patel</a> ## Supervisor <a href="https://pantelis.github.io/">Dr. Pantelis Monogioudis</a> ## Credits <a href="https://developer.nvidia.com/nvidia-omniverse-platform">NVIDIA Omniverse</a><br> A platform that enables universal interoperability across different applications and 3D ecosystem vendors providing real-time scene updates.
3,133
Markdown
57.037036
256
0.785828
pantelis-classes/omniverse-ai/Images/images.md
# A markdown file containing all the images in the wiki. (Saved in github's cloud) ![image](https://user-images.githubusercontent.com/589439/143155216-aad83dd6-0bc7-4c85-8c45-4696659a0ff2.png) ![image](https://user-images.githubusercontent.com/589439/143155405-5ab0c92a-10ea-4af2-bcc3-10215808025c.png) ![image](https://user-images.githubusercontent.com/589439/143155607-66dd62b1-9096-4960-af80-05c7d0560616.png) ![image](https://user-images.githubusercontent.com/589439/143155666-96fc6a9d-ca5c-4e10-bb4b-0b75c6afd331.png) ![image](https://user-images.githubusercontent.com/589439/143155774-8a7f0020-70e7-48a4-ad38-9abfda935f1b.png) ![image](https://user-images.githubusercontent.com/589439/143155905-39760d3e-ef68-4a03-8af8-8f1ea0fa7801.png) ![image](https://user-images.githubusercontent.com/589439/143155958-7fe5ce25-d447-4a07-b79b-9785ac456b9a.png) ![image](https://user-images.githubusercontent.com/589439/143155991-41cd11df-3ff9-4ca5-b112-7e63785740db.png) ![image](https://user-images.githubusercontent.com/589439/143156000-5b8dea90-b63b-4c05-90e5-da8f484070e2.png) ![image](https://user-images.githubusercontent.com/589439/143156018-cc426e4a-2785-4050-b643-dc2bee6251aa.png) ![image](https://user-images.githubusercontent.com/589439/143156108-4e4c2f1e-138b-451e-87a7-3cff9da960cb.png) ![image](https://user-images.githubusercontent.com/589439/143156160-4aef319c-3756-4ff6-b429-032d2e45513f.png) ![image](https://user-images.githubusercontent.com/589439/143156180-226269c5-ba2c-4f29-ad2e-378eaf8ee523.png) ![image](https://user-images.githubusercontent.com/589439/143156205-4d4b8afb-c334-4a22-af62-33f7174c716d.png) ![image](https://user-images.githubusercontent.com/589439/143156303-93a31da8-2dc3-49d5-b80a-0246b877dd34.png) ![image](https://user-images.githubusercontent.com/589439/143156381-07c34f94-b2f5-42ac-a61e-10fb5f27a8c9.png) ![image](https://user-images.githubusercontent.com/589439/143157449-7a86072c-0dc4-4e49-a1b3-a62c3f88187c.png) ![image](https://user-images.githubusercontent.com/589439/143157471-7b9bfc36-d505-4b77-8938-d9387e8280b1.png) ![image](https://user-images.githubusercontent.com/589439/143157512-a862401e-38f8-4334-90eb-3f597c583a48.png) ![image](https://user-images.githubusercontent.com/589439/143157553-744bfd7e-5b14-4905-bc84-cf01a245d9ff.png) ![image](https://user-images.githubusercontent.com/589439/143158851-a4f7a00b-4f25-40e0-ae2e-2fba3edef08e.png) ![image](https://user-images.githubusercontent.com/589439/143158880-17506781-abc2-4188-aca3-4546dcb475f9.png) ![image](https://user-images.githubusercontent.com/589439/143158912-97fb24ad-8b49-432e-a3d7-4badb0977714.png) ![image](https://user-images.githubusercontent.com/589439/143158967-afad1831-822f-4440-9a4b-9248c909007d.png) ![image](https://user-images.githubusercontent.com/589439/143160948-90380e23-e8cc-42b3-8933-4d88c5c9bc90.png) ![image](https://user-images.githubusercontent.com/589439/143655465-4efa6088-9bcd-4df4-92f3-d641975ece93.png) ![image](https://user-images.githubusercontent.com/589439/143655576-0ff7992c-0339-48c5-94f1-2be90b2877e5.png ![image](https://user-images.githubusercontent.com/589439/143655623-cc957acf-a6f3-4e23-ad84-2f63762db770.png) ![image](https://user-images.githubusercontent.com/589439/143655734-92f93f94-723b-4a03-aee3-9004ebdfa931.png) ![image](https://user-images.githubusercontent.com/589439/143655803-423dddd8-398e-49e0-839f-d96a5e655441.png) ![image](https://user-images.githubusercontent.com/589439/143656306-85f1aefd-a6a8-4f07-a2e9-b7153ff175ce.png) ![image](https://user-images.githubusercontent.com/589439/143663079-a9503fd4-75f1-4bb0-bfd8-ada3bd9fa2ec.png) ![image](https://user-images.githubusercontent.com/589439/143663183-0bdb6ee0-84be-4788-bdc7-0ab23e9e5d41.png) ![image](https://user-images.githubusercontent.com/589439/143663255-907bff87-ae02-4c4d-8400-ef6a914c3aae.png) ![image](https://user-images.githubusercontent.com/589439/143663347-4ec70e43-da4d-4b97-bd26-b336586bc9d7.png) ![image](https://user-images.githubusercontent.com/589439/143663405-5323b62f-74a8-409f-80a8-c2c6ad961497.png) ![image](https://user-images.githubusercontent.com/589439/143664760-9d9bc86e-9e4a-4bf0-882a-3fa2db1d416b.png) ![image](https://user-images.githubusercontent.com/589439/143664935-4e1d2e45-b4da-4f83-922c-2e7581a65f98.png) ![image](https://user-images.githubusercontent.com/589439/143665245-9dc7ac44-78cd-45ac-992c-f3e23d1a044e.png) ![image](https://user-images.githubusercontent.com/589439/143665289-9f80a74d-f3f4-45b9-a92a-e213a6c37056.png) ![image](https://user-images.githubusercontent.com/589439/143666284-5ff41514-5c89-4cc7-afa0-b17ed9003b61.png) ![image](https://user-images.githubusercontent.com/589439/143666323-eb172e58-d0cb-4228-af31-f9f7daf43d19.png) ![image](https://user-images.githubusercontent.com/589439/143666365-9cbab570-213f-403b-bdc9-d891025fabac.png) ![image](https://user-images.githubusercontent.com/589439/143666538-47885861-2340-4fca-9507-8a1a66d82fe9.png) ![image](https://user-images.githubusercontent.com/589439/143666560-4a7dd70c-abde-4af8-a1c7-16eab5d99bf3.png) ![image](https://user-images.githubusercontent.com/589439/143666727-f7a06dbc-aba6-410f-8bd5-0aa24ecf38d3.png) ![image](https://user-images.githubusercontent.com/589439/143666820-b12aafdd-f1e1-4c46-889c-34af1c9ca929.png) ![image](https://user-images.githubusercontent.com/589439/143666829-813f9715-3a2d-49f1-9124-5a690681accc.png) ![image](https://user-images.githubusercontent.com/589439/143666852-90d659de-01a0-4685-bf36-42868e1c77d9.png) ![image](https://user-images.githubusercontent.com/589439/143666866-5896317b-1255-4e67-abe7-5f3ff03be288.png) ![image](https://user-images.githubusercontent.com/589439/143666874-a453b635-63e6-44e0-94c1-7127e1c7f729.png) ![image](https://user-images.githubusercontent.com/589439/143723668-73111ae8-0ac5-4729-b89b-481d29b25d16.png) ![image](https://user-images.githubusercontent.com/589439/143723824-968874c9-5f8e-44cc-a535-d0d336a72b78.png) ![image](https://user-images.githubusercontent.com/589439/143723906-baf552bc-e9d1-435b-8d43-553f6f0a6707.png) ![image](https://user-images.githubusercontent.com/589439/143723930-c9c8658f-339d-4693-894a-daf70dea28ae.png) ![image](https://user-images.githubusercontent.com/589439/143724110-61196b6e-7d6e-4fc5-86a4-c7234cd4d379.png) ![image](https://user-images.githubusercontent.com/589439/143724128-692a9f83-0365-4f0f-9068-e8e6af9cac15.png) ![image](https://user-images.githubusercontent.com/589439/143724159-ae6c0578-14e4-463b-8287-ef4147ff0f34.png) ![image](https://user-images.githubusercontent.com/589439/143724167-70721d41-12f2-4322-b611-3f07df92d344.png) ![image](https://user-images.githubusercontent.com/589439/143724450-3e95cb75-0dba-45da-9abf-7de026d3b8f3.png) ![image](https://user-images.githubusercontent.com/589439/143724459-afaf363f-dd92-494b-9707-5400f409d05a.png) ![image](https://user-images.githubusercontent.com/589439/143724476-77609fc2-e5a7-4773-94d9-799f2b78be6f.png) ![image](https://user-images.githubusercontent.com/589439/143724492-3036d310-3569-4820-9087-daca2bf9869f.png) ![image](https://user-images.githubusercontent.com/589439/143724167-70721d41-12f2-4322-b611-3f07df92d344.png) ![image](https://user-images.githubusercontent.com/589439/143727424-3d4930ef-647a-42cc-838a-ea7284dbda2a.png) ![image](https://user-images.githubusercontent.com/589439/143727464-598963b9-73c6-4b65-a617-5eecf454f4e9.png) ![image](https://user-images.githubusercontent.com/589439/143727479-6828fc05-4672-4c60-8a21-f1fe6e97d0ea.png) ![image](https://user-images.githubusercontent.com/589439/143727509-2313c55c-bc6d-4451-91f1-f4424fac580a.png) ![image](https://user-images.githubusercontent.com/589439/143727576-96f5f991-0493-4417-94e8-e12ab8bfd769.png) ![image](https://user-images.githubusercontent.com/589439/143727645-23bc99ea-105b-455b-b03f-1737892d3b9a.png) ![image](https://user-images.githubusercontent.com/589439/143729065-f90e8ed0-07ac-4c77-8e4b-8d4c7fcffdef.png) ![image](https://user-images.githubusercontent.com/589439/143729154-00111bfe-534d-4403-bcab-92e3adf032ee.png) ![image](https://user-images.githubusercontent.com/589439/143729162-ad6f82c6-643e-4ec0-a082-75842c237053.png) ![image](https://user-images.githubusercontent.com/589439/143729232-16e479b2-527e-4b0f-94b0-e43bd08cfba8.png) ![image](https://user-images.githubusercontent.com/589439/143729360-d16987b0-25ab-42db-a08d-66bae5576443.png) ![image](https://user-images.githubusercontent.com/589439/143729413-dffdd2dc-d0cb-40aa-8b0f-fd567b2a527c.png) ![image](https://user-images.githubusercontent.com/589439/143729441-e43fde75-76ed-489d-acef-56fea5ddf539.png) ![image](https://user-images.githubusercontent.com/589439/143729376-8e7db409-6651-4a55-90a7-8750d77d5838.png) ![image](https://user-images.githubusercontent.com/589439/143729521-c7b0fc38-baf0-4701-9032-dba324497f5e.png) ![image](https://user-images.githubusercontent.com/589439/143730115-59cf1d93-b27b-4902-a39b-522551733281.png) ![image](https://user-images.githubusercontent.com/589439/143730111-33db8027-2c8e-41e8-98a6-9e5e45984fc5.png) ![image](https://user-images.githubusercontent.com/589439/143797035-060165d6-d462-4160-b9f0-a2b31bdd3d72.png) ![image](https://user-images.githubusercontent.com/589439/143808844-e4244060-5842-41e2-868d-7a75c57a3c21.png) ![image](https://user-images.githubusercontent.com/589439/143809035-2ae69802-7929-47a6-a445-12b571cacd14.png) ![image](https://user-images.githubusercontent.com/589439/143809423-cea91ff5-916f-4c03-b7c3-e4eb625756a4.png) ![image](https://user-images.githubusercontent.com/589439/143809877-6e766d73-ff1c-405f-bd6f-600a58736b25.png) ![image](https://user-images.githubusercontent.com/589439/143809929-1e119a3b-0239-4144-bece-a1d9aa7d51bf.png) ![image](https://user-images.githubusercontent.com/589439/143809965-7997fd22-e172-4360-af13-8c0d65b83f4e.png) ![image](https://user-images.githubusercontent.com/589439/143809992-3a41471a-dd02-4a3e-acea-96b7a7c3a674.png) ![image](https://user-images.githubusercontent.com/589439/143810068-5f175928-4e4d-4820-8b14-067a31b35cd6.png) ![image](https://user-images.githubusercontent.com/589439/143810077-6bfb77d3-4643-4129-a8c4-0b4fbf196b43.png) ![image](https://user-images.githubusercontent.com/589439/143810093-f8508bb1-5728-4010-b87b-21f4aed74e73.png) ![image](https://user-images.githubusercontent.com/589439/143810115-c88787cb-3cae-433a-93c8-712a25db0c78.png) ![image](https://user-images.githubusercontent.com/589439/143810872-231209ca-eb71-4bd2-930d-3527fbaaace0.png) ![image](https://user-images.githubusercontent.com/589439/143810896-a9875ab8-b9ab-4ced-ad49-c47ea321a052.png) ![image](https://user-images.githubusercontent.com/589439/143810915-c9428405-1f00-462d-8a80-2d1467c95e7b.png) ![image](https://user-images.githubusercontent.com/589439/143810942-972f34b4-b7a4-4532-9e8d-6f6bcc01ac9f.png) ![image](https://user-images.githubusercontent.com/589439/143810970-69367200-b71e-481f-b813-3d447e154bb3.png) ![image](https://user-images.githubusercontent.com/589439/143811032-4adc40ef-fa0e-4596-88b5-2a24610cdaf3.png) ![image](https://user-images.githubusercontent.com/589439/143811081-edaa58f5-d3e6-40c6-9dab-f19e547d090e.png) ![image](https://user-images.githubusercontent.com/589439/143811255-0b946589-2679-4747-b514-3b91ac2259cd.png) ![image](https://user-images.githubusercontent.com/589439/143811275-488e15be-15bd-4341-8392-834cd68bbcad.png)
11,427
Markdown
48.90393
109
0.808874
pantelis-classes/omniverse-ai/Wikipages/Editing Synthetic Data Generation (Python API).md
# Synthetic Data in Omniverse from Isaac Sim Omniverse comes with synthetic data generation samples in Python. These can be found in (home/.local/share/ov/pkg/isaac_sim-2021.2.0/python_samples) ## Offline Dataset Generation This example will demonstrate how to generate synthetic dataset offline which can be used for training deep neural networks using default values. From the package root folder (home/.local/share/ov/pkg/isaac_sim-2021.2.0/) run this command to generate synthetic data: ./python.sh standalone_examples/replicator/offline_generation.py These are the arguments we can use: 1. --scenario: Specify the USD stage to load from omniverse server for dataset generation. 1. --num_frames: Number of frames to record. 1. --max_queue_size: Maximum size of queue to store and process synthetic data. If value of this field is less than or equal to zero, the queue size is infinite. 1. --data_dir: Location where data will be output. Default is ./output 1. --writer_mode: Specify output format - npy or kitti. Default is npy. When KittiWriter is used with the --writer_mode kitti argument, two more arguments become available. 6. --classes: Which classes to write labels for. Defaults to all classes. 7. --train_size: Number of frames for training set. Defaults to 8. queue size is infinite. With arguments, the above command looks like: ./python.sh standalone_examples/replicator/offline_generation.py --scenario omniverse://<server-name>/Isaac/Samples/Synthetic_Data/Stage/warehouse_with_sensors.usd --num_frames 10 --max_queue_size 500 All output data is stored within (home/.local/share/ov/pkg/isaac_sim-2021.1.1/output) ## Offline Training with TLT To leverage TLT, we need to have a dataset in the Kitti format. NVIDIA Transfer Learning Toolkit (TLT) is a Python-based AI toolkit for taking purpose-built pretrained AI models and customizing them with your own data. ### Offline Kitti Dataset Generation for this we add the argument --writer_mode kitti and specify the classes like in this example (not specifying an argument makes it use the default): ./python.sh standalone_examples/replicator/offline_generation.py --writer_mode kitti --classes ceiling floor --num_frames 500 --train_size 100 ![image](https://user-images.githubusercontent.com/589439/143666365-9cbab570-213f-403b-bdc9-d891025fabac.png) ![image](https://user-images.githubusercontent.com/589439/143666538-47885861-2340-4fca-9507-8a1a66d82fe9.png) ![image](https://user-images.githubusercontent.com/589439/143666560-4a7dd70c-abde-4af8-a1c7-16eab5d99bf3.png) ![omniverse data gen](https://user-images.githubusercontent.com/589439/143667012-183800ff-f197-44a7-9677-d19940a06179.gif) The python scripts can be extensively modified to generate more customized datasets (code deep dive to come). - The output of the synthetic data generation can be found in: `~/.local/share/ov/pkg/isaac_sim-2021.2.0/output` ![image](https://user-images.githubusercontent.com/589439/143666727-f7a06dbc-aba6-410f-8bd5-0aa24ecf38d3.png) - The dataset is divided into two folders; A Training and Test Dataset. The training dataset contains **images** and **labels** of the warehouse. ![image](https://user-images.githubusercontent.com/589439/143666820-b12aafdd-f1e1-4c46-889c-34af1c9ca929.png) ![image](https://user-images.githubusercontent.com/589439/143666829-813f9715-3a2d-49f1-9124-5a690681accc.png) ![image](https://user-images.githubusercontent.com/589439/143666852-90d659de-01a0-4685-bf36-42868e1c77d9.png) ![image](https://user-images.githubusercontent.com/589439/143666866-5896317b-1255-4e67-abe7-5f3ff03be288.png) - The test dataset contains only **images**. ![image](https://user-images.githubusercontent.com/589439/143666874-a453b635-63e6-44e0-94c1-7127e1c7f729.png) ![omniversepicgen](https://user-images.githubusercontent.com/589439/143667064-d0136cd5-9b3e-4b5d-987f-c013ff08d401.gif)
3,918
Markdown
49.243589
218
0.782797
pantelis-classes/omniverse-ai/Wikipages/Isaac Sim SDK Omniverse Installation.md
## Prerequisites Ubuntu 18.04 LTS required Nvidia drivers 470 or higher ### Installing Nvidia Drivers on Ubuntu 18.04 LTS sudo apt-add-repository -r ppa:graphics-drivers/ppa ![image](https://user-images.githubusercontent.com/589439/143662835-6d5624b2-b78d-4ff2-acc3-efadc64d58a2.png) sudo apt update ![image](https://user-images.githubusercontent.com/589439/143662852-f99e89cc-1c28-4039-8c25-95c470de171f.png) sudo apt remove nvidia* ![image](https://user-images.githubusercontent.com/589439/143662863-5dbc78c5-c175-495e-bd36-5b214557774c.png) ![image](https://user-images.githubusercontent.com/589439/143662877-cd6abe58-973f-4da1-ac1c-9fe5d28a5853.png) sudo apt autoremove ![image](https://user-images.githubusercontent.com/589439/143662895-53e3155b-e8bf-498b-9bb3-4cbe39e1354a.png) ![image](https://user-images.githubusercontent.com/589439/143662915-70024577-3531-46da-8f6e-ea2d8d230e8a.png) sudo ubuntu-drivers autoinstall ![image](https://user-images.githubusercontent.com/589439/143662959-6b21b9f4-5462-4b9d-9a29-083fad49eafe.png) sudo apt install nvidia-driver-470 ![image](https://user-images.githubusercontent.com/589439/143662965-5e05ee0d-a48f-4161-a086-ab03bf6854bf.png) - Restart your PC. - Run nvidia-smi to make sure you are on the latest nvidia drivers for Isaac. nvidia-smi ![image](https://user-images.githubusercontent.com/589439/143663079-a9503fd4-75f1-4bb0-bfd8-ada3bd9fa2ec.png) ## Omniverse and Isaac Sim installation (executable) ### 1. Create nvidia developer account. This is required to access some of the downloads as well as obtaining API keys for Nvidia NGC - Go to this <a href="https://developer.nvidia.com/developer-program">link</a> and create an account. ![image](https://user-images.githubusercontent.com/589439/143655734-92f93f94-723b-4a03-aee3-9004ebdfa931.png) - Fill out your NVIDIA profile. ![image](https://user-images.githubusercontent.com/589439/143655803-423dddd8-398e-49e0-839f-d96a5e655441.png) ### 2. Go to this <a href="https://www.nvidia.com/en-us/omniverse/">omniverse link</a> and download Omniverse and install. ![image](https://user-images.githubusercontent.com/589439/143158851-a4f7a00b-4f25-40e0-ae2e-2fba3edef08e.png) - Fill out the form. ![image](https://user-images.githubusercontent.com/589439/143158880-17506781-abc2-4188-aca3-4546dcb475f9.png) - Click the download link for Linux. ![image](https://user-images.githubusercontent.com/589439/143158912-97fb24ad-8b49-432e-a3d7-4badb0977714.png) - Download and save the AppImage file to your ~/Downloads folder. ![image](https://user-images.githubusercontent.com/589439/143158967-afad1831-822f-4440-9a4b-9248c909007d.png) - Run these commands to execute the AppImage. cd ~/Downloads ls chmod +x omniverse-launcher-linux.AppImage ./omniverse-launcher-linux.AppImage ![image](https://user-images.githubusercontent.com/589439/143656306-85f1aefd-a6a8-4f07-a2e9-b7153ff175ce.png) ### 3. Login to Omniverse to install Isaac Sim 2021. - Login with your NVIDIA credentials. ![image](https://user-images.githubusercontent.com/589439/143160948-90380e23-e8cc-42b3-8933-4d88c5c9bc90.png) - Accept the terms of agreement. ![image](https://user-images.githubusercontent.com/589439/143161008-59913f3c-cfde-4c9f-93d4-609dc0346469.png) - Click continue. (default paths) ![image](https://user-images.githubusercontent.com/589439/143161046-21afc550-6bf7-450c-b023-3296de59d7b4.png) - Install cache. ![image](https://user-images.githubusercontent.com/589439/143161192-9936a489-e81d-4ccc-a2e0-caf120ce92c4.png) ### 4. Installing Isaac through Omniverse. - Click the Exchange tab in Omniverse. ![image](https://user-images.githubusercontent.com/589439/143165080-9daa5e96-99c0-4e60-9a40-ff4f77944311.png) - Search for Isaac and Click Isaac Sim. ![image](https://user-images.githubusercontent.com/589439/143165387-659a75bf-ba62-49e4-9bab-320b0da9eeb1.png) - Click install. ![image](https://user-images.githubusercontent.com/589439/143165778-75f9cbea-b93b-4c0a-9661-269ec0e643f5.png) ### 5. Go to the nucleus tab and create a nucleus local server to run the Omniverse Isaac Sim Samples. - Create your local nucleus account by clicking the Nucleus tab in Omniverse. - Click Add Local Nucleus Service. ![image](https://user-images.githubusercontent.com/589439/143163402-c38ef3e5-64a8-437f-8a4c-7f978b37e40b.png) - Click Next. (Default Path) ![image](https://user-images.githubusercontent.com/589439/143163446-5fa6c2bc-6437-4239-bcd7-5be8f9159de7.png) - Create Administrator Account. - Go to this <a href="https://developer.nvidia.com/nvidia-isaac-sim-assets-20211">link</a> and download the Isaac Sim Assets. ![image](https://user-images.githubusercontent.com/589439/143163494-95fba91c-12b3-4228-ae21-39ce639d66b4.png) - Unzip the by going to your downloads folder and right clicking isaac-sim-assets-2021.1.1.zip and choosing "extract here". ![image](https://user-images.githubusercontent.com/589439/143657912-d33c71f8-1965-4ca2-b06c-3d0790ffd1e4.png) - Log into the Nucleus Service with the credentials you created. ![image](https://user-images.githubusercontent.com/589439/143163725-d7b1a5ae-2391-4da0-9a70-f58ce063eb38.png) - Create an Isaac Folder. (Right click localhost) ![image](https://user-images.githubusercontent.com/589439/143164075-7cfacb0b-a2e2-4e29-a63f-85316f585a5e.png) ![image](https://user-images.githubusercontent.com/589439/143164125-851ba73c-0cc8-4555-b5d8-769d54625d8d.png) ![image](https://user-images.githubusercontent.com/589439/143657335-7499d95b-d4e0-44bd-88f9-87f4d73a9de9.png) - Drag and drop the the files in the isaac-sim-assets-2021.1.1. folder into the Isaac folder in Omniverse. (NOT THE .ZIP; THE FILES IN THE FOLDER THAT WAS CREATED WHEN YOU EXTRACTED IT). ![image](https://user-images.githubusercontent.com/589439/143666284-5ff41514-5c89-4cc7-afa0-b17ed9003b61.png) - Click upload. ![image](https://user-images.githubusercontent.com/589439/143657451-f9792fd1-e085-4850-a5b5-1ccbe9d4d4e5.png) ![image](https://user-images.githubusercontent.com/589439/143666323-eb172e58-d0cb-4228-af31-f9f7daf43d19.png) ### 6. Now launch Isaac Sim from the Library Omniverse tab within Omniverse. - Click Launch in the Library Tab of Omniverse. ![image](https://user-images.githubusercontent.com/589439/143657605-6b09b104-698d-4eba-b5f7-e027eee033eb.png) - Click Start with the default settings with "Issac Sim" selected. ![image](https://user-images.githubusercontent.com/589439/143657653-c3d31131-1da7-4919-b7dd-8a9555c4aba6.png) - Once Isaac Sim has finished loading, login to localhost with the browser window that opened. ![image](https://user-images.githubusercontent.com/589439/143658289-5d6ed582-e15f-4ca7-b3dd-b7cd1d37a2fb.png) ![image](https://user-images.githubusercontent.com/589439/143658399-7538b399-a050-4468-842f-32cfe782bf80.png) From here we can launch the Isaac Sim application. Currently there is no way to generate KITTI formated output synthetic data (which is required for Nvidia's transfer learning) from the domain randomizer within the application itself. For this we need to use Omniverse's built in python environment. ## Python API Installation 1. Using the Linux command line interface (terminal), go to the packages root folder (home/.local/share/ov/pkg/isaac_sim-2021.2.0/). cd ~/.local/share/ov/pkg/isaac_sim-2021.2.0/ ls ![image](https://user-images.githubusercontent.com/589439/143659975-91da9c57-e9c0-4c41-a208-c02010656a83.png) 2. Run the following command to get all the required dependencies: ./python.sh -m pip install -r requirements.txt ![image](https://user-images.githubusercontent.com/589439/143660049-8e2288b8-14c4-4503-a4d4-56fb45574849.png)
7,828
Markdown
38.741117
234
0.774527
pantelis-classes/omniverse-ai/Wikipages/TAO (NVIDIA Train, Adapt, and Optimize).md
All instructions stem from this <a href="https://docs.nvidia.com/tao/tao-toolkit/text/tao_toolkit_quick_start_guide.html">Nvidia Doc</a>. # Requirements ### Hardware Requirements (Recommended) 32 GB system RAM 32 GB of GPU RAM 8 core CPU 1 NVIDIA GPU 100 GB of SSD space ### Hardware Requirements (REQUIRED) - TAO Toolkit is supported on **A100**, **V100** and **RTX 30x0 GPUs**. # Login to the NGC docker registry. Login to the NGC docker registry: Use the command docker login nvcr.io and enter the following credentials: a. Username: "$oauthtoken" b. Password: "YOUR_NGC_API_KEY" - Where YOUR_NGC_API_KEY corresponds to the key you generated from step 3. ![image](https://user-images.githubusercontent.com/589439/143663405-5323b62f-74a8-409f-80a8-c2c6ad961497.png) # Installing TAO Toolkit - TAO Toolkit is a Python pip package that is hosted on the NVIDIA PyIndex. The package uses the docker restAPI under the hood to interact with the NGC Docker registry to pull and instantiate the underlying docker containers. You must have an NGC account and an API key associated with your account. See the Installation Prerequisites section for details on creating an NGC account and obtaining an API key. ## 1. Create a new virtualenv using virtualenvwrapper - Click this <a href="https://python-guide-cn.readthedocs.io/en/latest/dev/virtualenvs.html"> link</a> to understand how virtual enviroments in python work. - Make sure you have virtualenv installed by checking it's version. (Instructions are in this <a href="https://github.com/pantelis-classes/omniverse-ai/wiki/NVIDIA-Transfer-Learning-Toolkit-(TLT)-Installation#1-create-new-python-virtual-environment">page</a> of the) virtualenv --version ![image](https://user-images.githubusercontent.com/589439/143723668-73111ae8-0ac5-4729-b89b-481d29b25d16.png) ## 2. Define the environment variable called VIRTUALENVWRAPPER_PYTHON. - Run this command to see where your python is located. which python3 ![image](https://user-images.githubusercontent.com/589439/143723824-968874c9-5f8e-44cc-a535-d0d336a72b78.png) - Define the environment variable of your Python location. export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3 ![image](https://user-images.githubusercontent.com/589439/143723906-baf552bc-e9d1-435b-8d43-553f6f0a6707.png) - Run this command to make sure the enviroment variable was created. (There should be red output with the variable name.) env | grep 'VIRTUALENVWRAPPER_PYTHON' ![image](https://user-images.githubusercontent.com/589439/143723930-c9c8658f-339d-4693-894a-daf70dea28ae.png) - Run this command. source `which virtualenvwrapper.sh` - Run this command to create a virtualenv named "TAO". mkvirtualenv TAO -p $VIRTUALENVWRAPPER_PYTHON ![image](https://user-images.githubusercontent.com/589439/143724459-afaf363f-dd92-494b-9707-5400f409d05a.png) - You should now see a (TAO) prepending your username in the CLI. ![image](https://user-images.githubusercontent.com/589439/143724476-77609fc2-e5a7-4773-94d9-799f2b78be6f.png) ## Intructions on how to activate/deactive the vitualenv. - When you are done with you session, you may deactivate your virtualenv using the deactivate command: deactivate ![image](https://user-images.githubusercontent.com/589439/143724159-ae6c0578-14e4-463b-8287-ef4147ff0f34.png) - You may re-instantiate this created virtualenv env using the workon command. workon TAO ![image](https://user-images.githubusercontent.com/589439/143724492-3036d310-3569-4820-9087-daca2bf9869f.png) ## 3. Download Jupyter Notebook. - TAO Toolkit provides samples notebooks to walk through and prescrible TAO workflow. These samples are hosted on NGC as a resource and can be downloaded from NGC by executing the command mentioned below. - Run these commands to set up your notebook. workon TAO ![image](https://user-images.githubusercontent.com/589439/143725152-cbbd609d-6d94-452c-8a48-a2bcf66dc4ab.png) - Copy the command belown and keep pressing enter until you are in ~/cv_samples_v1.2.0. wget --content-disposition https://api.ngc.nvidia.com/v2/resources/nvidia/tao/cv_samples/versions/v1.2.0/zip -O cv_samples_v1.2.0.zip unzip -u cv_samples_v1.2.0.zip -d ./cv_samples_v1.2.0 && rm -rf cv_samples_v1.2.0.zip && cd ./cv_samples_v1.2.0 ![image](https://user-images.githubusercontent.com/589439/143725176-02cc805c-4a98-4afe-9d49-ff17b48e171c.png) ![image](https://user-images.githubusercontent.com/589439/143725173-3c7d7cf0-c3b7-487a-9ed9-818aa5615e84.png) ![image](https://user-images.githubusercontent.com/589439/143725183-3d1caa61-125e-43fe-be67-683429c272ab.png) ## 4. Start Jupyter Notebook - Once the notebook samples are downloaded, you may start the notebook using the below commands: jupyter notebook --ip 0.0.0.0 --port 8888 --allow-root ![image](https://user-images.githubusercontent.com/589439/143725216-d67fe159-5f1f-47b1-8dbe-5c14a4e6a7aa.png) - Open an internet browser on localhost and navigate to the following URL: http://0.0.0.0:8888 ![image](https://user-images.githubusercontent.com/589439/143725228-4696d70e-ec0b-485c-985b-3bffb83be6ac.png) - Navigate to ./detectnet_v2/detectnet_v2.ipynb ![image](https://user-images.githubusercontent.com/589439/143725266-806cf049-c46f-4e22-9940-ac4e9d952117.png) ![image](https://user-images.githubusercontent.com/589439/143725290-0778740c-3b39-45b4-8d83-a254f545844c.png) ![image](https://user-images.githubusercontent.com/589439/143725306-14110acd-9a61-460a-be5d-df45a55c5b65.png)
5,654
Markdown
40.580882
408
0.759816
pantelis-classes/omniverse-ai/Wikipages/_Sidebar.md
# Isaac Sim in Omniverse * [Home][home] * [Isaac-Sim-SDK-Omniverse-Installation][Omniverse] * [Synthetic-Data-Generation][SDG] * [NVIDIA Transfer Learning Toolkit (TLT) Installation][TLT] * [NVIDIA TAO][TAO] * [detectnet_v2 Installation][detectnet_v2] * [Jupyter Notebook][Jupyter-Notebook] [home]: https://github.com/pantelis-classes/omniverse-ai/wiki [Omniverse]: https://github.com/pantelis-classes/omniverse-ai/wiki/Isaac-Sim-SDK-Omniverse-Installation [SDG]: https://github.com/pantelis-classes/omniverse-ai/wiki/Synthetic-Data-Generation-(Python-API) [TLT]: https://github.com/pantelis-classes/omniverse-ai/wiki/NVIDIA-Transfer-Learning-Toolkit-(TLT)-Installation [NTLTSD]: https://github.com/pantelis-classes/omniverse-ai/wiki/Using-NVIDIA-TLT-with-Synthetic-Data [TAO]: https://github.com/pantelis-classes/omniverse-ai/wiki/TAO-(NVIDIA-Train,-Adapt,-and-Optimize) [detectnet_v2]: https://github.com/pantelis-classes/omniverse-ai/wiki/detectnet_v2-Installation [Jupyter-Notebook]: https://github.com/pantelis-classes/omniverse-ai/wiki/Jupyter-Notebook
1,061
Markdown
57.999997
112
0.782281
pantelis-classes/omniverse-ai/Wikipages/home.md
# Learning in Simulated Worlds in Omniverse. ## Wiki Navigation * [Home][home] * [Isaac-Sim-SDK-Omniverse-Installation][Omniverse] * [Synthetic-Data-Generation][SDG] * [NVIDIA Transfer Learning Toolkit (TLT) Installation][TLT] * [NVIDIA TAO][TAO] * [detectnet_v2 Installation][detectnet_v2] * [Jupyter Notebook][Jupyter-Notebook] [home]: https://github.com/pantelis-classes/omniverse-ai/wiki [Omniverse]: https://github.com/pantelis-classes/omniverse-ai/wiki/Isaac-Sim-SDK-Omniverse-Installation [SDG]: https://github.com/pantelis-classes/omniverse-ai/wiki/Synthetic-Data-Generation-(Python-API) [TLT]: https://github.com/pantelis-classes/omniverse-ai/wiki/NVIDIA-Transfer-Learning-Toolkit-(TLT)-Installation [NTLTSD]: https://github.com/pantelis-classes/omniverse-ai/wiki/Using-NVIDIA-TLT-with-Synthetic-Data [TAO]: https://github.com/pantelis-classes/omniverse-ai/wiki/TAO-(NVIDIA-Train,-Adapt,-and-Optimize) [detectnet_v2]: https://github.com/pantelis-classes/omniverse-ai/wiki/detectnet_v2-Installation [Jupyter-Notebook]: https://github.com/pantelis-classes/omniverse-ai/wiki/Jupyter-Notebook <hr /> ## Reports <a href="https://docs.google.com/document/d/1jVXxrNgtOosZw_vAORzomSnmy45G3qK_mmk2B4oJtPg/edit?usp=sharing">Domain Randomization Paper</a><br> This report provides an indepth understanding on how Domain Randomization helps perception machine learning tasks such as object detection and/or segmentation. <a href="https://docs.google.com/document/d/1WAzdqlWE0RUns41-0P951mnsqMR7I2XV/edit?usp=sharing&ouid=112712585131518554614&rtpof=true&sd=true">Final Report</a><br> This final report contains an indepth explanation on the hardware/software used, the methods used to collect the data, an explanation on the data collected, trained and pruned, and the overall conclusions made from the trained and pruned datasets.
1,834
Markdown
64.535712
247
0.794984
pantelis-classes/omniverse-ai/Wikipages/NVIDIA Transfer Learning Toolkit (TLT) Installation.md
# Installing the Pre-requisites ## 1. Install docker-ce: ### * Set up repository: Update apt package index and install packages. sudo apt-get update ![image](https://user-images.githubusercontent.com/589439/143660967-37eb6626-62c0-4afa-af3a-c43a3c172e85.png) sudo apt-get install \ ca-certificates \ curl \ gnupg \ lsb-release - The following image has these dependencies already installed. ![image](https://user-images.githubusercontent.com/589439/143660985-4ae4366b-8d28-4514-b1df-bd7fe03e581d.png) Add Docker's official GPG key: curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg ![image](https://user-images.githubusercontent.com/589439/143661077-2d0ce142-be2f-4ab6-ad99-a685fa709182.png) ### * Install Docker Engine: Update the apt package index, and install the latest version of Docker Engine. sudo apt-get update ![image](https://user-images.githubusercontent.com/589439/143661094-a2b86161-c37f-42fd-9110-34523343f65a.png) sudo apt-get install docker-ce docker-ce-cli containerd.io ![image](https://user-images.githubusercontent.com/589439/143661447-8fa25b3b-1c79-470d-b962-88c21bd56f63.png) Verify that Docker Engine is installed correctly by running the hello-world image. sudo docker run hello-world ![image](https://user-images.githubusercontent.com/589439/143661433-d67e18ac-c098-4665-b7ba-127e397b0df6.png) ### * Manage Docker as a non-root user: Create the docker group. sudo groupadd docker ![image](https://user-images.githubusercontent.com/589439/143661491-c43c3f94-90d7-47d4-8bd4-dee974f67838.png) Add your user to the docker group. sudo usermod -aG docker $USER ![image](https://user-images.githubusercontent.com/589439/143661478-cff5282c-e864-4821-a084-7f1f8360b4bc.png) Log out and log back in so that your group membership is re-evaluated. ![image](https://user-images.githubusercontent.com/589439/143661541-098c52b5-0c54-46c9-9d14-fd0250f27a1e.png) Verify that you can run docker commands without sudo. docker run hello-world ![image](https://user-images.githubusercontent.com/589439/143661708-6baceb75-a047-4f75-8b51-9496e6908d15.png) - If you get the WARNING error in the above image, run these two commands. Otherwise Skip to #2. sudo chown "$USER":"$USER" /home/"$USER"/.docker -R sudo chmod g+rwx "/home/$USER/.docker" -R - Run docker run hello-world to double check it works now. docker run hello-world ![image](https://user-images.githubusercontent.com/589439/143661749-52f2103f-19c5-47bb-85b3-0b5069957b87.png) ## 2. Install NVIDIA Container Toolkit: Setup the stable repository and the GPG key: distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \ && curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \ && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list ![image](https://user-images.githubusercontent.com/589439/143662010-9b31cc9d-bbbe-4aa7-af69-ade75e18ccc6.png) Install the nvidia-docker2 package (and dependencies) after updating the package listing: sudo apt-get update sudo apt-get install -y nvidia-docker2 ![image](https://user-images.githubusercontent.com/589439/143662034-8e020c83-780b-40d0-a17b-ad0cdfd4210f.png) Restart the Docker daemon to complete the installation after setting the default runtime: sudo systemctl restart docker ![image](https://user-images.githubusercontent.com/589439/143662068-dfcad334-8466-4c9a-9cd0-e08a23f31b66.png) At this point, a working setup can be tested by running a base CUDA container: sudo docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi - This should result in a console output shown below: ![image](https://user-images.githubusercontent.com/589439/143663183-0bdb6ee0-84be-4788-bdc7-0ab23e9e5d41.png) ## 3. Get an NVIDIA NGC account and API key: - Go to <a href="https://ngc.nvidia.com/signin">NGC</a> and click the Transfer Learning Toolkit container in the Catalog tab. This message is displayed: “Sign in to access the PULL feature of this repository”. ![image](https://user-images.githubusercontent.com/589439/143662546-8e8053f4-9aa9-40bb-bb8c-432d652db64b.png) - Enter your Email address and click Next, or click Create an Account. - Choose your organization when prompted for Organization/Team. - Click Sign In. - Once redirected to this <a href="https://catalog.ngc.nvidia.com/">page</a> with your account made, click the top right corner to click your profile and click "Setup" ![image](https://user-images.githubusercontent.com/589439/143662652-a6595488-44e6-494e-8e11-17056209a3fd.png) - Click Get API Key. ![image](https://user-images.githubusercontent.com/589439/143662747-cda7d160-6f1f-41dc-815f-65bf13ba7bc7.png) - Click Generate API Key. ![image](https://user-images.githubusercontent.com/589439/143662782-9bebeb67-26ec-4980-9624-1a91f0d1a6cc.png) - Your API key and username will be shown under the DOCKER tm section. Copy the text with your username and API password and save it in a file somewhere. ![image](https://user-images.githubusercontent.com/589439/143663255-907bff87-ae02-4c4d-8400-ef6a914c3aae.png) ![image](https://user-images.githubusercontent.com/589439/143663347-4ec70e43-da4d-4b97-bd26-b336586bc9d7.png) ## 4. Login to the NGC docker registry: Use the command docker login nvcr.io and enter the following credentials: a. Username: "$oauthtoken" b. Password: "YOUR_NGC_API_KEY" - Where YOUR_NGC_API_KEY corresponds to the key you generated from step 3. ![image](https://user-images.githubusercontent.com/589439/143663405-5323b62f-74a8-409f-80a8-c2c6ad961497.png) # Installing TLT The Transfer Learning Toolkit (TLT) is a Python pip package that is hosted on the NVIDIA PyIndex. The package uses the docker restAPI under the hood to interact with the NGC Docker registry to pull and instantiate the underlying docker containers. ## 1. Create new Python virtual environment. ### Python virtualenv setup using virtualenvwrapper Install via pip: pip3 install virtualenv ![image](https://user-images.githubusercontent.com/589439/143667101-35f5e890-f96d-4a24-8f85-4db1ff95ab8f.png) pip3 install virtualenvwrapper ![image](https://user-images.githubusercontent.com/589439/143667117-cef7ead6-5ca1-4f93-b759-4caa9c8dca76.png)
6,554
Markdown
38.727272
247
0.754043
pantelis-classes/omniverse-ai/Wikipages/_Footer.md
## Authors ### <a href="https://github.com/dfsanchez999">Diego Sanchez</a> | <a href="https://harp.njit.edu/~jga26/">Jibran Absarulislam</a> | <a href="https://github.com/markkcruz">Mark Cruz</a> | <a href="https://github.com/sppatel2112">Sapan Patel</a> ## Supervisor ### <a href="https://pantelis.github.io/">Dr. Pantelis Monogioudis</a> ## Credits ### <a href="https://developer.nvidia.com/nvidia-omniverse-platform">NVIDIA Omniverse</a>
446
Markdown
39.63636
244
0.686099
pantelis-classes/omniverse-ai/Wikipages/detectnet_v2 Installation.md
# Installing running detectnet_v2 in a jupyter notebook ## Setup File Structures. - Run these commands to create the correct file structure. cd ~ mkdir tao mv cv_samples_v1.2.0/ tao cd tao/cv_samples_v1.2.0/ rm -r detectnet_v2 ![image](https://user-images.githubusercontent.com/589439/143797815-904b6033-f5db-43ac-a736-d653d4d19cfe.png) ![image](https://user-images.githubusercontent.com/589439/143797903-cd33e342-e45d-44ca-a8ac-6efb6d2cd18f.png) - Download the detectnet_v2.zip from this <a href="https://github.com/pantelis-classes/omniverse-ai/raw/main/detectnet_v2.zip">link</a>. ![image](https://user-images.githubusercontent.com/589439/143727479-6828fc05-4672-4c60-8a21-f1fe6e97d0ea.png) - Run this command to move the .zip from your downloads folder to your detectnet_v2 folder. mv ~/Downloads/detectnet_v2.zip ~/tao/cv_samples_v1.2.0/ ![image](https://user-images.githubusercontent.com/589439/143798005-a702ed00-5971-4ece-b60a-d05e14fa09b9.png) - Run this command to unzip the folder. unzip ~/tao/cv_samples_v1.2.0/detectnet_v2.zip -d detectnet_v2 ![image](https://user-images.githubusercontent.com/589439/143798404-ae066e4a-d573-4144-a1ec-b5410db9efb7.png) ![image](https://user-images.githubusercontent.com/589439/143798434-9d14756d-2bdb-4f68-88cb-0e5610562034.png) - Run this command to copy your dataset to the TAO folder. (You generated this dataset in this <a href="https://github.com/pantelis-classes/omniverse-ai/wiki/Synthetic-Data-Generation-(Python-API)#offline-training-with-tlt">wiki page</a>.) cp -r ~/.local/share/ov/pkg/isaac_sim-2021.2.0/output/testing/ ~/tao/cv_samples_v1.2.0/detectnet_v2/workspace/tao-experiment/data/ cp -r ~/.local/share/ov/pkg/isaac_sim-2021.2.0/output/training/ ~/tao/cv_samples_v1.2.0/detectnet_v2/workspace/tao-experiment/data/ ![image](https://user-images.githubusercontent.com/589439/143798514-be064b8e-18e9-4f21-97b2-ef72820190a8.png) ![image](https://user-images.githubusercontent.com/589439/143798539-d7555c9c-87c3-4037-819a-ee32aca9fa44.png) - Navigate to Home -> cv_samples_v1.2.0 -> detectnet_v2 - Open the detectnet_v2.ipynb file. ![image](https://user-images.githubusercontent.com/589439/143729232-16e479b2-527e-4b0f-94b0-e43bd08cfba8.png) - Scroll down to section "0. Set up env variables and map drives" (Ctrl + F) ![image](https://user-images.githubusercontent.com/589439/143729413-dffdd2dc-d0cb-40aa-8b0f-fd567b2a527c.png) - Replace "diego" with your username. (TIP: whoami in BASH) ![image](https://user-images.githubusercontent.com/589439/143729441-e43fde75-76ed-489d-acef-56fea5ddf539.png) ![image](https://user-images.githubusercontent.com/589439/143729521-c7b0fc38-baf0-4701-9032-dba324497f5e.png)
2,798
Markdown
43.428571
240
0.74732
pantelis-classes/omniverse-ai/Wikipages/Jupyter Notebook.md
# Object Detection using TAO DetectNet_v2 - Transfer learning is the process of transferring learned features from one application to another. It is a commonly used training technique where you use a model trained on one task and re-train to use it on a different task. - Train Adapt Optimize (TAO) Toolkit is a simple and easy-to-use Python based AI toolkit for taking purpose-built AI models and customizing them with users' own data. ## How to use the notebook. - Please refer to the actual jupyter notebook to have more in-depth explanations of the code. - Each Cell will run some lines of code. Start from the top of the notebook and run each cell by click the play button or using **shift + enter**. ![image](https://user-images.githubusercontent.com/589439/143809035-2ae69802-7929-47a6-a445-12b571cacd14.png) - Some of the cells may take a long time to complete. Please do not skip cells and wait for the output to finish. ## 0. Set up env variables and map drives ![image](https://user-images.githubusercontent.com/589439/143808844-e4244060-5842-41e2-868d-7a75c57a3c21.png) ![image](https://user-images.githubusercontent.com/589439/143809423-cea91ff5-916f-4c03-b7c3-e4eb625756a4.png) - We set up the env variables by linking paths, setting number of GPUs, and choosing an encoding style. ## 1. Install the TAO launcher - This step should have been already completed in the previous wiki pages. Please refer to this <a href="https://github.com/pantelis-classes/omniverse-ai/wiki/TAO-(NVIDIA-Train,-Adapt,-and-Optimize)#login-to-the-ngc-docker-registry">link</a>. ![image](https://user-images.githubusercontent.com/589439/143809877-6e766d73-ff1c-405f-bd6f-600a58736b25.png) ## 2. Prepare dataset and pre-trained model ![image](https://user-images.githubusercontent.com/589439/143809929-1e119a3b-0239-4144-bece-a1d9aa7d51bf.png) ![image](https://user-images.githubusercontent.com/589439/143809965-7997fd22-e172-4360-af13-8c0d65b83f4e.png) ![image](https://user-images.githubusercontent.com/589439/143809992-3a41471a-dd02-4a3e-acea-96b7a7c3a674.png) ![image](https://user-images.githubusercontent.com/589439/143810068-5f175928-4e4d-4820-8b14-067a31b35cd6.png) ![image](https://user-images.githubusercontent.com/589439/143810077-6bfb77d3-4643-4129-a8c4-0b4fbf196b43.png) ![image](https://user-images.githubusercontent.com/589439/143810093-f8508bb1-5728-4010-b87b-21f4aed74e73.png) ![image](https://user-images.githubusercontent.com/589439/143810115-c88787cb-3cae-433a-93c8-712a25db0c78.png) ## 3. Provide training specification ![image](https://user-images.githubusercontent.com/589439/143810872-231209ca-eb71-4bd2-930d-3527fbaaace0.png) ## 4. Run TAO training ![image](https://user-images.githubusercontent.com/589439/143810896-a9875ab8-b9ab-4ced-ad49-c47ea321a052.png) ## 5. Evaluate the trained model ![image](https://user-images.githubusercontent.com/589439/143811275-488e15be-15bd-4341-8392-834cd68bbcad.png) ## 6. Prune the trained model ![image](https://user-images.githubusercontent.com/589439/143810915-c9428405-1f00-462d-8a80-2d1467c95e7b.png) ## 7. Retrain the pruned model ![image](https://user-images.githubusercontent.com/589439/143810942-972f34b4-b7a4-4532-9e8d-6f6bcc01ac9f.png) ![image](https://user-images.githubusercontent.com/589439/143810970-69367200-b71e-481f-b813-3d447e154bb3.png) ## 8. Evaluate the retrained model ![image](https://user-images.githubusercontent.com/589439/143811255-0b946589-2679-4747-b514-3b91ac2259cd.png) ## 9. Visualize inferences ![image](https://user-images.githubusercontent.com/589439/143811032-4adc40ef-fa0e-4596-88b5-2a24610cdaf3.png) ![image](https://user-images.githubusercontent.com/589439/143811081-edaa58f5-d3e6-40c6-9dab-f19e547d090e.png)
3,749
Markdown
45.874999
243
0.787143
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/CODE_OF_CONDUCT.md
## Code of Conduct This project has adopted the [Amazon Open Source Code of Conduct](https://aws.github.io/code-of-conduct). For more information see the [Code of Conduct FAQ](https://aws.github.io/code-of-conduct-faq) or contact opensource-codeofconduct@amazon.com with any additional questions or comments.
309
Markdown
60.999988
105
0.789644
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/CONTRIBUTING.md
# Contributing Guidelines Thank you for your interest in contributing to our project. Whether it's a bug report, new feature, correction, or additional documentation, we greatly value feedback and contributions from our community. Please read through this document before submitting any issues or pull requests to ensure we have all the necessary information to effectively respond to your bug report or contribution. ## Reporting Bugs/Feature Requests We welcome you to use the GitHub issue tracker to report bugs or suggest features. When filing an issue, please check existing open, or recently closed, issues to make sure somebody else hasn't already reported the issue. Please try to include as much information as you can. Details like these are incredibly useful: * A reproducible test case or series of steps * The version of our code being used * Any modifications you've made relevant to the bug * Anything unusual about your environment or deployment ## Contributing via Pull Requests Contributions via pull requests are much appreciated. Before sending us a pull request, please ensure that: 1. You are working against the latest source on the *main* branch. 2. You check existing open, and recently merged, pull requests to make sure someone else hasn't addressed the problem already. 3. You open an issue to discuss any significant work - we would hate for your time to be wasted. To send us a pull request, please: 1. Fork the repository. 2. Modify the source; please focus on the specific change you are contributing. If you also reformat all the code, it will be hard for us to focus on your change. 3. Ensure local tests pass. 4. Commit to your fork using clear commit messages. 5. Send us a pull request, answering any default questions in the pull request interface. 6. Pay attention to any automated CI failures reported in the pull request, and stay involved in the conversation. GitHub provides additional document on [forking a repository](https://help.github.com/articles/fork-a-repo/) and [creating a pull request](https://help.github.com/articles/creating-a-pull-request/). ## Finding contributions to work on Looking at the existing issues is a great way to find something to contribute on. As our projects, by default, use the default GitHub issue labels (enhancement/bug/duplicate/help wanted/invalid/question/wontfix), looking at any 'help wanted' issues is a great place to start. ## Code of Conduct This project has adopted the [Amazon Open Source Code of Conduct](https://aws.github.io/code-of-conduct). For more information see the [Code of Conduct FAQ](https://aws.github.io/code-of-conduct-faq) or contact opensource-codeofconduct@amazon.com with any additional questions or comments. ## Security issue notifications If you discover a potential security issue in this project we ask that you notify AWS/Amazon Security via our [vulnerability reporting page](http://aws.amazon.com/security/vulnerability-reporting/). Please do **not** create a public github issue. ## Licensing See the [LICENSE](LICENSE) file for our project's licensing. We will ask you to confirm the licensing of your contribution.
3,160
Markdown
51.683332
275
0.792405
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/README.md
# NVIDIA Omniverse Nucleus on Amazon EC2 NVIDIA Omniverse is a scalable, multi-GPU, real-time platform for building and operating metaverse applications, based on Pixar's Universal Scene Description (USD) and NVIDIA RTX technology. USD is a powerful, extensible 3D framework and ecosystem that enables 3D designers and developers to connect and collaborate between industry-leading 3D content creation, rendering, and simulation applications. Omniverse helps individual creators to connect and enhance their 3D artistic process, and enterprises to build and simulate large scale virtual worlds for industrial applications. With Omniverse, everyone involved in the lifecycle of 3D data has access to high-quality visualizations, authoring, and review tools. Teams do not need additional overhead to manage complex 3D data pipelines. Instead, they can focus on their unique contributions to bring value to the market. Non-technical stakeholders do not need to subject themselves to applications with steep learning curves, nor do results need to be compromised for the sake of iteration reviews. To support distributed Omniverse users, Nucleus should be deployed in a secure environment. With on-demand compute, storage, and networking resources, AWS infrastructure is well suited to all spatial computing workloads, including Omniverse Nucleus. This repository provides the steps and infrastructure for an Omniverse Enterprise Nucleus Server deployment on Amazon EC2. ## Contents * [Prerequisites](#prerequisites) * [Deployment](#deployment) * [Architecture](#architecture) * [Troubleshooting](#troubleshooting) * [Getting Help](#getting-help) * [Changelog](#changelog) * [Security](#security) * [License](#license) * [References](#references) ## Prerequisites - AWS CLI - https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html - AWS CDK - https://docs.aws.amazon.com/cdk/v2/guide/getting_started.html#getting_started_install - Docker - https://www.docker.com/products/docker-desktop/ - Python 3.9 or greater - https://www.python.org - Access to NVIDIA Enterprise Omniverse Nucleus packages - https://docs.omniverse.nvidia.com/prod_nucleus/prod_nucleus/enterprise/installation/quick_start_tips.html - A Route53 Public Hosted Zone - https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/CreatingHostedZone.html **To learn more, reference the official documentation from NVIDIA:** https://docs.omniverse.nvidia.com/prod_nucleus/prod_nucleus/enterprise/cloud_aws_ec2.html ## Architecture ![architecture](/diagrams/architecture.png) ## Deployment ### 1. Download Nucleus Deployment Artifacts from NVIDIA Place them in `./src/tools/nucleusServer/stack` For example: `./src/tools/nucleusServer/stack/nucleus-stack-2022.1.0+tag-2022.1.0.gitlab.3983146.613004ac.tar.gz` Consult NVIDIA documentation to find the appropriate packages. > Note This deployment has a templated copy of `nucleus-stack.env` located at `./src/tools/nucleusServer/templates/nucleus-stack.env` this may need to be updated if NVIDIA makes changes to the `nucleus-stack.env` file packaged with their archive. > > The same applies to NVIDIA's reverse proxy `nginx.conf` located at `./src/tools/reverseProxy/templates/nginx.conf` ### 2. configure .env file create ./.env Set the following variables ``` export APP_STACK_NAME=omni-app export AWS_DEFAULT_REGION=us-west-2 # STACK INPUTS export OMNIVERSE_ARTIFACTS_BUCKETNAME=example-bucket-name export ROOT_DOMAIN=example-domain.com export NUCLEUS_SERVER_PREFIX=nucleus export NUCLEUS_BUILD=nucleus-stack-2022.1.0+tag-2022.1.0.gitlab.3983146.613004ac # from Step 1 export ALLOWED_CIDR_RANGE_01=cidr-range-with-public-access export DEV_MODE=true ``` > NOTE: This deployment assumes you have a public hosted zone in Route53 for the ROOT_DOMAIN, this deployment will add a CNAME record to that hosted zone ### 3. Run the deployment The following script will run cdk deploy. The calling process must be authenticated with sufficient permissions to deploy AWS resources. ``` chmod +x ./deploy.sh ./deploy.sh ``` > NOTE: deployment requires a running docker session for building Python Lambda functions > NOTE: It can take a few minutes for the instances to get up and running. After the deployment script finishes, review your EC2 instances and check that they are in a running state. ### 4. Test the connection Test a connection to `<NUCLEUS_SERVER_PREFIX>.<ROOT_DOMAIN>` from within the ALLOWED_CIDR_RANGE set in the `.env` file. Do so by browsing to `https://<NUCLUES_SERVER_PREFIX>.<ROOT_DOMAIN>` in your web browser. The default admin username for the Nucleus server is 'omniverse'. You can find the password in a Secrets Manager resource via the AWS Secrets Manager Console. Alternatively, from the Omniverse WebUI, you can create a new username and password. ## Troubleshooting ### Unable to connect to the Nucleus Server If you are not able to connect to to the Nucleus server, review the status of the Nginx service, and the Nucleus docker stack. To do so, connect to your instances from the EC2 Console via Session Manager - https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/session-manager.html. - On the Nginx Server, run `sudo journalctl -u nginx.service`, if this is produces no output the Nginx service is not running. - On the Nucleus server, run `sudo docker ps`, you should see a list of Nucleus containers up. If there are issues with either of these, it is likely there was an issue with the Lambda and/or SSM run commands that configure the instances. Browse to the Lambda Console (https://us-west-2.console.aws.amazon.com/lambda/home?region=us-west-2#/functions) and search for the respective Lambda Functions: - STACK_NAME-ReverseProxyConfig-CustomResource - STACK_NAME-NucleusServerConfig-CustomResource Review the function CloudWatch Logs. ​ ### No service log entries, or unable to restart nitro-enclave service If there are issues with either of these, it is likely there was an issue with the Lambda and/or SSM run commands that configure the instances. Browse to the Lambda Console and search for the `STACK_NAME-ReverseProxyConfig-CustomResource` Lambda Function, then review the CloudWatch Logs. At times the Reverse Proxy custom resource Lambda function does not trigger on a initial stack deployment. If the reverse proxy instance is in a running state, but there are now invocations/logs, terminate the instance and give the auto scaling group a few minutes to create another one, and then try again. Afterwards, check the CloudWatch Logs for the Lambda function: `ReverseProxyAutoScalingLifecycleLambdaFunction` ### Additional Nginx Commands View Nitro Enclaves Service Logs: `sudo journalctl -u nginx.service` Viewing Nginx Logs `sudo cat /var/log/nginx/error.log` `sudo cat /var/log/nginx/access.log` Restart Nginx `systemctl restart nginx.service` ### Additional Nucleus server notes Review NVIDIA's Documentation - https://docs.omniverse.nvidia.com/prod_nucleus/prod_nucleus/enterprise/installation/quick_start_tips.html default base stack and config location: `/opt/ove/` default omniverse data dir: `/var/lib/omni/nucleus-data` Interacting with the Nucleus Server docker compose stack: `sudo docker-compose --env-file ./nucleus-stack.env -f ./nucleus-stack-ssl.yml pull` `sudo docker-compose --env-file ./nucleus-stack.env -f ./nucleus-stack-ssl.yml up -d` `sudo docker-compose --env-file ./nucleus-stack.env -f ./nucleus-stack-ssl.yml down` `sudo docker-compose --env-file ./nucleus-stack.env -f ./nucleus-stack-ssl.yml ps` Generate new secrets `sudo rm -fr secrets && sudo ./generate-sample-insecure-secrets.sh` ## Getting Help If you have questions as you explore this sample project, post them to the Issues section of this repository. To report bugs, request new features, or contribute to this open source project, see [CONTRIBUTING.md](./CONTRIBUTING.md). ## Changelog To view the history and recent changes to this repository, see [CHANGELOG.md](./CHANGELOG.md) ## Security See [CONTRIBUTING](./CONTRIBUTING.md) for more information. ## License This sample code is licensed under the MIT-0 License. See the [LICENSE](./LICENSE) file. ## References ### NVIDIA Omniverse [Learn more about the NVIDIA Omniverse Platform](https://www.nvidia.com/en-us/omniverse/) ### Omniverse Nucleus [Learn more about the NVIDIA Omniverse Nucleus](https://docs.omniverse.nvidia.com/prod_nucleus/prod_nucleus/overview.html)
8,456
Markdown
53.211538
581
0.786542
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/tools/nucleusServer/setup.py
# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: LicenseRef-.amazon.com.-AmznSL-1.0 # Licensed under the Amazon Software License http://aws.amazon.com/asl/ from setuptools import setup with open("README.md", "r") as fh: long_description = fh.read() setup( name="Nucleus Server Tools", version="1.0", py_modules=[ 'nst' ], install_requires=[ "boto3", "python-dotenv", "Click" ], entry_points=''' [console_scripts] nst=nst_cli:main ''' )
576
Python
21.192307
73
0.609375
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/tools/nucleusServer/nst_cli.py
# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: LicenseRef-.amazon.com.-AmznSL-1.0 # Licensed under the Amazon Software License http://aws.amazon.com/asl/ # Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: LicenseRef-.amazon.com.-AmznSL-1.0 # Licensed under the Amazon Software License http://aws.amazon.com/asl/ """ helper tools for omniverse nucleus deployment configuration """ # std lib modules import os import logging from pathlib import Path # 3rd party modules import click import nst.logger as logger pass_config = click.make_pass_decorator(object, ensure=True) @click.group() @pass_config def main(config): pass @main.command() @pass_config @click.option("--my_opt_arg") def hello_world(config, my_opt_arg): logger.info(f"Hello World: {my_opt_arg=}") @main.command() @pass_config @click.option("--server-ip", required=True) @click.option("--reverse-proxy-domain", required=True) @click.option("--instance-name", required=True) @click.option("--master-password", required=True) @click.option("--service-password", required=True) @click.option("--data-root", required=True) def generate_nucleus_stack_env( config, server_ip, reverse_proxy_domain, instance_name, master_password, service_password, data_root, ): logger.info( f"generate_nucleus_stack_env:{server_ip=},{reverse_proxy_domain=},{instance_name=},{master_password=},{service_password=},{data_root=}" ) tools_path = "/".join(list(Path(__file__).parts[:-1])) cur_dir_path = "." template_name = "nucleus-stack.env" template_path = f"{tools_path}/templates/{template_name}" output_path = f"{cur_dir_path}/{template_name}" if not Path(template_path).is_file(): raise Exception("File not found: {template_path}") data = "" with open(template_path, "r") as file: data = file.read() data = data.format( SERVER_IP_OR_HOST=server_ip, REVERSE_PROXY_DOMAIN=reverse_proxy_domain, INSTANCE_NAME=instance_name, MASTER_PASSWORD=master_password, SERVICE_PASSWORD=service_password, DATA_ROOT=data_root, ACCEPT_EULA="1", SECURITY_REVIEWED="1", ) with open(f"{output_path}", "w") as file: file.write(data) logger.info(output_path)
2,391
Python
25.876404
143
0.677123
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/tools/nucleusServer/README.md
# Tools for configuring Nuclues Server The contents of this directory are zipped and then deployed to the nuclues server
121
Markdown
39.666653
81
0.826446
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/tools/nucleusServer/nst/__init__.py
# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: LicenseRef-.amazon.com.-AmznSL-1.0 # Licensed under the Amazon Software License http://aws.amazon.com/asl/
210
Python
41.199992
73
0.766667
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/tools/nucleusServer/nst/logger.py
# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: LicenseRef-.amazon.com.-AmznSL-1.0 # Licensed under the Amazon Software License http://aws.amazon.com/asl/ import os import logging LOG_LEVEL = os.getenv('LOG_LEVEL', 'DEBUG') logger = logging.getLogger() logger.setLevel(LOG_LEVEL) def info(*args): print(*args) def debug(*args): print(*args) def warning(*args): print(*args) def error(*args): print(*args)
480
Python
20.863635
73
0.708333
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/tools/reverseProxy/rpt_cli.py
# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: LicenseRef-.amazon.com.-AmznSL-1.0 # Licensed under the Amazon Software License http://aws.amazon.com/asl/ """ helper tools for reverse proxy nginx configuration """ # std lib modules import os import logging from pathlib import Path # 3rd party modules import click import rpt.logger as logger pass_config = click.make_pass_decorator(object, ensure=True) @click.group() @pass_config def main(config): pass @main.command() @pass_config def hello_world(config): logger.info(f'Hello World') @main.command() @pass_config @click.option("--cert-arn", required=True) def generate_acm_yaml(config, cert_arn): logger.info(f'generate_acm_yaml: {cert_arn=}') tools_path = '/'.join(list(Path(__file__).parts[:-1])) cur_dir_path = '.' template_path = f'{tools_path}/templates/acm.yaml' output_path = f'{cur_dir_path}/acm.yaml' logger.info(Path(template_path).is_file()) data = '' with open(template_path, 'r') as file: data = file.read() data = data.format(cert_arn=cert_arn) with open(f'{output_path}', 'w') as file: file.write(data) logger.info(output_path) @main.command() @pass_config @click.option("--domain", required=True) @click.option("--server-address", required=True) def generate_nginx_config(config, domain, server_address): logger.info(f'generate_nginx_config: {domain=}') nginx_template_path = os.path.join( os.getcwd(), 'templates', 'nginx.conf') if Path(nginx_template_path).is_file(): logger.info(f"NGINX template found at: {nginx_template_path}") else: raise Exception( f"ERROR: No NGINX template found at: {nginx_template_path}") output_path = f'/etc/nginx/nginx.conf' if Path(output_path).is_file(): logger.info(f"NGINX default configuration found at: {output_path}") else: raise Exception( f"ERROR: No NGINX default configuration found at: {output_path}. Verify NGINX installation.") data = '' with open(nginx_template_path, 'r') as file: data = file.read() data = data.format(PUBLIC_DOMAIN=domain, NUCLEUS_SERVER_DOMAIN=server_address) with open(output_path, 'w') as file: file.write(data) logger.info(output_path)
2,373
Python
24.526881
105
0.659503
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/tools/reverseProxy/setup.py
# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: LicenseRef-.amazon.com.-AmznSL-1.0 # Licensed under the Amazon Software License http://aws.amazon.com/asl/ from setuptools import setup with open("README.md", "r") as fh: long_description = fh.read() setup( name="Reverse Proxy Tools", version="1.0", py_modules=["rpt"], install_requires=["boto3", "python-dotenv", "Click"], entry_points=""" [console_scripts] rpt=rpt_cli:main """, )
532
Python
25.649999
73
0.657895
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/tools/reverseProxy/README.md
# Tools for configuring Nginx Reverse Proxy The contents of this directory are zipped and then deployed to the reverse proxy server
132
Markdown
43.333319
87
0.825758
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/tools/reverseProxy/templates/acm.yaml
# Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 --- # ACM for Nitro Enclaves config. # # This is an example of setting up ACM, with Nitro Enclaves and nginx. # You can take this file and then: # - copy it to /etc/nitro_enclaves/acm.yaml; # - fill in your ACM certificate ARN in the `certificate_arn` field below; # - make sure /etc/nginx/nginx.conf is set up to: # - use the pkcs11 SSL engine, and; # - include the stanza file configured below (under `NginxStanza`) # somewhere in the nginx.conf `server` section; # - start the nitro-enclaves-acm service. # # Enclave general configuration enclave: # Number of vCPUs to be assigned to the enclave cpu_count: 2 # Memory (in MiB) to be assigned to the enclave memory_mib: 256 tokens: # A label for this PKCS#11 token - label: nginx-acm-token # Configure a managed token, sourced from an ACM certificate. source: Acm: # The certificate ARN # Note: this certificate must have been associated with the # IAM role assigned to the instance on which ACM for # Nitro Enclaves is run. certificate_arn: "{cert_arn}" target: NginxStanza: # Path to the nginx stanza to be written by the ACM service whenever # the certificate configuration changes (e.g. after a certificate renewal). # This file must be included from the main nginx config `server` section, # as it will contain the TLS nginx configuration directives. path: /etc/pki/nginx/nginx-acm.conf # Stanza file owner (i.e. the user nginx is configured to run as). user: nginx
1,689
YAML
39.238094
83
0.68206
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/lambda/customResources/reverseProxyConfig/index.py
import os import logging import json from crhelper import CfnResource import aws_utils.ssm as ssm import aws_utils.ec2 as ec2 import config.reverseProxy as config LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG") logger = logging.getLogger() logger.setLevel(LOG_LEVEL) helper = CfnResource( json_logging=False, log_level="DEBUG", boto_level="CRITICAL" ) @helper.create def create(event, context): logger.info("Create Event: %s", json.dumps(event, indent=2)) response = update_config( event["ResourceProperties"]["STACK_NAME"], event["ResourceProperties"]["ARTIFACTS_BUCKET_NAME"], event["ResourceProperties"]["FULL_DOMAIN"], event["ResourceProperties"]["RP_AUTOSCALING_GROUP_NAME"], ) logger.info("Run Command Results: %s", json.dumps(response, indent=2)) @helper.update def update(event, context): logger.info("Update Event: %s", json.dumps(event, indent=2)) response = update_config( event["ResourceProperties"]["STACK_NAME"], event["ResourceProperties"]["ARTIFACTS_BUCKET_NAME"], event["ResourceProperties"]["FULL_DOMAIN"], event["ResourceProperties"]["RP_AUTOSCALING_GROUP_NAME"], ) logger.info("Run Command Results: %s", json.dumps(response, indent=2)) def update_config( stack_name, artifacts_bucket_name, full_domain, rp_autoscaling_group_name ): # get nucleus main instance id nucleus_instances = [] try: nucleus_instances = ec2.get_instances_by_tag( "Name", f"{stack_name}/NucleusServer") except Exception as e: raise Exception( f"Failed to get nucleus instances by name. {e}") logger.info(f"Nucleus Instances: {nucleus_instances}") # get nucleus main hostname nucleus_hostname = ec2.get_instance_private_dns_name(nucleus_instances[0]) logger.info(f"Nucleus Hostname: {nucleus_hostname}") # generate config for reverse proxy servers commands = [] try: commands = config.get_config( artifacts_bucket_name, nucleus_hostname, full_domain) logger.debug(commands) except Exception as e: raise Exception(f"Failed to get Reverse Proxy config. {e}") # get reverse proxy instance ids rp_instances = ec2.get_autoscaling_instance(rp_autoscaling_group_name) if rp_instances is None: return None logger.info(rp_instances) # run config commands response = [] for i in rp_instances: r = ssm.run_commands( i, commands, document="AWS-RunShellScript" ) response.append(r) return response @helper.delete def delete(event, context): logger.info("Delete Event: %s", json.dumps(event, indent=2)) def handler(event, context): helper(event, context)
2,776
Python
26.495049
78
0.667147
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/lambda/customResources/nucleusServerConfig/index.py
# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: LicenseRef-.amazon.com.-AmznSL-1.0 # Licensed under the Amazon Software License http://aws.amazon.com/asl/ import os import logging import json from crhelper import CfnResource import aws_utils.ssm as ssm import aws_utils.sm as sm import config.nucleus as config LOG_LEVEL = os.getenv("LOG_LEVEL", "INFO") logger = logging.getLogger() logger.setLevel(LOG_LEVEL) helper = CfnResource(json_logging=False, log_level="DEBUG", boto_level="CRITICAL") @helper.create def create(event, context): logger.info("Create Event: %s", json.dumps(event, indent=2)) instanceId = event["ResourceProperties"]["instanceId"] reverseProxyDomain = event["ResourceProperties"]["reverseProxyDomain"] artifactsBucket = event["ResourceProperties"]["artifactsBucket"] nucleusBuild = event["ResourceProperties"]["nucleusBuild"] ovMainLoginSecretArn = event["ResourceProperties"]["ovMainLoginSecretArn"] ovServiceLoginSecretArn = event["ResourceProperties"]["ovServiceLoginSecretArn"] response = update_nucleus_config( instanceId, artifactsBucket, reverseProxyDomain, nucleusBuild, ovMainLoginSecretArn, ovServiceLoginSecretArn, ) logger.info("Run Command Results: %s", json.dumps(response, indent=2)) @helper.update def update(event, context): logger.info("Update Event: %s", json.dumps(event, indent=2)) instanceId = event["ResourceProperties"]["instanceId"] reverseProxyDomain = event["ResourceProperties"]["reverseProxyDomain"] artifactsBucket = event["ResourceProperties"]["artifactsBucket"] nucleusBuild = event["ResourceProperties"]["nucleusBuild"] ovMainLoginSecretArn = event["ResourceProperties"]["ovMainLoginSecretArn"] ovServiceLoginSecretArn = event["ResourceProperties"]["ovServiceLoginSecretArn"] response = update_nucleus_config( instanceId, artifactsBucket, reverseProxyDomain, nucleusBuild, ovMainLoginSecretArn, ovServiceLoginSecretArn, ) logger.info("Run Command Results: %s", json.dumps(response, indent=2)) def update_nucleus_config( instanceId, artifactsBucket, reverseProxyDomain, nucleusBuild, ovMainLoginSecretArn, ovServiceLoginSecretArn, ): ovMainLoginSecret = sm.get_secret(ovMainLoginSecretArn) ovServiceLoginSecret = sm.get_secret(ovServiceLoginSecretArn) ovMainLoginPassword = ovMainLoginSecret["password"] ovServiceLoginPassword = ovServiceLoginSecret["password"] # generate config for reverse proxy servers commands = [] try: commands = config.get_config( artifactsBucket, reverseProxyDomain, nucleusBuild, ovMainLoginPassword, ovServiceLoginPassword) logger.debug(commands) except Exception as e: raise Exception("Failed to get Reverse Proxy config. {}".format(e)) for p in commands: print(p) response = ssm.run_commands( instanceId, commands, document="AWS-RunShellScript") return response @helper.delete def delete(event, context): logger.info("Delete Event: %s", json.dumps(event, indent=2)) def handler(event, context): helper(event, context)
3,303
Python
30.169811
107
0.718438
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/lambda/asgLifeCycleHooks/reverseProxy/index.py
# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: LicenseRef-.amazon.com.-AmznSL-1.0 # Licensed under the Amazon Software License http://aws.amazon.com/asl/ import boto3 import os import json import logging import traceback from botocore.exceptions import ClientError import aws_utils.ssm as ssm import aws_utils.r53 as r53 import aws_utils.ec2 as ec2 import config.reverseProxy as config logger = logging.getLogger() logger.setLevel(logging.INFO) autoscaling = boto3.client("autoscaling") ARTIFACTS_BUCKET = os.environ["ARTIFACTS_BUCKET"] NUCLEUS_ROOT_DOMAIN = os.environ["NUCLEUS_ROOT_DOMAIN"] NUCLEUS_DOMAIN_PREFIX = os.environ["NUCLEUS_DOMAIN_PREFIX"] NUCLEUS_SERVER_ADDRESS = os.environ["NUCLEUS_SERVER_ADDRESS"] def send_lifecycle_action(event, result): try: response = autoscaling.complete_lifecycle_action( LifecycleHookName=event["detail"]["LifecycleHookName"], AutoScalingGroupName=event["detail"]["AutoScalingGroupName"], LifecycleActionToken=event["detail"]["LifecycleActionToken"], LifecycleActionResult=result, InstanceId=event["detail"]["EC2InstanceId"], ) logger.info(response) except ClientError as e: message = "Error completing lifecycle action: {}".format(e) logger.error(message) raise Exception(message) return def update_nginix_config( instanceId, artifactsBucket, nucleusServerAddress, domain ): # generate config for reverse proxy servers commands = [] try: commands = config.get_config( artifactsBucket, nucleusServerAddress, domain) logger.debug(commands) except Exception as e: raise Exception("Failed to get Reverse Proxy config. {}".format(e)) response = ssm.run_commands( instanceId, commands, document="AWS-RunShellScript" ) return response def handler(event, context): logger.info("Event: %s", json.dumps(event, indent=2)) instanceId = event["detail"]["EC2InstanceId"] transition = event["detail"]["LifecycleTransition"] if transition == "autoscaling:EC2_INSTANCE_LAUNCHING": try: update_nginix_config( instanceId, ARTIFACTS_BUCKET, NUCLEUS_SERVER_ADDRESS, f"{NUCLEUS_DOMAIN_PREFIX}.{NUCLEUS_ROOT_DOMAIN}", ) send_lifecycle_action(event, "CONTINUE") except Exception as e: message = "Error running command: {}".format(e) logger.warning(traceback.format_exc()) logger.error(message) send_lifecycle_action(event, "ABANDON") elif transition == "autoscaling:EC2_INSTANCE_TERMINATING": try: send_lifecycle_action(event, "CONTINUE") except Exception as e: message = "Error running command: {}".format(e) logger.warning(traceback.format_exc()) logger.error(message) send_lifecycle_action(event, "ABANDON") logger.info("Execution Complete") return
3,116
Python
28.40566
75
0.662067
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/lambda/common/aws_utils/ec2.py
# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: LicenseRef-.amazon.com.-AmznSL-1.0 # Licensed under the Amazon Software License http://aws.amazon.com/asl/ import os import logging import boto3 from botocore.exceptions import ClientError LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG") logger = logging.getLogger() logger.setLevel(LOG_LEVEL) client = boto3.client("ec2") ec2_resource = boto3.resource("ec2") autoscaling = boto3.client("autoscaling") def get_instance_public_dns_name(instanceId): instance = get_instance_description(instanceId) if instance is None: return None return instance["PublicDnsName"] def get_instance_private_dns_name(instanceId): instance = get_instance_description(instanceId) if instance is None: return None return instance["PrivateDnsName"] def get_instance_description(instanceId): response = client.describe_instances( InstanceIds=[instanceId], ) instances = response["Reservations"][0]["Instances"] if not instances: return None return instances[0] def get_instance_status(instanceId): response = client.describe_instance_status( Filters=[ { "Name": "string", "Values": [ "string", ], }, ], InstanceIds=[ "string", ], MaxResults=123, NextToken="string", DryRun=True | False, IncludeAllInstances=True | False, ) statuses = response["InstanceStatuses"][0] status = {"instanceStatus": None, "systemStatus": None} if statuses: status = { "instanceStatus": statuses["InstanceStatus"]["Status"], "systemStatus": statuses["SystemStatus"]["Status"], } return status def get_autoscaling_instance(groupName): response = autoscaling.describe_auto_scaling_groups( AutoScalingGroupNames=[groupName] ) logger.debug(response) instances = response['AutoScalingGroups'][0]["Instances"] if not instances: return None instanceIds = [] for i in instances: instanceIds.append(i["InstanceId"]) return instanceIds def update_tag_value(resourceIds: list, tagKey: str, tagValue: str): client.create_tags( Resources=resourceIds, Tags=[{ 'Key': tagKey, 'Value': tagValue }], ) def delete_tag(resourceIds: list, tagKey: str, tagValue: str): response = client.delete_tags( Resources=resourceIds, Tags=[{ 'Key': tagKey, 'Value': tagValue }], ) return response def get_instance_state(id): instance = ec2_resource.Instance(id) return instance.state['Name'] def get_instances_by_tag(tagKey, tagValue): instances = ec2_resource.instances.filter( Filters=[{'Name': 'tag:{}'.format(tagKey), 'Values': [tagValue]}]) if not instances: return None instanceIds = [] for i in instances: instanceIds.append(i.id) return instanceIds def get_instances_by_name(name): instances = get_instances_by_tag("Name", name) if not instances: logger.error(f"ERROR: Failed to get instances by tag: Name, {name}") return None return instances def get_active_instance(instances): for i in instances: instance_state = get_instance_state(i) logger.info(f"Instance: {i}. State: {instance_state}") if instance_state == "running" or instance_state == "pending": return i logger.warn(f"Instances are not active") return None def get_volumes_by_instance_id(id): instance = ec2_resource.Instance(id) volumes = instance.volumes.all() volumeIds = [] for i in volumes: volumeIds.append(i.id) return volumeIds def terminate_instances(instance_ids): response = client.terminate_instances(InstanceIds=instance_ids) logger.info(response) return response
4,068
Python
21.605555
76
0.630285
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/lambda/common/aws_utils/ssm.py
# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: LicenseRef-.amazon.com.-AmznSL-1.0 # Licensed under the Amazon Software License http://aws.amazon.com/asl/ import os import time import logging import boto3 from botocore.exceptions import ClientError LOG_LEVEL = os.getenv("LOG_LEVEL", "DEBUG") logger = logging.getLogger() logger.setLevel(LOG_LEVEL) client = boto3.client("ssm") def get_param_value(name) -> str: response = client.get_parameter(Name=name) logger.info(response) return response['Parameter']['Value'] def update_param_value(name, value) -> bool: response = client.put_parameter(Name=name, Value=value, Overwrite=True) logger.info(response) try: return (response['Version'] > 0) except ClientError as e: message = "Error calling SendCommand: {}".format(e) logger.error(message) return False def run_commands( instance_id, commands, document="AWS-RunPowerShellScript", comment="aws_utils.ssm.run_commands" ): """alt document options: AWS-RunShellScript """ # Run Commands logger.info("Calling SendCommand: {} for instance: {}".format( commands, instance_id)) attempt = 0 response = None while attempt < 20: attempt = attempt + 1 try: time.sleep(10 * attempt) logger.info("SendCommand, attempt #: {}".format(attempt)) response = client.send_command( InstanceIds=[instance_id], DocumentName=document, Parameters={"commands": commands}, Comment=comment, CloudWatchOutputConfig={ "CloudWatchLogGroupName": instance_id, "CloudWatchOutputEnabled": True, }, ) logger.info(response) if "Command" in response: break if attempt == 10: message = "Command did not execute successfully in time allowed." raise Exception(message) except ClientError as e: message = "Error calling SendCommand: {}".format(e) logger.error(message) continue if not response: message = "Command did not execute successfully in time allowed." raise Exception(message) # Check Command Status command_id = response["Command"]["CommandId"] logger.info( "Calling GetCommandInvocation for command: {} for instance: {}".format( command_id, instance_id ) ) attempt = 0 result = None while attempt < 10: attempt = attempt + 1 try: time.sleep(10 * attempt) logger.info("GetCommandInvocation, attempt #: {}".format(attempt)) result = client.get_command_invocation( CommandId=command_id, InstanceId=instance_id, ) if result["Status"] == "InProgress": logger.info("Command is running.") continue elif result["Status"] == "Success": logger.info("Command Output: {}".format( result["StandardOutputContent"])) if result["StandardErrorContent"]: message = "Command returned STDERR: {}".format( result["StandardErrorContent"]) logger.warning(message) break elif result["Status"] == "Failed": message = "Error Running Command: {}".format( result["StandardErrorContent"]) logger.error(message) raise Exception(message) else: message = "Command has an unhandled status, will continue: {}".format( e) logger.warning(message) continue except client.exceptions.InvocationDoesNotExist as e: message = "Error calling GetCommandInvocation: {}".format(e) logger.error(message) raise Exception(message) if not result or result["Status"] != "Success": message = "Command did not execute successfully in time allowed." raise Exception(message) return result
4,304
Python
30.195652
99
0.574814
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/lambda/common/aws_utils/r53.py
# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: LicenseRef-.amazon.com.-AmznSL-1.0 # Licensed under the Amazon Software License http://aws.amazon.com/asl/ import boto3 client = boto3.client("route53") def update_hosted_zone_cname_record(hostedZoneID, rootDomain, domainPrefix, serverAddress): fqdn = f"{domainPrefix}.{rootDomain}" response = client.change_resource_record_sets( HostedZoneId=hostedZoneID, ChangeBatch={ "Comment": "Updating {fqdn}->{serverAddress} CNAME record", "Changes": [ { "Action": "UPSERT", "ResourceRecordSet": { "Name": fqdn, "Type": "CNAME", "TTL": 300, "ResourceRecords": [{"Value": serverAddress}], }, } ], }, ) return response def delete_hosted_zone_cname_record(hostedZoneID, rootDomain, domainPrefix, serverAddress): response = client.change_resource_record_sets( HostedZoneId=hostedZoneID, ChangeBatch={ "Comment": "string", "Changes": [ { "Action": "DELETE", "ResourceRecordSet": { "Name": f"{domainPrefix}.{rootDomain}", "Type": "CNAME", "ResourceRecords": [{"Value": serverAddress}], }, } ], }, ) # botocore.errorfactory.InvalidInput: An error occurred (InvalidInput) when calling the ChangeResourceRecordSets operation: Invalid request: # Expected exactly one of [AliasTarget, all of [TTL, and ResourceRecords], or TrafficPolicyInstanceId], but found none in Change with # [Action=DELETE, Name=nucleus-dev.awsps.myinstance.com, Type=CNAME, SetIdentifier=null] return response
1,989
Python
33.310344
144
0.553042
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/lambda/common/aws_utils/sm.py
# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: LicenseRef-.amazon.com.-AmznSL-1.0 # Licensed under the Amazon Software License http://aws.amazon.com/asl/ import json import boto3 SM = boto3.client("secretsmanager") def get_secret(secret_name): response = SM.get_secret_value(SecretId=secret_name) secret = json.loads(response["SecretString"]) return secret
429
Python
25.874998
73
0.745921
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/lambda/common/config/nucleus.py
def start_nucleus_config() -> list[str]: return ''' cd /opt/ove/base_stack || exit 1 echo "STARTING NUCLEUS STACK ----------------------------------" docker-compose --env-file nucleus-stack.env -f nucleus-stack-ssl.yml start '''.splitlines() def stop_nucleus_config() -> list[str]: return ''' cd /opt/ove/base_stack || exit 1 echo "STOPPING NUCLEUS STACK ----------------------------------" docker-compose --env-file nucleus-stack.env -f nucleus-stack-ssl.yml stop '''.splitlines() def restart_nucleus_config() -> list[str]: return ''' cd /opt/ove/base_stack || exit 1 echo "RESTARTING NUCLEUS STACK ----------------------------------" docker-compose --env-file nucleus-stack.env -f nucleus-stack-ssl.yml restart '''.splitlines() def get_config(artifacts_bucket_name: str, full_domain: str, nucleus_build: str, ov_main_password: str, ov_service_password: str) -> list[str]: return f''' echo "------------------------ NUCLEUS SERVER CONFIG ------------------------" echo "UPDATING AND INSTALLING DEPS ----------------------------------" sudo apt-get update -y -q && sudo apt-get upgrade -y sudo apt-get install dialog apt-utils -y echo "INSTALLING AWS CLI ----------------------------------" sudo curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip" sudo apt-get install unzip sudo unzip awscliv2.zip sudo ./aws/install sudo rm awscliv2.zip sudo rm -fr ./aws/install echo "INSTALLING PYTHON ----------------------------------" sudo apt-get -y install python3.9 sudo curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py sudo python3.9 get-pip.py sudo pip3 install --upgrade pip sudo pip3 --version echo "INSTALLING DOCKER ----------------------------------" sudo apt-get remove docker docker-engine docker.io containerd runc sudo apt-get -y install apt-transport-https ca-certificates curl gnupg-agent software-properties-common curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable" sudo apt-get -y update sudo apt-get -y install docker-ce docker-ce-cli containerd.io sudo systemctl enable --now docker echo "INSTALLING DOCKER COMPOSE ----------------------------------" sudo curl -L "https://github.com/docker/compose/releases/download/1.29.2/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose sudo chmod +x /usr/local/bin/docker-compose echo "INSTALLING NUCLEUS TOOLS ----------------------------------" sudo mkdir -p /opt/ove cd /opt/ove || exit 1 aws s3 cp --recursive s3://{artifacts_bucket_name}/tools/nucleusServer/ ./nucleusServer cd nucleusServer || exit 1 sudo pip3 install -r requirements.txt echo "UNPACKAGING NUCLEUS STACK ----------------------------------" sudo tar xzvf stack/{nucleus_build}.tar.gz -C /opt/ove --strip-components=1 cd /opt/ove/base_stack || exit 1 omniverse_data_path=/var/lib/omni/nucleus-data nucleusHost=$(curl -s http://169.254.169.254/latest/meta-data/hostname) sudo nst generate-nucleus-stack-env --server-ip $nucleusHost --reverse-proxy-domain {full_domain} --instance-name nucleus_server --master-password {ov_main_password} --service-password {ov_service_password} --data-root $omniverse_data_path chmod +x ./generate-sample-insecure-secrets.sh ./generate-sample-insecure-secrets.sh echo "PULLING NUCLEUS IMAGES ----------------------------------" docker-compose --env-file nucleus-stack.env -f nucleus-stack-ssl.yml pull echo "STARTING NUCLEUS STACK ----------------------------------" docker-compose --env-file nucleus-stack.env -f nucleus-stack-ssl.yml up -d docker-compose --env-file nucleus-stack.env -f nucleus-stack-ssl.yml ps -a '''.splitlines()
4,176
Python
48.72619
247
0.582136
aws-samples/nvidia-omniverse-nucleus-on-amazon-ec2/src/lambda/common/config/reverseProxy.py
def get_config(artifacts_bucket_name: str, nucleus_address: str, full_domain: str) -> list[str]: return f''' echo "------------------------ REVERSE PROXY CONFIG ------------------------" echo "UPDATING PACKAGES ----------------------------------" sudo yum update -y echo "INSTALLING DEPENDENCIES ----------------------------------" sudo yum install -y aws-cfn-bootstrap gcc openssl-devel bzip2-devel libffi-devel zlib-devel echo "INSTALLING NGINX ----------------------------------" sudo yum install -y amazon-linux-extras sudo amazon-linux-extras enable nginx1 sudo yum install -y nginx sudo nginx -v echo "INSTALLING PYTHON ----------------------------------" sudo wget https://www.python.org/ftp/python/3.9.9/Python-3.9.9.tgz -P /opt/python3.9 cd /opt/python3.9 || exit 1 sudo tar xzf Python-3.9.9.tgz cd Python-3.9.9 || exit 1 sudo ./configure --prefix=/usr --enable-optimizations sudo make install echo "------------------------ REVERSE PROXY CONFIG ------------------------" echo "INSTALLING REVERSE PROXY TOOLS ----------------------------------" cd /opt || exit 1 sudo aws s3 cp --recursive s3://{artifacts_bucket_name}/tools/reverseProxy/ ./reverseProxy cd reverseProxy || exit 1 pip3 --version sudo pip3 install -r requirements.txt sudo rpt generate-nginx-config --domain {full_domain} --server-address {nucleus_address} echo "STARTING NGINX ----------------------------------" sudo service nginx restart '''.splitlines()
1,670
Python
44.162161
99
0.511976
arhix52/Strelka/conanfile.py
import os from conan import ConanFile from conan.tools.cmake import cmake_layout from conan.tools.files import copy class StrelkaRecipe(ConanFile): settings = "os", "compiler", "build_type", "arch" generators = "CMakeToolchain", "CMakeDeps" def requirements(self): self.requires("glm/cci.20230113") self.requires("spdlog/[>=1.4.1]") self.requires("imgui/1.89.3") self.requires("glfw/3.3.8") self.requires("stb/cci.20230920") self.requires("glad/0.1.36") self.requires("doctest/2.4.11") self.requires("cxxopts/3.1.1") self.requires("tinygltf/2.8.19") self.requires("nlohmann_json/3.11.3") def generate(self): copy(self, "*glfw*", os.path.join(self.dependencies["imgui"].package_folder, "res", "bindings"), os.path.join(self.source_folder, "external", "imgui")) copy(self, "*opengl3*", os.path.join(self.dependencies["imgui"].package_folder, "res", "bindings"), os.path.join(self.source_folder, "external", "imgui")) copy(self, "*metal*", os.path.join(self.dependencies["imgui"].package_folder, "res", "bindings"), os.path.join(self.source_folder, "external", "imgui")) def layout(self): cmake_layout(self)
1,294
Python
37.088234
87
0.619784
arhix52/Strelka/BuildOpenUSD.md
USD building: VS2019 + python 3.10 To build debug on windows: python USD\build_scripts\build_usd.py "C:\work\USD_build_debug" --python --materialx --build-variant debug For USD 23.03 you could use VS2022 Linux: * python3 ./OpenUSD/build_scripts/build_usd.py /home/<user>/work/OpenUSD_build/ --python --materialx
315
Markdown
30.599997
106
0.746032
arhix52/Strelka/README.md
# Strelka Path tracing render based on NVIDIA OptiX + NVIDIA MDL and Apple Metal ## OpenUSD Hydra render delegate ![Kitchen Set from OpenUSD](images/Kitchen_2048i_4d_2048spp_0.png) ## Basis curves support ![Hairs](images/hairmat_2_light_10000i_6d_10000spp_0.png) ![Einar](images/einar_1024i_3d_1024spp_0.png) ## Project Dependencies OpenUSD https://github.com/PixarAnimationStudios/OpenUSD * Set evn var: `USD_DIR=c:\work\USD_build` OptiX * Set evn var: `OPTIX_DIR=C:\work\OptiX SDK 8.0.0` Download MDL sdk (for example: mdl-sdk-367100.2992): https://developer.nvidia.com/nvidia-mdl-sdk-get-started * unzip content to /external/mdl-sdk/ LLVM 12.0.1 (https://github.com/llvm/llvm-project/releases/tag/llvmorg-12.0.1) for MDL ptx code generator * for win: https://github.com/llvm/llvm-project/releases/download/llvmorg-12.0.1/LLVM-12.0.1-win64.exe * for linux: https://github.com/llvm/llvm-project/releases/download/llvmorg-12.0.1/clang+llvm-12.0.1-x86_64-linux-gnu-ubuntu-16.04.tar.xz * install it to `c:\work` for example * add to PATH: `c:\work\LLVM\bin` * extract 2 header files files from external/clang12_patched to `C:\work\LLVM\lib\clang\12.0.1\include` Strelka uses conan https://conan.io/ * install conan: `pip install conan` * install ninja [https://ninja-build.org/] build system: `sudo apt install ninja-build` detect conan profile: `conan profile detect --force` 1. `conan install . --build=missing --settings=build_type=Debug` 2. `cd build` 3. `cmake .. -G "Visual Studio 17 2022" -DCMAKE_TOOLCHAIN_FILE=generators\conan_toolchain.cmake` 4. `cmake --build . --config Debug` On Mac/Linux: 1. `conan install . -c tools.cmake.cmaketoolchain:generator=Ninja -c tools.system.package_manager:mode=install -c tools.system.package_manager:sudo=True --build=missing --settings=build_type=Debug` 2. `cd build/Debug` 3. `source ./generators/conanbuild.sh` 4. `cmake ../.. -DCMAKE_TOOLCHAIN_FILE=generators/conan_toolchain.cmake -DCMAKE_BUILD_TYPE=Debug` 5. `cmake --build .` #### Installation #### Launch ## Synopsis Strelka -s <USD Scene path> [OPTION...] positional parameters -s, --scene arg scene path (default: "") -i, --iteration arg Iteration to capture (default: -1) -h, --help Print usage To set log level use `export SPDLOG_LEVEL=debug` The available log levels are: trace, debug, info, warn, and err. ## Example ./Strelka -s misc/coffeemaker.usdc -i 100 ## USD USD env: export USD_DIR=/Users/<user>/work/usd_build/ export PATH=/Users/<user>/work/usd_build/bin:$PATH export PYTHONPATH=/Users/<user>/work/usd_build/lib/python:$PYTHONPATH Install plugin: cmake --install . --component HdStrelka ## License * USD plugin design and material translation code based on Pablo Gatling code: https://github.com/pablode/gatling
2,849
Markdown
33.337349
197
0.713935
arhix52/Strelka/src/HdStrelka/RenderParam.h
#pragma once #include "pxr/pxr.h" #include "pxr/imaging/hd/renderDelegate.h" #include "pxr/imaging/hd/renderThread.h" #include <scene/scene.h> PXR_NAMESPACE_OPEN_SCOPE class HdStrelkaRenderParam final : public HdRenderParam { public: HdStrelkaRenderParam(oka::Scene* scene, HdRenderThread* renderThread, std::atomic<int>* sceneVersion) : mScene(scene), mRenderThread(renderThread), mSceneVersion(sceneVersion) { } virtual ~HdStrelkaRenderParam() = default; /// Accessor for the top-level embree scene. oka::Scene* AcquireSceneForEdit() { mRenderThread->StopRender(); (*mSceneVersion)++; return mScene; } private: oka::Scene* mScene; /// A handle to the global render thread. HdRenderThread* mRenderThread; /// A version counter for edits to mScene. std::atomic<int>* mSceneVersion; }; PXR_NAMESPACE_CLOSE_SCOPE
901
C
24.055555
105
0.694784
arhix52/Strelka/src/HdStrelka/BasisCurves.h
#pragma once #include <pxr/pxr.h> #include <pxr/imaging/hd/basisCurves.h> #include <scene/scene.h> #include <pxr/base/gf/vec2f.h> PXR_NAMESPACE_OPEN_SCOPE class HdStrelkaBasisCurves final : public HdBasisCurves { public: HF_MALLOC_TAG_NEW("new HdStrelkaBasicCurves"); HdStrelkaBasisCurves(const SdfPath& id, oka::Scene* scene); ~HdStrelkaBasisCurves() override; void Sync(HdSceneDelegate* sceneDelegate, HdRenderParam* renderParam, HdDirtyBits* dirtyBits, const TfToken& reprToken) override; HdDirtyBits GetInitialDirtyBitsMask() const override; void _ConvertCurve(); const std::vector<glm::float3>& GetPoints() const; const std::vector<float>& GetWidths() const; const std::vector<uint32_t>& GetVertexCounts() const; const GfMatrix4d& GetPrototypeTransform() const; const char* getName() const; protected: void _InitRepr(const TfToken& reprName, HdDirtyBits* dirtyBits) override; HdDirtyBits _PropagateDirtyBits(HdDirtyBits bits) const override; private: bool _FindPrimvar(HdSceneDelegate* sceneDelegate, const TfToken& primvarName, HdInterpolation& interpolation) const; void _PullPrimvars(HdSceneDelegate* sceneDelegate, VtVec3fArray& points, VtVec3fArray& normals, VtFloatArray& widths, bool& indexedNormals, bool& indexedUVs, GfVec3f& color, bool& hasColor) const; void _UpdateGeometry(HdSceneDelegate* sceneDelegate); oka::Scene* mScene; std::string mName; GfVec3f mColor; VtIntArray mVertexCounts; VtVec3fArray mPoints; VtVec3fArray mNormals; VtFloatArray mWidths; GfMatrix4d m_prototypeTransform; HdBasisCurvesTopology mTopology; std::vector<glm::float3> mCurvePoints; std::vector<float> mCurveWidths; std::vector<uint32_t> mCurveVertexCounts; // std::vector<GfVec2f> m_uvs; }; PXR_NAMESPACE_CLOSE_SCOPE
2,048
C
28.271428
120
0.67334
arhix52/Strelka/src/HdStrelka/Tokens.cpp
#include "Tokens.h" PXR_NAMESPACE_OPEN_SCOPE TF_DEFINE_PUBLIC_TOKENS(HdStrelkaSettingsTokens, HD_STRELKA_SETTINGS_TOKENS); TF_DEFINE_PUBLIC_TOKENS(HdStrelkaNodeIdentifiers, HD_STRELKA_NODE_IDENTIFIER_TOKENS); TF_DEFINE_PUBLIC_TOKENS(HdStrelkaSourceTypes, HD_STRELKA_SOURCE_TYPE_TOKENS); TF_DEFINE_PUBLIC_TOKENS(HdStrelkaDiscoveryTypes, HD_STRELKA_DISCOVERY_TYPE_TOKENS); TF_DEFINE_PUBLIC_TOKENS(HdStrelkaRenderContexts, HD_STRELKA_RENDER_CONTEXT_TOKENS); TF_DEFINE_PUBLIC_TOKENS(HdStrelkaNodeContexts, HD_STRELKA_NODE_CONTEXT_TOKENS); PXR_NAMESPACE_CLOSE_SCOPE
564
C++
42.461535
85
0.833333
arhix52/Strelka/src/HdStrelka/MdlDiscoveryPlugin.h
#pragma once #include <pxr/usd/ndr/discoveryPlugin.h> PXR_NAMESPACE_OPEN_SCOPE class HdStrelkaMdlDiscoveryPlugin final : public NdrDiscoveryPlugin { public: NdrNodeDiscoveryResultVec DiscoverNodes(const Context& ctx) override; const NdrStringVec& GetSearchURIs() const override; }; PXR_NAMESPACE_CLOSE_SCOPE
317
C
18.874999
71
0.807571
arhix52/Strelka/src/HdStrelka/Material.h
#pragma once #include "materialmanager.h" #include "MaterialNetworkTranslator.h" #include <pxr/imaging/hd/material.h> #include <pxr/imaging/hd/sceneDelegate.h> PXR_NAMESPACE_OPEN_SCOPE class HdStrelkaMaterial final : public HdMaterial { public: HF_MALLOC_TAG_NEW("new HdStrelkaMaterial"); HdStrelkaMaterial(const SdfPath& id, const MaterialNetworkTranslator& translator); ~HdStrelkaMaterial() override; HdDirtyBits GetInitialDirtyBitsMask() const override; void Sync(HdSceneDelegate* sceneDelegate, HdRenderParam* renderParam, HdDirtyBits* dirtyBits) override; const std::string& GetStrelkaMaterial() const; bool isMdl() const { return mIsMdl; } std::string getFileUri() { return mMdlFileUri; } std::string getSubIdentifier() { return mMdlSubIdentifier; } const std::vector<oka::MaterialManager::Param>& getParams() const { return mMaterialParams; } private: const MaterialNetworkTranslator& m_translator; bool mIsMdl = false; std::string mMaterialXCode; // MDL related std::string mMdlFileUri; std::string mMdlSubIdentifier; std::vector<oka::MaterialManager::Param> mMaterialParams; }; PXR_NAMESPACE_CLOSE_SCOPE
1,258
C
21.890909
107
0.709062
arhix52/Strelka/src/HdStrelka/Light.cpp
#include "Light.h" #include <glm/glm.hpp> #include <glm/gtc/matrix_transform.hpp> #include <glm/gtc/type_ptr.hpp> #include <glm/gtx/compatibility.hpp> #include <pxr/imaging/hd/instancer.h> #include <pxr/imaging/hd/meshUtil.h> #include <pxr/imaging/hd/smoothNormals.h> #include <pxr/imaging/hd/vertexAdjacency.h> PXR_NAMESPACE_OPEN_SCOPE // Lookup table from: // Colour Rendering of Spectra // by John Walker // https://www.fourmilab.ch/documents/specrend/specrend.c // // Covers range from 1000k to 10000k in 500k steps // assuming Rec709 / sRGB colorspace chromaticity. // // NOTE: 6500K doesn't give a pure white because the D65 // illuminant used by Rec. 709 doesn't lie on the // Planckian Locus. We would need to compute the // Correlated Colour Temperature (CCT) using Ohno's // method to get pure white. Maybe one day. // // Note that the beginning and ending knots are repeated to simplify // boundary behavior. The last 4 knots represent the segment starting // at 1.0. // static GfVec3f const _blackbodyRGB[] = { GfVec3f(1.000000f, 0.027490f, 0.000000f), // 1000 K (Approximation) GfVec3f(1.000000f, 0.027490f, 0.000000f), // 1000 K (Approximation) GfVec3f(1.000000f, 0.149664f, 0.000000f), // 1500 K (Approximation) GfVec3f(1.000000f, 0.256644f, 0.008095f), // 2000 K GfVec3f(1.000000f, 0.372033f, 0.067450f), // 2500 K GfVec3f(1.000000f, 0.476725f, 0.153601f), // 3000 K GfVec3f(1.000000f, 0.570376f, 0.259196f), // 3500 K GfVec3f(1.000000f, 0.653480f, 0.377155f), // 4000 K GfVec3f(1.000000f, 0.726878f, 0.501606f), // 4500 K GfVec3f(1.000000f, 0.791543f, 0.628050f), // 5000 K GfVec3f(1.000000f, 0.848462f, 0.753228f), // 5500 K GfVec3f(1.000000f, 0.898581f, 0.874905f), // 6000 K GfVec3f(1.000000f, 0.942771f, 0.991642f), // 6500 K GfVec3f(0.906947f, 0.890456f, 1.000000f), // 7000 K GfVec3f(0.828247f, 0.841838f, 1.000000f), // 7500 K GfVec3f(0.765791f, 0.801896f, 1.000000f), // 8000 K GfVec3f(0.715255f, 0.768579f, 1.000000f), // 8500 K GfVec3f(0.673683f, 0.740423f, 1.000000f), // 9000 K GfVec3f(0.638992f, 0.716359f, 1.000000f), // 9500 K GfVec3f(0.609681f, 0.695588f, 1.000000f), // 10000 K GfVec3f(0.609681f, 0.695588f, 1.000000f), // 10000 K GfVec3f(0.609681f, 0.695588f, 1.000000f) // 10000 K }; // Catmull-Rom basis static const float _basis[4][4] = { { -0.5f, 1.5f, -1.5f, 0.5f }, { 1.f, -2.5f, 2.0f, -0.5f }, { -0.5f, 0.0f, 0.5f, 0.0f }, { 0.f, 1.0f, 0.0f, 0.0f } }; static inline float _Rec709RgbToLuma(const GfVec3f& rgb) { return GfDot(rgb, GfVec3f(0.2126f, 0.7152f, 0.0722f)); } static GfVec3f _BlackbodyTemperatureAsRgb(float temp) { // Catmull-Rom interpolation of _blackbodyRGB constexpr int numKnots = sizeof(_blackbodyRGB) / sizeof(_blackbodyRGB[0]); // Parametric distance along spline const float u_spline = GfClamp((temp - 1000.0f) / 9000.0f, 0.0f, 1.0f); // Last 4 knots represent a trailing segment starting at u_spline==1.0, // to simplify boundary behavior constexpr int numSegs = (numKnots - 4); const float x = u_spline * numSegs; const int seg = int(floor(x)); const float u_seg = x - seg; // Parameter within segment // Knot values for this segment GfVec3f k0 = _blackbodyRGB[seg + 0]; GfVec3f k1 = _blackbodyRGB[seg + 1]; GfVec3f k2 = _blackbodyRGB[seg + 2]; GfVec3f k3 = _blackbodyRGB[seg + 3]; // Compute cubic coefficients. Could fold constants (zero, one) here // if speed is a concern. GfVec3f a = _basis[0][0] * k0 + _basis[0][1] * k1 + _basis[0][2] * k2 + _basis[0][3] * k3; GfVec3f b = _basis[1][0] * k0 + _basis[1][1] * k1 + _basis[1][2] * k2 + _basis[1][3] * k3; GfVec3f c = _basis[2][0] * k0 + _basis[2][1] * k1 + _basis[2][2] * k2 + _basis[2][3] * k3; GfVec3f d = _basis[3][0] * k0 + _basis[3][1] * k1 + _basis[3][2] * k2 + _basis[3][3] * k3; // Eval cubic polynomial. GfVec3f rgb = ((a * u_seg + b) * u_seg + c) * u_seg + d; // Normalize to the same luminance as (1,1,1) rgb /= _Rec709RgbToLuma(rgb); // Clamp at zero, since the spline can produce small negative values, // e.g. in the blue component at 1300k. rgb[0] = GfMax(rgb[0], 0.f); rgb[1] = GfMax(rgb[1], 0.f); rgb[2] = GfMax(rgb[2], 0.f); return rgb; } HdStrelkaLight::HdStrelkaLight(const SdfPath& id, TfToken const& lightType) : HdLight(id), mLightType(lightType) { } HdStrelkaLight::~HdStrelkaLight() { } void HdStrelkaLight::Sync(HdSceneDelegate* sceneDelegate, HdRenderParam* renderParam, HdDirtyBits* dirtyBits) { TF_UNUSED(renderParam); bool pullLight = (*dirtyBits & DirtyBits::DirtyParams); *dirtyBits = DirtyBits::Clean; if (!pullLight) { return; } const SdfPath& id = GetId(); // const VtValue& resource = sceneDelegate->GetMaterialResource(id); // Get the color of the light GfVec3f hdc = sceneDelegate->GetLightParamValue(id, HdLightTokens->color).Get<GfVec3f>(); // Color temperature VtValue enableColorTemperatureVal = sceneDelegate->GetLightParamValue(id, HdLightTokens->enableColorTemperature); if (enableColorTemperatureVal.GetWithDefault<bool>(false)) { VtValue colorTemperatureVal = sceneDelegate->GetLightParamValue(id, HdLightTokens->colorTemperature); if (colorTemperatureVal.IsHolding<float>()) { float colorTemperature = colorTemperatureVal.Get<float>(); hdc = GfCompMult(hdc, _BlackbodyTemperatureAsRgb(colorTemperature)); } } // Intensity float intensity = sceneDelegate->GetLightParamValue(id, HdLightTokens->intensity).Get<float>(); // Exposure float exposure = sceneDelegate->GetLightParamValue(id, HdLightTokens->exposure).Get<float>(); intensity *= powf(2.0f, GfClamp(exposure, -50.0f, 50.0f)); // Transform { GfMatrix4d transform = sceneDelegate->GetTransform(id); glm::float4x4 xform; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { xform[i][j] = (float)transform[i][j]; } } mLightDesc.xform = xform; mLightDesc.useXform = true; } mLightDesc.color = glm::float3(hdc[0], hdc[1], hdc[2]); mLightDesc.intensity = intensity; if (mLightType == HdPrimTypeTokens->rectLight) { mLightDesc.type = 0; float width = 0.0f; float height = 0.0f; VtValue widthVal = sceneDelegate->GetLightParamValue(id, HdLightTokens->width); if (widthVal.IsHolding<float>()) { width = widthVal.Get<float>(); } VtValue heightVal = sceneDelegate->GetLightParamValue(id, HdLightTokens->height); if (heightVal.IsHolding<float>()) { height = heightVal.Get<float>(); } mLightDesc.height = height; mLightDesc.width = width; } else if (mLightType == HdPrimTypeTokens->diskLight || mLightType == HdPrimTypeTokens->sphereLight) { mLightDesc.type = mLightType == HdPrimTypeTokens->diskLight ? 1 : 2; float radius = 0.0; VtValue radiusVal = sceneDelegate->GetLightParamValue(id, HdLightTokens->radius); if (radiusVal.IsHolding<float>()) { radius = radiusVal.Get<float>(); } mLightDesc.radius = radius * mLightDesc.xform[0][0]; // uniform scale } else if (mLightType == HdPrimTypeTokens->distantLight) { float angle = 0.0f; mLightDesc.type = 3; // TODO: move to enum VtValue angleVal = sceneDelegate->GetLightParamValue(id, HdLightTokens->angle); if (angleVal.IsHolding<float>()) { angle = angleVal.Get<float>(); } mLightDesc.halfAngle = angle * 0.5f * (M_PI / 180.0f); mLightDesc.intensity /= M_PI * powf(sin(mLightDesc.halfAngle), 2.0f); } } HdDirtyBits HdStrelkaLight::GetInitialDirtyBitsMask() const { return (DirtyParams | DirtyTransform); } oka::Scene::UniformLightDesc HdStrelkaLight::getLightDesc() { return mLightDesc; } PXR_NAMESPACE_CLOSE_SCOPE
8,162
C++
35.936651
117
0.636486
arhix52/Strelka/src/HdStrelka/MdlParserPlugin.cpp
// Copyright (C) 2021 Pablo Delgado Krämer // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <https://www.gnu.org/licenses/>. #include "MdlParserPlugin.h" #include <pxr/base/tf/staticTokens.h> #include <pxr/usd/sdr/shaderNode.h> #include <pxr/usd/ar/resolver.h> #include "pxr/usd/ar/resolvedPath.h" #include "pxr/usd/ar/asset.h" #include <pxr/usd/ar/ar.h> //#include "Tokens.h" PXR_NAMESPACE_OPEN_SCOPE NDR_REGISTER_PARSER_PLUGIN(HdStrelkaMdlParserPlugin); // clang-format off TF_DEFINE_PRIVATE_TOKENS(_tokens, (mdl) (subIdentifier)); // clang-format on NdrNodeUniquePtr HdStrelkaMdlParserPlugin::Parse(const NdrNodeDiscoveryResult& discoveryResult) { NdrTokenMap metadata = discoveryResult.metadata; metadata[_tokens->subIdentifier] = discoveryResult.subIdentifier; return std::make_unique<SdrShaderNode>(discoveryResult.identifier, discoveryResult.version, discoveryResult.name, discoveryResult.family, _tokens->mdl, discoveryResult.sourceType, discoveryResult.uri, discoveryResult.resolvedUri, NdrPropertyUniquePtrVec{}, metadata); } const NdrTokenVec& HdStrelkaMdlParserPlugin::GetDiscoveryTypes() const { static NdrTokenVec s_discoveryTypes{ _tokens->mdl }; return s_discoveryTypes; } const TfToken& HdStrelkaMdlParserPlugin::GetSourceType() const { return _tokens->mdl; } PXR_NAMESPACE_CLOSE_SCOPE
2,153
C++
34.311475
119
0.681839
arhix52/Strelka/src/HdStrelka/Instancer.cpp
// Copyright (C) 2021 Pablo Delgado Krämer // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <https://www.gnu.org/licenses/>. #include "Instancer.h" #include <pxr/base/gf/quatd.h> #include <pxr/imaging/hd/sceneDelegate.h> PXR_NAMESPACE_OPEN_SCOPE HdStrelkaInstancer::HdStrelkaInstancer(HdSceneDelegate* delegate, const SdfPath& id) : HdInstancer(delegate, id) { } HdStrelkaInstancer::~HdStrelkaInstancer() { } void HdStrelkaInstancer::Sync(HdSceneDelegate* sceneDelegate, HdRenderParam* renderParam, HdDirtyBits* dirtyBits) { TF_UNUSED(renderParam); _UpdateInstancer(sceneDelegate, dirtyBits); const SdfPath& id = GetId(); if (!HdChangeTracker::IsAnyPrimvarDirty(*dirtyBits, id)) { return; } const HdPrimvarDescriptorVector& primvars = sceneDelegate->GetPrimvarDescriptors(id, HdInterpolation::HdInterpolationInstance); for (const HdPrimvarDescriptor& primvar : primvars) { TfToken primName = primvar.name; if (primName != HdInstancerTokens->translate && primName != HdInstancerTokens->rotate && primName != HdInstancerTokens->scale && primName != HdInstancerTokens->instanceTransform) { continue; } if (!HdChangeTracker::IsPrimvarDirty(*dirtyBits, id, primName)) { continue; } VtValue value = sceneDelegate->Get(id, primName); m_primvarMap[primName] = value; } } VtMatrix4dArray HdStrelkaInstancer::ComputeInstanceTransforms(const SdfPath& prototypeId) { HdSceneDelegate* sceneDelegate = GetDelegate(); const SdfPath& id = GetId(); // Calculate instance transforms for this instancer. VtValue boxedTranslates = m_primvarMap[HdInstancerTokens->translate]; VtValue boxedRotates = m_primvarMap[HdInstancerTokens->rotate]; VtValue boxedScales = m_primvarMap[HdInstancerTokens->scale]; VtValue boxedInstanceTransforms = m_primvarMap[HdInstancerTokens->instanceTransform]; VtVec3fArray translates; if (boxedTranslates.IsHolding<VtVec3fArray>()) { translates = boxedTranslates.UncheckedGet<VtVec3fArray>(); } else if (!boxedTranslates.IsEmpty()) { TF_CODING_WARNING("Instancer translate values are not of type Vec3f!"); } VtVec4fArray rotates; if (boxedRotates.IsHolding<VtVec4fArray>()) { rotates = boxedRotates.Get<VtVec4fArray>(); } else if (!boxedRotates.IsEmpty()) { TF_CODING_WARNING("Instancer rotate values are not of type Vec3f!"); } VtVec3fArray scales; if (boxedScales.IsHolding<VtVec3fArray>()) { scales = boxedScales.Get<VtVec3fArray>(); } else if (!boxedScales.IsEmpty()) { TF_CODING_WARNING("Instancer scale values are not of type Vec3f!"); } VtMatrix4dArray instanceTransforms; if (boxedInstanceTransforms.IsHolding<VtMatrix4dArray>()) { instanceTransforms = boxedInstanceTransforms.Get<VtMatrix4dArray>(); } GfMatrix4d instancerTransform = sceneDelegate->GetInstancerTransform(id); const VtIntArray& instanceIndices = sceneDelegate->GetInstanceIndices(id, prototypeId); VtMatrix4dArray transforms; transforms.resize(instanceIndices.size()); for (size_t i = 0; i < instanceIndices.size(); i++) { int instanceIndex = instanceIndices[i]; GfMatrix4d mat = instancerTransform; GfMatrix4d temp; if (i < translates.size()) { auto trans = GfVec3d(translates[instanceIndex]); temp.SetTranslate(trans); mat = temp * mat; } if (i < rotates.size()) { GfVec4f rot = rotates[instanceIndex]; temp.SetRotate(GfQuatd(rot[0], rot[1], rot[2], rot[3])); mat = temp * mat; } if (i < scales.size()) { auto scale = GfVec3d(scales[instanceIndex]); temp.SetScale(scale); mat = temp * mat; } if (i < instanceTransforms.size()) { temp = instanceTransforms[instanceIndex]; mat = temp * mat; } transforms[i] = mat; } // Calculate instance transforms for all instancer instances. const SdfPath& parentId = GetParentId(); if (parentId.IsEmpty()) { return transforms; } const HdRenderIndex& renderIndex = sceneDelegate->GetRenderIndex(); HdInstancer* boxedParentInstancer = renderIndex.GetInstancer(parentId); HdStrelkaInstancer* parentInstancer = dynamic_cast<HdStrelkaInstancer*>(boxedParentInstancer); VtMatrix4dArray parentTransforms = parentInstancer->ComputeInstanceTransforms(id); VtMatrix4dArray transformProducts; transformProducts.resize(parentTransforms.size() * transforms.size()); for (size_t i = 0; i < parentTransforms.size(); i++) { for (size_t j = 0; j < transforms.size(); j++) { size_t index = i * transforms.size() + j; transformProducts[index] = transforms[j] * parentTransforms[i]; } } return transformProducts; } PXR_NAMESPACE_CLOSE_SCOPE
5,927
C++
29.556701
131
0.639615
arhix52/Strelka/src/HdStrelka/RenderDelegate.h
#pragma once #include <pxr/imaging/hd/renderDelegate.h> #include "MaterialNetworkTranslator.h" #include <render/common.h> #include <scene/scene.h> #include <render/render.h> PXR_NAMESPACE_OPEN_SCOPE class HdStrelkaRenderDelegate final : public HdRenderDelegate { public: HdStrelkaRenderDelegate(const HdRenderSettingsMap& settingsMap, const MaterialNetworkTranslator& translator); ~HdStrelkaRenderDelegate() override; void SetDrivers(HdDriverVector const& drivers) override; HdRenderSettingDescriptorList GetRenderSettingDescriptors() const override; HdRenderPassSharedPtr CreateRenderPass(HdRenderIndex* index, const HdRprimCollection& collection) override; HdResourceRegistrySharedPtr GetResourceRegistry() const override; void CommitResources(HdChangeTracker* tracker) override; HdInstancer* CreateInstancer(HdSceneDelegate* delegate, const SdfPath& id) override; void DestroyInstancer(HdInstancer* instancer) override; HdAovDescriptor GetDefaultAovDescriptor(const TfToken& name) const override; /* Rprim */ const TfTokenVector& GetSupportedRprimTypes() const override; HdRprim* CreateRprim(const TfToken& typeId, const SdfPath& rprimId) override; void DestroyRprim(HdRprim* rPrim) override; /* Sprim */ const TfTokenVector& GetSupportedSprimTypes() const override; HdSprim* CreateSprim(const TfToken& typeId, const SdfPath& sprimId) override; HdSprim* CreateFallbackSprim(const TfToken& typeId) override; void DestroySprim(HdSprim* sprim) override; /* Bprim */ const TfTokenVector& GetSupportedBprimTypes() const override; HdBprim* CreateBprim(const TfToken& typeId, const SdfPath& bprimId) override; HdBprim* CreateFallbackBprim(const TfToken& typeId) override; void DestroyBprim(HdBprim* bprim) override; TfToken GetMaterialBindingPurpose() const override; // In a USD file, there can be multiple networks associated with a material: // token outputs:mdl:surface.connect = </Root/Glass.outputs:out> // token outputs:surface.connect = </Root/GlassPreviewSurface.outputs:surface> // This function returns the order of preference used when selecting one for rendering. TfTokenVector GetMaterialRenderContexts() const override; TfTokenVector GetShaderSourceTypes() const override; oka::SharedContext& getSharedContext(); private: const MaterialNetworkTranslator& m_translator; HdRenderSettingDescriptorList m_settingDescriptors; HdResourceRegistrySharedPtr m_resourceRegistry; const TfTokenVector SUPPORTED_BPRIM_TYPES = { HdPrimTypeTokens->renderBuffer }; const TfTokenVector SUPPORTED_RPRIM_TYPES = { HdPrimTypeTokens->mesh, HdPrimTypeTokens->basisCurves }; const TfTokenVector SUPPORTED_SPRIM_TYPES = { HdPrimTypeTokens->camera, HdPrimTypeTokens->material, HdPrimTypeTokens->light, HdPrimTypeTokens->rectLight, HdPrimTypeTokens->diskLight, HdPrimTypeTokens->sphereLight, HdPrimTypeTokens->distantLight, }; oka::SharedContext* mSharedCtx; oka::Scene mScene; oka::Render* mRenderer; }; PXR_NAMESPACE_CLOSE_SCOPE
3,149
C
33.23913
113
0.768498
arhix52/Strelka/src/HdStrelka/RenderDelegate.cpp
#include "RenderDelegate.h" #include "Camera.h" #include "Instancer.h" #include "Light.h" #include "Material.h" #include "Mesh.h" #include "BasisCurves.h" #include "RenderBuffer.h" #include "RenderPass.h" #include "Tokens.h" #include <pxr/base/gf/vec4f.h> #include <pxr/imaging/hd/resourceRegistry.h> #include <log.h> #include <memory> PXR_NAMESPACE_OPEN_SCOPE TF_DEFINE_PRIVATE_TOKENS(_Tokens, (HdStrelkaDriver)); HdStrelkaRenderDelegate::HdStrelkaRenderDelegate(const HdRenderSettingsMap& settingsMap, const MaterialNetworkTranslator& translator) : m_translator(translator) { m_resourceRegistry = std::make_shared<HdResourceRegistry>(); m_settingDescriptors.push_back( HdRenderSettingDescriptor{ "Samples per pixel", HdStrelkaSettingsTokens->spp, VtValue{ 8 } }); m_settingDescriptors.push_back( HdRenderSettingDescriptor{ "Max bounces", HdStrelkaSettingsTokens->max_bounces, VtValue{ 4 } }); _PopulateDefaultSettings(m_settingDescriptors); for (const auto& setting : settingsMap) { const TfToken& key = setting.first; const VtValue& value = setting.second; _settingsMap[key] = value; } oka::RenderType type = oka::RenderType::eOptiX; #ifdef __APPLE__ type = oka::RenderType::eMetal; #endif mRenderer = oka::RenderFactory::createRender(type); mRenderer->setScene(&mScene); } HdStrelkaRenderDelegate::~HdStrelkaRenderDelegate() { } void HdStrelkaRenderDelegate::SetDrivers(HdDriverVector const& drivers) { for (HdDriver* hdDriver : drivers) { if (hdDriver->name == _Tokens->HdStrelkaDriver && hdDriver->driver.IsHolding<oka::SharedContext*>()) { assert(mRenderer); mSharedCtx = hdDriver->driver.UncheckedGet<oka::SharedContext*>(); mRenderer->setSharedContext(mSharedCtx); mRenderer->init(); mSharedCtx->mRender = mRenderer; break; } } } HdRenderSettingDescriptorList HdStrelkaRenderDelegate::GetRenderSettingDescriptors() const { return m_settingDescriptors; } HdRenderPassSharedPtr HdStrelkaRenderDelegate::CreateRenderPass(HdRenderIndex* index, const HdRprimCollection& collection) { return HdRenderPassSharedPtr(new HdStrelkaRenderPass(index, collection, _settingsMap, mRenderer, &mScene)); } HdResourceRegistrySharedPtr HdStrelkaRenderDelegate::GetResourceRegistry() const { return m_resourceRegistry; } void HdStrelkaRenderDelegate::CommitResources(HdChangeTracker* tracker) { TF_UNUSED(tracker); // We delay BVH building and GPU uploads to the next render call. } HdInstancer* HdStrelkaRenderDelegate::CreateInstancer(HdSceneDelegate* delegate, const SdfPath& id) { return new HdStrelkaInstancer(delegate, id); } void HdStrelkaRenderDelegate::DestroyInstancer(HdInstancer* instancer) { delete instancer; } HdAovDescriptor HdStrelkaRenderDelegate::GetDefaultAovDescriptor(const TfToken& name) const { TF_UNUSED(name); HdAovDescriptor aovDescriptor; aovDescriptor.format = HdFormatFloat32Vec4; aovDescriptor.multiSampled = false; aovDescriptor.clearValue = GfVec4f(0.0f, 0.0f, 0.0f, 0.0f); return aovDescriptor; } const TfTokenVector& HdStrelkaRenderDelegate::GetSupportedRprimTypes() const { return SUPPORTED_RPRIM_TYPES; } HdRprim* HdStrelkaRenderDelegate::CreateRprim(const TfToken& typeId, const SdfPath& rprimId) { if (typeId == HdPrimTypeTokens->mesh) { return new HdStrelkaMesh(rprimId, &mScene); } else if (typeId == HdPrimTypeTokens->basisCurves) { return new HdStrelkaBasisCurves(rprimId, &mScene); } STRELKA_ERROR("Unknown Rprim Type {}", typeId.GetText()); return nullptr; } void HdStrelkaRenderDelegate::DestroyRprim(HdRprim* rprim) { delete rprim; } const TfTokenVector& HdStrelkaRenderDelegate::GetSupportedSprimTypes() const { return SUPPORTED_SPRIM_TYPES; } HdSprim* HdStrelkaRenderDelegate::CreateSprim(const TfToken& typeId, const SdfPath& sprimId) { STRELKA_DEBUG("CreateSprim Type: {}", typeId.GetText()); if (sprimId.IsEmpty()) { STRELKA_DEBUG("skipping creation of empty sprim path"); return nullptr; } HdSprim* res = nullptr; if (typeId == HdPrimTypeTokens->camera) { res = new HdStrelkaCamera(sprimId, mScene); } else if (typeId == HdPrimTypeTokens->material) { res = new HdStrelkaMaterial(sprimId, m_translator); } else if (typeId == HdPrimTypeTokens->rectLight || typeId == HdPrimTypeTokens->diskLight || typeId == HdPrimTypeTokens->sphereLight || typeId == HdPrimTypeTokens->distantLight) { res = new HdStrelkaLight(sprimId, typeId); } else { STRELKA_ERROR("Unknown Sprim Type {}", typeId.GetText()); } return res; } HdSprim* HdStrelkaRenderDelegate::CreateFallbackSprim(const TfToken& typeId) { const SdfPath& sprimId = SdfPath::EmptyPath(); return CreateSprim(typeId, sprimId); } void HdStrelkaRenderDelegate::DestroySprim(HdSprim* sprim) { delete sprim; } const TfTokenVector& HdStrelkaRenderDelegate::GetSupportedBprimTypes() const { return SUPPORTED_BPRIM_TYPES; } HdBprim* HdStrelkaRenderDelegate::CreateBprim(const TfToken& typeId, const SdfPath& bprimId) { if (typeId == HdPrimTypeTokens->renderBuffer) { return new HdStrelkaRenderBuffer(bprimId, mSharedCtx); } return nullptr; } HdBprim* HdStrelkaRenderDelegate::CreateFallbackBprim(const TfToken& typeId) { const SdfPath& bprimId = SdfPath::EmptyPath(); return CreateBprim(typeId, bprimId); } void HdStrelkaRenderDelegate::DestroyBprim(HdBprim* bprim) { delete bprim; } TfToken HdStrelkaRenderDelegate::GetMaterialBindingPurpose() const { //return HdTokens->full; return HdTokens->preview; } TfTokenVector HdStrelkaRenderDelegate::GetMaterialRenderContexts() const { return TfTokenVector{ HdStrelkaRenderContexts->mtlx, HdStrelkaRenderContexts->mdl }; } TfTokenVector HdStrelkaRenderDelegate::GetShaderSourceTypes() const { return TfTokenVector{ HdStrelkaSourceTypes->mtlx, HdStrelkaSourceTypes->mdl }; } oka::SharedContext& HdStrelkaRenderDelegate::getSharedContext() { return mRenderer->getSharedContext(); } PXR_NAMESPACE_CLOSE_SCOPE
6,338
C++
25.634454
122
0.718523
arhix52/Strelka/src/HdStrelka/BasisCurves.cpp
#include "BasisCurves.h" #include <log.h> PXR_NAMESPACE_OPEN_SCOPE void HdStrelkaBasisCurves::Sync(HdSceneDelegate* sceneDelegate, HdRenderParam* renderParam, HdDirtyBits* dirtyBits, const TfToken& reprToken) { TF_UNUSED(renderParam); TF_UNUSED(reprToken); HdRenderIndex& renderIndex = sceneDelegate->GetRenderIndex(); const SdfPath& id = GetId(); mName = id.GetText(); STRELKA_INFO("Curve Name: {}", mName.c_str()); if (*dirtyBits & HdChangeTracker::DirtyMaterialId) { const SdfPath& materialId = sceneDelegate->GetMaterialId(id); SetMaterialId(materialId); } if (*dirtyBits & HdChangeTracker::DirtyTopology) { mTopology = sceneDelegate->GetBasisCurvesTopology(id); } if (*dirtyBits & HdChangeTracker::DirtyTransform) { m_prototypeTransform = sceneDelegate->GetTransform(id); } bool updateGeometry = (*dirtyBits & HdChangeTracker::DirtyPoints) | (*dirtyBits & HdChangeTracker::DirtyNormals) | (*dirtyBits & HdChangeTracker::DirtyTopology); *dirtyBits = HdChangeTracker::Clean; if (!updateGeometry) { return; } // m_faces.clear(); mPoints.clear(); mNormals.clear(); _UpdateGeometry(sceneDelegate); } bool HdStrelkaBasisCurves::_FindPrimvar(HdSceneDelegate* sceneDelegate, const TfToken& primvarName, HdInterpolation& interpolation) const { HdInterpolation interpolations[] = { HdInterpolation::HdInterpolationVertex, HdInterpolation::HdInterpolationFaceVarying, HdInterpolation::HdInterpolationConstant, HdInterpolation::HdInterpolationUniform, HdInterpolation::HdInterpolationVarying, HdInterpolation::HdInterpolationInstance }; for (HdInterpolation i : interpolations) { const auto& primvarDescs = GetPrimvarDescriptors(sceneDelegate, i); for (const HdPrimvarDescriptor& primvar : primvarDescs) { if (primvar.name == primvarName) { interpolation = i; return true; } } } return false; } void HdStrelkaBasisCurves::_PullPrimvars(HdSceneDelegate* sceneDelegate, VtVec3fArray& points, VtVec3fArray& normals, VtFloatArray& widths, bool& indexedNormals, bool& indexedUVs, GfVec3f& color, bool& hasColor) const { const SdfPath& id = GetId(); // Handle points. HdInterpolation pointInterpolation; bool foundPoints = _FindPrimvar(sceneDelegate, HdTokens->points, pointInterpolation); if (!foundPoints) { STRELKA_ERROR("Points primvar not found!"); return; } else if (pointInterpolation != HdInterpolation::HdInterpolationVertex) { STRELKA_ERROR("Points primvar is not vertex-interpolated!"); return; } VtValue boxedPoints = sceneDelegate->Get(id, HdTokens->points); points = boxedPoints.Get<VtVec3fArray>(); // Handle color. HdInterpolation colorInterpolation; bool foundColor = _FindPrimvar(sceneDelegate, HdTokens->displayColor, colorInterpolation); if (foundColor && colorInterpolation == HdInterpolation::HdInterpolationConstant) { VtValue boxedColors = sceneDelegate->Get(id, HdTokens->displayColor); const VtVec3fArray& colors = boxedColors.Get<VtVec3fArray>(); color = colors[0]; hasColor = true; } HdBasisCurvesTopology topology = GetBasisCurvesTopology(sceneDelegate); VtIntArray curveVertexCounts = topology.GetCurveVertexCounts(); // Handle normals. HdInterpolation normalInterpolation; bool foundNormals = _FindPrimvar(sceneDelegate, HdTokens->normals, normalInterpolation); if (foundNormals && normalInterpolation == HdInterpolation::HdInterpolationVarying) { VtValue boxedNormals = sceneDelegate->Get(id, HdTokens->normals); normals = boxedNormals.Get<VtVec3fArray>(); indexedNormals = true; } // Handle width. HdInterpolation widthInterpolation; bool foundWidth = _FindPrimvar(sceneDelegate, HdTokens->widths, widthInterpolation); if (foundWidth) { VtValue boxedWidths = sceneDelegate->Get(id, HdTokens->widths); widths = boxedWidths.Get<VtFloatArray>(); } } void HdStrelkaBasisCurves::_UpdateGeometry(HdSceneDelegate* sceneDelegate) { const HdBasisCurvesTopology& topology = mTopology; const SdfPath& id = GetId(); // Get USD Curve Metadata mVertexCounts = topology.GetCurveVertexCounts(); TfToken curveType = topology.GetCurveType(); TfToken curveBasis = topology.GetCurveBasis(); TfToken curveWrap = topology.GetCurveWrap(); size_t num_curves = mVertexCounts.size(); size_t num_keys = 0; bool indexedNormals; bool indexedUVs; bool hasColor = true; _PullPrimvars(sceneDelegate, mPoints, mNormals, mWidths, indexedNormals, indexedUVs, mColor, hasColor); _ConvertCurve(); } HdStrelkaBasisCurves::HdStrelkaBasisCurves(const SdfPath& id, oka::Scene* scene) : HdBasisCurves(id), mScene(scene) { } HdStrelkaBasisCurves::~HdStrelkaBasisCurves() { } HdDirtyBits HdStrelkaBasisCurves::GetInitialDirtyBitsMask() const { return HdChangeTracker::DirtyPoints | HdChangeTracker::DirtyNormals | HdChangeTracker::DirtyTopology | HdChangeTracker::DirtyInstancer | HdChangeTracker::DirtyInstanceIndex | HdChangeTracker::DirtyTransform | HdChangeTracker::DirtyMaterialId | HdChangeTracker::DirtyPrimvar; } HdDirtyBits HdStrelkaBasisCurves::_PropagateDirtyBits(HdDirtyBits bits) const { return bits; } void HdStrelkaBasisCurves::_InitRepr(const TfToken& reprName, HdDirtyBits* dirtyBits) { TF_UNUSED(reprName); TF_UNUSED(dirtyBits); } void HdStrelkaBasisCurves::_ConvertCurve() { // calculate phantom points // https://raytracing-docs.nvidia.com/optix7/guide/index.html#curves#differences-between-curves-spheres-and-triangles glm::float3 p1 = glm::float3(mPoints[0][0], mPoints[0][1], mPoints[0][2]); glm::float3 p2 = glm::float3(mPoints[1][0], mPoints[1][1], mPoints[1][2]); glm::float3 p0 = p1 + (p1 - p2); mCurvePoints.push_back(p0); for (const GfVec3f& p : mPoints) { mCurvePoints.push_back(glm::float3(p[0], p[1], p[2])); } int n = mPoints.size() - 1; glm::float3 pn = glm::float3(mPoints[n][0], mPoints[n][1], mPoints[n][2]); glm::float3 pn1 = glm::float3(mPoints[n - 1][0], mPoints[n - 1][1], mPoints[n - 1][2]); glm::float3 pnn = pn + (pn - pn1); mCurvePoints.push_back(pnn); mCurveWidths.push_back(mWidths[0] * 0.5); assert((mWidths.size() == mPoints.size()) || (mWidths.size() == 1)); if (mWidths.size() == 1) { for (int i = 0; i < mPoints.size(); ++i) { mCurveWidths.push_back(mWidths[0] * 0.5); } } else { for (const float w : mWidths) { mCurveWidths.push_back(w * 0.5f); } } mCurveWidths.push_back(mCurveWidths.back()); for (const int i : mVertexCounts) { mCurveVertexCounts.push_back(i); } } const std::vector<glm::float3>& HdStrelkaBasisCurves::GetPoints() const { return mCurvePoints; } const std::vector<float>& HdStrelkaBasisCurves::GetWidths() const { return mCurveWidths; } const std::vector<uint32_t>& HdStrelkaBasisCurves::GetVertexCounts() const { return mCurveVertexCounts; } const GfMatrix4d& HdStrelkaBasisCurves::GetPrototypeTransform() const { return m_prototypeTransform; } const char* HdStrelkaBasisCurves::getName() const { return mName.c_str(); } PXR_NAMESPACE_CLOSE_SCOPE
8,047
C++
30.685039
121
0.644215
arhix52/Strelka/src/HdStrelka/RenderBuffer.cpp
#include "RenderBuffer.h" #include "render.h" #include <pxr/base/gf/vec3i.h> PXR_NAMESPACE_OPEN_SCOPE HdStrelkaRenderBuffer::HdStrelkaRenderBuffer(const SdfPath& id, oka::SharedContext* ctx) : HdRenderBuffer(id), mCtx(ctx) { m_isMapped = false; m_isConverged = false; m_bufferMem = nullptr; } HdStrelkaRenderBuffer::~HdStrelkaRenderBuffer() { _Deallocate(); } bool HdStrelkaRenderBuffer::Allocate(const GfVec3i& dimensions, HdFormat format, bool multiSampled) { if (dimensions[2] != 1) { return false; } m_width = dimensions[0]; m_height = dimensions[1]; m_format = format; m_isMultiSampled = multiSampled; size_t size = m_width * m_height * HdDataSizeOfFormat(m_format); m_bufferMem = realloc(m_bufferMem, size); if (!m_bufferMem) { return false; } if (mResult) { mResult->resize(m_width, m_height); } else { oka::BufferDesc desc{}; desc.format = oka::BufferFormat::FLOAT4; desc.width = m_width; desc.height = m_height; mResult = mCtx->mRender->createBuffer(desc); } if (!mResult) { return false; } return true; } unsigned int HdStrelkaRenderBuffer::GetWidth() const { return m_width; } unsigned int HdStrelkaRenderBuffer::GetHeight() const { return m_height; } unsigned int HdStrelkaRenderBuffer::GetDepth() const { return 1u; } HdFormat HdStrelkaRenderBuffer::GetFormat() const { return m_format; } bool HdStrelkaRenderBuffer::IsMultiSampled() const { return m_isMultiSampled; } VtValue HdStrelkaRenderBuffer::GetResource(bool multiSampled) const { return VtValue((uint8_t*)mResult); } bool HdStrelkaRenderBuffer::IsConverged() const { return m_isConverged; } void HdStrelkaRenderBuffer::SetConverged(bool converged) { m_isConverged = converged; } void* HdStrelkaRenderBuffer::Map() { m_isMapped = true; return m_bufferMem; } bool HdStrelkaRenderBuffer::IsMapped() const { return m_isMapped; } void HdStrelkaRenderBuffer::Unmap() { m_isMapped = false; } void HdStrelkaRenderBuffer::Resolve() { } void HdStrelkaRenderBuffer::_Deallocate() { free(m_bufferMem); delete mResult; } PXR_NAMESPACE_CLOSE_SCOPE
2,264
C++
16.558139
120
0.671378
arhix52/Strelka/src/HdStrelka/Tokens.h
#pragma once #include <pxr/base/tf/staticTokens.h> PXR_NAMESPACE_OPEN_SCOPE #define HD_STRELKA_SETTINGS_TOKENS \ ((spp, "spp"))((max_bounces, "max-bounces")) // mtlx node identifier is given by usdMtlx. #define HD_STRELKA_NODE_IDENTIFIER_TOKENS \ (mtlx)(mdl) #define HD_STRELKA_SOURCE_TYPE_TOKENS \ (mtlx)(mdl) #define HD_STRELKA_DISCOVERY_TYPE_TOKENS \ (mtlx)(mdl) #define HD_STRELKA_RENDER_CONTEXT_TOKENS \ (mtlx)(mdl) #define HD_STRELKA_NODE_CONTEXT_TOKENS \ (mtlx)(mdl) #define HD_STRELKA_NODE_METADATA_TOKENS \ (subIdentifier) TF_DECLARE_PUBLIC_TOKENS(HdStrelkaSettingsTokens, HD_STRELKA_SETTINGS_TOKENS); TF_DECLARE_PUBLIC_TOKENS(HdStrelkaNodeIdentifiers, HD_STRELKA_NODE_IDENTIFIER_TOKENS); TF_DECLARE_PUBLIC_TOKENS(HdStrelkaSourceTypes, HD_STRELKA_SOURCE_TYPE_TOKENS); TF_DECLARE_PUBLIC_TOKENS(HdStrelkaDiscoveryTypes, HD_STRELKA_DISCOVERY_TYPE_TOKENS); TF_DECLARE_PUBLIC_TOKENS(HdStrelkaRenderContexts, HD_STRELKA_RENDER_CONTEXT_TOKENS); TF_DECLARE_PUBLIC_TOKENS(HdStrelkaNodeContexts, HD_STRELKA_NODE_CONTEXT_TOKENS); TF_DECLARE_PUBLIC_TOKENS(HdStrelkaNodeMetadata, HD_STRELKA_NODE_METADATA_TOKENS); PXR_NAMESPACE_CLOSE_SCOPE
1,175
C
29.947368
86
0.771064
arhix52/Strelka/src/HdStrelka/Camera.h
#pragma once #include <pxr/imaging/hd/camera.h> #include <scene/scene.h> PXR_NAMESPACE_OPEN_SCOPE class HdStrelkaCamera final : public HdCamera { public: HdStrelkaCamera(const SdfPath& id, oka::Scene& scene); ~HdStrelkaCamera() override; public: float GetVFov() const; uint32_t GetCameraIndex() const; public: void Sync(HdSceneDelegate* sceneDelegate, HdRenderParam* renderParam, HdDirtyBits* dirtyBits) override; HdDirtyBits GetInitialDirtyBitsMask() const override; private: oka::Camera _ConstructStrelkaCamera(); float m_vfov; oka::Scene& mScene; uint32_t mCameraIndex = -1; }; PXR_NAMESPACE_CLOSE_SCOPE
687
C
17.594594
58
0.697234
arhix52/Strelka/src/HdStrelka/MdlDiscoveryPlugin.cpp
#include "MdlDiscoveryPlugin.h" #include <pxr/base/tf/staticTokens.h> //#include "Tokens.h" PXR_NAMESPACE_OPEN_SCOPE // clang-format off TF_DEFINE_PRIVATE_TOKENS(_tokens, (mdl) ); // clang-format on NDR_REGISTER_DISCOVERY_PLUGIN(HdStrelkaMdlDiscoveryPlugin); NdrNodeDiscoveryResultVec HdStrelkaMdlDiscoveryPlugin::DiscoverNodes(const Context& ctx) { NdrNodeDiscoveryResultVec result; NdrNodeDiscoveryResult mdlNode( /* identifier */ _tokens->mdl, /* version */ NdrVersion(1), /* name */ _tokens->mdl, /* family */ TfToken(), /* discoveryType */ _tokens->mdl, /* sourceType */ _tokens->mdl, /* uri */ std::string(), /* resolvedUri */ std::string()); result.push_back(mdlNode); return result; } const NdrStringVec& HdStrelkaMdlDiscoveryPlugin::GetSearchURIs() const { static const NdrStringVec s_searchURIs; return s_searchURIs; } PXR_NAMESPACE_CLOSE_SCOPE
996
C++
23.317073
88
0.646586
arhix52/Strelka/src/HdStrelka/Material.cpp
#include "Material.h" #include <pxr/base/gf/vec2f.h> #include <pxr/usd/sdr/registry.h> #include <pxr/usdImaging/usdImaging/tokens.h> #include <log.h> PXR_NAMESPACE_OPEN_SCOPE HdStrelkaMaterial::HdStrelkaMaterial(const SdfPath& id, const MaterialNetworkTranslator& translator) : HdMaterial(id), m_translator(translator) { } HdStrelkaMaterial::~HdStrelkaMaterial() = default; HdDirtyBits HdStrelkaMaterial::GetInitialDirtyBitsMask() const { // return DirtyBits::DirtyParams; return DirtyBits::AllDirty; } void HdStrelkaMaterial::Sync(HdSceneDelegate* sceneDelegate, HdRenderParam* renderParam, HdDirtyBits* dirtyBits) { TF_UNUSED(renderParam); const bool pullMaterial = (*dirtyBits & DirtyBits::DirtyParams) != 0u; *dirtyBits = DirtyBits::Clean; if (!pullMaterial) { return; } const SdfPath& id = GetId(); const std::string& name = id.GetString(); STRELKA_INFO("Hydra Material: {}", name.c_str()); const VtValue& resource = sceneDelegate->GetMaterialResource(id); if (!resource.IsHolding<HdMaterialNetworkMap>()) { return; } auto networkMap = resource.GetWithDefault<HdMaterialNetworkMap>(); HdMaterialNetwork& surfaceNetwork = networkMap.map[HdMaterialTerminalTokens->surface]; bool isUsdPreviewSurface = false; HdMaterialNode* previewSurfaceNode = nullptr; // store material parameters uint32_t nodeIdx = 0; for (auto& node : surfaceNetwork.nodes) { STRELKA_DEBUG("Node #{}: {}", nodeIdx, node.path.GetText()); if (node.identifier == UsdImagingTokens->UsdPreviewSurface) { previewSurfaceNode = &node; isUsdPreviewSurface = true; } for (const auto& params : node.parameters) { const std::string& name = params.first.GetString(); const TfType type = params.second.GetType(); STRELKA_DEBUG("Node name: {}\tParam name: {}\t{}", node.path.GetName(), name.c_str(), params.second.GetTypeName().c_str()); if (type.IsA<GfVec3f>()) { oka::MaterialManager::Param param; param.name = params.first; param.type = oka::MaterialManager::Param::Type::eFloat3; GfVec3f val = params.second.Get<GfVec3f>(); param.value.resize(sizeof(val)); memcpy(param.value.data(), &val, sizeof(val)); mMaterialParams.push_back(param); } else if (type.IsA<GfVec4f>()) { oka::MaterialManager::Param param; param.name = params.first; param.type = oka::MaterialManager::Param::Type::eFloat4; GfVec4f val = params.second.Get<GfVec4f>(); param.value.resize(sizeof(val)); memcpy(param.value.data(), &val, sizeof(val)); mMaterialParams.push_back(param); } else if (type.IsA<float>()) { oka::MaterialManager::Param param; param.name = params.first; param.type = oka::MaterialManager::Param::Type::eFloat; float val = params.second.Get<float>(); param.value.resize(sizeof(val)); memcpy(param.value.data(), &val, sizeof(val)); mMaterialParams.push_back(param); } else if (type.IsA<int>()) { oka::MaterialManager::Param param; param.name = params.first; param.type = oka::MaterialManager::Param::Type::eInt; int val = params.second.Get<int>(); param.value.resize(sizeof(val)); memcpy(param.value.data(), &val, sizeof(val)); mMaterialParams.push_back(param); } else if (type.IsA<bool>()) { oka::MaterialManager::Param param; param.name = params.first; param.type = oka::MaterialManager::Param::Type::eBool; bool val = params.second.Get<bool>(); param.value.resize(sizeof(val)); memcpy(param.value.data(), &val, sizeof(val)); mMaterialParams.push_back(param); } else if (type.IsA<SdfAssetPath>()) { oka::MaterialManager::Param param; param.name = node.path.GetName() + "_" + std::string(params.first); param.type = oka::MaterialManager::Param::Type::eTexture; const SdfAssetPath val = params.second.Get<SdfAssetPath>(); // STRELKA_DEBUG("path: {}", val.GetAssetPath().c_str()); STRELKA_DEBUG("path: {}", val.GetResolvedPath().c_str()); // std::string texPath = val.GetAssetPath(); std::string texPath = val.GetResolvedPath(); if (!texPath.empty()) { param.value.resize(texPath.size()); memcpy(param.value.data(), texPath.data(), texPath.size()); mMaterialParams.push_back(param); } } else if (type.IsA<GfVec2f>()) { oka::MaterialManager::Param param; param.name = params.first; param.type = oka::MaterialManager::Param::Type::eFloat2; GfVec2f val = params.second.Get<GfVec2f>(); param.value.resize(sizeof(val)); memcpy(param.value.data(), &val, sizeof(val)); mMaterialParams.push_back(param); } else if (type.IsA<TfToken>()) { const TfToken val = params.second.Get<TfToken>(); STRELKA_DEBUG("TfToken: {}", val.GetText()); } else if (type.IsA<std::string>()) { const std::string val = params.second.Get<std::string>(); STRELKA_DEBUG("String: {}", val.c_str()); } else { STRELKA_ERROR("Unknown parameter type!\n"); } } nodeIdx++; } bool isVolume = false; const HdMaterialNetwork2 network = HdConvertToHdMaterialNetwork2(networkMap, &isVolume); if (isVolume) { STRELKA_ERROR("Volume %s unsupported", id.GetText()); return; } if (isUsdPreviewSurface) { mMaterialXCode = m_translator.ParseNetwork(id, network); // STRELKA_DEBUG("MaterialX code:\n {}\n", mMaterialXCode.c_str()); } else { // MDL const bool res = MaterialNetworkTranslator::ParseMdlNetwork(network, mMdlFileUri, mMdlSubIdentifier); if (!res) { STRELKA_ERROR("Failed to translate material, replace to default!"); mMdlFileUri = "default.mdl"; mMdlSubIdentifier = "default_material"; } mIsMdl = true; } } const std::string& HdStrelkaMaterial::GetStrelkaMaterial() const { return mMaterialXCode; } PXR_NAMESPACE_CLOSE_SCOPE
7,130
C++
35.015151
112
0.551192
arhix52/Strelka/src/HdStrelka/Camera.cpp
#include "Camera.h" #include <pxr/imaging/hd/sceneDelegate.h> #include <pxr/base/gf/vec4d.h> #include <pxr/base/gf/camera.h> #include <cmath> #include <glm/glm.hpp> #include <glm/gtc/matrix_transform.hpp> #include <glm/gtc/quaternion.hpp> #include <glm/gtc/type_ptr.hpp> #include <glm/gtx/compatibility.hpp> #include <glm/gtx/matrix_decompose.hpp> PXR_NAMESPACE_OPEN_SCOPE HdStrelkaCamera::HdStrelkaCamera(const SdfPath& id, oka::Scene& scene) : HdCamera(id), mScene(scene), m_vfov(M_PI_2) { const std::string& name = id.GetString(); oka::Camera okaCamera; okaCamera.name = name; mCameraIndex = mScene.addCamera(okaCamera); } HdStrelkaCamera::~HdStrelkaCamera() { } float HdStrelkaCamera::GetVFov() const { return m_vfov; } uint32_t HdStrelkaCamera::GetCameraIndex() const { return mCameraIndex; } void HdStrelkaCamera::Sync(HdSceneDelegate* sceneDelegate, HdRenderParam* renderParam, HdDirtyBits* dirtyBits) { HdDirtyBits dirtyBitsCopy = *dirtyBits; HdCamera::Sync(sceneDelegate, renderParam, &dirtyBitsCopy); if (*dirtyBits & DirtyBits::DirtyParams) { // See https://wiki.panotools.org/Field_of_View float aperture = _verticalAperture * GfCamera::APERTURE_UNIT; float focalLength = _focalLength * GfCamera::FOCAL_LENGTH_UNIT; float vfov = 2.0f * std::atan(aperture / (2.0f * focalLength)); m_vfov = vfov; oka::Camera cam = _ConstructStrelkaCamera(); mScene.updateCamera(cam, mCameraIndex); } *dirtyBits = DirtyBits::Clean; } HdDirtyBits HdStrelkaCamera::GetInitialDirtyBitsMask() const { return DirtyBits::DirtyParams | DirtyBits::DirtyTransform; } oka::Camera HdStrelkaCamera::_ConstructStrelkaCamera() { oka::Camera strelkaCamera; GfMatrix4d perspMatrix = ComputeProjectionMatrix(); GfMatrix4d absInvViewMatrix = GetTransform(); GfMatrix4d relViewMatrix = absInvViewMatrix; //*m_rootMatrix; glm::float4x4 xform; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { xform[i][j] = (float)relViewMatrix[i][j]; } } glm::float4x4 persp; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { persp[i][j] = (float)perspMatrix[i][j]; } } { glm::vec3 scale; glm::quat rotation; glm::vec3 translation; glm::vec3 skew; glm::vec4 perspective; glm::decompose(xform, scale, rotation, translation, skew, perspective); rotation = glm::conjugate(rotation); strelkaCamera.position = translation * scale; strelkaCamera.mOrientation = rotation; } strelkaCamera.matrices.perspective = persp; strelkaCamera.matrices.invPerspective = glm::inverse(persp); strelkaCamera.fov = glm::degrees(GetVFov()); const std::string& name = GetId().GetString(); strelkaCamera.name = name; return strelkaCamera; } PXR_NAMESPACE_CLOSE_SCOPE
2,967
C++
26.229358
116
0.658915
arhix52/Strelka/src/HdStrelka/RenderPass.cpp
#include "RenderPass.h" #include "Camera.h" #include "Instancer.h" #include "Material.h" #include "Mesh.h" #include "BasisCurves.h" #include "Light.h" #include "RenderBuffer.h" #include "Tokens.h" #include <pxr/base/gf/matrix3d.h> #include <pxr/base/gf/quatd.h> #include <pxr/imaging/hd/renderDelegate.h> #include <pxr/imaging/hd/renderPassState.h> #include <pxr/imaging/hd/rprim.h> #include <pxr/imaging/hd/basisCurves.h> #include <log.h> #include <glm/glm.hpp> #include <glm/gtc/matrix_transform.hpp> #include <glm/gtc/type_ptr.hpp> #include <glm/gtx/compatibility.hpp> PXR_NAMESPACE_OPEN_SCOPE HdStrelkaRenderPass::HdStrelkaRenderPass(HdRenderIndex* index, const HdRprimCollection& collection, const HdRenderSettingsMap& settings, oka::Render* renderer, oka::Scene* scene) : HdRenderPass(index, collection), m_settings(settings), m_isConverged(false), m_lastSceneStateVersion(UINT32_MAX), m_lastRenderSettingsVersion(UINT32_MAX), mRenderer(renderer), mScene(scene) { } HdStrelkaRenderPass::~HdStrelkaRenderPass() { } bool HdStrelkaRenderPass::IsConverged() const { return m_isConverged; } // valid range of coordinates [-1; 1] uint32_t packNormal(const glm::float3& normal) { uint32_t packed = (uint32_t)((normal.x + 1.0f) / 2.0f * 511.99999f); packed += (uint32_t)((normal.y + 1.0f) / 2.0f * 511.99999f) << 10; packed += (uint32_t)((normal.z + 1.0f) / 2.0f * 511.99999f) << 20; return packed; } // valid range of coordinates [-10; 10] uint32_t packUV(const glm::float2& uv) { int32_t packed = (uint32_t)((uv.x + 10.0f) / 20.0f * 16383.99999f); packed += (uint32_t)((uv.y + 10.0f) / 20.0f * 16383.99999f) << 16; return packed; } void HdStrelkaRenderPass::_BakeMeshInstance(const HdStrelkaMesh* mesh, GfMatrix4d transform, uint32_t materialIndex) { const GfMatrix4d normalMatrix = transform.GetInverse().GetTranspose(); const std::vector<GfVec3f>& meshPoints = mesh->GetPoints(); const std::vector<GfVec3f>& meshNormals = mesh->GetNormals(); const std::vector<GfVec3f>& meshTangents = mesh->GetTangents(); const std::vector<GfVec3i>& meshFaces = mesh->GetFaces(); const std::vector<GfVec2f>& meshUVs = mesh->GetUVs(); TF_VERIFY(meshPoints.size() == meshNormals.size()); const size_t vertexCount = meshPoints.size(); std::vector<oka::Scene::Vertex> vertices(vertexCount); std::vector<uint32_t> indices(meshFaces.size() * 3); for (size_t j = 0; j < meshFaces.size(); ++j) { const GfVec3i& vertexIndices = meshFaces[j]; indices[j * 3 + 0] = vertexIndices[0]; indices[j * 3 + 1] = vertexIndices[1]; indices[j * 3 + 2] = vertexIndices[2]; } for (size_t j = 0; j < vertexCount; ++j) { const GfVec3f& point = meshPoints[j]; const GfVec3f& normal = meshNormals[j]; const GfVec3f& tangent = meshTangents[j]; oka::Scene::Vertex& vertex = vertices[j]; vertex.pos[0] = point[0]; vertex.pos[1] = point[1]; vertex.pos[2] = point[2]; const glm::float3 glmNormal = glm::float3(normal[0], normal[1], normal[2]); vertex.normal = packNormal(glmNormal); const glm::float3 glmTangent = glm::float3(tangent[0], tangent[1], tangent[2]); vertex.tangent = packNormal(glmTangent); // Texture coord if (!meshUVs.empty()) { const GfVec2f& uv = meshUVs[j]; const glm::float2 glmUV = glm::float2(uv[0], 1.0f - uv[1]); // Flip v coordinate vertex.uv = packUV(glmUV); } } glm::float4x4 glmTransform; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { glmTransform[i][j] = (float)transform[i][j]; } } uint32_t meshId = mScene->createMesh(vertices, indices); assert(meshId != -1); uint32_t instId = mScene->createInstance(oka::Instance::Type::eMesh, meshId, materialIndex, glmTransform); assert(instId != -1); } void HdStrelkaRenderPass::_BakeMeshes(HdRenderIndex* renderIndex, GfMatrix4d rootTransform) { TfHashMap<SdfPath, uint32_t, SdfPath::Hash> materialMapping; materialMapping[SdfPath::EmptyPath()] = 0; auto getOrCreateMaterial = [&](const SdfPath& materialId) { uint32_t materialIndex = 0; if (materialMapping.find(materialId) != materialMapping.end()) { materialIndex = materialMapping[materialId]; } else { HdSprim* sprim = renderIndex->GetSprim(HdPrimTypeTokens->material, materialId); if (!sprim) { STRELKA_ERROR("Cannot retrive material!"); return 0u; } HdStrelkaMaterial* material = dynamic_cast<HdStrelkaMaterial*>(sprim); if (material->isMdl()) { const std::string& fileUri = material->getFileUri(); const std::string& name = material->getSubIdentifier(); oka::Scene::MaterialDescription materialDesc; materialDesc.file = fileUri; materialDesc.name = name; materialDesc.type = oka::Scene::MaterialDescription::Type::eMdl; materialDesc.params = material->getParams(); materialIndex = mScene->addMaterial(materialDesc); } else { const std::string& code = material->GetStrelkaMaterial(); const std::string& name = material->getSubIdentifier(); oka::Scene::MaterialDescription materialDesc; materialDesc.name = name; materialDesc.code = code; materialDesc.type = oka::Scene::MaterialDescription::Type::eMaterialX; materialDesc.params = material->getParams(); materialIndex = mScene->addMaterial(materialDesc); } materialMapping[materialId] = materialIndex; } return materialIndex; }; for (const auto& rprimId : renderIndex->GetRprimIds()) { const HdRprim* rprim = renderIndex->GetRprim(rprimId); if (dynamic_cast<const HdMesh*>(rprim)) { const HdStrelkaMesh* mesh = dynamic_cast<const HdStrelkaMesh*>(rprim); if (!mesh->IsVisible()) { // TODO: add UI/setting control here continue; } const TfToken renderTag = mesh->GetRenderTag(); if ((renderTag != "geometry") && (renderTag != "render")) { // skip all proxy meshes continue; } VtMatrix4dArray transforms; const SdfPath& instancerId = mesh->GetInstancerId(); if (instancerId.IsEmpty()) { transforms.resize(1); transforms[0] = GfMatrix4d(1.0); } else { HdInstancer* boxedInstancer = renderIndex->GetInstancer(instancerId); HdStrelkaInstancer* instancer = dynamic_cast<HdStrelkaInstancer*>(boxedInstancer); const SdfPath& meshId = mesh->GetId(); transforms = instancer->ComputeInstanceTransforms(meshId); } const SdfPath& materialId = mesh->GetMaterialId(); const std::string& materialName = materialId.GetString(); STRELKA_INFO("Hydra: Mesh: {0} \t Material: {1}", mesh->getName(), materialName.c_str()); uint32_t materialIndex = 0; if (materialId.IsEmpty()) { GfVec3f color(1.0f); if (mesh->HasColor()) { color = mesh->GetColor(); } // materialName += "_color"; const std::string& fileUri = "default.mdl"; const std::string& name = "default_material"; oka::Scene::MaterialDescription material; material.file = fileUri; material.name = name; material.type = oka::Scene::MaterialDescription::Type::eMdl; material.color = glm::float3(color[0], color[1], color[2]); material.hasColor = true; oka::MaterialManager::Param colorParam = {}; colorParam.name = "diffuse_color"; colorParam.type = oka::MaterialManager::Param::Type::eFloat3; colorParam.value.resize(sizeof(float) * 3); memcpy(colorParam.value.data(), glm::value_ptr(material.color), sizeof(float) * 3); material.params.push_back(colorParam); materialIndex = mScene->addMaterial(material); } else { materialIndex = getOrCreateMaterial(materialId); } const GfMatrix4d& prototypeTransform = mesh->GetPrototypeTransform(); for (size_t i = 0; i < transforms.size(); i++) { const GfMatrix4d transform = prototypeTransform * transforms[i]; // *rootTransform; // GfMatrix4d transform = GfMatrix4d(1.0); _BakeMeshInstance(mesh, transform, materialIndex); } } else if (dynamic_cast<const HdBasisCurves*>(rprim)) { const HdStrelkaBasisCurves* curve = dynamic_cast<const HdStrelkaBasisCurves*>(rprim); const std::vector<glm::float3>& points = curve->GetPoints(); const std::vector<float>& widths = curve->GetWidths(); const std::vector<uint32_t>& vertexCounts = curve->GetVertexCounts(); const SdfPath& materialId = curve->GetMaterialId(); const std::string& materialName = materialId.GetString(); STRELKA_INFO("Hydra: Curve: {0} \t Material: {1}", curve->getName(), materialName.c_str()); const uint32_t materialIndex = getOrCreateMaterial(materialId); const GfMatrix4d& prototypeTransform = curve->GetPrototypeTransform(); glm::float4x4 glmTransform; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { glmTransform[i][j] = (float)prototypeTransform[i][j]; } } uint32_t curveId = mScene->createCurve(oka::Curve::Type::eCubic, vertexCounts, points, widths); mScene->createInstance(oka::Instance::Type::eCurve, curveId, materialIndex, glmTransform, -1); } } STRELKA_INFO("Meshes: {}", mScene->getMeshes().size()); STRELKA_INFO("Instances: {}", mScene->getInstances().size()); STRELKA_INFO("Materials: {}", mScene->getMaterials().size()); STRELKA_INFO("Curves: {}", mScene->getCurves().size()); } void HdStrelkaRenderPass::_Execute(const HdRenderPassStateSharedPtr& renderPassState, const TfTokenVector& renderTags) { TF_UNUSED(renderTags); HD_TRACE_FUNCTION(); HF_MALLOC_TAG_FUNCTION(); m_isConverged = false; const auto* camera = dynamic_cast<const HdStrelkaCamera*>(renderPassState->GetCamera()); if (!camera) { return; } const HdRenderPassAovBindingVector& aovBindings = renderPassState->GetAovBindings(); if (aovBindings.empty()) { return; } const HdRenderPassAovBinding* colorAovBinding = nullptr; for (const HdRenderPassAovBinding& aovBinding : aovBindings) { if (aovBinding.aovName != HdAovTokens->color) { HdStrelkaRenderBuffer* renderBuffer = dynamic_cast<HdStrelkaRenderBuffer*>(aovBinding.renderBuffer); renderBuffer->SetConverged(true); continue; } colorAovBinding = &aovBinding; } if (!colorAovBinding) { return; } HdRenderIndex* renderIndex = GetRenderIndex(); HdChangeTracker& changeTracker = renderIndex->GetChangeTracker(); HdRenderDelegate* renderDelegate = renderIndex->GetRenderDelegate(); HdStrelkaRenderBuffer* renderBuffer = dynamic_cast<HdStrelkaRenderBuffer*>(colorAovBinding->renderBuffer); uint32_t sceneStateVersion = changeTracker.GetSceneStateVersion(); uint32_t renderSettingsStateVersion = renderDelegate->GetRenderSettingsVersion(); bool sceneChanged = (sceneStateVersion != m_lastSceneStateVersion); bool renderSettingsChanged = (renderSettingsStateVersion != m_lastRenderSettingsVersion); // if (!sceneChanged && !renderSettingsChanged) //{ // renderBuffer->SetConverged(true); // return; //} oka::Buffer* outputImage = renderBuffer->GetResource(false).UncheckedGet<oka::Buffer*>(); renderBuffer->SetConverged(false); m_lastSceneStateVersion = sceneStateVersion; m_lastRenderSettingsVersion = renderSettingsStateVersion; // Transform scene into camera space to increase floating point precision. GfMatrix4d viewMatrix = camera->GetTransform().GetInverse(); static int counter = 0; if (counter == 0) { ++counter; _BakeMeshes(renderIndex, viewMatrix); m_rootMatrix = viewMatrix; mRenderer->setScene(mScene); const uint32_t camIndex = camera->GetCameraIndex(); // mRenderer->setActiveCameraIndex(camIndex); oka::Scene::UniformLightDesc desc{}; desc.color = glm::float3(1.0f); desc.height = 0.4f; desc.width = 0.4f; desc.position = glm::float3(0, 1.1, 0.67); desc.orientation = glm::float3(179.68, 29.77, -89.97); desc.intensity = 160.0f; static const TfTokenVector lightTypes = { HdPrimTypeTokens->domeLight, HdPrimTypeTokens->simpleLight, HdPrimTypeTokens->sphereLight, HdPrimTypeTokens->rectLight, HdPrimTypeTokens->diskLight, HdPrimTypeTokens->cylinderLight, HdPrimTypeTokens->distantLight }; size_t count = 0; // TF_FOR_ALL(it, lightTypes) { // TODO: refactor this to more generic code, templates? if (renderIndex->IsSprimTypeSupported(HdPrimTypeTokens->rectLight)) { SdfPathVector sprimPaths = renderIndex->GetSprimSubtree(HdPrimTypeTokens->rectLight, SdfPath::AbsoluteRootPath()); for (int lightIdx = 0; lightIdx < sprimPaths.size(); ++lightIdx) { HdSprim* sprim = renderIndex->GetSprim(HdPrimTypeTokens->rectLight, sprimPaths[lightIdx]); HdStrelkaLight* light = dynamic_cast<HdStrelkaLight*>(sprim); mScene->createLight(light->getLightDesc()); } } if (renderIndex->IsSprimTypeSupported(HdPrimTypeTokens->diskLight)) { SdfPathVector sprimPaths = renderIndex->GetSprimSubtree(HdPrimTypeTokens->diskLight, SdfPath::AbsoluteRootPath()); for (int lightIdx = 0; lightIdx < sprimPaths.size(); ++lightIdx) { HdSprim* sprim = renderIndex->GetSprim(HdPrimTypeTokens->diskLight, sprimPaths[lightIdx]); HdStrelkaLight* light = dynamic_cast<HdStrelkaLight*>(sprim); mScene->createLight(light->getLightDesc()); } } if (renderIndex->IsSprimTypeSupported(HdPrimTypeTokens->sphereLight)) { SdfPathVector sprimPaths = renderIndex->GetSprimSubtree(HdPrimTypeTokens->sphereLight, SdfPath::AbsoluteRootPath()); for (int lightIdx = 0; lightIdx < sprimPaths.size(); ++lightIdx) { HdSprim* sprim = renderIndex->GetSprim(HdPrimTypeTokens->sphereLight, sprimPaths[lightIdx]); HdStrelkaLight* light = dynamic_cast<HdStrelkaLight*>(sprim); mScene->createLight(light->getLightDesc()); } } if (renderIndex->IsSprimTypeSupported(HdPrimTypeTokens->distantLight)) { SdfPathVector sprimPaths = renderIndex->GetSprimSubtree(HdPrimTypeTokens->distantLight, SdfPath::AbsoluteRootPath()); for (int lightIdx = 0; lightIdx < sprimPaths.size(); ++lightIdx) { HdSprim* sprim = renderIndex->GetSprim(HdPrimTypeTokens->distantLight, sprimPaths[lightIdx]); HdStrelkaLight* light = dynamic_cast<HdStrelkaLight*>(sprim); mScene->createLight(light->getLightDesc()); } } } } // mScene.createLight(desc); float* img_data = (float*)renderBuffer->Map(); mRenderer->render(outputImage); renderBuffer->Unmap(); // renderBuffer->SetConverged(true); m_isConverged = true; } PXR_NAMESPACE_CLOSE_SCOPE
17,099
C++
37
118
0.587578
arhix52/Strelka/src/HdStrelka/MaterialNetworkTranslator.h
// Copyright (C) 2021 Pablo Delgado Krämer // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see <https://www.gnu.org/licenses/>. #pragma once #include <pxr/usd/sdf/path.h> #include <string> #include <MaterialXCore/Document.h> #include <memory> PXR_NAMESPACE_OPEN_SCOPE struct HdMaterialNetwork2; class MaterialNetworkTranslator { public: MaterialNetworkTranslator(const std::string& mtlxLibPath); std::string ParseNetwork(const SdfPath& id, const HdMaterialNetwork2& network) const; static bool ParseMdlNetwork(const HdMaterialNetwork2& network, std::string& fileUri, std::string& subIdentifier); private: MaterialX::DocumentPtr CreateMaterialXDocumentFromNetwork(const SdfPath& id, const HdMaterialNetwork2& network) const; void patchMaterialNetwork(HdMaterialNetwork2& network) const; private: MaterialX::DocumentPtr m_nodeLib; }; PXR_NAMESPACE_CLOSE_SCOPE
1,568
C
32.382978
122
0.714286
arhix52/Strelka/src/HdStrelka/Mesh.cpp
#include "Mesh.h" #include <pxr/imaging/hd/instancer.h> #include <pxr/imaging/hd/meshUtil.h> #include <pxr/imaging/hd/smoothNormals.h> #include <pxr/imaging/hd/vertexAdjacency.h> #include <log.h> PXR_NAMESPACE_OPEN_SCOPE // clang-format off TF_DEFINE_PRIVATE_TOKENS(_tokens, (st) ); // clang-format on HdStrelkaMesh::HdStrelkaMesh(const SdfPath& id, oka::Scene* scene) : HdMesh(id), mPrototypeTransform(1.0), mColor(0.0, 0.0, 0.0), mHasColor(false), mScene(scene) { } HdStrelkaMesh::~HdStrelkaMesh() = default; void HdStrelkaMesh::Sync(HdSceneDelegate* sceneDelegate, HdRenderParam* renderParam, HdDirtyBits* dirtyBits, const TfToken& reprToken) { TF_UNUSED(renderParam); TF_UNUSED(reprToken); HD_TRACE_FUNCTION(); HF_MALLOC_TAG_FUNCTION(); HdRenderIndex& renderIndex = sceneDelegate->GetRenderIndex(); if ((*dirtyBits & HdChangeTracker::DirtyInstancer) | (*dirtyBits & HdChangeTracker::DirtyInstanceIndex)) { HdDirtyBits dirtyBitsCopy = *dirtyBits; _UpdateInstancer(sceneDelegate, &dirtyBitsCopy); const SdfPath& instancerId = GetInstancerId(); HdInstancer::_SyncInstancerAndParents(renderIndex, instancerId); } const SdfPath& id = GetId(); mName = id.GetText(); if (*dirtyBits & HdChangeTracker::DirtyMaterialId) { const SdfPath& materialId = sceneDelegate->GetMaterialId(id); SetMaterialId(materialId); } if (*dirtyBits & HdChangeTracker::DirtyTransform) { mPrototypeTransform = sceneDelegate->GetTransform(id); } const bool updateGeometry = (*dirtyBits & HdChangeTracker::DirtyPoints) | (*dirtyBits & HdChangeTracker::DirtyNormals) | (*dirtyBits & HdChangeTracker::DirtyTopology); *dirtyBits = HdChangeTracker::Clean; if (!updateGeometry) { return; } mFaces.clear(); mPoints.clear(); mNormals.clear(); _UpdateGeometry(sceneDelegate); } // valid range of coordinates [-1; 1] static uint32_t packNormal(const glm::float3& normal) { uint32_t packed = (uint32_t)((normal.x + 1.0f) / 2.0f * 511.99999f); packed += (uint32_t)((normal.y + 1.0f) / 2.0f * 511.99999f) << 10; packed += (uint32_t)((normal.z + 1.0f) / 2.0f * 511.99999f) << 20; return packed; } void HdStrelkaMesh::_ConvertMesh() { const std::vector<GfVec3f>& meshPoints = GetPoints(); const std::vector<GfVec3f>& meshNormals = GetNormals(); const std::vector<GfVec3i>& meshFaces = GetFaces(); TF_VERIFY(meshPoints.size() == meshNormals.size()); const size_t vertexCount = meshPoints.size(); std::vector<oka::Scene::Vertex> vertices(vertexCount); std::vector<uint32_t> indices(meshFaces.size() * 3); for (size_t j = 0; j < meshFaces.size(); ++j) { const GfVec3i& vertexIndices = meshFaces[j]; indices[j * 3 + 0] = vertexIndices[0]; indices[j * 3 + 1] = vertexIndices[1]; indices[j * 3 + 2] = vertexIndices[2]; } for (size_t j = 0; j < vertexCount; ++j) { const GfVec3f& point = meshPoints[j]; const GfVec3f& normal = meshNormals[j]; oka::Scene::Vertex& vertex = vertices[j]; vertex.pos[0] = point[0]; vertex.pos[1] = point[1]; vertex.pos[2] = point[2]; const glm::float3 glmNormal = glm::float3(normal[0], normal[1], normal[2]); vertex.normal = packNormal(glmNormal); } mStrelkaMeshId = mScene->createMesh(vertices, indices); assert(mStrelkaMeshId != -1); } void HdStrelkaMesh::_UpdateGeometry(HdSceneDelegate* sceneDelegate) { const HdMeshTopology& topology = GetMeshTopology(sceneDelegate); const SdfPath& id = GetId(); const HdMeshUtil meshUtil(&topology, id); VtVec3iArray indices; VtIntArray primitiveParams; meshUtil.ComputeTriangleIndices(&indices, &primitiveParams); VtVec3fArray points; VtVec3fArray normals; VtVec2fArray uvs; bool indexedNormals; bool indexedUVs; _PullPrimvars(sceneDelegate, points, normals, uvs, indexedNormals, indexedUVs, mColor, mHasColor); const bool hasUVs = !uvs.empty(); for (int i = 0; i < indices.size(); i++) { GfVec3i newFaceIndices(i * 3 + 0, i * 3 + 1, i * 3 + 2); mFaces.push_back(newFaceIndices); const GfVec3i& faceIndices = indices[i]; mPoints.push_back(points[faceIndices[0]]); mPoints.push_back(points[faceIndices[1]]); mPoints.push_back(points[faceIndices[2]]); auto computeTangent = [](const GfVec3f& normal) { GfVec3f c1 = GfCross(normal, GfVec3f(1.0f, 0.0f, 0.0f)); GfVec3f c2 = GfCross(normal, GfVec3f(0.0f, 1.0f, 0.0f)); GfVec3f tangent; if (c1.GetLengthSq() > c2.GetLengthSq()) { tangent = c1; } else { tangent = c2; } GfNormalize(&tangent); return tangent; }; mNormals.push_back(normals[indexedNormals ? faceIndices[0] : newFaceIndices[0]]); mTangents.push_back(computeTangent(normals[indexedNormals ? faceIndices[0] : newFaceIndices[0]])); mNormals.push_back(normals[indexedNormals ? faceIndices[1] : newFaceIndices[1]]); mTangents.push_back(computeTangent(normals[indexedNormals ? faceIndices[1] : newFaceIndices[1]])); mNormals.push_back(normals[indexedNormals ? faceIndices[2] : newFaceIndices[2]]); mTangents.push_back(computeTangent(normals[indexedNormals ? faceIndices[2] : newFaceIndices[2]])); if (hasUVs) { mUvs.push_back(uvs[indexedUVs ? faceIndices[0] : newFaceIndices[0]]); mUvs.push_back(uvs[indexedUVs ? faceIndices[1] : newFaceIndices[1]]); mUvs.push_back(uvs[indexedUVs ? faceIndices[2] : newFaceIndices[2]]); } } } bool HdStrelkaMesh::_FindPrimvar(HdSceneDelegate* sceneDelegate, const TfToken& primvarName, HdInterpolation& interpolation) const { const HdInterpolation interpolations[] = { HdInterpolation::HdInterpolationVertex, HdInterpolation::HdInterpolationFaceVarying, HdInterpolation::HdInterpolationConstant, HdInterpolation::HdInterpolationUniform, HdInterpolation::HdInterpolationVarying, HdInterpolation::HdInterpolationInstance }; for (const HdInterpolation& currInteroplation : interpolations) { const auto& primvarDescs = GetPrimvarDescriptors(sceneDelegate, currInteroplation); for (const HdPrimvarDescriptor& primvar : primvarDescs) { if (primvar.name == primvarName) { interpolation = currInteroplation; return true; } } } return false; } void HdStrelkaMesh::_PullPrimvars(HdSceneDelegate* sceneDelegate, VtVec3fArray& points, VtVec3fArray& normals, VtVec2fArray& uvs, bool& indexedNormals, bool& indexedUVs, GfVec3f& color, bool& hasColor) const { const SdfPath& id = GetId(); // Handle points. HdInterpolation pointInterpolation; const bool foundPoints = _FindPrimvar(sceneDelegate, HdTokens->points, pointInterpolation); if (!foundPoints) { TF_RUNTIME_ERROR("Points primvar not found!"); return; } else if (pointInterpolation != HdInterpolation::HdInterpolationVertex) { TF_RUNTIME_ERROR("Points primvar is not vertex-interpolated!"); return; } const VtValue boxedPoints = sceneDelegate->Get(id, HdTokens->points); points = boxedPoints.Get<VtVec3fArray>(); // Handle color. HdInterpolation colorInterpolation; const bool foundColor = _FindPrimvar(sceneDelegate, HdTokens->displayColor, colorInterpolation); if (foundColor && colorInterpolation == HdInterpolation::HdInterpolationConstant) { const VtValue boxedColors = sceneDelegate->Get(id, HdTokens->displayColor); const VtVec3fArray& colors = boxedColors.Get<VtVec3fArray>(); color = colors[0]; hasColor = true; } const HdMeshTopology topology = GetMeshTopology(sceneDelegate); // Handle normals. HdInterpolation normalInterpolation; const bool foundNormals = _FindPrimvar(sceneDelegate, HdTokens->normals, normalInterpolation); if (foundNormals && normalInterpolation == HdInterpolation::HdInterpolationVertex) { const VtValue boxedNormals = sceneDelegate->Get(id, HdTokens->normals); normals = boxedNormals.Get<VtVec3fArray>(); indexedNormals = true; } if (foundNormals && normalInterpolation == HdInterpolation::HdInterpolationFaceVarying) { const VtValue boxedFvNormals = sceneDelegate->Get(id, HdTokens->normals); const VtVec3fArray& fvNormals = boxedFvNormals.Get<VtVec3fArray>(); const HdMeshUtil meshUtil(&topology, id); VtValue boxedTriangulatedNormals; if (!meshUtil.ComputeTriangulatedFaceVaryingPrimvar( fvNormals.cdata(), fvNormals.size(), HdTypeFloatVec3, &boxedTriangulatedNormals)) { TF_CODING_ERROR("Unable to triangulate face-varying normals of %s", id.GetText()); } normals = boxedTriangulatedNormals.Get<VtVec3fArray>(); indexedNormals = false; } else { Hd_VertexAdjacency adjacency; adjacency.BuildAdjacencyTable(&topology); normals = Hd_SmoothNormals::ComputeSmoothNormals(&adjacency, points.size(), points.cdata()); indexedNormals = true; } // Handle texture coords HdInterpolation textureCoordInterpolation; const bool foundTextureCoord = _FindPrimvar(sceneDelegate, _tokens->st, textureCoordInterpolation); if (foundTextureCoord && textureCoordInterpolation == HdInterpolationVertex) { uvs = sceneDelegate->Get(id, _tokens->st).Get<VtVec2fArray>(); indexedUVs = true; } if (foundTextureCoord && textureCoordInterpolation == HdInterpolation::HdInterpolationFaceVarying) { const VtValue boxedUVs = sceneDelegate->Get(id, _tokens->st); const VtVec2fArray& fvUVs = boxedUVs.Get<VtVec2fArray>(); const HdMeshUtil meshUtil(&topology, id); VtValue boxedTriangulatedUVS; if (!meshUtil.ComputeTriangulatedFaceVaryingPrimvar( fvUVs.cdata(), fvUVs.size(), HdTypeFloatVec2, &boxedTriangulatedUVS)) { TF_CODING_ERROR("Unable to triangulate face-varying UVs of %s", id.GetText()); } uvs = boxedTriangulatedUVS.Get<VtVec2fArray>(); indexedUVs = false; } } const TfTokenVector& HdStrelkaMesh::GetBuiltinPrimvarNames() const { return BUILTIN_PRIMVAR_NAMES; } const std::vector<GfVec3f>& HdStrelkaMesh::GetPoints() const { return mPoints; } const std::vector<GfVec3f>& HdStrelkaMesh::GetNormals() const { return mNormals; } const std::vector<GfVec3f>& HdStrelkaMesh::GetTangents() const { return mTangents; } const std::vector<GfVec3i>& HdStrelkaMesh::GetFaces() const { return mFaces; } const std::vector<GfVec2f>& HdStrelkaMesh::GetUVs() const { return mUvs; } const GfMatrix4d& HdStrelkaMesh::GetPrototypeTransform() const { return mPrototypeTransform; } const GfVec3f& HdStrelkaMesh::GetColor() const { return mColor; } bool HdStrelkaMesh::HasColor() const { return mHasColor; } const char* HdStrelkaMesh::getName() const { return mName.c_str(); } HdDirtyBits HdStrelkaMesh::GetInitialDirtyBitsMask() const { return HdChangeTracker::DirtyPoints | HdChangeTracker::DirtyNormals | HdChangeTracker::DirtyTopology | HdChangeTracker::DirtyInstancer | HdChangeTracker::DirtyInstanceIndex | HdChangeTracker::DirtyTransform | HdChangeTracker::DirtyMaterialId | HdChangeTracker::DirtyPrimvar; } HdDirtyBits HdStrelkaMesh::_PropagateDirtyBits(HdDirtyBits bits) const { return bits; } void HdStrelkaMesh::_InitRepr(const TfToken& reprName, HdDirtyBits* dirtyBits) { TF_UNUSED(reprName); TF_UNUSED(dirtyBits); } PXR_NAMESPACE_CLOSE_SCOPE
12,415
C++
32.109333
116
0.648731