fact
stringlengths
0
6.66k
type
stringclasses
10 values
imports
stringclasses
399 values
filename
stringclasses
465 values
symbolic_name
stringlengths
1
75
index_level
int64
0
7.85k
(A : Type) := @const A Unit tt.
Definition
Require Import Basics.Overture Basics.Equivalences.
Types\Unit.v
const_tt
7,100
(A B : Type@{u}) (p : A = B) : A <~> B := equiv_transport (fun X => X) p.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_path
7,101
`{Funext} (A B : Type) (p : A = B) : equiv_path B A (p^) = (equiv_path A B p)^-1%equiv. Proof. apply path_equiv. reflexivity. Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_path_V
7,102
forall `{Univalence} (A B : Type@{u}), IsEquiv (equiv_path A B).
Axiom
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
isequiv_equiv_path
7,103
{A B : Type} (f : A <~> B) : A = B := (equiv_path A B)^-1 f.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path_universe_uncurried
7,104
{A B : Type} (f : A -> B) {feq : IsEquiv f} : (A = B) := path_universe_uncurried (Build_Equiv _ _ f feq).
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path_universe
7,105
{A B : Type} (p : A = B) : path_universe (equiv_path A B p) = p := eissect (equiv_path A B) p.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
eta_path_universe
7,106
{A B : Type} (p : A = B) : path_universe_uncurried (equiv_path A B p) = p := eissect (equiv_path A B) p.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
eta_path_universe_uncurried
7,107
{A B : Type} : IsEquiv (@path_universe_uncurried A B) := _.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
isequiv_path_universe
7,108
(A B : Type) : (A <~> B) <~> (A = B) := Build_Equiv _ _ (@path_universe_uncurried A B) isequiv_path_universe.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_path_universe
7,109
(A B : Type) : (A = B) <~> (A <~> B) := (equiv_path_universe A B)^-1%equiv.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_equiv_path
7,110
{A B : Type} (p : A = B) : path_universe (equiv_path A B p) = p := eissect (equiv_path A B) p.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path_universe_equiv_path
7,111
{A B : Type} (p : A = B) : path_universe_uncurried (equiv_path A B p) = p := eissect (equiv_path A B) p.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path_universe_uncurried_equiv_path
7,112
{A B : Type} (p : A = B) : path_universe (transport idmap p) = p := eissect (equiv_path A B) p.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path_universe_transport_idmap
7,113
{A B : Type} (p : A = B) : path_universe_uncurried (equiv_transport idmap p) = p := eissect (equiv_path A B) p.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path_universe_uncurried_transport_idmap
7,114
{A B : Type} (f : A <~> B) : equiv_path A B (path_universe f) = f := eisretr (equiv_path A B) f.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_path_path_universe
7,115
{A B : Type} (f : A <~> B) : equiv_path A B (path_universe_uncurried f) = f := eisretr (equiv_path A B) f.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_path_path_universe_uncurried
7,116
{A B : Type} (f : A <~> B) : transport idmap (path_universe f) = f := ap equiv_fun (eisretr (equiv_path A B) f).
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
transport_idmap_path_universe
7,117
{A B : Type} (f : A <~> B) : transport idmap (path_universe_uncurried f) = f := ap equiv_fun (eisretr (equiv_path A B) f).
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
transport_idmap_path_universe_uncurried
7,118
`{Funext} {A B C : Type} (p : A = B) (q : B = C) : equiv_path A C (p @ q) = equiv_path B C q oE equiv_path A B p. Proof. apply path_equiv, path_arrow. nrapply transport_pp. Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_path_pp
7,119
{A B C : Type} (f : A <~> B) (g : B <~> C) : path_universe_uncurried (equiv_compose g f) = path_universe_uncurried f @ path_universe_uncurried g. Proof. revert f. equiv_intro (equiv_path A B) f. revert g. equiv_intro (equiv_path B C) g. refine ((ap path_universe_uncurried (equiv_path_pp f g))^ @ _). refine (eta_path_universe (f @ g) @ _). apply concat2; symmetry; apply eta_path_universe. Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path_universe_compose_uncurried
7,120
{A B C : Type} (f : A <~> B) (g : B <~> C) : path_universe (g o f) = path_universe f @ path_universe g := path_universe_compose_uncurried f g.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path_universe_compose
7,121
{A : Type} : path_universe (equiv_idmap A) = 1 := eta_path_universe 1.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path_universe_1
7,122
{A B : Type} (f : A <~> B) : path_universe_uncurried f^-1 = (path_universe_uncurried f)^. Proof. revert f. equiv_intro ((equiv_path_universe A B)^-1) p. simpl. transitivity (p^). 2: exact (inverse2 (eisretr (equiv_path_universe A B) p)^). transitivity (path_universe_uncurried (equiv_path B A p^)). - by refine (ap _ (equiv_path_V A B p)^). - by refine (eissect (equiv_path B A) p^). Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path_universe_V_uncurried
7,123
`(f : A -> B) `{IsEquiv A B f} : path_universe (f^-1) = (path_universe f)^ := path_universe_V_uncurried (Build_Equiv A B f _).
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path_universe_V
7,124
A {B C} (f : B <~> C) : equiv_path (A <~> B) (A <~> C) (ap (Equiv A) (path_universe f)) = equiv_functor_equiv (equiv_idmap A) f. Proof. revert f. equiv_intro (equiv_path B C) f. rewrite (eissect (equiv_path B C) f : path_universe (equiv_path B C f) = f). destruct f; simpl. apply path_equiv, path_forall; intros g. apply path_equiv, path_forall; intros a. reflexivity. Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
ap_equiv_path_universe
7,125
A {B C} (f : B <~> C) : equiv_path (A * B) (A * C) (ap (prod A) (path_universe f)) = equiv_functor_prod_l f. Proof. revert f. equiv_intro (equiv_path B C) f. rewrite (eissect (equiv_path B C) f : path_universe (equiv_path B C f) = f). destruct f. apply path_equiv, path_arrow; intros x; reflexivity. Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
ap_prod_l_path_universe
7,126
A {B C} (f : B <~> C) : equiv_path (B * A) (C * A) (ap (fun Z => Z * A) (path_universe f)) = equiv_functor_prod_r f. Proof. revert f. equiv_intro (equiv_path B C) f. rewrite (eissect (equiv_path B C) f : path_universe (equiv_path B C f) = f). destruct f. apply path_equiv, path_arrow; intros x; reflexivity. Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
ap_prod_r_path_universe
7,127
{A B : Type} (f : A <~> B) (z : A) : transport (fun X:Type => X) (path_universe_uncurried f) z = f z. Proof. revert f. equiv_intro (equiv_path A B) p. exact (ap (fun s => transport idmap s z) (eissect _ p)). Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
transport_path_universe_uncurried
7,128
{A B : Type} (f : A -> B) {feq : IsEquiv f} (z : A) : transport (fun X:Type => X) (path_universe f) z = f z := transport_path_universe_uncurried (Build_Equiv A B f feq) z.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
transport_path_universe
7,129
{A B : Type} (p : A = B) (z : A) : transport_path_universe (equiv_path A B p) z = (ap (fun s => transport idmap s z) (eissect _ p)) := equiv_ind_comp _ _ _.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
transport_path_universe_equiv_path
7,130
transport_path_universe' {A : Type} (P : A -> Type) {x y : A} (p : x = y) (f : P x <~> P y) (q : ap P p = path_universe f) (u : P x) : transport P p u = f u := transport_compose idmap P p u @ ap10 (ap (transport idmap) q) u @ transport_path_universe f u.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
transport_path_universe'
7,131
{A B : Type} (f : A <~> B) (z : B) : transport (fun X:Type => X) (path_universe_uncurried f)^ z = f^-1 z. Proof. revert f. equiv_intro (equiv_path A B) p. exact (ap (fun s => transport idmap s z) (inverse2 (eissect _ p))). Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
transport_path_universe_V_uncurried
7,132
{A B : Type} (f : A -> B) {feq : IsEquiv f} (z : B) : transport (fun X:Type => X) (path_universe f)^ z = f^-1 z := transport_path_universe_V_uncurried (Build_Equiv _ _ f feq) z.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
transport_path_universe_V
7,133
{A B : Type} (p : A = B) (z : B) : transport_path_universe_V (equiv_path A B p) z = ap (fun s => transport idmap s z) (inverse2 (eissect _ p)) := equiv_ind_comp _ _ _.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
transport_path_universe_V_equiv_path
7,134
{A B : Type} (f : A <~> B) (z : A) : ap (transport idmap (path_universe f)^) (transport_path_universe f z) @ transport_path_universe_V f (f z) @ eissect f z = transport_Vp idmap (path_universe f) z. Proof. pattern f. refine (equiv_ind (equiv_path A B) _ _ _); intros p. refine (_ @ ap_transport_Vp_idmap p (path_universe (equiv_path A B p)) (eissect (equiv_path A B) p) z). apply whiskerR. apply concat2. - apply ap. apply transport_path_universe_equiv_path. - apply transport_path_universe_V_equiv_path. Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
transport_path_universe_Vp_uncurried
7,135
{A B : Type} (f : A -> B) {feq : IsEquiv f} (z : A) : ap (transport idmap (path_universe f)^) (transport_path_universe f z) @ transport_path_universe_V f (f z) @ eissect f z = transport_Vp idmap (path_universe f) z := transport_path_universe_Vp_uncurried (Build_Equiv A B f feq) z.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
transport_path_universe_Vp
7,136
{A U V : Type} (w : U <~> V) : forall f : U -> A, transport (fun E : Type => E -> A) (path_universe w) f = (f o w^-1). Proof. intros f. funext y. refine (transport_arrow_toconst _ _ _ @ _). apply ap. apply transport_path_universe_V. Defined.
Theorem
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
transport_arrow_toconst_path_universe
7,137
{A B : Type} (f g : A <~> B) : (f == g) <~> (path_universe f = path_universe g). Proof. refine (_ oE equiv_path_arrow f g). refine (_ oE equiv_path_equiv f g). exact (equiv_ap (equiv_path A B)^-1 _ _). Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_path2_universe
7,138
{A B : Type} {f g : A <~> B} : (f == g) -> (path_universe f = path_universe g) := equiv_path2_universe f g.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path2_universe
7,139
{A B : Type} (f : A <~> B) : equiv_path2_universe f f (fun x => 1) = 1. Proof. simpl. rewrite concat_1p, concat_p1, path_forall_1, path_sigma_hprop_1. reflexivity. Qed.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_path2_universe_1
7,140
{A B : Type} (f : A <~> B) : @path2_universe _ _ f f (fun x => 1) = 1 := equiv_path2_universe_1 f.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path2_universe_1
7,141
{A B C : Type} {f1 f2 : A <~> B} (p : f1 == f2) (g : B <~> C) : equiv_path2_universe (g o f1) (g o f2) (fun a => ap g (p a)) = path_universe_compose f1 g @ whiskerR (path2_universe p) (path_universe g) @ (path_universe_compose f2 g)^.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path2_universe_postcompose
7,142
{A B C : Type} {f1 f2 : B <~> C} (p : f1 == f2) (g : A <~> B) : equiv_path2_universe (f1 o g) (f2 o g) (fun a => (p (g a))) = path_universe_compose g f1 @ whiskerL (path_universe g) (path2_universe p) @ (path_universe_compose g f2)^.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path2_universe_precompose
7,143
{A C : Type} (p : forall a:A, a = a) (g : A <~> C) : equiv_path2_universe g g (fun a => ap g (p a)) = (concat_1p _)^ @ whiskerR (path_universe_1)^ (path_universe g) @ whiskerR (equiv_path2_universe (equiv_idmap A) (equiv_idmap A) p) (path_universe g) @ whiskerR path_universe_1 (path_universe g) @ concat_1p _. Proof. transitivity ((eta_path_universe (path_universe g))^ @ equiv_path2_universe (equiv_path A C (path_universe g)) (equiv_path A C (path_universe g)) (fun a => ap (equiv_path A C (path_universe g)) (p a)) @ eta_path_universe (path_universe g)). - refine ((apD (fun g' => equiv_path2_universe g' g' (fun a => ap g' (p a))) (eisretr (equiv_path A C) g))^ @ _). refine (transport_paths_FlFr (eisretr (equiv_path A C) g) _ @ _). apply concat2. + apply whiskerR. apply inverse2, symmetry. refine (eisadj (equiv_path A C)^-1 g). + symmetry; refine (eisadj (equiv_path A C)^-1 g). - generalize (path_universe g). intros h. destruct h. cbn. rewrite !concat_1p, !concat_p1. refine (_ @ whiskerR (whiskerR_pp 1 path_universe_1^ _) _). refine (_ @ whiskerR_pp 1 _ path_universe_1). refine (_ @ (whiskerR_p1_1 _)^). apply whiskerR, whiskerL, ap, ap, ap. apply path_forall; intros x; apply ap_idmap. Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path2_universe_postcompose_idmap
7,144
{A B : Type} (p : forall b:B, b = b) (g : A <~> B) : equiv_path2_universe g g (fun a => (p (g a))) = (concat_p1 _)^ @ whiskerL (path_universe g) (path_universe_1)^ @ whiskerL (path_universe g) (equiv_path2_universe (equiv_idmap B) (equiv_idmap B) p) @ whiskerL (path_universe g) (path_universe_1) @ concat_p1 _. Proof. transitivity ((eta_path_universe (path_universe g))^ @ equiv_path2_universe (equiv_path A B (path_universe g)) (equiv_path A B (path_universe g)) (fun a => p (equiv_path A B (path_universe g) a)) @ eta_path_universe (path_universe g)). - refine ((apD (fun g' => equiv_path2_universe g' g' (fun a => p (g' a))) (eisretr (equiv_path A B) g))^ @ _). refine (transport_paths_FlFr (eisretr (equiv_path A B) g) _ @ _). apply concat2. + apply whiskerR. apply inverse2, symmetry. refine (eisadj (equiv_path A B)^-1 g). + symmetry; refine (eisadj (equiv_path A B)^-1 g). - generalize (path_universe g). intros h. destruct h. cbn. rewrite !concat_p1. refine (_ @ (((concat_1p (whiskerL 1 path_universe_1^))^ @@ 1) @@ 1)). refine (_ @ whiskerR (whiskerL_pp 1 path_universe_1^ _) _). refine (_ @ whiskerL_pp 1 _ path_universe_1). exact ((whiskerL_1p_1 _)^). Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path2_universe_precompose_idmap
7,145
{A B : Type} {f g : A <~> B} (p q : f == g) : (p == q) <~> (path2_universe p = path2_universe q). Proof. refine (_ oE equiv_path_forall p q). refine (_ oE equiv_ap (equiv_path_arrow f g) p q). refine (_ oE equiv_ap (equiv_path_equiv f g) _ _). unfold path2_universe, equiv_path2_universe. simpl. refine (equiv_ap (ap (equiv_path A B)^-1) _ _). Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_path3_universe
7,146
{A B : Type} {f g : A <~> B} {p q : f == g} : (p == q) -> (path2_universe p = path2_universe q) := equiv_path3_universe p q.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
path3_universe
7,147
{A B : Type} (f : A <~> B) (z : B) : transport_path_universe f (transport idmap (path_universe f)^ z) @ ap f (transport_path_universe_V f z) @ eisretr f z = transport_pV idmap (path_universe f) z. Proof. pattern f. refine (equiv_ind (equiv_path A B) _ _ _); intros p. refine (_ @ ap_transport_pV_idmap p (path_universe (equiv_path A B p)) (eissect (equiv_path A B) p) z). apply whiskerR. refine ((concat_Ap _ _)^ @ _). apply concat2. - apply ap. refine (transport_path_universe_V_equiv_path _ _ @ _). unfold inverse2. symmetry; apply (ap_compose inverse (fun s => transport idmap s z)). - apply transport_path_universe_equiv_path. Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
transport_path_universe_pV_uncurried
7,148
{A B : Type} (f : A -> B) {feq : IsEquiv f } (z : B) : transport_path_universe f (transport idmap (path_universe f)^ z) @ ap f (transport_path_universe_V f z) @ eisretr f z = transport_pV idmap (path_universe f) z := transport_path_universe_pV_uncurried (Build_Equiv A B f feq) z.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
transport_path_universe_pV
7,149
{U : Type} (P : forall V, U <~> V -> Type) : (P U (equiv_idmap U)) -> (forall V (w : U <~> V), P V w). Proof. intros H0 V. apply (equiv_ind (equiv_path U V)). intro p; induction p; exact H0. Defined.
Theorem
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_induction
7,150
{U : Type} (P : forall V, U <~> V -> Type) (didmap : P U (equiv_idmap U)) : equiv_induction P didmap U (equiv_idmap U) = didmap := (equiv_ind_comp (P U) _ 1).
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_induction_comp
7,151
equiv_induction' (P : forall U V, U <~> V -> Type) : (forall T, P T T (equiv_idmap T)) -> (forall U V (w : U <~> V), P U V w). Proof. intros H0 U V w. apply (equiv_ind (equiv_path U V)). intro p; induction p; apply H0. Defined.
Theorem
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_induction'
7,152
(P : forall U V, U <~> V -> Type) (didmap : forall T, P T T (equiv_idmap T)) (U : Type) : equiv_induction' P didmap U U (equiv_idmap U) = didmap U := (equiv_ind_comp (P U U) _ 1).
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_induction'_comp
7,153
{U : Type} (P : forall V, V <~> U -> Type) : (P U (equiv_idmap U)) -> (forall V (w : V <~> U), P V w). Proof. intros H0 V. apply (equiv_ind (equiv_path V U)). revert V; rapply paths_ind_r; apply H0. Defined.
Theorem
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_induction_inv
7,154
{U : Type} (P : forall V, V <~> U -> Type) (didmap : P U (equiv_idmap U)) : equiv_induction_inv P didmap U (equiv_idmap U) = didmap := (equiv_ind_comp (P U) _ 1). Global Instance contr_basedequiv@{u +} {X : Type@{u}} : Contr {Y : Type@{u} & X <~> Y}. Proof. apply (Build_Contr _ (X; equiv_idmap)). intros [Y f]; revert Y f. exact (equiv_induction _ idpath). Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
equiv_induction_inv_comp
7,155
~ (IsHSet Type). Proof. intro HT. apply true_ne_false. pose (r := path_ishprop (path_universe equiv_negb) 1). refine (_ @ (ap (fun q => transport idmap q false) r)). symmetry; apply transport_path_universe. Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod.
Types\Universe.v
not_hset_Type
7,156
(A : Type) (B : A -> Type) : Type := w_sup (x : A) : (B x -> A B) -> A B.
Inductive
Require Import HoTT.Basics. Require Import Types.Forall Types.Sigma.
Types\WType.v
W
7,157
{A B} (w : W A B) : A := match w with | w_sup x y => x end.
Definition
Require Import HoTT.Basics. Require Import Types.Forall Types.Sigma.
Types\WType.v
w_label
7,158
{A B} (w : W A B) : B (w_label w) -> W A B := match w with | w_sup x y => y end.
Definition
Require Import HoTT.Basics. Require Import Types.Forall Types.Sigma.
Types\WType.v
w_arg
7,159
(A : Type) (B : A -> Type) : _ <~> W A B := ltac:(issig).
Definition
Require Import HoTT.Basics. Require Import Types.Forall Types.Sigma.
Types\WType.v
issig_W
7,160
{A B} (z z' : W A B) : (w_label z;w_arg z) = (w_label z';w_arg z') :> {a : _ & B a -> W A B} <~> z = z' := (equiv_ap' (issig_W A B)^-1%equiv z z')^-1%equiv.
Definition
Require Import HoTT.Basics. Require Import Types.Forall Types.Sigma.
Types\WType.v
equiv_path_wtype
7,161
equiv_path_wtype' {A B} (z z' : W A B) : {p : w_label z = w_label z' & w_arg z = w_arg z' o transport B p} <~> z = z'. Proof. refine (equiv_path_wtype _ _ oE equiv_path_sigma _ _ _ oE _). apply equiv_functor_sigma_id. destruct z as [z1 z2], z' as [z1' z2']. cbn; intros p. destruct p. reflexivity. Defined.
Definition
Require Import HoTT.Basics. Require Import Types.Forall Types.Sigma.
Types\WType.v
equiv_path_wtype'
7,162
Type <~> Type. Proof. refine (((equiv_decidable_sum (fun X:Type => merely (X=A)))^-1) oE _ oE (equiv_decidable_sum (fun X:Type => merely (X=A)))). refine ((equiv_functor_sum_l (equiv_decidable_sum (fun X => merely (X.1=B)))^-1) oE _ oE (equiv_functor_sum_l (equiv_decidable_sum (fun X => merely (X.1=B))))). refine ((equiv_sum_assoc _ _ _) oE _ oE (equiv_sum_assoc _ _ _)^-1). apply equiv_functor_sum_r. assert (q : BAut B <~> {x : {x : Type & ~ merely (x = A)} & merely (x.1 = B)}). { refine (equiv_sigma_assoc _ _ oE _). apply equiv_functor_sigma_id; intros X. apply equiv_iff_hprop. - intros p. refine (fun q => _ ; p). strip_truncations. destruct q. exact (ne (equiv_path X B p)). - exact pr2. } refine (_ oE equiv_sum_symm _ _). apply equiv_functor_sum'. - exact (e^-1 oE q^-1). - exact (q oE e). Defined.
Definition
Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle.
Universes\Automorphisms.v
equiv_swap_types
7,163
merely (equiv_swap_types A = B). Proof. assert (ea := (e (point _)).2). cbn in ea. strip_truncations; apply tr. unfold equiv_swap_types. apply moveR_equiv_V. rewrite (equiv_decidable_sum_l (fun X => merely (X=A)) A (tr 1)). assert (ne' : ~ merely (B=A)) by (intros p; strip_truncations; exact (ne (equiv_path A B p^))). rewrite (equiv_decidable_sum_r (fun X => merely (X=A)) B ne'). cbn. apply ap, path_sigma_hprop; cbn. exact ea. Defined.
Definition
Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle.
Universes\Automorphisms.v
equiv_swap_types_swaps
7,164
equiv_swap_types <> equiv_idmap. Proof. intros p. assert (q := equiv_swap_types_swaps). strip_truncations. apply ne. apply equiv_path. rewrite p in q; exact q. Qed.
Definition
Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle.
Universes\Automorphisms.v
equiv_swap_types_not_id
7,165
`{Univalence} `{ExcludedMiddle} (A B : Type) `{IsRigid A} `{IsRigid B} (ne : ~(A <~> B)) : Type <~> Type. Proof. refine (equiv_swap_types A B ne _). apply equiv_contr_contr. Defined.
Definition
Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle.
Universes\Automorphisms.v
equiv_swap_rigid
7,166
`{Univalence} `{ExcludedMiddle} : Type <~> Type := equiv_swap_rigid Empty Unit (fun e => e^-1 tt).
Definition
Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle.
Universes\Automorphisms.v
equiv_swap_empty_unit
7,167
`{Univalence} `{ExcludedMiddle} (A B : Type) `{IsRigid A} `{IsRigid B} (ne : ~(A <~> B)) : equiv_swap_rigid A B ne A = B. Proof. unfold equiv_swap_rigid, equiv_swap_types. apply moveR_equiv_V. rewrite (equiv_decidable_sum_l (fun X => merely (X=A)) A (tr 1)). assert (ne' : ~ merely (B=A)) by (intros p; strip_truncations; exact (ne (equiv_path A B p^))). rewrite (equiv_decidable_sum_r (fun X => merely (X=A)) B ne'). cbn. apply ap, path_sigma_hprop; cbn. exact ((path_contr (center (BAut B)) (point (BAut B)))..1). Defined.
Definition
Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle.
Universes\Automorphisms.v
equiv_swap_rigid_swaps
7,168
`{Univalence} `{ExcludedMiddle} (X A B : Type) (n : trunc_index) (ne : ~(X*A <~> X*B)) `{IsRigid A} `{IsConnected n.+1 A} `{IsRigid B} `{IsConnected n.+1 B} `{IsTrunc n.+1 X} : Type <~> Type. Proof. refine (equiv_swap_types (X*A) (X*B) ne _). transitivity (BAut X). - symmetry; exact (baut_prod_rigid_equiv X A n). - exact (baut_prod_rigid_equiv X B n). Defined.
Definition
Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle.
Universes\Automorphisms.v
equiv_swap_prod_rigid
7,169
`{Univalence} (f : Type <~> Type) (eu : f Unit = Empty) : ExcludedMiddle_type. Proof. apply DNE_to_LEM, DNE_from_allneg; intros P ?. exists (f P); split. - intros p. assert (Contr P) by (apply contr_inhabited_hprop; assumption). assert (q : Unit = P) by (apply path_universe_uncurried, equiv_contr_contr). destruct q. rewrite eu. auto. - intros nfp. assert (q : f P = Empty) by (apply path_universe_uncurried, equiv_to_empty, nfp). rewrite <- eu in q. apply ((ap f)^-1) in q. rewrite q; exact tt. Defined.
Definition
Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle.
Universes\Automorphisms.v
lem_from_aut_type_unit_empty
7,170
`{Univalence} (A : Type) (P : Type) (a : merely A) `{IsHProp P} : P <-> (P * A = A). Proof. split. - intros p; apply path_universe with snd. apply isequiv_adjointify with (fun a => (p,a)). + intros x; reflexivity. + intros [p' x]. apply path_prod; [ apply path_ishprop | reflexivity ]. - intros q. strip_truncations. apply equiv_path in q. exact (fst (q^-1 a)). Defined.
Lemma
Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle.
Universes\Automorphisms.v
equiv_hprop_idprod
7,171
`{Univalence} (f : Type <~> Type) (A : Type) (a : merely A) (eu : f A = Empty) : ExcludedMiddle_type. Proof. apply DNE_to_LEM, DNE_from_allneg; intros P ?. exists (f (P * A)); split. - intros p. assert (q := fst (equiv_hprop_idprod A P a) p). apply (ap f) in q. rewrite eu in q. rewrite q; auto. - intros q. apply equiv_to_empty in q. apply path_universe_uncurried in q. rewrite <- eu in q. apply ((ap f)^-1) in q. exact (snd (equiv_hprop_idprod A P a) q). Defined.
Definition
Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle.
Universes\Automorphisms.v
lem_from_aut_type_inhabited_empty
7,172
`{Univalence} (g : Type <~> Type) (ge : g Empty <> Empty) : ~~ExcludedMiddle_type. Proof. pose (f := equiv_inverse g). intros nlem. apply ge. apply path_universe_uncurried, equiv_to_empty; intros gz. apply nlem. apply (lem_from_aut_type_inhabited_empty f (g Empty) (tr gz)). unfold f; apply eissect. Defined.
Definition
Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle.
Universes\Automorphisms.v
zero_beers
7,173
`{Univalence} (g : Type <~> Type) (ge : g ExcludedMiddle_type <> ExcludedMiddle_type) : ~~ExcludedMiddle_type. Proof. intros nlem. pose (nlem' := equiv_to_empty nlem). apply path_universe_uncurried in nlem'. rewrite nlem' in ge. apply (zero_beers g) in ge. exact (ge nlem). Defined.
Definition
Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle.
Universes\Automorphisms.v
lem_beers
7,174
(X : Type@{u}) := { Z : Type@{u} & merely (Z = X) }.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
BAut
7,175
(X : Type) : pType := [BAut X, _].
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
pBAut
7,176
`{Univalence} {X} (Z Z' : BAut X) : (Z <~> Z') <~> (Z = Z' :> BAut X) := equiv_path_sigma_hprop _ _ oE equiv_path_universe _ _.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
path_baut
7,177
`{Univalence} {X} {Z Z' : BAut X} (f : Z <~> Z') : ap (BAut_pr1 X) (path_baut Z Z' f) = path_universe f. Proof. unfold path_baut, BAut_pr1; simpl. apply ap_pr1_path_sigma_hprop. Defined.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
ap_pr1_path_baut
7,178
`{Univalence} {X} {Z Z' : BAut X} (f : Z <~> Z') (z : Z) : transport (fun (W:BAut X) => W) (path_baut Z Z' f) z = f z. Proof. refine (transport_compose idmap (BAut_pr1 X) _ _ @ _). refine (_ @ transport_path_universe f z). apply ap10, ap, ap_pr1_path_baut. Defined.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
transport_path_baut
7,179
(X A : Type) : BAut X -> BAut (X * A) := fun Z:BAut X => (Z * A ; Trunc_functor (-1) (ap (fun W => W * A)) (pr2 Z)) : BAut (X * A).
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
baut_prod_r
7,180
`{Univalence} (X A : Type) {Z W : BAut X} (e : Z <~> W) : ap (baut_prod_r X A) (path_baut Z W e) = path_baut (baut_prod_r X A Z) (baut_prod_r X A W) (equiv_functor_prod_r e). Proof. cbn. apply moveL_equiv_M; cbn; unfold pr1_path. rewrite <- (ap_compose (baut_prod_r X A) pr1 (path_sigma_hprop Z W _)). rewrite <- ((ap_compose pr1 (fun Z => Z * A) (path_sigma_hprop Z W _))^). rewrite ap_pr1_path_sigma_hprop. apply moveL_equiv_M; cbn. apply ap_prod_r_path_universe. Qed.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
ap_baut_prod_r
7,181
`{Univalence} X (P : Type -> Type) `{forall (Z : BAut X), IsHSet (P Z)} : { e : P (point (BAut X)) & forall g : X <~> X, transport P (path_universe g) e = e } <~> (forall (Z:BAut X), P Z). Proof. refine (equiv_sig_ind _ oE _). refine ((equiv_functor_forall' (P := fun Z => { f : (Z=X) -> P Z & WeaklyConstant f }) 1 (fun Z => equiv_merely_rec_hset_if_domain _ _)) oE _); simpl. { intros p. change (IsHSet (P (BAut_pr1 X (Z ; tr p)))). exact _. } unfold WeaklyConstant. refine (equiv_sig_coind _ _ oE _). srapply equiv_functor_sigma'. 1:apply (equiv_paths_ind_r X (fun x _ => P x)). intros p; cbn. refine (equiv_paths_ind_r X _ oE _). srapply equiv_functor_forall'. 1:apply equiv_equiv_path. intros e; cbn. refine (_ oE equiv_moveL_transport_V _ _ _ _). apply equiv_concat_r. rewrite path_universe_transport_idmap, paths_ind_r_transport. reflexivity. Defined.
Lemma
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
baut_ind_hset
7,182
`{Univalence} X `{IsHSet X} : { f : X <~> X & forall g:X<~>X, g o f == f o g } <~> (forall Z:BAut X, Z = Z). Proof. refine (equiv_functor_forall_id (fun Z => equiv_path_sigma_hprop Z Z) oE _). refine (baut_ind_hset X (fun Z => Z = Z) oE _). simpl. refine (equiv_functor_sigma' (equiv_path_universe X X) _); intros f. apply equiv_functor_forall_id; intros g; simpl. refine (_ oE equiv_path_arrow _ _). refine (_ oE equiv_path_equiv (g oE f) (f oE g)). revert g. equiv_intro (equiv_path X X) g. revert f. equiv_intro (equiv_path X X) f. refine (_ oE equiv_concat_l (equiv_path_pp _ _) _). refine (_ oE equiv_concat_r (equiv_path_pp _ _)^ _). refine (_ oE (equiv_ap (equiv_path X X) _ _)^-1). refine (equiv_concat_l (transport_paths_lr _ _) _ oE _). refine (equiv_concat_l (concat_pp_p _ _ _) _ oE _). refine (equiv_moveR_Vp _ _ _ oE _). refine (equiv_concat_l _ _ oE equiv_concat_r _ _). - apply concat2; apply eissect. - symmetry; apply concat2; apply eissect. Defined.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
center_baut
7,183
`{Univalence} X `{IsHSet X} : center_baut X (exist (fun (f:X<~>X) => forall (g:X<~>X), g o f == f o g) (equiv_idmap X) (fun (g:X<~>X) (x:X) => idpath (g x))) = fun Z => idpath Z. Proof. apply path_forall; intros Z. assert (IsHSet (Z.1 = Z.1)) by exact _. baut_reduce. exact (ap (path_sigma_hprop _ _) path_universe_1 @ path_sigma_hprop_1 _). Defined.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
id_center_baut
7,184
`{Univalence} X `{IsTrunc 1 X} : { f : forall x:X, x=x & forall (g:X<~>X) (x:X), ap g (f x) = f (g x) } <~> (forall Z:BAut X, (idpath Z) = (idpath Z)). Proof. refine ((equiv_functor_forall_id (fun Z => (equiv_concat_lr _ _) oE (equiv_ap (equiv_path_sigma_hprop Z Z) 1%path 1%path))) oE _). { symmetry; apply path_sigma_hprop_1. } { apply path_sigma_hprop_1. } assert (forall Z:BAut X, IsHSet (idpath Z.1 = idpath Z.1)) by exact _. refine (baut_ind_hset X (fun Z => idpath Z = idpath Z) oE _). simple refine (equiv_functor_sigma' _ _). { refine (_ oE equiv_path2_universe 1 1). apply equiv_concat_lr. - symmetry; apply path_universe_1. - apply path_universe_1. } intros f. apply equiv_functor_forall_id; intros g. refine (_ oE equiv_path3_universe _ _). refine (dpath_paths2 (path_universe g) _ _ oE _). cbn. change (equiv_idmap X == equiv_idmap X) in f. refine (equiv_concat_lr _ _). - refine (_ @ (path2_universe_postcompose_idmap f g)^). abstract (rewrite !whiskerR_pp, !concat_pp_p; reflexivity). - refine (path2_universe_precompose_idmap f g @ _). abstract (rewrite !whiskerL_pp, !concat_pp_p; reflexivity). Defined.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
center2_baut
7,185
`{Univalence} X `{IsTrunc 1 X} : center2_baut X (exist (fun (f:forall x:X, x=x) => forall (g:X<~>X) (x:X), ap g (f x) = f (g x)) (fun x => idpath x) (fun (g:X<~>X) (x:X) => idpath (idpath (g x)))) = fun Z => idpath (idpath Z). Proof. apply path_forall; intros Z. assert (IsHSet (idpath Z.1 = idpath Z.1)) by exact _. baut_reduce. cbn. unfold functor_forall, sig_rect, merely_rec_hset. cbn. rewrite equiv_path2_universe_1. rewrite !concat_p1, !concat_Vp. simpl. rewrite !concat_p1, !concat_Vp. reflexivity. Defined.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
id_center2_baut
7,186
(F : Type) : Subuniverse. Proof. rapply (Build_Subuniverse (fun E => merely (E <~> F))). intros T U mere_eq f iseq_f. strip_truncations. pose (feq:=Build_Equiv _ _ f iseq_f). exact (tr (mere_eq oE feq^-1)). Defined.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
subuniverse_merely_equiv
7,187
`{Univalence} {F : Type} : BAut F <~> Type_ (subuniverse_merely_equiv F). Proof. srapply equiv_functor_sigma_id; intro X; cbn. rapply Trunc_functor_equiv. exact (equiv_path_universe _ _)^-1%equiv. Defined.
Proposition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
equiv_baut_typeO
7,188
`{Univalence} {Y : pType} {F : Type} : (Y -> BAut F) <~> { p : Slice Y & forall y:Y, merely (hfiber p.2 y <~> F) }. Proof. refine (_ oE equiv_postcompose' equiv_baut_typeO). refine (_ oE equiv_sigma_fibration_O). snrapply equiv_functor_sigma_id; intro p. rapply equiv_functor_forall_id; intro y. by apply Trunc_functor_equiv. Defined.
Corollary
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
equiv_map_baut_fibration
7,189
pequiv_pbaut_typeOp@{u v +} `{Univalence} {F : Type@{u}} : pBAut@{u v} F <~>* [Type_ (subuniverse_merely_equiv F), (F; tr equiv_idmap)]. Proof. snrapply Build_pEquiv'; cbn. 1: exact equiv_baut_typeO. by apply path_sigma_hprop. Defined.
Proposition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
pequiv_pbaut_typeOp@
7,190
`{Univalence} {Y F : pType@{u}} : (Y ->* pBAut@{u v} F) <~> { p : { q : pSlice Y & forall y:Y, merely (hfiber q.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
equiv_pmap_pbaut_pfibration
7,191
`{Univalence} {Y : pType@{u}} {F : Type@{u}} `{IsConnected 0 Y} : (Y ->* pBAut F) <~> (Y ->* [Type@{u}, F]). Proof. refine (_ oE pequiv_pequiv_postcompose pequiv_pbaut_typeOp). rapply equiv_pmap_typeO_type_connected. Defined.
Proposition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
equiv_pmap_pbaut_type_p
7,192
`{Univalence} {Y F : pType} `{IsConnected 0 Y} : (Y ->* pBAut F) <~> { X : pType & FiberSeq F X Y } := classify_fiberseq oE equiv_pmap_pbaut_type_p.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed.
Universes\BAut.v
equiv_pmap_pbaut_pfibration_connected
7,193
{ dprop_type : Type ; ishprop_dprop : Funext -> IsHProp dprop_type ; dec_dprop : Decidable dprop_type }.
Record
Require Import HoTT.Basics HoTT.Types. Require Import TruncType HProp. Require Import Truncations.Core Modalities.ReflectiveSubuniverse.
Universes\DProp.v
DProp
7,194
Record
Require Import HoTT.Basics HoTT.Types. Require Import TruncType HProp. Require Import Truncations.Core Modalities.ReflectiveSubuniverse.
Universes\DProp.v
DProp
7,195
Record
Require Import HoTT.Basics HoTT.Types. Require Import TruncType HProp. Require Import Truncations.Core Modalities.ReflectiveSubuniverse.
Universes\DProp.v
DHProp
7,196
DHProp -> DProp := fun P => Build_DProp P (fun _ => _) _.
Definition
Require Import HoTT.Basics HoTT.Types. Require Import TruncType HProp. Require Import Truncations.Core Modalities.ReflectiveSubuniverse.
Universes\DProp.v
dhprop_to_dprop
7,197
DHProp := Build_DHProp Unit_hp (inl tt).
Definition
Require Import HoTT.Basics HoTT.Types. Require Import TruncType HProp. Require Import Truncations.Core Modalities.ReflectiveSubuniverse.
Universes\DProp.v
True
7,198
DHProp := Build_DHProp False_hp (inr idmap).
Definition
Require Import HoTT.Basics HoTT.Types. Require Import TruncType HProp. Require Import Truncations.Core Modalities.ReflectiveSubuniverse.
Universes\DProp.v
False
7,199