fact
stringlengths 0
6.66k
| type
stringclasses 10
values | imports
stringclasses 399
values | filename
stringclasses 465
values | symbolic_name
stringlengths 1
75
| index_level
int64 0
7.85k
|
---|---|---|---|---|---|
(A : Type) := @const A Unit tt. | Definition | Require Import Basics.Overture Basics.Equivalences. | Types\Unit.v | const_tt | 7,100 |
(A B : Type@{u}) (p : A = B) : A <~> B := equiv_transport (fun X => X) p. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_path | 7,101 |
`{Funext} (A B : Type) (p : A = B) : equiv_path B A (p^) = (equiv_path A B p)^-1%equiv. Proof. apply path_equiv. reflexivity. Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_path_V | 7,102 |
forall `{Univalence} (A B : Type@{u}), IsEquiv (equiv_path A B). | Axiom | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | isequiv_equiv_path | 7,103 |
{A B : Type} (f : A <~> B) : A = B := (equiv_path A B)^-1 f. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path_universe_uncurried | 7,104 |
{A B : Type} (f : A -> B) {feq : IsEquiv f} : (A = B) := path_universe_uncurried (Build_Equiv _ _ f feq). | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path_universe | 7,105 |
{A B : Type} (p : A = B) : path_universe (equiv_path A B p) = p := eissect (equiv_path A B) p. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | eta_path_universe | 7,106 |
{A B : Type} (p : A = B) : path_universe_uncurried (equiv_path A B p) = p := eissect (equiv_path A B) p. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | eta_path_universe_uncurried | 7,107 |
{A B : Type} : IsEquiv (@path_universe_uncurried A B) := _. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | isequiv_path_universe | 7,108 |
(A B : Type) : (A <~> B) <~> (A = B) := Build_Equiv _ _ (@path_universe_uncurried A B) isequiv_path_universe. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_path_universe | 7,109 |
(A B : Type) : (A = B) <~> (A <~> B) := (equiv_path_universe A B)^-1%equiv. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_equiv_path | 7,110 |
{A B : Type} (p : A = B) : path_universe (equiv_path A B p) = p := eissect (equiv_path A B) p. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path_universe_equiv_path | 7,111 |
{A B : Type} (p : A = B) : path_universe_uncurried (equiv_path A B p) = p := eissect (equiv_path A B) p. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path_universe_uncurried_equiv_path | 7,112 |
{A B : Type} (p : A = B) : path_universe (transport idmap p) = p := eissect (equiv_path A B) p. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path_universe_transport_idmap | 7,113 |
{A B : Type} (p : A = B) : path_universe_uncurried (equiv_transport idmap p) = p := eissect (equiv_path A B) p. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path_universe_uncurried_transport_idmap | 7,114 |
{A B : Type} (f : A <~> B) : equiv_path A B (path_universe f) = f := eisretr (equiv_path A B) f. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_path_path_universe | 7,115 |
{A B : Type} (f : A <~> B) : equiv_path A B (path_universe_uncurried f) = f := eisretr (equiv_path A B) f. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_path_path_universe_uncurried | 7,116 |
{A B : Type} (f : A <~> B) : transport idmap (path_universe f) = f := ap equiv_fun (eisretr (equiv_path A B) f). | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | transport_idmap_path_universe | 7,117 |
{A B : Type} (f : A <~> B) : transport idmap (path_universe_uncurried f) = f := ap equiv_fun (eisretr (equiv_path A B) f). | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | transport_idmap_path_universe_uncurried | 7,118 |
`{Funext} {A B C : Type} (p : A = B) (q : B = C) : equiv_path A C (p @ q) = equiv_path B C q oE equiv_path A B p. Proof. apply path_equiv, path_arrow. nrapply transport_pp. Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_path_pp | 7,119 |
{A B C : Type} (f : A <~> B) (g : B <~> C) : path_universe_uncurried (equiv_compose g f) = path_universe_uncurried f @ path_universe_uncurried g. Proof. revert f. equiv_intro (equiv_path A B) f. revert g. equiv_intro (equiv_path B C) g. refine ((ap path_universe_uncurried (equiv_path_pp f g))^ @ _). refine (eta_path_universe (f @ g) @ _). apply concat2; symmetry; apply eta_path_universe. Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path_universe_compose_uncurried | 7,120 |
{A B C : Type} (f : A <~> B) (g : B <~> C) : path_universe (g o f) = path_universe f @ path_universe g := path_universe_compose_uncurried f g. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path_universe_compose | 7,121 |
{A : Type} : path_universe (equiv_idmap A) = 1 := eta_path_universe 1. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path_universe_1 | 7,122 |
{A B : Type} (f : A <~> B) : path_universe_uncurried f^-1 = (path_universe_uncurried f)^. Proof. revert f. equiv_intro ((equiv_path_universe A B)^-1) p. simpl. transitivity (p^). 2: exact (inverse2 (eisretr (equiv_path_universe A B) p)^). transitivity (path_universe_uncurried (equiv_path B A p^)). - by refine (ap _ (equiv_path_V A B p)^). - by refine (eissect (equiv_path B A) p^). Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path_universe_V_uncurried | 7,123 |
`(f : A -> B) `{IsEquiv A B f} : path_universe (f^-1) = (path_universe f)^ := path_universe_V_uncurried (Build_Equiv A B f _). | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path_universe_V | 7,124 |
A {B C} (f : B <~> C) : equiv_path (A <~> B) (A <~> C) (ap (Equiv A) (path_universe f)) = equiv_functor_equiv (equiv_idmap A) f. Proof. revert f. equiv_intro (equiv_path B C) f. rewrite (eissect (equiv_path B C) f : path_universe (equiv_path B C f) = f). destruct f; simpl. apply path_equiv, path_forall; intros g. apply path_equiv, path_forall; intros a. reflexivity. Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | ap_equiv_path_universe | 7,125 |
A {B C} (f : B <~> C) : equiv_path (A * B) (A * C) (ap (prod A) (path_universe f)) = equiv_functor_prod_l f. Proof. revert f. equiv_intro (equiv_path B C) f. rewrite (eissect (equiv_path B C) f : path_universe (equiv_path B C f) = f). destruct f. apply path_equiv, path_arrow; intros x; reflexivity. Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | ap_prod_l_path_universe | 7,126 |
A {B C} (f : B <~> C) : equiv_path (B * A) (C * A) (ap (fun Z => Z * A) (path_universe f)) = equiv_functor_prod_r f. Proof. revert f. equiv_intro (equiv_path B C) f. rewrite (eissect (equiv_path B C) f : path_universe (equiv_path B C f) = f). destruct f. apply path_equiv, path_arrow; intros x; reflexivity. Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | ap_prod_r_path_universe | 7,127 |
{A B : Type} (f : A <~> B) (z : A) : transport (fun X:Type => X) (path_universe_uncurried f) z = f z. Proof. revert f. equiv_intro (equiv_path A B) p. exact (ap (fun s => transport idmap s z) (eissect _ p)). Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | transport_path_universe_uncurried | 7,128 |
{A B : Type} (f : A -> B) {feq : IsEquiv f} (z : A) : transport (fun X:Type => X) (path_universe f) z = f z := transport_path_universe_uncurried (Build_Equiv A B f feq) z. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | transport_path_universe | 7,129 |
{A B : Type} (p : A = B) (z : A) : transport_path_universe (equiv_path A B p) z = (ap (fun s => transport idmap s z) (eissect _ p)) := equiv_ind_comp _ _ _. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | transport_path_universe_equiv_path | 7,130 |
transport_path_universe' {A : Type} (P : A -> Type) {x y : A} (p : x = y) (f : P x <~> P y) (q : ap P p = path_universe f) (u : P x) : transport P p u = f u := transport_compose idmap P p u @ ap10 (ap (transport idmap) q) u @ transport_path_universe f u. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | transport_path_universe' | 7,131 |
{A B : Type} (f : A <~> B) (z : B) : transport (fun X:Type => X) (path_universe_uncurried f)^ z = f^-1 z. Proof. revert f. equiv_intro (equiv_path A B) p. exact (ap (fun s => transport idmap s z) (inverse2 (eissect _ p))). Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | transport_path_universe_V_uncurried | 7,132 |
{A B : Type} (f : A -> B) {feq : IsEquiv f} (z : B) : transport (fun X:Type => X) (path_universe f)^ z = f^-1 z := transport_path_universe_V_uncurried (Build_Equiv _ _ f feq) z. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | transport_path_universe_V | 7,133 |
{A B : Type} (p : A = B) (z : B) : transport_path_universe_V (equiv_path A B p) z = ap (fun s => transport idmap s z) (inverse2 (eissect _ p)) := equiv_ind_comp _ _ _. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | transport_path_universe_V_equiv_path | 7,134 |
{A B : Type} (f : A <~> B) (z : A) : ap (transport idmap (path_universe f)^) (transport_path_universe f z) @ transport_path_universe_V f (f z) @ eissect f z = transport_Vp idmap (path_universe f) z. Proof. pattern f. refine (equiv_ind (equiv_path A B) _ _ _); intros p. refine (_ @ ap_transport_Vp_idmap p (path_universe (equiv_path A B p)) (eissect (equiv_path A B) p) z). apply whiskerR. apply concat2. - apply ap. apply transport_path_universe_equiv_path. - apply transport_path_universe_V_equiv_path. Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | transport_path_universe_Vp_uncurried | 7,135 |
{A B : Type} (f : A -> B) {feq : IsEquiv f} (z : A) : ap (transport idmap (path_universe f)^) (transport_path_universe f z) @ transport_path_universe_V f (f z) @ eissect f z = transport_Vp idmap (path_universe f) z := transport_path_universe_Vp_uncurried (Build_Equiv A B f feq) z. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | transport_path_universe_Vp | 7,136 |
{A U V : Type} (w : U <~> V) : forall f : U -> A, transport (fun E : Type => E -> A) (path_universe w) f = (f o w^-1). Proof. intros f. funext y. refine (transport_arrow_toconst _ _ _ @ _). apply ap. apply transport_path_universe_V. Defined. | Theorem | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | transport_arrow_toconst_path_universe | 7,137 |
{A B : Type} (f g : A <~> B) : (f == g) <~> (path_universe f = path_universe g). Proof. refine (_ oE equiv_path_arrow f g). refine (_ oE equiv_path_equiv f g). exact (equiv_ap (equiv_path A B)^-1 _ _). Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_path2_universe | 7,138 |
{A B : Type} {f g : A <~> B} : (f == g) -> (path_universe f = path_universe g) := equiv_path2_universe f g. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path2_universe | 7,139 |
{A B : Type} (f : A <~> B) : equiv_path2_universe f f (fun x => 1) = 1. Proof. simpl. rewrite concat_1p, concat_p1, path_forall_1, path_sigma_hprop_1. reflexivity. Qed. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_path2_universe_1 | 7,140 |
{A B : Type} (f : A <~> B) : @path2_universe _ _ f f (fun x => 1) = 1 := equiv_path2_universe_1 f. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path2_universe_1 | 7,141 |
{A B C : Type} {f1 f2 : A <~> B} (p : f1 == f2) (g : B <~> C) : equiv_path2_universe (g o f1) (g o f2) (fun a => ap g (p a)) = path_universe_compose f1 g @ whiskerR (path2_universe p) (path_universe g) @ (path_universe_compose f2 g)^. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path2_universe_postcompose | 7,142 |
{A B C : Type} {f1 f2 : B <~> C} (p : f1 == f2) (g : A <~> B) : equiv_path2_universe (f1 o g) (f2 o g) (fun a => (p (g a))) = path_universe_compose g f1 @ whiskerL (path_universe g) (path2_universe p) @ (path_universe_compose g f2)^. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path2_universe_precompose | 7,143 |
{A C : Type} (p : forall a:A, a = a) (g : A <~> C) : equiv_path2_universe g g (fun a => ap g (p a)) = (concat_1p _)^ @ whiskerR (path_universe_1)^ (path_universe g) @ whiskerR (equiv_path2_universe (equiv_idmap A) (equiv_idmap A) p) (path_universe g) @ whiskerR path_universe_1 (path_universe g) @ concat_1p _. Proof. transitivity ((eta_path_universe (path_universe g))^ @ equiv_path2_universe (equiv_path A C (path_universe g)) (equiv_path A C (path_universe g)) (fun a => ap (equiv_path A C (path_universe g)) (p a)) @ eta_path_universe (path_universe g)). - refine ((apD (fun g' => equiv_path2_universe g' g' (fun a => ap g' (p a))) (eisretr (equiv_path A C) g))^ @ _). refine (transport_paths_FlFr (eisretr (equiv_path A C) g) _ @ _). apply concat2. + apply whiskerR. apply inverse2, symmetry. refine (eisadj (equiv_path A C)^-1 g). + symmetry; refine (eisadj (equiv_path A C)^-1 g). - generalize (path_universe g). intros h. destruct h. cbn. rewrite !concat_1p, !concat_p1. refine (_ @ whiskerR (whiskerR_pp 1 path_universe_1^ _) _). refine (_ @ whiskerR_pp 1 _ path_universe_1). refine (_ @ (whiskerR_p1_1 _)^). apply whiskerR, whiskerL, ap, ap, ap. apply path_forall; intros x; apply ap_idmap. Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path2_universe_postcompose_idmap | 7,144 |
{A B : Type} (p : forall b:B, b = b) (g : A <~> B) : equiv_path2_universe g g (fun a => (p (g a))) = (concat_p1 _)^ @ whiskerL (path_universe g) (path_universe_1)^ @ whiskerL (path_universe g) (equiv_path2_universe (equiv_idmap B) (equiv_idmap B) p) @ whiskerL (path_universe g) (path_universe_1) @ concat_p1 _. Proof. transitivity ((eta_path_universe (path_universe g))^ @ equiv_path2_universe (equiv_path A B (path_universe g)) (equiv_path A B (path_universe g)) (fun a => p (equiv_path A B (path_universe g) a)) @ eta_path_universe (path_universe g)). - refine ((apD (fun g' => equiv_path2_universe g' g' (fun a => p (g' a))) (eisretr (equiv_path A B) g))^ @ _). refine (transport_paths_FlFr (eisretr (equiv_path A B) g) _ @ _). apply concat2. + apply whiskerR. apply inverse2, symmetry. refine (eisadj (equiv_path A B)^-1 g). + symmetry; refine (eisadj (equiv_path A B)^-1 g). - generalize (path_universe g). intros h. destruct h. cbn. rewrite !concat_p1. refine (_ @ (((concat_1p (whiskerL 1 path_universe_1^))^ @@ 1) @@ 1)). refine (_ @ whiskerR (whiskerL_pp 1 path_universe_1^ _) _). refine (_ @ whiskerL_pp 1 _ path_universe_1). exact ((whiskerL_1p_1 _)^). Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path2_universe_precompose_idmap | 7,145 |
{A B : Type} {f g : A <~> B} (p q : f == g) : (p == q) <~> (path2_universe p = path2_universe q). Proof. refine (_ oE equiv_path_forall p q). refine (_ oE equiv_ap (equiv_path_arrow f g) p q). refine (_ oE equiv_ap (equiv_path_equiv f g) _ _). unfold path2_universe, equiv_path2_universe. simpl. refine (equiv_ap (ap (equiv_path A B)^-1) _ _). Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_path3_universe | 7,146 |
{A B : Type} {f g : A <~> B} {p q : f == g} : (p == q) -> (path2_universe p = path2_universe q) := equiv_path3_universe p q. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | path3_universe | 7,147 |
{A B : Type} (f : A <~> B) (z : B) : transport_path_universe f (transport idmap (path_universe f)^ z) @ ap f (transport_path_universe_V f z) @ eisretr f z = transport_pV idmap (path_universe f) z. Proof. pattern f. refine (equiv_ind (equiv_path A B) _ _ _); intros p. refine (_ @ ap_transport_pV_idmap p (path_universe (equiv_path A B p)) (eissect (equiv_path A B) p) z). apply whiskerR. refine ((concat_Ap _ _)^ @ _). apply concat2. - apply ap. refine (transport_path_universe_V_equiv_path _ _ @ _). unfold inverse2. symmetry; apply (ap_compose inverse (fun s => transport idmap s z)). - apply transport_path_universe_equiv_path. Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | transport_path_universe_pV_uncurried | 7,148 |
{A B : Type} (f : A -> B) {feq : IsEquiv f } (z : B) : transport_path_universe f (transport idmap (path_universe f)^ z) @ ap f (transport_path_universe_V f z) @ eisretr f z = transport_pV idmap (path_universe f) z := transport_path_universe_pV_uncurried (Build_Equiv A B f feq) z. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | transport_path_universe_pV | 7,149 |
{U : Type} (P : forall V, U <~> V -> Type) : (P U (equiv_idmap U)) -> (forall V (w : U <~> V), P V w). Proof. intros H0 V. apply (equiv_ind (equiv_path U V)). intro p; induction p; exact H0. Defined. | Theorem | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_induction | 7,150 |
{U : Type} (P : forall V, U <~> V -> Type) (didmap : P U (equiv_idmap U)) : equiv_induction P didmap U (equiv_idmap U) = didmap := (equiv_ind_comp (P U) _ 1). | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_induction_comp | 7,151 |
equiv_induction' (P : forall U V, U <~> V -> Type) : (forall T, P T T (equiv_idmap T)) -> (forall U V (w : U <~> V), P U V w). Proof. intros H0 U V w. apply (equiv_ind (equiv_path U V)). intro p; induction p; apply H0. Defined. | Theorem | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_induction' | 7,152 |
(P : forall U V, U <~> V -> Type) (didmap : forall T, P T T (equiv_idmap T)) (U : Type) : equiv_induction' P didmap U U (equiv_idmap U) = didmap U := (equiv_ind_comp (P U U) _ 1). | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_induction'_comp | 7,153 |
{U : Type} (P : forall V, V <~> U -> Type) : (P U (equiv_idmap U)) -> (forall V (w : V <~> U), P V w). Proof. intros H0 V. apply (equiv_ind (equiv_path V U)). revert V; rapply paths_ind_r; apply H0. Defined. | Theorem | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_induction_inv | 7,154 |
{U : Type} (P : forall V, V <~> U -> Type) (didmap : P U (equiv_idmap U)) : equiv_induction_inv P didmap U (equiv_idmap U) = didmap := (equiv_ind_comp (P U) _ 1). Global Instance contr_basedequiv@{u +} {X : Type@{u}} : Contr {Y : Type@{u} & X <~> Y}. Proof. apply (Build_Contr _ (X; equiv_idmap)). intros [Y f]; revert Y f. exact (equiv_induction _ idpath). Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | equiv_induction_inv_comp | 7,155 |
~ (IsHSet Type). Proof. intro HT. apply true_ne_false. pose (r := path_ishprop (path_universe equiv_negb) 1). refine (_ @ (ap (fun q => transport idmap q false) r)). symmetry; apply transport_path_universe. Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Sigma Types.Forall Types.Arrow Types.Paths Types.Equiv Types.Bool Types.Prod. | Types\Universe.v | not_hset_Type | 7,156 |
(A : Type) (B : A -> Type) : Type := w_sup (x : A) : (B x -> A B) -> A B. | Inductive | Require Import HoTT.Basics. Require Import Types.Forall Types.Sigma. | Types\WType.v | W | 7,157 |
{A B} (w : W A B) : A := match w with | w_sup x y => x end. | Definition | Require Import HoTT.Basics. Require Import Types.Forall Types.Sigma. | Types\WType.v | w_label | 7,158 |
{A B} (w : W A B) : B (w_label w) -> W A B := match w with | w_sup x y => y end. | Definition | Require Import HoTT.Basics. Require Import Types.Forall Types.Sigma. | Types\WType.v | w_arg | 7,159 |
(A : Type) (B : A -> Type) : _ <~> W A B := ltac:(issig). | Definition | Require Import HoTT.Basics. Require Import Types.Forall Types.Sigma. | Types\WType.v | issig_W | 7,160 |
{A B} (z z' : W A B) : (w_label z;w_arg z) = (w_label z';w_arg z') :> {a : _ & B a -> W A B} <~> z = z' := (equiv_ap' (issig_W A B)^-1%equiv z z')^-1%equiv. | Definition | Require Import HoTT.Basics. Require Import Types.Forall Types.Sigma. | Types\WType.v | equiv_path_wtype | 7,161 |
equiv_path_wtype' {A B} (z z' : W A B) : {p : w_label z = w_label z' & w_arg z = w_arg z' o transport B p} <~> z = z'. Proof. refine (equiv_path_wtype _ _ oE equiv_path_sigma _ _ _ oE _). apply equiv_functor_sigma_id. destruct z as [z1 z2], z' as [z1' z2']. cbn; intros p. destruct p. reflexivity. Defined. | Definition | Require Import HoTT.Basics. Require Import Types.Forall Types.Sigma. | Types\WType.v | equiv_path_wtype' | 7,162 |
Type <~> Type. Proof. refine (((equiv_decidable_sum (fun X:Type => merely (X=A)))^-1) oE _ oE (equiv_decidable_sum (fun X:Type => merely (X=A)))). refine ((equiv_functor_sum_l (equiv_decidable_sum (fun X => merely (X.1=B)))^-1) oE _ oE (equiv_functor_sum_l (equiv_decidable_sum (fun X => merely (X.1=B))))). refine ((equiv_sum_assoc _ _ _) oE _ oE (equiv_sum_assoc _ _ _)^-1). apply equiv_functor_sum_r. assert (q : BAut B <~> {x : {x : Type & ~ merely (x = A)} & merely (x.1 = B)}). { refine (equiv_sigma_assoc _ _ oE _). apply equiv_functor_sigma_id; intros X. apply equiv_iff_hprop. - intros p. refine (fun q => _ ; p). strip_truncations. destruct q. exact (ne (equiv_path X B p)). - exact pr2. } refine (_ oE equiv_sum_symm _ _). apply equiv_functor_sum'. - exact (e^-1 oE q^-1). - exact (q oE e). Defined. | Definition | Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle. | Universes\Automorphisms.v | equiv_swap_types | 7,163 |
merely (equiv_swap_types A = B). Proof. assert (ea := (e (point _)).2). cbn in ea. strip_truncations; apply tr. unfold equiv_swap_types. apply moveR_equiv_V. rewrite (equiv_decidable_sum_l (fun X => merely (X=A)) A (tr 1)). assert (ne' : ~ merely (B=A)) by (intros p; strip_truncations; exact (ne (equiv_path A B p^))). rewrite (equiv_decidable_sum_r (fun X => merely (X=A)) B ne'). cbn. apply ap, path_sigma_hprop; cbn. exact ea. Defined. | Definition | Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle. | Universes\Automorphisms.v | equiv_swap_types_swaps | 7,164 |
equiv_swap_types <> equiv_idmap. Proof. intros p. assert (q := equiv_swap_types_swaps). strip_truncations. apply ne. apply equiv_path. rewrite p in q; exact q. Qed. | Definition | Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle. | Universes\Automorphisms.v | equiv_swap_types_not_id | 7,165 |
`{Univalence} `{ExcludedMiddle} (A B : Type) `{IsRigid A} `{IsRigid B} (ne : ~(A <~> B)) : Type <~> Type. Proof. refine (equiv_swap_types A B ne _). apply equiv_contr_contr. Defined. | Definition | Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle. | Universes\Automorphisms.v | equiv_swap_rigid | 7,166 |
`{Univalence} `{ExcludedMiddle} : Type <~> Type := equiv_swap_rigid Empty Unit (fun e => e^-1 tt). | Definition | Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle. | Universes\Automorphisms.v | equiv_swap_empty_unit | 7,167 |
`{Univalence} `{ExcludedMiddle} (A B : Type) `{IsRigid A} `{IsRigid B} (ne : ~(A <~> B)) : equiv_swap_rigid A B ne A = B. Proof. unfold equiv_swap_rigid, equiv_swap_types. apply moveR_equiv_V. rewrite (equiv_decidable_sum_l (fun X => merely (X=A)) A (tr 1)). assert (ne' : ~ merely (B=A)) by (intros p; strip_truncations; exact (ne (equiv_path A B p^))). rewrite (equiv_decidable_sum_r (fun X => merely (X=A)) B ne'). cbn. apply ap, path_sigma_hprop; cbn. exact ((path_contr (center (BAut B)) (point (BAut B)))..1). Defined. | Definition | Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle. | Universes\Automorphisms.v | equiv_swap_rigid_swaps | 7,168 |
`{Univalence} `{ExcludedMiddle} (X A B : Type) (n : trunc_index) (ne : ~(X*A <~> X*B)) `{IsRigid A} `{IsConnected n.+1 A} `{IsRigid B} `{IsConnected n.+1 B} `{IsTrunc n.+1 X} : Type <~> Type. Proof. refine (equiv_swap_types (X*A) (X*B) ne _). transitivity (BAut X). - symmetry; exact (baut_prod_rigid_equiv X A n). - exact (baut_prod_rigid_equiv X B n). Defined. | Definition | Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle. | Universes\Automorphisms.v | equiv_swap_prod_rigid | 7,169 |
`{Univalence} (f : Type <~> Type) (eu : f Unit = Empty) : ExcludedMiddle_type. Proof. apply DNE_to_LEM, DNE_from_allneg; intros P ?. exists (f P); split. - intros p. assert (Contr P) by (apply contr_inhabited_hprop; assumption). assert (q : Unit = P) by (apply path_universe_uncurried, equiv_contr_contr). destruct q. rewrite eu. auto. - intros nfp. assert (q : f P = Empty) by (apply path_universe_uncurried, equiv_to_empty, nfp). rewrite <- eu in q. apply ((ap f)^-1) in q. rewrite q; exact tt. Defined. | Definition | Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle. | Universes\Automorphisms.v | lem_from_aut_type_unit_empty | 7,170 |
`{Univalence} (A : Type) (P : Type) (a : merely A) `{IsHProp P} : P <-> (P * A = A). Proof. split. - intros p; apply path_universe with snd. apply isequiv_adjointify with (fun a => (p,a)). + intros x; reflexivity. + intros [p' x]. apply path_prod; [ apply path_ishprop | reflexivity ]. - intros q. strip_truncations. apply equiv_path in q. exact (fst (q^-1 a)). Defined. | Lemma | Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle. | Universes\Automorphisms.v | equiv_hprop_idprod | 7,171 |
`{Univalence} (f : Type <~> Type) (A : Type) (a : merely A) (eu : f A = Empty) : ExcludedMiddle_type. Proof. apply DNE_to_LEM, DNE_from_allneg; intros P ?. exists (f (P * A)); split. - intros p. assert (q := fst (equiv_hprop_idprod A P a) p). apply (ap f) in q. rewrite eu in q. rewrite q; auto. - intros q. apply equiv_to_empty in q. apply path_universe_uncurried in q. rewrite <- eu in q. apply ((ap f)^-1) in q. exact (snd (equiv_hprop_idprod A P a) q). Defined. | Definition | Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle. | Universes\Automorphisms.v | lem_from_aut_type_inhabited_empty | 7,172 |
`{Univalence} (g : Type <~> Type) (ge : g Empty <> Empty) : ~~ExcludedMiddle_type. Proof. pose (f := equiv_inverse g). intros nlem. apply ge. apply path_universe_uncurried, equiv_to_empty; intros gz. apply nlem. apply (lem_from_aut_type_inhabited_empty f (g Empty) (tr gz)). unfold f; apply eissect. Defined. | Definition | Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle. | Universes\Automorphisms.v | zero_beers | 7,173 |
`{Univalence} (g : Type <~> Type) (ge : g ExcludedMiddle_type <> ExcludedMiddle_type) : ~~ExcludedMiddle_type. Proof. intros nlem. pose (nlem' := equiv_to_empty nlem). apply path_universe_uncurried in nlem'. rewrite nlem' in ge. apply (zero_beers g) in ge. exact (ge nlem). Defined. | Definition | Require Import Basics Types. Require Import HoTT.Truncations. Require Import Universes.BAut Universes.Rigid. Require Import ExcludedMiddle. | Universes\Automorphisms.v | lem_beers | 7,174 |
(X : Type@{u}) := { Z : Type@{u} & merely (Z = X) }. | Definition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | BAut | 7,175 |
(X : Type) : pType := [BAut X, _]. | Definition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | pBAut | 7,176 |
`{Univalence} {X} (Z Z' : BAut X) : (Z <~> Z') <~> (Z = Z' :> BAut X) := equiv_path_sigma_hprop _ _ oE equiv_path_universe _ _. | Definition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | path_baut | 7,177 |
`{Univalence} {X} {Z Z' : BAut X} (f : Z <~> Z') : ap (BAut_pr1 X) (path_baut Z Z' f) = path_universe f. Proof. unfold path_baut, BAut_pr1; simpl. apply ap_pr1_path_sigma_hprop. Defined. | Definition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | ap_pr1_path_baut | 7,178 |
`{Univalence} {X} {Z Z' : BAut X} (f : Z <~> Z') (z : Z) : transport (fun (W:BAut X) => W) (path_baut Z Z' f) z = f z. Proof. refine (transport_compose idmap (BAut_pr1 X) _ _ @ _). refine (_ @ transport_path_universe f z). apply ap10, ap, ap_pr1_path_baut. Defined. | Definition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | transport_path_baut | 7,179 |
(X A : Type) : BAut X -> BAut (X * A) := fun Z:BAut X => (Z * A ; Trunc_functor (-1) (ap (fun W => W * A)) (pr2 Z)) : BAut (X * A). | Definition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | baut_prod_r | 7,180 |
`{Univalence} (X A : Type) {Z W : BAut X} (e : Z <~> W) : ap (baut_prod_r X A) (path_baut Z W e) = path_baut (baut_prod_r X A Z) (baut_prod_r X A W) (equiv_functor_prod_r e). Proof. cbn. apply moveL_equiv_M; cbn; unfold pr1_path. rewrite <- (ap_compose (baut_prod_r X A) pr1 (path_sigma_hprop Z W _)). rewrite <- ((ap_compose pr1 (fun Z => Z * A) (path_sigma_hprop Z W _))^). rewrite ap_pr1_path_sigma_hprop. apply moveL_equiv_M; cbn. apply ap_prod_r_path_universe. Qed. | Definition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | ap_baut_prod_r | 7,181 |
`{Univalence} X (P : Type -> Type) `{forall (Z : BAut X), IsHSet (P Z)} : { e : P (point (BAut X)) & forall g : X <~> X, transport P (path_universe g) e = e } <~> (forall (Z:BAut X), P Z). Proof. refine (equiv_sig_ind _ oE _). refine ((equiv_functor_forall' (P := fun Z => { f : (Z=X) -> P Z & WeaklyConstant f }) 1 (fun Z => equiv_merely_rec_hset_if_domain _ _)) oE _); simpl. { intros p. change (IsHSet (P (BAut_pr1 X (Z ; tr p)))). exact _. } unfold WeaklyConstant. refine (equiv_sig_coind _ _ oE _). srapply equiv_functor_sigma'. 1:apply (equiv_paths_ind_r X (fun x _ => P x)). intros p; cbn. refine (equiv_paths_ind_r X _ oE _). srapply equiv_functor_forall'. 1:apply equiv_equiv_path. intros e; cbn. refine (_ oE equiv_moveL_transport_V _ _ _ _). apply equiv_concat_r. rewrite path_universe_transport_idmap, paths_ind_r_transport. reflexivity. Defined. | Lemma | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | baut_ind_hset | 7,182 |
`{Univalence} X `{IsHSet X} : { f : X <~> X & forall g:X<~>X, g o f == f o g } <~> (forall Z:BAut X, Z = Z). Proof. refine (equiv_functor_forall_id (fun Z => equiv_path_sigma_hprop Z Z) oE _). refine (baut_ind_hset X (fun Z => Z = Z) oE _). simpl. refine (equiv_functor_sigma' (equiv_path_universe X X) _); intros f. apply equiv_functor_forall_id; intros g; simpl. refine (_ oE equiv_path_arrow _ _). refine (_ oE equiv_path_equiv (g oE f) (f oE g)). revert g. equiv_intro (equiv_path X X) g. revert f. equiv_intro (equiv_path X X) f. refine (_ oE equiv_concat_l (equiv_path_pp _ _) _). refine (_ oE equiv_concat_r (equiv_path_pp _ _)^ _). refine (_ oE (equiv_ap (equiv_path X X) _ _)^-1). refine (equiv_concat_l (transport_paths_lr _ _) _ oE _). refine (equiv_concat_l (concat_pp_p _ _ _) _ oE _). refine (equiv_moveR_Vp _ _ _ oE _). refine (equiv_concat_l _ _ oE equiv_concat_r _ _). - apply concat2; apply eissect. - symmetry; apply concat2; apply eissect. Defined. | Definition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | center_baut | 7,183 |
`{Univalence} X `{IsHSet X} : center_baut X (exist (fun (f:X<~>X) => forall (g:X<~>X), g o f == f o g) (equiv_idmap X) (fun (g:X<~>X) (x:X) => idpath (g x))) = fun Z => idpath Z. Proof. apply path_forall; intros Z. assert (IsHSet (Z.1 = Z.1)) by exact _. baut_reduce. exact (ap (path_sigma_hprop _ _) path_universe_1 @ path_sigma_hprop_1 _). Defined. | Definition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | id_center_baut | 7,184 |
`{Univalence} X `{IsTrunc 1 X} : { f : forall x:X, x=x & forall (g:X<~>X) (x:X), ap g (f x) = f (g x) } <~> (forall Z:BAut X, (idpath Z) = (idpath Z)). Proof. refine ((equiv_functor_forall_id (fun Z => (equiv_concat_lr _ _) oE (equiv_ap (equiv_path_sigma_hprop Z Z) 1%path 1%path))) oE _). { symmetry; apply path_sigma_hprop_1. } { apply path_sigma_hprop_1. } assert (forall Z:BAut X, IsHSet (idpath Z.1 = idpath Z.1)) by exact _. refine (baut_ind_hset X (fun Z => idpath Z = idpath Z) oE _). simple refine (equiv_functor_sigma' _ _). { refine (_ oE equiv_path2_universe 1 1). apply equiv_concat_lr. - symmetry; apply path_universe_1. - apply path_universe_1. } intros f. apply equiv_functor_forall_id; intros g. refine (_ oE equiv_path3_universe _ _). refine (dpath_paths2 (path_universe g) _ _ oE _). cbn. change (equiv_idmap X == equiv_idmap X) in f. refine (equiv_concat_lr _ _). - refine (_ @ (path2_universe_postcompose_idmap f g)^). abstract (rewrite !whiskerR_pp, !concat_pp_p; reflexivity). - refine (path2_universe_precompose_idmap f g @ _). abstract (rewrite !whiskerL_pp, !concat_pp_p; reflexivity). Defined. | Definition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | center2_baut | 7,185 |
`{Univalence} X `{IsTrunc 1 X} : center2_baut X (exist (fun (f:forall x:X, x=x) => forall (g:X<~>X) (x:X), ap g (f x) = f (g x)) (fun x => idpath x) (fun (g:X<~>X) (x:X) => idpath (idpath (g x)))) = fun Z => idpath (idpath Z). Proof. apply path_forall; intros Z. assert (IsHSet (idpath Z.1 = idpath Z.1)) by exact _. baut_reduce. cbn. unfold functor_forall, sig_rect, merely_rec_hset. cbn. rewrite equiv_path2_universe_1. rewrite !concat_p1, !concat_Vp. simpl. rewrite !concat_p1, !concat_Vp. reflexivity. Defined. | Definition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | id_center2_baut | 7,186 |
(F : Type) : Subuniverse. Proof. rapply (Build_Subuniverse (fun E => merely (E <~> F))). intros T U mere_eq f iseq_f. strip_truncations. pose (feq:=Build_Equiv _ _ f iseq_f). exact (tr (mere_eq oE feq^-1)). Defined. | Definition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | subuniverse_merely_equiv | 7,187 |
`{Univalence} {F : Type} : BAut F <~> Type_ (subuniverse_merely_equiv F). Proof. srapply equiv_functor_sigma_id; intro X; cbn. rapply Trunc_functor_equiv. exact (equiv_path_universe _ _)^-1%equiv. Defined. | Proposition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | equiv_baut_typeO | 7,188 |
`{Univalence} {Y : pType} {F : Type} : (Y -> BAut F) <~> { p : Slice Y & forall y:Y, merely (hfiber p.2 y <~> F) }. Proof. refine (_ oE equiv_postcompose' equiv_baut_typeO). refine (_ oE equiv_sigma_fibration_O). snrapply equiv_functor_sigma_id; intro p. rapply equiv_functor_forall_id; intro y. by apply Trunc_functor_equiv. Defined. | Corollary | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | equiv_map_baut_fibration | 7,189 |
pequiv_pbaut_typeOp@{u v +} `{Univalence} {F : Type@{u}} : pBAut@{u v} F <~>* [Type_ (subuniverse_merely_equiv F), (F; tr equiv_idmap)]. Proof. snrapply Build_pEquiv'; cbn. 1: exact equiv_baut_typeO. by apply path_sigma_hprop. Defined. | Proposition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | pequiv_pbaut_typeOp@ | 7,190 |
`{Univalence} {Y F : pType@{u}} : (Y ->* pBAut@{u v} F) <~> { p : { q : pSlice Y & forall y:Y, merely (hfiber q. | Definition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | equiv_pmap_pbaut_pfibration | 7,191 |
`{Univalence} {Y : pType@{u}} {F : Type@{u}} `{IsConnected 0 Y} : (Y ->* pBAut F) <~> (Y ->* [Type@{u}, F]). Proof. refine (_ oE pequiv_pequiv_postcompose pequiv_pbaut_typeOp). rapply equiv_pmap_typeO_type_connected. Defined. | Proposition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | equiv_pmap_pbaut_type_p | 7,192 |
`{Univalence} {Y F : pType} `{IsConnected 0 Y} : (Y ->* pBAut F) <~> { X : pType & FiberSeq F X Y } := classify_fiberseq oE equiv_pmap_pbaut_type_p. | Definition | Require Import HoTT.Basics HoTT.Types. Require Import Constant. Require Import HoTT.Truncations. Require Import ObjectClassifier Homotopy.ExactSequence Pointed. | Universes\BAut.v | equiv_pmap_pbaut_pfibration_connected | 7,193 |
{ dprop_type : Type ; ishprop_dprop : Funext -> IsHProp dprop_type ; dec_dprop : Decidable dprop_type }. | Record | Require Import HoTT.Basics HoTT.Types. Require Import TruncType HProp. Require Import Truncations.Core Modalities.ReflectiveSubuniverse. | Universes\DProp.v | DProp | 7,194 |
Record | Require Import HoTT.Basics HoTT.Types. Require Import TruncType HProp. Require Import Truncations.Core Modalities.ReflectiveSubuniverse. | Universes\DProp.v | DProp | 7,195 |
|
Record | Require Import HoTT.Basics HoTT.Types. Require Import TruncType HProp. Require Import Truncations.Core Modalities.ReflectiveSubuniverse. | Universes\DProp.v | DHProp | 7,196 |
|
DHProp -> DProp := fun P => Build_DProp P (fun _ => _) _. | Definition | Require Import HoTT.Basics HoTT.Types. Require Import TruncType HProp. Require Import Truncations.Core Modalities.ReflectiveSubuniverse. | Universes\DProp.v | dhprop_to_dprop | 7,197 |
DHProp := Build_DHProp Unit_hp (inl tt). | Definition | Require Import HoTT.Basics HoTT.Types. Require Import TruncType HProp. Require Import Truncations.Core Modalities.ReflectiveSubuniverse. | Universes\DProp.v | True | 7,198 |
DHProp := Build_DHProp False_hp (inr idmap). | Definition | Require Import HoTT.Basics HoTT.Types. Require Import TruncType HProp. Require Import Truncations.Core Modalities.ReflectiveSubuniverse. | Universes\DProp.v | False | 7,199 |