fact
stringlengths
0
6.66k
type
stringclasses
10 values
imports
stringclasses
399 values
filename
stringclasses
465 values
symbolic_name
stringlengths
1
75
index_level
int64
0
7.85k
{A} `{HasEquivs A} (a b : A) := @' A _ _ _ _ _ a b.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
CatEquiv
7,500
{A} `{HasEquivs A} {a b : A} (f : a $<~> b) : a $-> b := @' A _ _ _ _ _ a b f.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_fun
7,501
{A} `{HasEquivs A} {a b : A} (f : a $-> b) {fe : CatIsEquiv f} : a $<~> b := cate_buildequiv' a b f fe.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
Build_CatEquiv
7,502
{A} `{HasEquivs A} {a b : A} (f : a $-> b) {fe : CatIsEquiv f} : cate_fun (Build_CatEquiv f) $== f := ' a b f fe.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_buildequiv_fun
7,503
{A} `{HasEquivs A} {a b : A} (f : a $-> b) (g : b $-> a) (r : f $o g $== Id b) (s : g $o f $== Id a) : CatIsEquiv f := ' a b f g r s.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
catie_adjointify
7,504
{A} `{HasEquivs A} {a b : A} (f : a $-> b) (g : b $-> a) (r : f $o g $== Id b) (s : g $o f $== Id a) : a $<~> b := Build_CatEquiv f (fe:=catie_adjointify f g r s).
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_adjointify
7,505
{A} `{HasEquivs A} {a b : A} (f : a $<~> b) : b $<~> a. Proof. simple refine (cate_adjointify _ _ _ _). - exact (' a b f). - exact f. - exact (cate_issect' a b f). - exact (cate_isretr' a b f). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_inv
7,506
{A} `{HasEquivs A} {a b} (f : a $<~> b) : f^-1$ $o f $== Id a. Proof. refine (_ $@ ' a b f). refine (_ $@R f). apply cate_buildequiv_fun'. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_issect
7,507
{A} `{HasEquivs A} {a b} (f : a $<~> b) : f $o f^-1$ $== Id b := cate_issect (A:=A^op) (b:=a) (a:=b) f.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_isretr
7,508
{A} `{HasEquivs A} {a b} (f : a $<~> b) (g : b $-> a) (p : f $o g $== Id b) : cate_fun f^-1$ $== g. Proof. refine ((cat_idr _)^$ $@ _). refine ((_ $@L p^$) $@ _). refine (cat_assoc_opp _ _ _ $@ _). refine (cate_issect f $@R _ $@ _). apply cat_idl. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_inverse_sect
7,509
{A} `{HasEquivs A} {a b} (f : a $<~> b) (g : b $-> a) (p : g $o f $== Id a) : cate_fun f^-1$ $== g := cate_inverse_sect (A:=A^op) (a:=b) (b:=a) f g p.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_inverse_retr
7,510
{A} `{HasEquivs A} {a b : A} (f : a $-> b) (g : b $-> a) (r : f $o g $== Id b) (s : g $o f $== Id a) : cate_fun (cate_adjointify f g r s)^-1$ $== g. Proof. apply cate_inverse_sect. exact ((cate_buildequiv_fun f $@R _) $@ r). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_inv_adjointify
7,511
{A} `{HasEquivs A} (a : A) : a $<~> a := Build_CatEquiv (Id a).
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
id_cate
7,512
{A} `{HasEquivs A} {a b : A} (f : a $-> b) `{!CatIsEquiv f} {g : a $-> b} (p : f $== g) : CatIsEquiv g. Proof. snrapply catie_adjointify. - exact (Build_CatEquiv f)^-1$. - refine (p^$ $@R _ $@ _). refine ((cate_buildequiv_fun f)^$ $@R _ $@ _). apply cate_isretr. - refine (_ $@L p^$ $@ _). refine (_ $@L (cate_buildequiv_fun f)^$ $@ _). apply cate_issect. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
catie_homotopic
7,513
{A} `{HasEquivs A} {a b c : A} (g : b $<~> c) (f : a $<~> b) : g $o f $o (f^-1$ $o g^-1$) $== Id c. Proof. refine (cat_assoc _ _ _ $@ _). refine ((_ $@L cat_assoc_opp _ _ _) $@ _). refine ((_ $@L (cate_isretr _ $@R _)) $@ _). refine ((_ $@L cat_idl _) $@ _). apply cate_isretr. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
compose_catie_isretr
7,514
{A} `{HasEquivs A} {a b c : A} (g : b $<~> c) (f : a $<~> b) : (f^-1$ $o g^-1$ $o (g $o f) $== Id a) := compose_catie_isretr (A:=A^op) (a:=c) (b:=b) (c:=a) f g. Global Instance compose_catie {A} `{HasEquivs A} {a b c : A} (g : b $<~> c) (f : a $<~> b) : CatIsEquiv (g $o f). Proof. refine (catie_adjointify _ (f^-1$ $o g^-1$) _ _). - apply compose_catie_isretr. - apply . Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
compose_catie_issect
7,515
{A} `{HasEquivs A} {a b c : A} (g : b $<~> c) (f : a $<~> b) : a $<~> c := Build_CatEquiv (g $o f).
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
compose_cate
7,516
{A} `{HasEquivs A} {a b c : A} (g : b $<~> c) (f : a $<~> b) : cate_fun (g $oE f) $== g $o f. Proof. apply cate_buildequiv_fun. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
compose_cate_fun
7,517
{A} `{HasEquivs A} {a b c : A} (g : b $<~> c) (f : a $<~> b) : g $o f $== cate_fun (g $oE f). Proof. apply gpd_rev. apply cate_buildequiv_fun. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
compose_cate_funinv
7,518
{A} `{HasEquivs A} (a : A) : cate_fun (id_cate a) $== Id a. Proof. apply cate_buildequiv_fun. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
id_cate_fun
7,519
{A} `{HasEquivs A} {a b c d : A} (f : a $<~> b) (g : b $<~> c) (h : c $<~> d) : cate_fun ((h $oE g) $oE f) $== cate_fun (h $oE (g $oE f)). Proof. refine (compose_cate_fun _ f $@ _ $@ cat_assoc f g h $@ _ $@ compose_cate_funinv h _). - refine (compose_cate_fun h g $@R _). - refine (_ $@L compose_cate_funinv g f). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
compose_cate_assoc
7,520
{A} `{HasEquivs A} {a b c d : A} (f : a $<~> b) (g : b $<~> c) (h : c $<~> d) : cate_fun (h $oE (g $oE f)) $== cate_fun ((h $oE g) $oE f). Proof. Opaque compose_catie_isretr. exact_no_check (compose_cate_assoc (A:=A^op) (a:=d) (b:=c) (c:=b) (d:=a) h g f). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
compose_cate_assoc_opp
7,521
{A} `{HasEquivs A} {a b : A} (f : a $<~> b) : cate_fun (id_cate b $oE f) $== cate_fun f. Proof. refine (compose_cate_fun _ f $@ _ $@ cat_idl f). refine (cate_buildequiv_fun _ $@R _). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
compose_cate_idl
7,522
{A} `{HasEquivs A} {a b : A} (f : a $<~> b) : cate_fun (f $oE id_cate a) $== cate_fun f := compose_cate_idl (A:=A^op) (a:=b) (b:=a) f.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
compose_cate_idr
7,523
{A} `{HasEquivs A} {a b c : A} (f : b $<~> c) (g : a $-> b) : f^-1$ $o (f $o g) $== g := (cat_assoc_opp _ _ _) $@ (cate_issect f $@R g) $@ cat_idl g.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
compose_V_hh
7,524
{A} `{HasEquivs A} {a b c : A} (f : c $<~> b) (g : a $-> b) : f $o (f^-1$ $o g) $== g := (cat_assoc_opp _ _ _) $@ (cate_isretr f $@R g) $@ cat_idl g.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
compose_h_Vh
7,525
{A} `{HasEquivs A} {a b c : A} (f : b $-> c) (g : a $<~> b) : (f $o g) $o g^-1$ $== f := cat_assoc _ _ _ $@ (f $@L cate_isretr g) $@ cat_idr f.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
compose_hh_V
7,526
{A} `{HasEquivs A} {a b c : A} (f : b $-> c) (g : b $<~> a) : (f $o g^-1$) $o g $== f := cat_assoc _ _ _ $@ (f $@L cate_issect g) $@ cat_idr f.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
compose_hV_h
7,527
{A} `{HasEquivs A} {a b : A} (e : a $<~> b) : Monic e. Proof. intros c f g p. refine ((compose_V_hh e _)^$ $@ _ $@ compose_V_hh e _). exact (_ $@L p). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_monic_equiv
7,528
{A} `{HasEquivs A} {a b : A} (e : a $<~> b) : Epic e := cate_monic_equiv (A:=A^op) (a:=b) (b:=a) e.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_epic_equiv
7,529
{A} `{HasEquivs A} {a b c : A} (e : a $<~> b) (f : a $-> c) (g : b $-> c) (p : f $o e^-1$ $== g) : f $== g $o e. Proof. apply (cate_epic_equiv e^-1$). exact (p $@ (compose_hh_V _ _)^$). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_moveL_eM
7,530
{A} `{HasEquivs A} {a b c : A} (e : b $<~> a) (f : a $-> c) (g : b $-> c) (p : f $== g $o e^-1$) : f $o e $== g. Proof. apply (cate_epic_equiv e^-1$). exact (compose_hh_V _ _ $@ p). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_moveR_eM
7,531
{A} `{HasEquivs A} {a b c : A} (e : b $<~> c) (f : a $-> c) (g : a $-> b) (p : e^-1$ $o f $== g) : f $== e $o g := cate_moveL_eM (A:=A^op) (a:=c) (b:=b) (c:=a) e f g p.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_moveL_Me
7,532
{A} `{HasEquivs A} {a b c : A} (e : c $<~> b) (f : a $-> c) (g : a $-> b) (p : f $== e^-1$ $o g) : e $o f $== g := cate_moveR_eM (A:=A^op) (a:=c) (b:=b) (c:=a) e f g p.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_moveR_Me
7,533
{A} `{HasEquivs A} {a b c : A} (e : a $<~> b) (f : b $-> c) (g : a $-> c) (p : f $o e $== g) : f $== g $o e^-1$. Proof. apply (cate_epic_equiv e). exact (p $@ (compose_hV_h _ _)^$). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_moveL_eV
7,534
{A} `{HasEquivs A} {a b c : A} (e : b $<~> a) (f : b $-> c) (g : a $-> c) (p : f $== g $o e) : f $o e^-1$ $== g. Proof. apply (cate_epic_equiv e). exact (compose_hV_h _ _ $@ p). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_moveR_eV
7,535
{A} `{HasEquivs A} {a b c : A} (e : b $<~> c) (f : a $-> b) (g : a $-> c) (p : e $o f $== g) : f $== e^-1$ $o g := cate_moveL_eV (A:=A^op) (a:=c) (b:=b) (c:=a) e f g p.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_moveL_Ve
7,536
{A} `{HasEquivs A} {a b c : A} (e : b $<~> c) (f : a $-> c) (g : a $-> b) (p : f $== e $o g) : e^-1$ $o f $== g := cate_moveR_eV (A:=A^op) (a:=b) (b:=c) (c:=a) e f g p.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_moveR_Ve
7,537
{A} `{HasEquivs A} {a b : A} {e : a $<~> b} (f : b $-> a) (p : e $o f $== Id _) : f $== cate_fun e^-1$. Proof. apply (cate_monic_equiv e). exact (p $@ (cate_isretr e)^$). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_moveL_V1
7,538
{A} `{HasEquivs A} {a b : A} {e : a $<~> b} (f : b $-> a) (p : f $o e $== Id _) : f $== cate_fun e^-1$ := cate_moveL_V1 (A:=A^op) (a:=b) (b:=a) f p.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_moveL_1V
7,539
{A} `{HasEquivs A} {a b : A} {e : a $<~> b} (f : b $-> a) (p : Id _ $== e $o f) : cate_fun e^-1$ $== f. Proof. apply (cate_monic_equiv e). exact (cate_isretr e $@ p). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_moveR_V1
7,540
{A} `{HasEquivs A} {a b : A} {e : a $<~> b} (f : b $-> a) (p : Id _ $== f $o e) : cate_fun e^-1$ $== f := cate_moveR_V1 (A:=A^op) (a:=b) (b:=a) f p.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_moveR_1V
7,541
{A} `{HasEquivs A} {a b : A} {e f : a $<~> b} (p : cate_fun e $== cate_fun f) : cate_fun e^-1$ $== cate_fun f^-1$. Proof. apply cate_moveL_V1. exact ((p^$ $@R _) $@ cate_isretr _). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_inv2
7,542
{A} `{HasEquivs A} {a b c : A} (e : a $<~> b) (f : b $<~> c) : cate_fun (f $oE e)^-1$ $== cate_fun (e^-1$ $oE f^-1$). Proof. refine (_ $@ (compose_cate_fun _ _)^$). apply cate_inv_adjointify. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_inv_compose
7,543
cate_inv_compose' {A} `{HasEquivs A} {a b c : A} (e : a $<~> b) (f : b $<~> c) : cate_fun (f $oE e)^-1$ $== e^-1$ $o f^-1$. Proof. nrefine (_ $@ cate_buildequiv_fun _). nrapply cate_inv_compose. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_inv_compose'
7,544
{A} `{HasEquivs A} {a b : A} (e : a $<~> b) : cate_fun (e^-1$)^-1$ $== cate_fun e. Proof. apply cate_moveR_V1. symmetry; apply cate_issect. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_inv_V
7,545
{A B : Type} `{HasEquivs A} `{HasEquivs B} (F : A -> B) `{!Is0Functor F, !Is1Functor F} {a b : A} (f : a $<~> b) : F a $<~> F b := Build_CatEquiv (fmap F f).
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
emap
7,546
{A B : Type} `{HasEquivs A} `{HasEquivs B} (F : A -> B) `{!Is0Functor F, !Is1Functor F} {a : A} : cate_fun (emap F (id_cate a)) $== cate_fun (id_cate (F a)). Proof. refine (cate_buildequiv_fun _ $@ _). refine (fmap2 F (id_cate_fun a) $@ _ $@ (id_cate_fun (F a))^$). rapply fmap_id. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
emap_id
7,547
{A B : Type} `{HasEquivs A} `{HasEquivs B} (F : A -> B) `{!Is0Functor F, !Is1Functor F} {a b c : A} (f : a $<~> b) (g : b $<~> c) : cate_fun (emap F (g $oE f)) $== fmap F (cate_fun g) $o fmap F (cate_fun f). Proof. refine (cate_buildequiv_fun _ $@ _). refine (fmap2 F (compose_cate_fun _ _) $@ _). rapply fmap_comp. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
emap_compose
7,548
emap_compose' {A B : Type} `{HasEquivs A} `{HasEquivs B} (F : A -> B) `{!Is0Functor F, !Is1Functor F} {a b c : A} (f : a $<~> b) (g : b $<~> c) : cate_fun (emap F (g $oE f)) $== cate_fun ((emap F g) $oE (emap F f)). Proof. refine (emap_compose F f g $@ _). symmetry. refine (compose_cate_fun _ _ $@ _). exact (cate_buildequiv_fun _ $@@ cate_buildequiv_fun _). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
emap_compose'
7,549
{A B : Type} `{HasEquivs A} `{HasEquivs B} (F : A -> B) `{!Is0Functor F, !Is1Functor F} {a b : A} (e : a $<~> b) : cate_fun (emap F e)^-1$ $== cate_fun (emap F e^-1$). Proof. refine (cate_inv_adjointify _ _ _ _ $@ _). exact (cate_buildequiv_fun _)^$. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
emap_inv
7,550
emap_inv' {A B : Type} `{HasEquivs A} `{HasEquivs B} (F : A -> B) `{!Is0Functor F, !Is1Functor F} {a b : A} (e : a $<~> b) : cate_fun (emap F e)^-1$ $== fmap F e^-1$ := emap_inv F e $@ cate_buildequiv_fun _.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
emap_inv'
7,551
{A : Type} `{HasEquivs A} (a b : A) : (a = b) -> (a $<~> b). Proof. intros []; reflexivity. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cat_equiv_path
7,552
{A : Type} `{IsUnivalent1Cat A} (a b : A) : (a $<~> b) -> (a = b) := (cat_equiv_path a b)^-1.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cat_path_equiv
7,553
(A : Type) := { uncore : A }.
Record
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
core
7,554
A `{HasEquivs A} (x y : A) : IsInitial x -> IsInitial y -> x $<~> y. Proof. intros inx iny. srapply (cate_adjointify (inx y).1 (iny x).1). 1: exact (((iny _).2 _)^$ $@ (iny _).2 _). 1: exact (((inx _).2 _)^$ $@ (inx _).2 _). Defined.
Lemma
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_isinitial
7,555
A `{HasEquivs A} (x y : A) : IsTerminal x -> IsTerminal y -> y $<~> x := cate_isinitial A^op x y.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cate_isterminal
7,556
A `{HasEquivs A} (x y : A) : x $<~> y -> IsInitial x -> IsInitial y. Proof. intros f inx z. exists ((inx z).1 $o f^-1$). intros g. refine (_ $@ compose_hh_V _ f). refine (_ $@R _). exact ((inx z).2 _). Defined.
Lemma
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
isinitial_cate
7,557
A `{HasEquivs A} (x y : A) : y $<~> x -> IsTerminal x -> IsTerminal y := isinitial_cate A^op x y.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
isterminal_cate
7,558
A `{Is1Cat A} (x y : A) := { cat_equiv_fun :> x $-> y; cat_equiv_isequiv : Cat_IsBiInv cat_equiv_fun; }.
Record
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
Cat_BiInv
7,559
{A} `{Is1Cat A} {x y : A} (f : x $-> y) {bif : Cat_IsBiInv f} : cat_equiv_inv f $== cat_equiv_inv' f. Proof. refine ((cat_idl _)^$ $@ _). refine (cat_prewhisker (cat_eissect' f)^$ _ $@ _). refine (cat_assoc _ _ _ $@ _). refine (cat_postwhisker _ (cat_eisretr f) $@ _). apply cat_idr. Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cat_inverses_homotopic
7,560
{A} `{Is1Cat A} {x y : A} (f : x $-> y) {bif : Cat_IsBiInv f} : cat_equiv_inv f $o f $== Id x := (cat_inverses_homotopic f $@R f) $@ ' f.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cat_eissect
7,561
A `{Is1Cat A} : HasEquivs A. Proof. srapply Build_HasEquivs; intros x y. 1: exact (Cat_BiInv _ x y). all:intros f; cbn beta in *. - exact (Cat_IsBiInv f). - exact f. - exact _. - apply Build_Cat_BiInv. - intros; reflexivity. - exact (cat_equiv_inv f). - apply cat_eissect. - apply cat_eisretr. - intros g r s. exact (Build_Cat_IsBiInv g r g s). Defined.
Definition
Require Import Basics.Utf8 Basics.Overture Basics.Tactics Basics.Equivalences. Require Import WildCat.Core. Require Import WildCat.Opposite.
WildCat\Equiv.v
cat_hasequivs
7,562
{A B : Type} (F : A -> B) `{IsSurjInj A B F} : B -> A := fun b => (esssurj F b).1. Global Instance is0functor_surjinj_inv {A B : Type} (F : A -> B) `{IsSurjInj A B F} : Is0Functor ( F). Proof. constructor; intros x y f. pose (p := (esssurj F x).2). pose (q := (esssurj F y).2). cbn in *. pose (f' := p $@ f $@ q^$). exact (essinj F f'). Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
surjinj_inv
7,563
{A B : Type} (F : A -> B) `{IsSurjInj A B F} : F o surjinj_inv F $=> idmap. Proof. intros b. exact ((esssurj F b).2). Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
eisretr0gpd_inv
7,564
{A B : Type} (F : A -> B) `{IsSurjInj A B F} : surjinj_inv F o F $=> idmap. Proof. intros a. apply (essinj F). apply eisretr0gpd_inv. Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
eissect0gpd_inv
7,565
{A B : Type} {F : A -> B} {G : A -> B} `{SplEssSurj A B F} `{!Is0Functor G} (alpha : G $=> F) : SplEssSurj G. Proof. intros b. exists ((esssurj F b).1). refine (_ $@ (esssurj F b).2). apply alpha. Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
isesssurj_transf
7,566
{A B : Type} {F : A -> B} {G : A -> B} `{IsSurjInj A B F} `{!Is0Functor G} (alpha : G $=> F) : IsSurjInj G. Proof. constructor. - apply (isesssurj_transf alpha). - intros x y f. apply (essinj F). refine (_ $@ f $@ _). + symmetry; apply alpha. + apply alpha. Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
issurjinj_transf
7,567
`{!IsSurjInj G, !SplEssSurj (G o F)} : SplEssSurj F. Proof. intros b. exists ((esssurj (G o F) (G b)).1). apply (essinj G). exact ((esssurj (G o F) (G b)).2). Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
cancelL_isesssurj
7,568
`{!IsSurjInj G} : SplEssSurj (G o F) <-> SplEssSurj F. Proof. split; [ apply @cancelL_isesssurj | apply @isesssurj_compose ]; exact _. Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
iffL_isesssurj
7,569
`{!IsSurjInj G, !IsSurjInj (G o F)} : IsSurjInj F. Proof. constructor. - apply cancelL_isesssurj. - intros x y f. exact (essinj (G o F) (fmap G f)). Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
cancelL_issurjinj
7,570
`{!IsSurjInj G} : IsSurjInj (G o F) <-> IsSurjInj F. Proof. split; [ apply @cancelL_issurjinj | apply @issurjinj_compose ]; exact _. Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
iffL_issurjinj
7,571
`{!SplEssSurj (G o F)} : SplEssSurj G. Proof. intros c. exists (F (esssurj (G o F) c).1). exact ((esssurj (G o F) c).2). Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
cancelR_isesssurj
7,572
`{!SplEssSurj F} : SplEssSurj (G o F) <-> SplEssSurj G. Proof. split; [ apply @cancelR_isesssurj | intros; apply @isesssurj_compose ]; exact _. Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
iffR_isesssurj
7,573
`{!IsSurjInj F, !IsSurjInj (G o F)} : IsSurjInj G. Proof. constructor. - apply cancelR_isesssurj. - intros x y f. pose (p := (esssurj F x).2). pose (q := (esssurj F y).2). cbn in *. refine (p^$ $@ _ $@ q). apply (fmap F). apply (essinj (G o F)). refine (_ $@ f $@ _). + exact (fmap G p). + exact (fmap G q^$). Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
cancelR_issurjinj
7,574
`{!IsSurjInj F} : IsSurjInj (G o F) <-> IsSurjInj G. Proof. split; [ apply @cancelR_issurjinj | intros; apply @issurjinj_compose ]; exact _. Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
iffR_issurjinj
7,575
{A B C D : Type} {F : A -> B} {G : C -> D} {H : A -> C} {K : B -> D} `{IsSurjInj A C H} `{IsSurjInj B D K} `{!Is0Functor F} `{!Is0Functor G} (p : K o F $=> G o H) : SplEssSurj F <-> SplEssSurj G. Proof. split; intros ?. - srapply (cancelR_isesssurj G H); try exact _. apply (isesssurj_transf (fun a => (p a)^$)). - srapply (cancelL_isesssurj K F); try exact _. apply (isesssurj_transf p). Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
isesssurj_iff_commsq
7,576
{A B C D : Type} {F : A -> B} {G : C -> D} {H : A -> C} {K : B -> D} `{IsSurjInj A C H} `{IsSurjInj B D K} `{!Is0Functor F} `{!Is0Functor G} (p : K o F $=> G o H) : IsSurjInj F <-> IsSurjInj G. Proof. split; intros ?. - srapply (cancelR_issurjinj G H); try exact _. apply (issurjinj_transf (fun a => (p a)^$)). - srapply (cancelL_issurjinj K F); try exact _. apply (issurjinj_transf p). Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
issurjinj_iff_commsq
7,577
{A : Type} (B C : A -> Type) `{forall a, IsGraph (B a)} `{forall a, Is01Cat (B a)} `{forall a, Is0Gpd (B a)} `{forall a, IsGraph (C a)} `{forall a, Is01Cat (C a)} `{forall a, Is0Gpd (C a)} (F : forall a, B a -> C a) {ff : forall a, Is0Functor (F a)} : SplEssSurj (fun (x:sig B) => (x.1 ; F x.1 x.2)) <-> (forall a, SplEssSurj (F a)). Proof. split. - intros fs a c. pose (s := fs (a;c)). destruct s as [[a' b] [p q]]; cbn in *. destruct p; cbn in q. exists b. exact q. - intros fs [a c]. exists (a ; (esssurj (F a) c).1); cbn. exists idpath; cbn. exact ((esssurj (F a) c).2). Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
isesssurj_iff_sigma
7,578
{A : Type} (B C : A -> Type) `{forall a, IsGraph (B a)} `{forall a, Is01Cat (B a)} `{forall a, Is0Gpd (B a)} `{forall a, IsGraph (C a)} `{forall a, Is01Cat (C a)} `{forall a, Is0Gpd (C a)} (F : forall a, B a -> C a) `{forall a, Is0Functor (F a)} `{forall a, IsSurjInj (F a)} : IsSurjInj (fun (x:sig B) => (x.1 ; F x.1 x.2)). Proof. constructor. - apply isesssurj_iff_sigma; exact _. - intros [a1 b1] [a2 b2] [p f]; cbn in *. destruct p; cbn in *. exists idpath; cbn. exact (essinj (F a1) f). Defined.
Definition
Require Import Basics.Overture Basics.Tactics Basics.Iff. Require Import WildCat.Core. Require Import WildCat.NatTrans. Require Import WildCat.Sigma.
WildCat\EquivGpd.v
issurjinj_sigma
7,579
(A B : Type) `{IsGraph A} `{IsGraph B} := { fun01_F : A -> B; fun01_is0functor : Is0Functor fun01_F; }.
Record
Require Import Basics.Overture Basics.Tactics. Require Import WildCat.Core. Require Import WildCat.Opposite. Require Import WildCat.Equiv. Require Import WildCat.Induced. Require Import WildCat.NatTrans.
WildCat\FunctorCat.v
Fun01
7,580
(A B : Type) `{IsGraph A} `{IsGraph B} : _ <~> Fun01 A B := ltac:(issig). Global Instance isgraph_fun01 (A B : Type) `{IsGraph A} `{Is1Cat B} : IsGraph (Fun01 A B). Proof. srapply Build_IsGraph. intros [F ?] [G ?]. exact (NatTrans F G). Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import WildCat.Core. Require Import WildCat.Opposite. Require Import WildCat.Equiv. Require Import WildCat.Induced. Require Import WildCat.NatTrans.
WildCat\FunctorCat.v
issig_Fun01
7,581
(A B : Type) `{IsGraph A} `{IsGraph B} : Fun01 A B -> Fun01 A^op B^op. Proof. intros F. rapply (Build_Fun01 A^op B^op F). Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import WildCat.Core. Require Import WildCat.Opposite. Require Import WildCat.Equiv. Require Import WildCat.Induced. Require Import WildCat.NatTrans.
WildCat\FunctorCat.v
fun01_op
7,582
(A B : Type) `{Is1Cat A} `{Is1Cat B} :=
Record
Require Import Basics.Overture Basics.Tactics. Require Import WildCat.Core. Require Import WildCat.Opposite. Require Import WildCat.Equiv. Require Import WildCat.Induced. Require Import WildCat.NatTrans.
WildCat\FunctorCat.v
Fun11
7,583
{A} `{IsGraph A} : Fun01 A A := Build_Fun01 A A idmap.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import WildCat.Core. Require Import WildCat.Opposite. Require Import WildCat.Equiv. Require Import WildCat.Induced. Require Import WildCat.NatTrans.
WildCat\FunctorCat.v
fun01_id
7,584
{A} `{Is1Cat A} : Fun11 A A := Build_Fun11 _ _ idmap.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import WildCat.Core. Require Import WildCat.Opposite. Require Import WildCat.Equiv. Require Import WildCat.Induced. Require Import WildCat.NatTrans.
WildCat\FunctorCat.v
fun11_id
7,585
{A B C} `{IsGraph A, IsGraph B, IsGraph C} : Fun01 B C -> Fun01 A B -> Fun01 A C := fun G F => Build_Fun01 _ _ (G o F).
Definition
Require Import Basics.Overture Basics.Tactics. Require Import WildCat.Core. Require Import WildCat.Opposite. Require Import WildCat.Equiv. Require Import WildCat.Induced. Require Import WildCat.NatTrans.
WildCat\FunctorCat.v
fun01_compose
7,586
{A B C} `{IsGraph A, Is1Cat B, Is1Cat C} (F : Fun11 B C) : Fun01 A B -> Fun01 A C := fun01_compose (A:=A) F. Global Instance is0functor_fun01_postcomp {A B C} `{IsGraph A, Is1Cat B, Is1Cat C} (F : Fun11 B C) : Is0Functor ( (A:=A) F). Proof. apply Build_Is0Functor. intros a b f. rapply nattrans_postwhisker. exact f. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import WildCat.Core. Require Import WildCat.Opposite. Require Import WildCat.Equiv. Require Import WildCat.Induced. Require Import WildCat.NatTrans.
WildCat\FunctorCat.v
fun01_postcomp
7,587
{A B C} `{IsGraph A, Is1Cat B, Is1Cat C} (F : Fun11 B C) : Fun11 (Fun01 A B) (Fun01 A C) := Build_Fun11 _ _ (fun01_postcomp F).
Definition
Require Import Basics.Overture Basics.Tactics. Require Import WildCat.Core. Require Import WildCat.Opposite. Require Import WildCat.Equiv. Require Import WildCat.Induced. Require Import WildCat.NatTrans.
WildCat\FunctorCat.v
fun11_fun01_postcomp
7,588
{A B C} `{Is1Cat A, Is1Cat B, Is1Cat C} : Fun11 B C -> Fun11 A B -> Fun11 A C. Proof. intros F G. nrapply Build_Fun11. rapply (is1functor_compose G F). Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import WildCat.Core. Require Import WildCat.Opposite. Require Import WildCat.Equiv. Require Import WildCat.Induced. Require Import WildCat.NatTrans.
WildCat\FunctorCat.v
fun11_compose
7,589
`{HasMorExt B} : HasMorExt A. Proof. constructor. intros_of_type A; cbn. rapply isequiv_Htpy_path. Defined.
Instance
Require Import Basics.Overture Basics.Tactics. Require Import WildCat.Core. Require Import WildCat.Equiv.
WildCat\Induced.v
hasmorext_induced
7,590
`{HasEquivs B} : HasEquivs A. Proof. srapply Build_HasEquivs; intros a b; cbn. + exact (f a $<~> f b). + apply CatIsEquiv'. + apply cate_fun. + apply cate_isequiv'. + apply cate_buildequiv'. + nrapply cate_buildequiv_fun'. + apply cate_inv'. + nrapply cate_issect'. + nrapply cate_isretr'. + nrapply catie_adjointify'. Defined.
Definition
Require Import Basics.Overture Basics.Tactics. Require Import WildCat.Core. Require Import WildCat.Equiv.
WildCat\Induced.v
hasequivs_induced
7,591
{A : Type} `{HasEquivs A} {F : A -> A -> A} `{!Is0Bifunctor F, !Is1Bifunctor F, !Associator F} : forall a b c, F a (F b c) $<~> F (F a b) c := fun a b c => associator_uncurried (a, b, c).
Definition
Require Import Basics.Overture Basics.Tactics Types.Forall. Require Import WildCat.Core WildCat.Bifunctor WildCat.Prod WildCat.Equiv. Require Import WildCat.NatTrans WildCat.Opposite.
WildCat\Monoidal.v
associator
7,592
{A : Type} `{HasEquivs A} (F : A -> A -> A) `{!Is0Bifunctor F, !Is1Bifunctor F} (associator : forall a b c, F a (F b c) $<~> F (F a b) c) (isnat_assoc : Is1Natural (fun '(a, b, c) => F a (F b c)) (fun '(a, b, c) => F (F a b) c) (fun '(a, b, c) => associator a b c)) : Associator F. Proof. snrapply Build_NatEquiv. - intros [[a b] c]. exact (associator a b c). - exact isnat_assoc. Defined.
Definition
Require Import Basics.Overture Basics.Tactics Types.Forall. Require Import WildCat.Core WildCat.Bifunctor WildCat.Prod WildCat.Equiv. Require Import WildCat.NatTrans WildCat.Opposite.
WildCat\Monoidal.v
Build_Associator
7,593
{A : Type} `{Is1Cat A} {F : A -> A -> A} `{!Is0Bifunctor F, !Is1Bifunctor F, !Braiding F} : forall a b, F a b $-> F b a := fun a b => braid_uncurried (a, b).
Definition
Require Import Basics.Overture Basics.Tactics Types.Forall. Require Import WildCat.Core WildCat.Bifunctor WildCat.Prod WildCat.Equiv. Require Import WildCat.NatTrans WildCat.Opposite.
WildCat\Monoidal.v
braid
7,594
{x x' y y' z z'} (f : x $-> x') (g : y $-> y') (h : z $-> z') : associator x' y' z' $o fmap11 F f (fmap11 F g h) $== fmap11 F (fmap11 F f g) h $o associator x y z. Proof. destruct assoc as [asso nat]. exact (nat (x, y, z) (x', y', z') (f, g, h)). Defined.
Definition
Require Import Basics.Overture Basics.Tactics Types.Forall. Require Import WildCat.Core WildCat.Bifunctor WildCat.Prod WildCat.Equiv. Require Import WildCat.NatTrans WildCat.Opposite.
WildCat\Monoidal.v
associator_nat
7,595
{x x' : A} (f : x $-> x') (y z : A) : associator x' y z $o fmap10 F f (F y z) $== fmap10 F (fmap10 F f y) z $o associator x y z. Proof. refine ((_ $@L _^$) $@ _ $@ (_ $@R _)). 2: rapply (associator_nat f (Id _) (Id _)). - exact (fmap12 _ _ (fmap11_id _ _ _) $@ fmap10_is_fmap11 _ _ _). - exact (fmap21 _ (fmap10_is_fmap11 _ _ _) _ $@ fmap10_is_fmap11 _ _ _). Defined.
Definition
Require Import Basics.Overture Basics.Tactics Types.Forall. Require Import WildCat.Core WildCat.Bifunctor WildCat.Prod WildCat.Equiv. Require Import WildCat.NatTrans WildCat.Opposite.
WildCat\Monoidal.v
associator_nat_l
7,596
(x : A) {y y' : A} (g : y $-> y') (z : A) : associator x y' z $o fmap01 F x (fmap10 F g z) $== fmap10 F (fmap01 F x g) z $o associator x y z. Proof. refine ((_ $@L _^$) $@ _ $@ (_ $@R _)). 2: nrapply (associator_nat (Id _) g (Id _)). - exact (fmap12 _ _ (fmap10_is_fmap11 _ _ _) $@ fmap01_is_fmap11 _ _ _). - exact (fmap21 _ (fmap01_is_fmap11 _ _ _) _ $@ fmap10_is_fmap11 _ _ _). Defined.
Definition
Require Import Basics.Overture Basics.Tactics Types.Forall. Require Import WildCat.Core WildCat.Bifunctor WildCat.Prod WildCat.Equiv. Require Import WildCat.NatTrans WildCat.Opposite.
WildCat\Monoidal.v
associator_nat_m
7,597
(x y : A) {z z' : A} (h : z $-> z') : associator x y z' $o fmap01 F x (fmap01 F y h) $== fmap01 F (F x y) h $o associator x y z. Proof. refine ((_ $@L _^$) $@ _ $@ (_ $@R _)). 2: nrapply (associator_nat (Id _) (Id _) h). - exact (fmap12 _ _ (fmap01_is_fmap11 _ _ _) $@ fmap01_is_fmap11 _ _ _). - exact (fmap21 _ (fmap11_id _ _ _) _ $@ fmap01_is_fmap11 F _ _). Defined.
Definition
Require Import Basics.Overture Basics.Tactics Types.Forall. Require Import WildCat.Core WildCat.Bifunctor WildCat.Prod WildCat.Equiv. Require Import WildCat.NatTrans WildCat.Opposite.
WildCat\Monoidal.v
associator_nat_r
7,598
associator_op' {A : Type} `{HasEquivs A} {F : A -> A -> A} `{!Is0Bifunctor F, !Is1Bifunctor F, assoc : !Associator (A:=A^op) F} : Associator F := associator_op (A:=A^op) (assoc := assoc).
Definition
Require Import Basics.Overture Basics.Tactics Types.Forall. Require Import WildCat.Core WildCat.Bifunctor WildCat.Prod WildCat.Equiv. Require Import WildCat.NatTrans WildCat.Opposite.
WildCat\Monoidal.v
associator_op'
7,599