File size: 6,128 Bytes
a71e4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
6b640f7
a71e4b6
 
 
1102f82
86a1eaa
a71e4b6
 
a873fa7
9a86ac4
a873fa7
 
 
9a86ac4
a71e4b6
 
 
 
 
 
 
a873fa7
 
 
6b640f7
 
a71e4b6
 
 
 
 
6b640f7
 
a71e4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b640f7
a71e4b6
 
 
6b640f7
2109ac9
a71e4b6
 
 
6b640f7
a71e4b6
 
 
6b640f7
a71e4b6
 
 
 
 
 
 
 
 
 
4bf433a
 
9a86ac4
a71e4b6
 
 
 
 
 
 
 
 
 
 
 
cde998c
a873fa7
a71e4b6
 
 
 
 
9a86ac4
 
a873fa7
a71e4b6
 
 
 
 
9a86ac4
 
a873fa7
29cd8e8
 
 
 
 
9fe2df1
9a86ac4
a873fa7
a71e4b6
 
 
 
9a86ac4
a71e4b6
 
 
 
 
9a86ac4
 
1102f82
 
86a1eaa
1102f82
6b640f7
1102f82
 
86a1eaa
 
 
 
 
 
 
 
1102f82
 
 
 
9a86ac4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Youtube Casual Audio Dataset"""


import datasets
import pandas as pd
import re


_DATA_URL = "https://dutudn-my.sharepoint.com/:u:/g/personal/122180028_sv1_dut_udn_vn/Ed5mI5CjXIxHgb2qqPOElj0BBgn7FGT75SUgPdIuMS1LDw?download=1"
_PROMPTS_URLS = {
    "train": "https://drive.google.com/uc?export=download&id=1s5d-1ZTzcxsnxUjiBLsv9KCB-yBcXyQ9",
    "test": "https://drive.google.com/uc?export=download&id=1-l1QdNQ98DGZM63-GOKIVnFvxTz2SGeK",
    "validation": "https://drive.google.com/uc?export=download&id=1GM_6s5icko6zRrldx8LcbANyl0geMSl8"
}

_DESCRIPTION = """\
"""

_LANGUAGES = {
    "vi": {
        "Language": "Vietnamese",
        "Date": "2021-12-11",
        "Size": "17000 MB",
        "Version": "vi_100h_2020-12-11",
        "Validated_Hr_Total": '~20h',
        "Overall_Hr_Total": '~100h',
        "Number_Of_Voice": 62,
    },
}


class YoutubeCasualAudioConfig(datasets.BuilderConfig):
    """BuilderConfig for YoutubeCasualAudio."""

    def __init__(self, name, sub_version, **kwargs):
        """
        Args:
          data_dir: `string`, the path to the folder containing the files in the
            downloaded .tar
          citation: `string`, citation for the data set
          url: `string`, url for information about the data set
          **kwargs: keyword arguments forwarded to super.
        """
        self.sub_version = sub_version
        self.language = kwargs.pop("language", None)
        self.date_of_snapshot = kwargs.pop("date", None)
        self.size = kwargs.pop("size", None)
        self.validated_hr_total = kwargs.pop("val_hrs", None)
        self.total_hr_total = kwargs.pop("total_hrs", None)
        self.num_of_voice = kwargs.pop("num_of_voice", None)
        description = f"Youtube Casual Audio speech to text dataset in {self.language} version " \
                      f"{self.sub_version} of {self.date_of_snapshot}. " \
                      f"The dataset comprises {self.validated_hr_total} of validated transcribed speech data from " \
                      f"{self.num_of_voice} speakers. The dataset has a size of {self.size} "
        super(YoutubeCasualAudioConfig, self).__init__(
            name=name, version=datasets.Version("0.1.0", ""), description=description, **kwargs
        )


class YoutubeCasualAudio(datasets.GeneratorBasedBuilder):

    DEFAULT_WRITER_BATCH_SIZE = 1000
    BUILDER_CONFIGS = [
        YoutubeCasualAudioConfig(
            name=lang_id,
            language=_LANGUAGES[lang_id]["Language"],
            sub_version=_LANGUAGES[lang_id]["Version"],
        )
        for lang_id in _LANGUAGES.keys()
    ]

    def _info(self):
        features = datasets.Features(
            {
                "file_path": datasets.Value("string"),
                "script": datasets.Value("string"),
                "audio": datasets.Audio(sampling_rate=16_000),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        archive = dl_manager.download(_DATA_URL)
        tsv_files = dl_manager.download(_PROMPTS_URLS)
        path_to_data = "audio"

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "tsv_files": tsv_files["train"],
                    "audio_files": dl_manager.iter_archive(archive),
                    "path_to_clips": path_to_data,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "tsv_files": tsv_files["test"],
                    "audio_files": dl_manager.iter_archive(archive),
                    "path_to_clips": path_to_data,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "tsv_files": tsv_files["validation"],
                    "audio_files": dl_manager.iter_archive(archive),
                    "path_to_clips": path_to_data,
                },
            ),
        ]

    def _generate_examples(self, tsv_files, audio_files, path_to_clips):
        """Yields examples."""
        data_fields = list(self._info().features.keys())

        # audio is not a header of the csv files
        data_fields.remove("audio")
        examples = {}

        df = pd.read_csv(tsv_files, sep="\t", header=0)
        df = df.dropna()
        chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]'

        for file_path, script in zip(df["file_path"], df["script"]):
            # set full path for mp3 audio file
            audio_path = path_to_clips + "/" + file_path

            # Preprocessing script
            if ":" in script:
                two_dot_index = script.index(":")
                script = script[two_dot_index + 1:]
            script = script.replace("\n", " ")
            script = re.sub(chars_to_ignore_regex, '', script).lower()

            examples[audio_path] = {
                "file_path": audio_path,
                "script": script,
            }

        for path, f in audio_files:
            if path.startswith(path_to_clips):
                if path in examples:
                    audio = {"path": path, "bytes": f.read()}
                    yield path, {**examples[path], "audio": audio}