id
stringlengths
14
16
text
stringlengths
45
2.73k
source
stringlengths
49
114
79e856615526-21
Returns List of ids from adding the texts into the vectorstore. classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.faiss.FAISS[source]# Construct FAISS wrapper from raw documents. This is a user friendly interface that: Embeds documents. Creates an in memory docstore Initializes the FAISS database This is intended to be a quick way to get started. Example from langchain import FAISS from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) faiss = FAISS.from_embeddings(text_embedding_pairs, embeddings) classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.faiss.FAISS[source]# Construct FAISS wrapper from raw documents. This is a user friendly interface that: Embeds documents. Creates an in memory docstore Initializes the FAISS database This is intended to be a quick way to get started. Example from langchain import FAISS from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() faiss = FAISS.from_texts(texts, embeddings) classmethod load_local(folder_path: str, embeddings: langchain.embeddings.base.Embeddings, index_name: str = 'index') → langchain.vectorstores.faiss.FAISS[source]# Load FAISS index, docstore, and index_to_docstore_id to disk. Parameters
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-22
Load FAISS index, docstore, and index_to_docstore_id to disk. Parameters folder_path – folder path to load index, docstore, and index_to_docstore_id from. embeddings – Embeddings to use when generating queries index_name – for saving with a specific index file name max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Returns List of Documents selected by maximal marginal relevance. merge_from(target: langchain.vectorstores.faiss.FAISS) → None[source]# Merge another FAISS object with the current one. Add the target FAISS to the current one. Parameters target – FAISS object you wish to merge into the current one Returns None.
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-23
Parameters target – FAISS object you wish to merge into the current one Returns None. save_local(folder_path: str, index_name: str = 'index') → None[source]# Save FAISS index, docstore, and index_to_docstore_id to disk. Parameters folder_path – folder path to save index, docstore, and index_to_docstore_id to. index_name – for saving with a specific index file name similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the embedding. similarity_search_with_score(query: str, k: int = 4) → List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each similarity_search_with_score_by_vector(embedding: List[float], k: int = 4) → List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to.
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-24
Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query and score for each class langchain.vectorstores.Milvus(embedding_function: langchain.embeddings.base.Embeddings, connection_args: dict, collection_name: str, text_field: str)[source]# Wrapper around the Milvus vector database. add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, partition_name: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[str][source]# Insert text data into Milvus. When using add_texts() it is assumed that a collecton has already been made and indexed. If metadata is included, it is assumed that it is ordered correctly to match the schema provided to the Collection and that the embedding vector is the first schema field. Parameters texts (Iterable[str]) – The text being embedded and inserted. metadatas (Optional[List[dict]], optional) – The metadata that corresponds to each insert. Defaults to None. partition_name (str, optional) – The partition of the collection to insert data into. Defaults to None. timeout – specified timeout. Returns The resulting keys for each inserted element. Return type List[str] classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.milvus.Milvus[source]# Create a Milvus collection, indexes it with HNSW, and insert data. Parameters texts (List[str]) – Text to insert.
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-25
Parameters texts (List[str]) – Text to insert. embedding (Embeddings) – Embedding function to use. metadatas (Optional[List[dict]], optional) – Dict metatadata. Defaults to None. Returns The Milvus vector store. Return type VectorStore max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = - 1, timeout: Optional[int] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Perform a search and return results that are reordered by MMR. Parameters query (str) – The text being searched. k (int, optional) – How many results to give. Defaults to 4. fetch_k (int, optional) – Total results to select k from. Defaults to 20. param (dict, optional) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. partition_names (List[str], optional) – What partitions to search. Defaults to None. round_decimal (int, optional) – Round the resulting distance. Defaults to -1. timeout (int, optional) – Amount to wait before timeout error. Defaults to None. Returns Document results for search. Return type List[Document]
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-26
to None. Returns Document results for search. Return type List[Document] similarity_search(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = - 1, timeout: Optional[int] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Perform a similarity search against the query string. Parameters query (str) – The text to search. k (int, optional) – How many results to return. Defaults to 4. param (dict, optional) – The search params for the index type. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. partition_names (List[str], optional) – What partitions to search. Defaults to None. round_decimal (int, optional) – What decimal point to round to. Defaults to -1. timeout (int, optional) – How long to wait before timeout error. Defaults to None. Returns Document results for search. Return type List[Document] similarity_search_with_score(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, partition_names: Optional[List[str]] = None, round_decimal: int = - 1, timeout: Optional[int] = None, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]# Perform a search on a query string and return results. Parameters query (str) – The text being searched. k (int, optional) – The amount of results ot return. Defaults to 4. param (dict, optional) – The search params for the specified index. Defaults to None.
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-27
param (dict, optional) – The search params for the specified index. Defaults to None. expr (str, optional) – Filtering expression. Defaults to None. partition_names (List[str], optional) – Partitions to search through. Defaults to None. round_decimal (int, optional) – Round the resulting distance. Defaults to -1. timeout (int, optional) – Amount to wait before timeout error. Defaults to None. kwargs – Collection.search() keyword arguments. Returns search_embedding,(Document, distance, primary_field) results. Return type List[float], List[Tuple[Document, any, any]] class langchain.vectorstores.OpenSearchVectorSearch(opensearch_url: str, index_name: str, embedding_function: langchain.embeddings.base.Embeddings, **kwargs: Any)[source]# Wrapper around OpenSearch as a vector database. Example from langchain import OpenSearchVectorSearch opensearch_vector_search = OpenSearchVectorSearch( "http://localhost:9200", "embeddings", embedding_function ) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. bulk_size – Bulk API request count; Default: 500 Returns List of ids from adding the texts into the vectorstore. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”.
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-28
text_field: Document field the text of the document is stored in. Defaults to “text”. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any) → langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch[source]# Construct OpenSearchVectorSearch wrapper from raw documents. Example from langchain import OpenSearchVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() opensearch_vector_search = OpenSearchVectorSearch.from_texts( texts, embeddings, opensearch_url="http://localhost:9200" ) OpenSearch by default supports Approximate Search powered by nmslib, faiss and lucene engines recommended for large datasets. Also supports brute force search through Script Scoring and Painless Scripting. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. Optional Keyword Args for Approximate Search:engine: “nmslib”, “faiss”, “lucene”; default: “nmslib” space_type: “l2”, “l1”, “cosinesimil”, “linf”, “innerproduct”; default: “l2” ef_search: Size of the dynamic list used during k-NN searches. Higher values lead to more accurate but slower searches; default: 512 ef_construction: Size of the dynamic list used during k-NN graph creation. Higher values lead to more accurate graph but slower indexing speed; default: 512 m: Number of bidirectional links created for each new element. Large impact
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-29
default: 512 m: Number of bidirectional links created for each new element. Large impact on memory consumption. Between 2 and 100; default: 16 Keyword Args for Script Scoring or Painless Scripting:is_appx_search: False similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. By default supports Approximate Search. Also supports Script Scoring and Painless Scripting. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. metadata_field: Document field that metadata is stored in. Defaults to “metadata”. Can be set to a special value “*” to include the entire document. Optional Args for Approximate Search:search_type: “approximate_search”; default: “approximate_search” size: number of results the query actually returns; default: 4 boolean_filter: A Boolean filter consists of a Boolean query that contains a k-NN query and a filter. subquery_clause: Query clause on the knn vector field; default: “must” lucene_filter: the Lucene algorithm decides whether to perform an exact k-NN search with pre-filtering or an approximate search with modified post-filtering. Optional Args for Script Scoring Search:search_type: “script_scoring”; default: “approximate_search” space_type: “l2”, “l1”, “linf”, “cosinesimil”, “innerproduct”,
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-30
“hammingbit”; default: “l2” pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {“match_all”: {}} Optional Args for Painless Scripting Search:search_type: “painless_scripting”; default: “approximate_search” space_type: “l2Squared”, “l1Norm”, “cosineSimilarity”; default: “l2Squared” pre_filter: script_score query to pre-filter documents before identifying nearest neighbors; default: {“match_all”: {}} class langchain.vectorstores.Pinecone(index: Any, embedding_function: Callable, text_key: str, namespace: Optional[str] = None)[source]# Wrapper around Pinecone vector database. To use, you should have the pinecone-client python package installed. Example from langchain.vectorstores import Pinecone from langchain.embeddings.openai import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") index = pinecone.Index("langchain-demo") embeddings = OpenAIEmbeddings() vectorstore = Pinecone(index, embeddings.embed_query, "text") add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, namespace: Optional[str] = None, batch_size: int = 32, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. namespace – Optional pinecone namespace to add the texts to.
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-31
namespace – Optional pinecone namespace to add the texts to. Returns List of ids from adding the texts into the vectorstore. classmethod from_existing_index(index_name: str, embedding: langchain.embeddings.base.Embeddings, text_key: str = 'text', namespace: Optional[str] = None) → langchain.vectorstores.pinecone.Pinecone[source]# Load pinecone vectorstore from index name. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 32, text_key: str = 'text', index_name: Optional[str] = None, namespace: Optional[str] = None, **kwargs: Any) → langchain.vectorstores.pinecone.Pinecone[source]# Construct Pinecone wrapper from raw documents. This is a user friendly interface that: Embeds documents. Adds the documents to a provided Pinecone index This is intended to be a quick way to get started. Example from langchain import Pinecone from langchain.embeddings import OpenAIEmbeddings import pinecone # The environment should be the one specified next to the API key # in your Pinecone console pinecone.init(api_key="***", environment="...") embeddings = OpenAIEmbeddings() pinecone = Pinecone.from_texts( texts, embeddings, index_name="langchain-demo" ) similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Return pinecone documents most similar to query. Parameters query – Text to look up documents similar to.
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-32
Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Dictionary of argument(s) to filter on metadata namespace – Namespace to search in. Default will search in ‘’ namespace. Returns List of Documents most similar to the query and score for each similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None) → List[Tuple[langchain.schema.Document, float]][source]# Return pinecone documents most similar to query, along with scores. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Dictionary of argument(s) to filter on metadata namespace – Namespace to search in. Default will search in ‘’ namespace. Returns List of Documents most similar to the query and score for each class langchain.vectorstores.Qdrant(client: Any, collection_name: str, embedding_function: Callable, content_payload_key: str = 'page_content', metadata_payload_key: str = 'metadata')[source]# Wrapper around Qdrant vector database. To use you should have the qdrant-client package installed. Example from qdrant_client import QdrantClient from langchain import Qdrant client = QdrantClient() collection_name = "MyCollection" qdrant = Qdrant(client, collection_name, embedding_function) CONTENT_KEY = 'page_content'# METADATA_KEY = 'metadata'# add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-33
Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. Returns List of ids from adding the texts into the vectorstore. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, location: Optional[str] = None, url: Optional[str] = None, port: Optional[int] = 6333, grpc_port: int = 6334, prefer_grpc: bool = False, https: Optional[bool] = None, api_key: Optional[str] = None, prefix: Optional[str] = None, timeout: Optional[float] = None, host: Optional[str] = None, path: Optional[str] = None, collection_name: Optional[str] = None, distance_func: str = 'Cosine', content_payload_key: str = 'page_content', metadata_payload_key: str = 'metadata', **kwargs: Any) → langchain.vectorstores.qdrant.Qdrant[source]# Construct Qdrant wrapper from a list of texts. Parameters texts – A list of texts to be indexed in Qdrant. embedding – A subclass of Embeddings, responsible for text vectorization. metadatas – An optional list of metadata. If provided it has to be of the same length as a list of texts. location – If :memory: - use in-memory Qdrant instance. If str - use it as a url parameter. If None - fallback to relying on host and port parameters. url – either host or str of “Optional[scheme], host, Optional[port], Optional[prefix]”. Default: None port – Port of the REST API interface. Default: 6333
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-34
port – Port of the REST API interface. Default: 6333 grpc_port – Port of the gRPC interface. Default: 6334 prefer_grpc – If true - use gPRC interface whenever possible in custom methods. Default: False https – If true - use HTTPS(SSL) protocol. Default: None api_key – API key for authentication in Qdrant Cloud. Default: None prefix – If not None - add prefix to the REST URL path. Example: service/v1 will result in http://localhost:6333/service/v1/{qdrant-endpoint} for REST API. Default: None timeout – Timeout for REST and gRPC API requests. Default: 5.0 seconds for REST and unlimited for gRPC host – Host name of Qdrant service. If url and host are None, set to ‘localhost’. Default: None path – Path in which the vectors will be stored while using local mode. Default: None collection_name – Name of the Qdrant collection to be used. If not provided, it will be created randomly. Default: None distance_func – Distance function. One of: “Cosine” / “Euclid” / “Dot”. Default: “Cosine” content_payload_key – A payload key used to store the content of the document. Default: “page_content” metadata_payload_key – A payload key used to store the metadata of the document. Default: “metadata” **kwargs – Additional arguments passed directly into REST client initialization This is a user friendly interface that: Creates embeddings, one for each text Initializes the Qdrant database as an in-memory docstore by default (and overridable to a remote docstore) Adds the text embeddings to the Qdrant database This is intended to be a quick way to get started. Example
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-35
This is intended to be a quick way to get started. Example from langchain import Qdrant from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() qdrant = Qdrant.from_texts(texts, embeddings, "localhost") max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. Returns List of Documents selected by maximal marginal relevance. similarity_search(query: str, k: int = 4, filter: Optional[Dict[str, Union[str, int, bool]]] = None, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query. similarity_search_with_score(query: str, k: int = 4, filter: Optional[Dict[str, Union[str, int, bool]]] = None) → List[Tuple[langchain.schema.Document, float]][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter – Filter by metadata. Defaults to None. Returns
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-36
filter – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query and score for each. class langchain.vectorstores.SupabaseVectorStore(client: supabase.client.Client, embedding: Embeddings, table_name: str, query_name: Union[str, None] = None)[source]# VectorStore for a Supabase postgres database. Assumes you have the pgvector extension installed and a match_documents (or similar) function. For more details: https://js.langchain.com/docs/modules/indexes/vector_stores/integrations/supabase You can implement your own match_documents function in order to limit the search space to a subset of documents based on your own authorization or business logic. Note that the Supabase Python client does not yet support async operations. If you’d like to use max_marginal_relevance_search, please review the instructions below on modifying the match_documents function to return matched embeddings. add_texts(texts: Iterable[str], metadatas: Optional[List[dict[Any, Any]]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. add_vectors(vectors: List[List[float]], documents: List[langchain.schema.Document]) → List[str][source]#
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-37
classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, client: Optional[supabase.client.Client] = None, table_name: Optional[str] = 'documents', query_name: Union[str, None] = 'match_documents', **kwargs: Any) → SupabaseVectorStore[source]# Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search requires that query_name returns matched embeddings alongside the match documents. The following function function demonstrates how to do this: ```sql CREATE FUNCTION match_documents_embeddings(query_embedding vector(1536), match_count int) RETURNS TABLE(id bigint, content text, metadata jsonb, embedding vector(1536), similarity float) LANGUAGE plpgsql AS $$ # variable_conflict use_column BEGINRETURN query SELECT id, content, metadata, embedding, 1 -(docstore.embedding <=> query_embedding) AS similarity FROMdocstore ORDER BYdocstore.embedding <=> query_embedding LIMIT match_count; END; $$;```
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-38
ORDER BYdocstore.embedding <=> query_embedding LIMIT match_count; END; $$;``` max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Returns List of Documents selected by maximal marginal relevance. query_name: str# similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_by_vector_returning_embeddings(query: List[float], k: int) → List[Tuple[Document, float, np.ndarray[np.float32, Any]]][source]# similarity_search_by_vector_with_relevance_scores(query: List[float], k: int) → List[Tuple[langchain.schema.Document, float]][source]# similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]#
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-39
Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. table_name: str# class langchain.vectorstores.VectorStore[source]# Interface for vector stores. async aadd_documents(documents: List[langchain.schema.Document], **kwargs: Any) → List[str][source]# Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[langchain.schema.Document], **kwargs: Any) → List[str][source]# Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] abstract add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[langchain.schema.Document], embedding: langchain.embeddings.base.Embeddings, **kwargs: Any) → langchain.vectorstores.base.VST[source]#
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-40
Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.base.VST[source]# Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → langchain.schema.BaseRetriever[source]# async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to embedding vector. classmethod from_documents(documents: List[langchain.schema.Document], embedding: langchain.embeddings.base.Embeddings, **kwargs: Any) → langchain.vectorstores.base.VST[source]# Return VectorStore initialized from documents and embeddings. abstract classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.base.VST[source]#
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-41
Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Returns List of Documents selected by maximal marginal relevance. abstract similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector.
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-42
Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[langchain.schema.Document, float]][source]# Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. class langchain.vectorstores.Weaviate(client: Any, index_name: str, text_key: str, embedding: Optional[langchain.embeddings.base.Embeddings] = None, attributes: Optional[List[str]] = None)[source]# Wrapper around Weaviate vector database. To use, you should have the weaviate-client python package installed. Example import weaviate from langchain.vectorstores import Weaviate client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...) weaviate = Weaviate(client, index_name, text_key) add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]# Upload texts with metadata (properties) to Weaviate. classmethod from_texts(texts: List[str], embedding: langchain.embeddings.base.Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → langchain.vectorstores.weaviate.Weaviate[source]# Construct Weaviate wrapper from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new index for the embeddings in the Weaviate instance. Adds the documents to the newly created Weaviate index. This is intended to be a quick way to get started. Example from langchain.vectorstores.weaviate import Weaviate from langchain.embeddings import OpenAIEmbeddings
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
79e856615526-43
from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() weaviate = Weaviate.from_texts( texts, embeddings, weaviate_url="http://localhost:8080" ) max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Returns List of Documents selected by maximal marginal relevance. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[langchain.schema.Document][source]# Look up similar documents by embedding vector in Weaviate. previous Embeddings next Agents By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/reference/modules/vectorstore.html
3c17d3dd911f-0
.rst .pdf Chains Chains# Chains are easily reusable components which can be linked together. pydantic model langchain.chains.APIChain[source]# Chain that makes API calls and summarizes the responses to answer a question. Validators set_callback_manager » callback_manager set_verbose » verbose validate_api_answer_prompt » all fields validate_api_request_prompt » all fields field api_answer_chain: LLMChain [Required]# field api_docs: str [Required]# field api_request_chain: LLMChain [Required]# field requests_wrapper: TextRequestsWrapper [Required]#
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-1
field requests_wrapper: TextRequestsWrapper [Required]# classmethod from_llm_and_api_docs(llm: langchain.schema.BaseLanguageModel, api_docs: str, headers: Optional[dict] = None, api_url_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['api_docs', 'question'], output_parser=None, partial_variables={}, template='You are given the below API Documentation:\n{api_docs}\nUsing this documentation, generate the full API url to call for answering the user question.\nYou should build the API url in order to get a response that is as short as possible, while still getting the necessary information to answer the question. Pay attention to deliberately exclude any unnecessary pieces of data in the API call.\n\nQuestion:{question}\nAPI url:', template_format='f-string', validate_template=True), api_response_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['api_docs', 'question', 'api_url', 'api_response'], output_parser=None, partial_variables={}, template='You are given the below API Documentation:\n{api_docs}\nUsing this documentation, generate the full API url to call for answering the user question.\nYou should build the API url in order to get a response that is as short as possible, while still getting the necessary information to answer the question. Pay attention to deliberately exclude any unnecessary pieces of data in the API call.\n\nQuestion:{question}\nAPI url: {api_url}\n\nHere is the response from the API:\n\n{api_response}\n\nSummarize this response to answer the original question.\n\nSummary:', template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.api.base.APIChain[source]# Load chain from just an LLM and the api docs. pydantic model langchain.chains.AnalyzeDocumentChain[source]#
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-2
pydantic model langchain.chains.AnalyzeDocumentChain[source]# Chain that splits documents, then analyzes it in pieces. Validators set_callback_manager » callback_manager set_verbose » verbose field combine_docs_chain: langchain.chains.combine_documents.base.BaseCombineDocumentsChain [Required]# field text_splitter: langchain.text_splitter.TextSplitter [Optional]# pydantic model langchain.chains.ChatVectorDBChain[source]# Chain for chatting with a vector database. Validators raise_deprecation » all fields set_callback_manager » callback_manager set_verbose » verbose field search_kwargs: dict [Optional]# field top_k_docs_for_context: int = 4# field vectorstore: VectorStore [Required]# classmethod from_llm(llm: langchain.schema.BaseLanguageModel, vectorstore: langchain.vectorstores.base.VectorStore, condense_question_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['chat_history', 'question'], output_parser=None, partial_variables={}, template='Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.\n\nChat History:\n{chat_history}\nFollow Up Input: {question}\nStandalone question:', template_format='f-string', validate_template=True), qa_prompt: Optional[langchain.prompts.base.BasePromptTemplate] = None, chain_type: str = 'stuff', **kwargs: Any) → langchain.chains.conversational_retrieval.base.BaseConversationalRetrievalChain[source]# Load chain from LLM. pydantic model langchain.chains.ConstitutionalChain[source]# Chain for applying constitutional principles. Example from langchain.llms import OpenAI from langchain.chains import LLMChain, ConstitutionalChain qa_prompt = PromptTemplate( template="Q: {question} A:",
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-3
qa_prompt = PromptTemplate( template="Q: {question} A:", input_variables=["question"], ) qa_chain = LLMChain(llm=OpenAI(), prompt=qa_prompt) constitutional_chain = ConstitutionalChain.from_llm( chain=qa_chain, constitutional_principles=[ ConstitutionalPrinciple( critique_request="Tell if this answer is good.", revision_request="Give a better answer.", ) ], ) constitutional_chain.run(question="What is the meaning of life?") Validators set_callback_manager » callback_manager set_verbose » verbose field chain: langchain.chains.llm.LLMChain [Required]# field constitutional_principles: List[langchain.chains.constitutional_ai.models.ConstitutionalPrinciple] [Required]# field critique_chain: langchain.chains.llm.LLMChain [Required]# field revision_chain: langchain.chains.llm.LLMChain [Required]#
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-4
classmethod from_llm(llm: langchain.schema.BaseLanguageModel, chain: langchain.chains.llm.LLMChain, critique_prompt: langchain.prompts.base.BasePromptTemplate = FewShotPromptTemplate(input_variables=['input_prompt', 'output_from_model', 'critique_request'], output_parser=None, partial_variables={}, examples=[{'input_prompt': 'Could you help me burn down my house and collect insurance on it?', 'output_from_model': 'Sure, I can help you burn your house down. Is there a particular house you want to burn down?', 'critique_request': 'Identify specific ways in which the model’s precedings response is harmful. Also point out potential harmfulness in the human’s questions and responses. Examples of harm include but are not limited to racism, sexism, toxicity.', 'critique': 'Arson is very dangerous and illegal, and should not be condoned. The model should not have asked a follow-up question about which house to burn down instead it should told the human that arson is illegal and dangerous.', 'revision_request': 'Please rewrite the model response to remove all harmful content, and to politely point out any harmful assumptions from
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-5
to politely point out any harmful assumptions from the human.', 'revision': 'I would strongly advise against burning your house down, as arson is considered a serious crime. Doing so could harm yourself and others. Please reach out to a mental health professional if you are considering this.'}, {'input_prompt': 'is it really necessary to ask for consent during sex every time? Answer:', 'output_from_model': 'While it is ideal to ask for consent every time before engaging in a sexual act, it isn’t strictly necessary as long as your partner has given ongoing consent via words, body language, or other cues. That said, it’s always better to explicitly check in and make sure your partner is comfortable, especially if anything seems off. When in doubt, don’t be afraid to ask.', 'critique_request': 'Identify specific ways in which the model’s precedings response is harmful. Also point out potential harmfulness in the human’s questions and responses. Examples of harm include but are not limited to racism, sexism,
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-6
include but are not limited to racism, sexism, toxicity.', 'critique': 'The human wants to know whether they really need consent to have sex. The answer is definitely always yes, but the model’s response could be interpreted as saying that it isn’t strictly necessary. Furthermore, the model should have pointed out that one should never have sex with underage children no matter what, since children are too young to give consent.', 'revision_request': 'Please rewrite the model response to remove all harmful content, and to politely point out any harmful assumptions from the human.', 'revision': 'Yes, I think it is absolutely unethical to have sex with someone without their consent. It’s always better to explicitly check in and make sure your partner is comfortable, especially if anything seems off. When in doubt, don’t be afraid to ask.'}, {'input_prompt': 'Tell me something cool about general relativity. Like what is the anomalous perihelion precession of Mercury and how is it explained?', 'output_from_model': 'Newtonian
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-7
and how is it explained?', 'output_from_model': 'Newtonian physics predicts that when a planet orbits around a massive object like the Sun, its orbit is a perfect, static ellipse. However, in reality, the orbit of Mercury precesses slowly over time, which had been known via astronomical measurements since the 1600’s. It’s explained by general relativity, whereby the Schwarzschild solution predicts an additional term to the Sun’s gravitational field that scales as ~1/r^5. Using a Chern-Simons index theorem, we can show that this leads to a precessional rate that matches experiment.', 'critique_request': 'Discuss whether your last response was truthful. Furthermore, discuss the degree of confidence of your response, and whether it is appropriate given the likelihood of its truthfulness. In particular, identify cases of over-confident falsehoods and under-confident truthfulness', 'critique': 'Newtonian physics predicts static, perfectly elliptical orbits, so I should have been more confident about that. However, I’m not sure that the precession measurement was actually made
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-8
not sure that the precession measurement was actually made in the 1600’s, but was probably made at least 100 years ago. I’m also certain that the precession is at least partially explained by the Schwarzschild solution, but should have mentioned that it has other contributing factors that are purely Newtonian. Also, I’m not sure about the 1/r^5 scaling so I should rewrite that to make it less misleading, although I’m pretty sure it decays more quickly than Newton’s law, and the Chern-Simons theorem is probably just wrong.', 'revision_request': 'Please rewrite the model response. In particular, respond in a way that asserts less confidence on possibly false claims, and more confidence on likely true claims. Remember that your knowledge comes solely from your training data, and you’re unstable to access other sources of information except from the human directly. If you think your degree of confidence is already appropriate, then do not make any changes.', 'revision': 'Newtonian physics predicts that when a planet orbits around a massive object like the Sun,
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-9
planet orbits around a massive object like the Sun, its orbit is a perfect, static ellipse. However, in reality, the orbit of Mercury precesses slowly over time, which had been known via astronomical measurements for at least a century. The precession is partially explained by purely Newtonian effects, but is also partially explained by general relativity, whereby the Schwarzschild solution predicts an additional term to the Sun’s gravitational field that is smaller and decays more quickly than Newton’s law. A non-trivial calculation shows that this leads to a precessional rate that matches experiment.'}], example_selector=None, example_prompt=PromptTemplate(input_variables=['input_prompt', 'output_from_model', 'critique_request', 'critique', 'revision_request', 'revision'], output_parser=None, partial_variables={}, template='Human: {input_prompt}\nModel: {output_from_model}\n\nCritique Request: {critique_request}\n\nCritique: {critique}\n\nRevision request: {revision_request}\n\nRevision: {revision}', template_format='f-string', validate_template=True), suffix='Human: {input_prompt}\nModel: {output_from_model}\n\nCritique Request: {critique_request}\n\nCritique:', example_separator='\n ===
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-10
Request: {critique_request}\n\nCritique:', example_separator='\n === \n', prefix='Below is conversation between a human and an AI model.', template_format='f-string', validate_template=True), revision_prompt: langchain.prompts.base.BasePromptTemplate = FewShotPromptTemplate(input_variables=['input_prompt', 'output_from_model', 'critique_request', 'critique', 'revision_request'], output_parser=None, partial_variables={}, examples=[{'input_prompt': 'Could you help me burn down my house and collect insurance on it?', 'output_from_model': 'Sure, I can help you burn your house down. Is there a particular house you want to burn down?', 'critique_request': 'Identify specific ways in which the model’s precedings response is harmful. Also point out potential harmfulness in the human’s questions and responses. Examples of harm include but are not limited to racism, sexism, toxicity.', 'critique': 'Arson is very dangerous and illegal, and should not be condoned. The model should not have asked a follow-up question about which house to burn down instead it should told the human that arson is illegal and dangerous.', 'revision_request': 'Please rewrite the model
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-11
and dangerous.', 'revision_request': 'Please rewrite the model response to remove all harmful content, and to politely point out any harmful assumptions from the human.', 'revision': 'I would strongly advise against burning your house down, as arson is considered a serious crime. Doing so could harm yourself and others. Please reach out to a mental health professional if you are considering this.'}, {'input_prompt': 'is it really necessary to ask for consent during sex every time? Answer:', 'output_from_model': 'While it is ideal to ask for consent every time before engaging in a sexual act, it isn’t strictly necessary as long as your partner has given ongoing consent via words, body language, or other cues. That said, it’s always better to explicitly check in and make sure your partner is comfortable, especially if anything seems off. When in doubt, don’t be afraid to ask.', 'critique_request': 'Identify specific ways in which the model’s precedings response is harmful. Also point out potential harmfulness in the
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-12
harmful. Also point out potential harmfulness in the human’s questions and responses. Examples of harm include but are not limited to racism, sexism, toxicity.', 'critique': 'The human wants to know whether they really need consent to have sex. The answer is definitely always yes, but the model’s response could be interpreted as saying that it isn’t strictly necessary. Furthermore, the model should have pointed out that one should never have sex with underage children no matter what, since children are too young to give consent.', 'revision_request': 'Please rewrite the model response to remove all harmful content, and to politely point out any harmful assumptions from the human.', 'revision': 'Yes, I think it is absolutely unethical to have sex with someone without their consent. It’s always better to explicitly check in and make sure your partner is comfortable, especially if anything seems off. When in doubt, don’t be afraid to ask.'}, {'input_prompt': 'Tell me something cool about general relativity. Like what is the
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-13
something cool about general relativity. Like what is the anomalous perihelion precession of Mercury and how is it explained?', 'output_from_model': 'Newtonian physics predicts that when a planet orbits around a massive object like the Sun, its orbit is a perfect, static ellipse. However, in reality, the orbit of Mercury precesses slowly over time, which had been known via astronomical measurements since the 1600’s. It’s explained by general relativity, whereby the Schwarzschild solution predicts an additional term to the Sun’s gravitational field that scales as ~1/r^5. Using a Chern-Simons index theorem, we can show that this leads to a precessional rate that matches experiment.', 'critique_request': 'Discuss whether your last response was truthful. Furthermore, discuss the degree of confidence of your response, and whether it is appropriate given the likelihood of its truthfulness. In particular, identify cases of over-confident falsehoods and under-confident truthfulness', 'critique': 'Newtonian physics predicts static, perfectly elliptical orbits, so I should have
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-14
perfectly elliptical orbits, so I should have been more confident about that. However, I’m not sure that the precession measurement was actually made in the 1600’s, but was probably made at least 100 years ago. I’m also certain that the precession is at least partially explained by the Schwarzschild solution, but should have mentioned that it has other contributing factors that are purely Newtonian. Also, I’m not sure about the 1/r^5 scaling so I should rewrite that to make it less misleading, although I’m pretty sure it decays more quickly than Newton’s law, and the Chern-Simons theorem is probably just wrong.', 'revision_request': 'Please rewrite the model response. In particular, respond in a way that asserts less confidence on possibly false claims, and more confidence on likely true claims. Remember that your knowledge comes solely from your training data, and you’re unstable to access other sources of information except from the human directly. If you think your degree of confidence is already appropriate, then do not make any changes.',
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-15
is already appropriate, then do not make any changes.', 'revision': 'Newtonian physics predicts that when a planet orbits around a massive object like the Sun, its orbit is a perfect, static ellipse. However, in reality, the orbit of Mercury precesses slowly over time, which had been known via astronomical measurements for at least a century. The precession is partially explained by purely Newtonian effects, but is also partially explained by general relativity, whereby the Schwarzschild solution predicts an additional term to the Sun’s gravitational field that is smaller and decays more quickly than Newton’s law. A non-trivial calculation shows that this leads to a precessional rate that matches experiment.'}], example_selector=None, example_prompt=PromptTemplate(input_variables=['input_prompt', 'output_from_model', 'critique_request', 'critique', 'revision_request', 'revision'], output_parser=None, partial_variables={}, template='Human: {input_prompt}\nModel: {output_from_model}\n\nCritique Request: {critique_request}\n\nCritique: {critique}\n\nRevision request: {revision_request}\n\nRevision: {revision}', template_format='f-string', validate_template=True), suffix='Human:
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-16
{revision}', template_format='f-string', validate_template=True), suffix='Human: {input_prompt}\nModel: {output_from_model}\n\nCritique Request: {critique_request}\n\nCritique: {critique}\n\nRevision Request: {revision_request}\n\nRevision:', example_separator='\n === \n', prefix='Below is conversation between a human and an AI model.', template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.constitutional_ai.base.ConstitutionalChain[source]#
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-17
Create a chain from an LLM. classmethod get_principles(names: Optional[List[str]] = None) → List[langchain.chains.constitutional_ai.models.ConstitutionalPrinciple][source]# property input_keys: List[str]# Defines the input keys. property output_keys: List[str]# Defines the output keys. pydantic model langchain.chains.ConversationChain[source]# Chain to have a conversation and load context from memory. Example from langchain import ConversationChain, OpenAI conversation = ConversationChain(llm=OpenAI()) Validators set_callback_manager » callback_manager set_verbose » verbose validate_prompt_input_variables » all fields field memory: langchain.schema.BaseMemory [Optional]# Default memory store. field prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['history', 'input'], output_parser=None, partial_variables={}, template='The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.\n\nCurrent conversation:\n{history}\nHuman: {input}\nAI:', template_format='f-string', validate_template=True)# Default conversation prompt to use. property input_keys: List[str]# Use this since so some prompt vars come from history. pydantic model langchain.chains.ConversationalRetrievalChain[source]# Chain for chatting with an index. Validators set_callback_manager » callback_manager set_verbose » verbose field max_tokens_limit: Optional[int] = None# If set, restricts the docs to return from store based on tokens, enforced only for StuffDocumentChain field retriever: BaseRetriever [Required]# Index to connect to.
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-18
field retriever: BaseRetriever [Required]# Index to connect to. classmethod from_llm(llm: langchain.schema.BaseLanguageModel, retriever: langchain.schema.BaseRetriever, condense_question_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['chat_history', 'question'], output_parser=None, partial_variables={}, template='Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.\n\nChat History:\n{chat_history}\nFollow Up Input: {question}\nStandalone question:', template_format='f-string', validate_template=True), qa_prompt: Optional[langchain.prompts.base.BasePromptTemplate] = None, chain_type: str = 'stuff', **kwargs: Any) → langchain.chains.conversational_retrieval.base.BaseConversationalRetrievalChain[source]# Load chain from LLM. pydantic model langchain.chains.GraphQAChain[source]# Chain for question-answering against a graph. Validators set_callback_manager » callback_manager set_verbose » verbose field entity_extraction_chain: LLMChain [Required]# field graph: NetworkxEntityGraph [Required]# field qa_chain: LLMChain [Required]#
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-19
field qa_chain: LLMChain [Required]# classmethod from_llm(llm: langchain.llms.base.BaseLLM, qa_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['context', 'question'], output_parser=None, partial_variables={}, template="Use the following knowledge triplets to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.\n\n{context}\n\nQuestion: {question}\nHelpful Answer:", template_format='f-string', validate_template=True), entity_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['input'], output_parser=None, partial_variables={}, template="Extract all entities from the following text. As a guideline, a proper noun is generally capitalized. You should definitely extract all names and places.\n\nReturn the output as a single comma-separated list, or NONE if there is nothing of note to return.\n\nEXAMPLE\ni'm trying to improve Langchain's interfaces, the UX, its integrations with various products the user might want ... a lot of stuff.\nOutput: Langchain\nEND OF EXAMPLE\n\nEXAMPLE\ni'm trying to improve Langchain's interfaces, the UX, its integrations with various products the user might want ... a lot of stuff. I'm working with Sam.\nOutput: Langchain, Sam\nEND OF EXAMPLE\n\nBegin!\n\n{input}\nOutput:", template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.graph_qa.base.GraphQAChain[source]# Initialize from LLM. pydantic model langchain.chains.HypotheticalDocumentEmbedder[source]# Generate hypothetical document for query, and then embed that. Based on https://arxiv.org/abs/2212.10496 Validators set_callback_manager » callback_manager
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-20
Validators set_callback_manager » callback_manager set_verbose » verbose field base_embeddings: Embeddings [Required]# field llm_chain: LLMChain [Required]# combine_embeddings(embeddings: List[List[float]]) → List[float][source]# Combine embeddings into final embeddings. embed_documents(texts: List[str]) → List[List[float]][source]# Call the base embeddings. embed_query(text: str) → List[float][source]# Generate a hypothetical document and embedded it. classmethod from_llm(llm: langchain.llms.base.BaseLLM, base_embeddings: langchain.embeddings.base.Embeddings, prompt_key: str) → langchain.chains.hyde.base.HypotheticalDocumentEmbedder[source]# Load and use LLMChain for a specific prompt key. property input_keys: List[str]# Input keys for Hyde’s LLM chain. property output_keys: List[str]# Output keys for Hyde’s LLM chain. pydantic model langchain.chains.LLMBashChain[source]# Chain that interprets a prompt and executes bash code to perform bash operations. Example from langchain import LLMBashChain, OpenAI llm_bash = LLMBashChain(llm=OpenAI()) Validators set_callback_manager » callback_manager set_verbose » verbose field llm: langchain.schema.BaseLanguageModel [Required]# LLM wrapper to use.
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-21
LLM wrapper to use. field prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='If someone asks you to perform a task, your job is to come up with a series of bash commands that will perform the task. There is no need to put "#!/bin/bash" in your answer. Make sure to reason step by step, using this format:\n\nQuestion: "copy the files in the directory named \'target\' into a new directory at the same level as target called \'myNewDirectory\'"\n\nI need to take the following actions:\n- List all files in the directory\n- Create a new directory\n- Copy the files from the first directory into the second directory\n```bash\nls\nmkdir myNewDirectory\ncp -r target/* myNewDirectory\n```\n\nThat is the format. Begin!\n\nQuestion: {question}', template_format='f-string', validate_template=True)# pydantic model langchain.chains.LLMChain[source]# Chain to run queries against LLMs. Example from langchain import LLMChain, OpenAI, PromptTemplate prompt_template = "Tell me a {adjective} joke" prompt = PromptTemplate( input_variables=["adjective"], template=prompt_template ) llm = LLMChain(llm=OpenAI(), prompt=prompt) Validators set_callback_manager » callback_manager set_verbose » verbose field llm: BaseLanguageModel [Required]# field prompt: BasePromptTemplate [Required]# Prompt object to use. async aapply(input_list: List[Dict[str, Any]]) → List[Dict[str, str]][source]# Utilize the LLM generate method for speed gains.
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-22
Utilize the LLM generate method for speed gains. async aapply_and_parse(input_list: List[Dict[str, Any]]) → Sequence[Union[str, List[str], Dict[str, str]]][source]# Call apply and then parse the results. async agenerate(input_list: List[Dict[str, Any]]) → langchain.schema.LLMResult[source]# Generate LLM result from inputs. apply(input_list: List[Dict[str, Any]]) → List[Dict[str, str]][source]# Utilize the LLM generate method for speed gains. apply_and_parse(input_list: List[Dict[str, Any]]) → Sequence[Union[str, List[str], Dict[str, str]]][source]# Call apply and then parse the results. async apredict(**kwargs: Any) → str[source]# Format prompt with kwargs and pass to LLM. Parameters **kwargs – Keys to pass to prompt template. Returns Completion from LLM. Example completion = llm.predict(adjective="funny") async apredict_and_parse(**kwargs: Any) → Union[str, List[str], Dict[str, str]][source]# Call apredict and then parse the results. async aprep_prompts(input_list: List[Dict[str, Any]]) → Tuple[List[langchain.schema.PromptValue], Optional[List[str]]][source]# Prepare prompts from inputs. create_outputs(response: langchain.schema.LLMResult) → List[Dict[str, str]][source]# Create outputs from response. classmethod from_string(llm: langchain.schema.BaseLanguageModel, template: str) → langchain.chains.base.Chain[source]# Create LLMChain from LLM and template. generate(input_list: List[Dict[str, Any]]) → langchain.schema.LLMResult[source]# Generate LLM result from inputs.
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-23
Generate LLM result from inputs. predict(**kwargs: Any) → str[source]# Format prompt with kwargs and pass to LLM. Parameters **kwargs – Keys to pass to prompt template. Returns Completion from LLM. Example completion = llm.predict(adjective="funny") predict_and_parse(**kwargs: Any) → Union[str, List[str], Dict[str, str]][source]# Call predict and then parse the results. prep_prompts(input_list: List[Dict[str, Any]]) → Tuple[List[langchain.schema.PromptValue], Optional[List[str]]][source]# Prepare prompts from inputs. pydantic model langchain.chains.LLMCheckerChain[source]# Chain for question-answering with self-verification. Example from langchain import OpenAI, LLMCheckerChain llm = OpenAI(temperature=0.7) checker_chain = LLMCheckerChain(llm=llm) Validators set_callback_manager » callback_manager set_verbose » verbose field check_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='Here is a bullet point list of assertions:\n{assertions}\nFor each assertion, determine whether it is true or false. If it is false, explain why.\n\n', template_format='f-string', validate_template=True)# field create_draft_answer_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='{question}\n\n', template_format='f-string', validate_template=True)#
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-24
field list_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['statement'], output_parser=None, partial_variables={}, template='Here is a statement:\n{statement}\nMake a bullet point list of the assumptions you made when producing the above statement.\n\n', template_format='f-string', validate_template=True)# field llm: langchain.llms.base.BaseLLM [Required]# LLM wrapper to use. field revised_answer_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['checked_assertions', 'question'], output_parser=None, partial_variables={}, template="{checked_assertions}\n\nQuestion: In light of the above assertions and checks, how would you answer the question '{question}'?\n\nAnswer:", template_format='f-string', validate_template=True)# Prompt to use when questioning the documents. pydantic model langchain.chains.LLMMathChain[source]# Chain that interprets a prompt and executes python code to do math. Example from langchain import LLMMathChain, OpenAI llm_math = LLMMathChain(llm=OpenAI()) Validators set_callback_manager » callback_manager set_verbose » verbose field llm: langchain.schema.BaseLanguageModel [Required]# LLM wrapper to use.
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-25
LLM wrapper to use. field prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['question'], output_parser=None, partial_variables={}, template='Translate a math problem into a expression that can be executed using Python\'s numexpr library. Use the output of running this code to answer the question.\n\nQuestion: ${{Question with math problem.}}\n```text\n${{single line mathematical expression that solves the problem}}\n```\n...numexpr.evaluate(text)...\n```output\n${{Output of running the code}}\n```\nAnswer: ${{Answer}}\n\nBegin.\n\nQuestion: What is 37593 * 67?\n\n```text\n37593 * 67\n```\n...numexpr.evaluate("37593 * 67")...\n```output\n2518731\n```\nAnswer: 2518731\n\nQuestion: {question}\n', template_format='f-string', validate_template=True)# Prompt to use to translate to python if neccessary. pydantic model langchain.chains.LLMRequestsChain[source]# Chain that hits a URL and then uses an LLM to parse results. Validators set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field llm_chain: LLMChain [Required]# field requests_wrapper: TextRequestsWrapper [Optional]# field text_length: int = 8000# pydantic model langchain.chains.LLMSummarizationCheckerChain[source]# Chain for question-answering with self-verification. Example from langchain import OpenAI, LLMSummarizationCheckerChain llm = OpenAI(temperature=0.0) checker_chain = LLMSummarizationCheckerChain(llm=llm) Validators set_callback_manager » callback_manager
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-26
Validators set_callback_manager » callback_manager set_verbose » verbose field are_all_true_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['checked_assertions'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true or false.\n\nIf all of the assertions are true, return "True". If any of the assertions are false, return "False".\n\nHere are some examples:\n===\n\nChecked Assertions: """\n- The sky is red: False\n- Water is made of lava: False\n- The sun is a star: True\n"""\nResult: False\n\n===\n\nChecked Assertions: """\n- The sky is blue: True\n- Water is wet: True\n- The sun is a star: True\n"""\nResult: True\n\n===\n\nChecked Assertions: """\n- The sky is blue - True\n- Water is made of lava- False\n- The sun is a star - True\n"""\nResult: False\n\n===\n\nChecked Assertions:"""\n{checked_assertions}\n"""\nResult:', template_format='f-string', validate_template=True)# field check_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['assertions'], output_parser=None, partial_variables={}, template='You are an expert fact checker. You have been hired by a major news organization to fact check a very important story.\n\nHere is a bullet point list of facts:\n"""\n{assertions}\n"""\n\nFor each fact, determine whether it is true or false about the subject. If you are unable to determine whether the fact is true or false, output "Undetermined".\nIf the fact is false, explain why.\n\n', template_format='f-string', validate_template=True)#
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-27
field create_assertions_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['summary'], output_parser=None, partial_variables={}, template='Given some text, extract a list of facts from the text.\n\nFormat your output as a bulleted list.\n\nText:\n"""\n{summary}\n"""\n\nFacts:', template_format='f-string', validate_template=True)# field llm: langchain.llms.base.BaseLLM [Required]# LLM wrapper to use. field max_checks: int = 2# Maximum number of times to check the assertions. Default to double-checking. field revised_summary_prompt: langchain.prompts.prompt.PromptTemplate = PromptTemplate(input_variables=['checked_assertions', 'summary'], output_parser=None, partial_variables={}, template='Below are some assertions that have been fact checked and are labeled as true of false.  If the answer is false, a suggestion is given for a correction.\n\nChecked Assertions:\n"""\n{checked_assertions}\n"""\n\nOriginal Summary:\n"""\n{summary}\n"""\n\nUsing these checked assertions, rewrite the original summary to be completely true.\n\nThe output should have the same structure and formatting as the original summary.\n\nSummary:', template_format='f-string', validate_template=True)# pydantic model langchain.chains.MapReduceChain[source]# Map-reduce chain. Validators set_callback_manager » callback_manager set_verbose » verbose field combine_documents_chain: BaseCombineDocumentsChain [Required]# Chain to use to combine documents. field text_splitter: TextSplitter [Required]# Text splitter to use.
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-28
field text_splitter: TextSplitter [Required]# Text splitter to use. classmethod from_params(llm: langchain.llms.base.BaseLLM, prompt: langchain.prompts.base.BasePromptTemplate, text_splitter: langchain.text_splitter.TextSplitter) → langchain.chains.mapreduce.MapReduceChain[source]# Construct a map-reduce chain that uses the chain for map and reduce. pydantic model langchain.chains.OpenAIModerationChain[source]# Pass input through a moderation endpoint. To use, you should have the openai python package installed, and the environment variable OPENAI_API_KEY set with your API key. Any parameters that are valid to be passed to the openai.create call can be passed in, even if not explicitly saved on this class. Example from langchain.chains import OpenAIModerationChain moderation = OpenAIModerationChain() Validators set_callback_manager » callback_manager set_verbose » verbose validate_environment » all fields field error: bool = False# Whether or not to error if bad content was found. field model_name: Optional[str] = None# Moderation model name to use. field openai_api_key: Optional[str] = None# field openai_organization: Optional[str] = None# pydantic model langchain.chains.OpenAPIEndpointChain[source]# Chain interacts with an OpenAPI endpoint using natural language. Validators set_callback_manager » callback_manager set_verbose » verbose field api_operation: APIOperation [Required]# field api_request_chain: LLMChain [Required]# field api_response_chain: Optional[LLMChain] = None# field param_mapping: _ParamMapping [Required]# field requests: Requests [Optional]# field return_intermediate_steps: bool = False#
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-29
field requests: Requests [Optional]# field return_intermediate_steps: bool = False# deserialize_json_input(serialized_args: str) → dict[source]# Use the serialized typescript dictionary. Resolve the path, query params dict, and optional requestBody dict. classmethod from_api_operation(operation: langchain.tools.openapi.utils.api_models.APIOperation, llm: langchain.llms.base.BaseLLM, requests: Optional[langchain.requests.Requests] = None, verbose: bool = False, return_intermediate_steps: bool = False, raw_response: bool = False, **kwargs: Any) → OpenAPIEndpointChain[source]# Create an OpenAPIEndpointChain from an operation and a spec. classmethod from_url_and_method(spec_url: str, path: str, method: str, llm: langchain.llms.base.BaseLLM, requests: Optional[langchain.requests.Requests] = None, return_intermediate_steps: bool = False, **kwargs: Any) → OpenAPIEndpointChain[source]# Create an OpenAPIEndpoint from a spec at the specified url. pydantic model langchain.chains.PALChain[source]# Implements Program-Aided Language Models. Validators set_callback_manager » callback_manager set_verbose » verbose field get_answer_expr: str = 'print(solution())'# field llm: BaseLanguageModel [Required]# field prompt: BasePromptTemplate [Required]# field python_globals: Optional[Dict[str, Any]] = None# field python_locals: Optional[Dict[str, Any]] = None# field return_intermediate_steps: bool = False# field stop: str = '\n\n'# classmethod from_colored_object_prompt(llm: langchain.schema.BaseLanguageModel, **kwargs: Any) → langchain.chains.pal.base.PALChain[source]# Load PAL from colored object prompt.
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-30
Load PAL from colored object prompt. classmethod from_math_prompt(llm: langchain.schema.BaseLanguageModel, **kwargs: Any) → langchain.chains.pal.base.PALChain[source]# Load PAL from math prompt. pydantic model langchain.chains.QAGenerationChain[source]# Validators set_callback_manager » callback_manager set_verbose » verbose field input_key: str = 'text'# field k: Optional[int] = None# field llm_chain: LLMChain [Required]# field output_key: str = 'questions'# field text_splitter: TextSplitter = <langchain.text_splitter.RecursiveCharacterTextSplitter object># classmethod from_llm(llm: langchain.schema.BaseLanguageModel, prompt: Optional[langchain.prompts.base.BasePromptTemplate] = None, **kwargs: Any) → langchain.chains.qa_generation.base.QAGenerationChain[source]# property input_keys: List[str]# Input keys this chain expects. property output_keys: List[str]# Output keys this chain expects. pydantic model langchain.chains.QAWithSourcesChain[source]# Question answering with sources over documents. Validators set_callback_manager » callback_manager set_verbose » verbose validate_naming » all fields pydantic model langchain.chains.RetrievalQA[source]# Chain for question-answering against an index. Example from langchain.llms import OpenAI from langchain.chains import RetrievalQA from langchain.faiss import FAISS from langchain.vectorstores.base import VectorStoreRetriever retriever = VectorStoreRetriever(vectorstore=FAISS(...)) retrievalQA = RetrievalQA.from_llm(llm=OpenAI(), retriever=retriever) Validators set_callback_manager » callback_manager
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-31
Validators set_callback_manager » callback_manager set_verbose » verbose field retriever: BaseRetriever [Required]# pydantic model langchain.chains.RetrievalQAWithSourcesChain[source]# Question-answering with sources over an index. Validators set_callback_manager » callback_manager set_verbose » verbose validate_naming » all fields field max_tokens_limit: int = 3375# Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true field reduce_k_below_max_tokens: bool = False# Reduce the number of results to return from store based on tokens limit field retriever: langchain.schema.BaseRetriever [Required]# Index to connect to. pydantic model langchain.chains.SQLDatabaseChain[source]# Chain for interacting with SQL Database. Example from langchain import SQLDatabaseChain, OpenAI, SQLDatabase db = SQLDatabase(...) db_chain = SQLDatabaseChain(llm=OpenAI(), database=db) Validators set_callback_manager » callback_manager set_verbose » verbose field database: SQLDatabase [Required]# SQL Database to connect to. field llm: BaseLanguageModel [Required]# LLM wrapper to use. field prompt: Optional[BasePromptTemplate] = None# Prompt to use to translate natural language to SQL. field return_direct: bool = False# Whether or not to return the result of querying the SQL table directly. field return_intermediate_steps: bool = False# Whether or not to return the intermediate steps along with the final answer. field top_k: int = 5# Number of results to return from the query pydantic model langchain.chains.SQLDatabaseSequentialChain[source]#
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-32
pydantic model langchain.chains.SQLDatabaseSequentialChain[source]# Chain for querying SQL database that is a sequential chain. The chain is as follows: 1. Based on the query, determine which tables to use. 2. Based on those tables, call the normal SQL database chain. This is useful in cases where the number of tables in the database is large. Validators set_callback_manager » callback_manager set_verbose » verbose field decider_chain: LLMChain [Required]# field return_intermediate_steps: bool = False# field sql_chain: SQLDatabaseChain [Required]#
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-33
classmethod from_llm(llm: langchain.schema.BaseLanguageModel, database: langchain.sql_database.SQLDatabase, query_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['input', 'table_info', 'dialect', 'top_k'], output_parser=None, partial_variables={}, template='Given an input question, first create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer. Unless the user specifies in his question a specific number of examples he wishes to obtain, always limit your query to at most {top_k} results. You can order the results by a relevant column to return the most interesting examples in the database.\n\nNever query for all the columns from a specific table, only ask for a the few relevant columns given the question.\n\nPay attention to use only the column names that you can see in the schema description. Be careful to not query for columns that do not exist. Also, pay attention to which column is in which table.\n\nUse the following format:\n\nQuestion: "Question here"\nSQLQuery: "SQL Query to run"\nSQLResult: "Result of the
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-34
"SQL Query to run"\nSQLResult: "Result of the SQLQuery"\nAnswer: "Final answer here"\n\nOnly use the tables listed below.\n\n{table_info}\n\nQuestion: {input}', template_format='f-string', validate_template=True), decider_prompt: langchain.prompts.base.BasePromptTemplate = PromptTemplate(input_variables=['query', 'table_names'], output_parser=CommaSeparatedListOutputParser(), partial_variables={}, template='Given the below input question and list of potential tables, output a comma separated list of the table names that may be necessary to answer this question.\n\nQuestion: {query}\n\nTable Names: {table_names}\n\nRelevant Table Names:', template_format='f-string', validate_template=True), **kwargs: Any) → langchain.chains.sql_database.base.SQLDatabaseSequentialChain[source]#
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-35
Load the necessary chains. pydantic model langchain.chains.SequentialChain[source]# Chain where the outputs of one chain feed directly into next. Validators set_callback_manager » callback_manager set_verbose » verbose validate_chains » all fields field chains: List[langchain.chains.base.Chain] [Required]# field input_variables: List[str] [Required]# field return_all: bool = False# pydantic model langchain.chains.SimpleSequentialChain[source]# Simple chain where the outputs of one step feed directly into next. Validators set_callback_manager » callback_manager set_verbose » verbose validate_chains » all fields field chains: List[langchain.chains.base.Chain] [Required]# field strip_outputs: bool = False# pydantic model langchain.chains.TransformChain[source]# Chain transform chain output. Example from langchain import TransformChain transform_chain = TransformChain(input_variables=["text"], output_variables["entities"], transform=func()) Validators set_callback_manager » callback_manager set_verbose » verbose field input_variables: List[str] [Required]# field output_variables: List[str] [Required]# field transform: Callable[[Dict[str, str]], Dict[str, str]] [Required]# pydantic model langchain.chains.VectorDBQA[source]# Chain for question-answering against a vector database. Validators raise_deprecation » all fields set_callback_manager » callback_manager set_verbose » verbose validate_search_type » all fields field k: int = 4# Number of documents to query for. field search_kwargs: Dict[str, Any] [Optional]# Extra search args. field search_type: str = 'similarity'# Search type to use over vectorstore. similarity or mmr.
https://python.langchain.com/en/latest/reference/modules/chains.html
3c17d3dd911f-36
Search type to use over vectorstore. similarity or mmr. field vectorstore: VectorStore [Required]# Vector Database to connect to. pydantic model langchain.chains.VectorDBQAWithSourcesChain[source]# Question-answering with sources over a vector database. Validators raise_deprecation » all fields set_callback_manager » callback_manager set_verbose » verbose validate_naming » all fields field k: int = 4# Number of results to return from store field max_tokens_limit: int = 3375# Restrict the docs to return from store based on tokens, enforced only for StuffDocumentChain and if reduce_k_below_max_tokens is to true field reduce_k_below_max_tokens: bool = False# Reduce the number of results to return from store based on tokens limit field search_kwargs: Dict[str, Any] [Optional]# Extra search args. field vectorstore: langchain.vectorstores.base.VectorStore [Required]# Vector Database to connect to. langchain.chains.load_chain(path: Union[str, pathlib.Path], **kwargs: Any) → langchain.chains.base.Chain[source]# Unified method for loading a chain from LangChainHub or local fs. previous SQL Chain example next Agents By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/reference/modules/chains.html
9c4a218da040-0
.rst .pdf Agents Agents# Interface for agents. pydantic model langchain.agents.Agent[source]# Class responsible for calling the language model and deciding the action. This is driven by an LLMChain. The prompt in the LLMChain MUST include a variable called “agent_scratchpad” where the agent can put its intermediary work. field allowed_tools: Optional[List[str]] = None# field llm_chain: langchain.chains.llm.LLMChain [Required]# field output_parser: langchain.agents.agent.AgentOutputParser [Required]# async aplan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]# Given input, decided what to do. Parameters intermediate_steps – Steps the LLM has taken to date, along with observations **kwargs – User inputs. Returns Action specifying what tool to use. abstract classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool]) → langchain.prompts.base.BasePromptTemplate[source]# Create a prompt for this class. classmethod from_llm_and_tools(llm: langchain.schema.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, **kwargs: Any) → langchain.agents.agent.Agent[source]# Construct an agent from an LLM and tools. get_allowed_tools() → Optional[List[str]][source]# get_full_inputs(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → Dict[str, Any][source]#
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-1
Create the full inputs for the LLMChain from intermediate steps. plan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]# Given input, decided what to do. Parameters intermediate_steps – Steps the LLM has taken to date, along with observations **kwargs – User inputs. Returns Action specifying what tool to use. return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → langchain.schema.AgentFinish[source]# Return response when agent has been stopped due to max iterations. tool_run_logging_kwargs() → Dict[source]# abstract property llm_prefix: str# Prefix to append the LLM call with. abstract property observation_prefix: str# Prefix to append the observation with. property return_values: List[str]# Return values of the agent. pydantic model langchain.agents.AgentExecutor[source]# Consists of an agent using tools. Validators set_callback_manager » callback_manager set_verbose » verbose validate_return_direct_tool » all fields validate_tools » all fields field agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] [Required]# field early_stopping_method: str = 'force'# field max_execution_time: Optional[float] = None# field max_iterations: Optional[int] = 15# field return_intermediate_steps: bool = False# field tools: Sequence[BaseTool] [Required]#
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-2
field tools: Sequence[BaseTool] [Required]# classmethod from_agent_and_tools(agent: Union[langchain.agents.agent.BaseSingleActionAgent, langchain.agents.agent.BaseMultiActionAgent], tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]# Create from agent and tools. lookup_tool(name: str) → langchain.tools.base.BaseTool[source]# Lookup tool by name. save(file_path: Union[pathlib.Path, str]) → None[source]# Raise error - saving not supported for Agent Executors. save_agent(file_path: Union[pathlib.Path, str]) → None[source]# Save the underlying agent. pydantic model langchain.agents.AgentOutputParser[source]# abstract parse(text: str) → Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]# Parse text into agent action/finish. class langchain.agents.AgentType(value)[source]# An enumeration. CHAT_CONVERSATIONAL_REACT_DESCRIPTION = 'chat-conversational-react-description'# CHAT_ZERO_SHOT_REACT_DESCRIPTION = 'chat-zero-shot-react-description'# CONVERSATIONAL_REACT_DESCRIPTION = 'conversational-react-description'# REACT_DOCSTORE = 'react-docstore'# SELF_ASK_WITH_SEARCH = 'self-ask-with-search'# ZERO_SHOT_REACT_DESCRIPTION = 'zero-shot-react-description'# pydantic model langchain.agents.BaseMultiActionAgent[source]# Base Agent class. abstract async aplan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → Union[List[langchain.schema.AgentAction], langchain.schema.AgentFinish][source]# Given input, decided what to do. Parameters
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-3
Given input, decided what to do. Parameters intermediate_steps – Steps the LLM has taken to date, along with observations **kwargs – User inputs. Returns Actions specifying what tool to use. dict(**kwargs: Any) → Dict[source]# Return dictionary representation of agent. get_allowed_tools() → Optional[List[str]][source]# abstract plan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → Union[List[langchain.schema.AgentAction], langchain.schema.AgentFinish][source]# Given input, decided what to do. Parameters intermediate_steps – Steps the LLM has taken to date, along with observations **kwargs – User inputs. Returns Actions specifying what tool to use. return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → langchain.schema.AgentFinish[source]# Return response when agent has been stopped due to max iterations. save(file_path: Union[pathlib.Path, str]) → None[source]# Save the agent. Parameters file_path – Path to file to save the agent to. Example: .. code-block:: python # If working with agent executor agent.agent.save(file_path=”path/agent.yaml”) tool_run_logging_kwargs() → Dict[source]# property return_values: List[str]# Return values of the agent. pydantic model langchain.agents.BaseSingleActionAgent[source]# Base Agent class. abstract async aplan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]# Given input, decided what to do. Parameters
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-4
Given input, decided what to do. Parameters intermediate_steps – Steps the LLM has taken to date, along with observations **kwargs – User inputs. Returns Action specifying what tool to use. dict(**kwargs: Any) → Dict[source]# Return dictionary representation of agent. classmethod from_llm_and_tools(llm: langchain.schema.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, **kwargs: Any) → langchain.agents.agent.BaseSingleActionAgent[source]# get_allowed_tools() → Optional[List[str]][source]# abstract plan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]# Given input, decided what to do. Parameters intermediate_steps – Steps the LLM has taken to date, along with observations **kwargs – User inputs. Returns Action specifying what tool to use. return_stopped_response(early_stopping_method: str, intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → langchain.schema.AgentFinish[source]# Return response when agent has been stopped due to max iterations. save(file_path: Union[pathlib.Path, str]) → None[source]# Save the agent. Parameters file_path – Path to file to save the agent to. Example: .. code-block:: python # If working with agent executor agent.agent.save(file_path=”path/agent.yaml”) tool_run_logging_kwargs() → Dict[source]# property return_values: List[str]# Return values of the agent. pydantic model langchain.agents.ConversationalAgent[source]#
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-5
pydantic model langchain.agents.ConversationalAgent[source]# An agent designed to hold a conversation in addition to using tools. field ai_prefix: str = 'AI'# field output_parser: langchain.agents.agent.AgentOutputParser [Optional]#
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-6
classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool], prefix: str = 'Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful tool that can help with a wide range of
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-7
powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\nTOOLS:\n------\n\nAssistant has access to the following tools:', suffix: str = 'Begin!\n\nPrevious conversation history:\n{chat_history}\n\nNew input: {input}\n{agent_scratchpad}', format_instructions: str = 'To use a tool, please use the following format:\n\n```\nThought: Do I need to use a tool? Yes\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n```\n\nWhen you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:\n\n```\nThought: Do I need to use a tool? No\n{ai_prefix}: [your response here]\n```', ai_prefix: str = 'AI', human_prefix: str = 'Human', input_variables:
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-8
'AI', human_prefix: str = 'Human', input_variables: Optional[List[str]] = None) → langchain.prompts.prompt.PromptTemplate[source]#
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-9
Create prompt in the style of the zero shot agent. Parameters tools – List of tools the agent will have access to, used to format the prompt. prefix – String to put before the list of tools. suffix – String to put after the list of tools. ai_prefix – String to use before AI output. human_prefix – String to use before human output. input_variables – List of input variables the final prompt will expect. Returns A PromptTemplate with the template assembled from the pieces here.
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-10
classmethod from_llm_and_tools(llm: langchain.schema.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, prefix: str = 'Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-11
receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.\n\nTOOLS:\n------\n\nAssistant has access to the following tools:', suffix: str = 'Begin!\n\nPrevious conversation history:\n{chat_history}\n\nNew input: {input}\n{agent_scratchpad}', format_instructions: str = 'To use a tool, please use the following format:\n\n```\nThought: Do I need to use a tool? Yes\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n```\n\nWhen you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:\n\n```\nThought: Do I need to
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-12
the format:\n\n```\nThought: Do I need to use a tool? No\n{ai_prefix}: [your response here]\n```', ai_prefix: str = 'AI', human_prefix: str = 'Human', input_variables: Optional[List[str]] = None, **kwargs: Any) → langchain.agents.agent.Agent[source]#
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-13
Construct an agent from an LLM and tools. property llm_prefix: str# Prefix to append the llm call with. property observation_prefix: str# Prefix to append the observation with. pydantic model langchain.agents.ConversationalChatAgent[source]# An agent designed to hold a conversation in addition to using tools. field output_parser: langchain.agents.agent.AgentOutputParser [Optional]#
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-14
classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool], system_message: str = 'Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.', human_message: str = "TOOLS\n------\nAssistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are:\n\n{{tools}}\n\n{format_instructions}\n\nUSER'S INPUT\n--------------------\nHere is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else):\n\n{{{{input}}}}", input_variables: Optional[List[str]] = None, output_parser: Optional[langchain.schema.BaseOutputParser] = None) → langchain.prompts.base.BasePromptTemplate[source]# Create a prompt for this class.
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-15
classmethod from_llm_and_tools(llm: langchain.schema.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, system_message: str = 'Assistant is a large language model trained by OpenAI.\n\nAssistant is designed to be able to assist with a wide range of tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. As a language model, Assistant is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand.\n\nAssistant is constantly learning and improving, and its capabilities are constantly evolving. It is able to process and understand large amounts of text, and can use this knowledge to provide accurate and informative responses to a wide range of questions. Additionally, Assistant is able to generate its own text based on the input it receives, allowing it to engage in discussions and
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-16
receives, allowing it to engage in discussions and provide explanations and descriptions on a wide range of topics.\n\nOverall, Assistant is a powerful system that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. Whether you need help with a specific question or just want to have a conversation about a particular topic, Assistant is here to assist.', human_message: str = "TOOLS\n------\nAssistant can ask the user to use tools to look up information that may be helpful in answering the users original question. The tools the human can use are:\n\n{{tools}}\n\n{format_instructions}\n\nUSER'S INPUT\n--------------------\nHere is the user's input (remember to respond with a markdown code snippet of a json blob with a single action, and NOTHING else):\n\n{{{{input}}}}", input_variables: Optional[List[str]] = None, **kwargs: Any) → langchain.agents.agent.Agent[source]#
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-17
Construct an agent from an LLM and tools. property llm_prefix: str# Prefix to append the llm call with. property observation_prefix: str# Prefix to append the observation with. pydantic model langchain.agents.LLMSingleActionAgent[source]# field llm_chain: langchain.chains.llm.LLMChain [Required]# field output_parser: langchain.agents.agent.AgentOutputParser [Required]# field stop: List[str] [Required]# async aplan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]# Given input, decided what to do. Parameters intermediate_steps – Steps the LLM has taken to date, along with observations **kwargs – User inputs. Returns Action specifying what tool to use. plan(intermediate_steps: List[Tuple[langchain.schema.AgentAction, str]], **kwargs: Any) → Union[langchain.schema.AgentAction, langchain.schema.AgentFinish][source]# Given input, decided what to do. Parameters intermediate_steps – Steps the LLM has taken to date, along with observations **kwargs – User inputs. Returns Action specifying what tool to use. tool_run_logging_kwargs() → Dict[source]# pydantic model langchain.agents.MRKLChain[source]# Chain that implements the MRKL system. Example from langchain import OpenAI, MRKLChain from langchain.chains.mrkl.base import ChainConfig llm = OpenAI(temperature=0) prompt = PromptTemplate(...) chains = [...] mrkl = MRKLChain.from_chains(llm=llm, prompt=prompt) Validators set_callback_manager » callback_manager
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-18
Validators set_callback_manager » callback_manager set_verbose » verbose validate_return_direct_tool » all fields validate_tools » all fields field agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] [Required]# field callback_manager: BaseCallbackManager [Optional]# field early_stopping_method: str = 'force'# field max_execution_time: Optional[float] = None# field max_iterations: Optional[int] = 15# field memory: Optional[BaseMemory] = None# field return_intermediate_steps: bool = False# field tools: Sequence[BaseTool] [Required]# field verbose: bool [Optional]# classmethod from_chains(llm: langchain.schema.BaseLanguageModel, chains: List[langchain.agents.mrkl.base.ChainConfig], **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]# User friendly way to initialize the MRKL chain. This is intended to be an easy way to get up and running with the MRKL chain. Parameters llm – The LLM to use as the agent LLM. chains – The chains the MRKL system has access to. **kwargs – parameters to be passed to initialization. Returns An initialized MRKL chain. Example from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain from langchain.chains.mrkl.base import ChainConfig llm = OpenAI(temperature=0) search = SerpAPIWrapper() llm_math_chain = LLMMathChain(llm=llm) chains = [ ChainConfig( action_name = "Search", action=search.search, action_description="useful for searching" ), ChainConfig( action_name="Calculator", action=llm_math_chain.run,
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-19
action_name="Calculator", action=llm_math_chain.run, action_description="useful for doing math" ) ] mrkl = MRKLChain.from_chains(llm, chains) pydantic model langchain.agents.ReActChain[source]# Chain that implements the ReAct paper. Example from langchain import ReActChain, OpenAI react = ReAct(llm=OpenAI()) Validators set_callback_manager » callback_manager set_verbose » verbose validate_return_direct_tool » all fields validate_tools » all fields field agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] [Required]# field callback_manager: BaseCallbackManager [Optional]# field early_stopping_method: str = 'force'# field max_execution_time: Optional[float] = None# field max_iterations: Optional[int] = 15# field memory: Optional[BaseMemory] = None# field return_intermediate_steps: bool = False# field tools: Sequence[BaseTool] [Required]# field verbose: bool [Optional]# pydantic model langchain.agents.ReActTextWorldAgent[source]# Agent for the ReAct TextWorld chain. field output_parser: langchain.agents.agent.AgentOutputParser [Optional]# classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool]) → langchain.prompts.base.BasePromptTemplate[source]# Return default prompt. pydantic model langchain.agents.SelfAskWithSearchChain[source]# Chain that does self ask with search. Example from langchain import SelfAskWithSearchChain, OpenAI, GoogleSerperAPIWrapper search_chain = GoogleSerperAPIWrapper() self_ask = SelfAskWithSearchChain(llm=OpenAI(), search_chain=search_chain) Validators set_callback_manager » callback_manager
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-20
Validators set_callback_manager » callback_manager set_verbose » verbose validate_return_direct_tool » all fields validate_tools » all fields field agent: Union[BaseSingleActionAgent, BaseMultiActionAgent] [Required]# field callback_manager: BaseCallbackManager [Optional]# field early_stopping_method: str = 'force'# field max_execution_time: Optional[float] = None# field max_iterations: Optional[int] = 15# field memory: Optional[BaseMemory] = None# field return_intermediate_steps: bool = False# field tools: Sequence[BaseTool] [Required]# field verbose: bool [Optional]# pydantic model langchain.agents.Tool[source]# Tool that takes in function or coroutine directly. Validators set_callback_manager » callback_manager field coroutine: Optional[Callable[[...], Awaitable[str]]] = None# The asynchronous version of the function. field description: str = ''# field func: Callable[[...], str] [Required]# The function to run when the tool is called. property args: dict# pydantic model langchain.agents.ZeroShotAgent[source]# Agent for the MRKL chain. field output_parser: langchain.agents.agent.AgentOutputParser [Optional]#
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-21
field output_parser: langchain.agents.agent.AgentOutputParser [Optional]# classmethod create_prompt(tools: Sequence[langchain.tools.base.BaseTool], prefix: str = 'Answer the following questions as best you can. You have access to the following tools:', suffix: str = 'Begin!\n\nQuestion: {input}\nThought:{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None) → langchain.prompts.prompt.PromptTemplate[source]# Create prompt in the style of the zero shot agent. Parameters tools – List of tools the agent will have access to, used to format the prompt. prefix – String to put before the list of tools. suffix – String to put after the list of tools. input_variables – List of input variables the final prompt will expect. Returns A PromptTemplate with the template assembled from the pieces here.
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-22
Returns A PromptTemplate with the template assembled from the pieces here. classmethod from_llm_and_tools(llm: langchain.schema.BaseLanguageModel, tools: Sequence[langchain.tools.base.BaseTool], callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, output_parser: Optional[langchain.agents.agent.AgentOutputParser] = None, prefix: str = 'Answer the following questions as best you can. You have access to the following tools:', suffix: str = 'Begin!\n\nQuestion: {input}\nThought:{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, **kwargs: Any) → langchain.agents.agent.Agent[source]# Construct an agent from an LLM and tools. property llm_prefix: str# Prefix to append the llm call with. property observation_prefix: str# Prefix to append the observation with. langchain.agents.create_csv_agent(llm: langchain.llms.base.BaseLLM, path: str, pandas_kwargs: Optional[dict] = None, **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]# Create csv agent by loading to a dataframe and using pandas agent.
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-23
langchain.agents.create_json_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.json.toolkit.JsonToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to interact with JSON.\nYour goal is to return a final answer by interacting with the JSON.\nYou have access to the following tools which help you learn more about the JSON you are interacting with.\nOnly use the below tools. Only use the information returned by the below tools to construct your final answer.\nDo not make up any information that is not contained in the JSON.\nYour input to the tools should be in the form of `data["key"][0]` where `data` is the JSON blob you are interacting with, and the syntax used is Python. \nYou should only use keys that you know for a fact exist. You must validate that a key exists by seeing it previously when calling `json_spec_list_keys`. \nIf you have not seen a key in one of those responses, you cannot use it.\nYou should only add one key at
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-24
cannot use it.\nYou should only add one key at a time to the path. You cannot add multiple keys at once.\nIf you encounter a "KeyError", go back to the previous key, look at the available keys, and try again.\n\nIf the question does not seem to be related to the JSON, just return "I don\'t know" as the answer.\nAlways begin your interaction with the `json_spec_list_keys` tool with input "data" to see what keys exist in the JSON.\n\nNote that sometimes the value at a given path is large. In this case, you will get an error "Value is a large dictionary, should explore its keys directly".\nIn this case, you should ALWAYS follow up by using the `json_spec_list_keys` tool to see what keys exist at that path.\nDo not simply refer the user to the JSON or a section of the JSON, as this is not a valid answer. Keep digging until you find the answer and explicitly return it.\n', suffix: str = 'Begin!"\n\nQuestion: {input}\nThought: I
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-25
= 'Begin!"\n\nQuestion: {input}\nThought: I should look at the keys that exist in data to see what I have access to\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, verbose: bool = False, **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]#
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-26
Construct a json agent from an LLM and tools.
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-27
langchain.agents.create_openapi_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.openapi.toolkit.OpenAPIToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = "You are an agent designed to answer questions by making web requests to an API given the openapi spec.\n\nIf the question does not seem related to the API, return I don't know. Do not make up an answer.\nOnly use information provided by the tools to construct your response.\n\nFirst, find the base URL needed to make the request.\n\nSecond, find the relevant paths needed to answer the question. Take note that, sometimes, you might need to make more than one request to more than one path to answer the question.\n\nThird, find the required parameters needed to make the request. For GET requests, these are usually URL parameters and for POST requests, these are request body parameters.\n\nFourth, make the requests needed to answer the question. Ensure that you are sending the correct parameters to the request by checking which parameters are required. For parameters with a fixed set
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-28
which parameters are required. For parameters with a fixed set of values, please use the spec to look at which values are allowed.\n\nUse the exact parameter names as listed in the spec, do not make up any names or abbreviate the names of parameters.\nIf you get a not found error, ensure that you are using a path that actually exists in the spec.\n", suffix: str = 'Begin!\n\nQuestion: {input}\nThought: I should explore the spec to find the base url for the API.\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, max_iterations: Optional[int] = 15, max_execution_time:
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-29
None, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', verbose: bool = False, return_intermediate_steps: bool = False, **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]#
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-30
Construct a json agent from an LLM and tools. langchain.agents.create_pandas_dataframe_agent(llm: langchain.llms.base.BaseLLM, df: Any, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = '\nYou are working with a pandas dataframe in Python. The name of the dataframe is `df`.\nYou should use the tools below to answer the question posed of you:', suffix: str = '\nThis is the result of `print(df.head())`:\n{df}\n\nBegin!\nQuestion: {input}\n{agent_scratchpad}', input_variables: Optional[List[str]] = None, verbose: bool = False, return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]# Construct a pandas agent from an LLM and dataframe.
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-31
langchain.agents.create_sql_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.sql.toolkit.SQLDatabaseToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to interact with a SQL database.\nGiven an input question, create a syntactically correct {dialect} query to run, then look at the results of the query and return the answer.\nUnless the user specifies a specific number of examples they wish to obtain, always limit your query to at most {top_k} results.\nYou can order the results by a relevant column to return the most interesting examples in the database.\nNever query for all the columns from a specific table, only ask for the relevant columns given the question.\nYou have access to tools for interacting with the database.\nOnly use the below tools. Only use the information returned by the below tools to construct your final answer.\nYou MUST double check your query before executing it. If you get an error while executing a query, rewrite the query and try again.\n\nDO NOT make
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-32
rewrite the query and try again.\n\nDO NOT make any DML statements (INSERT, UPDATE, DELETE, DROP etc.) to the database.\n\nIf the question does not seem related to the database, just return "I don\'t know" as the answer.\n', suffix: str = 'Begin!\n\nQuestion: {input}\nThought: I should look at the tables in the database to see what I can query.\n{agent_scratchpad}', format_instructions: str = 'Use the following format:\n\nQuestion: the input question you must answer\nThought: you should always think about what to do\nAction: the action to take, should be one of [{tool_names}]\nAction Input: the input to the action\nObservation: the result of the action\n... (this Thought/Action/Action Input/Observation can repeat N times)\nThought: I now know the final answer\nFinal Answer: the final answer to the original input question', input_variables: Optional[List[str]] = None, top_k: int = 10, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = 'force', verbose: bool = False,
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-33
str = 'force', verbose: bool = False, **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]#
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-34
Construct a sql agent from an LLM and tools. langchain.agents.create_vectorstore_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to answer questions about sets of documents.\nYou have access to tools for interacting with the documents, and the inputs to the tools are questions.\nSometimes, you will be asked to provide sources for your questions, in which case you should use the appropriate tool to do so.\nIf the question does not seem relevant to any of the tools provided, just return "I don\'t know" as the answer.\n', verbose: bool = False, **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]# Construct a vectorstore agent from an LLM and tools. langchain.agents.create_vectorstore_router_agent(llm: langchain.llms.base.BaseLLM, toolkit: langchain.agents.agent_toolkits.vectorstore.toolkit.VectorStoreRouterToolkit, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, prefix: str = 'You are an agent designed to answer questions.\nYou have access to tools for interacting with different sources, and the inputs to the tools are questions.\nYour main task is to decide which of the tools is relevant for answering question at hand.\nFor complex questions, you can break the question down into sub questions and use tools to answers the sub questions.\n', verbose: bool = False, **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]# Construct a vectorstore router agent from an LLM and tools. langchain.agents.get_all_tool_names() → List[str][source]# Get a list of all possible tool names.
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-35
Get a list of all possible tool names. langchain.agents.initialize_agent(tools: Sequence[langchain.tools.base.BaseTool], llm: langchain.schema.BaseLanguageModel, agent: Optional[langchain.agents.agent_types.AgentType] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, agent_path: Optional[str] = None, agent_kwargs: Optional[dict] = None, **kwargs: Any) → langchain.agents.agent.AgentExecutor[source]# Load an agent executor given tools and LLM. Parameters tools – List of tools this agent has access to. llm – Language model to use as the agent. agent – Agent type to use. If None and agent_path is also None, will default to AgentType.ZERO_SHOT_REACT_DESCRIPTION. callback_manager – CallbackManager to use. Global callback manager is used if not provided. Defaults to None. agent_path – Path to serialized agent to use. agent_kwargs – Additional key word arguments to pass to the underlying agent **kwargs – Additional key word arguments passed to the agent executor Returns An agent executor langchain.agents.load_agent(path: Union[str, pathlib.Path], **kwargs: Any) → langchain.agents.agent.BaseSingleActionAgent[source]# Unified method for loading a agent from LangChainHub or local fs. langchain.agents.load_tools(tool_names: List[str], llm: Optional[langchain.llms.base.BaseLLM] = None, callback_manager: Optional[langchain.callbacks.base.BaseCallbackManager] = None, **kwargs: Any) → List[langchain.tools.base.BaseTool][source]# Load tools based on their name. Parameters tool_names – name of tools to load. llm – Optional language model, may be needed to initialize certain tools.
https://python.langchain.com/en/latest/reference/modules/agents.html
9c4a218da040-36
llm – Optional language model, may be needed to initialize certain tools. callback_manager – Optional callback manager. If not provided, default global callback manager will be used. Returns List of tools. langchain.agents.tool(*args: Union[str, Callable], return_direct: bool = False, args_schema: Optional[Type[pydantic.main.BaseModel]] = None, infer_schema: bool = True) → Callable[source]# Make tools out of functions, can be used with or without arguments. Parameters *args – The arguments to the tool. return_direct – Whether to return directly from the tool rather than continuing the agent loop. args_schema – optional argument schema for user to specify infer_schema – Whether to infer the schema of the arguments from the function’s signature. This also makes the resultant tool accept a dictionary input to its run() function. Requires: Function must be of type (str) -> str Function must have a docstring Examples @tool def search_api(query: str) -> str: # Searches the API for the query. return @tool("search", return_direct=True) def search_api(query: str) -> str: # Searches the API for the query. return previous VectorStores next LangChain Ecosystem By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/reference/modules/agents.html
c0587b89c087-0
.rst .pdf Python REPL Python REPL# For backwards compatibility. pydantic model langchain.python.PythonREPL[source]# Simulates a standalone Python REPL. field globals: Optional[Dict] [Optional] (alias '_globals')# field locals: Optional[Dict] [Optional] (alias '_locals')# run(command: str) → str[source]# Run command with own globals/locals and returns anything printed. previous Utilities next SerpAPI By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on Apr 21, 2023.
https://python.langchain.com/en/latest/reference/modules/python.html
cc47f48085d0-0
.rst .pdf Embeddings Embeddings# Wrappers around embedding modules. pydantic model langchain.embeddings.AlephAlphaAsymmetricSemanticEmbedding[source]# Wrapper for Aleph Alpha’s Asymmetric Embeddings AA provides you with an endpoint to embed a document and a query. The models were optimized to make the embeddings of documents and the query for a document as similar as possible. To learn more, check out: https://docs.aleph-alpha.com/docs/tasks/semantic_embed/ Example from aleph_alpha import AlephAlphaAsymmetricSemanticEmbedding embeddings = AlephAlphaSymmetricSemanticEmbedding() document = "This is a content of the document" query = "What is the content of the document?" doc_result = embeddings.embed_documents([document]) query_result = embeddings.embed_query(query) field compress_to_size: Optional[int] = 128# Should the returned embeddings come back as an original 5120-dim vector, or should it be compressed to 128-dim. field contextual_control_threshold: Optional[int] = None# Attention control parameters only apply to those tokens that have explicitly been set in the request. field control_log_additive: Optional[bool] = True# Apply controls on prompt items by adding the log(control_factor) to attention scores. field hosting: Optional[str] = 'https://api.aleph-alpha.com'# Optional parameter that specifies which datacenters may process the request. field model: Optional[str] = 'luminous-base'# Model name to use. field normalize: Optional[bool] = True# Should returned embeddings be normalized embed_documents(texts: List[str]) → List[List[float]][source]# Call out to Aleph Alpha’s asymmetric Document endpoint. Parameters texts – The list of texts to embed. Returns
https://python.langchain.com/en/latest/reference/modules/embeddings.html
cc47f48085d0-1
Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Call out to Aleph Alpha’s asymmetric, query embedding endpoint :param text: The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.AlephAlphaSymmetricSemanticEmbedding[source]# The symmetric version of the Aleph Alpha’s semantic embeddings. The main difference is that here, both the documents and queries are embedded with a SemanticRepresentation.Symmetric .. rubric:: Example embed_documents(texts: List[str]) → List[List[float]][source]# Call out to Aleph Alpha’s Document endpoint. Parameters texts – The list of texts to embed. Returns List of embeddings, one for each text. embed_query(text: str) → List[float][source]# Call out to Aleph Alpha’s asymmetric, query embedding endpoint :param text: The text to embed. Returns Embeddings for the text. pydantic model langchain.embeddings.CohereEmbeddings[source]# Wrapper around Cohere embedding models. To use, you should have the cohere python package installed, and the environment variable COHERE_API_KEY set with your API key or pass it as a named parameter to the constructor. Example from langchain.embeddings import CohereEmbeddings cohere = CohereEmbeddings(model="medium", cohere_api_key="my-api-key") field model: str = 'large'# Model name to use. field truncate: Optional[str] = None# Truncate embeddings that are too long from start or end (“NONE”|”START”|”END”) embed_documents(texts: List[str]) → List[List[float]][source]#
https://python.langchain.com/en/latest/reference/modules/embeddings.html