|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pretty_name: 'Pico Dataset: Pre-tokenized, Pre-shuffled Dolma' |
|
size_categories: |
|
- 100B<n<1T |
|
--- |
|
## The Pico Dataset |
|
|
|
A pre-tokenized, pre-shuffled version of [Dolma](https://huggingface.co/datasets/allenai/dolma), the high-quality text corpus from AI2. |
|
|
|
### Overview |
|
|
|
The Pico dataset simplifies training by providing: |
|
- Pre-tokenized text in chunks of 2048 tokens, using the [OLMo Tokenizer](https://huggingface.co/allenai/OLMo-7B-0724-hf/blob/main/tokenizer_config.json) |
|
- Pre-shuffled data for consistent training |
|
- Streaming-friendly format |
|
- 420B tokens total (perfect for 200K steps at batch size 1024) |
|
|
|
### Benefits |
|
|
|
- **Storage Efficient**: No need to download the full 10TB Dolma dataset |
|
- **Memory Efficient**: Stream data directly with `load_dataset(..., streaming=True)` |
|
- **Reproducible**: All models see identical data in identical order |
|
- **Fast**: Skip tokenization during training |
|
- **Simple**: Minimal boilerplate code needed |
|
|
|
### Usage |
|
|
|
1. Set up HuggingFace credentials in `.env`: |
|
``` |
|
HF_USERNAME=your_username |
|
HF_TOKEN=your_token # Get from https://huggingface.co/settings/tokens |
|
``` |
|
2. Set up in python: |
|
``` |
|
from datasets import load_dataset |
|
dataset = load_dataset("pico-lm/pretokenized-dolma", streaming=True) |
|
``` |