add resolve_parts_of_same dataset variant
#2
by
ArneBinder
- opened
sciarg.py
CHANGED
@@ -1,8 +1,13 @@
|
|
|
|
|
|
|
|
|
|
1 |
from pie_modules.document.processing import (
|
2 |
RegexPartitioner,
|
3 |
RelationArgumentSorter,
|
4 |
TextSpanTrimmer,
|
5 |
)
|
|
|
6 |
from pytorch_ie.core import Document
|
7 |
from pytorch_ie.documents import (
|
8 |
TextDocumentWithLabeledSpansAndBinaryRelations,
|
@@ -11,12 +16,130 @@ from pytorch_ie.documents import (
|
|
11 |
|
12 |
from pie_datasets.builders import BratBuilder, BratConfig
|
13 |
from pie_datasets.builders.brat import BratDocumentWithMergedSpans
|
|
|
14 |
from pie_datasets.document.processing import Caster, Pipeline
|
15 |
|
16 |
URL = "http://data.dws.informatik.uni-mannheim.de/sci-arg/compiled_corpus.zip"
|
17 |
SPLIT_PATHS = {"train": "compiled_corpus"}
|
18 |
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def get_common_pipeline_steps(target_document_type: type[Document]) -> dict:
|
21 |
return dict(
|
22 |
cast=Caster(
|
@@ -31,6 +154,36 @@ def get_common_pipeline_steps(target_document_type: type[Document]) -> dict:
|
|
31 |
)
|
32 |
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
class SciArg(BratBuilder):
|
35 |
BASE_DATASET_PATH = "DFKI-SLT/brat"
|
36 |
BASE_DATASET_REVISION = "844de61e8a00dc6a93fc29dc185f6e617131fbf1"
|
@@ -39,33 +192,55 @@ class SciArg(BratBuilder):
|
|
39 |
# The span fragments in SciArg come just from the new line splits, so we can merge them.
|
40 |
# Actual span fragments are annotated via "parts_of_same" relations.
|
41 |
BUILDER_CONFIGS = [
|
42 |
-
|
|
|
43 |
]
|
44 |
DOCUMENT_TYPES = {
|
45 |
BratBuilder.DEFAULT_CONFIG_NAME: BratDocumentWithMergedSpans,
|
|
|
46 |
}
|
47 |
|
48 |
# we need to add None to the list of dataset variants to support the default dataset variant
|
49 |
BASE_BUILDER_KWARGS_DICT = {
|
50 |
dataset_variant: {"url": URL, "split_paths": SPLIT_PATHS}
|
51 |
-
for dataset_variant in ["default", "
|
52 |
}
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Sequence, Set, Tuple, Union
|
3 |
+
|
4 |
+
import networkx as nx
|
5 |
from pie_modules.document.processing import (
|
6 |
RegexPartitioner,
|
7 |
RelationArgumentSorter,
|
8 |
TextSpanTrimmer,
|
9 |
)
|
10 |
+
from pytorch_ie.annotations import BinaryRelation, LabeledMultiSpan, LabeledSpan
|
11 |
from pytorch_ie.core import Document
|
12 |
from pytorch_ie.documents import (
|
13 |
TextDocumentWithLabeledSpansAndBinaryRelations,
|
|
|
16 |
|
17 |
from pie_datasets.builders import BratBuilder, BratConfig
|
18 |
from pie_datasets.builders.brat import BratDocumentWithMergedSpans
|
19 |
+
from pie_datasets.core.dataset import DocumentConvertersType
|
20 |
from pie_datasets.document.processing import Caster, Pipeline
|
21 |
|
22 |
URL = "http://data.dws.informatik.uni-mannheim.de/sci-arg/compiled_corpus.zip"
|
23 |
SPLIT_PATHS = {"train": "compiled_corpus"}
|
24 |
|
25 |
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
+
|
28 |
+
|
29 |
+
def _merge_spans_via_relation(
|
30 |
+
spans: Sequence[LabeledSpan],
|
31 |
+
relations: Sequence[BinaryRelation],
|
32 |
+
link_relation_label: str,
|
33 |
+
create_multi_spans: bool = True,
|
34 |
+
) -> Tuple[Union[Set[LabeledSpan], Set[LabeledMultiSpan]], Set[BinaryRelation]]:
|
35 |
+
# convert list of relations to a graph to easily calculate connected components to merge
|
36 |
+
g = nx.Graph()
|
37 |
+
link_relations = []
|
38 |
+
other_relations = []
|
39 |
+
for rel in relations:
|
40 |
+
if rel.label == link_relation_label:
|
41 |
+
link_relations.append(rel)
|
42 |
+
# never merge spans that have not the same label
|
43 |
+
if (
|
44 |
+
not (isinstance(rel.head, LabeledSpan) or isinstance(rel.tail, LabeledSpan))
|
45 |
+
or rel.head.label == rel.tail.label
|
46 |
+
):
|
47 |
+
g.add_edge(rel.head, rel.tail)
|
48 |
+
else:
|
49 |
+
logger.debug(
|
50 |
+
f"spans to merge do not have the same label, do not merge them: {rel.head}, {rel.tail}"
|
51 |
+
)
|
52 |
+
else:
|
53 |
+
other_relations.append(rel)
|
54 |
+
|
55 |
+
span_mapping = {}
|
56 |
+
connected_components: Set[LabeledSpan]
|
57 |
+
for connected_components in nx.connected_components(g):
|
58 |
+
# all spans in a connected component have the same label
|
59 |
+
label = list(span.label for span in connected_components)[0]
|
60 |
+
connected_components_sorted = sorted(connected_components, key=lambda span: span.start)
|
61 |
+
if create_multi_spans:
|
62 |
+
new_span = LabeledMultiSpan(
|
63 |
+
slices=tuple((span.start, span.end) for span in connected_components_sorted),
|
64 |
+
label=label,
|
65 |
+
)
|
66 |
+
else:
|
67 |
+
new_span = LabeledSpan(
|
68 |
+
start=min(span.start for span in connected_components_sorted),
|
69 |
+
end=max(span.end for span in connected_components_sorted),
|
70 |
+
label=label,
|
71 |
+
)
|
72 |
+
for span in connected_components_sorted:
|
73 |
+
span_mapping[span] = new_span
|
74 |
+
for span in spans:
|
75 |
+
if span not in span_mapping:
|
76 |
+
if create_multi_spans:
|
77 |
+
span_mapping[span] = LabeledMultiSpan(
|
78 |
+
slices=((span.start, span.end),), label=span.label, score=span.score
|
79 |
+
)
|
80 |
+
else:
|
81 |
+
span_mapping[span] = LabeledSpan(
|
82 |
+
start=span.start, end=span.end, label=span.label, score=span.score
|
83 |
+
)
|
84 |
+
|
85 |
+
new_spans = set(span_mapping.values())
|
86 |
+
new_relations = {
|
87 |
+
BinaryRelation(
|
88 |
+
head=span_mapping[rel.head],
|
89 |
+
tail=span_mapping[rel.tail],
|
90 |
+
label=rel.label,
|
91 |
+
score=rel.score,
|
92 |
+
)
|
93 |
+
for rel in other_relations
|
94 |
+
}
|
95 |
+
|
96 |
+
return new_spans, new_relations
|
97 |
+
|
98 |
+
|
99 |
+
class SpansWithRelationsMerger:
|
100 |
+
"""Merge spans that are connected via a specific relation type.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
relation_layer: The name of the layer that contains the relations.
|
104 |
+
link_relation_label: The label of the relations that connect the spans.
|
105 |
+
create_multi_spans: If True, the merged spans are LabeledMultiSpans, otherwise LabeledSpans.
|
106 |
+
"""
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
relation_layer: str,
|
111 |
+
link_relation_label: str,
|
112 |
+
result_document_type: type[Document],
|
113 |
+
result_field_mapping: dict[str, str],
|
114 |
+
create_multi_spans: bool = True,
|
115 |
+
):
|
116 |
+
self.relation_layer = relation_layer
|
117 |
+
self.link_relation_label = link_relation_label
|
118 |
+
self.create_multi_spans = create_multi_spans
|
119 |
+
self.result_document_type = result_document_type
|
120 |
+
self.result_field_mapping = result_field_mapping
|
121 |
+
|
122 |
+
def __call__(self, document: Document) -> Document:
|
123 |
+
relations: Sequence[BinaryRelation] = document[self.relation_layer]
|
124 |
+
spans: Sequence[LabeledSpan] = document[self.relation_layer].target_layer
|
125 |
+
|
126 |
+
new_spans, new_relations = _merge_spans_via_relation(
|
127 |
+
spans=spans,
|
128 |
+
relations=relations,
|
129 |
+
link_relation_label=self.link_relation_label,
|
130 |
+
create_multi_spans=self.create_multi_spans,
|
131 |
+
)
|
132 |
+
|
133 |
+
result = document.copy(with_annotations=False).as_type(new_type=self.result_document_type)
|
134 |
+
span_layer_name = document[self.relation_layer].target_name
|
135 |
+
result_span_layer_name = self.result_field_mapping[span_layer_name]
|
136 |
+
result_relation_layer_name = self.result_field_mapping[self.relation_layer]
|
137 |
+
result[result_span_layer_name].extend(new_spans)
|
138 |
+
result[result_relation_layer_name].extend(new_relations)
|
139 |
+
|
140 |
+
return result
|
141 |
+
|
142 |
+
|
143 |
def get_common_pipeline_steps(target_document_type: type[Document]) -> dict:
|
144 |
return dict(
|
145 |
cast=Caster(
|
|
|
154 |
)
|
155 |
|
156 |
|
157 |
+
def get_common_pipeline_steps_with_merge_multi_spans(
|
158 |
+
target_document_type: type[Document],
|
159 |
+
) -> dict:
|
160 |
+
return dict(
|
161 |
+
merge_spans=SpansWithRelationsMerger(
|
162 |
+
relation_layer="relations",
|
163 |
+
link_relation_label="parts_of_same",
|
164 |
+
create_multi_spans=False,
|
165 |
+
result_document_type=target_document_type,
|
166 |
+
result_field_mapping={"spans": "labeled_spans", "relations": "binary_relations"},
|
167 |
+
),
|
168 |
+
trim_adus=TextSpanTrimmer(layer="labeled_spans"),
|
169 |
+
sort_symmetric_relation_arguments=RelationArgumentSorter(
|
170 |
+
relation_layer="binary_relations",
|
171 |
+
label_whitelist=["parts_of_same", "semantically_same"],
|
172 |
+
),
|
173 |
+
)
|
174 |
+
|
175 |
+
|
176 |
+
class SciArgConfig(BratConfig):
|
177 |
+
def __init__(
|
178 |
+
self,
|
179 |
+
name: str,
|
180 |
+
resolve_parts_of_same: bool = False,
|
181 |
+
**kwargs,
|
182 |
+
):
|
183 |
+
super().__init__(name=name, merge_fragmented_spans=True, **kwargs)
|
184 |
+
self.resolve_parts_of_same = resolve_parts_of_same
|
185 |
+
|
186 |
+
|
187 |
class SciArg(BratBuilder):
|
188 |
BASE_DATASET_PATH = "DFKI-SLT/brat"
|
189 |
BASE_DATASET_REVISION = "844de61e8a00dc6a93fc29dc185f6e617131fbf1"
|
|
|
192 |
# The span fragments in SciArg come just from the new line splits, so we can merge them.
|
193 |
# Actual span fragments are annotated via "parts_of_same" relations.
|
194 |
BUILDER_CONFIGS = [
|
195 |
+
SciArgConfig(name=BratBuilder.DEFAULT_CONFIG_NAME),
|
196 |
+
SciArgConfig(name="resolve_parts_of_same", resolve_parts_of_same=True),
|
197 |
]
|
198 |
DOCUMENT_TYPES = {
|
199 |
BratBuilder.DEFAULT_CONFIG_NAME: BratDocumentWithMergedSpans,
|
200 |
+
"resolve_parts_of_same": BratDocumentWithMergedSpans,
|
201 |
}
|
202 |
|
203 |
# we need to add None to the list of dataset variants to support the default dataset variant
|
204 |
BASE_BUILDER_KWARGS_DICT = {
|
205 |
dataset_variant: {"url": URL, "split_paths": SPLIT_PATHS}
|
206 |
+
for dataset_variant in ["default", "resolve_parts_of_same", None]
|
207 |
}
|
208 |
|
209 |
+
@property
|
210 |
+
def document_converters(self) -> DocumentConvertersType:
|
211 |
+
regex_partitioner = RegexPartitioner(
|
212 |
+
partition_layer_name="labeled_partitions",
|
213 |
+
pattern="<([^>/]+)>.*</\\1>",
|
214 |
+
label_group_id=1,
|
215 |
+
label_whitelist=["Title", "Abstract", "H1"],
|
216 |
+
skip_initial_partition=True,
|
217 |
+
strip_whitespace=True,
|
218 |
+
)
|
219 |
+
if not self.config.resolve_parts_of_same:
|
220 |
+
return {
|
221 |
+
TextDocumentWithLabeledSpansAndBinaryRelations: Pipeline(
|
222 |
+
**get_common_pipeline_steps(TextDocumentWithLabeledSpansAndBinaryRelations)
|
223 |
+
),
|
224 |
+
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: Pipeline(
|
225 |
+
**get_common_pipeline_steps(
|
226 |
+
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
|
227 |
+
),
|
228 |
+
add_partitions=regex_partitioner,
|
229 |
+
),
|
230 |
+
}
|
231 |
+
else:
|
232 |
+
return {
|
233 |
+
TextDocumentWithLabeledSpansAndBinaryRelations: Pipeline(
|
234 |
+
**get_common_pipeline_steps_with_merge_multi_spans(
|
235 |
+
TextDocumentWithLabeledSpansAndBinaryRelations
|
236 |
+
)
|
237 |
+
),
|
238 |
+
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: Pipeline(
|
239 |
+
**get_common_pipeline_steps_with_merge_multi_spans(
|
240 |
+
TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
|
241 |
+
),
|
242 |
+
add_partitions=regex_partitioner,
|
243 |
+
),
|
244 |
+
# TODO: add TextDocumentWithLabeledMultiSpansAndBinaryRelations
|
245 |
+
# TODO: add TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions
|
246 |
+
}
|