add resolve_parts_of_same dataset variant

#2
by ArneBinder - opened
Files changed (1) hide show
  1. sciarg.py +195 -20
sciarg.py CHANGED
@@ -1,8 +1,13 @@
 
 
 
 
1
  from pie_modules.document.processing import (
2
  RegexPartitioner,
3
  RelationArgumentSorter,
4
  TextSpanTrimmer,
5
  )
 
6
  from pytorch_ie.core import Document
7
  from pytorch_ie.documents import (
8
  TextDocumentWithLabeledSpansAndBinaryRelations,
@@ -11,12 +16,130 @@ from pytorch_ie.documents import (
11
 
12
  from pie_datasets.builders import BratBuilder, BratConfig
13
  from pie_datasets.builders.brat import BratDocumentWithMergedSpans
 
14
  from pie_datasets.document.processing import Caster, Pipeline
15
 
16
  URL = "http://data.dws.informatik.uni-mannheim.de/sci-arg/compiled_corpus.zip"
17
  SPLIT_PATHS = {"train": "compiled_corpus"}
18
 
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  def get_common_pipeline_steps(target_document_type: type[Document]) -> dict:
21
  return dict(
22
  cast=Caster(
@@ -31,6 +154,36 @@ def get_common_pipeline_steps(target_document_type: type[Document]) -> dict:
31
  )
32
 
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  class SciArg(BratBuilder):
35
  BASE_DATASET_PATH = "DFKI-SLT/brat"
36
  BASE_DATASET_REVISION = "844de61e8a00dc6a93fc29dc185f6e617131fbf1"
@@ -39,33 +192,55 @@ class SciArg(BratBuilder):
39
  # The span fragments in SciArg come just from the new line splits, so we can merge them.
40
  # Actual span fragments are annotated via "parts_of_same" relations.
41
  BUILDER_CONFIGS = [
42
- BratConfig(name=BratBuilder.DEFAULT_CONFIG_NAME, merge_fragmented_spans=True),
 
43
  ]
44
  DOCUMENT_TYPES = {
45
  BratBuilder.DEFAULT_CONFIG_NAME: BratDocumentWithMergedSpans,
 
46
  }
47
 
48
  # we need to add None to the list of dataset variants to support the default dataset variant
49
  BASE_BUILDER_KWARGS_DICT = {
50
  dataset_variant: {"url": URL, "split_paths": SPLIT_PATHS}
51
- for dataset_variant in ["default", "merge_fragmented_spans", None]
52
  }
53
 
54
- DOCUMENT_CONVERTERS = {
55
- TextDocumentWithLabeledSpansAndBinaryRelations: Pipeline(
56
- **get_common_pipeline_steps(TextDocumentWithLabeledSpansAndBinaryRelations)
57
- ),
58
- TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: Pipeline(
59
- **get_common_pipeline_steps(
60
- TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
61
- ),
62
- add_partitions=RegexPartitioner(
63
- partition_layer_name="labeled_partitions",
64
- pattern="<([^>/]+)>.*</\\1>",
65
- label_group_id=1,
66
- label_whitelist=["Title", "Abstract", "H1"],
67
- skip_initial_partition=True,
68
- strip_whitespace=True,
69
- ),
70
- ),
71
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Sequence, Set, Tuple, Union
3
+
4
+ import networkx as nx
5
  from pie_modules.document.processing import (
6
  RegexPartitioner,
7
  RelationArgumentSorter,
8
  TextSpanTrimmer,
9
  )
10
+ from pytorch_ie.annotations import BinaryRelation, LabeledMultiSpan, LabeledSpan
11
  from pytorch_ie.core import Document
12
  from pytorch_ie.documents import (
13
  TextDocumentWithLabeledSpansAndBinaryRelations,
 
16
 
17
  from pie_datasets.builders import BratBuilder, BratConfig
18
  from pie_datasets.builders.brat import BratDocumentWithMergedSpans
19
+ from pie_datasets.core.dataset import DocumentConvertersType
20
  from pie_datasets.document.processing import Caster, Pipeline
21
 
22
  URL = "http://data.dws.informatik.uni-mannheim.de/sci-arg/compiled_corpus.zip"
23
  SPLIT_PATHS = {"train": "compiled_corpus"}
24
 
25
 
26
+ logger = logging.getLogger(__name__)
27
+
28
+
29
+ def _merge_spans_via_relation(
30
+ spans: Sequence[LabeledSpan],
31
+ relations: Sequence[BinaryRelation],
32
+ link_relation_label: str,
33
+ create_multi_spans: bool = True,
34
+ ) -> Tuple[Union[Set[LabeledSpan], Set[LabeledMultiSpan]], Set[BinaryRelation]]:
35
+ # convert list of relations to a graph to easily calculate connected components to merge
36
+ g = nx.Graph()
37
+ link_relations = []
38
+ other_relations = []
39
+ for rel in relations:
40
+ if rel.label == link_relation_label:
41
+ link_relations.append(rel)
42
+ # never merge spans that have not the same label
43
+ if (
44
+ not (isinstance(rel.head, LabeledSpan) or isinstance(rel.tail, LabeledSpan))
45
+ or rel.head.label == rel.tail.label
46
+ ):
47
+ g.add_edge(rel.head, rel.tail)
48
+ else:
49
+ logger.debug(
50
+ f"spans to merge do not have the same label, do not merge them: {rel.head}, {rel.tail}"
51
+ )
52
+ else:
53
+ other_relations.append(rel)
54
+
55
+ span_mapping = {}
56
+ connected_components: Set[LabeledSpan]
57
+ for connected_components in nx.connected_components(g):
58
+ # all spans in a connected component have the same label
59
+ label = list(span.label for span in connected_components)[0]
60
+ connected_components_sorted = sorted(connected_components, key=lambda span: span.start)
61
+ if create_multi_spans:
62
+ new_span = LabeledMultiSpan(
63
+ slices=tuple((span.start, span.end) for span in connected_components_sorted),
64
+ label=label,
65
+ )
66
+ else:
67
+ new_span = LabeledSpan(
68
+ start=min(span.start for span in connected_components_sorted),
69
+ end=max(span.end for span in connected_components_sorted),
70
+ label=label,
71
+ )
72
+ for span in connected_components_sorted:
73
+ span_mapping[span] = new_span
74
+ for span in spans:
75
+ if span not in span_mapping:
76
+ if create_multi_spans:
77
+ span_mapping[span] = LabeledMultiSpan(
78
+ slices=((span.start, span.end),), label=span.label, score=span.score
79
+ )
80
+ else:
81
+ span_mapping[span] = LabeledSpan(
82
+ start=span.start, end=span.end, label=span.label, score=span.score
83
+ )
84
+
85
+ new_spans = set(span_mapping.values())
86
+ new_relations = {
87
+ BinaryRelation(
88
+ head=span_mapping[rel.head],
89
+ tail=span_mapping[rel.tail],
90
+ label=rel.label,
91
+ score=rel.score,
92
+ )
93
+ for rel in other_relations
94
+ }
95
+
96
+ return new_spans, new_relations
97
+
98
+
99
+ class SpansWithRelationsMerger:
100
+ """Merge spans that are connected via a specific relation type.
101
+
102
+ Args:
103
+ relation_layer: The name of the layer that contains the relations.
104
+ link_relation_label: The label of the relations that connect the spans.
105
+ create_multi_spans: If True, the merged spans are LabeledMultiSpans, otherwise LabeledSpans.
106
+ """
107
+
108
+ def __init__(
109
+ self,
110
+ relation_layer: str,
111
+ link_relation_label: str,
112
+ result_document_type: type[Document],
113
+ result_field_mapping: dict[str, str],
114
+ create_multi_spans: bool = True,
115
+ ):
116
+ self.relation_layer = relation_layer
117
+ self.link_relation_label = link_relation_label
118
+ self.create_multi_spans = create_multi_spans
119
+ self.result_document_type = result_document_type
120
+ self.result_field_mapping = result_field_mapping
121
+
122
+ def __call__(self, document: Document) -> Document:
123
+ relations: Sequence[BinaryRelation] = document[self.relation_layer]
124
+ spans: Sequence[LabeledSpan] = document[self.relation_layer].target_layer
125
+
126
+ new_spans, new_relations = _merge_spans_via_relation(
127
+ spans=spans,
128
+ relations=relations,
129
+ link_relation_label=self.link_relation_label,
130
+ create_multi_spans=self.create_multi_spans,
131
+ )
132
+
133
+ result = document.copy(with_annotations=False).as_type(new_type=self.result_document_type)
134
+ span_layer_name = document[self.relation_layer].target_name
135
+ result_span_layer_name = self.result_field_mapping[span_layer_name]
136
+ result_relation_layer_name = self.result_field_mapping[self.relation_layer]
137
+ result[result_span_layer_name].extend(new_spans)
138
+ result[result_relation_layer_name].extend(new_relations)
139
+
140
+ return result
141
+
142
+
143
  def get_common_pipeline_steps(target_document_type: type[Document]) -> dict:
144
  return dict(
145
  cast=Caster(
 
154
  )
155
 
156
 
157
+ def get_common_pipeline_steps_with_merge_multi_spans(
158
+ target_document_type: type[Document],
159
+ ) -> dict:
160
+ return dict(
161
+ merge_spans=SpansWithRelationsMerger(
162
+ relation_layer="relations",
163
+ link_relation_label="parts_of_same",
164
+ create_multi_spans=False,
165
+ result_document_type=target_document_type,
166
+ result_field_mapping={"spans": "labeled_spans", "relations": "binary_relations"},
167
+ ),
168
+ trim_adus=TextSpanTrimmer(layer="labeled_spans"),
169
+ sort_symmetric_relation_arguments=RelationArgumentSorter(
170
+ relation_layer="binary_relations",
171
+ label_whitelist=["parts_of_same", "semantically_same"],
172
+ ),
173
+ )
174
+
175
+
176
+ class SciArgConfig(BratConfig):
177
+ def __init__(
178
+ self,
179
+ name: str,
180
+ resolve_parts_of_same: bool = False,
181
+ **kwargs,
182
+ ):
183
+ super().__init__(name=name, merge_fragmented_spans=True, **kwargs)
184
+ self.resolve_parts_of_same = resolve_parts_of_same
185
+
186
+
187
  class SciArg(BratBuilder):
188
  BASE_DATASET_PATH = "DFKI-SLT/brat"
189
  BASE_DATASET_REVISION = "844de61e8a00dc6a93fc29dc185f6e617131fbf1"
 
192
  # The span fragments in SciArg come just from the new line splits, so we can merge them.
193
  # Actual span fragments are annotated via "parts_of_same" relations.
194
  BUILDER_CONFIGS = [
195
+ SciArgConfig(name=BratBuilder.DEFAULT_CONFIG_NAME),
196
+ SciArgConfig(name="resolve_parts_of_same", resolve_parts_of_same=True),
197
  ]
198
  DOCUMENT_TYPES = {
199
  BratBuilder.DEFAULT_CONFIG_NAME: BratDocumentWithMergedSpans,
200
+ "resolve_parts_of_same": BratDocumentWithMergedSpans,
201
  }
202
 
203
  # we need to add None to the list of dataset variants to support the default dataset variant
204
  BASE_BUILDER_KWARGS_DICT = {
205
  dataset_variant: {"url": URL, "split_paths": SPLIT_PATHS}
206
+ for dataset_variant in ["default", "resolve_parts_of_same", None]
207
  }
208
 
209
+ @property
210
+ def document_converters(self) -> DocumentConvertersType:
211
+ regex_partitioner = RegexPartitioner(
212
+ partition_layer_name="labeled_partitions",
213
+ pattern="<([^>/]+)>.*</\\1>",
214
+ label_group_id=1,
215
+ label_whitelist=["Title", "Abstract", "H1"],
216
+ skip_initial_partition=True,
217
+ strip_whitespace=True,
218
+ )
219
+ if not self.config.resolve_parts_of_same:
220
+ return {
221
+ TextDocumentWithLabeledSpansAndBinaryRelations: Pipeline(
222
+ **get_common_pipeline_steps(TextDocumentWithLabeledSpansAndBinaryRelations)
223
+ ),
224
+ TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: Pipeline(
225
+ **get_common_pipeline_steps(
226
+ TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
227
+ ),
228
+ add_partitions=regex_partitioner,
229
+ ),
230
+ }
231
+ else:
232
+ return {
233
+ TextDocumentWithLabeledSpansAndBinaryRelations: Pipeline(
234
+ **get_common_pipeline_steps_with_merge_multi_spans(
235
+ TextDocumentWithLabeledSpansAndBinaryRelations
236
+ )
237
+ ),
238
+ TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: Pipeline(
239
+ **get_common_pipeline_steps_with_merge_multi_spans(
240
+ TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
241
+ ),
242
+ add_partitions=regex_partitioner,
243
+ ),
244
+ # TODO: add TextDocumentWithLabeledMultiSpansAndBinaryRelations
245
+ # TODO: add TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions
246
+ }