text
stringclasses
3 values
(*************************************************************************) (* Copyright (C) 2013 - 2015 *) (* Author C. Cohen *) (* DRAFT - PLEASE USE WITH CAUTION *) (* License CeCILL-B *) (*************************************************************************) From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq. From mathcomp Require Import choice path finset finfun fintype bigop. Require Import finmap. (*****************************************************************************) (* This file provides a representation of multisets based on fsfun *) (* {mset T} == the type of multisets on a choiceType T *) (* The following notations are in the %mset scope *) (* mset0 == the empty multiset *) (* mset n a == the multiset with n times element a *) (* [mset a] == the singleton multiset {k} := mset 1 a *) (* [mset a1; ..; an] == the multiset obtained from the elements a1,..,an *) (* A `&` B == the intersection of A and B (the min of each) *) (* A `|` B == the union of A and B (the max of each) *) (* A `+` B == the sum of A and B *) (* a |` B == the union of singleton a and B *) (* a +` B == the addition of singleton a to B *) (* A `\` B == the difference A minus B *) (* A `\ b == A without one b *) (* A `*` B == the product of A and B *) (* [disjoint A & B] := A `&` B == 0 *) (* A `<=` B == A is a sub-multiset of B *) (* A `<` B == A is a proper sub-multiset of B *) (*****************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. Lemma sumn_map I (f : I -> nat) s : sumn [seq f i | i <- s] = \sum_(i <- s) f i. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) Proof. by elim: s => [|i s IHs] in f *; rewrite ?(big_nil, big_cons) //= IHs. Qed. Lemma sumn_filter s P : sumn [seq i <- s | P i] = \sum_(i <- s | P i) i. Proof. by rewrite -big_filter -sumn_map map_id. Qed. Lemma sumn_map_filter I s (f : I -> nat) P : sumn [seq f i | i <- s & P i] = \sum_(i <- s | P i) f i. Proof. by rewrite sumn_map big_filter. Qed. Delimit Scope mset_scope with mset. Local Open Scope fset_scope. Local Open Scope fmap_scope. Local Open Scope mset_scope. Local Open Scope nat_scope. Definition multiset (T : choiceType) := {fsfun T -> nat with 0}. Definition multiset_of (T : choiceType) of phant T := @multiset T. Notation "'{mset' T }" := (@multiset_of _ (Phant T)) (format "'{mset' T }") : mset_scope. Notation "[ 'mset[' key ] x 'in' aT => F ]" := ([fsfun[key] x in aT => F] : {mset _}) (at level 0, x ident, only parsing) : mset_scope. Notation "[ 'mset' x 'in' aT => F ]" := ([fsfun x in aT => F] : {mset _}) (at level 0, x ident, only parsing) : mset_scope. Notation "[ 'm' 'set' x 'in' aT => F ]" := ([fsfun[_] x in aT => F] : {mset _}) (at level 0, x ident, format "[ 'm' 'set' x 'in' aT => F ]") : mset_scope. Identity Coercion multiset_multiset_of : multiset_of >-> multiset. Notation enum_mset_def A := (flatten [seq nseq (A%mset x) x | x <- finsupp A%mset]). Module Type EnumMsetSig. Axiom f : forall K, multiset K -> seq K. Axiom E : f = (fun K (A : multiset K) => enum_mset_def A). End EnumMsetSig. Module EnumMset : EnumMsetSig. Definition f K (A : multiset K) := enum_mset_def A. Definition E := (erefl f). End EnumMset. Notation enum_mset := EnumMset.f. Coercion enum_mset : multiset >-> seq. Canonical enum_mset_unlock := Unlockable EnumMset.E. Canonical multiset_predType (K : choiceType) := Eval hnf in mkPredType (fun (A : multiset K) a => a \in enum_mset A). Canonical mset_finpredType (T: choiceType) := mkFinPredType (multiset T) (fun A => undup (enum_mset A)) (fun _ => undup_uniq _) (fun _ _ => mem_undup _ _). Section MultisetOps. Context {K : choiceType}. Implicit Types (a b c : K) (A B C D : {mset K}) (s : seq K). Definition mset0 : {mset K} := [fsfun]. Fact msetn_key : unit. Proof. exact: tt. Qed. Definition msetn n a := [mset[msetn_key] x in [fset a] => n]. Fact seq_mset_key : unit. Proof. exact: tt. Qed. Definition seq_mset (s : seq K) := [mset[seq_mset_key] x in [fset x in s] => count (pred1 x) s]. Fact msetU_key : unit. Proof. exact: tt. Qed. Definition msetU A B := [mset[msetU_key] x in finsupp A `|` finsupp B => maxn (A x) (B x)]. Fact msetI_key : unit. Proof. exact: tt. Qed. Definition msetI A B := [mset[msetI_key] x in finsupp A `|` finsupp B => minn (A x) (B x)]. Fact msetD_key : unit. Proof. exact: tt. Qed. Definition msetD A B := [mset[msetD_key] x in finsupp A `|` finsupp B => A x + B x]. Fact msetB_key : unit. Proof. exact: tt. Qed. Definition msetB A B := [mset[msetB_key] x in finsupp A `|` finsupp B => A x - B x]. Fact msetM_key : unit. Proof. exact: tt. Qed. Definition msetM A B := [mset[msetM_key] x in finsupp A `*` finsupp B => A x.1 * B x.2]. Definition msubset A B := [forall x : finsupp A, A (val x) <= B (val x)]. Definition mproper A B := msubset A B && ~~ msubset B A. Definition mdisjoint A B := (msetI A B == mset0). End MultisetOps. Notation "[ 'mset' a ]" := (msetn 1 a) (at level 0, a at level 99, format "[ 'mset' a ]") : mset_scope. Notation "[ 'mset' a : T ]" := [mset (a : T)] (at level 0, a at level 99, format "[ 'mset' a : T ]") : mset_scope. Notation "A `|` B" := (msetU A B) : mset_scope. Notation "A `+` B" := (msetD A B) : mset_scope. Notation "A `\` B" := (msetB A B) : mset_scope. Notation "A `\ a" := (A `\` [mset a]) : mset_scope. Notation "a |` A" := ([mset (a)] `|` A) : mset_scope. Notation "a +` A" := ([mset (a)] `+` A) : mset_scope. Notation "A `*` B" := (msetM A B) : mset_scope. Notation "A `<=` B" := (msubset A B) (at level 70, no associativity) : mset_scope. Notation "A `<` B" := (mproper A B) (at level 70, no associativity) : mset_scope. (* This is left-associative due to historical limitations of the .. Notation. *) Notation "[ 'mset' a1 ; a2 ; .. ; an ]" := (msetD .. (a1 +` (msetn 1 a2)) .. (msetn 1 an)) (at level 0, a1 at level 99, format "[ 'mset' a1 ; a2 ; .. ; an ]") : mset_scope. Notation "A `&` B" := (msetI A B) : mset_scope. Section MSupp. Context {K : choiceType}. Implicit Types (a b c : K) (A B C D : {mset K}) (s : seq K). Lemma enum_msetE a A : (a \in A) = (a \in flatten [seq nseq (A x) x | x <- finsupp A]). Proof. by transitivity (a \in enum_mset A); rewrite // unlock. Qed. Lemma msuppE a A : (a \in finsupp A) = (a \in A). Proof. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite enum_msetE. (* Goal: Bool.reflect (@eq (@multiset_of K (Phant (Choice.sort K))) (@seq_mset K s) (@seq_mset K s')) (@perm_eq (Choice.eqType K) s s') *) apply/idP/flattenP => [aA|/=[_ /mapP[x xA -> /nseqP[->//]]]]. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) exists (nseq (A a) a); first by apply/mapP; exists a. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/nseqP; split=> //; rewrite lt0n -mem_finsupp. Qed. End MSupp. Section MSetTheory. Context {K : choiceType}. Implicit Types (a b c : K) (A B C D : {mset K}) (s : seq K). Lemma msetP {A B} : A =1 B <-> A = B. Proof. exact: fsfunP. Qed. Lemma mset_neq0 a A : (A a != 0) = (a \in A). Proof. by rewrite -msuppE mem_finsupp. Qed. Lemma in_mset a A : (a \in A) = (A a > 0). Proof. by rewrite -mset_neq0 lt0n. Qed. Lemma mset_eq0 a A : (A a == 0) = (a \notin A). Proof. by rewrite -mset_neq0 negbK. Qed. Lemma mset_eq0P {a A} : reflect (A a = 0) (a \notin A). Proof. by rewrite -mset_eq0; apply: eqP. Qed. Lemma mset_gt0 a A : (A a > 0) = (a \in A). Proof. by rewrite -in_mset. Qed. Lemma mset_eqP {A B} : reflect (A =1 B) (A == B). Proof. exact: (equivP eqP (iff_sym msetP)). Qed. Lemma mset0E a : mset0 a = 0. Proof. by rewrite /mset0 fsfunE. Qed. Lemma msetnE n a b : (msetn n a) b = if b == a then n else 0. Proof. by rewrite fsfunE inE. Qed. Lemma msetnxx n a : (msetn n a) a = n. Proof. by rewrite msetnE eqxx. Qed. Lemma msetE2 A B a : ((A `+` B) a = A a + B a) * ((A `|` B) a = maxn (A a) (B a)) * ((A `&` B) a = minn (A a) (B a)) * ((A `\` B) a = (A a) - (B a)). Proof. (* Goal: @eq (Equality.sort nat_eqType) (@fun_of_fsfun (prod_choiceType K K) nat_eqType (fun _ : Choice.sort (prod_choiceType K K) => O) (@msetM K A B) u) (muln (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) A (@fst (Choice.sort K) (Choice.sort K) u)) (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) B (@snd (Choice.sort K) (Choice.sort K) u))) *) rewrite !fsfunE !inE !msuppE -!mset_neq0; case: ifPn => //. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite negb_or !negbK => /andP [/eqP-> /eqP->]. Qed. Lemma count_mem_mset a A : count_mem a A = A a. Proof. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite unlock count_flatten sumn_map big_map. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite (eq_bigr _ (fun _ _ => esym (sum1_count _ _))) /=. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite (eq_bigr _ (fun _ _ => big_nseq_cond _ _ _ _ _ _)) /= -big_mkcond /=. (* Goal: @eq nat (@BigOp.bigop nat (Choice.sort K) O (@enum_fset K (@FinSupp.fs K nat_eqType (fun _ : Choice.sort K => O) A)) (fun i : Choice.sort K => @BigBody nat (Choice.sort K) i addn (@eq_op (Choice.eqType K) i a) (@iter nat (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) A i) (addn (S O)) O))) (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) A a) *) have [aNA|aA] := finsuppP. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite big1_fset // => i iA /eqP eq_ia; rewrite -eq_ia iA in aNA. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite big_fset_condE/= (big_fsetD1 a) ?inE ?eqxx ?andbT //= iter_addn mul1n. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite (_ : (_ `\ _)%fset = fset0) ?big_seq_fset0 ?addn0//. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/fsetP=> i; rewrite !inE; case: (i == a); rewrite ?(andbF, andbT). Qed. Lemma perm_undup_mset A : perm_eq (undup A) (finsupp A). Proof. (* Goal: is_true (@perm_eq (Choice.eqType K) (@undup (Choice.eqType K) (@EnumMset.f K A)) (@enum_fset K (@FinSupp.fs K nat_eqType (fun _ : Choice.sort K => O) A))) *) apply: uniq_perm_eq; rewrite ?undup_uniq // => a. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite mem_undup msuppE. Qed. Section big_com. Variables (R : Type) (idx : R) (op : Monoid.com_law idx). Implicit Types (X : {mset K}) (P : pred K) (F : K -> R). Lemma big_mset X P F : \big[op/idx]_(i <- X | P i) F i = \big[op/idx]_(i <- finsupp X | P i) iterop (X i) op (F i) idx. Proof. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite [in RHS](eq_big_perm (undup X)) 1?perm_eq_sym ?perm_undup_mset//. (* Goal: @eq bool (@eq_op nat_eqType (@BigOp.bigop nat (Equality.sort I) O r (fun i : Equality.sort I => @BigBody nat (Equality.sort I) i addn (P i) (E i))) O) (@all (Equality.sort I) (@pred_of_simpl (Equality.sort I) (@SimplPred (Equality.sort I) (fun i : Equality.sort I => implb (P i) (@eq_op nat_eqType (E i) O)))) r) *) rewrite -[in LHS]big_undup_iterop_count; apply: eq_bigr => i _. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite count_mem_mset. Qed. End big_com. Lemma sum_mset (X : {mset K}) (P : pred K) (F : K -> nat) : \sum_(i <- X | P i) F i = \sum_(i <- finsupp X | P i) X i * F i. Proof. (* Goal: @eq bool (@eq_op nat_eqType (@BigOp.bigop nat (Equality.sort I) O r (fun i : Equality.sort I => @BigBody nat (Equality.sort I) i addn (P i) (E i))) O) (@all (Equality.sort I) (@pred_of_simpl (Equality.sort I) (@SimplPred (Equality.sort I) (fun i : Equality.sort I => implb (P i) (@eq_op nat_eqType (E i) O)))) r) *) rewrite big_mset; apply: eq_bigr => i _ //. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite Monoid.iteropE iter_addn addn0 mulnC. Qed. Lemma prod_mset (X : {mset K}) (P : pred K) (F : K -> nat) : \prod_(i <- X | P i) F i = \prod_(i <- finsupp X | P i) F i ^ X i. Proof. by rewrite big_mset. Qed. Lemma mset_seqE s a : (seq_mset s) a = count_mem a s. Proof. by rewrite fsfunE inE/=; case: ifPn => // /count_memPn ->. Qed. Lemma perm_eq_seq_mset s : perm_eq (seq_mset s) s. Proof. by apply/allP => a _ /=; rewrite count_mem_mset mset_seqE. Qed. Lemma seq_mset_id A : seq_mset A = A. Proof. by apply/msetP=> a; rewrite mset_seqE count_mem_mset. Qed. Lemma eq_seq_msetP s s' : reflect (seq_mset s = seq_mset s') (perm_eq s s'). Proof. (* Goal: Bool.reflect (@eq (@multiset_of K (Phant (Choice.sort K))) (@seq_mset K s) (@seq_mset K s')) (@perm_eq (Choice.eqType K) s s') *) apply: (iffP idP) => [/perm_eqP perm_ss'|eq_ss']. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/msetP => a; rewrite !mset_seqE perm_ss'. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/allP => a _ /=; rewrite -!mset_seqE eq_ss'. Qed. Lemma msetME A B (u : K * K) : (A `*` B) u = A u.1 * B u.2. Proof. (* Goal: @eq (Equality.sort nat_eqType) (@fun_of_fsfun (prod_choiceType K K) nat_eqType (fun _ : Choice.sort (prod_choiceType K K) => O) (@msetM K A B) u) (muln (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) A (@fst (Choice.sort K) (Choice.sort K) u)) (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) B (@snd (Choice.sort K) (Choice.sort K) u))) *) rewrite !fsfunE inE; case: ifPn => //=. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite negb_and !memNfinsupp => /orP [] /eqP->; rewrite ?muln0. Qed. Lemma mset1DE a A b : (a +` A) b = (b == a) + A b. Proof. by rewrite msetE2 msetnE; case: (b == a). Qed. Lemma mset1UE a A b : (a |` A) b = maxn (b == a) (A b). Proof. by rewrite msetE2 msetnE; case: (b == a). Qed. Lemma msetB1E a A b : (A `\ a) b = (A b) - (b == a). Proof. by rewrite msetE2 msetnE; case: (b == a). Qed. Let msetE := (mset0E, msetE2, msetnE, msetnxx, mset1DE, mset1UE, msetB1E, mset_seqE, msetME). Lemma in_mset0 a : a \in mset0 = false. Proof. by rewrite in_mset !msetE. Qed. Lemma in_msetn n a' a : a \in msetn n a' = (n > 0) && (a == a'). Proof. by rewrite in_mset msetE; case: (a == a'); rewrite ?andbT ?andbF. Qed. Lemma in_mset1 a' a : a \in [mset a'] = (a == a'). Proof. by rewrite in_msetn. Qed. Lemma in_msetD A B a : (a \in A `+` B) = (a \in A) || (a \in B). Proof. by rewrite !in_mset !msetE addn_gt0. Qed. Lemma in_msetU A B a : (a \in A `|` B) = (a \in A) || (a \in B). Proof. by rewrite !in_mset !msetE leq_max. Qed. Lemma in_msetDU A B a : (a \in A `+` B) = (a \in A `|` B). Proof. by rewrite in_msetU in_msetD. Qed. Lemma in_msetI A B a : (a \in A `&` B) = (a \in A) && (a \in B). Proof. by rewrite !in_mset msetE leq_min. Qed. Lemma in_msetB A B a : (a \in A `\` B) = (B a < A a). Proof. by rewrite -mset_neq0 msetE subn_eq0 ltnNge. Qed. Lemma in_mset1U a' A a : (a \in a' |` A) = (a == a') || (a \in A). Proof. by rewrite in_msetU in_mset msetE; case: (_ == _). Qed. Lemma in_mset1D a' A a : (a \in a' +` A) = (a == a') || (a \in A). Proof. by rewrite in_msetDU in_mset1U. Qed. Lemma in_msetB1 A b a : (a \in A `\ b) = ((a == b) ==> (A a > 1)) && (a \in A). Proof. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite in_msetB msetE in_mset; case: (_ == _); rewrite -?geq_max. Qed. Lemma in_msetM A B (u : K * K) : (u \in A `*` B) = (u.1 \in A) && (u.2 \in B). Proof. by rewrite -!msuppE !mem_finsupp msetE muln_eq0 negb_or. Qed. Definition in_msetE := (in_mset0, in_msetn, in_msetB1, in_msetU, in_msetI, in_msetD, in_msetM). Let inE := (inE, in_msetE, (@msuppE K)). Lemma enum_mset0 : mset0 = [::] :> seq K. Proof. by rewrite unlock finsupp0. Qed. Lemma msetn0 (a : K) : msetn 0 a = mset0. Proof. by apply/msetP=> i; rewrite !msetE if_same. Qed. Lemma finsupp_msetn n a : finsupp (msetn n a) = if n > 0 then [fset a] else fset0. Proof. by apply/fsetP => i; rewrite !inE; case: ifP => //=; rewrite inE. Qed. Lemma enum_msetn n a : msetn n a = nseq n a :> seq K. Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) case: n => [|n]; first by rewrite msetn0 /= enum_mset0. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite unlock finsupp_msetn /= enum_fsetE /= enum_fset1 /= cats0. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite msetE eqxx. Qed. Section big. Variables (R : Type) (idx : R) (op : Monoid.law idx). Implicit Types (X : {mset K}) (P : pred K) (F : K -> R). Lemma big_mset0 P F : \big[op/idx]_(i <- mset0 | P i) F i = idx. Proof. by rewrite enum_mset0 big_nil. Qed. Lemma big_msetn n a P F : \big[op/idx]_(i <- msetn n a | P i) F i = if P a then iterop n op (F a) idx else idx. Proof. by rewrite enum_msetn big_nseq_cond Monoid.iteropE. Qed. End big. Lemma msetDC (A B : {mset K}) : A `+` B = B `+` A. Proof. by apply/msetP=> a; rewrite !msetE addnC. Qed. Lemma msetIC (A B : {mset K}) : A `&` B = B `&` A. Proof. by apply/msetP=> a; rewrite !msetE minnC. Qed. Lemma msetUC (A B : {mset K}) : A `|` B = B `|` A. Proof. by apply/msetP => a; rewrite !msetE maxnC. Qed. (* intersection *) Lemma mset0I A : mset0 `&` A = mset0. Proof. by apply/msetP => x; rewrite !msetE min0n. Qed. Lemma msetI0 A : A `&` mset0 = mset0. Proof. by rewrite msetIC mset0I. Qed. Lemma msetIA A B C : A `&` (B `&` C) = A `&` B `&` C. Proof. by apply/msetP=> x; rewrite !msetE minnA. Qed. Lemma msetICA A B C : A `&` (B `&` C) = B `&` (A `&` C). Proof. by rewrite !msetIA (msetIC A). Qed. Lemma msetIAC A B C : A `&` B `&` C = A `&` C `&` B. Proof. by rewrite -!msetIA (msetIC B). Qed. Lemma msetIACA A B C D : (A `&` B) `&` (C `&` D) = (A `&` C) `&` (B `&` D). Proof. by rewrite -!msetIA (msetICA B). Qed. Lemma msetIid A : A `&` A = A. Proof. by apply/msetP=> x; rewrite !msetE minnn. Qed. Lemma msetIIl A B C : A `&` B `&` C = (A `&` C) `&` (B `&` C). Proof. by rewrite msetIA !(msetIAC _ C) -(msetIA _ C) msetIid. Qed. Lemma msetIIr A B C : A `&` (B `&` C) = (A `&` B) `&` (A `&` C). Proof. by rewrite !(msetIC A) msetIIl. Qed. (* union *) Lemma mset0U A : mset0 `|` A = A. Proof. by apply/msetP => x; rewrite !msetE max0n. Qed. Lemma msetU0 A : A `|` mset0 = A. Proof. by rewrite msetUC mset0U. Qed. Lemma msetUA A B C : A `|` (B `|` C) = A `|` B `|` C. Proof. by apply/msetP=> x; rewrite !msetE maxnA. Qed. Lemma msetUCA A B C : A `|` (B `|` C) = B `|` (A `|` C). Proof. by rewrite !msetUA (msetUC B). Qed. Lemma msetUAC A B C : A `|` B `|` C = A `|` C `|` B. Proof. by rewrite -!msetUA (msetUC B). Qed. Lemma msetUACA A B C D : (A `|` B) `|` (C `|` D) = (A `|` C) `|` (B `|` D). Proof. by rewrite -!msetUA (msetUCA B). Qed. Lemma msetUid A : A `|` A = A. Proof. by apply/msetP=> x; rewrite !msetE maxnn. Qed. Lemma msetUUl A B C : A `|` B `|` C = (A `|` C) `|` (B `|` C). Proof. by rewrite msetUA !(msetUAC _ C) -(msetUA _ C) msetUid. Qed. Lemma msetUUr A B C : A `|` (B `|` C) = (A `|` B) `|` (A `|` C). Proof. by rewrite !(msetUC A) msetUUl. Qed. (* adjunction *) Lemma mset0D A : mset0 `+` A = A. Proof. by apply/msetP => x; rewrite !msetE add0n. Qed. Lemma msetD0 A : A `+` mset0 = A. Proof. by rewrite msetDC mset0D. Qed. Lemma msetDA A B C : A `+` (B `+` C) = A `+` B `+` C. Proof. by apply/msetP=> x; rewrite !msetE addnA. Qed. Lemma msetDCA A B C : A `+` (B `+` C) = B `+` (A `+` C). Proof. by rewrite !msetDA (msetDC B). Qed. Lemma msetDAC A B C : A `+` B `+` C = A `+` C `+` B. Proof. by rewrite -!msetDA (msetDC B). Qed. Lemma msetDACA A B C D : (A `+` B) `+` (C `+` D) = (A `+` C) `+` (B `+` D). Proof. by rewrite -!msetDA (msetDCA B). Qed. (* adjunction, union and difference with one element *) Lemma msetU1l x A B : x \in A -> x \in A `|` B. Proof. by move=> Ax /=; rewrite inE Ax. Qed. Lemma msetU1r A b : b \in A `|` [mset b]. Proof. by rewrite !inE eqxx orbT. Qed. Lemma msetB1P x A b : reflect ((x = b -> A x > 1) /\ x \in A) (x \in A `\ b). Proof. (* Goal: @eq (list (Choice.sort K)) (@EnumMset.f K (@msetn K (S n) a)) (@nseq (Choice.sort K) (S n) a) *) rewrite !inE. apply: (iffP andP); first by move=> [/implyP Ax ->]; split => // /eqP. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> [Ax ->]; split => //; apply/implyP => /eqP. Qed. Lemma msetB11 b A : (b \in A `\ b) = (A b > 1). Proof. by rewrite inE eqxx /= in_mset -geq_max. Qed. Lemma msetB1K a A : a \in A -> a +` (A `\ a) = A. Proof. (* Goal: forall _ : is_true (negb (@in_mem (Choice.sort K) a (@mem (Equality.sort (Choice.eqType K)) (multiset_predType K) A))), @eq (@multiset_of K (Phant (Choice.sort K))) (@msetB K A (@msetn K (S O) a)) A *) move=> aA; apply/msetP=> x; rewrite !msetE subnKC //=. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by have [->|//] := altP eqP; rewrite mset_gt0. Qed. Lemma msetD1K a B : (a +` B) `\ a = B. Proof. by apply/msetP => x; rewrite !msetE addKn. Qed. Lemma msetU1K a B : a \notin B -> (a |` B) `\ a = B. Proof. (* Goal: forall _ : is_true (negb (@in_mem (Choice.sort K) a (@mem (Equality.sort (Choice.eqType K)) (multiset_predType K) A))), @eq (@multiset_of K (Phant (Choice.sort K))) (@msetB K A (@msetn K (S O) a)) A *) move=> aB; apply/msetP=> x; rewrite !msetE. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) have [->|] := altP eqP; first by rewrite (mset_eq0P _). (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite max0n subn0. Qed. Lemma mset1U1 x B : x \in x |` B. Proof. by rewrite !inE eqxx. Qed. Lemma mset1D1 x B : x \in x +` B. Proof. by rewrite !inE eqxx. Qed. Lemma mset1Ur x a B : x \in B -> x \in a |` B. Proof. by move=> Bx; rewrite !inE predU1r. Qed. Lemma mset1Dr x a B : x \in B -> x \in a +` B. Proof. by move=> Bx; rewrite !inE predU1r. Qed. Lemma mset2P x a b : reflect (x = a \/ x = b) (x \in [mset a; b]). Proof. by rewrite !inE; apply: (iffP orP) => [] [] /eqP; intuition. Qed. Lemma in_mset2 x a b : (x \in [mset a; b]) = (x == a) || (x == b). Proof. by rewrite !inE. Qed. Lemma mset21 a b : a \in [mset a; b]. Proof. by rewrite mset1D1. Qed. Lemma mset22 a b : b \in [mset a; b]. Proof. by rewrite in_mset2 eqxx orbT. Qed. Lemma msetUP x A B : reflect (x \in A \/ x \in B) (x \in A `|` B). Proof. by rewrite !inE; exact: orP. Qed. Lemma msetDP x A B : reflect (x \in A \/ x \in B) (x \in A `+` B). Proof. by rewrite !inE; exact: orP. Qed. Lemma msetULVR x A B : x \in A `|` B -> (x \in A) + (x \in B). Proof. by rewrite inE; case: (x \in A); [left|right]. Qed. Lemma msetDLVR x A B : x \in A `+` B -> (x \in A) + (x \in B). Proof. by rewrite inE; case: (x \in A); [left|right]. Qed. (* distribute /cancel *) Lemma msetIUr A B C : A `&` (B `|` C) = (A `&` B) `|` (A `&` C). Proof. by apply/msetP=> x; rewrite !msetE minn_maxr. Qed. Lemma msetIUl A B C : (A `|` B) `&` C = (A `&` C) `|` (B `&` C). Proof. by apply/msetP=> x; rewrite !msetE minn_maxl. Qed. Lemma msetUIr A B C : A `|` (B `&` C) = (A `|` B) `&` (A `|` C). Proof. by apply/msetP=> x; rewrite !msetE maxn_minr. Qed. Lemma msetUIl A B C : (A `&` B) `|` C = (A `|` C) `&` (B `|` C). Proof. by apply/msetP=> x; rewrite !msetE maxn_minl. Qed. Lemma msetUKC A B : (A `|` B) `&` A = A. Proof. by apply/msetP=> x; rewrite !msetE maxnK. Qed. Lemma msetUK A B : (B `|` A) `&` A = A. Proof. by rewrite msetUC msetUKC. Qed. Lemma msetKUC A B : A `&` (B `|` A) = A. Proof. by rewrite msetIC msetUK. Qed. Lemma msetKU A B : A `&` (A `|` B) = A. Proof. by rewrite msetIC msetUKC. Qed. Lemma msetIKC A B : (A `&` B) `|` A = A. Proof. by apply/msetP=> x; rewrite !msetE minnK. Qed. Lemma msetIK A B : (B `&` A) `|` A = A. Proof. by rewrite msetIC msetIKC. Qed. Lemma msetKIC A B : A `|` (B `&` A) = A. Proof. by rewrite msetUC msetIK. Qed. Lemma msetKI A B : A `|` (A `&` B) = A. Proof. by rewrite msetIC msetKIC. Qed. Lemma msetUKid A B : B `|` A `|` A = B `|` A. Proof. by rewrite -msetUA msetUid. Qed. Lemma msetUKidC A B : A `|` B `|` A = A `|` B. Proof. by rewrite msetUAC msetUid. Qed. Lemma msetKUid A B : A `|` (A `|` B) = A `|` B. Proof. by rewrite msetUA msetUid. Qed. Lemma msetKUidC A B : A `|` (B `|` A) = B `|` A. Proof. by rewrite msetUCA msetUid. Qed. Lemma msetIKid A B : B `&` A `&` A = B `&` A. Proof. by rewrite -msetIA msetIid. Qed. Lemma msetIKidC A B : A `&` B `&` A = A `&` B. Proof. by rewrite msetIAC msetIid. Qed. Lemma msetKIid A B : A `&` (A `&` B) = A `&` B. Proof. by rewrite msetIA msetIid. Qed. Lemma msetKIidC A B : A `&` (B `&` A) = B `&` A. Proof. by rewrite msetICA msetIid. Qed. Lemma msetDIr A B C : A `+` (B `&` C) = (A `+` B) `&` (A `+` C). Proof. by apply/msetP=> x; rewrite !msetE addn_minr. Qed. Lemma msetDIl A B C : (A `&` B) `+` C = (A `+` C) `&` (B `+` C). Proof. by apply/msetP=> x; rewrite !msetE addn_minl. Qed. Lemma msetDKIC A B : (A `+` B) `&` A = A. Proof. by apply/msetP=> x; rewrite !msetE (minn_idPr _) // leq_addr. Qed. Lemma msetDKI A B : (B `+` A) `&` A = A. Proof. by rewrite msetDC msetDKIC. Qed. Lemma msetKDIC A B : A `&` (B `+` A) = A. Proof. by rewrite msetIC msetDKI. Qed. Lemma msetKDI A B : A `&` (A `+` B) = A. Proof. by rewrite msetDC msetKDIC. Qed. (* adjunction / subtraction *) Lemma msetDKB A : cancel (msetD A) (msetB^~ A). Proof. by move=> B; apply/msetP => a; rewrite !msetE addKn. Qed. Lemma msetDKBC A : cancel (msetD^~ A) (msetB^~ A). Proof. by move=> B; rewrite msetDC msetDKB. Qed. Lemma msetBSKl A B a : ((a +` A) `\` B) `\ a = A `\` B. Proof. (* Goal: @eq (@multiset_of K (Phant (Choice.sort K))) (@msetB K (@msetB K (@msetD K (@msetn K (S O) a) A) B) (@msetn K (S O) a)) (@msetB K A B) *) apply/msetP=> b; rewrite !msetE; case: ifPn; rewrite ?add0n ?subn0 //. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite add1n subn1 subSKn. Qed. Lemma msetBDl C A B : (C `+` A) `\` (C `+` B) = A `\` B. Proof. by apply/msetP=> a; rewrite !msetE subnDl. Qed. Lemma msetBDr C A B : (A `+` C) `\` (B `+` C) = A `\` B. Proof. by apply/msetP=> a; rewrite !msetE subnDr. Qed. Lemma msetBDA A B C : B `\` (A `+` C) = B `\` A `\` C. Proof. by apply/msetP=> a; rewrite !msetE subnDA. Qed. Lemma msetUE A B C : msetU A B = A `+` (B `\` A). Proof. by apply/msetP=> a; rewrite !msetE maxnE. Qed. (* subset *) Lemma msubsetP {A B} : reflect (forall x, A x <= B x) (A `<=` B). Proof. (* Goal: Bool.reflect (forall x : Choice.sort K, is_true (leq (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) A x) (@fun_of_fsfun K nat_eqType (fun _ : Choice.sort K => O) B x))) (@msubset K A B) *) apply: (iffP forallP)=> // ? x; case: (in_fsetP (finsupp A) x) => //. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite msuppE => /mset_eq0P->. Qed. Lemma msubset_subset {A B} : A `<=` B -> {subset A <= B}. Proof. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> /msubsetP AB x; rewrite !in_mset => ?; exact: (leq_trans _ (AB _)). Qed. Lemma msetB_eq0 (A B : {mset K}) : (A `\` B == mset0) = (A `<=` B). Proof. apply/mset_eqP/msubsetP => AB a; by have := AB a; rewrite !msetE -subn_eq0 => /eqP. Qed. Lemma msubset_refl A : A `<=` A. Proof. exact/msubsetP. Qed. Hint Resolve msubset_refl. Lemma msubset_trans : transitive (@msubset K). Proof. (* Goal: @transitive (@multiset_of K (Phant (Choice.sort K))) (@msubset K) *) move=> y x z /msubsetP xy /msubsetP yz ; apply/msubsetP => a. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply: (leq_trans (xy _)). Qed. Arguments msubset_trans {C A B} _ _ : rename. Lemma msetUS C A B : A `<=` B -> C `|` A `<=` C `|` B. Proof. (* Goal: forall _ : is_true (negb (@in_mem (Choice.sort K) a (@mem (Equality.sort (Choice.eqType K)) (multiset_predType K) A))), @eq (@multiset_of K (Phant (Choice.sort K))) (@msetB K A (@msetn K (S O) a)) A *) move=> sAB; apply/msubsetP=> x; rewrite !msetE. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite geq_max !leq_max leqnn (msubsetP sAB) orbT. Qed. Lemma msetDS C A B : A `<=` B -> C `+` A `<=` C `+` B. Proof. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> /msubsetP sAB; apply/msubsetP=> x; rewrite !msetE leq_add2l. Qed. Lemma msetSU C A B : A `<=` B -> A `|` C `<=` B `|` C. Proof. by move=> sAB; rewrite -!(msetUC C) msetUS. Qed. Lemma msetSD C A B : A `<=` B -> A `+` C `<=` B `+` C. Proof. by move=> sAB; rewrite -!(msetDC C) msetDS. Qed. Lemma msetUSS A B C D : A `<=` C -> B `<=` D -> A `|` B `<=` C `|` D. Proof. by move=> /(msetSU B) /msubset_trans sAC /(msetUS C)/sAC. Qed. Lemma msetDSS A B C D : A `<=` C -> B `<=` D -> A `+` B `<=` C `+` D. Proof. by move=> /(msetSD B) /msubset_trans sAC /(msetDS C)/sAC. Qed. Lemma msetIidPl {A B} : reflect (A `&` B = A) (A `<=` B). Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) apply: (iffP msubsetP) => [?|<- a]; last by rewrite !msetE geq_min leqnn orbT. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/msetP => a; rewrite !msetE (minn_idPl _). Qed. Lemma msetIidPr {A B} : reflect (A `&` B = B) (B `<=` A). Proof. by rewrite msetIC; apply: msetIidPl. Qed. Lemma msubsetIidl A B : (A `<=` A `&` B) = (A `<=` B). Proof. (* Goal: @eq bool (@msubset K A (@msetI K A B)) (@msubset K A B) *) apply/msubsetP/msubsetP=> sAB a; have := sAB a; rewrite !msetE. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite leq_min leqnn. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move/minn_idPl->. Qed. Lemma msubsetIidr A B : (B `<=` A `&` B) = (B `<=` A). Proof. by rewrite msetIC msubsetIidl. Qed. Lemma msetUidPr A B : reflect (A `|` B = B) (A `<=` B). Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) apply: (iffP msubsetP) => [AB|<- a]; last by rewrite !msetE leq_max leqnn. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/msetP=> a; rewrite !msetE (maxn_idPr _). Qed. Lemma msetUidPl A B : reflect (A `|` B = A) (B `<=` A). Proof. by rewrite msetUC; apply/msetUidPr. Qed. Lemma msubsetUl A B : A `<=` A `|` B. Proof. by apply/msubsetP=> a; rewrite !msetE leq_maxl. Qed. Hint Resolve msubsetUl. Lemma msubsetUr A B : B `<=` (A `|` B). Proof. by rewrite msetUC. Qed. Hint Resolve msubsetUr. Lemma msubsetU1 x A : A `<=` (x |` A). Proof. by rewrite msubsetUr. Qed. Hint Resolve msubsetU1. Lemma msubsetU A B C : (A `<=` B) || (A `<=` C) -> A `<=` (B `|` C). Proof. by move=> /orP [] /msubset_trans ->. Qed. Lemma eqEmsubset A B : (A == B) = (A `<=` B) && (B `<=` A). Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) apply/eqP/andP => [<-|[/msubsetP AB /msubsetP BA]]; first by split. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/msetP=> a; apply/eqP; rewrite eqn_leq AB BA. Qed. Lemma msubEproper A B : A `<=` B = (A == B) || (A `<` B). Proof. by rewrite eqEmsubset -andb_orr orbN andbT. Qed. Lemma mproper_sub A B : A `<` B -> A `<=` B. Proof. by rewrite msubEproper orbC => ->. Qed. Lemma eqVmproper A B : A `<=` B -> A = B \/ A `<` B. Proof. by rewrite msubEproper => /predU1P. Qed. Lemma mproperEneq A B : A `<` B = (A != B) && (A `<=` B). Proof. by rewrite andbC eqEmsubset negb_and andb_orr andbN. Qed. Lemma mproper_neq A B : A `<` B -> A != B. Proof. by rewrite mproperEneq; case/andP. Qed. Lemma eqEmproper A B : (A == B) = (A `<=` B) && ~~ (A `<` B). Proof. by rewrite negb_and negbK andb_orr andbN eqEmsubset. Qed. Lemma msub0set A : msubset mset0 A. Proof. by apply/msubsetP=> x; rewrite msetE. Qed. Hint Resolve msub0set. Lemma msubset0 A : (A `<=` mset0) = (A == mset0). Proof. by rewrite eqEmsubset msub0set andbT. Qed. Lemma mproper0 A : (mproper mset0 A) = (A != mset0). Proof. by rewrite /mproper msub0set msubset0. Qed. Lemma mproperE A B : (A `<` B) = (A `<=` B) && ~~ (msubset B A). Proof. by []. Qed. Lemma mproper_sub_trans B A C : A `<` B -> B `<=` C -> A `<` C. Proof. (* Goal: forall (_ : is_true (@msubset K A B)) (_ : is_true (@mproper K B C)), is_true (@mproper K A C) *) move=> /andP [AB NBA] BC; rewrite /mproper (msubset_trans AB) //=. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply: contra NBA=> /(msubset_trans _)->. Qed. Lemma msub_proper_trans B A C : A `<=` B -> B `<` C -> A `<` C. Proof. (* Goal: forall (_ : is_true (@msubset K A B)) (_ : is_true (@mproper K B C)), is_true (@mproper K A C) *) move=> AB /andP [CB NCB]; rewrite /mproper (msubset_trans AB) //=. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply: contra NCB=> /msubset_trans->. Qed. Lemma msubset_neq0 A B : A `<=` B -> A != mset0 -> B != mset0. Proof. by rewrite -!mproper0 => sAB /mproper_sub_trans->. Qed. (* msub is a morphism *) Lemma msetBDKC A B : A `<=` B -> A `+` (B `\` A) = B. Proof. by move=> /msubsetP AB; apply/msetP=> a; rewrite !msetE subnKC. Qed. Lemma msetBDK A B : A `<=` B -> B `\` A `+` A = B. Proof. by move=> /msubsetP AB; apply/msetP => a; rewrite !msetE subnK. Qed. Lemma msetBBK A B : A `<=` B -> B `\` (B `\` A) = A. Proof. by move=> /msubsetP AB; apply/msetP => a; rewrite !msetE subKn. Qed. Lemma msetBD1K A B a : A `<=` B -> A a < B a -> a +` (B `\` (a +` A)) = B `\` A. Proof. (* Goal: forall _ : is_true (negb (@in_mem (Choice.sort K) a (@mem (Equality.sort (Choice.eqType K)) (multiset_predType K) A))), @eq (@multiset_of K (Phant (Choice.sort K))) (@msetB K A (@msetn K (S O) a)) A *) move=> /msubsetP AB ABa; apply/msetP => b; rewrite !msetE. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by case: ifP => //= /eqP->; rewrite !add1n subnSK. Qed. Lemma subset_msetBLR A B C : (msubset (A `\` B) C) = (A `<=` B `+` C). Proof. apply/msubsetP/msubsetP => [] sABC a; by have := sABC a; rewrite !msetE ?leq_subLR. Qed. Lemma msetnP n x a : reflect (0 < n /\ x = a) (x \in msetn n a). Proof. by do [apply: (iffP idP); rewrite !inE] => [/andP[]|[]] -> /eqP. Qed. Lemma gt0_msetnP n x a : 0 < n -> reflect (x = a) (x \in msetn n a). Proof. by move=> n_gt0; rewrite inE n_gt0 /=; exact: eqP. Qed. Lemma msetn1 n a : a \in msetn n a = (n > 0). Proof. by rewrite inE eqxx andbT. Qed. Lemma mset1P x a : reflect (x = a) (x \in [mset a]). Proof. by rewrite inE; exact: eqP. Qed. Lemma mset11 a : a \in [mset a]. Proof. by rewrite inE /=. Qed. Lemma msetn_inj n : n > 0 -> injective (@msetn K n). Proof. (* Goal: @transitive (@multiset_of K (Phant (Choice.sort K))) (@msubset K) *) move=> n_gt0 a b eqsab; apply/(gt0_msetnP _ _ n_gt0). (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite -eqsab inE n_gt0 eqxx. Qed. Lemma mset1UP x a B : reflect (x = a \/ x \in B) (x \in a |` B). Proof. by rewrite !inE; exact: predU1P. Qed. Lemma mset_cons a s : seq_mset (a :: s) = a +` (seq_mset s). Proof. by apply/msetP=> x; rewrite !msetE /= eq_sym. Qed. (* intersection *) Lemma msetIP x A B : reflect (x \in A /\ x \in B) (x \in A `&` B). Proof. by rewrite inE; apply: andP. Qed. Lemma msetIS C A B : A `<=` B -> C `&` A `<=` C `&` B. Proof. (* Goal: forall _ : is_true (negb (@in_mem (Choice.sort K) a (@mem (Equality.sort (Choice.eqType K)) (multiset_predType K) A))), @eq (@multiset_of K (Phant (Choice.sort K))) (@msetB K A (@msetn K (S O) a)) A *) move=> sAB; apply/msubsetP=> x; rewrite !msetE. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite leq_min !geq_min leqnn (msubsetP sAB) orbT. Qed. Lemma msetSI C A B : A `<=` B -> A `&` C `<=` B `&` C. Proof. by move=> sAB; rewrite -!(msetIC C) msetIS. Qed. Lemma msetISS A B C D : A `<=` C -> B `<=` D -> A `&` B `<=` C `&` D. Proof. by move=> /(msetSI B) /msubset_trans sAC /(msetIS C) /sAC. Qed. (* difference *) Lemma msetSB C A B : A `<=` B -> A `\` C `<=` B `\` C. Proof. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> /msubsetP sAB; apply/msubsetP=> x; rewrite !msetE leq_sub2r. Qed. Lemma msetBS C A B : A `<=` B -> C `\` B `<=` C `\` A. Proof. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> /msubsetP sAB; apply/msubsetP=> x; rewrite !msetE leq_sub2l. Qed. Lemma msetBSS A B C D : A `<=` C -> D `<=` B -> A `\` B `<=` C `\` D. Proof. by move=> /(msetSB B) /msubset_trans sAC /(msetBS C) /sAC. Qed. Lemma msetB0 A : A `\` mset0 = A. Proof. by apply/msetP=> x; rewrite !msetE subn0. Qed. Lemma mset0B A : mset0 `\` A = mset0. Proof. by apply/msetP=> x; rewrite !msetE sub0n. Qed. Lemma msetBxx A : A `\` A = mset0. Proof. by apply/msetP=> x; rewrite !msetE subnn. Qed. (* other inclusions *) Lemma msubsetIl A B : A `&` B `<=` A. Proof. by apply/msubsetP=> x; rewrite msetE geq_minl. Qed. Lemma msubsetIr A B : A `&` B `<=` B. Proof. by apply/msubsetP=> x; rewrite msetE geq_minr. Qed. Lemma msubsetDl A B : A `\` B `<=` A. Proof. by apply/msubsetP=> x; rewrite msetE leq_subLR leq_addl. Qed. Lemma msubD1set A x : A `\ x `<=` A. Proof. by rewrite msubsetDl. Qed. Hint Resolve msubsetIl msubsetIr msubsetDl msubD1set. (* cardinal lemmas for msets *) Lemma mem_mset1U a A : a \in A -> a |` A = A. Proof. (* Goal: forall _ : is_true (@in_mem (Choice.sort K) a (@mem (Equality.sort (Choice.eqType K)) (multiset_predType K) A)), @eq (@multiset_of K (Phant (Choice.sort K))) (@msetU K (@msetn K (S O) a) A) A *) rewrite in_mset => aA; apply/msetP => x; rewrite !msetE (maxn_idPr _) //. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by have [->|//] := altP eqP; rewrite (leq_trans _ aA). Qed. Lemma mem_msetD1 a A : a \notin A -> A `\ a = A. Proof. (* Goal: forall _ : is_true (negb (@in_mem (Choice.sort K) a (@mem (Equality.sort (Choice.eqType K)) (multiset_predType K) A))), @eq (@multiset_of K (Phant (Choice.sort K))) (@msetB K A (@msetn K (S O) a)) A *) move=> /mset_eq0P aA; apply/msetP => x; rewrite !msetE. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by have [->|] := altP eqP; rewrite ?aA ?subn0. Qed. Lemma msetIn a A n : A `&` msetn n a = msetn (minn (A a) n) a. Proof. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply/msetP => x; rewrite !msetE; have [->|] := altP eqP; rewrite ?minn0. Qed. Lemma msubIset A B C : (B `<=` A) || (C `<=` A) -> (B `&` C `<=` A). Proof. by case/orP; apply: msubset_trans; rewrite (msubsetIl, msubsetIr). Qed. Lemma msubsetI A B C : (A `<=` B `&` C) = (A `<=` B) && (A `<=` C). Proof. (* Goal: @eq bool (@msubset K A (@msetI K B C)) (andb (@msubset K A B) (@msubset K A C)) *) rewrite !(sameP msetIidPl eqP) msetIA; have [-> //| ] := altP (A `&` B =P A). (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply: contraNF => /eqP <-; rewrite -msetIA -msetIIl msetIAC. Qed. Lemma msubsetIP A B C : reflect (A `<=` B /\ A `<=` C) (A `<=` B `&` C). Proof. by rewrite msubsetI; exact: andP. Qed. Lemma msubUset A B C : (B `|` C `<=` A) = (B `<=` A) && (C `<=` A). Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) apply/idP/idP => [subA|/andP [AB CA]]; last by rewrite -[A]msetUid msetUSS. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite !(msubset_trans _ subA). Qed. Lemma msubUsetP A B C : reflect (A `<=` C /\ B `<=` C) (A `|` B `<=` C). Proof. by rewrite msubUset; exact: andP. Qed. Lemma msetU_eq0 A B : (A `|` B == mset0) = (A == mset0) && (B == mset0). Proof. by rewrite -!msubset0 msubUset. Qed. Lemma setD_eq0 A B : (A `\` B == mset0) = (A `<=` B). Proof. by rewrite -msubset0 subset_msetBLR msetD0. Qed. Lemma msub1set A a : ([mset a] `<=` A) = (a \in A). Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) apply/msubsetP/idP; first by move/(_ a); rewrite msetnxx in_mset. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> ainA b; rewrite msetnE; case: eqP => // ->; rewrite -in_mset. Qed. Lemma msetDBA A B C : C `<=` B -> A `+` B `\` C = (A `+` B) `\` C. Proof. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> /msubsetP CB; apply/msetP=> a; rewrite !msetE2 addnBA. Qed. Lemma mset_0Vmem A : (A = mset0) + {x : K | x \in A}. Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) have [/fsetP Aisfset0 | [a ainA]] := fset_0Vmem (finsupp A); last first. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by right; exists a; rewrite -msuppE. left; apply/msetP => a; rewrite mset0E; apply/mset_eq0P. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by rewrite -msuppE Aisfset0 inE. Qed. Definition size_mset A : size A = \sum_(a <- finsupp A) A a. Proof. by rewrite -sum1_size sum_mset; apply: eq_bigr => i; rewrite muln1. Qed. Lemma size_mset0 : size (mset0 : {mset K}) = 0. Proof. by rewrite -sum1_size big_mset0. Qed. From mathcomp Require Import tuple. Lemma sum_nat_seq_eq0 (I : eqType) r (P : pred I) (E : I -> nat) : (\sum_(i <- r | P i) E i == 0) = all [pred i | P i ==> (E i == 0)] r. Proof. (* Goal: @eq bool (@eq_op nat_eqType (@BigOp.bigop nat (Equality.sort I) O r (fun i : Equality.sort I => @BigBody nat (Equality.sort I) i addn (P i) (E i))) O) (@all (Equality.sort I) (@pred_of_simpl (Equality.sort I) (@SimplPred (Equality.sort I) (fun i : Equality.sort I => implb (P i) (@eq_op nat_eqType (E i) O)))) r) *) rewrite big_tnth sum_nat_eq0; apply/forallP/allP => /= HE x. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by move=> /seq_tnthP[i ->]; apply: HE. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by apply: HE; rewrite mem_tnth. Qed. Lemma size_mset_eq0 A : (size A == 0) = (A == mset0). Proof. (* Goal: @eq bool (@msubset K (@msetU K B C) A) (andb (@msubset K B A) (@msubset K C A)) *) apply/idP/eqP => [|->]; last by rewrite size_mset0. rewrite size_mset sum_nat_seq_eq0 => /allP AP. apply/msetP => a /=; rewrite msetE. (* Goal: is_true (implb (P (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) (@eq_op nat_eqType (E (@tnth (@size (Equality.sort I) r) (Equality.sort I) (@in_tuple (Equality.sort I) r) x)) O)) *) by have /= := AP a; case: finsuppP => // _ /(_ _)/eqP->. Qed. End MSetTheory.
"(*************************************************************************)\n(* Goal: forall _ : @e(...TRUNCATED)
"From mathcomp\nRequire Import ssreflect ssrbool eqtype ssrfun ssrnat choice seq.\nFrom mathcomp\nRe(...TRUNCATED)
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
48
Edit dataset card