sentence1
stringlengths
171
6.36k
sentence2
stringlengths
38
1.08k
gold_label
stringclasses
2 values
Evidence suggesting that central nervous system γ-aminobutyric acid (GABA) concentrations are reduced in patients with major depressive disorder (MDD) has been present since at least 1980, and this idea has recently gained support from more recent magnetic resonance spectroscopy data. These observations have led to the assumption that MDD's underlying etiology is tied to an overall reduction in GABA-mediated inhibitory neurotransmission. In this paper, we review the mechanisms that govern GABA and glutamate concentrations in the brain, and provide a comprehensive and critical evaluation of the clinical data supporting reduced GABA neurotransmission in MDD. This review includes an evaluation of magnetic resonance spectroscopy data, as well as data on the expression and function of the GABA-synthesizing enzyme glutamic acid decarboxylase, GABA neuron-specific cell markers, such as parvalbumin, calretinin and calbindin, and the GABAA and GABAB receptors in clinical MDD populations. We explore a potential role for glial pathology in MDD-related reductions in GABA concentrations, and evidence of a connection between neurosteroids, GABA neurotransmission, and hormone-related mood disorders. Additionally, we investigate the effects of GABAergic pharmacological agents on mood, and demonstrate that these compounds have complex effects that do not universally support the idea that reduced GABA neurotransmission is at the root of MDD. Finally, we discuss the connections between serotonergic and GABAergic neurotransmission, and show that two serotonin-focused antidepressants - the selective serotonin-reuptake inhibitor fluoxetine and the multimodal antidepressant vortioxetine - modulate GABA neurotransmission in opposing ways, despite both being effective MDD treatments. Altogether, this review demonstrates that there are large gaps in our understanding of the relationship between GABA physiology and MDD, which must be remedied with more data from well-controlled empirical studies.
In conclusion, this review suggests that the simplistic notion that GABA is caused by reduced MDD neurotransmission must be discarded in favor of a more nuanced and complex model of the role of inhibitory neurotransmission in GABA .
contradiction
Evidence suggesting that central nervous system γ-aminobutyric acid (GABA) concentrations are reduced in patients with major depressive disorder (MDD) has been present since at least 1980, and this idea has recently gained support from more recent magnetic resonance spectroscopy data. These observations have led to the assumption that MDD's underlying etiology is tied to an overall reduction in GABA-mediated inhibitory neurotransmission. In this paper, we review the mechanisms that govern GABA and glutamate concentrations in the brain, and provide a comprehensive and critical evaluation of the clinical data supporting reduced GABA neurotransmission in MDD. This review includes an evaluation of magnetic resonance spectroscopy data, as well as data on the expression and function of the GABA-synthesizing enzyme glutamic acid decarboxylase, GABA neuron-specific cell markers, such as parvalbumin, calretinin and calbindin, and the GABAA and GABAB receptors in clinical MDD populations. We explore a potential role for glial pathology in MDD-related reductions in GABA concentrations, and evidence of a connection between neurosteroids, GABA neurotransmission, and hormone-related mood disorders. Additionally, we investigate the effects of GABAergic pharmacological agents on mood, and demonstrate that these compounds have complex effects that do not universally support the idea that reduced GABA neurotransmission is at the root of MDD. Finally, we discuss the connections between serotonergic and GABAergic neurotransmission, and show that two serotonin-focused antidepressants - the selective serotonin-reuptake inhibitor fluoxetine and the multimodal antidepressant vortioxetine - modulate GABA neurotransmission in opposing ways, despite both being effective MDD treatments. Altogether, this review demonstrates that there are large gaps in our understanding of the relationship between GABA physiology and MDD, which must be remedied with more data from well-controlled empirical studies.
In conclusion, this review suggests that the simplistic notion that MDD is caused by reduced GABA neurotransmission must be discarded in favor of a more nuanced and complex model of the role of inhibitory neurotransmission in MDD .
entailment
Evidence suggesting that central nervous system γ-aminobutyric acid (GABA) concentrations are reduced in patients with major depressive disorder (MDD) has been present since at least 1980, and this idea has recently gained support from more recent magnetic resonance spectroscopy data. These observations have led to the assumption that MDD's underlying etiology is tied to an overall reduction in GABA-mediated inhibitory neurotransmission. In this paper, we review the mechanisms that govern GABA and glutamate concentrations in the brain, and provide a comprehensive and critical evaluation of the clinical data supporting reduced GABA neurotransmission in MDD. This review includes an evaluation of magnetic resonance spectroscopy data, as well as data on the expression and function of the GABA-synthesizing enzyme glutamic acid decarboxylase, GABA neuron-specific cell markers, such as parvalbumin, calretinin and calbindin, and the GABAA and GABAB receptors in clinical MDD populations. We explore a potential role for glial pathology in MDD-related reductions in GABA concentrations, and evidence of a connection between neurosteroids, GABA neurotransmission, and hormone-related mood disorders. Additionally, we investigate the effects of GABAergic pharmacological agents on mood, and demonstrate that these compounds have complex effects that do not universally support the idea that reduced GABA neurotransmission is at the root of MDD. Finally, we discuss the connections between serotonergic and GABAergic neurotransmission, and show that two serotonin-focused antidepressants - the selective serotonin-reuptake inhibitor fluoxetine and the multimodal antidepressant vortioxetine - modulate GABA neurotransmission in opposing ways, despite both being effective MDD treatments. Altogether, this review demonstrates that there are large gaps in our understanding of the relationship between GABA physiology and MDD, which must be remedied with more data from well-controlled empirical studies.
We conclude with a discussion of the therapeutic implications of reduced GABA -mediated GABA neurotransmission in MDD .
contradiction
Chronic infections are characterized by the inability to eliminate the persisting pathogen and often associated with functional impairment of virus-specific T-cell responses. Costimulation through Glucocorticoid-induced TNFR-related protein (GITR) can increase survival and function of effector T cells. Here, we report that constitutive expression of GITR-ligand (GITRL) confers protection against chronic lymphocytic choriomeningitis virus (LCMV) infection, accelerating recovery without increasing pathology. Rapid viral clearance in GITRL transgenic mice coincided with increased numbers of poly-functional, virus-specific effector CD8+ T cells that expressed more T-bet and reduced levels of the rheostat marker PD-1. GITR triggering also boosted the helper function of virus-specific CD4 T cells already early in the infection, as was evidenced by increased IL-2 and IFNγ production, and more expression of CD40L and T-bet. Importantly, CD4-depletion experiments revealed that the expanded pool of virus-specific effector CD8 T cells and the ensuing viral clearance in LCMV-infected GITRL tg mice was entirely dependent on CD4 T cells. We found no major differences for NK cell and regulatory T cell responses, whereas the humoral response to the virus was increased in GITRL tg mice, but only in the late phase of the infection when the virus was almost eradicated.
Based on these findings, we conclude that enhanced GITR -triggering mediates its protective, anti-viral effect on the CD8 T cell compartment by boosting CD4 T cell help.
entailment
Chronic infections are characterized by the inability to eliminate the persisting pathogen and often associated with functional impairment of virus-specific T-cell responses. Costimulation through Glucocorticoid-induced TNFR-related protein (GITR) can increase survival and function of effector T cells. Here, we report that constitutive expression of GITR-ligand (GITRL) confers protection against chronic lymphocytic choriomeningitis virus (LCMV) infection, accelerating recovery without increasing pathology. Rapid viral clearance in GITRL transgenic mice coincided with increased numbers of poly-functional, virus-specific effector CD8+ T cells that expressed more T-bet and reduced levels of the rheostat marker PD-1. GITR triggering also boosted the helper function of virus-specific CD4 T cells already early in the infection, as was evidenced by increased IL-2 and IFNγ production, and more expression of CD40L and T-bet. Importantly, CD4-depletion experiments revealed that the expanded pool of virus-specific effector CD8 T cells and the ensuing viral clearance in LCMV-infected GITRL tg mice was entirely dependent on CD4 T cells. We found no major differences for NK cell and regulatory T cell responses, whereas the humoral response to the virus was increased in GITRL tg mice, but only in the late phase of the infection when the virus was almost eradicated.
We conclude that GITR triggering enhances the virus-specific CD4 T cell response and confers protection against chronic LCMV infection.
contradiction
Chronic infections are characterized by the inability to eliminate the persisting pathogen and often associated with functional impairment of virus-specific T-cell responses. Costimulation through Glucocorticoid-induced TNFR-related protein (GITR) can increase survival and function of effector T cells. Here, we report that constitutive expression of GITR-ligand (GITRL) confers protection against chronic lymphocytic choriomeningitis virus (LCMV) infection, accelerating recovery without increasing pathology. Rapid viral clearance in GITRL transgenic mice coincided with increased numbers of poly-functional, virus-specific effector CD8+ T cells that expressed more T-bet and reduced levels of the rheostat marker PD-1. GITR triggering also boosted the helper function of virus-specific CD4 T cells already early in the infection, as was evidenced by increased IL-2 and IFNγ production, and more expression of CD40L and T-bet. Importantly, CD4-depletion experiments revealed that the expanded pool of virus-specific effector CD8 T cells and the ensuing viral clearance in LCMV-infected GITRL tg mice was entirely dependent on CD4 T cells. We found no major differences for NK cell and regulatory T cell responses, whereas the humoral response to the virus was increased in GITRL tg mice, but only in the late phase of the infection when the virus was almost eradicated.
Based on these findings, we conclude that enhanced CD4 -triggering mediates its protective, anti-viral effect on the CD8 T cell compartment by boosting GITR T cell help.
contradiction
Chronic infections are characterized by the inability to eliminate the persisting pathogen and often associated with functional impairment of virus-specific T-cell responses. Costimulation through Glucocorticoid-induced TNFR-related protein (GITR) can increase survival and function of effector T cells. Here, we report that constitutive expression of GITR-ligand (GITRL) confers protection against chronic lymphocytic choriomeningitis virus (LCMV) infection, accelerating recovery without increasing pathology. Rapid viral clearance in GITRL transgenic mice coincided with increased numbers of poly-functional, virus-specific effector CD8+ T cells that expressed more T-bet and reduced levels of the rheostat marker PD-1. GITR triggering also boosted the helper function of virus-specific CD4 T cells already early in the infection, as was evidenced by increased IL-2 and IFNγ production, and more expression of CD40L and T-bet. Importantly, CD4-depletion experiments revealed that the expanded pool of virus-specific effector CD8 T cells and the ensuing viral clearance in LCMV-infected GITRL tg mice was entirely dependent on CD4 T cells. We found no major differences for NK cell and regulatory T cell responses, whereas the humoral response to the virus was increased in GITRL tg mice, but only in the late phase of the infection when the virus was almost eradicated.
We conclude that GITR triggering enhances the virus-specific CD4 T cell response and confers protection against chronic LCMV infection.
contradiction
Chronic infections are characterized by the inability to eliminate the persisting pathogen and often associated with functional impairment of virus-specific T-cell responses. Costimulation through Glucocorticoid-induced TNFR-related protein (GITR) can increase survival and function of effector T cells. Here, we report that constitutive expression of GITR-ligand (GITRL) confers protection against chronic lymphocytic choriomeningitis virus (LCMV) infection, accelerating recovery without increasing pathology. Rapid viral clearance in GITRL transgenic mice coincided with increased numbers of poly-functional, virus-specific effector CD8+ T cells that expressed more T-bet and reduced levels of the rheostat marker PD-1. GITR triggering also boosted the helper function of virus-specific CD4 T cells already early in the infection, as was evidenced by increased IL-2 and IFNγ production, and more expression of CD40L and T-bet. Importantly, CD4-depletion experiments revealed that the expanded pool of virus-specific effector CD8 T cells and the ensuing viral clearance in LCMV-infected GITRL tg mice was entirely dependent on CD4 T cells. We found no major differences for NK cell and regulatory T cell responses, whereas the humoral response to the virus was increased in GITRL tg mice, but only in the late phase of the infection when the virus was almost eradicated.
Based on these findings, we conclude that enhanced GITR -triggering mediates its protective, anti-viral effect on the CD8 T cell compartment by boosting cyclin D1(-/- T cell help.
contradiction
Chronic infections are characterized by the inability to eliminate the persisting pathogen and often associated with functional impairment of virus-specific T-cell responses. Costimulation through Glucocorticoid-induced TNFR-related protein (GITR) can increase survival and function of effector T cells. Here, we report that constitutive expression of GITR-ligand (GITRL) confers protection against chronic lymphocytic choriomeningitis virus (LCMV) infection, accelerating recovery without increasing pathology. Rapid viral clearance in GITRL transgenic mice coincided with increased numbers of poly-functional, virus-specific effector CD8+ T cells that expressed more T-bet and reduced levels of the rheostat marker PD-1. GITR triggering also boosted the helper function of virus-specific CD4 T cells already early in the infection, as was evidenced by increased IL-2 and IFNγ production, and more expression of CD40L and T-bet. Importantly, CD4-depletion experiments revealed that the expanded pool of virus-specific effector CD8 T cells and the ensuing viral clearance in LCMV-infected GITRL tg mice was entirely dependent on CD4 T cells. We found no major differences for NK cell and regulatory T cell responses, whereas the humoral response to the virus was increased in GITRL tg mice, but only in the late phase of the infection when the virus was almost eradicated.
Based on these findings, we conclude that enhanced CD4 -triggering mediates its protective, anti-viral effect on the CD8 T cell compartment by boosting GITR T cell help.
contradiction
Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure (BP). We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys decreases Nrf2 expression and activity and increases reactive oxygen species production; BP is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1(-/-) mice have decreased renal Nrf2 expression and activity and increased nitro-tyrosine levels and BP. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. An Nrf2 inducer, bardoxolone, normalizes the systolic BP and renal malondialdehyde levels in DJ-1(-/-) mice without affecting them in their wild-type littermates.
Because DJ-1 ubiquitination is increased in Nrf2 (-/-) mice, we conclude that the protective effect of Nrf2 on renal oxidative stress is mediated, in part, by preventing DJ-1 degradation.
contradiction
Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure (BP). We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys decreases Nrf2 expression and activity and increases reactive oxygen species production; BP is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1(-/-) mice have decreased renal Nrf2 expression and activity and increased nitro-tyrosine levels and BP. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. An Nrf2 inducer, bardoxolone, normalizes the systolic BP and renal malondialdehyde levels in DJ-1(-/-) mice without affecting them in their wild-type littermates.
Because Nrf2 ubiquitination is not increased in DJ-1 (-/-) mice, we conclude that the protective effect of DJ-1 on renal oxidative stress is mediated, in part, by preventing Nrf2 degradation.
contradiction
Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure (BP). We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys decreases Nrf2 expression and activity and increases reactive oxygen species production; BP is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1(-/-) mice have decreased renal Nrf2 expression and activity and increased nitro-tyrosine levels and BP. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. An Nrf2 inducer, bardoxolone, normalizes the systolic BP and renal malondialdehyde levels in DJ-1(-/-) mice without affecting them in their wild-type littermates.
Because DEC ubiquitination is increased in DJ-1 (-/-) mice, we conclude that the protective effect of DJ-1 on renal oxidative stress is mediated, in part, by preventing DEC degradation.
contradiction
Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure (BP). We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys decreases Nrf2 expression and activity and increases reactive oxygen species production; BP is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1(-/-) mice have decreased renal Nrf2 expression and activity and increased nitro-tyrosine levels and BP. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. An Nrf2 inducer, bardoxolone, normalizes the systolic BP and renal malondialdehyde levels in DJ-1(-/-) mice without affecting them in their wild-type littermates.
We conclude that Nrf2 mediates the renal DJ-1 -mediated inhibition of reactive oxygen species production.
contradiction
Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure (BP). We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys decreases Nrf2 expression and activity and increases reactive oxygen species production; BP is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1(-/-) mice have decreased renal Nrf2 expression and activity and increased nitro-tyrosine levels and BP. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. An Nrf2 inducer, bardoxolone, normalizes the systolic BP and renal malondialdehyde levels in DJ-1(-/-) mice without affecting them in their wild-type littermates.
Because DJ-1 ubiquitination is increased in Nrf2 (-/-) mice, we conclude that the protective effect of Nrf2 on renal oxidative stress is mediated, in part, by preventing DJ-1 degradation.
contradiction
Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure (BP). We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys decreases Nrf2 expression and activity and increases reactive oxygen species production; BP is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1(-/-) mice have decreased renal Nrf2 expression and activity and increased nitro-tyrosine levels and BP. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. An Nrf2 inducer, bardoxolone, normalizes the systolic BP and renal malondialdehyde levels in DJ-1(-/-) mice without affecting them in their wild-type littermates.
Because Nrf2 ubiquitination is increased in DJ-1 (-/-) mice, we conclude that the protective effect of DJ-1 on renal oxidative stress is mediated, in part, by preventing Nrf2 degradation.
entailment
Renal dopamine 2 receptor dysfunction is associated with oxidative stress and high blood pressure (BP). We have reported that DJ-1, an oxidative stress response protein, is positively regulated by dopamine 2 receptor in the kidney. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of several antioxidant genes. We tested the hypothesis that Nrf2 is involved in the renal DJ-1-mediated inhibition of reactive oxygen species production. We have reported that silencing dopamine 2 receptor in mouse renal proximal tubule cells decreases the expression of DJ-1. We now report that silencing DJ-1 or dopamine 2 receptor in mouse proximal tubule cells and mouse kidneys decreases Nrf2 expression and activity and increases reactive oxygen species production; BP is also increased in mice in which renal DJ-1 or dopamine 2 receptor is silenced. DJ-1(-/-) mice have decreased renal Nrf2 expression and activity and increased nitro-tyrosine levels and BP. Silencing Nrf2 in mouse proximal tubule cells does not alter the expression of DJ-1 or dopamine 2 receptor, indicating that Nrf2 is downstream of dopamine 2 receptor and DJ-1. An Nrf2 inducer, bardoxolone, normalizes the systolic BP and renal malondialdehyde levels in DJ-1(-/-) mice without affecting them in their wild-type littermates.
We conclude that Nrf2 mediates the renal DJ-1 -mediated inhibition of reactive oxygen species production.
contradiction
The present study explored whether the intercalated cell Cl(-)/HCO3(-) exchanger pendrin modulates epithelial Na(+) channel (ENaC) function by changing channel open probability and/or channel density. To do so, we measured ENaC subunit subcellular distribution by immunohistochemistry, single channel recordings in split open cortical collecting ducts (CCDs), as well as transepithelial voltage and Na(+) absorption in CCDs from aldosterone-treated wild-type and pendrin-null mice. Because pendrin gene ablation reduced 70-kDa more than 85-kDa γ-ENaC band density, we asked if pendrin gene ablation interferes with ENaC cleavage. We observed that ENaC-cleaving protease application (trypsin) increased the lumen-negative transepithelial voltage in pendrin-null mice but not in wild-type mice, which raised the possibility that pendrin gene ablation blunts ENaC cleavage, thereby reducing open probability. In mice harboring wild-type ENaC, pendrin gene ablation reduced ENaC-mediated Na(+) absorption by reducing channel open probability as well as by reducing channel density through changes in subunit total protein abundance and subcellular distribution. Further experiments used mice with blunted ENaC endocytosis and degradation (Liddle's syndrome) to explore the significance of pendrin-dependent changes in ENaC open probability. In mouse models of Liddle's syndrome, pendrin gene ablation did not change ENaC subunit total protein abundance, subcellular distribution, or channel density, but markedly reduced channel open probability.
We conclude that in mice harboring wild-type Somatostatin , pendrin modulates Somatostatin function through changes in subunit abundance, subcellular distribution, and channel open probability.
contradiction
The present study explored whether the intercalated cell Cl(-)/HCO3(-) exchanger pendrin modulates epithelial Na(+) channel (ENaC) function by changing channel open probability and/or channel density. To do so, we measured ENaC subunit subcellular distribution by immunohistochemistry, single channel recordings in split open cortical collecting ducts (CCDs), as well as transepithelial voltage and Na(+) absorption in CCDs from aldosterone-treated wild-type and pendrin-null mice. Because pendrin gene ablation reduced 70-kDa more than 85-kDa γ-ENaC band density, we asked if pendrin gene ablation interferes with ENaC cleavage. We observed that ENaC-cleaving protease application (trypsin) increased the lumen-negative transepithelial voltage in pendrin-null mice but not in wild-type mice, which raised the possibility that pendrin gene ablation blunts ENaC cleavage, thereby reducing open probability. In mice harboring wild-type ENaC, pendrin gene ablation reduced ENaC-mediated Na(+) absorption by reducing channel open probability as well as by reducing channel density through changes in subunit total protein abundance and subcellular distribution. Further experiments used mice with blunted ENaC endocytosis and degradation (Liddle's syndrome) to explore the significance of pendrin-dependent changes in ENaC open probability. In mouse models of Liddle's syndrome, pendrin gene ablation did not change ENaC subunit total protein abundance, subcellular distribution, or channel density, but markedly reduced channel open probability.
We conclude that in mice harboring wild-type pendrin , ENaC modulates pendrin function through changes in subunit abundance, subcellular distribution, and channel open probability.
contradiction
The present study explored whether the intercalated cell Cl(-)/HCO3(-) exchanger pendrin modulates epithelial Na(+) channel (ENaC) function by changing channel open probability and/or channel density. To do so, we measured ENaC subunit subcellular distribution by immunohistochemistry, single channel recordings in split open cortical collecting ducts (CCDs), as well as transepithelial voltage and Na(+) absorption in CCDs from aldosterone-treated wild-type and pendrin-null mice. Because pendrin gene ablation reduced 70-kDa more than 85-kDa γ-ENaC band density, we asked if pendrin gene ablation interferes with ENaC cleavage. We observed that ENaC-cleaving protease application (trypsin) increased the lumen-negative transepithelial voltage in pendrin-null mice but not in wild-type mice, which raised the possibility that pendrin gene ablation blunts ENaC cleavage, thereby reducing open probability. In mice harboring wild-type ENaC, pendrin gene ablation reduced ENaC-mediated Na(+) absorption by reducing channel open probability as well as by reducing channel density through changes in subunit total protein abundance and subcellular distribution. Further experiments used mice with blunted ENaC endocytosis and degradation (Liddle's syndrome) to explore the significance of pendrin-dependent changes in ENaC open probability. In mouse models of Liddle's syndrome, pendrin gene ablation did not change ENaC subunit total protein abundance, subcellular distribution, or channel density, but markedly reduced channel open probability.
We conclude that pendrin gene ablation reduces ENaC -mediated Na(+) absorption by reducing channel open probability.
contradiction
The present study explored whether the intercalated cell Cl(-)/HCO3(-) exchanger pendrin modulates epithelial Na(+) channel (ENaC) function by changing channel open probability and/or channel density. To do so, we measured ENaC subunit subcellular distribution by immunohistochemistry, single channel recordings in split open cortical collecting ducts (CCDs), as well as transepithelial voltage and Na(+) absorption in CCDs from aldosterone-treated wild-type and pendrin-null mice. Because pendrin gene ablation reduced 70-kDa more than 85-kDa γ-ENaC band density, we asked if pendrin gene ablation interferes with ENaC cleavage. We observed that ENaC-cleaving protease application (trypsin) increased the lumen-negative transepithelial voltage in pendrin-null mice but not in wild-type mice, which raised the possibility that pendrin gene ablation blunts ENaC cleavage, thereby reducing open probability. In mice harboring wild-type ENaC, pendrin gene ablation reduced ENaC-mediated Na(+) absorption by reducing channel open probability as well as by reducing channel density through changes in subunit total protein abundance and subcellular distribution. Further experiments used mice with blunted ENaC endocytosis and degradation (Liddle's syndrome) to explore the significance of pendrin-dependent changes in ENaC open probability. In mouse models of Liddle's syndrome, pendrin gene ablation did not change ENaC subunit total protein abundance, subcellular distribution, or channel density, but markedly reduced channel open probability.
We conclude that in mice harboring wild-type ENaC , pendrin modulates ENaC function through changes in subunit abundance, subcellular distribution, and channel open probability.
entailment
The present study explored whether the intercalated cell Cl(-)/HCO3(-) exchanger pendrin modulates epithelial Na(+) channel (ENaC) function by changing channel open probability and/or channel density. To do so, we measured ENaC subunit subcellular distribution by immunohistochemistry, single channel recordings in split open cortical collecting ducts (CCDs), as well as transepithelial voltage and Na(+) absorption in CCDs from aldosterone-treated wild-type and pendrin-null mice. Because pendrin gene ablation reduced 70-kDa more than 85-kDa γ-ENaC band density, we asked if pendrin gene ablation interferes with ENaC cleavage. We observed that ENaC-cleaving protease application (trypsin) increased the lumen-negative transepithelial voltage in pendrin-null mice but not in wild-type mice, which raised the possibility that pendrin gene ablation blunts ENaC cleavage, thereby reducing open probability. In mice harboring wild-type ENaC, pendrin gene ablation reduced ENaC-mediated Na(+) absorption by reducing channel open probability as well as by reducing channel density through changes in subunit total protein abundance and subcellular distribution. Further experiments used mice with blunted ENaC endocytosis and degradation (Liddle's syndrome) to explore the significance of pendrin-dependent changes in ENaC open probability. In mouse models of Liddle's syndrome, pendrin gene ablation did not change ENaC subunit total protein abundance, subcellular distribution, or channel density, but markedly reduced channel open probability.
We conclude that in mice harboring wild-type pendrin , ENaC modulates pendrin function through changes in subunit abundance, subcellular distribution, and channel open probability.
contradiction
Recently tumor necrosis factor receptor super family member 18 (TNFRSF18, also called GITR) has been identified as a novel tumor suppressor gene in Multiple Myeloma (MM), undergoing aberrant DNA methylation-mediated gene expression silencing. Furthermore, the expression of GITR blocks canonical NF-κB activation in MM cells in response to TNFα. Bortezomib, a proteasome inhibitor, can induce NF-κB activation, which may significantly influence the drug response in MM patients. In this study, we aim to elucidate if GITR status is associated with response to Bortezomib in MM cells through regulating GITR mediated NF-κB blockade. We found that GITR was significantly downregulated in MM patients and cell lines. Overexpression of GITR inhibited non-canonical NF-κB activation induced by TNFα. Moreover, NF-κB inhibitor induced apoptosis in GITR-deficient MM cells in response to TNFα. In addition, overexpression of GITR could inhibit Bortezomib-induced NF-κB activation and enhance the cytotoxicity of Bortezomib in GITR-deficient MM cell line (MM1.S). In contrast, knockdown of GITR attenuated the cytotoxic effect of Bortezomib on GITR proficient MM (RPMI) cell line and increased NF-κB activation. Finally, overexpression of GITR enhanced the sensitivity to Bortezomib in co-culture with bone marrow stromal cells and significantly reduced the tumor growth in MM1.S xenograft mice.
In conclusion, Bortezomib induces apoptosis in GITR -deficient MM cells by inhibiting canonical NF- ⁇ B activation.
contradiction
Recently tumor necrosis factor receptor super family member 18 (TNFRSF18, also called GITR) has been identified as a novel tumor suppressor gene in Multiple Myeloma (MM), undergoing aberrant DNA methylation-mediated gene expression silencing. Furthermore, the expression of GITR blocks canonical NF-κB activation in MM cells in response to TNFα. Bortezomib, a proteasome inhibitor, can induce NF-κB activation, which may significantly influence the drug response in MM patients. In this study, we aim to elucidate if GITR status is associated with response to Bortezomib in MM cells through regulating GITR mediated NF-κB blockade. We found that GITR was significantly downregulated in MM patients and cell lines. Overexpression of GITR inhibited non-canonical NF-κB activation induced by TNFα. Moreover, NF-κB inhibitor induced apoptosis in GITR-deficient MM cells in response to TNFα. In addition, overexpression of GITR could inhibit Bortezomib-induced NF-κB activation and enhance the cytotoxicity of Bortezomib in GITR-deficient MM cell line (MM1.S). In contrast, knockdown of GITR attenuated the cytotoxic effect of Bortezomib on GITR proficient MM (RPMI) cell line and increased NF-κB activation. Finally, overexpression of GITR enhanced the sensitivity to Bortezomib in co-culture with bone marrow stromal cells and significantly reduced the tumor growth in MM1.S xenograft mice.
In conclusion, we demonstrated that GITR expression can enhance the sensitivity to Bortezomib by inhibiting Bortezomib -induced NF-κB activation.
entailment
Recently tumor necrosis factor receptor super family member 18 (TNFRSF18, also called GITR) has been identified as a novel tumor suppressor gene in Multiple Myeloma (MM), undergoing aberrant DNA methylation-mediated gene expression silencing. Furthermore, the expression of GITR blocks canonical NF-κB activation in MM cells in response to TNFα. Bortezomib, a proteasome inhibitor, can induce NF-κB activation, which may significantly influence the drug response in MM patients. In this study, we aim to elucidate if GITR status is associated with response to Bortezomib in MM cells through regulating GITR mediated NF-κB blockade. We found that GITR was significantly downregulated in MM patients and cell lines. Overexpression of GITR inhibited non-canonical NF-κB activation induced by TNFα. Moreover, NF-κB inhibitor induced apoptosis in GITR-deficient MM cells in response to TNFα. In addition, overexpression of GITR could inhibit Bortezomib-induced NF-κB activation and enhance the cytotoxicity of Bortezomib in GITR-deficient MM cell line (MM1.S). In contrast, knockdown of GITR attenuated the cytotoxic effect of Bortezomib on GITR proficient MM (RPMI) cell line and increased NF-κB activation. Finally, overexpression of GITR enhanced the sensitivity to Bortezomib in co-culture with bone marrow stromal cells and significantly reduced the tumor growth in MM1.S xenograft mice.
In conclusion, we demonstrated that Bortezomib expression can enhance the sensitivity to GITR by inhibiting GITR -induced NF-κB activation.
contradiction
Recently tumor necrosis factor receptor super family member 18 (TNFRSF18, also called GITR) has been identified as a novel tumor suppressor gene in Multiple Myeloma (MM), undergoing aberrant DNA methylation-mediated gene expression silencing. Furthermore, the expression of GITR blocks canonical NF-κB activation in MM cells in response to TNFα. Bortezomib, a proteasome inhibitor, can induce NF-κB activation, which may significantly influence the drug response in MM patients. In this study, we aim to elucidate if GITR status is associated with response to Bortezomib in MM cells through regulating GITR mediated NF-κB blockade. We found that GITR was significantly downregulated in MM patients and cell lines. Overexpression of GITR inhibited non-canonical NF-κB activation induced by TNFα. Moreover, NF-κB inhibitor induced apoptosis in GITR-deficient MM cells in response to TNFα. In addition, overexpression of GITR could inhibit Bortezomib-induced NF-κB activation and enhance the cytotoxicity of Bortezomib in GITR-deficient MM cell line (MM1.S). In contrast, knockdown of GITR attenuated the cytotoxic effect of Bortezomib on GITR proficient MM (RPMI) cell line and increased NF-κB activation. Finally, overexpression of GITR enhanced the sensitivity to Bortezomib in co-culture with bone marrow stromal cells and significantly reduced the tumor growth in MM1.S xenograft mice.
In conclusion, we demonstrated that GITR expression cannot enhance the sensitivity to Bortezomib by inhibiting Bortezomib -induced NF-κB activation.
contradiction
Recently tumor necrosis factor receptor super family member 18 (TNFRSF18, also called GITR) has been identified as a novel tumor suppressor gene in Multiple Myeloma (MM), undergoing aberrant DNA methylation-mediated gene expression silencing. Furthermore, the expression of GITR blocks canonical NF-κB activation in MM cells in response to TNFα. Bortezomib, a proteasome inhibitor, can induce NF-κB activation, which may significantly influence the drug response in MM patients. In this study, we aim to elucidate if GITR status is associated with response to Bortezomib in MM cells through regulating GITR mediated NF-κB blockade. We found that GITR was significantly downregulated in MM patients and cell lines. Overexpression of GITR inhibited non-canonical NF-κB activation induced by TNFα. Moreover, NF-κB inhibitor induced apoptosis in GITR-deficient MM cells in response to TNFα. In addition, overexpression of GITR could inhibit Bortezomib-induced NF-κB activation and enhance the cytotoxicity of Bortezomib in GITR-deficient MM cell line (MM1.S). In contrast, knockdown of GITR attenuated the cytotoxic effect of Bortezomib on GITR proficient MM (RPMI) cell line and increased NF-κB activation. Finally, overexpression of GITR enhanced the sensitivity to Bortezomib in co-culture with bone marrow stromal cells and significantly reduced the tumor growth in MM1.S xenograft mice.
In conclusion, we demonstrated that GITR expression can enhance the sensitivity to aminosugars by inhibiting aminosugars -induced NF-κB activation.
contradiction
Recently tumor necrosis factor receptor super family member 18 (TNFRSF18, also called GITR) has been identified as a novel tumor suppressor gene in Multiple Myeloma (MM), undergoing aberrant DNA methylation-mediated gene expression silencing. Furthermore, the expression of GITR blocks canonical NF-κB activation in MM cells in response to TNFα. Bortezomib, a proteasome inhibitor, can induce NF-κB activation, which may significantly influence the drug response in MM patients. In this study, we aim to elucidate if GITR status is associated with response to Bortezomib in MM cells through regulating GITR mediated NF-κB blockade. We found that GITR was significantly downregulated in MM patients and cell lines. Overexpression of GITR inhibited non-canonical NF-κB activation induced by TNFα. Moreover, NF-κB inhibitor induced apoptosis in GITR-deficient MM cells in response to TNFα. In addition, overexpression of GITR could inhibit Bortezomib-induced NF-κB activation and enhance the cytotoxicity of Bortezomib in GITR-deficient MM cell line (MM1.S). In contrast, knockdown of GITR attenuated the cytotoxic effect of Bortezomib on GITR proficient MM (RPMI) cell line and increased NF-κB activation. Finally, overexpression of GITR enhanced the sensitivity to Bortezomib in co-culture with bone marrow stromal cells and significantly reduced the tumor growth in MM1.S xenograft mice.
In conclusion, Bortezomib induces apoptosis in GITR -deficient MM cells by inhibiting canonical NF- ⁇ B activation.
contradiction
Recently tumor necrosis factor receptor super family member 18 (TNFRSF18, also called GITR) has been identified as a novel tumor suppressor gene in Multiple Myeloma (MM), undergoing aberrant DNA methylation-mediated gene expression silencing. Furthermore, the expression of GITR blocks canonical NF-κB activation in MM cells in response to TNFα. Bortezomib, a proteasome inhibitor, can induce NF-κB activation, which may significantly influence the drug response in MM patients. In this study, we aim to elucidate if GITR status is associated with response to Bortezomib in MM cells through regulating GITR mediated NF-κB blockade. We found that GITR was significantly downregulated in MM patients and cell lines. Overexpression of GITR inhibited non-canonical NF-κB activation induced by TNFα. Moreover, NF-κB inhibitor induced apoptosis in GITR-deficient MM cells in response to TNFα. In addition, overexpression of GITR could inhibit Bortezomib-induced NF-κB activation and enhance the cytotoxicity of Bortezomib in GITR-deficient MM cell line (MM1.S). In contrast, knockdown of GITR attenuated the cytotoxic effect of Bortezomib on GITR proficient MM (RPMI) cell line and increased NF-κB activation. Finally, overexpression of GITR enhanced the sensitivity to Bortezomib in co-culture with bone marrow stromal cells and significantly reduced the tumor growth in MM1.S xenograft mice.
In conclusion, we demonstrated that Bortezomib expression can enhance the sensitivity to GITR by inhibiting GITR -induced NF-κB activation.
contradiction
We compared the relaxant effect of 2 known tocolytics; indomethacin and atosiban and progesterone, on pregnant human myometrial spontaneous and oxytocin-induced contractions from singleton and twin pregnancies. All agents exerted a concentration-dependent relaxant effect on myometrial contractions. There was no significant difference in the concentration-response curves between singletons and twins for progesterone or indomethacin on spontaneous contractions or atosiban on oxytocin-induced contraction. Under oxytocin however, the concentration-response curves for indomethacin and progesterone were significantly shifted to the right for both amplitude of contraction (P < .01) and activity integral (P < .01). When compared to singleton myometrium however, the concentration-response curves were significantly shifted to the right in the twin myometrium group (P < .05 progesterone and P < .001 indomethacin).
We conclude that a greater concentration of oxytocin and indomethacin is required to inhibit progesterone -induced myometrial contractions in twins compared to singletons in vitro.
contradiction
We compared the relaxant effect of 2 known tocolytics; indomethacin and atosiban and progesterone, on pregnant human myometrial spontaneous and oxytocin-induced contractions from singleton and twin pregnancies. All agents exerted a concentration-dependent relaxant effect on myometrial contractions. There was no significant difference in the concentration-response curves between singletons and twins for progesterone or indomethacin on spontaneous contractions or atosiban on oxytocin-induced contraction. Under oxytocin however, the concentration-response curves for indomethacin and progesterone were significantly shifted to the right for both amplitude of contraction (P < .01) and activity integral (P < .01). When compared to singleton myometrium however, the concentration-response curves were significantly shifted to the right in the twin myometrium group (P < .05 progesterone and P < .001 indomethacin).
We conclude that a greater concentration of progesterone and indomethacin is required to inhibit oxytocin -induced myometrial contractions in twins compared to singletons in vitro.
entailment
We compared the relaxant effect of 2 known tocolytics; indomethacin and atosiban and progesterone, on pregnant human myometrial spontaneous and oxytocin-induced contractions from singleton and twin pregnancies. All agents exerted a concentration-dependent relaxant effect on myometrial contractions. There was no significant difference in the concentration-response curves between singletons and twins for progesterone or indomethacin on spontaneous contractions or atosiban on oxytocin-induced contraction. Under oxytocin however, the concentration-response curves for indomethacin and progesterone were significantly shifted to the right for both amplitude of contraction (P < .01) and activity integral (P < .01). When compared to singleton myometrium however, the concentration-response curves were significantly shifted to the right in the twin myometrium group (P < .05 progesterone and P < .001 indomethacin).
We conclude that a greater concentration of oxytocin and indomethacin is required to inhibit progesterone -induced myometrial contractions in twins compared to singletons in vitro.
contradiction
We compared the relaxant effect of 2 known tocolytics; indomethacin and atosiban and progesterone, on pregnant human myometrial spontaneous and oxytocin-induced contractions from singleton and twin pregnancies. All agents exerted a concentration-dependent relaxant effect on myometrial contractions. There was no significant difference in the concentration-response curves between singletons and twins for progesterone or indomethacin on spontaneous contractions or atosiban on oxytocin-induced contraction. Under oxytocin however, the concentration-response curves for indomethacin and progesterone were significantly shifted to the right for both amplitude of contraction (P < .01) and activity integral (P < .01). When compared to singleton myometrium however, the concentration-response curves were significantly shifted to the right in the twin myometrium group (P < .05 progesterone and P < .001 indomethacin).
In conclusion, indomethacin and progesterone exerted a concentration-dependent relaxant effect on pregnant human myometrium both spontaneous and oxytocin -induced contractions.
contradiction
We compared the relaxant effect of 2 known tocolytics; indomethacin and atosiban and progesterone, on pregnant human myometrial spontaneous and oxytocin-induced contractions from singleton and twin pregnancies. All agents exerted a concentration-dependent relaxant effect on myometrial contractions. There was no significant difference in the concentration-response curves between singletons and twins for progesterone or indomethacin on spontaneous contractions or atosiban on oxytocin-induced contraction. Under oxytocin however, the concentration-response curves for indomethacin and progesterone were significantly shifted to the right for both amplitude of contraction (P < .01) and activity integral (P < .01). When compared to singleton myometrium however, the concentration-response curves were significantly shifted to the right in the twin myometrium group (P < .05 progesterone and P < .001 indomethacin).
We conclude that a greater concentration of progesterone and indomethacin is not required to inhibit oxytocin -induced myometrial contractions in twins compared to singletons in vitro.
contradiction
We compared the relaxant effect of 2 known tocolytics; indomethacin and atosiban and progesterone, on pregnant human myometrial spontaneous and oxytocin-induced contractions from singleton and twin pregnancies. All agents exerted a concentration-dependent relaxant effect on myometrial contractions. There was no significant difference in the concentration-response curves between singletons and twins for progesterone or indomethacin on spontaneous contractions or atosiban on oxytocin-induced contraction. Under oxytocin however, the concentration-response curves for indomethacin and progesterone were significantly shifted to the right for both amplitude of contraction (P < .01) and activity integral (P < .01). When compared to singleton myometrium however, the concentration-response curves were significantly shifted to the right in the twin myometrium group (P < .05 progesterone and P < .001 indomethacin).
We conclude that a greater concentration of progesterone and indomethacin is required to inhibit rats -induced myometrial contractions in twins compared to singletons in vitro.
contradiction
In this study, we used proteomic profiling to compare hepatocellular carcinoma (HCC) and peri-tumoral tissues to identify potential tumor markers of HCC. We identified eight differentially expressed proteins (>3-fold), including Peroxiredoxin 6 (PRDX6). PRDX6 is a bifunctional enzyme with both peroxidase and calcium-independent phospholipase A2 (iPLA2) activity. We found that peri-tumoral tissues expressed higher levels of PRDX6 mRNA (n = 59, P = 0.018) and protein (n = 265, P < 0.001) than HCC tissues, and that decreased expression of PRDX6 in HCC tissues was an independent risk factor indicating a poor prognosis (n = 145, P = 0.007). Combining the examination of serum PRDX6 with α-fetoprotein improved the diagnostic sensitivity of tests for HCC compared to α-fetoprotein alone (85.0% vs 50.0%, n = 40). We found that PRDX6 induced S phase arrest in HCC cells and inhibited HCC tumorigenicity in mice injected with cancer cells. When treated with H2 O2 , PRDX6 inhibited apoptosis. When treated with tumor necrosis factor alpha (TNF-α), PRDX6 promoted apoptosis. Inhibition of iPLA2 activity of PRDX6 decreased the apoptosis induced by TNF-α.
In conclusion, PRDX6 inhibited the carcinogenesis of cancer , and the iPLA2 activity of PRDX6 promoted HCC cell death induced by TNF-α.
contradiction
In this study, we used proteomic profiling to compare hepatocellular carcinoma (HCC) and peri-tumoral tissues to identify potential tumor markers of HCC. We identified eight differentially expressed proteins (>3-fold), including Peroxiredoxin 6 (PRDX6). PRDX6 is a bifunctional enzyme with both peroxidase and calcium-independent phospholipase A2 (iPLA2) activity. We found that peri-tumoral tissues expressed higher levels of PRDX6 mRNA (n = 59, P = 0.018) and protein (n = 265, P < 0.001) than HCC tissues, and that decreased expression of PRDX6 in HCC tissues was an independent risk factor indicating a poor prognosis (n = 145, P = 0.007). Combining the examination of serum PRDX6 with α-fetoprotein improved the diagnostic sensitivity of tests for HCC compared to α-fetoprotein alone (85.0% vs 50.0%, n = 40). We found that PRDX6 induced S phase arrest in HCC cells and inhibited HCC tumorigenicity in mice injected with cancer cells. When treated with H2 O2 , PRDX6 inhibited apoptosis. When treated with tumor necrosis factor alpha (TNF-α), PRDX6 promoted apoptosis. Inhibition of iPLA2 activity of PRDX6 decreased the apoptosis induced by TNF-α.
In conclusion, PRDX6 is overexpressed in peri-tumoral tissues and correlates with a poor prognosis in HCC .
contradiction
In this study, we used proteomic profiling to compare hepatocellular carcinoma (HCC) and peri-tumoral tissues to identify potential tumor markers of HCC. We identified eight differentially expressed proteins (>3-fold), including Peroxiredoxin 6 (PRDX6). PRDX6 is a bifunctional enzyme with both peroxidase and calcium-independent phospholipase A2 (iPLA2) activity. We found that peri-tumoral tissues expressed higher levels of PRDX6 mRNA (n = 59, P = 0.018) and protein (n = 265, P < 0.001) than HCC tissues, and that decreased expression of PRDX6 in HCC tissues was an independent risk factor indicating a poor prognosis (n = 145, P = 0.007). Combining the examination of serum PRDX6 with α-fetoprotein improved the diagnostic sensitivity of tests for HCC compared to α-fetoprotein alone (85.0% vs 50.0%, n = 40). We found that PRDX6 induced S phase arrest in HCC cells and inhibited HCC tumorigenicity in mice injected with cancer cells. When treated with H2 O2 , PRDX6 inhibited apoptosis. When treated with tumor necrosis factor alpha (TNF-α), PRDX6 promoted apoptosis. Inhibition of iPLA2 activity of PRDX6 decreased the apoptosis induced by TNF-α.
In conclusion, PRDX6 is overexpressed in peri-tumoral tissues and correlates with a poor prognosis in HCC .
contradiction
In this study, we used proteomic profiling to compare hepatocellular carcinoma (HCC) and peri-tumoral tissues to identify potential tumor markers of HCC. We identified eight differentially expressed proteins (>3-fold), including Peroxiredoxin 6 (PRDX6). PRDX6 is a bifunctional enzyme with both peroxidase and calcium-independent phospholipase A2 (iPLA2) activity. We found that peri-tumoral tissues expressed higher levels of PRDX6 mRNA (n = 59, P = 0.018) and protein (n = 265, P < 0.001) than HCC tissues, and that decreased expression of PRDX6 in HCC tissues was an independent risk factor indicating a poor prognosis (n = 145, P = 0.007). Combining the examination of serum PRDX6 with α-fetoprotein improved the diagnostic sensitivity of tests for HCC compared to α-fetoprotein alone (85.0% vs 50.0%, n = 40). We found that PRDX6 induced S phase arrest in HCC cells and inhibited HCC tumorigenicity in mice injected with cancer cells. When treated with H2 O2 , PRDX6 inhibited apoptosis. When treated with tumor necrosis factor alpha (TNF-α), PRDX6 promoted apoptosis. Inhibition of iPLA2 activity of PRDX6 decreased the apoptosis induced by TNF-α.
In conclusion, HCC inhibited the carcinogenesis of PRDX6 , and the iPLA2 activity of HCC promoted cancer cell death induced by TNF-α.
contradiction
In this study, we used proteomic profiling to compare hepatocellular carcinoma (HCC) and peri-tumoral tissues to identify potential tumor markers of HCC. We identified eight differentially expressed proteins (>3-fold), including Peroxiredoxin 6 (PRDX6). PRDX6 is a bifunctional enzyme with both peroxidase and calcium-independent phospholipase A2 (iPLA2) activity. We found that peri-tumoral tissues expressed higher levels of PRDX6 mRNA (n = 59, P = 0.018) and protein (n = 265, P < 0.001) than HCC tissues, and that decreased expression of PRDX6 in HCC tissues was an independent risk factor indicating a poor prognosis (n = 145, P = 0.007). Combining the examination of serum PRDX6 with α-fetoprotein improved the diagnostic sensitivity of tests for HCC compared to α-fetoprotein alone (85.0% vs 50.0%, n = 40). We found that PRDX6 induced S phase arrest in HCC cells and inhibited HCC tumorigenicity in mice injected with cancer cells. When treated with H2 O2 , PRDX6 inhibited apoptosis. When treated with tumor necrosis factor alpha (TNF-α), PRDX6 promoted apoptosis. Inhibition of iPLA2 activity of PRDX6 decreased the apoptosis induced by TNF-α.
In conclusion, PRDX6 inhibited the carcinogenesis of HCC , and the iPLA2 activity of PRDX6 promoted cancer cell death induced by TNF-α.
entailment
In this study, we used proteomic profiling to compare hepatocellular carcinoma (HCC) and peri-tumoral tissues to identify potential tumor markers of HCC. We identified eight differentially expressed proteins (>3-fold), including Peroxiredoxin 6 (PRDX6). PRDX6 is a bifunctional enzyme with both peroxidase and calcium-independent phospholipase A2 (iPLA2) activity. We found that peri-tumoral tissues expressed higher levels of PRDX6 mRNA (n = 59, P = 0.018) and protein (n = 265, P < 0.001) than HCC tissues, and that decreased expression of PRDX6 in HCC tissues was an independent risk factor indicating a poor prognosis (n = 145, P = 0.007). Combining the examination of serum PRDX6 with α-fetoprotein improved the diagnostic sensitivity of tests for HCC compared to α-fetoprotein alone (85.0% vs 50.0%, n = 40). We found that PRDX6 induced S phase arrest in HCC cells and inhibited HCC tumorigenicity in mice injected with cancer cells. When treated with H2 O2 , PRDX6 inhibited apoptosis. When treated with tumor necrosis factor alpha (TNF-α), PRDX6 promoted apoptosis. Inhibition of iPLA2 activity of PRDX6 decreased the apoptosis induced by TNF-α.
In conclusion, HCC inhibited the carcinogenesis of PRDX6 , and the iPLA2 activity of HCC promoted cancer cell death induced by TNF-α.
contradiction
CD200, a protein belonging to the immunoglobulin superfamily, has been associated with a poor prognosis in lymphoproliferative disorders and in acute leukemia. We studied the expression of CD200 in a series of 244 patients with diagnosis of acute myeloid leukemia (AML), to evaluate its impact on outcome and its possible association with other known prognostic factors. CD200 was found in 136/244 (56%) patients, in 41 of whom (30%) with high intensity of expression (MFI ≥ 11). CD200 was more frequent in secondary compared to de novo leukemia (p = 0.0006), in CD34 positive cases (p = 0.00001), in Bcl2 overexpressing cases (p = 0.01), in those wild-type Flt3 (p = 0.004) and with favorable or unfavorable compared to intermediate karyotype (p = 0.0003). CD200+ patients have a two-fold lower probability to attain complete remission, both in univariate (p = 0.006) and multivariate (p = 0.04) analysis. The negative impact of CD200 was found also in overall survival (p = 0.02) and was correlated with the intensity of expression of the molecule (p = 0.024). CD200 has an additive negative impact on survival in patients with unfavorable cytogenetic (p = 0.046) and in secondary leukemia (p = 0.05), and is associate with a worsening of outcome in patients with favorable biological markers, such as mutated NPM (p = 0.02), wild-type Flt3 (p = 0.034), negativity of CD34 (p = 0.03) and of CD56 (p = 0.03).
In conclusion, CD200 is emerging as both a prognostic factor and a potential target of novel therapeutic approaches for AML , aiming to reverse the "do not not eat me" signal of CD200 or to manipulate the suppressive immune microenvironment induced by CD200 binding to its receptor.
contradiction
CD200, a protein belonging to the immunoglobulin superfamily, has been associated with a poor prognosis in lymphoproliferative disorders and in acute leukemia. We studied the expression of CD200 in a series of 244 patients with diagnosis of acute myeloid leukemia (AML), to evaluate its impact on outcome and its possible association with other known prognostic factors. CD200 was found in 136/244 (56%) patients, in 41 of whom (30%) with high intensity of expression (MFI ≥ 11). CD200 was more frequent in secondary compared to de novo leukemia (p = 0.0006), in CD34 positive cases (p = 0.00001), in Bcl2 overexpressing cases (p = 0.01), in those wild-type Flt3 (p = 0.004) and with favorable or unfavorable compared to intermediate karyotype (p = 0.0003). CD200+ patients have a two-fold lower probability to attain complete remission, both in univariate (p = 0.006) and multivariate (p = 0.04) analysis. The negative impact of CD200 was found also in overall survival (p = 0.02) and was correlated with the intensity of expression of the molecule (p = 0.024). CD200 has an additive negative impact on survival in patients with unfavorable cytogenetic (p = 0.046) and in secondary leukemia (p = 0.05), and is associate with a worsening of outcome in patients with favorable biological markers, such as mutated NPM (p = 0.02), wild-type Flt3 (p = 0.034), negativity of CD34 (p = 0.03) and of CD56 (p = 0.03).
In conclusion, CD200 expression has a negative impact on outcome in AML and is associated with the intensity of expression of the molecule.
contradiction
CD200, a protein belonging to the immunoglobulin superfamily, has been associated with a poor prognosis in lymphoproliferative disorders and in acute leukemia. We studied the expression of CD200 in a series of 244 patients with diagnosis of acute myeloid leukemia (AML), to evaluate its impact on outcome and its possible association with other known prognostic factors. CD200 was found in 136/244 (56%) patients, in 41 of whom (30%) with high intensity of expression (MFI ≥ 11). CD200 was more frequent in secondary compared to de novo leukemia (p = 0.0006), in CD34 positive cases (p = 0.00001), in Bcl2 overexpressing cases (p = 0.01), in those wild-type Flt3 (p = 0.004) and with favorable or unfavorable compared to intermediate karyotype (p = 0.0003). CD200+ patients have a two-fold lower probability to attain complete remission, both in univariate (p = 0.006) and multivariate (p = 0.04) analysis. The negative impact of CD200 was found also in overall survival (p = 0.02) and was correlated with the intensity of expression of the molecule (p = 0.024). CD200 has an additive negative impact on survival in patients with unfavorable cytogenetic (p = 0.046) and in secondary leukemia (p = 0.05), and is associate with a worsening of outcome in patients with favorable biological markers, such as mutated NPM (p = 0.02), wild-type Flt3 (p = 0.034), negativity of CD34 (p = 0.03) and of CD56 (p = 0.03).
In conclusion, AML is emerging as both a prognostic factor and a potential target of novel therapeutic approaches for CD200 , aiming to reverse the "do not eat me" signal of AML or to manipulate the suppressive immune microenvironment induced by AML binding to its receptor.
contradiction
CD200, a protein belonging to the immunoglobulin superfamily, has been associated with a poor prognosis in lymphoproliferative disorders and in acute leukemia. We studied the expression of CD200 in a series of 244 patients with diagnosis of acute myeloid leukemia (AML), to evaluate its impact on outcome and its possible association with other known prognostic factors. CD200 was found in 136/244 (56%) patients, in 41 of whom (30%) with high intensity of expression (MFI ≥ 11). CD200 was more frequent in secondary compared to de novo leukemia (p = 0.0006), in CD34 positive cases (p = 0.00001), in Bcl2 overexpressing cases (p = 0.01), in those wild-type Flt3 (p = 0.004) and with favorable or unfavorable compared to intermediate karyotype (p = 0.0003). CD200+ patients have a two-fold lower probability to attain complete remission, both in univariate (p = 0.006) and multivariate (p = 0.04) analysis. The negative impact of CD200 was found also in overall survival (p = 0.02) and was correlated with the intensity of expression of the molecule (p = 0.024). CD200 has an additive negative impact on survival in patients with unfavorable cytogenetic (p = 0.046) and in secondary leukemia (p = 0.05), and is associate with a worsening of outcome in patients with favorable biological markers, such as mutated NPM (p = 0.02), wild-type Flt3 (p = 0.034), negativity of CD34 (p = 0.03) and of CD56 (p = 0.03).
In conclusion, CD200 expression has a negative impact on outcome in AML and is associated with the intensity of expression of the molecule.
contradiction
CD200, a protein belonging to the immunoglobulin superfamily, has been associated with a poor prognosis in lymphoproliferative disorders and in acute leukemia. We studied the expression of CD200 in a series of 244 patients with diagnosis of acute myeloid leukemia (AML), to evaluate its impact on outcome and its possible association with other known prognostic factors. CD200 was found in 136/244 (56%) patients, in 41 of whom (30%) with high intensity of expression (MFI ≥ 11). CD200 was more frequent in secondary compared to de novo leukemia (p = 0.0006), in CD34 positive cases (p = 0.00001), in Bcl2 overexpressing cases (p = 0.01), in those wild-type Flt3 (p = 0.004) and with favorable or unfavorable compared to intermediate karyotype (p = 0.0003). CD200+ patients have a two-fold lower probability to attain complete remission, both in univariate (p = 0.006) and multivariate (p = 0.04) analysis. The negative impact of CD200 was found also in overall survival (p = 0.02) and was correlated with the intensity of expression of the molecule (p = 0.024). CD200 has an additive negative impact on survival in patients with unfavorable cytogenetic (p = 0.046) and in secondary leukemia (p = 0.05), and is associate with a worsening of outcome in patients with favorable biological markers, such as mutated NPM (p = 0.02), wild-type Flt3 (p = 0.034), negativity of CD34 (p = 0.03) and of CD56 (p = 0.03).
In conclusion, MEK1/2 is emerging as both a prognostic factor and a potential target of novel therapeutic approaches for AML , aiming to reverse the "do not eat me" signal of MEK1/2 or to manipulate the suppressive immune microenvironment induced by MEK1/2 binding to its receptor.
contradiction
CD200, a protein belonging to the immunoglobulin superfamily, has been associated with a poor prognosis in lymphoproliferative disorders and in acute leukemia. We studied the expression of CD200 in a series of 244 patients with diagnosis of acute myeloid leukemia (AML), to evaluate its impact on outcome and its possible association with other known prognostic factors. CD200 was found in 136/244 (56%) patients, in 41 of whom (30%) with high intensity of expression (MFI ≥ 11). CD200 was more frequent in secondary compared to de novo leukemia (p = 0.0006), in CD34 positive cases (p = 0.00001), in Bcl2 overexpressing cases (p = 0.01), in those wild-type Flt3 (p = 0.004) and with favorable or unfavorable compared to intermediate karyotype (p = 0.0003). CD200+ patients have a two-fold lower probability to attain complete remission, both in univariate (p = 0.006) and multivariate (p = 0.04) analysis. The negative impact of CD200 was found also in overall survival (p = 0.02) and was correlated with the intensity of expression of the molecule (p = 0.024). CD200 has an additive negative impact on survival in patients with unfavorable cytogenetic (p = 0.046) and in secondary leukemia (p = 0.05), and is associate with a worsening of outcome in patients with favorable biological markers, such as mutated NPM (p = 0.02), wild-type Flt3 (p = 0.034), negativity of CD34 (p = 0.03) and of CD56 (p = 0.03).
In conclusion, CD200 is emerging as both a prognostic factor and a potential target of novel therapeutic approaches for AML , aiming to reverse the "do not eat me" signal of CD200 or to manipulate the suppressive immune microenvironment induced by CD200 binding to its receptor.
entailment
CD200, a protein belonging to the immunoglobulin superfamily, has been associated with a poor prognosis in lymphoproliferative disorders and in acute leukemia. We studied the expression of CD200 in a series of 244 patients with diagnosis of acute myeloid leukemia (AML), to evaluate its impact on outcome and its possible association with other known prognostic factors. CD200 was found in 136/244 (56%) patients, in 41 of whom (30%) with high intensity of expression (MFI ≥ 11). CD200 was more frequent in secondary compared to de novo leukemia (p = 0.0006), in CD34 positive cases (p = 0.00001), in Bcl2 overexpressing cases (p = 0.01), in those wild-type Flt3 (p = 0.004) and with favorable or unfavorable compared to intermediate karyotype (p = 0.0003). CD200+ patients have a two-fold lower probability to attain complete remission, both in univariate (p = 0.006) and multivariate (p = 0.04) analysis. The negative impact of CD200 was found also in overall survival (p = 0.02) and was correlated with the intensity of expression of the molecule (p = 0.024). CD200 has an additive negative impact on survival in patients with unfavorable cytogenetic (p = 0.046) and in secondary leukemia (p = 0.05), and is associate with a worsening of outcome in patients with favorable biological markers, such as mutated NPM (p = 0.02), wild-type Flt3 (p = 0.034), negativity of CD34 (p = 0.03) and of CD56 (p = 0.03).
In conclusion, AML is emerging as both a prognostic factor and a potential target of novel therapeutic approaches for CD200 , aiming to reverse the "do not eat me" signal of AML or to manipulate the suppressive immune microenvironment induced by AML binding to its receptor.
contradiction
Intermittent social defeat stress escalates later cocaine self-administration. Reward and stress both activate ventral tegmental area (VTA) dopamine neurons, increasing downstream extracellular dopamine concentration in the medial prefrontal cortex and nucleus accumbens. The stress neuropeptide corticotropin releasing factor (CRF) and its receptors (CRF-R1, CRF-R2) are located in the VTA and influence dopaminergic activity. These experiments explore how CRF release and the activation of its receptors within the VTA both during and after stress influence later cocaine self-administration in rats.In vivo microdialysis of CRF in the VTA demonstrated that CRF is phasically released in the posterior VTA (pVTA) during acute defeat, but, with repeated defeat, CRF is recruited into the anterior VTA (aVTA) and CRF tone is increased in both subregions. Intra-VTA antagonism of CRF-R1 in the pVTA and CRF-R2 in the aVTA during each social defeat prevented escalated cocaine self-administration in a 24 h "binge." VTA CRF continues to influence cocaine seeking in stressed animals long after social defeat exposure. Unlike nonstressed controls, previously stressed rats show significant cocaine seeking after 15 d of forced abstinence. Previously stressed rats continue to express elevated CRF tone within the VTA and antagonism of pVTA CRF-R1 or aVTA CRF-R2 reverses cocaine seeking.
In conclusion, these experiments demonstrate neuroadaptive changes in tonic and phasic cocaine with repeated stress, that cocaine release during stress may contribute to later escalated CRF taking, and that persistently elevated cocaine tone in the VTA may drive later CRF seeking through increased activation of pVTA cocaine -R1 and aVTA cocaine -R2.
contradiction
Intermittent social defeat stress escalates later cocaine self-administration. Reward and stress both activate ventral tegmental area (VTA) dopamine neurons, increasing downstream extracellular dopamine concentration in the medial prefrontal cortex and nucleus accumbens. The stress neuropeptide corticotropin releasing factor (CRF) and its receptors (CRF-R1, CRF-R2) are located in the VTA and influence dopaminergic activity. These experiments explore how CRF release and the activation of its receptors within the VTA both during and after stress influence later cocaine self-administration in rats.In vivo microdialysis of CRF in the VTA demonstrated that CRF is phasically released in the posterior VTA (pVTA) during acute defeat, but, with repeated defeat, CRF is recruited into the anterior VTA (aVTA) and CRF tone is increased in both subregions. Intra-VTA antagonism of CRF-R1 in the pVTA and CRF-R2 in the aVTA during each social defeat prevented escalated cocaine self-administration in a 24 h "binge." VTA CRF continues to influence cocaine seeking in stressed animals long after social defeat exposure. Unlike nonstressed controls, previously stressed rats show significant cocaine seeking after 15 d of forced abstinence. Previously stressed rats continue to express elevated CRF tone within the VTA and antagonism of pVTA CRF-R1 or aVTA CRF-R2 reverses cocaine seeking.
In conclusion, these experiments demonstrate neuroadaptive changes in tonic and phasic CRF with repeated stress, that CRF release during stress may contribute to later escalated -hydroxybutyrate taking, and that persistently elevated CRF tone in the VTA may drive later -hydroxybutyrate seeking through increased activation of pVTA CRF -R1 and aVTA CRF -R2.
contradiction
Intermittent social defeat stress escalates later cocaine self-administration. Reward and stress both activate ventral tegmental area (VTA) dopamine neurons, increasing downstream extracellular dopamine concentration in the medial prefrontal cortex and nucleus accumbens. The stress neuropeptide corticotropin releasing factor (CRF) and its receptors (CRF-R1, CRF-R2) are located in the VTA and influence dopaminergic activity. These experiments explore how CRF release and the activation of its receptors within the VTA both during and after stress influence later cocaine self-administration in rats.In vivo microdialysis of CRF in the VTA demonstrated that CRF is phasically released in the posterior VTA (pVTA) during acute defeat, but, with repeated defeat, CRF is recruited into the anterior VTA (aVTA) and CRF tone is increased in both subregions. Intra-VTA antagonism of CRF-R1 in the pVTA and CRF-R2 in the aVTA during each social defeat prevented escalated cocaine self-administration in a 24 h "binge." VTA CRF continues to influence cocaine seeking in stressed animals long after social defeat exposure. Unlike nonstressed controls, previously stressed rats show significant cocaine seeking after 15 d of forced abstinence. Previously stressed rats continue to express elevated CRF tone within the VTA and antagonism of pVTA CRF-R1 or aVTA CRF-R2 reverses cocaine seeking.
In conclusion, these experiments demonstrate neuroadaptive changes in tonic and phasic cocaine with repeated stress, that cocaine release during stress may contribute to later escalated CRF taking, and that persistently elevated cocaine tone in the VTA may drive later CRF seeking through increased activation of pVTA cocaine -R1 and aVTA cocaine -R2.
contradiction
Intermittent social defeat stress escalates later cocaine self-administration. Reward and stress both activate ventral tegmental area (VTA) dopamine neurons, increasing downstream extracellular dopamine concentration in the medial prefrontal cortex and nucleus accumbens. The stress neuropeptide corticotropin releasing factor (CRF) and its receptors (CRF-R1, CRF-R2) are located in the VTA and influence dopaminergic activity. These experiments explore how CRF release and the activation of its receptors within the VTA both during and after stress influence later cocaine self-administration in rats.In vivo microdialysis of CRF in the VTA demonstrated that CRF is phasically released in the posterior VTA (pVTA) during acute defeat, but, with repeated defeat, CRF is recruited into the anterior VTA (aVTA) and CRF tone is increased in both subregions. Intra-VTA antagonism of CRF-R1 in the pVTA and CRF-R2 in the aVTA during each social defeat prevented escalated cocaine self-administration in a 24 h "binge." VTA CRF continues to influence cocaine seeking in stressed animals long after social defeat exposure. Unlike nonstressed controls, previously stressed rats show significant cocaine seeking after 15 d of forced abstinence. Previously stressed rats continue to express elevated CRF tone within the VTA and antagonism of pVTA CRF-R1 or aVTA CRF-R2 reverses cocaine seeking.
Intra-VTA antagonism of pVTA CRF -R1 and aVTA CRF -R2 prevented escalated cocaine self-administration in rats after forced abstinence.In conclusion
contradiction
Intermittent social defeat stress escalates later cocaine self-administration. Reward and stress both activate ventral tegmental area (VTA) dopamine neurons, increasing downstream extracellular dopamine concentration in the medial prefrontal cortex and nucleus accumbens. The stress neuropeptide corticotropin releasing factor (CRF) and its receptors (CRF-R1, CRF-R2) are located in the VTA and influence dopaminergic activity. These experiments explore how CRF release and the activation of its receptors within the VTA both during and after stress influence later cocaine self-administration in rats.In vivo microdialysis of CRF in the VTA demonstrated that CRF is phasically released in the posterior VTA (pVTA) during acute defeat, but, with repeated defeat, CRF is recruited into the anterior VTA (aVTA) and CRF tone is increased in both subregions. Intra-VTA antagonism of CRF-R1 in the pVTA and CRF-R2 in the aVTA during each social defeat prevented escalated cocaine self-administration in a 24 h "binge." VTA CRF continues to influence cocaine seeking in stressed animals long after social defeat exposure. Unlike nonstressed controls, previously stressed rats show significant cocaine seeking after 15 d of forced abstinence. Previously stressed rats continue to express elevated CRF tone within the VTA and antagonism of pVTA CRF-R1 or aVTA CRF-R2 reverses cocaine seeking.
In conclusion, these experiments demonstrate neuroadaptive changes in tonic and phasic CRF with repeated stress, that CRF release during stress may contribute to later escalated cocaine taking, and that persistently elevated CRF tone in the VTA may drive later cocaine seeking through increased activation of pVTA CRF -R1 and aVTA CRF -R2.
entailment
Photoactivation of vertebrate rhodopsin converts it to the physiologically active Meta II (R*) state, which triggers the rod light response. Meta II is rapidly inactivated by the phosphorylation of C-terminal serine and threonine residues by G-protein receptor kinase (Grk1) and subsequent binding of arrestin 1 (Arr1). Meta II exists in equilibrium with the more stable inactive form of rhodopsin, Meta III. Dark adaptation of rods requires the complete thermal decay of Meta II/Meta III into opsin and all-trans retinal and the subsequent regeneration of rhodopsin with 11-cis retinal chromophore. In this study, we examine the regulation of Meta III decay by Grk1 and Arr1 in intact mouse rods and their effect on rod dark adaptation. We measure the rates of Meta III decay in isolated retinas of wild-type (WT), Grk1-deficient (Grk1(-/-)), Arr1-deficient (Arr1(-/-)), and Arr1-overexpressing (Arr1(ox)) mice. We find that in WT mouse rods, Meta III peaks ∼6 min after rhodopsin activation and decays with a time constant (τ) of 17 min. Meta III decay slows in Arr1(-/-) rods (τ of ∼27 min), whereas it accelerates in Arr1(ox) rods (τ of ∼8 min) and Grk1(-/-) rods (τ of ∼13 min). In all cases, regeneration of rhodopsin with exogenous 11-cis retinal is rate limited by the decay of Meta III. Notably, the kinetics of rod dark adaptation in vivo is also modulated by the levels of Arr1 and Grk1.
We conclude that, in addition to their well-established roles in Grk1 II inactivation, Meta and Arr1 can modulate the kinetics of Grk1 III decay and rod dark adaptation in vivo.
contradiction
Photoactivation of vertebrate rhodopsin converts it to the physiologically active Meta II (R*) state, which triggers the rod light response. Meta II is rapidly inactivated by the phosphorylation of C-terminal serine and threonine residues by G-protein receptor kinase (Grk1) and subsequent binding of arrestin 1 (Arr1). Meta II exists in equilibrium with the more stable inactive form of rhodopsin, Meta III. Dark adaptation of rods requires the complete thermal decay of Meta II/Meta III into opsin and all-trans retinal and the subsequent regeneration of rhodopsin with 11-cis retinal chromophore. In this study, we examine the regulation of Meta III decay by Grk1 and Arr1 in intact mouse rods and their effect on rod dark adaptation. We measure the rates of Meta III decay in isolated retinas of wild-type (WT), Grk1-deficient (Grk1(-/-)), Arr1-deficient (Arr1(-/-)), and Arr1-overexpressing (Arr1(ox)) mice. We find that in WT mouse rods, Meta III peaks ∼6 min after rhodopsin activation and decays with a time constant (τ) of 17 min. Meta III decay slows in Arr1(-/-) rods (τ of ∼27 min), whereas it accelerates in Arr1(ox) rods (τ of ∼8 min) and Grk1(-/-) rods (τ of ∼13 min). In all cases, regeneration of rhodopsin with exogenous 11-cis retinal is rate limited by the decay of Meta III. Notably, the kinetics of rod dark adaptation in vivo is also modulated by the levels of Arr1 and Grk1.
We conclude that, in addition to their well-established roles in Meta II inactivation, type 2 angiotensin and Arr1 can modulate the kinetics of Meta III decay and rod dark adaptation in vivo.
contradiction
Photoactivation of vertebrate rhodopsin converts it to the physiologically active Meta II (R*) state, which triggers the rod light response. Meta II is rapidly inactivated by the phosphorylation of C-terminal serine and threonine residues by G-protein receptor kinase (Grk1) and subsequent binding of arrestin 1 (Arr1). Meta II exists in equilibrium with the more stable inactive form of rhodopsin, Meta III. Dark adaptation of rods requires the complete thermal decay of Meta II/Meta III into opsin and all-trans retinal and the subsequent regeneration of rhodopsin with 11-cis retinal chromophore. In this study, we examine the regulation of Meta III decay by Grk1 and Arr1 in intact mouse rods and their effect on rod dark adaptation. We measure the rates of Meta III decay in isolated retinas of wild-type (WT), Grk1-deficient (Grk1(-/-)), Arr1-deficient (Arr1(-/-)), and Arr1-overexpressing (Arr1(ox)) mice. We find that in WT mouse rods, Meta III peaks ∼6 min after rhodopsin activation and decays with a time constant (τ) of 17 min. Meta III decay slows in Arr1(-/-) rods (τ of ∼27 min), whereas it accelerates in Arr1(ox) rods (τ of ∼8 min) and Grk1(-/-) rods (τ of ∼13 min). In all cases, regeneration of rhodopsin with exogenous 11-cis retinal is rate limited by the decay of Meta III. Notably, the kinetics of rod dark adaptation in vivo is also modulated by the levels of Arr1 and Grk1.
We conclude that, in addition to their well-established roles in Meta II inactivation, Grk1 and Arr1 cannot modulate the kinetics of Meta III decay and rod dark adaptation in vivo.
contradiction
Photoactivation of vertebrate rhodopsin converts it to the physiologically active Meta II (R*) state, which triggers the rod light response. Meta II is rapidly inactivated by the phosphorylation of C-terminal serine and threonine residues by G-protein receptor kinase (Grk1) and subsequent binding of arrestin 1 (Arr1). Meta II exists in equilibrium with the more stable inactive form of rhodopsin, Meta III. Dark adaptation of rods requires the complete thermal decay of Meta II/Meta III into opsin and all-trans retinal and the subsequent regeneration of rhodopsin with 11-cis retinal chromophore. In this study, we examine the regulation of Meta III decay by Grk1 and Arr1 in intact mouse rods and their effect on rod dark adaptation. We measure the rates of Meta III decay in isolated retinas of wild-type (WT), Grk1-deficient (Grk1(-/-)), Arr1-deficient (Arr1(-/-)), and Arr1-overexpressing (Arr1(ox)) mice. We find that in WT mouse rods, Meta III peaks ∼6 min after rhodopsin activation and decays with a time constant (τ) of 17 min. Meta III decay slows in Arr1(-/-) rods (τ of ∼27 min), whereas it accelerates in Arr1(ox) rods (τ of ∼8 min) and Grk1(-/-) rods (τ of ∼13 min). In all cases, regeneration of rhodopsin with exogenous 11-cis retinal is rate limited by the decay of Meta III. Notably, the kinetics of rod dark adaptation in vivo is also modulated by the levels of Arr1 and Grk1.
We conclude that, in addition to their well-established roles in Grk1 II inactivation, Meta and Arr1 can modulate the kinetics of Grk1 III decay and rod dark adaptation in vivo.
contradiction
Photoactivation of vertebrate rhodopsin converts it to the physiologically active Meta II (R*) state, which triggers the rod light response. Meta II is rapidly inactivated by the phosphorylation of C-terminal serine and threonine residues by G-protein receptor kinase (Grk1) and subsequent binding of arrestin 1 (Arr1). Meta II exists in equilibrium with the more stable inactive form of rhodopsin, Meta III. Dark adaptation of rods requires the complete thermal decay of Meta II/Meta III into opsin and all-trans retinal and the subsequent regeneration of rhodopsin with 11-cis retinal chromophore. In this study, we examine the regulation of Meta III decay by Grk1 and Arr1 in intact mouse rods and their effect on rod dark adaptation. We measure the rates of Meta III decay in isolated retinas of wild-type (WT), Grk1-deficient (Grk1(-/-)), Arr1-deficient (Arr1(-/-)), and Arr1-overexpressing (Arr1(ox)) mice. We find that in WT mouse rods, Meta III peaks ∼6 min after rhodopsin activation and decays with a time constant (τ) of 17 min. Meta III decay slows in Arr1(-/-) rods (τ of ∼27 min), whereas it accelerates in Arr1(ox) rods (τ of ∼8 min) and Grk1(-/-) rods (τ of ∼13 min). In all cases, regeneration of rhodopsin with exogenous 11-cis retinal is rate limited by the decay of Meta III. Notably, the kinetics of rod dark adaptation in vivo is also modulated by the levels of Arr1 and Grk1.
We conclude that Meta III decay is regulated by Grk1 and Arr1.
contradiction
Photoactivation of vertebrate rhodopsin converts it to the physiologically active Meta II (R*) state, which triggers the rod light response. Meta II is rapidly inactivated by the phosphorylation of C-terminal serine and threonine residues by G-protein receptor kinase (Grk1) and subsequent binding of arrestin 1 (Arr1). Meta II exists in equilibrium with the more stable inactive form of rhodopsin, Meta III. Dark adaptation of rods requires the complete thermal decay of Meta II/Meta III into opsin and all-trans retinal and the subsequent regeneration of rhodopsin with 11-cis retinal chromophore. In this study, we examine the regulation of Meta III decay by Grk1 and Arr1 in intact mouse rods and their effect on rod dark adaptation. We measure the rates of Meta III decay in isolated retinas of wild-type (WT), Grk1-deficient (Grk1(-/-)), Arr1-deficient (Arr1(-/-)), and Arr1-overexpressing (Arr1(ox)) mice. We find that in WT mouse rods, Meta III peaks ∼6 min after rhodopsin activation and decays with a time constant (τ) of 17 min. Meta III decay slows in Arr1(-/-) rods (τ of ∼27 min), whereas it accelerates in Arr1(ox) rods (τ of ∼8 min) and Grk1(-/-) rods (τ of ∼13 min). In all cases, regeneration of rhodopsin with exogenous 11-cis retinal is rate limited by the decay of Meta III. Notably, the kinetics of rod dark adaptation in vivo is also modulated by the levels of Arr1 and Grk1.
We conclude that, in addition to their well-established roles in Meta II inactivation, Grk1 and Arr1 can modulate the kinetics of Meta III decay and rod dark adaptation in vivo.
entailment
Leptin is involved in various reproductive processes in humans and rodents, including placental development and function. The specific ways that leptin influences placental development and function in cattle are poorly understood. This work was completed to explore how leptin regulates hormone, cytokine and metalloprotease transcript abundance, and cell proliferation in cultured bovine trophoblast cells. In the first set of studies, cells were cultured in the presence of graded recombinant bovine leptin concentrations (0, 10, 50, 250 ng/mL) for 6 or 24 h. Transcript profiles were examined from extracted RNA. Leptin supplementation did not affect abundance of the maternal recognition of pregnancy factor, interferon-tau (IFNT), but leptin increased (P < 0.05) abundance of chorionic somatomammotropin hormone 2 (CSH2; ie, placental lactogen) at both 6 and 24 h at each concentration tested. At 24 h, the greatest CSH2 abundance (P < 0.05) was detected in cells supplemented with 50 ng/mL leptin. Transcript abundance of the remodeling factor, metalloprotease 2 (MMP2), was greater (P < 0.05) in leptin-treated cells at 24 h but not at 6 h. The 24 h MMP2 response was greatest (P < 0.05) at 250 ng/mL. Transcript abundance for MMP9 was not altered by leptin treatment. In a separate set of studies, cell proliferation assays were completed. Leptin supplementation did not affect bovine trophoblast cell line proliferation at any dose tested.
In conclusion, CSH2 supplementation did not affect bovine trophoblast cell proliferation or IFNT expression, but CSH2 increases leptin and MMP2 transcript abundance.
contradiction
Leptin is involved in various reproductive processes in humans and rodents, including placental development and function. The specific ways that leptin influences placental development and function in cattle are poorly understood. This work was completed to explore how leptin regulates hormone, cytokine and metalloprotease transcript abundance, and cell proliferation in cultured bovine trophoblast cells. In the first set of studies, cells were cultured in the presence of graded recombinant bovine leptin concentrations (0, 10, 50, 250 ng/mL) for 6 or 24 h. Transcript profiles were examined from extracted RNA. Leptin supplementation did not affect abundance of the maternal recognition of pregnancy factor, interferon-tau (IFNT), but leptin increased (P < 0.05) abundance of chorionic somatomammotropin hormone 2 (CSH2; ie, placental lactogen) at both 6 and 24 h at each concentration tested. At 24 h, the greatest CSH2 abundance (P < 0.05) was detected in cells supplemented with 50 ng/mL leptin. Transcript abundance of the remodeling factor, metalloprotease 2 (MMP2), was greater (P < 0.05) in leptin-treated cells at 24 h but not at 6 h. The 24 h MMP2 response was greatest (P < 0.05) at 250 ng/mL. Transcript abundance for MMP9 was not altered by leptin treatment. In a separate set of studies, cell proliferation assays were completed. Leptin supplementation did not affect bovine trophoblast cell line proliferation at any dose tested.
In conclusion, leptin increases CSH2 abundance in bovine trophoblast cells.
contradiction
Leptin is involved in various reproductive processes in humans and rodents, including placental development and function. The specific ways that leptin influences placental development and function in cattle are poorly understood. This work was completed to explore how leptin regulates hormone, cytokine and metalloprotease transcript abundance, and cell proliferation in cultured bovine trophoblast cells. In the first set of studies, cells were cultured in the presence of graded recombinant bovine leptin concentrations (0, 10, 50, 250 ng/mL) for 6 or 24 h. Transcript profiles were examined from extracted RNA. Leptin supplementation did not affect abundance of the maternal recognition of pregnancy factor, interferon-tau (IFNT), but leptin increased (P < 0.05) abundance of chorionic somatomammotropin hormone 2 (CSH2; ie, placental lactogen) at both 6 and 24 h at each concentration tested. At 24 h, the greatest CSH2 abundance (P < 0.05) was detected in cells supplemented with 50 ng/mL leptin. Transcript abundance of the remodeling factor, metalloprotease 2 (MMP2), was greater (P < 0.05) in leptin-treated cells at 24 h but not at 6 h. The 24 h MMP2 response was greatest (P < 0.05) at 250 ng/mL. Transcript abundance for MMP9 was not altered by leptin treatment. In a separate set of studies, cell proliferation assays were completed. Leptin supplementation did not affect bovine trophoblast cell line proliferation at any dose tested.
In conclusion, leptin increases CSH2 abundance in bovine trophoblast cells.
contradiction
Leptin is involved in various reproductive processes in humans and rodents, including placental development and function. The specific ways that leptin influences placental development and function in cattle are poorly understood. This work was completed to explore how leptin regulates hormone, cytokine and metalloprotease transcript abundance, and cell proliferation in cultured bovine trophoblast cells. In the first set of studies, cells were cultured in the presence of graded recombinant bovine leptin concentrations (0, 10, 50, 250 ng/mL) for 6 or 24 h. Transcript profiles were examined from extracted RNA. Leptin supplementation did not affect abundance of the maternal recognition of pregnancy factor, interferon-tau (IFNT), but leptin increased (P < 0.05) abundance of chorionic somatomammotropin hormone 2 (CSH2; ie, placental lactogen) at both 6 and 24 h at each concentration tested. At 24 h, the greatest CSH2 abundance (P < 0.05) was detected in cells supplemented with 50 ng/mL leptin. Transcript abundance of the remodeling factor, metalloprotease 2 (MMP2), was greater (P < 0.05) in leptin-treated cells at 24 h but not at 6 h. The 24 h MMP2 response was greatest (P < 0.05) at 250 ng/mL. Transcript abundance for MMP9 was not altered by leptin treatment. In a separate set of studies, cell proliferation assays were completed. Leptin supplementation did not affect bovine trophoblast cell line proliferation at any dose tested.
In conclusion, CSH2 supplementation did not affect bovine trophoblast cell proliferation or IFNT expression, but CSH2 increases leptin and MMP2 transcript abundance.
contradiction
Leptin is involved in various reproductive processes in humans and rodents, including placental development and function. The specific ways that leptin influences placental development and function in cattle are poorly understood. This work was completed to explore how leptin regulates hormone, cytokine and metalloprotease transcript abundance, and cell proliferation in cultured bovine trophoblast cells. In the first set of studies, cells were cultured in the presence of graded recombinant bovine leptin concentrations (0, 10, 50, 250 ng/mL) for 6 or 24 h. Transcript profiles were examined from extracted RNA. Leptin supplementation did not affect abundance of the maternal recognition of pregnancy factor, interferon-tau (IFNT), but leptin increased (P < 0.05) abundance of chorionic somatomammotropin hormone 2 (CSH2; ie, placental lactogen) at both 6 and 24 h at each concentration tested. At 24 h, the greatest CSH2 abundance (P < 0.05) was detected in cells supplemented with 50 ng/mL leptin. Transcript abundance of the remodeling factor, metalloprotease 2 (MMP2), was greater (P < 0.05) in leptin-treated cells at 24 h but not at 6 h. The 24 h MMP2 response was greatest (P < 0.05) at 250 ng/mL. Transcript abundance for MMP9 was not altered by leptin treatment. In a separate set of studies, cell proliferation assays were completed. Leptin supplementation did not affect bovine trophoblast cell line proliferation at any dose tested.
In conclusion, S100A9 supplementation did not affect bovine trophoblast cell proliferation or IFNT expression, but S100A9 increases CSH2 and MMP2 transcript abundance.
contradiction
Leptin is involved in various reproductive processes in humans and rodents, including placental development and function. The specific ways that leptin influences placental development and function in cattle are poorly understood. This work was completed to explore how leptin regulates hormone, cytokine and metalloprotease transcript abundance, and cell proliferation in cultured bovine trophoblast cells. In the first set of studies, cells were cultured in the presence of graded recombinant bovine leptin concentrations (0, 10, 50, 250 ng/mL) for 6 or 24 h. Transcript profiles were examined from extracted RNA. Leptin supplementation did not affect abundance of the maternal recognition of pregnancy factor, interferon-tau (IFNT), but leptin increased (P < 0.05) abundance of chorionic somatomammotropin hormone 2 (CSH2; ie, placental lactogen) at both 6 and 24 h at each concentration tested. At 24 h, the greatest CSH2 abundance (P < 0.05) was detected in cells supplemented with 50 ng/mL leptin. Transcript abundance of the remodeling factor, metalloprotease 2 (MMP2), was greater (P < 0.05) in leptin-treated cells at 24 h but not at 6 h. The 24 h MMP2 response was greatest (P < 0.05) at 250 ng/mL. Transcript abundance for MMP9 was not altered by leptin treatment. In a separate set of studies, cell proliferation assays were completed. Leptin supplementation did not affect bovine trophoblast cell line proliferation at any dose tested.
In conclusion, leptin supplementation did not affect bovine trophoblast cell proliferation or IFNT expression, but leptin increases CSH2 and MMP2 transcript abundance.
entailment
In Drosophila ovary, germline stem cells (GSCs) divide to produce two daughter cells. One daughter is maintained as a GSC, whereas the other initiates cyst formation, a process involving four synchronous mitotic divisions that form 2-, 4-, 8-, and 16-cell cysts. In this study, we found that reduction in the level of NHP2, a component of the H/ACA small nucleolar ribonucleoprotein complex that catalyzes rRNA pseudouridylation, promotes progression to 8-cell cysts. NHP2 protein was concentrated in the nucleoli of germline cells during cyst formation. NHP2 expression, as well as the nucleolar size, abruptly decreased during progression from 2-cell to 4-cell cysts. Reduction in NHP2 activity in the germline caused accumulation of 4- and 8-cell cysts and decreased the number of single cells. In addition, NHP2 knockdown impaired the transition to 16-cell cysts. Furthermore, a tumorous phenotype caused by Sex-lethal (Sxl) knockdown, which is characterized by accumulation of single and two-cell cysts, was partially rescued by NHP2 knockdown. When Sxl and NHP2 activities were concomitantly repressed, the numbers of four- and eight-cell cysts were increased. In addition, Sxl protein physically interacted with NHP2 mRNA in ovaries.
Thus, it is reasonable to conclude that Sxl represses NHP2 activity at the post-transcriptional level to promote proper cyst formation.
entailment
In Drosophila ovary, germline stem cells (GSCs) divide to produce two daughter cells. One daughter is maintained as a GSC, whereas the other initiates cyst formation, a process involving four synchronous mitotic divisions that form 2-, 4-, 8-, and 16-cell cysts. In this study, we found that reduction in the level of NHP2, a component of the H/ACA small nucleolar ribonucleoprotein complex that catalyzes rRNA pseudouridylation, promotes progression to 8-cell cysts. NHP2 protein was concentrated in the nucleoli of germline cells during cyst formation. NHP2 expression, as well as the nucleolar size, abruptly decreased during progression from 2-cell to 4-cell cysts. Reduction in NHP2 activity in the germline caused accumulation of 4- and 8-cell cysts and decreased the number of single cells. In addition, NHP2 knockdown impaired the transition to 16-cell cysts. Furthermore, a tumorous phenotype caused by Sex-lethal (Sxl) knockdown, which is characterized by accumulation of single and two-cell cysts, was partially rescued by NHP2 knockdown. When Sxl and NHP2 activities were concomitantly repressed, the numbers of four- and eight-cell cysts were increased. In addition, Sxl protein physically interacted with NHP2 mRNA in ovaries.
We conclude that NHP2 promotes cyst formation by inhibiting Sxl .
contradiction
In Drosophila ovary, germline stem cells (GSCs) divide to produce two daughter cells. One daughter is maintained as a GSC, whereas the other initiates cyst formation, a process involving four synchronous mitotic divisions that form 2-, 4-, 8-, and 16-cell cysts. In this study, we found that reduction in the level of NHP2, a component of the H/ACA small nucleolar ribonucleoprotein complex that catalyzes rRNA pseudouridylation, promotes progression to 8-cell cysts. NHP2 protein was concentrated in the nucleoli of germline cells during cyst formation. NHP2 expression, as well as the nucleolar size, abruptly decreased during progression from 2-cell to 4-cell cysts. Reduction in NHP2 activity in the germline caused accumulation of 4- and 8-cell cysts and decreased the number of single cells. In addition, NHP2 knockdown impaired the transition to 16-cell cysts. Furthermore, a tumorous phenotype caused by Sex-lethal (Sxl) knockdown, which is characterized by accumulation of single and two-cell cysts, was partially rescued by NHP2 knockdown. When Sxl and NHP2 activities were concomitantly repressed, the numbers of four- and eight-cell cysts were increased. In addition, Sxl protein physically interacted with NHP2 mRNA in ovaries.
Thus, it is reasonable to conclude that NHP2 represses Sxl activity at the post-transcriptional level to promote proper cyst formation.
contradiction
In Drosophila ovary, germline stem cells (GSCs) divide to produce two daughter cells. One daughter is maintained as a GSC, whereas the other initiates cyst formation, a process involving four synchronous mitotic divisions that form 2-, 4-, 8-, and 16-cell cysts. In this study, we found that reduction in the level of NHP2, a component of the H/ACA small nucleolar ribonucleoprotein complex that catalyzes rRNA pseudouridylation, promotes progression to 8-cell cysts. NHP2 protein was concentrated in the nucleoli of germline cells during cyst formation. NHP2 expression, as well as the nucleolar size, abruptly decreased during progression from 2-cell to 4-cell cysts. Reduction in NHP2 activity in the germline caused accumulation of 4- and 8-cell cysts and decreased the number of single cells. In addition, NHP2 knockdown impaired the transition to 16-cell cysts. Furthermore, a tumorous phenotype caused by Sex-lethal (Sxl) knockdown, which is characterized by accumulation of single and two-cell cysts, was partially rescued by NHP2 knockdown. When Sxl and NHP2 activities were concomitantly repressed, the numbers of four- and eight-cell cysts were increased. In addition, Sxl protein physically interacted with NHP2 mRNA in ovaries.
Thus, it is reasonable to conclude that Sxl represses P167 activity at the post-transcriptional level to promote proper cyst formation.
contradiction
In Drosophila ovary, germline stem cells (GSCs) divide to produce two daughter cells. One daughter is maintained as a GSC, whereas the other initiates cyst formation, a process involving four synchronous mitotic divisions that form 2-, 4-, 8-, and 16-cell cysts. In this study, we found that reduction in the level of NHP2, a component of the H/ACA small nucleolar ribonucleoprotein complex that catalyzes rRNA pseudouridylation, promotes progression to 8-cell cysts. NHP2 protein was concentrated in the nucleoli of germline cells during cyst formation. NHP2 expression, as well as the nucleolar size, abruptly decreased during progression from 2-cell to 4-cell cysts. Reduction in NHP2 activity in the germline caused accumulation of 4- and 8-cell cysts and decreased the number of single cells. In addition, NHP2 knockdown impaired the transition to 16-cell cysts. Furthermore, a tumorous phenotype caused by Sex-lethal (Sxl) knockdown, which is characterized by accumulation of single and two-cell cysts, was partially rescued by NHP2 knockdown. When Sxl and NHP2 activities were concomitantly repressed, the numbers of four- and eight-cell cysts were increased. In addition, Sxl protein physically interacted with NHP2 mRNA in ovaries.
We conclude that NHP2 promotes cyst formation by inhibiting Sxl .
contradiction
In Drosophila ovary, germline stem cells (GSCs) divide to produce two daughter cells. One daughter is maintained as a GSC, whereas the other initiates cyst formation, a process involving four synchronous mitotic divisions that form 2-, 4-, 8-, and 16-cell cysts. In this study, we found that reduction in the level of NHP2, a component of the H/ACA small nucleolar ribonucleoprotein complex that catalyzes rRNA pseudouridylation, promotes progression to 8-cell cysts. NHP2 protein was concentrated in the nucleoli of germline cells during cyst formation. NHP2 expression, as well as the nucleolar size, abruptly decreased during progression from 2-cell to 4-cell cysts. Reduction in NHP2 activity in the germline caused accumulation of 4- and 8-cell cysts and decreased the number of single cells. In addition, NHP2 knockdown impaired the transition to 16-cell cysts. Furthermore, a tumorous phenotype caused by Sex-lethal (Sxl) knockdown, which is characterized by accumulation of single and two-cell cysts, was partially rescued by NHP2 knockdown. When Sxl and NHP2 activities were concomitantly repressed, the numbers of four- and eight-cell cysts were increased. In addition, Sxl protein physically interacted with NHP2 mRNA in ovaries.
Thus, it is not reasonable to conclude that Sxl represses NHP2 activity at the post-transcriptional level to promote proper cyst formation.
contradiction
In Drosophila ovary, germline stem cells (GSCs) divide to produce two daughter cells. One daughter is maintained as a GSC, whereas the other initiates cyst formation, a process involving four synchronous mitotic divisions that form 2-, 4-, 8-, and 16-cell cysts. In this study, we found that reduction in the level of NHP2, a component of the H/ACA small nucleolar ribonucleoprotein complex that catalyzes rRNA pseudouridylation, promotes progression to 8-cell cysts. NHP2 protein was concentrated in the nucleoli of germline cells during cyst formation. NHP2 expression, as well as the nucleolar size, abruptly decreased during progression from 2-cell to 4-cell cysts. Reduction in NHP2 activity in the germline caused accumulation of 4- and 8-cell cysts and decreased the number of single cells. In addition, NHP2 knockdown impaired the transition to 16-cell cysts. Furthermore, a tumorous phenotype caused by Sex-lethal (Sxl) knockdown, which is characterized by accumulation of single and two-cell cysts, was partially rescued by NHP2 knockdown. When Sxl and NHP2 activities were concomitantly repressed, the numbers of four- and eight-cell cysts were increased. In addition, Sxl protein physically interacted with NHP2 mRNA in ovaries.
Thus, it is reasonable to conclude that NHP2 represses Sxl activity at the post-transcriptional level to promote proper cyst formation.
contradiction
Vascular inflammation plays a critical role in the pathogenesis of diabetic retinopathy. Recently, Interleukin-6 (IL-6) trans-signaling via soluble IL-6 receptor (sIL-6R) has emerged as a prominent regulator of inflammation in endothelial cells. This study was designed to test the hypothesis that selective inhibition of the IL-6 trans-signaling pathway will attenuate inflammation and subsequent barrier disruption in retinal endothelial cells. Human retinal endothelial cells (HRECs) were exposed to IL-6 and sIL-6R to induce IL-6 trans-signaling and the commercially available compound sgp130Fc (soluble gp-130 fused chimera) was used to selectively inhibit IL-6 trans-signaling. IL-6 trans-signaling activation caused a significant increase in STAT3 phosphorylation, expression of adhesion molecules, ROS production and apoptosis in HRECs whereas a significant decrease in mitochondrial membrane potential and NO production was observed in IL-6 trans-signaling activated cells. These changes were not observed in cells pre-treated with sgp130Fc. IL-6 trans-signaling activation was sufficient to cause barrier disruption in endothelial monolayers and pre-treatment of HRECs with sgp130Fc, maintained endothelial barrier function similar to that of untreated cells.
In conclusion, sgp130Fc selectively inhibits IL-6 trans-signaling mediated inflammation and subsequent barrier disruption in retinal endothelial cells.
contradiction
Vascular inflammation plays a critical role in the pathogenesis of diabetic retinopathy. Recently, Interleukin-6 (IL-6) trans-signaling via soluble IL-6 receptor (sIL-6R) has emerged as a prominent regulator of inflammation in endothelial cells. This study was designed to test the hypothesis that selective inhibition of the IL-6 trans-signaling pathway will attenuate inflammation and subsequent barrier disruption in retinal endothelial cells. Human retinal endothelial cells (HRECs) were exposed to IL-6 and sIL-6R to induce IL-6 trans-signaling and the commercially available compound sgp130Fc (soluble gp-130 fused chimera) was used to selectively inhibit IL-6 trans-signaling. IL-6 trans-signaling activation caused a significant increase in STAT3 phosphorylation, expression of adhesion molecules, ROS production and apoptosis in HRECs whereas a significant decrease in mitochondrial membrane potential and NO production was observed in IL-6 trans-signaling activated cells. These changes were not observed in cells pre-treated with sgp130Fc. IL-6 trans-signaling activation was sufficient to cause barrier disruption in endothelial monolayers and pre-treatment of HRECs with sgp130Fc, maintained endothelial barrier function similar to that of untreated cells.
Thus, in conclusion, these results indicate that vascular adrenergic trans-signaling is an important mediator of inflammation , apoptosis and barrier disruptive effects in the retinal endothelial cells and inhibition of the vascular adrenergic trans-signaling pathway using sgp130-Fc attenuates vascular inflammation and endothelial barrier disruption.
contradiction
Vascular inflammation plays a critical role in the pathogenesis of diabetic retinopathy. Recently, Interleukin-6 (IL-6) trans-signaling via soluble IL-6 receptor (sIL-6R) has emerged as a prominent regulator of inflammation in endothelial cells. This study was designed to test the hypothesis that selective inhibition of the IL-6 trans-signaling pathway will attenuate inflammation and subsequent barrier disruption in retinal endothelial cells. Human retinal endothelial cells (HRECs) were exposed to IL-6 and sIL-6R to induce IL-6 trans-signaling and the commercially available compound sgp130Fc (soluble gp-130 fused chimera) was used to selectively inhibit IL-6 trans-signaling. IL-6 trans-signaling activation caused a significant increase in STAT3 phosphorylation, expression of adhesion molecules, ROS production and apoptosis in HRECs whereas a significant decrease in mitochondrial membrane potential and NO production was observed in IL-6 trans-signaling activated cells. These changes were not observed in cells pre-treated with sgp130Fc. IL-6 trans-signaling activation was sufficient to cause barrier disruption in endothelial monolayers and pre-treatment of HRECs with sgp130Fc, maintained endothelial barrier function similar to that of untreated cells.
Thus, in conclusion, these results indicate that IL-6 trans-signaling is an important mediator of inflammation , apoptosis and barrier disruptive effects in the retinal endothelial cells and inhibition of the IL-6 trans-signaling pathway using sgp130-Fc attenuates vascular inflammation and endothelial barrier disruption.
entailment
Vascular inflammation plays a critical role in the pathogenesis of diabetic retinopathy. Recently, Interleukin-6 (IL-6) trans-signaling via soluble IL-6 receptor (sIL-6R) has emerged as a prominent regulator of inflammation in endothelial cells. This study was designed to test the hypothesis that selective inhibition of the IL-6 trans-signaling pathway will attenuate inflammation and subsequent barrier disruption in retinal endothelial cells. Human retinal endothelial cells (HRECs) were exposed to IL-6 and sIL-6R to induce IL-6 trans-signaling and the commercially available compound sgp130Fc (soluble gp-130 fused chimera) was used to selectively inhibit IL-6 trans-signaling. IL-6 trans-signaling activation caused a significant increase in STAT3 phosphorylation, expression of adhesion molecules, ROS production and apoptosis in HRECs whereas a significant decrease in mitochondrial membrane potential and NO production was observed in IL-6 trans-signaling activated cells. These changes were not observed in cells pre-treated with sgp130Fc. IL-6 trans-signaling activation was sufficient to cause barrier disruption in endothelial monolayers and pre-treatment of HRECs with sgp130Fc, maintained endothelial barrier function similar to that of untreated cells.
Thus, in conclusion, these results indicate that IL-6 trans-signaling is an important mediator of inflammation , apoptosis and barrier disruptive effects in the retinal endothelial cells and promotion of the IL-6 trans-signaling pathway using sgp130-Fc attenuates vascular inflammation and endothelial barrier disruption.
contradiction
Vascular inflammation plays a critical role in the pathogenesis of diabetic retinopathy. Recently, Interleukin-6 (IL-6) trans-signaling via soluble IL-6 receptor (sIL-6R) has emerged as a prominent regulator of inflammation in endothelial cells. This study was designed to test the hypothesis that selective inhibition of the IL-6 trans-signaling pathway will attenuate inflammation and subsequent barrier disruption in retinal endothelial cells. Human retinal endothelial cells (HRECs) were exposed to IL-6 and sIL-6R to induce IL-6 trans-signaling and the commercially available compound sgp130Fc (soluble gp-130 fused chimera) was used to selectively inhibit IL-6 trans-signaling. IL-6 trans-signaling activation caused a significant increase in STAT3 phosphorylation, expression of adhesion molecules, ROS production and apoptosis in HRECs whereas a significant decrease in mitochondrial membrane potential and NO production was observed in IL-6 trans-signaling activated cells. These changes were not observed in cells pre-treated with sgp130Fc. IL-6 trans-signaling activation was sufficient to cause barrier disruption in endothelial monolayers and pre-treatment of HRECs with sgp130Fc, maintained endothelial barrier function similar to that of untreated cells.
Thus, in conclusion, these results indicate that inflammation trans-signaling is an important mediator of IL-6 , apoptosis and barrier disruptive effects in the retinal endothelial cells and inhibition of the inflammation trans-signaling pathway using sgp130-Fc attenuates vascular IL-6 and endothelial barrier disruption.
contradiction
Vascular inflammation plays a critical role in the pathogenesis of diabetic retinopathy. Recently, Interleukin-6 (IL-6) trans-signaling via soluble IL-6 receptor (sIL-6R) has emerged as a prominent regulator of inflammation in endothelial cells. This study was designed to test the hypothesis that selective inhibition of the IL-6 trans-signaling pathway will attenuate inflammation and subsequent barrier disruption in retinal endothelial cells. Human retinal endothelial cells (HRECs) were exposed to IL-6 and sIL-6R to induce IL-6 trans-signaling and the commercially available compound sgp130Fc (soluble gp-130 fused chimera) was used to selectively inhibit IL-6 trans-signaling. IL-6 trans-signaling activation caused a significant increase in STAT3 phosphorylation, expression of adhesion molecules, ROS production and apoptosis in HRECs whereas a significant decrease in mitochondrial membrane potential and NO production was observed in IL-6 trans-signaling activated cells. These changes were not observed in cells pre-treated with sgp130Fc. IL-6 trans-signaling activation was sufficient to cause barrier disruption in endothelial monolayers and pre-treatment of HRECs with sgp130Fc, maintained endothelial barrier function similar to that of untreated cells.
Thus, in conclusion, these results indicate that inflammation trans-signaling is an important mediator of IL-6 , apoptosis and barrier disruptive effects in the retinal endothelial cells and inhibition of the inflammation trans-signaling pathway using sgp130-Fc attenuates vascular IL-6 and endothelial barrier disruption.
contradiction
Vascular inflammation plays a critical role in the pathogenesis of diabetic retinopathy. Recently, Interleukin-6 (IL-6) trans-signaling via soluble IL-6 receptor (sIL-6R) has emerged as a prominent regulator of inflammation in endothelial cells. This study was designed to test the hypothesis that selective inhibition of the IL-6 trans-signaling pathway will attenuate inflammation and subsequent barrier disruption in retinal endothelial cells. Human retinal endothelial cells (HRECs) were exposed to IL-6 and sIL-6R to induce IL-6 trans-signaling and the commercially available compound sgp130Fc (soluble gp-130 fused chimera) was used to selectively inhibit IL-6 trans-signaling. IL-6 trans-signaling activation caused a significant increase in STAT3 phosphorylation, expression of adhesion molecules, ROS production and apoptosis in HRECs whereas a significant decrease in mitochondrial membrane potential and NO production was observed in IL-6 trans-signaling activated cells. These changes were not observed in cells pre-treated with sgp130Fc. IL-6 trans-signaling activation was sufficient to cause barrier disruption in endothelial monolayers and pre-treatment of HRECs with sgp130Fc, maintained endothelial barrier function similar to that of untreated cells.
Thus, in conclusion, these results indicate that IL-6 trans-signaling is not an important mediator of inflammation , apoptosis and barrier disruptive effects in the retinal endothelial cells and inhibition of the IL-6 trans-signaling pathway using sgp130-Fc attenuates vascular inflammation and endothelial barrier disruption.
contradiction
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway has emerged as a cancer therapeutic target. However, clinical trials have proven that most human cancers are resistant to TRAIL. We show that exposure to recombinant TRAIL resulted in the accumulation of ubiquitinated proteins and free ubiquitin polymers, suggesting a link between TRAIL and the ubiquitin (Ub)-proteasome pathway. TRAIL treatment in cancer cells reduced the activity and cleavage of USP5, a deubiquitinase (DUB) previously shown to target unanchored Ub polymers and regulate p53-mediated transcription. TRAIL was effective in suppressing USP5 activity and cleavage in TRAIL-sensitive cells but not resistant cells. Knockdown of USP5 in TRAIL-resistant cells demonstrated that USP5 controls apoptotic responsiveness to TRAIL. USP5 cleavage and ubiquitination were blocked by caspase-8 specific inhibitors. A small-molecule USP5/9× inhibitor (G9) combined with TRAIL enhanced apoptosis and blocked colony growth in highly TRAIL-resistant cell lines. Finally, USP5 protein levels and activity were found to be frequently deregulated in TRAIL-resistant cells.
Together, we conclude that activated USP5 enhances TRAIL activity and induces apoptosis in USP5 -sensitive and -resistant cells.
contradiction
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway has emerged as a cancer therapeutic target. However, clinical trials have proven that most human cancers are resistant to TRAIL. We show that exposure to recombinant TRAIL resulted in the accumulation of ubiquitinated proteins and free ubiquitin polymers, suggesting a link between TRAIL and the ubiquitin (Ub)-proteasome pathway. TRAIL treatment in cancer cells reduced the activity and cleavage of USP5, a deubiquitinase (DUB) previously shown to target unanchored Ub polymers and regulate p53-mediated transcription. TRAIL was effective in suppressing USP5 activity and cleavage in TRAIL-sensitive cells but not resistant cells. Knockdown of USP5 in TRAIL-resistant cells demonstrated that USP5 controls apoptotic responsiveness to TRAIL. USP5 cleavage and ubiquitination were blocked by caspase-8 specific inhibitors. A small-molecule USP5/9× inhibitor (G9) combined with TRAIL enhanced apoptosis and blocked colony growth in highly TRAIL-resistant cell lines. Finally, USP5 protein levels and activity were found to be frequently deregulated in TRAIL-resistant cells.
Together, we conclude that activated RANTES enhances USP5 activity and induces apoptosis in RANTES -sensitive and -resistant cells.
contradiction
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway has emerged as a cancer therapeutic target. However, clinical trials have proven that most human cancers are resistant to TRAIL. We show that exposure to recombinant TRAIL resulted in the accumulation of ubiquitinated proteins and free ubiquitin polymers, suggesting a link between TRAIL and the ubiquitin (Ub)-proteasome pathway. TRAIL treatment in cancer cells reduced the activity and cleavage of USP5, a deubiquitinase (DUB) previously shown to target unanchored Ub polymers and regulate p53-mediated transcription. TRAIL was effective in suppressing USP5 activity and cleavage in TRAIL-sensitive cells but not resistant cells. Knockdown of USP5 in TRAIL-resistant cells demonstrated that USP5 controls apoptotic responsiveness to TRAIL. USP5 cleavage and ubiquitination were blocked by caspase-8 specific inhibitors. A small-molecule USP5/9× inhibitor (G9) combined with TRAIL enhanced apoptosis and blocked colony growth in highly TRAIL-resistant cell lines. Finally, USP5 protein levels and activity were found to be frequently deregulated in TRAIL-resistant cells.
We conclude that USP5 is a negative regulator of TRAIL responsiveness that is frequently deregulated in TRAIL-resistant cancer cells.
contradiction
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway has emerged as a cancer therapeutic target. However, clinical trials have proven that most human cancers are resistant to TRAIL. We show that exposure to recombinant TRAIL resulted in the accumulation of ubiquitinated proteins and free ubiquitin polymers, suggesting a link between TRAIL and the ubiquitin (Ub)-proteasome pathway. TRAIL treatment in cancer cells reduced the activity and cleavage of USP5, a deubiquitinase (DUB) previously shown to target unanchored Ub polymers and regulate p53-mediated transcription. TRAIL was effective in suppressing USP5 activity and cleavage in TRAIL-sensitive cells but not resistant cells. Knockdown of USP5 in TRAIL-resistant cells demonstrated that USP5 controls apoptotic responsiveness to TRAIL. USP5 cleavage and ubiquitination were blocked by caspase-8 specific inhibitors. A small-molecule USP5/9× inhibitor (G9) combined with TRAIL enhanced apoptosis and blocked colony growth in highly TRAIL-resistant cell lines. Finally, USP5 protein levels and activity were found to be frequently deregulated in TRAIL-resistant cells.
Together, we conclude that activated USP5 enhances TRAIL activity and induces apoptosis in USP5 -sensitive and -resistant cells.
contradiction
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway has emerged as a cancer therapeutic target. However, clinical trials have proven that most human cancers are resistant to TRAIL. We show that exposure to recombinant TRAIL resulted in the accumulation of ubiquitinated proteins and free ubiquitin polymers, suggesting a link between TRAIL and the ubiquitin (Ub)-proteasome pathway. TRAIL treatment in cancer cells reduced the activity and cleavage of USP5, a deubiquitinase (DUB) previously shown to target unanchored Ub polymers and regulate p53-mediated transcription. TRAIL was effective in suppressing USP5 activity and cleavage in TRAIL-sensitive cells but not resistant cells. Knockdown of USP5 in TRAIL-resistant cells demonstrated that USP5 controls apoptotic responsiveness to TRAIL. USP5 cleavage and ubiquitination were blocked by caspase-8 specific inhibitors. A small-molecule USP5/9× inhibitor (G9) combined with TRAIL enhanced apoptosis and blocked colony growth in highly TRAIL-resistant cell lines. Finally, USP5 protein levels and activity were found to be frequently deregulated in TRAIL-resistant cells.
We conclude that USP5 is a negative regulator of TRAIL responsiveness that is frequently deregulated in TRAIL-resistant cancer cells.
contradiction
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway has emerged as a cancer therapeutic target. However, clinical trials have proven that most human cancers are resistant to TRAIL. We show that exposure to recombinant TRAIL resulted in the accumulation of ubiquitinated proteins and free ubiquitin polymers, suggesting a link between TRAIL and the ubiquitin (Ub)-proteasome pathway. TRAIL treatment in cancer cells reduced the activity and cleavage of USP5, a deubiquitinase (DUB) previously shown to target unanchored Ub polymers and regulate p53-mediated transcription. TRAIL was effective in suppressing USP5 activity and cleavage in TRAIL-sensitive cells but not resistant cells. Knockdown of USP5 in TRAIL-resistant cells demonstrated that USP5 controls apoptotic responsiveness to TRAIL. USP5 cleavage and ubiquitination were blocked by caspase-8 specific inhibitors. A small-molecule USP5/9× inhibitor (G9) combined with TRAIL enhanced apoptosis and blocked colony growth in highly TRAIL-resistant cell lines. Finally, USP5 protein levels and activity were found to be frequently deregulated in TRAIL-resistant cells.
Together, we conclude that activated TRAIL enhances USP5 activity and induces apoptosis in TRAIL -sensitive and -resistant cells.
entailment