code
stringlengths
23
981k
language
stringclasses
2 values
AST_depth
int64
-1
40
alphanumeric_fraction
float64
0
1
max_line_length
int64
0
632k
avg_line_length
float64
0
15.4k
num_lines
int64
0
3.86k
original_docstring
stringlengths
7
42.9k
source
stringclasses
1 value
class TimeSeriesResponse: """Grafana timeseries response""" target: str datapoints: List[List[Union[int, float]]] def serialize(self): return { "target": self.target, "datapoints": self.datapoints }
python
15
0.588235
45
24.6
10
Grafana timeseries response
class
class TableResponse: """Grafana table response""" columns: List[Dict[str, str]] rows: List[List[Union[int, float, str]]] type: str = "table" def serialize(self): return { "type": self.type, "columns": self.columns, "rows": self.rows }
python
15
0.530945
44
24.666667
12
Grafana table response
class
class CaffeCudaContext: """See doc of `caffe_cuda_context`""" def __init__(self): import caffe if not caffe.check_mode_gpu(): raise ValueError( "PyCuda cannot be used if Caffe is not in GPU mode.") self.ctx_ = cuda.Context.attach() def __del__(self): self.ctx_.detach()
python
11
0.555556
69
30.181818
11
See doc of `caffe_cuda_context`
class
class AbstractCredentialValidator: """An abstract CredentialValidator, when inherited it must validate self.user credentials agains self.action""" encoding_map = { b'0': 'gsm0338', b'1': 'ascii', b'2': None, #OCTET_UNSPECIFIED b'3': 'iso-8859-1', b'4': None, # OCTET_UNSPECIFIED_COMMON b'5': 'shift_jis', b'6': 'iso-8859-5', b'7': 'iso-8859-8', b'8': 'utf_16_be', b'9': 'shift_jis', #https://en.wikipedia.org/wiki/Short_Message_Peer-to-Peer#Unclear_support_for_Shift-JIS_encoding b'10': 'iso2022_jp', # jisx0212 doesnt exist in python codecs but it looks like its decodable/encodable in iso2022_jp assuming the escape patterns are included # https://github.com/python/cpython/blob/master/Modules/cjkcodecs/_codecs_iso2022.c#L51 b'13': 'iso2022_jp', b'14': 'ksc5601' } def __init__(self, action, user): self.action = action self.user = user def updatePDUWithUserDefaults(self, PDU): """Must update PDU.params from User credential defaults whenever a PDU.params item is None""" raise NotImplementedError() def validate(self): "Must validate requests through Authorizations and ValueFilters credential check" raise NotImplementedError()
python
8
0.630208
146
36.361111
36
An abstract CredentialValidator, when inherited it must validate self.user credentials agains self.action
class
class KukurFlightServer: """KukurFlightServer exposes the data sources provided by a SourceFactory over Arrow Flight.""" def __init__(self, source: Source): self.__source = source def search(self, _, action: fl.Action) -> Generator[bytes, None, None]: """Search a data source for time series. This returns either a SeriesSelector or Metadata as JSON, depending on what is supported by the source.""" request = json.loads(action.body.to_pybytes()) selector = SeriesSelector(request["source"], request["name"]) for result in self.__source.search(selector): if isinstance(result, Metadata): assert result.series.name is not None metadata = result.to_data() yield json.dumps(metadata).encode() else: assert result.name is not None series = { "source": result.source, "name": result.name, } yield json.dumps(series).encode() def get_metadata(self, _, action: fl.Action) -> List[bytes]: """Return metadata for the given time series as JSON.""" request = json.loads(action.body.to_pybytes()) selector = SeriesSelector(request["source"], request["name"]) metadata = self.__source.get_metadata(selector).to_data() return [json.dumps(metadata).encode()] def get_data(self, _, request) -> Any: """Return time series data as Arrow data.""" selector = SeriesSelector( request["selector"]["source"], request["selector"]["name"] ) start_date = parse_date(request["start_date"]) end_date = parse_date(request["end_date"]) data = self.__source.get_data(selector, start_date, end_date) return fl.RecordBatchStream(data)
python
16
0.592712
99
43.452381
42
KukurFlightServer exposes the data sources provided by a SourceFactory over Arrow Flight.
class
class EnvironmentDescriptor: """ This class should describe an instance of an environment. The class has to be easily picklable and able to create new environments. It also has to be able to describe itself using metadata. """ def create_environment(self, workdir: Path) -> Environment: raise NotImplementedError def name(self) -> str: raise NotImplementedError def parameters(self) -> Dict[str, Any]: raise NotImplementedError def metadata(self) -> Dict[str, Any]: return {}
python
8
0.676417
77
29.444444
18
This class should describe an instance of an environment. The class has to be easily picklable and able to create new environments. It also has to be able to describe itself using metadata.
class
class User: """ class that generates new instances of users """ users_list =[] #Empty user list def __init__(self,first_name,last_name,password): """ Method to define the properties of the object """ self.first_name = first_name self.last_name = last_name self.password = password def save_user(self): """ save user details method into users_list """ User.users_list.append(self)
python
9
0.566735
53
22.238095
21
class that generates new instances of users
class
class BaseWorkflowTransformer: """ Base class for all transformers """ def process_workflow_after_parse_workflow_xml(self, workflow: Workflow): pass def process_workflow_after_convert_nodes(self, workflow: Workflow, props: PropertySet): pass
python
7
0.691756
91
27
10
Base class for all transformers
class
class KMeans: ''' k = number of groups / clusters / ... (group) tolerance = acceptable level of variation in precision (tol) Iteration : repetition of process ''' ##you could use another tolerance stop limits as : #error : (actual-forecast/forecast)*100 #accuracy : 1-error #Note : centroid, center of mass and geometric center could be different. def __init__(self, group=2, maxTolerance=0.001, iteration=300): self.k = group self.tol = maxTolerance self.iteration = iteration self.fig = plt.figure('K-Means PLOT',figsize=(9, 6)) self.ax = self.fig.add_subplot(111)#1*1 grid , no.1 self.colors = 200*["r","g","b","k","c"] def fit(self,data): self.centroids = {} #start with first k data as centroids self.centroids={i:data[i] for i in range(self.k)} for _ in range(self.iteration): self.classes={i:[] for i in range(self.k)} for j in data:#j : featureset distances = [np.linalg.norm(j-self.centroids[i]) for i in self.centroids] self.classes[np.argmin(distances)].append(j)#min as cluster pc = self.centroids #pc : prev_centroids self.centroids={i:np.average(self.classes[i],axis=0) for i in self.classes} print(self.centroids) op=[False for c in self.centroids if np.sum(self.centroids[c]-pc[c]) > self.tol] if op==[] : break #not op : optimum def predict(self,data): distances = [np.linalg.norm(data-self.centroids[i]) for i in self.centroids] self.ax.scatter(data[0], data[1], marker="*", color=self.colors[np.argmin(distances)], s=150, linewidths=2) return np.argmin(distances) def visualize(self): for centroid in clf.centroids: self.ax.scatter(clf.centroids[centroid][0], clf.centroids[centroid][1], marker="$C$", color="k", s=100, linewidths=2) for j in clf.classes: [plt.scatter(i[0],i[1],marker="x",color=self.colors[j],s=150,linewidth=2) for i in clf.classes[j]] self.ax.set_title('K-Means clustering, untagged data',fontsize=14) self.ax.set_xlabel('X1',fontsize=12) self.ax.set_ylabel('X2',fontsize=12) customLines = [Line2D([0], [0], color='w', marker='*', markersize=15,markerfacecolor='k'), Line2D([0], [0], color='w', marker='$x$', markersize=15,markerfacecolor='k'), Line2D([0], [0], color='w', marker='$C$', markersize=15,markerfacecolor='k')] self.ax.legend(customLines,['new data','data','Center'], loc='upper center', shadow=True)
python
17
0.558075
110
52.132075
53
k = number of groups / clusters / ... (group) tolerance = acceptable level of variation in precision (tol) Iteration : repetition of process
class
class CGateway: """ COrgan Gateway Interface This class is used to handle the HTTP request from other part of this solution project and perform them. The HTTP request will be decomposed to some key-value pairs which represents the action and its parameters. The action will be executed and the result will be presented as JSON. It is highlighted that all request from any part of the solution ought to be passed to here as a web service request parameter dictionary and return a JSON response string. """ """ CController Static Instance """ core = CController.CControllerCore def __init__(self): pass """ Helper methods """ @staticmethod def _DumpEntityHandler(obj): """ Handle how to dump a Luminous entity into JSON serializable object. :param obj: entity object :return: JSON serializable object """ if isinstance(obj, datetime): return obj.strftime('%Y-%m-%d %H:%M:%S') else: raise TypeError('%r is not JSON serializable' % obj) @staticmethod def _DumpResponse(response_dict): """ Dump the response dictionary into structure XML string :param response_dict: A dictionary, key is the label and value is the body :return: JSON string """ dumpResp = json.dumps(response_dict, skipkeys=True, ensure_ascii=False, default=lambda t: t.__dict__) return u"%s\n" % dumpResp @staticmethod def _SuccessResponse(args_dict=None): """ Dump the response of simple success. :param args_dict: a dict, contains optional response arguments :return: the success JSON string """ if args_dict is None: args_dict = {} args_dict["code"] = "OK" return CGateway._DumpResponse(args_dict) @staticmethod def _FailureResponse(args_dict=None): """ Dump the response of simple failure. :param args_dict: a dict, contains optional response arguments :return: the failure JSON string """ if args_dict is None: args_dict = {} args_dict["code"] = "Fail" return CGateway._DumpResponse(args_dict) @staticmethod def _ExceptionResponse(args_dict=None): """ Dump the response of simple exception. :param args_dict: a dict, contains optional response arguments :return: the failure JSON string """ if args_dict is None: args_dict = {} args_dict["code"] = "Exception" return CGateway._DumpResponse(args_dict) @staticmethod def _UnauthorizedServiceResponse(session): """ Dump the response of unauthorized exception. :param session: session id :return: the unauthorized exception JSON string """ return CGateway._DumpResponse({"code": "Unauthorized", "return": "Unauthorized Service Request. session: %s" % session}) @staticmethod def _HandleExceptionAndUnauthorized(flagVal, retVal, session=None): """ Handle the standard validation of CController return values. :param flagVal: flag of Exception-Raise-While-Execution-In-Engine :param retVal: return value package :param session: session id :return: immediate return JSON """ if flagVal is False and retVal == GCC.UNAUTHORIZED: return CGateway._UnauthorizedServiceResponse(session) if flagVal is False: return CGateway._ExceptionResponse() return None """ Authority API """ @staticmethod def Connect(**argd): """ Restful API for authority connection. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CController.CController.Connect(argd["username"], EncryptUtil.EncryptSHA256(argd["password"])) if flag is False: return CGateway._ExceptionResponse() if ret is None: return CGateway._FailureResponse({"return": "invalid user id or password"}) return CGateway._SuccessResponse({"session": ret}) @staticmethod def CheckConnect(**argd): """ Restful API for authority token validation check. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CController.CController.CheckConnect(argd["session"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse() if ret is True else CGateway._FailureResponse() @staticmethod def Disconnect(**argd): """ Restful API for authority token destroy. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CController.CController.Disconnect(argd["session"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse() if ret is True else CGateway._FailureResponse() """ Data Retrieving API """ @staticmethod def GetOrganization(**argd): """ Restful API for getting organization name. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.GetOrganizationName(argd["session"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse({'return': ret}) @staticmethod def GetDataVersion(**argd): """ Restful API for getting data version string. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.GetCurrentDataVersion(argd["session"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse({'return': ret}) @staticmethod def RetrieveAllHuman(**argd): """ Restful API for getting all human. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveAllHuman(argd["session"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag hmBuilder = [] for hm in ret: hmBuilder.append(hm.ToJsonDict()) return CGateway._SuccessResponse({'return': hmBuilder}) @staticmethod def RetrieveAllAgent(**argd): """ Restful API for getting all agent. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveAllAgent(argd["session"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag hmBuilder = [] for hm in ret: hmBuilder.append(hm.ToJsonDict()) return CGateway._SuccessResponse({'return': hmBuilder}) @staticmethod def RetrieveAllGroups(**argd): """ Restful API for getting all group. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveAllGroup(argd["session"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag hmBuilder = [] for hm in ret: hmBuilder.append(hm.ToJsonDict()) return CGateway._SuccessResponse({'return': hmBuilder}) @staticmethod def RetrieveAllPositions(**argd): """ Restful API for getting all position. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveAllPosition(argd["session"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag hmBuilder = [] for hm in ret: hmBuilder.append(hm.ToJsonDict()) return CGateway._SuccessResponse({'return': hmBuilder}) @staticmethod def RetrieveAllCapabilities(**argd): """ Restful API for getting all capability. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveAllCapabilities(argd["session"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag hmBuilder = [] for hm in ret: hmBuilder.append(hm.ToJsonDict()) return CGateway._SuccessResponse({'return': hmBuilder}) @staticmethod def RetrieveHumanInWhatGroup(**argd): """ Restful API for getting a set of groups that a specific human in. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveHumanInWhatGroup(argd["session"], argd["personId"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse({'return': ret}) @staticmethod def RetrieveHumanInWhatPosition(**argd): """ Restful API for getting a set of positions that a specific human at. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveHumanInWhatPosition(argd["session"], argd["personId"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse({'return': ret}) @staticmethod def RetrieveHumanWithWhatCapability(**argd): """ Restful API for getting a set of capabilities that a specific human with. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveHumanWithWhatCapability(argd["session"], argd["personId"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse({'return': ret}) @staticmethod def RetrieveAgentInWhatGroup(**argd): """ Restful API for getting a set of groups that a specific agent in. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveAgentInWhatGroup(argd["session"], argd["personId"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse({'return': ret}) @staticmethod def RetrieveAgentInWhatPosition(**argd): """ Restful API for getting a set of positions that a specific agent at. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveAgentInWhatPosition(argd["session"], argd["personId"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse({'return': ret}) @staticmethod def RetrieveAgentWithWhatCapability(**argd): """ Restful API for getting a set of capabilities that a specific agent with. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveAgentWithWhatCapability(argd["session"], argd["personId"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse({'return': ret}) @staticmethod def RetrieveHumanInGroup(**argd): """ Restful API for getting a set of human that a specific group contains. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveHumanInGroup(argd["session"], argd["name"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse({'return': ret}) @staticmethod def RetrieveAgentInGroup(**argd): """ Restful API for getting a set of agent that a specific group contains. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveAgentInGroup(argd["session"], argd["name"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse({'return': ret}) @staticmethod def RetrieveHumanInPosition(**argd): """ Restful API for getting a set of humans that a specific position contains. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveHumanInPosition(argd["session"], argd["name"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse({'return': ret}) @staticmethod def RetrieveAgentInPosition(**argd): """ Restful API for getting a set of agents that a specific position contains. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveAgentInPosition(argd["session"], argd["name"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse({'return': ret}) @staticmethod def RetrieveHumanWithCapability(**argd): """ Restful API for getting a set of humans that a specific capability category contains. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveHumanWithCapability(argd["session"], argd["name"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse({'return': ret}) @staticmethod def RetrieveAgentWithCapability(**argd): """ Restful API for getting a set of agents that a specific capability category contains. :param argd: request argument dictionary :return: dumped json string """ flag, ret = CGateway.core.RetrieveAgentWithCapability(argd["session"], argd["name"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, argd["session"]) if xFlag is not None: return xFlag return CGateway._SuccessResponse({'return': ret}) @staticmethod def RetrieveWorkerInGroup(**argd): """ Restful API for getting a set of workers that a specific group contains, ONLY USE BY NAME SERVICE. :param argd: request argument dictionary :return: dumped json string """ checkSign = argd["nsid"] + "," + argd["renid"] token = EncryptUtil.DecodeURLSafeBase64(argd["token"]) try: tokenRet = EncryptUtil.VerifySign(checkSign, token, GlobalConfigContext.AUTH_NameService_PublicKey) except: tokenRet = False if tokenRet is False: return CGateway._UnauthorizedServiceResponse(token) flag1, ret1 = CGateway.core.RetrieveHumanInGroup(GlobalConfigContext.AUTH_INTERNAL_SESSION, argd["groupName"]) flag2, ret2 = CGateway.core.RetrieveAgentInGroup(GlobalConfigContext.AUTH_INTERNAL_SESSION, argd["groupName"]) return CGateway._DumpResponse(ret1 + ret2) @staticmethod def RetrieveWorkerInPosition(**argd): """ Restful API for getting a set of workers that a specific position contains, ONLY USE BY NAME SERVICE. :param argd: request argument dictionary :return: dumped json string """ checkSign = argd["nsid"] + "," + argd["renid"] token = EncryptUtil.DecodeURLSafeBase64(argd["token"]) try: tokenRet = EncryptUtil.VerifySign(checkSign, token, GlobalConfigContext.AUTH_NameService_PublicKey) except: tokenRet = False if tokenRet is False: return CGateway._UnauthorizedServiceResponse(token) flag1, ret1 = CGateway.core.RetrieveHumanInPosition(GlobalConfigContext.AUTH_INTERNAL_SESSION, argd["positionName"]) flag2, ret2 = CGateway.core.RetrieveAgentInPosition(GlobalConfigContext.AUTH_INTERNAL_SESSION, argd["positionName"]) return CGateway._DumpResponse(ret1 + ret2) @staticmethod def RetrieveWorkerInCapability(**argd): """ Restful API for getting a set of workers that a specific capability contains, ONLY USE BY NAME SERVICE. :param argd: request argument dictionary :return: dumped json string """ checkSign = argd["nsid"] + "," + argd["renid"] token = EncryptUtil.DecodeURLSafeBase64(argd["token"]) try: tokenRet = EncryptUtil.VerifySign(checkSign, token, GlobalConfigContext.AUTH_NameService_PublicKey) except: tokenRet = False if tokenRet is False: return CGateway._UnauthorizedServiceResponse(token) flag1, ret1 = CGateway.core.RetrieveHumanWithCapability(GlobalConfigContext.AUTH_INTERNAL_SESSION, argd["capabilityName"]) flag2, ret2 = CGateway.core.RetrieveAgentWithCapability(GlobalConfigContext.AUTH_INTERNAL_SESSION, argd["capabilityName"]) return CGateway._DumpResponse(ret1 + ret2) @staticmethod def RetrieveWorkerByOrganizable(**argd): """ Restful API for getting workers in a organizable in the COrgan, ONLY USE BY NAME SERVICE. :param argd: request argument dictionary :return: dumped json string """ checkSign = argd["nsid"] + "," + argd["renid"] token = EncryptUtil.DecodeURLSafeBase64(argd["token"]) try: tokenRet = EncryptUtil.VerifySign(checkSign, token, GlobalConfigContext.AUTH_NameService_PublicKey) except: tokenRet = False if tokenRet is False: return CGateway._UnauthorizedServiceResponse(token) flag, ret = CGateway.core.RetrieveWorkerByOrganizableGid(GlobalConfigContext.AUTH_INTERNAL_SESSION, argd["gid"]) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, GlobalConfigContext.AUTH_INTERNAL_SESSION) if xFlag is not None: return xFlag return CGateway._DumpResponse(ret) @staticmethod def RetrieveAllEntity(**argd): """ Restful API for getting all entities in the COrgan, ONLY USE BY NAME SERVICE. :param argd: request argument dictionary :return: dumped json string """ checkSign = argd["nsid"] + "," + argd["renid"] token = EncryptUtil.DecodeURLSafeBase64(argd["token"]) try: tokenRet = EncryptUtil.VerifySign(checkSign, token, GlobalConfigContext.AUTH_NameService_PublicKey) except: tokenRet = False if tokenRet is False: return CGateway._UnauthorizedServiceResponse(token) flag1, ret1 = CGateway.core.RetrieveAllHuman(GlobalConfigContext.AUTH_INTERNAL_SESSION) flag2, ret2 = CGateway.core.RetrieveAllAgent(GlobalConfigContext.AUTH_INTERNAL_SESSION) flag3, ret3 = CGateway.core.RetrieveAllGroup(GlobalConfigContext.AUTH_INTERNAL_SESSION) flag4, ret4 = CGateway.core.RetrieveAllPosition(GlobalConfigContext.AUTH_INTERNAL_SESSION) flag5, ret5 = CGateway.core.RetrieveAllCapabilities(GlobalConfigContext.AUTH_INTERNAL_SESSION) retDict = dict() retDict["human"] = ret1 retDict["agent"] = ret2 retDict["group"] = ret3 retDict["position"] = ret4 retDict["capability"] = ret5 return CGateway._DumpResponse(retDict) @staticmethod def RetrieveWorkerEntityByGid(**argd): """ Restful API for getting a list of worker entity, ONLY USE BY NAME SERVICE. :param argd: request argument dictionary :return: dumped json string """ checkSign = argd["nsid"] + "," + argd["renid"] token = EncryptUtil.DecodeURLSafeBase64(argd["token"]) try: tokenRet = EncryptUtil.VerifySign(checkSign, token, GlobalConfigContext.AUTH_NameService_PublicKey) except: tokenRet = False if tokenRet is False: return CGateway._UnauthorizedServiceResponse(token) flag, ret = CGateway.core.RetrieveWorkersEntity(GlobalConfigContext.AUTH_INTERNAL_SESSION, argd["gids"]) return CGateway._DumpResponse(ret) @staticmethod def RetrieveAllConnection(**argd): """ Restful API for getting all connections in the COrgan, ONLY USE BY NAME SERVICE. :param argd: request argument dictionary :return: dumped json string """ checkSign = argd["nsid"] + "," + argd["renid"] token = EncryptUtil.DecodeURLSafeBase64(argd["token"]) try: tokenRet = EncryptUtil.VerifySign(checkSign, token, GlobalConfigContext.AUTH_NameService_PublicKey) except: tokenRet = False if tokenRet is False: return CGateway._UnauthorizedServiceResponse(token) flag, ret = CGateway.core.RetrieveAllConnection(GlobalConfigContext.AUTH_INTERNAL_SESSION) xFlag = CGateway._HandleExceptionAndUnauthorized(flag, ret, GlobalConfigContext.AUTH_INTERNAL_SESSION) if xFlag is not None: return xFlag return CGateway._DumpResponse(ret) @staticmethod def RetrieveDataVersionGid(**argd): """ Restful API for getting data version of COrgan, ONLY USE BY NAME SERVICE. :param argd: request argument dictionary :return: dumped json string """ checkSign = argd["nsid"] + "," + argd["renid"] token = EncryptUtil.DecodeURLSafeBase64(argd["token"]) try: tokenRet = EncryptUtil.VerifySign(checkSign, token, GlobalConfigContext.AUTH_NameService_PublicKey) except: tokenRet = False if tokenRet is False: return CGateway._UnauthorizedServiceResponse(token) flag1, ret1 = CGateway.core.GetCurrentDataVersion(GlobalConfigContext.AUTH_INTERNAL_SESSION) flag2, ret2 = CGateway.core.GetOrganizationId(GlobalConfigContext.AUTH_INTERNAL_SESSION) xFlag = CGateway._HandleExceptionAndUnauthorized(flag1 & flag2, ret1, GlobalConfigContext.AUTH_INTERNAL_SESSION) if xFlag is not None: return xFlag return CGateway._DumpResponse("%s,%s" % (ret1, ret2))
python
14
0.642466
130
39.848537
581
COrgan Gateway Interface This class is used to handle the HTTP request from other part of this solution project and perform them. The HTTP request will be decomposed to some key-value pairs which represents the action and its parameters. The action will be executed and the result will be presented as JSON. It is highlighted that all request from any part of the solution ought to be passed to here as a web service request parameter dictionary and return a JSON response string.
class
class SimControl: """ TODO: Class cleanup. 3D. """ """ ANALYSIS: There are different layer types: Physical, CAD Physical, BOM Physical, Simulation Simulation, Flag Simulation, Integer Simulation, Float The simulation layers are in Mesh2D.py and are data-driven constructors working from SimControl json configuration. The physical CAD layers are described in matls.js, layers.js, and vias.js. This description data is loaded in Matls.py, Layers.py, and Vias.py. To see them all at once and verify correctness, and HTML table is generated for each one, and is displayed by SimControl.py. """ """ TODO: Need clean structure of the JSON with: Simulation controls: HTTP server, settings Input data: geometry, materials, layers, components, power inputs, boundary conditions Intermediate data: mesh, solver, matrix in, matrix out Output raw data: HDF5, Spice, and PNG specifications, basically Visualization: What to create, where to put it Need a higher level for reports, which can have a collection of simulations. These can show design tradeoffs such as what-if thicker copper or larger vias. They can also show benchmarks from a test set of simulations. """ """ TODO: There needs to be a top level directory for program outputs. Directories, such as for PNG files, go beneath this level. Directories that do not exist need to be created. These names should all go in the JSON config file. roq/therm/onous/layers/layer1.png The main program should launch the controller in a location. The controller discovers that it is in an existing design and loads it, or it discovers that it is in a new location and initializes it. """ def __init__(self): parser = argparse.ArgumentParser() parser.add_argument('cfg', nargs='?', type=argparse.FileType('r'), default=sys.stdin) args = parser.parse_args() print "Config file is: " + str(args.cfg) self.configJSON= args.cfg.read() self.config= yaml.load(self.configJSON) def loadModel(self): self.matls = Matls.Matls(self.config['matl_config']) # BOM Layers: Manufacturer's BOM, for example with three layers that stack to make a single core. # CAD Layers: Data from CAD source, could also include drills, for example. # Physical Layers: PhyLayers: 2D multilayer bitmap representation of the design. This is a solid model. # Thermal Simulation Layers: Thermapythia layers: Values used to load the matrix, flags, etc. self.lyr = Layers.Layers(self.config['layer_config']) self.via = Vias.Vias(self.config['via_config']) self.createWebPage(self.config['webPageFileName']) # TODO: Consider refactoring to split mesh into geometry and mesh self.mesh = Mesh2D.Mesh(self.config['mesh_config'], self.lyr, self.matls) return def createWebPage(self, webPageFileName): # np.set_printoptions(threshold='nan', linewidth=10000) f= open(webPageFileName, 'w') self.webpage() f.write(self.html) f.close() def webpage(self): h = Html.Html() head = h.title("Stackup") body = h.h1("Materials") body += self.matls.genHTMLMatlTable(h) body += h.h1("Layers") body += self.lyr.genHTMLLayersTable(self.matls, h) body += h.h1("Vias") body += self.via.genHTMLViaTable(self.matls, self.lyr, h) self.html= h.html(h.head(head) + h.body(body)) def solveModel(self): self.solv = Solver2D.Solver2D(self.config['solver'], self.mesh.nodeCount) self.solv.solve(self.lyr, self.mesh, self.matls) return def loadView(self): self.plots= InteractivePlot.InteractivePlot(self.config, self.solv, self.lyr, self.mesh) self.plots.plotAll() return def loadController(self): self.http = Http.Http(self.config) self.http.openWebBrowser(1) return def launchController(self): # This does not return until the web server is stopped. self.http.startServer() return
python
12
0.69366
128
36.398148
108
TODO: Class cleanup. 3D.
class
class defaultdict: """ Default Dict Implementation. Defaultdcit that returns the key if the key is not found in dictionnary (see unswap in karma-lib): >>> d = defaultdict(default=lambda key: key) >>> d['foo'] = 'bar' >>> d['foo'] 'bar' >>> d['baz'] 'baz' DefaultDict that returns an empty string if the key is not found (see prefix in karma-lib for typical usage): >>> d = defaultdict(default=lambda key: '') >>> d['foo'] = 'bar' >>> d['foo'] 'bar' >>> d['baz'] '' Representation of a default dict: >>> defaultdict([('foo', 'bar')]) defaultdict(None, {'foo': 'bar'}) """ @staticmethod # pylint: disable=W0613 def __new__(cls, default_factory=None, **kwargs): self = super(defaultdict, cls).__new__(cls) # pylint: disable=C0103 self.d = {} return self def __init__(self, default_factory=None, **kwargs): self.d = kwargs self.default_factory = default_factory def __getitem__(self, key): try: return self.d[key] except KeyError: val = self.__missing__(key) self.d[key] = val return val def __setitem__(self, key, val): self.d[key] = val def __delitem__(self, key): del self.d[key] def __contains__(self, key): return key in self.d def __missing__(self, key): if self.default_factory is None: raise KeyError(key) return self.default_factory()
python
12
0.543322
80
25.482759
58
Default Dict Implementation. Defaultdcit that returns the key if the key is not found in dictionnary (see unswap in karma-lib): >>> d = defaultdict(default=lambda key: key) >>> d['foo'] = 'bar' >>> d['foo'] 'bar' >>> d['baz'] 'baz' DefaultDict that returns an empty string if the key is not found (see prefix in karma-lib for typical usage): >>> d = defaultdict(default=lambda key: '') >>> d['foo'] = 'bar' >>> d['foo'] 'bar' >>> d['baz'] '' Representation of a default dict: >>> defaultdict([('foo', 'bar')]) defaultdict(None, {'foo': 'bar'})
class
class ListSplitter: """ Collect list of objects and split it on train and valid (if possible) Returns list of objects for train and valid """ def __init__(self, object_list, valid_size=0.5, is_sort=True, seed=None): self.object_list = object_list self.valid_size = valid_size self.is_sort = is_sort self.seed = seed self._n = len(self.object_list) self._train_files = None self._valid_files = None self.split() self.sort() @property def train(self): return self._train_files @property def valid(self): return self._valid_files def size_select(self): if self.valid_size == 0.0: return self._n, 0 _valid = self._n * self.valid_size if _valid < 1.0: _valid = 1 else: _valid = int(round(_valid)) _train = self._n - _valid if _train == 0: raise AttributeError(', '.join([ 'Incorrect train size', f'N: {self._n}', f'train: {_train}', f'valid: {_valid}', f'rate: {self.valid_size:.3f}', ])) return _train, _valid def split(self): train_size, valid_size = self.size_select() if valid_size == 0: self._train_files = self.object_list self._valid_files = None else: valid_ix = np.arange(self._n) rs = np.random.RandomState(self.seed) valid_ix = set(rs.choice(valid_ix, size=valid_size, replace=False).tolist()) self._train_files = [rec for i, rec in enumerate(self.object_list) if i not in valid_ix] self._valid_files = [rec for i, rec in enumerate(self.object_list) if i in valid_ix] def sort(self): if not self.is_sort: return if self._train_files is not None: self._train_files = sorted(self._train_files) if self._valid_files is not None: self._valid_files = sorted(self._valid_files)
python
17
0.530651
100
29.720588
68
Collect list of objects and split it on train and valid (if possible) Returns list of objects for train and valid
class
class CreateReport: "Creates a static .html file with charts using Google Charts API" def __init__(self,title): self.title = title self.html_string = "" self.partitionsFilled = 0.0 self.chartCount=0 self.partition=1.0 def setupNewChart(self,width): #insert data input validation in list if (width=="full"): self.partition = 1.0 if (width=="half"): self.partition = 2.0 if (width=="third"): self.partition = 3.0 if (width=="2-thirds"): self.partition = 3.0/2.0 if (width=="quarter"): self.partition = 4.0 if (round(self.partitionsFilled + 1.0/self.partition,2) > 1): self.html_string += "</div>\n" self.partitionsFilled = 0 if (self.partitionsFilled==0): self.html_string += "<div class='flex-container'>\n" self.partitionsFilled += 1.0/self.partition self.chartCount+=1 def text(self,html_text,width="full"): self.setupNewChart(width); self.html_string += "<div style='width:" + "{:.2%}".format(1.0/self.partition) + ";'><p>" + html_text + "</p></div>\n" def plot(self,data,x,y,type="line",width="full",height=400,options={}): self.setupNewChart(width); self.html_string += ''' <div id="chart_div''' + str(self.chartCount) + '''" style="width:''' + "{:.2%}".format(1.0/self.partition) + ''';height:''' + str(height) + '''px;"></div> <script type="text/javascript"> google.charts.load('current', {packages: ['corechart']}); google.charts.setOnLoadCallback(drawChart''' + str(self.chartCount) + '''); function drawChart''' + str(self.chartCount) + '''() { var data = new google.visualization.DataTable();\n'''; if (is_datetime64_any_dtype(data[x])): self.html_string += "data.addColumn('date', '" + x + "');\n"; elif (is_numeric_dtype(data[x])): self.html_string += "data.addColumn('number', '" + x + "');\n"; else: self.html_string += "data.addColumn('string', '" + x + "');\n"; for a in y: if (is_numeric_dtype(data[a])): self.html_string += "data.addColumn('number', '" + a + "');\n"; else: self.html_string += "data.addColumn('string', '" + a + "');\n"; self.html_string += "data.addRows([\n"; for index, row in data.iterrows(): if (is_datetime64_any_dtype(data[x])): self.html_string+="[new Date("+str(row[x].year)+","+str(row[x].month-1)+","+str(row[x].day)+"),"; else: self.html_string += "[" + str(row[x]) + ","; for a in y: if (isna(row[a])): self.html_string += "null,"; else: self.html_string += str(row[a]) + ","; self.html_string += "],\n" self.html_string += "]);\n"; self.html_string += " var options = " + str(options) + ";\n" types={'line':'LineChart','column':'ColumnChart'} self.html_string += "var chart = new google.visualization.{}".format(types[type]); self.html_string += "(document.getElementById('chart_div" + str(self.chartCount) + '''')); chart.draw(data, options);} </script> ''' def exporthtml(self,full_path): f = open(full_path, "w") html_string_full = ''' <!DOCTYPE html> <!-- This .html file was created using Python Library plot2html --> <head> <meta name="viewport" content="width=device-width, initial-scale=1"> <style> body { margin: 0; padding-top: 80px; /* is overwriten by javascript */ font-family: Arial, Helvetica, sans-serif; color: #444444; } .fixed-header { width: 100%; margin: 0 ; padding: 0; display: flex; justify-content: space-between; position: fixed; background: #DDDDDD; border-bottom: 1px solid #666; box-shadow: 0px 1px 4px 1px #999; top: 0; font-weight: bold; font-size: 24px; } .fixed-header > div { text-align: center; padding: 20px 16px; } .content { padding: 10px 16px; } .flex-container { display: flex; flex-wrap: nowrap; } </style> <script type="text/javascript" src="https://www.gstatic.com/charts/loader.js"></script> </head> <body> <div class="fixed-header" id="myHeader"> <div></div> <div>''' + self.title + '''</div> <div>''' + datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S") + ''' UTC</div> </div> <script type="text/javascript"> function adjustHeaderHeight(){ document.body.style.paddingTop = document.getElementById('myHeader').clientHeight + "px"; } window.addEventListener("resize", adjustHeaderHeight); adjustHeaderHeight(); </script> <div class="content"> ''' + self.html_string if (self.partitionsFilled > 0): html_string_full += "</div>\n" html_string_full += "</div></body></html>" f.write(html_string_full) f.close() print("File exported to "+full_path);
python
21
0.581415
154
37.269841
126
Creates a static .html file with charts using Google Charts API
class
class ExponentialMovingAverage: """ Maintains (exponential) moving average of a set of parameters. """ def __init__(self, parameters, decay, use_num_updates=True): """ Args: parameters: Iterable of `torch.nn.Parameter`; usually the result of `model.parameters()`. decay: The exponential decay. use_num_updates: Whether to use number of updates when computing averages. """ if decay < 0.0 or decay > 1.0: raise ValueError('Decay must be between 0 and 1') self.decay = decay self.num_updates = 0 if use_num_updates else None self.shadow_params = [ p.clone().detach().cuda() for p in parameters ] self.collected_params = [] def update(self, parameters): """ Update currently maintained parameters. Call this every time the parameters are updated, such as the result of the `optimizer.step()` call. Args: parameters: Iterable of `torch.nn.Parameter`; usually the same set of parameters used to initialize this object. """ decay = self.decay if self.num_updates is not None: self.num_updates += 1 decay = min(decay, (1 + self.num_updates) / (10 + self.num_updates)) one_minus_decay = 1.0 - decay with torch.no_grad(): parameters = list(parameters) for s_param, param in zip(self.shadow_params, parameters): s_param.sub_(one_minus_decay * (s_param - param)) def copy_to(self, parameters): """ Copy current parameters into given collection of parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored moving averages. """ for s_param, param in zip(self.shadow_params, parameters): param.data.copy_(s_param.data) def store(self, parameters): """ Save the current parameters for restoring later. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be temporarily stored. """ self.collected_params = [param.clone() for param in parameters] def restore(self, parameters): """ Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without affecting the original optimization process. Store the parameters before the `copy_to` method. After validation (or model saving), use this to restore the former parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. """ for c_param, param in zip(self.collected_params, parameters): param.data.copy_(c_param.data)
python
15
0.594851
80
38.905405
74
Maintains (exponential) moving average of a set of parameters.
class
class Loc: """ A single location in a Layout. Attributes are a coordinate (2-d tuple) and a dict of direction names, each of which will be mapped to a destination (neighbor) Loc. """ def __init__(self, coord=None): self.direction_map = {} self.coord = (None, None) if coord is None else coord def set_dir(self, direction, dest=None): """ Set the neighboring Loc that corresponds to the specified direction. """ self.direction_map[direction] = dest def get_dest(self, direction): """ Get the neighboring Loc that corresponds to the specified direction. """ return self.direction_map.get(direction, None) def get_neighbors(self): return [self.direction_map[direction] for direction, _ in self.direction_map.items() if self.direction_map.get(direction, None)] def get_neighbor_dirs(self): return [direction for direction in self.direction_map.keys() if self.direction_map.get(direction, None)] def __str__(self): return f'Loc {self.coord}' def __repr__(self): return f'Loc {self.coord} ({len(self.get_neighbors())} neighbors)'
python
12
0.623558
84
36.96875
32
A single location in a Layout. Attributes are a coordinate (2-d tuple) and a dict of direction names, each of which will be mapped to a destination (neighbor) Loc.
class
class Layout: """ Creates a dict of Locs corresponding to the coordinates of this Layout. Initializes each Loc with its neighboring Locs corresponding to each of the directions in the layout. Coords can either be an iterable of (x,y) tuples, or a string such as '2x2' specifying the number of rows and columns for a rectangular grid. Defaults to a 3x3 grid of square locs (with neighbors in n, s, e, w directions). """ def __init__(self, coords='3x3', direction_map=None): self.loc_dict = {} if 'x' in coords: numrows, _, numcols = coords.partition('x') self.coords = [(i, j) for j in range(int(numrows)) \ for i in range(int(numcols))] else: self.coords = coords for coord in self.coords: self.loc_dict[coord] = Loc(coord) if direction_map is None: self.direction_map = { 'n':(0, -1), 's':(0, 1), 'e':(1, 0), 'w':(-1, 0) } else: self.direction_map = direction_map # construct direction pairs from the direction map reverse_direction_map = {v: k for k, v in self.direction_map.items()} self.direction_pairs = {} for direction, dirvec in self.direction_map.items(): reverse_dirvec = tuple(-1 * d for d in dirvec) self.direction_pairs[direction] = reverse_direction_map[reverse_dirvec] self.inner_edges = 0 for loc in self.locs: for direction, dirvec in self.direction_map.items(): try_coord = (loc.coord[0] + dirvec[0], loc.coord[1] + dirvec[1]) dest = (self.loc_dict[try_coord] if try_coord in self.coords else None) loc.set_dir(direction, dest) self.inner_edges += 1 if dest else 0 @property def locs(self): return self.loc_dict.values() def get_paired_dir(self, dir): return self.direction_pairs.get(dir, None) def __repr__(self): return (f'Layout ({len(self.coords)} coords, ' f'{len(self.direction_map)} directions)')
python
15
0.556106
83
39.363636
55
Creates a dict of Locs corresponding to the coordinates of this Layout. Initializes each Loc with its neighboring Locs corresponding to each of the directions in the layout. Coords can either be an iterable of (x,y) tuples, or a string such as '2x2' specifying the number of rows and columns for a rectangular grid. Defaults to a 3x3 grid of square locs (with neighbors in n, s, e, w directions).
class
class Symbol: """Class to represent attributes of each symbol contained on a Tile.""" _rare_dict = {} def __init__(self, sym_type, side, rare=False): self.sym_type = sym_type self.side = side self._sym = (sym_type, side) self.rare = rare @property def rare(self): return Symbol._rare_dict.get(self._sym, None) @rare.setter def rare(self, rare): Symbol._rare_dict[self._sym] = rare def __eq__(self, other): return self._sym == other._sym def __hash__(self): return hash(self._sym) def __repr__(self): return f'({self.sym_type}|{self.side})'
python
10
0.5586
75
24.307692
26
Class to represent attributes of each symbol contained on a Tile.
class
class Tile: """ Contains assignments of symbols to "canonical" directions (rotation 0). Helper queries return symbol / dir assignments for other possible rotations. directions is a list that must be in sequential order of rotations. symbols is a list that must be in order corresponding to directions. """ id_gen = itertools.count() def __init__(self, tile_id=None, directions=None, symbols=None): self.tile_id = next(self.id_gen) if tile_id is None else tile_id self.directions = (['n', 'e', 's', 'w'] if directions is None else directions) self.symbols = ([None for d in self.directions] if symbols is None else symbols) def get_dir(self, symbol, rotation=0): """Get the direction corresponding to the given symbol and rotation.""" idx = self.symbols.index(symbol) return self.directions[(idx + rotation) % len(self.symbols)] def get_symbol(self, direction, rotation=0): """Get the symbol corresponding to the given direction and rotation.""" idx = self.directions.index(direction) return self.symbols[(idx - rotation) % len(self.directions)] def get_rotations(self, symbol, dir): """ Returns a list of rotations (since a Tile can contain more than one instance of a symbol) that would be required to place each matching symbol into the specified direction. """ d = self.directions.index(dir) return [(d - i) % len(self.directions) for i, s in enumerate(self.symbols) if s == symbol] def set_symbol(self, symbol, direction=None): if direction: idx = self.directions.index(direction) self.symbols[idx] = symbol else: self.symbols.append(symbol) def __lt__(self, other): return self.tile_id < other.tile_id def __str__(self): return f'Tile {self.tile_id}' def __repr__(self): symlist = ", ".join([f'{direction}: {self.symbols[i]}' for i, direction in enumerate(self.directions)]) return f'Tile {self.tile_id} ({symlist})'
python
14
0.605418
80
40.037037
54
Contains assignments of symbols to "canonical" directions (rotation 0). Helper queries return symbol / dir assignments for other possible rotations. directions is a list that must be in sequential order of rotations. symbols is a list that must be in order corresponding to directions.
class
class Assignment: """ Class to represent an assignment of a specific Tile with specific rotation to a specific Loc. """ loc: Loc tile: Tile rotation: int validated: bool = False def __repr__(self): return (f'Assignment ({self.loc} | {self.tile} | ' f'rot={self.rotation} | {self.validated})' )
python
11
0.559459
69
25.5
14
Class to represent an assignment of a specific Tile with specific rotation to a specific Loc.
class
class Board: """ Class to represent a possible board configuration as a list of Assignments. A validated Board is one in which all Assignments are consistent with each other (tile symbols match across edges). A solved Board is a validated Board that includes either all of the Locs or all of the Tiles in a Game (none remain available to be assigned). """ def __init__(self, game=None, assignments=None): self.game = game self.assignments = [] if not assignments else assignments def validate(self): for assignment in self.assignments: if assignment.validated: continue # look at each direction of this assignment's tile tile = assignment.tile for direction in tile.directions: sym = tile.get_symbol(direction, assignment.rotation) # find the layout loc associated with the current direction destloc = assignment.loc.get_dest(direction) # rare symbols may not match an "edge" with no associated loc if not destloc: if Globals.USE_RARES and sym.rare: return False else: continue # find the assignment that is associated with the dest loc destassign = next((da for da in self.assignments if da.loc == destloc), None) if not destassign: continue # find the symbol in the reciprocal dir of the dest assignment otherdir = self.game.layout.get_paired_dir(direction) othertile = destassign.tile othersym = othertile.get_symbol(otherdir, destassign.rotation) # is the reciprocal sym the matching pair to the current sym? if self.game.sympairs.get(sym, None) != othersym: return False assignment.validated = True return True def check_solved(self): for assignment in self.assignments: if not assignment.validated: return False if (len(self.assignments) == len(self.game.tiles) or len(self.assignments) == len(self.game.layout.locs)): return True else: return False def extend_board(self): """ Construct a list of next board candidates by finding all Assignment directions that point to an open Loc, then finding all matching Tiles that would fit that Assigment. """ next_boards = [] if Globals.DETERMINISTIC: unassigned_tiles = list(set(self.game.tiles) - {a.tile for a in self.assignments}) unassigned_tiles.sort() else: unassigned_tiles = (set(self.game.tiles) - {a.tile for a in self.assignments}) for assignment in self.assignments: if not assignment.validated: raise ValueError( "Can only extend a Board that is fully validated.") tile = assignment.tile # look at each direction of this assignment's tile for direction in tile.directions: # find the layout loc associated with the current direction destloc = assignment.loc.get_dest(direction) if not destloc: continue # is there an assignment already associated with the dest loc? destassign = next((da for da in self.assignments if da.loc == destloc), None) if destassign: continue # which reciprocal dir and sym match the current dir and sym? sym = tile.get_symbol(direction, assignment.rotation) otherdir = self.game.layout.get_paired_dir(direction) othersym = self.game.sympairs.get(sym, None) if not othersym: continue for othertile in unassigned_tiles: rots = othertile.get_rotations(othersym, otherdir) for rot in rots: newassign = Assignment(loc=destloc, tile=othertile, rotation=rot, validated=False) next_boards.append(Board(self.game, self.assignments+[newassign])) return next_boards def memoize(self): self.game.boards_visited.add(frozenset(self.assignments)) def check_memo(self): return frozenset(self.assignments) in self.game.boards_visited def __str__(self): asgns = sorted(self.assignments, key=lambda a:(a.loc.coord[1], a.loc.coord[0])) strs = [f'{a.loc.__str__()}: {a.tile.__str__()}, ' f'rot={a.rotation}' for a in asgns] return '\n'.join(strs) def __repr__(self): return self.assignments.__repr__()
python
20
0.548894
79
44.219298
114
Class to represent a possible board configuration as a list of Assignments. A validated Board is one in which all Assignments are consistent with each other (tile symbols match across edges). A solved Board is a validated Board that includes either all of the Locs or all of the Tiles in a Game (none remain available to be assigned).
class
class Game: """ Class to track the state of a Game (Layout, Tiles, Board candidate stack for solution in progress.) """ def __init__(self, layout=None, tiles=None): self.layout = Layout() if not layout else layout if not tiles: raise ValueError('Tiles must be supplied at Game initialization.') else: self.tiles = tiles self._symlist = list( itertools.chain.from_iterable(p.symbols for p in self.tiles)) self._symfreq = Counter(self._symlist) self.symbols = set(self._symlist) self.boards_visited = set() self.stack = [] if Globals.USE_RARES: for sym in self.symbols: if self._symfreq[sym] <= (self.layout.inner_edges / len(self.symbols)): sym.rare = True self.symsides = set(sym.side for sym in self.symbols) if len(self.symsides) != 2: raise ValueError( f'There should be exactly two types of symbol sides. ' f'(e.g. "top" and "bottom").') self.sympairs = {} for sym in self.symbols: otherside = next( (pair for pair in self.symbols if sym.sym_type == pair.sym_type and sym.side != pair.side) , None) if otherside: self.sympairs[sym] = otherside def solve(self): """Solve the game and return one or more Boards with valid solutions.""" def print_update(): print(f'solution_length: {len(board.assignments)}, ' f'trials: {trials}, valid_trials: {valid_trials}, ' f'stack depth = {len(self.stack)}') print(f'boards visited: {len(self.boards_visited)}, ' f'revisits: {revisits}') trials, valid_trials, revisits = 0,0,0 if not Globals.FIRST_ONLY: boards = [] # Initialize the stack by placing all possible tile rotations # onto one initial location. if Globals.DETERMINISTIC: loc = next(iter(self.layout.locs)) else: loc = random.choice(list(self.layout.locs)) for tile in self.tiles: for rotation, _ in enumerate(tile.directions): assignment = Assignment(loc=loc, tile=tile, rotation=rotation, validated=False) board = Board(self, [assignment]) self.stack.insert(0, board) if not Globals.DETERMINISTIC: random.shuffle(self.stack) while self.stack: board = self.stack.pop() trials += 1 if trials % Globals.LOG_FREQUENCY == 0: print_update() if not board.validate(): continue valid_trials += 1 if Globals.MEMOIZE: if board.check_memo(): revisits += 1 continue else: board.memoize() if board.check_solved(): print_update() if Globals.FIRST_ONLY: return board else: boards.append(board) for new_board in board.extend_board(): self.stack.append(new_board) print_update() if Globals.FIRST_ONLY: return board else: return boards
python
16
0.508276
80
36.688172
93
Class to track the state of a Game (Layout, Tiles, Board candidate stack for solution in progress.)
class
class Ariia: """ Motherclass of the project, the domotic assistant """ def __init__(self): """ Constructor """ self.keyEventListener = kel.KeyEventListener() self.audioDeviceManager = adm.AudioDeviceManager(self.keyEventListener) self.talkManager = tm.TalkManager() self.audio = None self.speech = None self.answer = None self.request = list() self.cityList = list() self.meteoScrapper = ms.MeteoScrapper() self.historyScrapper = hs.HistoryScrapper() self.keywords = dict() self.resetKeywords() def cleanStop(self): """ Used to correctly stop all the active tasks """ self.keyEventListener.unregisterListener() def interaction(self): """ Interact with the user, main interface between Ariia and the user. """ self.speech = self.audioDeviceManager.listenAndCreateSpeech() self.analyseSpeech() self.audioDeviceManager.speakAnswer(self.answer) def resetKeywords(self): """ Reset the keywords """ # Keaywords Booleans dictionnaire self.keywords["Aria"] = False self.keywords["date"] = False self.keywords["jour"] = False self.keywords["heure"] = False self.keywords["meteo"] = False self.keywords["lHeure"] = False self.keywords["liste"] = False self.keywords["courses"] = False self.keywords["est"] = False self.keywords["es"] = False self.keywords["sommesNous"] = False self.keywords["es-tu"] = False self.keywords["etait"] = False self.keywords["suis-je"] = False self.keywords["tAppelles"] = False self.keywords["sais"] = False self.keywords["comment"] = False self.keywords["qui"] = False self.keywords["faire"] = False self.keywords["tu"] = False self.keywords["de"] = False # Flush keywords kists del self.request[:] del self.cityList[:] def analyseSpeech(self): """ Analyse the speech of the user and trigger answering methods """ self.answer = "" self.resetKeywords() try: assert self.speech is not None except AssertionError: self.speech = "nsSpeechText" for word in self.speech.split(" "): self.request.append(word) for word in self.request: if word.lower() == "aria": self.keywords["Aria"] = True elif word.lower() == "heure": self.keywords["heure"] = True elif word.lower() == "l'heure": self.keywords["lHeure"] = True elif word.lower() == "est": self.keywords["est"] = True elif word.lower() == "date": self.keywords["date"] = True elif word.lower() == "jour": self.keywords["jour"] = True elif word.lower() == "sommes-nous": self.keywords["sommesNous"] = True elif word.lower() == unicode("météo", 'utf-8'): self.keywords["meteo"] = True elif word.lower() == "comment": self.keywords["comment"] = True elif word.lower() == "t'appelles": self.keywords["tAppelles"] = True elif word.lower() == "sais": self.keywords["sais"] = True elif word.lower() == "faire": self.keywords["faire"] = True elif word.lower() == "es": self.keywords["es"] = True elif word.lower() == "qui": self.keywords["qui"] = True elif word.lower() == "tu": self.keywords["tu"] = True elif word.lower() == "es-tu": self.keywords["es-tu"] = True elif word.lower() == "suis-je": self.keywords["suis-je"] = True elif word.lower() == unicode("était", 'utf-8'): self.keywords["etait"] = True elif word.lower() == "liste": self.keywords["liste"] = True elif word.lower() == "de": self.keywords["de"] = True elif word.lower() == "courses": self.keywords["courses"] = True if self.keywords["heure"] and self.keywords["est"] or self.keywords["heure"] or self.keywords["lHeure"]: self.giveHour() if self.keywords["date"] and self.keywords["est"] or self.keywords["date"] or self.keywords["jour"] and self.keywords["sommesNous"]: self.giveDate() if self.keywords["meteo"]: self.giveMeteo() if self.keywords["qui"] and self.keywords["etait"]: self.giveHistory() if self.keywords["liste"] and self.keywords["de"] and self.keywords["courses"]: self.manageShoppingLists() # if self.keywords["comment"] and self.keywords["tAppelles"]: # self.basicAnswer("aria") # if len(self.request) == 1 and self.keywords["Aria"]: # self.basicAnswer("oui") # if self.keywords["tu"] and self.keywords["sais"] and self.keywords["faire"]: # self.basicAnswer("jeSaisFaire") # if self.keywords["qui"] and self.keywords["es-tu"]: # self.basicAnswer("presentationAria") # if self.keywords["qui"] and self.keywords["suis-je"]: # self.basicAnswer("presentationHumain") if self.answer == "": self.answer = self.talkManager.getTalk(self.speech) return self.answer def basicAnswer(self, answerFlag): """ Gives a basic answer Parameters : answerFlag - The flag given for a specific answer """ if answerFlag == "oui": self.answer = "Oui ?" elif answerFlag == "aria": self.answer = " Je m'appelle Aria, avec deux iii." elif answerFlag == "jeSaisFaire": self.answer = u"Pour le moment, je ne sais pas faire grand chose. Mais je vais m'améliorer ! ".encode('utf-8') elif answerFlag == "presentationAria": self.answer = "Je m'appelle Aria, et je suis une assistance domotique." elif answerFlag == "presentationHumain": self.answer = u"Je suis presque sûre que tu es un humain !".encode('utf-8') def giveHour(self): """ Gives the hour """ currentTime = time.localtime() self.answer += " Il est actuellement " + str(currentTime[3]) + " heure " + str(currentTime[4]) + "." def giveDate(self): """ Gives the date """ currentTime = time.localtime() if currentTime[1] == 1: month = "janvier" elif currentTime[1] == 2: month = "fevrier" elif currentTime[1] == 3: month = "mars" elif currentTime[1] == 4: month = "avril" elif currentTime[1] == 5: month = "mai" elif currentTime[1] == 6: month = "juin" elif currentTime[1] == 7: month = "juillet" elif currentTime[1] == 8: month = "aout" elif currentTime[1] == 9: month = "septembre" elif currentTime[1] == 10: month = "octobre" elif currentTime[1] == 11: month = "novembre" elif currentTime[1] == 12: month = "decembre" self.answer += " Nous sommes le " + str(currentTime[2]) + month + str(currentTime[0]) + "." def giveMeteo(self): """ Gives meteo data for a specific city Note : For now this method is in alpha version, can retreive meteo data from cities in "ile de france" """ for word in self.request: if word is not "Aria": for letter in word: letterUpper = letter.upper() if letter == letterUpper: self.cityList.append(word) break self.answer += u" voici la météo : ".encode('utf-8') for city in self.cityList: try: sky, temperature, wind = self.meteoScrapper.getMeteo(city) self.answer += u" à ".encode('utf-8') + city.encode('utf-8') + ": " if self.meteoScrapper.sky is not "": self.answer += " le ciel est " self.answer += sky self.answer += ", " if self.meteoScrapper.temperature is not "": self.answer += " Il fait" self.answer += temperature self.answer += u" degrés".encode('utf-8') self.answer += ", " if self.meteoScrapper.wind is not "": self.answer += " Il y a " self.answer += wind self.answer += "." except urllib2.HTTPError: self.answer += u" Je n'ai pas de données météo pour la ville : ".encode('utf-8') self.answer += " " + city.encode('utf-8') self.answer += "." def giveHistory(self): """ Gives historical data """ historicName = list() historicNameStr = "" for word in self.request: if word is not "Aria": for letter in word: letterUpper = letter.upper() if letter == letterUpper: historicName.append(word) historicNameStr += word + " " break try: self.answer += self.historyScrapper.getHistoricDescription(historicName) except Exception: self.answer += u"Je n'ai pas de données historiques pour le personnage : ".encode('utf-8') self.answer += historicNameStr.encode('utf-8') self.answer += u", ou ces données sont corrompues.".encode('utf-8') def manageShoppingLists(self): """ Manage the shopping lists of the user. """ self.shoppingListManager = slm.ShoppingListManager(self.audioDeviceManager) self.shoppingListManager.manageShoppingLists() self.answer = "Je ferme mon application de liste de courses."
python
17
0.50911
140
28.487603
363
Motherclass of the project, the domotic assistant
class
class RemoteAnonServer: """An anonymization server that can be talked to via the API""" def __init__(self, name, url): """Create a Remote anon server entry Parameters ---------- name: str short keyword to identify this server url: str full url to a valid Anonymization server web API """ self.name = name self.url = url def to_dict(self): """Dictionary representation of this server Returns ------- Dict """ return {"name": self.name, "url": self.url} @classmethod def from_dict(cls, dict_in): """Load instance from output of to_dict Returns ------- RemoteAnonServer """ return cls(name=dict_in["name"], url=dict_in["url"]) def __str__(self): return f"{self.name}: {self.url}"
python
12
0.521643
67
22.128205
39
An anonymization server that can be talked to via the API
class
class Spinner: ''' A simple spinner Args: title (str): The title for the spinner ''' def __init__(self, title: str): from sys import stdout self.stdout: file = stdout self.step: int = 0 self.steps: List[str] = ['-', '\\', '|', '/'] self.stdout.write(title + ': ' + self.steps[self.step] + chr(8)) self.stdout.flush() def __call__(self): ''' Advance the spinner ''' self.step += 1 self.step %= 4 self.stdout.write(self.steps[self.step] + chr(8)) self.stdout.flush() def __del__(self): ''' Finish using the spinner and clean up ''' self.stdout.write(self.steps[self.step] + '\n') self.stdout.flush()
python
12
0.605634
66
21.857143
28
A simple spinner Args: title (str): The title for the spinner
class
class Connector: """connect the data (from the ncfiles/local sources) to larda Args: system (str): system identifier system_info (dict): dict info loaded from toml valid_dates (list of lists): list of begin and end datetime description_dir (optional): dir with the description rst """ def __init__(self, system, system_info, valid_dates, description_dir=None): self.system = system self.system_info = system_info self.valid_dates = valid_dates self.params_list = list(system_info["params"].keys()) self.description_dir = description_dir logger.info("params in this connector {} {}".format(self.system, self.params_list)) logger.debug('connector.system_info {}'.format(system_info)) def __str__(self): s = "connector for system {} \ncontains parameters: ".format(self.system) s += " ".join(self.params_list) return s def build_filehandler(self): """scrape the directories and build the filehandler """ pathdict = self.system_info['path'] filehandler = {} for key, pathinfo in pathdict.items(): all_files = [] current_regex = pathinfo['matching_subdirs'] if 'matching_subdirs' in pathinfo else '' for root, dirs, files in os.walk(pathinfo['base_dir']): #print(root, dirs, len(files), files[:5], files[-5:] ) abs_filepaths = [root + f if (root[-1] == '/') else root + '/' + f for f in files if re.search(current_regex, root + '/' + f)] logger.debug("valid_files {} {}".format(root, [f for f in files if re.search(current_regex, root + "/" + f)])) #print("skipped_files {} {}".format(root, [f for f in files if not re.search(current_regex, root + "/" + f)])) all_files += abs_filepaths #files = [f for f in os.listdir('.') if re.match(r'[0-9]+.*\.jpg', f)] # remove basedir (not sure if that is a good idea) all_files = [p.replace(pathinfo['base_dir'], "./") for p in all_files] logger.debug('filelist {} {}'.format(len(all_files), all_files[:10])) dates = [convert_to_datestring(pathinfo["date_in_filename"], f)\ for f in all_files] all_files = [f for _, f in sorted(zip(dates, all_files), key=lambda pair: pair[0])] dates = sorted(dates) if dates: if len(dates) > 1: guessed_duration = (datetime.datetime.strptime(dates[-1],'%Y%m%d-%H%M%S') - datetime.datetime.strptime(dates[-2],'%Y%m%d-%H%M%S')) else: guessed_duration = datetime.timedelta(seconds=(23*60*60)-1) # quick fix guessed duration not longer than 24 h if guessed_duration >= datetime.timedelta(hours=24): guessed_duration = datetime.timedelta(seconds=(24*60*60)-1) last_data = ( datetime.datetime.strptime(dates[-1],'%Y%m%d-%H%M%S') + guessed_duration ).strftime("%Y%m%d-%H%M%S") date_pairs = list(zip(dates, dates[1:]+[last_data])) else: date_pairs = [] #singlehandler = zip(date_pairs, all_files) valid_date_filter = setup_valid_date_filter(self.valid_dates) singlehandler = list(filter( valid_date_filter, list(zip(date_pairs, all_files)))) filehandler[key] = singlehandler #pprint.pprint(filehandler) self.filehandler = filehandler def save_filehandler(self, path, camp_name): """save the filehandler to json file""" savename = 'connector_{}.json'.format(self.system) pretty = {'indent': 2, 'sort_keys':True} #pretty = {} if not os.path.isdir(path+'/'+camp_name): os.makedirs(path+'/'+camp_name) with open(path+'/'+camp_name+'/'+savename, 'w') as outfile: json.dump(self.filehandler, outfile, **pretty) logger.info('saved connector to {}/{}/{}'.format(path,camp_name,savename)) def load_filehandler(self, path, camp_name): """load the filehandler from the json file""" filename = "connector_{}.json".format(self.system) with open(path+'/'+camp_name+'/'+filename) as json_data: self.filehandler = json.load(json_data) def collect(self, param, time_interval, *further_intervals, **kwargs): """collect the data from a parameter for the given intervals Args: param (str) identifying the parameter time_interval: list of begin and end datetime *further_intervals: range, velocity, ... **interp_rg_join: interpolate range during join """ paraminfo = self.system_info["params"][param] if 'interp_rg_join' not in paraminfo: # default value paraminfo['interp_rg_join'] = False if 'interp_rg_join' in kwargs: paraminfo['interp_rg_join'] = kwargs['interp_rg_join'] base_dir = self.system_info['path'][paraminfo['which_path']]["base_dir"] logger.debug("paraminfo at collect {}".format(paraminfo)) if len(time_interval) == 2: begin, end = [dt.strftime("%Y%m%d-%H%M%S") for dt in time_interval] # cover all three cases: 1. file only covers first part # 2. file covers middle part 3. file covers end #print(begin, end) flist = [e for e in self.filehandler[paraminfo['which_path']] \ if (e[0][0] <= begin < e[0][1]) or (e[0][0] > begin and e[0][1] < end) or (e[0][0] <= end <= e[0][1])] assert len(flist) > 0, "no files available" elif len(time_interval) == 1: begin = time_interval[0].strftime("%Y%m%d-%H%M%S") flist = [e for e in self.filehandler[paraminfo['which_path']] if e[0][0] <= begin < e[0][1]] assert len(flist) == 1, "flist too long or too short: {}".format(len(flist)) #[print(e, (e[0][0] <= begin and e[0][1] > begin), (e[0][0] > begin and e[0][1] < end), (e[0][0] <= end and e[0][1] >= end)) for e in flist] load_data = setupreader(paraminfo) datalist = [load_data(base_dir + e[1], time_interval, *further_intervals) for e in flist] # [print(e.keys) if e != None else print("NONE!") for e in datalist] # reader returns none, if it detects no data prior to begin # now these none values are filtered from the list assert len(datalist) > 0, 'No data found for parameter: {}'.format(param) datalist = list(filter(lambda x: x != None, datalist)) #Transf.join(datalist[0], datalist[1]) data = functools.reduce(Transf.join, datalist) return data def description(self, param): paraminfo = self.system_info["params"][param] print('connector local paraminfo: ' + paraminfo['variable_name']) # Prints the nicely formatted dictionary # this is the python pprint function, not the larda.helpers function pp = pprint2.PrettyPrinter(indent=4) pp.pprint(paraminfo) if 'description_file' not in paraminfo: return 'no description file defined in config' if self.description_dir == None: return 'description dir not set' description_file = self.description_dir + paraminfo['description_file'] logger.info('load description file {}'.format(description_file)) with open(description_file, 'r', encoding="utf-8") as f: descr = f.read() return descr def get_as_plain_dict(self): """put the most important information of the connector into a plain dict (for http tranfer) .. code:: {params: {param_name: fileidentifier, ...}, avail: {fileidentifier: {"YYYYMMDD": no_files, ...}, ...}`` Returns: ``dict`` """ return { 'params': {e: self.system_info['params'][e]['which_path'] for e in self.params_list}, 'avail': {k: self.files_per_day(k) for k in self.filehandler.keys()} } def get_matching_files(self, begin_time, end_time): """ """ matching_files = [] begin_day = datetime.datetime.utcfromtimestamp(begin_time).date() end_day = datetime.datetime.utcfromtimestamp(end_time).date() for i in range(len(self.datelist)): if self.datelist[i] >= begin_day and self.datelist[i] <= end_day: matching_files.append(self.filelist[i]) if len(matching_files) == 0: raise Exception("no files found for " + self.param_info.system_type + " " + self.param_info.variable_name) return matching_files def files_per_day(self, which_path): """replaces ``days_available`` and ``day_available`` Returns: ``dict``: ``{'YYYYMMDD': no of files, ...}`` """ fh = self.filehandler[which_path] groupedby_day = collections.defaultdict(list) for d, f in fh: groupedby_day[d[0][:8]] += [f] no_files_per_day = {k: len(v) for k, v in groupedby_day.items()} return no_files_per_day
python
21
0.561179
148
43.85782
211
connect the data (from the ncfiles/local sources) to larda Args: system (str): system identifier system_info (dict): dict info loaded from toml valid_dates (list of lists): list of begin and end datetime description_dir (optional): dir with the description rst
class
class CommanderProcess: """Process that sends messages with information on how to create new data""" def __init__( self, commander: Commander, buffer_state_memory: BufferStateMemory, message_queue: Queue, buffer_id_sender: Optional[Connection], ): """Init Args: buffer_state_memory (BufferStateMemory): contains the states of the buffers message_queue (Queue): queue that is used to send information on how to create data buffer_id_sender (Optional[Connection]): connection that is used to send the buffer_id, used to ensure determinstic behaviour. """ super().__init__() self.daemon = True self._commander = commander self._buffer_state_memory = buffer_state_memory self._message_queue = message_queue self._buffer_id_sender = buffer_id_sender def run(self): self._commander.build() while True: buffer_id = self._buffer_state_memory.get_free_buffer_id() if buffer_id is None: continue self._message(buffer_id) def _message(self, buffer_id, *args, **kwargs): message = self._commander.create_message(*args, **kwargs) message[BUFFER_ID_KEY] = buffer_id self._message_queue.put(message) if self._buffer_id_sender is not None: self._buffer_id_sender.send(buffer_id)
python
12
0.610497
138
35.225
40
Process that sends messages with information on how to create new data
class
class BasePolicy: """BasePolicy Base Policy class. Randomly samples from the action state. You have can provide an action state as an argument (args[0]). If no action state is provided, the policy is initialized with an action state with a single 'None' action. """ def __init__(self, *args, action_state=None, **kwargs): # If a state is provided, use it; else create one (important not to lose the reference w/r the game_state) if action_state is None: action_state = State() action_state["action"] = StateElement( values=None, spaces=Space([numpy.array([None], dtype=object)]), ) self.action_state = action_state self.host = None # https://stackoverflow.com/questions/1015307/python-bind-an-unbound-method def _bind(self, func, as_name=None): if as_name is None: as_name = func.__name__ bound_method = func.__get__(self, self.__class__) setattr(self, as_name, bound_method) return bound_method def __content__(self): return self.__class__.__name__ @property def observation(self): """observation Return the last observation. :return: last observation :rtype: `State<coopihc.space.State.State>` """ return self.host.inference_engine.buffer[-1] @property def action(self): """action Return the last action. :return: last action :rtype: `State<coopihc.space.StateElement.StateElement>` """ return self.action_state["action"] @property def new_action(self): """new action (copy) Return a copy of the last action. :return: last action :rtype: `StateElement<coopihc.space.StateElement.StateElement>` """ return copy.copy(self.action_state["action"]) @property def unwrapped(self): return self def reset(self): self.action.reset() def sample(self, observation=None): """sample (Randomly) Sample from the policy :return: (action, action reward) :rtype: (StateElement<coopihc.space.StateElement.StateElement>, float) """ self.action.reset() return self.action, 0 def __repr__(self): try: return self.action_state.__str__() except AttributeError: return "Policy--unreadable"
python
18
0.591977
233
27.37931
87
BasePolicy Base Policy class. Randomly samples from the action state. You have can provide an action state as an argument (args[0]). If no action state is provided, the policy is initialized with an action state with a single 'None' action.
class
class ChannelResults: """ Performance parameters for one optical element for one channel """ def __init__(self): """ Constructor """ self.temp = None self.refl = None self.spil = None self.scat = None self.spil_temp = None self.scat_temp = None self.abso = None self.emiss = None self.effic = None #@Function @staticmethod def emission(freqs, abso, spil, spil_temp, scat, scat_temp, temp): #pylint: disable=too-many-arguments """ Compute the emission for this element """ return abso +\ spil * physics.pow_frac(spil_temp, temp, freqs) +\ scat * physics.pow_frac(scat_temp, temp, freqs) #@Function @staticmethod def efficiency(refl, abso, spil, scat): """ Compute the transmission for this element """ return (1-refl)*(1-abso)*(1-spil)*(1-scat) def calculate(self, freqs): """ Compute the results for the frequencies of interest for a given channel """ emiss_shape = np.broadcast(freqs, self.abso, self.spil, self.spil_temp, self.scat, self.scat_temp, self.temp).shape self.emiss = self.emission(freqs, self.abso, self.spil, self.spil_temp, self.scat, self.scat_temp, self.temp).reshape(emiss_shape) effic_shape = np.broadcast(self.refl, self.abso, self.spil, self.scat).shape self.effic = self.efficiency(self.refl, self.abso, self.spil, self.scat).reshape(effic_shape) def __call__(self): """ Return key parameters """ return (self.effic, self.emiss, self.temp)
python
12
0.621944
138
39.923077
39
Performance parameters for one optical element for one channel
class
class Printer: """ Concatenates a prefix to the input Consumer: Gets a value from the provided queue Producer: Puts the result into the provided queue """ # They're all public in this example, but should probably be private # Globals must be initialized here ("compile"-time) # They could be initialized at runtime before starting the process but this is HIGHLY DISCOURAGED prefixStart = "PrinterGlobal " def __init__(self, prefix): self.prefix = self.prefixStart + prefix # The working function def print(self, inData): # Pretending we are hard at work time.sleep(0.1) # Validate input # Incoming data MUST be checked in this class, # not the wrapper function! # It should be more sophisticated than this, # probably something like class method for checking and unpacking if (inData == None): return False, None suffix = str(inData) # Print string stringToPrint = self.prefix + suffix # Outgoing data MUST be in this form # so that bad data isn't going in the queue # Data must be packed into one variable before going out to the wrapper function! return True, stringToPrint
python
9
0.650432
101
30.85
40
Concatenates a prefix to the input Consumer: Gets a value from the provided queue Producer: Puts the result into the provided queue
class
class TestSend: """AWS task status post.""" def test_not_stopped(self, task): """Task is not known to stopped.""" send_fn = mock.Mock() kw = {"a": 42, "b": "spam"} task._send(send_fn, **kw) send_fn.assert_called_once_with(taskToken="taskToken", **kw) def test_stopped(self, task): """Task is stopped.""" task._request_stop = True send_fn = mock.Mock() kw = {"a": 42, "b": "spam"} task._send(send_fn, **kw) send_fn.assert_not_called()
python
10
0.472881
72
35.9375
16
AWS task status post.
class
class TestJoin: """Waiting for worker to finish.""" def test_succeeds(self, worker): """Worker finishes successfully.""" worker._poller = mock.Mock(spec=threading.Thread) worker.join() assert worker._request_finish is False worker._poller.join.assert_called_once_with() def test_cancelled(self, worker): """Worker is cancelled by main thread.""" worker._poller = mock.Mock(spec=threading.Thread) exc = KeyboardInterrupt() worker._poller.join.side_effect = exc worker.join() assert worker._request_finish is True worker._poller.join.assert_called_once_with() def test_error(self, worker): """Unknown failure on worker joining.""" worker._poller = mock.Mock(spec=threading.Thread) exc = ValueError("spambla42") worker._poller.join.side_effect = exc with pytest.raises(ValueError) as e: worker.join() assert e.value == exc assert worker._request_finish is True worker._poller.join.assert_called_once_with() def test_poller_error(self, worker): """Failure during polling/execution.""" worker._poller = mock.Mock(spec=threading.Thread) worker._exc = ValueError("spambla42") with pytest.raises(ValueError) as e: worker.join() assert e.value == worker._exc worker._poller.join.assert_called_once_with()
python
11
0.573325
61
41.783784
37
Waiting for worker to finish.
class
class Segment: """ A collection of parts that appears in the output file. This class is meant to be subclassed with a PARTS class member. """ PARTS: ClassVar[Dict['str', 'str']] # virtual member def __init__(self): self.raw_parts = [] self.activated = set() # so we don't add the same part twice def add_part(self, part_name): if part_name in self.activated: return val = self.PARTS[part_name] self.raw_parts.append(val) self.activated.add(part_name) def add_raw(self, part_string): self.raw_parts.append(part_string) def partial_part(self, part_name): return partial(self.add_part, part_name) def __iter__(self): yield from self.raw_parts def join(self, sep='\n'): return sep.join(self)
python
13
0.600962
69
26.766667
30
A collection of parts that appears in the output file. This class is meant to be subclassed with a PARTS class member.
class
class JurisDiction: """Scraper for Juris Diction news source, Queen's Law Newspaper. Site is currently located at <http://juris-diction.ca>. """ host = 'http://www.juris-diction.ca' slug = 'jurisdiction' scraper = Scraper() logger = scraper.logger @staticmethod def scrape(deep=False, location='./dumps/news', *args, **kwargs): """Scrape information custom to Juris Diction. Args: deep: Bool for a scrape of just the curent year, or every archive. location (optional): String location of output files. """ JurisDiction.logger.info('Starting JurisDiction scrape') try: archive_month_urls = get_urls_on_depth( JurisDiction._get_archive_month_urls(), JurisDiction.logger, deep ) for archive_month_url in archive_month_urls: try: JurisDiction.logger.debug('ARCHIVE: %s', archive_month_url) archive_page_urls = JurisDiction._get_archive_page_urls( archive_month_url) page_num = 1 for archive_page_url in archive_page_urls: try: archive_page = JurisDiction.scraper.http_request( archive_page_url) JurisDiction.logger.debug('Page %s', page_num) article_rel_urls = ( JurisDiction._get_rel_article_urls( archive_page) ) for article_rel_url in article_rel_urls: try: article_page, article_url = ( get_article_page( JurisDiction.scraper, JurisDiction.host, JurisDiction.logger, article_rel_url, ) ) article_data = ( JurisDiction._parse_article_data( article_page, article_url) ) if article_data: save_article( JurisDiction.scraper, article_data, location, ) JurisDiction.scraper.wait() except Exception: JurisDiction.scraper.handle_error() page_num += 1 except Exception: JurisDiction.scraper.handle_error() except Exception: JurisDiction.scraper.handle_error() except Exception: JurisDiction.scraper.handle_error() JurisDiction.logger.info('Completed JurisDiction scrape') @staticmethod def _get_archive_month_urls(): # Request main URL and extract all archived month URLs. soup = JurisDiction.scraper.http_request(JurisDiction.host) archives = soup.find('div', id='archives-3').find_all('li') archive_month_urls = [arch.find('a')['href'] for arch in archives] return archive_month_urls @staticmethod def _get_archive_page_urls(archive_month_url): # Requests an archive month's URL and crawls the archive for any # additional paginated 'next' URLs, if they exist. archive_page_urls = [archive_month_url] archive_page = JurisDiction.scraper.http_request(archive_month_url) # Paginate until we no longer see a 'next' button. while archive_page.find('a', 'next'): archive_page_url = archive_page.find('a', 'next')['href'] archive_page_urls.append(archive_page_url) archive_page = JurisDiction.scraper.http_request(archive_page_url) return archive_page_urls @staticmethod def _get_rel_article_urls(archive_page): # Extract every article's relative URL from the current archive page. article_section = archive_page.find('div', 'vw-isotope') articles = article_section.find_all('h3', 'vw-post-box-title') article_rel_urls = [article.find('a')['href'] for article in articles] return article_rel_urls @staticmethod def _parse_article_data(article_page, article_url): title = article_page.find('h1', 'entry-title').text.strip() # Queen's Juris Diction uses HTML5 element 'time', which already # contains ISO format in 'datetime' attribute. published_iso = article_page.find( 'div', class_='vw-post-meta-inner').find('time')['datetime'] # Multiple authors are listed with commas, except for last author with # 'and' such as 'John, Alex and Jason'. authors_raw = article_page.find('a', 'author-name') authors = ( authors_raw.text.replace(' and', ',').split(', ') if authors_raw else [] ) content = article_page.find('div', 'vw-post-content').text.strip() content_raw = str(article_page.find('div', 'vw-post-content')) data = { 'title': title, 'slug': JurisDiction.slug, 'url': article_url[:-1], 'published': published_iso, 'updated': published_iso, 'authors': authors, 'content': content, 'content_raw': content_raw, } return OrderedDict(data)
python
26
0.491661
79
36.018519
162
Scraper for Juris Diction news source, Queen's Law Newspaper. Site is currently located at <http://juris-diction.ca>.
class
class PlottingOptions: """ class to use with plotter script stores options related to having many solution workdirs to draw from for plotting """ nplot : int = 25 ntotal : int = 1024 plot_type : str = "mc_results" # [ snapshot , video , mc_results ] snapshot_num : int = 20 mc_workdir_name : str = "mc_"
python
6
0.626822
85
27.666667
12
class to use with plotter script stores options related to having many solution workdirs to draw from for plotting
class
class Meta: ''' to set table name in database ''' db_table = "login"
python
6
0.45
37
19.2
5
to set table name in database
class
class MockUSBContext: """This class mocks the behaviour of usb.core.Context.""" def dispose(self, device: "MockUSBServoBoardDevice") -> None: """Dispose of the device.""" pass
python
8
0.65
65
32.5
6
This class mocks the behaviour of usb.core.Context.
class
class MockUSBServoBoardDevice: """This class mocks the behaviour of a USB device for a Servo Board.""" def __init__(self, serial_number: str, fw_version: int = 2): self.serial = serial_number self.firmware_version = fw_version self._ctx = MockUSBContext() # Used by PyUSB when cleaning up the device. @property def serial_number(self) -> str: """Get the serial number of the USB device.""" return self.serial def ctrl_transfer( self, bmRequestType: int, bRequest: int, wValue: int = 0, wIndex: int = 0, data_or_wLength: Optional[Union[int, bytes]] = None, timeout: Optional[int] = None, ) -> bytes: """Mock a control transfer.""" assert bRequest == 64 # This is the same for read and write. if bmRequestType == 0x80: assert isinstance(data_or_wLength, int) return self.read_data(wValue, wIndex, data_or_wLength, timeout) if bmRequestType == 0x00: assert isinstance(data_or_wLength, bytes) self.write_data(wValue, wIndex, data_or_wLength, timeout) return b"" raise ValueError("Invalid Request Type for mock device.") def read_data( self, wValue: int = 0, wIndex: int = 0, wLength: int = 0, timeout: Optional[int] = None, ) -> bytes: """Mock reading data from a device.""" assert wValue == 0 # Always 0 on read. if wIndex == 9: return self.read_fw(wLength) raise NotImplementedError def read_fw(self, wLength: int) -> bytes: """Mock reading the firmware number.""" assert wLength == 4 return struct.pack("<I", self.firmware_version) def write_data( self, wValue: int = 0, wIndex: int = 0, data: bytes = b"", timeout: Optional[int] = None, ) -> None: """Mock writing data to a device.""" if 0 <= wIndex < 12: # Set Servo. return self.write_servo(wValue, data) if wIndex == 12: # Initialise. Behaviour unknown currently return raise NotImplementedError def write_servo(self, wValue: int, data: bytes) -> None: """Set the value of a servo.""" assert -100 <= wValue <= 100 assert data == b''
python
13
0.560518
82
30.539474
76
This class mocks the behaviour of a USB device for a Servo Board.
class
class Matrix: """ Implementation of matrices. """ def __init__(self, matrix): super().__init__() # self.matrix = [[1, 2, 3], [4, 5, 6]] self.matrix = matrix self.used = [] # self.shape = self.get_shape() self.__all__ = [] self.__all__.extend("MatrixDef") def get_shape(self): # TODO(aaronhma): Stabilize this: self.__all__.extend("MatrixShape") shape = set() shape.add(len(self.matrix)) shape.add(len(self.matrix[0])) return shape def test_valid_matrix(self) -> bool: """ Returns if matrix is valid. """ self.__all__.extend("ValidateMatrix") X, y = self.get_shape() check_valid_row = False check_valid_column = False if X == 2: check_valid_row = True if y >= 1: check_valid_column = True if check_valid_column and check_valid_row: return True else: raise MatrixError("Invalid matrix!") def transform(self): self.__all__.extend("TransformMatrix") # X, y = self.get_shape() try: assert(self.test_valid_matrix) except: raise MathlyAssertError("The matrix is invalid!") return self.shape def transpose(self): self.__all__.extend("TransposeMatrix") X, y = self.get_shape()
python
12
0.506925
61
27.333333
51
Implementation of matrices.
class
class Admin: ''' Administrative tasks for my own servers ''' def __init__(self, bot): self.bot = bot self.flags = FlagFramework() async def on_member_join(self, member): server = member.server if server.id == rc.ADMIN_SERVER: role = discord.utils.get(member.server.roles, name=rc.ADD_ROLE) await self.bot.add_roles(member, role) @commands.command(pass_context=True) async def amIAdmin(self, ctx): admin = AdminFramework(ctx.message.server) if admin.check(ctx.message.author): await self.bot.say("Yes") else: await self.bot.say("No") @commands.command(pass_context=True, timeout=10) async def promote(self, ctx, user): p = Phrasebook(ctx, self.bot) admin = AdminFramework(ctx.message.server) if not admin.check(ctx.message.author): await self.bot.say(p.pickPhrase('admin', 'notauthorized')) return mem = ctx.message.server.get_member_named(user) if not mem: await self.bot.say(p.pickPhrase('admin', 'notfound', user)) else: await self.bot.say(p.pickPhrase('admin', 'confirmpromote', \ mem.name, mem.discriminator, mem.id)\ ) msg = await self.bot.wait_for_message(author=ctx.message.author) if msg and 'yes' in msg.content.lower() or 'confirm' in msg.content.lower(): admin.promote(mem) await self.bot.say(p.pickPhrase('admin', 'promote', mem.mention)) else: await self.bot.say(p.pickPhrase('admin', 'abort')) @commands.command(pass_context=True, timeout=10) async def demote(self, ctx, user): p = Phrasebook(ctx, self.bot) admin = AdminFramework(ctx.message.server) if not admin.check(ctx.message.author): await self.bot.say(p.pickPhrase('admin', 'notauthorized')) return mem = ctx.message.server.get_member_named(user) if not mem: await self.bot.say(p.pickPhrase('admin', 'notfound', user)) else: await self.bot.say(p.pickPhrase('admin', 'confirmdemote', \ mem.name, mem.discriminator, mem.id)\ ) msg = await self.bot.wait_for_message(author=ctx.message.author) if msg and 'yes' in msg.content.lower() or 'confirm' in msg.content.lower(): admin.demote(mem) await self.bot.say(p.pickPhrase('admin', 'demote', mem.mention)) else: await self.bot.say(p.pickPhrase('admin', 'abort')) @commands.command(pass_context=True) async def dumpUsers(self, ctx): s = 'Member list:\n```' for member in ctx.message.server.members: s = s + str(member) + '(id: ' + member.id + ') ' if member.server_permissions == discord.Permissions.all(): s = s + '[ADMIN]' s = s + '\n' s = s + '```' await self.bot.say(s)
python
19
0.677596
79
33.173333
75
Administrative tasks for my own servers
class
class CircleApproximation: """A class to track the position of the robot in a system of coordinates using only encoders as feedback, using a combination of line and circle approximation methods.""" def __init__(self, axis_width, l_encoder, r_encoder): """Saves input values, initializes class variables.""" self.axis_width = axis_width self.l_encoder, self.r_encoder = l_encoder, r_encoder # previous values for the encoder position and heading self.prev_l, self.prev_r, self.prev_heading = 0, 0, 0 # starting position of the robot self.x, self.y = 0, 0 def update(self): """Update the position of the robot.""" # get sensor values and the previous heading l, r, heading = self.l_encoder(), self.r_encoder(), self.prev_heading # calculate encoder deltas (differences from this and previous readings) l_delta, r_delta = l - self.prev_l, r - self.prev_r # calculate omega h_delta = (r_delta - l_delta) / self.axis_width # either approximate if we're going (almost) straight or calculate arc if abs(l_delta - r_delta) < 1e-5: self.x += l_delta * cos(heading) self.y += r_delta * sin(heading) else: # calculate the radius of ICC R = (self.axis_width / 2) * (r_delta + l_delta) / (r_delta - l_delta) # calculate the robot position by finding a point that is rotated # around ICC by heading delta self.x += R * sin(h_delta + heading) - R * sin(heading) self.y += - R * cos(h_delta + heading) + R * cos(heading) # set previous values to current values self.prev_l, self.prev_r, self.prev_heading = l, r, heading + h_delta def get_position(self): """Return the position of the robot.""" return (self.x, self.y)
python
15
0.588386
81
40.347826
46
A class to track the position of the robot in a system of coordinates using only encoders as feedback, using a combination of line and circle approximation methods.
class
class Node: """This defines a Node in the Rule decision tree.""" arg_types = ("RLOC", "SPAWN", "HP") comp_ops = ("LT", "GT") operation_types = ("AND", "OR") rloc_types = ("ENEMY", "SPAWN", "INVALID", "EMPTY", "ALLY", "ALLY_FUT", "ATT_FUT") directions = ("UP", "DOWN", "RIGHT", "LEFT") rloc_w_hp = ("ENEMY", "ALLY", "ALLY_FUT") def __init__(self, operation, arg_type, par=None, arg_hp=0, arg_comp_op="LT", arg_spawn=0, arg_rloc_type="EMPTY", arg_rloc=(0,0), arg_dir=None, arg_not=False, arg_root=False): self.type = arg_type self.root = arg_root self.op = operation self.parent = par self.children = [] self.direction = arg_dir self.not_op = arg_not self.rloc_type = arg_rloc_type self.rloc = arg_rloc self.hp = arg_hp self.comp_op = arg_comp_op self.turns_since_spawn = arg_spawn @staticmethod def new_random_node(root=False): """Creates a random Node.""" hp = 0 comp_op = "" spawn = 0 rloc = (0, 0) rloc_type = "EMPTY" dir = random.choice(Node.directions) not_op = (random.random() < 0.5) op = random.choice(Node.operation_types) type = random.choice(Node.arg_types) if type == "RLOC": rloc = Rule.gen_rloc_gaussian() rloc_type = random.choice(Node.rloc_types) if any(rloc_type == s for s in Node.rloc_w_hp): hp = random.randint(1, 50) comp_op = random.choice(Node.comp_ops) elif type == "SPAWN": spawn = random.randint(0, 9) comp_op = random.choice(Node.comp_ops) elif type == "HP": hp = random.randint(1, 50) comp_op = random.choice(Node.comp_ops) return Node(op, type, None, hp, comp_op, spawn, rloc_type, rloc, dir, not_op, root) def insert_child_randomly(self, child): """Inserts the child at random in this Node's children list.""" last_idx = len(self.children) - 1 if last_idx < 0: self.children.append(child) else: self.children.insert((random.randint(0, (len(self.children) - 1))), child) def remove_child(self, child): """Removes the child from this Node's children list.""" self.children.remove(child) def remove_child_by_idx(self, idx): """Removes the child at idx in Node's children list.""" del self.children[idx] def is_root(self): return self.root def make_copy(self): """Creates copy of this node. Does not copy parent and children pointers.""" return Node(self.op, self.type, None, self.hp, self.comp_op, self.turns_since_spawn, self.rloc_type, (self.rloc[0], self.rloc[1]), self.direction, self.not_op, self.root) def evaluate(self, game, robot, ally_fut, attack_fut): """Recursive evaluation of this Node and it's children given game state.""" result = False dir_result = self.direction # First handle this node's expression if self.type == "SPAWN": if self.comp_op == "LT" and self.turns_since_spawn > (game['turn'] % 10): result = True elif self.comp_op == "GT" and self.turns_since_spawn < (game['turn'] % 10): result = True elif self.type == "HP": if self.comp_op == "LT" and robot.hp < self.hp: result = True elif self.comp_op == "GT" and robot.hp > self.hp: result = True elif self.type == "RLOC": true_loc = (robot.location[0] + self.rloc[0], robot.location[1] + self.rloc[1]) bots = game.get('robots') check_hp = False hp_to_check = 0 if self.rloc_type == "ENEMY": if true_loc in bots.keys(): bot = bots[true_loc] if bot.player_id != robot.player_id: check_hp = True hp_to_check = bot.hp elif self.rloc_type == "SPAWN": if 'spawn' in rg.loc_types(true_loc): result = True elif self.rloc_type == "INVALID": if any(x in rg.loc_types(true_loc) for x in ['obstacle', 'invalid']): result = True elif self.rloc_type == "EMPTY": if not any(x in rg.loc_types(true_loc) for x in ['obstacle', 'invalid']): if true_loc not in bots.keys(): result = True elif self.rloc_type == "ALLY": if true_loc in bots.keys(): bot = bots[true_loc] if bot.player_id == robot.player_id: check_hp = True hp_to_check = bot.hp elif self.rloc_type == "ALLY_FUT": if not any(x in rg.loc_types(true_loc) for x in ['obstacle', 'invalid']): hp_to_check = ally_fut[true_loc[0]][true_loc[1]] if hp_to_check > 0: check_hp = True elif self.rloc_type == "ATT_FUT": if not any(x in rg.loc_types(true_loc) for x in ['obstacle', 'invalid']): result = (attack_fut[true_loc[0]][true_loc[1]] > 0) if check_hp: if self.comp_op == "LT" and hp_to_check < self.hp: result = True elif self.comp_op == "GT" and hp_to_check > self.hp: result = True if self.not_op: result = not result # Now check children Nodes # Precedence of True evalutations: # True OR child > True AND children + True self > No AND children + True self # Direction is set by the "lowest in the tree" True node of the highest # precedence condition. For example, a True node with all True AND # children and two True OR children will use the direction of the first True # OR child. Assuming non-contradictory Node expressions, this should allow # every Node to determine the direction in at least one game state. and_still_possible = True for child in self.children: ch_result = child.evaluate(game, robot, ally_fut, attack_fut) if result and (child.op == "AND"): and_still_possible = (and_still_possible and ch_result[0]) dir_result = ch_result[1] if child.op == "OR" and ch_result[0]: return ch_result return ((result and and_still_possible), dir_result) def debug_print(self, indent=0): i_str = "" for x in range(indent): i_str = i_str + " " print i_str + "parent:", self.parent print i_str + "root:", self.root, "op:", self.op, "not:", self.not_op, \ "type:", self.type, \ "rloc:", self.rloc, "rloc_type:", self.rloc_type, "comp_op:", self.comp_op, \ "hp:", self.hp, "spawn:", self.turns_since_spawn, "dir:", self.direction print i_str + "num children:", len(self.children) for child in self.children: print i_str + "child:", child child.debug_print(indent+1)
python
20
0.508244
93
42.325714
175
This defines a Node in the Rule decision tree.
class
class LineElement: """LineElement represents a finite arc in the discretization of the domain boundary.""" def __init__(self, a, b, n, is_fault): """Constructor. :param a: Start point :param b: End point :param n: Outward-pointing normal :param is_fault: Flag this element as fault """ self.a = np.array(a) self.h = np.array(b) - self.a self.h_norm = np.linalg.norm(self.h) self.n = np.array(n) self.n = self.n / np.linalg.norm(self.n) self.is_fault = is_fault def xi(self, theta): """Map from interval [-1, 1] to line a-b. :param theta: Scalar in [-1, 1]. """ # TODO - done ThetaInv = self.h * (theta + 1.0)/2.0 + self.a #return np.array([0.0, 0.0]) return ThetaInv def basis(self, theta): """Basis function evaluated at theta. :param theta: Scalar in [-1, 1] """ # TODO: done #return 0.0 return 1 def factor(self, theta): """Integration factor. Must return basis(theta) * |xi'(theta)| :param theta: Scalar in [-1, 1] """ # TODO: done #return 0.0 return self.h_norm /2 def collocation_point(self): """Returns midpoint of line.""" return self.xi(0) def __repr__(self): return 'LineElement({}, {})'.format(self.a, self.a + self.h)
python
12
0.523151
91
26.320755
53
LineElement represents a finite arc in the discretization of the domain boundary.
class
class InfiniteLineElement: """InfiniteLineElement represents an infinite arc in the discretization of the domain boundary.""" def __init__(self, a, n): """Constructor. :param a: Start point (line direction is also a) :param n: Outward-pointing normal :param is_fault: Flag this element as fault """ self.a = np.array(a) self.a_norm = np.linalg.norm(self.a) self.n = np.array(n) self.n = self.n / np.linalg.norm(self.n) self.is_fault = False def xi(self, theta): """Map from interval [-1, 1] to line starting at "a" with direction "a" extending to infinity. :param theta: Scalar in [-1, 1]. """ # TODO: done ChiMap = self.a* (theta + 3)/(1-theta) #return np.array([0.0, 0.0]) return ChiMap def basis(self, theta): """Basis function evaluated at theta. :param theta: Scalar in [-1, 1] """ # TODO: done #return 0.0 return ((1-theta)/(theta + 3))**2 def factor(self, theta): """Integration factor. Must return basis(theta) * |xi'(theta)| :param theta: Scalar in [-1, 1] """ # TODO: done #return 0.0 return 4* self.a_norm / (theta+3)**2 def collocation_point(self): """Returns start point of line.""" return self.xi(-1) def __repr__(self): return 'InfiniteLineElement({})'.format(self.a)
python
11
0.541862
102
27.730769
52
InfiniteLineElement represents an infinite arc in the discretization of the domain boundary.
class
class SolutionV2: """ Time complexity O(k*n), and faster, but not _that_ fast. Strategy: Result is minimal, if digits are removed from high order to low order, and if a given digit is greater than its neighbour digit on the right. """ def removeKdigits(self, num: str, k: int) -> str: if len(num) == k: return "0" for _ in range(k): for i in range(len(num) - 1): if num[i] > num[i + 1]: num = num[:i] + num[i + 1:] break else: num = num[:-1] return str(int(num))
python
17
0.492777
60
31.842105
19
Time complexity O(k*n), and faster, but not _that_ fast. Strategy: Result is minimal, if digits are removed from high order to low order, and if a given digit is greater than its neighbour digit on the right.
class
class SolutionV3: """ An elegant O(n) solution from the LeetCode discussion. It is relatively fast, and nice to read. It appends digits from 'num' to the output string, Digit by digit, but removes digits from the output before appending the next, if the next digit has a lower value than the most recent output digit (as long as we have something to remove, i.e. 'k' is not exhausted. The return expression covers corner cases: - digits count of 'num' equals 'k' (in case, output will be empty), - or - - output has leading zeros, - or - - deletions are necessary at the right end of 'num'. """ def removeKdigits(self, num: str, k: int) -> str: output = [] for d in num: while k and output and output[-1] > d: output.pop() k -= 1 output.append(d) return ''.join(output[:-k or None]).lstrip('0') or '0'
python
15
0.607635
80
40.043478
23
An elegant O(n) solution from the LeetCode discussion. It is relatively fast, and nice to read. It appends digits from 'num' to the output string, Digit by digit, but removes digits from the output before appending the next, if the next digit has a lower value than the most recent output digit (as long as we have something to remove, i.e. 'k' is not exhausted. The return expression covers corner cases: - digits count of 'num' equals 'k' (in case, output will be empty), - or - - output has leading zeros, - or - - deletions are necessary at the right end of 'num'.
class
class SocketInterface: """Implement of the BSD socket interface.""" def __init__(self, destination, protocol, socket_options=(), buffer_size=2048): """Creates a network socket to exchange messages.""" self.__socket = None try: self.__destination = socket.gethostbyname(destination) except socket.gaierror as error: raise RuntimeError(f'Cannot resolve the address {destination}, try verify your DNS or host file.\n{error}') self.__protocol = socket.getprotobyname(protocol) self.__buffer_size = buffer_size self.__socket = socket.socket(socket.AF_INET, socket.SOCK_RAW, self.protocol) if socket_options: self.socket.setsockopt(*socket_options) def __enter__(self): """Return this object.""" return self def __exit__(self, *args): """Call the `close_socket` method.""" self.close_socket() def __del__(self): self.close_socket() def close_socket(self): """Safe socket cleanup after all references to the object have been deleted.""" try: if hasattr(self, 'socket') and not self.is_closed: self.socket.close() self.socket = None except AttributeError: raise AttributeError('Attribute error because of failed socket init. Make sure you have the root ' 'privilege. This error may also be caused from DNS resolution problems.') @property def is_closed(self): """Indicate whether the socket is closed.""" return self.socket is None @property def destination(self): return self.__destination @property def buffer_size(self): return self.__buffer_size @property def protocol(self): return self.__protocol @property def socket(self): """Return the socket object.""" return self.__socket @socket.setter def socket(self, value): """Set the socket object.""" self.__socket = value @property def is_closed(self): """Indicate whether the socket is closed.""" return self.socket is None def send_packet(self, packet): """Sends a raw packet on the stream.""" self.socket.sendto(packet, (self.destination, 0)) def receive_packet(self, timeout=2): """Listen for incoming packets until timeout.""" time_left = timeout while time_left > 0: start_time = time.perf_counter() data_ready = select.select([self.socket], [], [], time_left) time_elapse_in_select = time.perf_counter() - start_time time_left -= time_elapse_in_select if not data_ready[0]: return b'', '', time_left packet_received, address = self.socket.recvfrom(self.buffer_size) return packet_received, address, time_left @property def dont_fragment(self): """Specifies whether sockets cannot be fragmented. Datagrams require fragmentation when their size exceeds the Maximum Transfer Unit (MTU) of the transmission medium. Datagrams may be fragmented by the sending host (all Internet Protocol versions) or an intermediate router (Internet Protocol Version 4 only). If a datagram must be fragmented, and the DontFragment option is set, the datagram is discarded, and an Internet Control Message Protocol (ICMPPacket) error message is sent back to the sender of the datagram.""" return socket.SOL_IP, 10, 1
python
13
0.614938
119
29.905983
117
Implement of the BSD socket interface.
class
class Param: """ Trainable parameter of the model Captures both parameter value and the gradient """ def __init__(self, value): self.value = value self.grad = None self.grad_clear() def grad_clear(self): self.grad = np.zeros_like(self.value)
python
10
0.591973
50
22.076923
13
Trainable parameter of the model Captures both parameter value and the gradient
class
class PolyProcess: """This is the PolyProcess class This class takes two arguments 1. PolyTracker produced json containing CFG, taint sets, and version number. (PolyMerge has better version parsing) 2. PolyTracker raw taint forest PolyProcess will take these files and: 1. Reconstruct the CFG, taint forest and taint sets 2. Process the taint sets to produce a final json containing the byte offsets touched in each function """ def __init__(self, polytracker_json_path: str, polytracker_forest_path: str): if polytracker_json_path is None or polytracker_forest_path is None: raise ValueError("Error: Path cannot be None") if not os.path.exists(polytracker_json_path): raise ValueError("Error: Could not find polytracker json path") if not os.path.exists(polytracker_forest_path): raise ValueError("Error: Could not find polytracker forest path") self.json_file = open(polytracker_json_path, "r") self.json_size = os.path.getsize(polytracker_json_path) self.polytracker_json = json.loads(self.json_file.read(self.json_size)) self.processed_taint_sets: Dict[str, Dict[str, Dict[str, List[int]]]] = {} if "tainted_functions" not in self.polytracker_json: self.taint_sets = None else: self.taint_sets = self.polytracker_json["tainted_functions"] if "tainted_input_blocks" not in self.polytracker_json: self.tainted_input_blocks = None else: self.tainted_input_blocks = self.polytracker_json["tainted_input_blocks"] self.forest_file = open(polytracker_forest_path, "rb") self.forest_file_size = os.path.getsize(polytracker_forest_path) self.taint_forest: nx.DiGraph = nx.DiGraph() self.source_metadata: Dict[str, SourceMetadata] = {} self.canonical_mapping: Dict[int, Tuple[str, int]] = {} self.process_source_metadata() self.process_canonical_mapping() self.process_forest() self.outfile = "polytracker.json" def process_source_metadata(self): source_info = self.polytracker_json["taint_sources"] source_prog_bar = tqdm(source_info) source_prog_bar.set_description("Processing source metadata") for source in source_prog_bar: self.source_metadata[source] = SourceMetadata(source_info[source]["start_byte"], source_info[source]["end_byte"]) def process_canonical_mapping(self): canonical_map = self.polytracker_json["canonical_mapping"] source_prog_bar = tqdm(canonical_map) source_prog_bar.set_description("Processing canonical mapping") for source in source_prog_bar: for label_offset_pair in canonical_map[source]: self.canonical_mapping[label_offset_pair[0]] = (source, label_offset_pair[1]) def set_output_filepath(self, filepath: str): self.outfile = filepath def validate_forest(self) -> bool: return self.forest_file_size % taint_node_size == 0 def max_node(self) -> int: return self.forest_file_size // taint_node_size def process_forest(self): """This function reads the taint forest file and converts it to a networkX graph The taint forest file is a bunch of raw bytes, where each sizeof(dfsan_label) chunk represents a taint_node struct. The actual definition of the struct can be found in include/dfsan_types.h The function that produces this taint forest is outputRawTaintForest Note that the taint info here (and anything of type label) is 1 indexed, because 0 is the null index. The way we convert back to canonical bytes is by travelling up the forest to a node with two null parents Then subtract one from that label, which gets you the original offset. """ logger.log(logging.DEBUG, "Processing taint forest!") is_valid = self.validate_forest() if not is_valid: raise Exception("Invalid taint forest!") nodes_to_process = tqdm(range(self.max_node())) nodes_to_process.set_description("Processing taint forest") for curr_node in nodes_to_process: taint_forest_entry = struct.unpack("=II", self.forest_file.read(taint_node_size)) parent_1: int = taint_forest_entry[0] parent_2: int = taint_forest_entry[1] self.taint_forest.add_node(curr_node) # Parents for canonical labels should have parents of label 0 assert parent_1 == parent_2 == 0 or (parent_1 != 0 and parent_2 != 0) if parent_1 != 0 and parent_2 != 0: self.taint_forest.add_edge(curr_node, parent_1) self.taint_forest.add_edge(curr_node, parent_2) def draw_forest(self): logger.log(logging.DEBUG, "Drawing forest") pos = nx.nx_agraph.graphviz_layout(self.taint_forest) nx.draw(self.taint_forest, pos=pos) write_dot(self.taint_forest, "taint_forest.dot") check_call(["dot", "-Tpdf", "taint_forest.dot", "-o", "taint_forest.pdf"]) def is_canonical_label(self, label: int) -> bool: try: out_edges = self.taint_forest.edges(label) if len(out_edges) == 0: return True except nx.exception.NetworkXError: raise return False def get_canonical_offset(self, label: int) -> int: return self.canonical_mapping[label][1] def get_canonical_source(self, label: int) -> str: return self.canonical_mapping[label][0] def process_taint_sets(self): if self.taint_sets is None: print("Warning! No taint information to process") return taint_sets = tqdm(self.taint_sets) processed_labels = defaultdict(lambda: defaultdict(lambda: defaultdict(set))) for function in taint_sets: taint_sets.set_description(f"Processing {function}") label_list = self.taint_sets[function]["input_bytes"] # Function --> Input_bytes/Cmp bytes --> Source --> labels for label in label_list: # Canonical labels canonical_labels = set( label for label in nx.dfs_preorder_nodes(self.taint_forest, label) if self.is_canonical_label(label) ) # Now partition based on taint source for can_label in canonical_labels: offset = self.get_canonical_offset(can_label) source = self.get_canonical_source(can_label) processed_labels[function]["input_bytes"][source].add(offset) # Check if this function has cmp bytes/if we should add the label if "cmp_bytes" in self.taint_sets[function]: if label in self.taint_sets[function]["cmp_bytes"]: processed_labels[function]["cmp_bytes"][source].add(offset) # Now that we have constructed the input_bytes sources, convert it to a sorted list: for source in processed_labels[function]["input_bytes"]: processed_labels[function]["input_bytes"][source] = list( sorted(processed_labels[function]["input_bytes"][source]) ) processed_labels[function]["cmp_bytes"][source] = list(sorted(processed_labels[function]["cmp_bytes"][source])) self.processed_taint_sets = processed_labels def output_processed_json(self): # Remove canonical mapping processed_json = defaultdict(dict) processed_json["tainted_functions"] = self.processed_taint_sets processed_json["runtime_cfg"] = self.polytracker_json["runtime_cfg"] processed_json["version"] = self.polytracker_json["version"] processed_json["taint_sources"] = self.polytracker_json["taint_sources"] processed_json["tainted_input_blocks"] = self.polytracker_json["tainted_input_blocks"] with open(self.outfile, "w") as out_fd: json.dump(processed_json, out_fd, indent=4)
python
21
0.63496
127
48.150602
166
This is the PolyProcess class This class takes two arguments 1. PolyTracker produced json containing CFG, taint sets, and version number. (PolyMerge has better version parsing) 2. PolyTracker raw taint forest PolyProcess will take these files and: 1. Reconstruct the CFG, taint forest and taint sets 2. Process the taint sets to produce a final json containing the byte offsets touched in each function
class
class SensitiveManager: """ This class provides utility functions to remove & restore sensitive values from the experiment extension """ def __init__(self): self.sensitive = {} def remove_sensitive_values(self, experiment: Experiment, keys: List[str] = None): if keys is None: return for key in keys: self.sensitive[key] = get_extension_value(experiment, key) del_extension_value(experiment, key, silent=True) def restore_sensitive_values(self, experiment: Experiment, keys: List[str] = None): if keys is None: return for key in keys: set_extension_value(experiment, key, self.sensitive[key])
python
12
0.574144
70
31.916667
24
This class provides utility functions to remove & restore sensitive values from the experiment extension
class
class Dataset: """Mock the MindSpore Dataset class.""" def __init__(self, dataset_size=None, dataset_path=None): self.dataset_size = dataset_size self.dataset_path = dataset_path self.inputs = [] def get_dataset_size(self): """Mocked get_dataset_size.""" return self.dataset_size def get_batch_size(self): """Mocked get_batch_size""" return 32
python
8
0.598086
61
26.933333
15
Mock the MindSpore Dataset class.
class
class inverse: r"""Open a inverse scope Inside a ``with inverse`` scope, the the quantum operations backwards. :Usage: .. code-block:: ket with inverse(): ... """ def __enter__ (self): adj_begin() def __exit__ (self, type, value, tb): adj_end()
python
8
0.480597
74
17.666667
18
r"""Open a inverse scope Inside a ``with inverse`` scope, the the quantum operations backwards. :Usage: .. code-block:: ket with inverse(): ...
class
class TextDistiller: """ Instances of this class are used to 'distill' a text corpus using basic NLP techniques. """ def __init__(self, raw_fulltext): self.crp_raw = raw_fulltext self.crp_clean = self.clean_text(self.crp_raw) stopword_list = config.tech_stopwords + config.eng_stopwords # When tokenizing the corpus, ignore stop words and words of # length = 1, which also excludes abbreviations like "e.g." # once the punctuation has been stripped. self.crp_toks = [word for word in word_tokenize(self.crp_clean) if word not in stopword_list and len(word) > 1] self.word_freqs = FreqDist(word for word in self.crp_toks) self.wordcloud = self.gen_wordcloud() def clean_text(self, raw_text): # This function scrubs extra white spaces and non-letter characters from # the input text, and converts it to lowercase. processed_text = re.sub(r"\s+", " ", raw_text) # Delete extra white spaces processed_text = processed_text.lower() # Convert to lowercase processed_text = re.sub(r"[^a-zA-Z]", " ", processed_text) # allow only letters return processed_text def gen_bigrams(self, min_freq = config.bg_min_freq): # Generate ranked bigrams as a list of tuples from the tokenized corpus. bg_finder = BigramCollocationFinder.from_words(self.crp_toks, window_size = config.bg_win) bg_finder.apply_freq_filter(min_freq) bg_ranked = bg_finder.nbest(BigramAssocMeasures.pmi, config.bg_count) return bg_ranked def gen_wordcloud(self): # Build a word cloud using the tokenized patent text. Stopwords have been removed by this point. # Generate the word cloud & convert to a matplotlib plot wc = WordCloud(max_words=250, margin=10, random_state=1, mode = "RGBA", background_color = None, collocations = False).generate(" ".join(self.crp_toks)) recolor = get_single_color_func("midnightblue") wc_plt = plt.imshow(wc.recolor(color_func = recolor)) # Convert plot to PNG image wc_png_img = io.BytesIO() wc_plt.write_png(wc_png_img) # Encode PNG image to base64 string, then return the string. wc_png_img_str = "data:image/png;base64," wc_png_img_str += base64.b64encode(wc_png_img.getvalue()).decode('utf8') return wc_png_img_str
python
13
0.587078
104
43.163934
61
Instances of this class are used to 'distill' a text corpus using basic NLP techniques.
class
class Results: """ The Results class works closely with the Observation class. It holds information regarding the state, action, observation, reward, and error. Functions keep track of errors that happen and enables external sources to copy the information regarding the current action-observation, as well as printing the results. """ def __init__(self, observation: dict = None, done: bool = None, reward: float = None, info=None, parameter_mask=None, action_space=None, error: Exception = None, error_msg: str = None, next_observation=None, action=None, action_name: str = None): self.observation = observation self.next_observation = next_observation self.done = done self.reward = reward self.action = action self.info = info self.parameter_mask = parameter_mask self.action_space = action_space self.error = error self.error_msg = error_msg self.action_name = action_name self.selection_masks = None def has_error(self): return self.error is not None def copy(self): copy_kwargs = { "done": self.done, "reward": self.reward, "error": deepcopy(self.error), "error_msg": deepcopy(self.error_msg), "action": deepcopy(self.action), "info": deepcopy(self.info), "action_space": deepcopy(self.action_space) } if isinstance(self.observation, Observation): copy_kwargs["observation"] = self.observation.copy() else: copy_kwargs["observation"] = deepcopy(self.observation) if isinstance(self.next_observation, Observation): copy_kwargs["next_observation"] = self.next_observation.copy() else: copy_kwargs["next_observation"] = deepcopy(self.next_observation) return Results(**copy_kwargs) def __str__(self): output = [f"{self.__class__.__name__}:"] for attr, v in self.__dict__.items(): if v is None: continue if isinstance(v, dict): v_str = pprint.pformat(v) else: v_str = str(v) output.append(f"{attr}={v_str}") return "\n".join(output) def __eq__(self, other): if not isinstance(other, type(self)): return False for k, v in self.__dict__.items(): if k not in other.__dict__: return False if v != other.__dict__[k]: return False return True
python
14
0.539763
149
33.75
80
The Results class works closely with the Observation class. It holds information regarding the state, action, observation, reward, and error. Functions keep track of errors that happen and enables external sources to copy the information regarding the current action-observation, as well as printing the results.
class
class Quantizer: """Handles quantization and dequantization of data """ def __init__(self, num_levels=5): """Initalization Args: num_levels (int, optional): Number of quantization levels. Defaults to 5. """ # use tuple for immutability self.num_levels = num_levels """number of quantization levels""" labels = tuple(string.ascii_uppercase[:num_levels]) self.labels = {label: idx for idx, label in enumerate(labels)} """ex. `{A: 0, B: 1, ...}`""" self.variable_bin_map = {} """key-value pairs `{biome_name: quantization map}`""" self.column_names = None """a list of columns in the format `{biome}_{week}`""" self.subject_id_column = None """cache this column to add back to the label matrix with `self.add_meta_to_matrix`""" self.random_forest_dict = {} """key-value pairs `{biome_name: sklearn.ensemble.RandomForestRegressor}`""" def save_quantizer_states(self, out_fname): """Save `self.column_names, self.subject_id_column, self.variable_bin_map, self.random_forest_dict`. Call this after calling `self.quantize_df` Args: out_fname (str): output file name """ states = { 'column_names': self.column_names, 'subject_id_column': self.subject_id_column, 'variable_bin_map': self.variable_bin_map, 'random_forest_dict': self.random_forest_dict } with open(out_fname, 'wb') as f: pickle.dump(states, f, protocol=pickle.HIGHEST_PROTOCOL) def load_quantizer_states(self, in_fname): """Load in `self.column_names, self.variable_bin_map, self.random_forest_dict` from file Args: in_fname (str): input file name """ with open(in_fname, 'rb') as f: states = pickle.load(f) self.column_names = states['column_names'] self.subject_id_column = states['subject_id_column'] self.variable_bin_map = states['variable_bin_map'] self.random_forest_dict = states['random_forest_dict'] def pivot_into_quantize_format(self, data): """Pivot the data into a format the quantizer can quantize Input data format, produced by `DataFormatter.load_data`: | sample_id | subject_id | variable | week | value | |:----------------|-------------:|:-----------------|-------:|---------:| | MBSMPL0020-6-10 | 1 | Actinobacteriota | 27 | 0.36665 | | MBSMPL0020-6-10 | 1 | Bacteroidota | 27 | 0.507248 | | MBSMPL0020-6-10 | 1 | Campilobacterota | 27 | 0.002032 | | MBSMPL0020-6-10 | 1 | Desulfobacterota | 27 | 0.005058 | | MBSMPL0020-6-10 | 1 | Firmicutes | 27 | 0.057767 | Output format: | subject_id | Acidobacteriota_35 | Actinobacteriota_1 | Actinobacteriota_2 | |-------------:|---------------------:|:---------------------|---------------------:| | 1 | nan | 0.36665 | nan | | 10 | nan | 0.36665 | nan | | 11 | nan | 0.36665 | nan | Args: data (pandas.DataFrame): see format above Returns: pandas.DataFrame: see format above """ # some hacky intermediate format used by quantizer only # so this probably shouldn't go into DataFormatter melted = pd.concat([ data.subject_id, data.variable + '_' + data.week.astype(str), data.value ], axis=1).rename(columns={0: 'variable'}) to_quantize = melted.pivot_table( index='subject_id', columns='variable', dropna=False)['value'].reset_index() return to_quantize def quantize_df(self, data): """This function must be called before calling any of the dequantization procedures. It populates `self.column_names, self.subject_id_column, self.variable_bin_map` Input data format, produced by `DataFormatter.load_data`: | sample_id | subject_id | variable | week | value | |:----------------|-------------:|:-----------------|-------:|---------:| | MBSMPL0020-6-10 | 1 | Actinobacteriota | 27 | 0.36665 | | MBSMPL0020-6-10 | 1 | Bacteroidota | 27 | 0.507248 | | MBSMPL0020-6-10 | 1 | Campilobacterota | 27 | 0.002032 | | MBSMPL0020-6-10 | 1 | Desulfobacterota | 27 | 0.005058 | | MBSMPL0020-6-10 | 1 | Firmicutes | 27 | 0.057767 | Output data format: | subject_id | Acidobacteriota_35 | Actinobacteriota_1 | Actinobacteriota_2 | |-------------:|---------------------:|:---------------------|---------------------:| | 1 | nan | A | nan | | 10 | nan | A | nan | | 11 | nan | A | nan | | 12 | nan | D | nan | | 14 | nan | A | nan | Args: data (pandas.DataFrame): see format above Returns: pandas.DataFrame: see format above """ to_quantize = self.pivot_into_quantize_format(data) self.column_names = to_quantize.columns[1:] # skip subject_id, only biome names # cache the subject_id column to add back to a dequantized matrix self.subject_id_column = to_quantize.subject_id return self._quantize_df(to_quantize) def _quantize_df(self, to_quantize): """Quantize a data frame in quantizable format Input data format: | subject_id | Acidobacteriota_35 | Actinobacteriota_1 | Actinobacteriota_2 | |-------------:|---------------------:|:---------------------|---------------------:| | 1 | nan | 0.36665 | nan | | 10 | nan | 0.36665 | nan | | 11 | nan | 0.36665 | nan | Output data format: | subject_id | Acidobacteriota_35 | Actinobacteriota_1 | Actinobacteriota_2 | |-------------:|---------------------:|:---------------------|---------------------:| | 1 | nan | A | nan | | 10 | nan | A | nan | | 11 | nan | A | nan | Args: to_quantize (pd.DataFrame): data frame in quantizable format Returns: pandas.DataFrame: see format above """ quantized = pd.DataFrame() # return df if not self.variable_bin_map: for col in self.column_names: cut, bins = pd.cut(to_quantize[col], self.num_levels, labels=list(self.labels.keys()), retbins=True) quantized[col] = cut self.variable_bin_map[col] = bins else: # use existing bins for col in self.column_names: cut = pd.cut(to_quantize[col], self.variable_bin_map[col], labels=list(self.labels.keys())) quantized[col] = cut # sort the columns by name in a natural order quantized = quantized.reindex(sorted(quantized.columns, key=_natural_keys), axis=1) quantized.insert(0, 'subject_id', to_quantize.subject_id) return quantized def get_qnet_inputs(self, quantized_df): """Retrieve the feature names and data matrix from a quantized data frame produced by `self.quantize_df` Args: quantized_df (pandas.DataFrame): a quantized data frame produced by `self.quantize_df` Returns: list: a list of feature names, ex. `['Acidobacteriota_35', 'Actinobacteriota_1', 'Actinobacteriota_2']` numpy.ndarray: a 2D data array of quantized labels (`'A', 'B', ...,` or empty string `''` for NaN) """ # skip subject_id column df = quantized_df.drop(columns='subject_id') # matrix = df.astype(str).replace('nan', '').to_numpy(dtype=str) # matrix = df.astype(str).fillna('').to_numpy(dtype=str) matrix = df.astype(str).replace('nan', '').fillna('').to_numpy(dtype=str) # sanity-check matrix contains only empty strings and label strings valid_labels = list(self.labels.keys()) + [''] is_valid = np.isin(np.unique(matrix), valid_labels).all() #if not is_valid: # raise Exception('The label matrix contains strings that are neither the empty string nor the label strings') return df.columns, matrix def quantize_new_subject(self, subject_data, subject_id=None): """Construct and quantize a new subject with missing data Input format: | subject_id | variable | week | value | |-------------:|:-----------------|-------:|---------:| | 1 | Actinobacteriota | 1 | 0.36665 | | 1 | Bacteroidota | 1 | 0.507248 | | 1 | Campilobacterota | 1 | 0.002032 | | 1 | Desulfobacterota | 1 | 0.005058 | | 1 | Firmicutes | 1 | 0.057767 | Output format: | subject_id | Acidobacteriota_35 | Actinobacteriota_1 | Actinobacteriota_2 | |-------------:|---------------------:|:---------------------|---------------------:| | 1 | nan | A | nan | | 1 | nan | A | nan | | 1 | nan | A | nan | | 1 | nan | D | nan | Args: subject_data ([type]): subject data frame with some but maybe not all the timestamps subject_id (str, optional): if not None, add the subject_id as a column; if None, assume that the input has a column named subject_id. Defaults to None. Returns: pd.DataFrame: quantized subject data frame with complete timestamps, see format above """ if subject_id is None and not 'subject_id' in subject_data.columns: raise Exception('You must provide a subject_id if there is none in the input data frame') if subject_id is not None: subject_data['subject_id'] = subject_id new_subject = self.pivot_into_quantize_format(subject_data) # add columns that are in self.column_names but not in pivoted as np.nan for column in self.column_names: if column not in new_subject.columns: new_subject[column] = np.nan return self._quantize_df(new_subject) def get_bin_array_of_index(self, idx): """Return the `pandas.cut` bin array corresponding to the sequence index by looking up `self.variable_bin_map[self.column_names[idx]]` Args: idx (int): index into `self.column_names` Returns: numpy.ndarray: bins """ col = self.column_names[idx] bin_arr = self.variable_bin_map[col] return bin_arr def quantize_value(self, val, bin_arr): """Quantize a numeric value into a label. This function is the inverse of `self.dequantize_label` Args: val (float): number to quantize bin_arr (numpy.ndarray): bins produced by `pandas.cut` or retrieved using `self.get_bin_array_of_index` Returns: str: quantized label string """ label = pd.cut([val], bin_arr, labels=list(self.labels.keys()))[0] return label # procedures and helpers for dequantization follows def _fit_random_forest_one_biome(self, x, y): idx_old = np.arange(len(x)) fx = interpolate.interp1d(idx_old, x, fill_value='extrapolate') fy = interpolate.interp1d(idx_old, y, fill_value='extrapolate') idx = np.arange(0, len(x), 0.01) X = fx(idx)[:, np.newaxis] Y = fy(idx) model = RandomForestRegressor() model.fit(X, Y) return model def compute_average_df(self, df): """Take the average over the input data frame by grouping by `variable, week` Input data format: | sample_id | subject_id | variable | week | value | |:----------------|-------------:|:-----------------|-------:|---------:| | MBSMPL0020-6-10 | 1 | Actinobacteriota | 27 | 0.36665 | | MBSMPL0020-6-10 | 1 | Bacteroidota | 27 | 0.507248 | | MBSMPL0020-6-10 | 1 | Campilobacterota | 27 | 0.002032 | | MBSMPL0020-6-10 | 1 | Desulfobacterota | 27 | 0.005058 | | MBSMPL0020-6-10 | 1 | Firmicutes | 27 | 0.057767 | Output data format: | variable | week | value | |:-----------------|-------:|---------:| | Actinobacteriota | 27 | 0.36665 | | Bacteroidota | 27 | 0.507248 | | Campilobacterota | 27 | 0.002032 | Args: df (pandas.DataFrame): see format above Returns: pandas.DataFrame: the average data frame, see format above """ avg = df[['variable', 'week', 'value']].groupby( by=['variable', 'week']).mean().reset_index() return avg def fit_random_forest(self, data, dequantized_data): """Fit a random forest regressor for each of the biome. Use as input the average of the quantized data. Fit regressor to the average of the original data as output. Populate `self.random_forest_dict`. Input format for both data frames: | subject_id | variable | week | value | |-------------:|:-----------------|-------:|---------:| | 1 | Actinobacteriota | 27 | 0.36665 | | 1 | Bacteroidota | 27 | 0.507248 | | 1 | Campilobacterota | 27 | 0.002032 | Args: data (pandas.DataFrame): see format above dequantized_data (pandas.DataFrame): see format above """ if self.random_forest_dict: # already populated return # take avg of data and dequantized_data, grouped by week and biome # want to map dequantized to original, hence dequantized is input inputs = self.compute_average_df(dequantized_data) outputs = self.compute_average_df(data) for biome in inputs.variable.unique(): x = inputs[inputs.variable == biome].value y = outputs[outputs.variable == biome].value model = self._fit_random_forest_one_biome(x, y) self.random_forest_dict[biome] = model def dequantize_label(self, label, bin_arr): """Dequantize a label string into a numeric value. This function is the inverse of `self.quantize_value`. If the input is an empty string, the return value will be `numpy.nan` Args: label (str): label string bin_arr (numpy.ndarray): bins produced by `pandas.cut` or retrieved using `self.get_bin_array_of_index` Returns: float: the dequantized numeric value """ if label is np.nan or label.lower() == 'nan' or label not in self.labels: return np.nan low = self.labels[label] high = low + 1 val = (bin_arr[low] + bin_arr[high]) / 2 return val def dequantize_sequence(self, label_seq): """Dequantize an entire label sequence Args: label_seq (numpy.ndarray): 1D array of label strings Returns: numpy.ndarray: 1D array of floats """ numeric_seq = np.empty(label_seq.shape) for idx, label in enumerate(label_seq): bin_arr = self.get_bin_array_of_index(idx) numeric_seq[idx] = self.dequantize_label(label, bin_arr) return numeric_seq def dequantize_to_df(self, matrix): """Dequantize a label matrix (with no column names, just the qnet input matrix) into a data frame with numeric values. To make the output data frame into a format `seaborn` can easily plot, apply `self.melt_into_plot_format` Output format: | subject_id | Acidobacteriota_35 | Actinobacteriota_1 | Actinobacteriota_2 | |-------------:|---------------------:|:---------------------|---------------------:| | 1 | nan | 0.36665 | nan | | 10 | nan | 0.36665 | nan | | 11 | nan | 0.36665 | nan | Args: matrix (numpy.ndarray): 2D matrix of label strings Returns: pandas.DataFrame: see format above """ numeric_matrix = np.empty(matrix.shape) for idx, seq in enumerate(matrix): numeric_matrix[idx] = self.dequantize_sequence(seq) df = self.add_meta_to_matrix(numeric_matrix) return df def add_meta_to_matrix(self, matrix, add_subject_id=True): """Add back `self.subject_ud` and `self.column_names` to the data matrix to convert it into a data frame Output format: | subject_id | Acidobacteriota_35 | Actinobacteriota_1 | Actinobacteriota_2 | |-------------:|---------------------:|:---------------------|---------------------:| | 1 | nan | A | nan | | 10 | nan | A | nan | | 11 | nan | A | nan | | 12 | nan | D | nan | | 14 | nan | A | nan | Args: matrix (np.ndarray): 2D matrix of either label strings or numeric values add_subject_id (bool, optional): whether to add back the cached subject_id column. Defaults to True. Returns: pandas.DataFrame: see format above """ df = pd.DataFrame(matrix, columns=self.column_names) if add_subject_id: df = pd.concat([self.subject_id_column, df], axis=1) return df def melt_into_plot_format(self, data): """Melt data into a format that `seaborn` can easily plot Input format: | subject_id | Acidobacteriota_35 | Actinobacteriota_1 | Actinobacteriota_2 | |-------------:|---------------------:|:---------------------|---------------------:| | 1 | nan | 0.36665 | nan | | 10 | nan | 0.36665 | nan | | 11 | nan | 0.36665 | nan | Output format: | subject_id | variable | week | value | |-------------:|:-----------------|-------:|---------:| | 1 | Actinobacteriota | 27 | 0.36665 | | 1 | Bacteroidota | 27 | 0.507248 | | 1 | Campilobacterota | 27 | 0.002032 | Args: data (pandas.DataFrame): numeric data, see format above Returns: pandas.DataFrame: see format above """ # pivot into plottable format melted = data.melt(id_vars='subject_id') # split variable names splitted = melted.variable.str.extract(r'([\D|\d]+)_(\d+)', expand=True) splitted.rename(columns={0: 'variable', 1: 'week'}, inplace=True) splitted.week = splitted.week.astype(int) plot_df = pd.concat([ melted.subject_id, splitted, melted.value ], axis=1) return plot_df def apply_random_forest_regressor(self, data): """Apply the trained biome regressor on the data to reduce the conversion distortion resulted from quantization-dequantization. If the data frame has columns other than `variable, week, value`, the extra columns will be averaged over using `self.compute_average_df` Data formats for the input and the output are the same: | variable | week | value | |:-----------------|-------:|---------:| | Actinobacteriota | 27 | 0.36665 | | Bacteroidota | 27 | 0.507248 | | Campilobacterota | 27 | 0.002032 | Args: data (pandas.DataFrame): see format above Raises: Exception: `self.random_forest_dict` hasn't been populated. You need to call `self.fit_random_forest` first Returns: pandas.DataFrame: with columns `variable, week, value` """ if not self.random_forest_dict: raise Exception('No random forest models. First train with fit_random_forest') avg_data = self.compute_average_df(data) dataframes = [] for biome in avg_data.variable.unique(): x = avg_data[avg_data.variable == biome].value # check if there is NaN if x.isnull().any(): raise Exception('There are NaNs in the inputs. Please run the forecaster to fill in all the NaNs first') x = x.to_numpy()[:, np.newaxis] model = self.random_forest_dict[biome] pred = model.predict(x) df = pd.DataFrame({ 'variable': biome, 'week': avg_data[avg_data.variable == biome].week, 'value': pred }) dataframes.append(df) ret = pd.concat(dataframes) return ret
python
20
0.491578
273
44.635815
497
Handles quantization and dequantization of data
class
class Config: ''' General configuration parent class ''' SECRET_KEY = os.environ.get('SECRET_KEY') SQLALCHEMY_DATABASE_URI = 'postgres+psycopg2://postgres:psql@localhost/notebook' API_BASE_URL='http://quotes.stormconsultancy.co.uk/random.json' SQLALCHEMY_TRACK_MODIFICATIONS=False
python
8
0.717532
84
37.625
8
General configuration parent class
class
class TapTempoGui: """Tk-App to tap-in a tempo.""" def __init__(self, root, tempo=TapTempo()): """Build the Gui.""" # Model and Stingvariables self.tempo = tempo self.strBPM = tk.StringVar() self.strBPMAVG = tk.StringVar() self.update() self.root = root # main app self.mainframe = ttk.Frame(self.root, padding="4 4 4 4") self.mainframe.grid(column=0, row=0) # midi status bar self.midi = MidiInterface(self.tap) self.statusBar = MidiStatusBar(self.root, self.midi) self.statusBar.grid(column=0, row=1, sticky="nwse") # BPM Labels ttk.Label(self.mainframe, text="BPM:", justify="right").grid(column=0, row=0) self.labelBPM = ttk.Label(self.mainframe, textvariable=self.strBPM) self.labelBPM.grid(column=1, row=0) # Average BPM Labels ttk.Label(self.mainframe, text="Average BPM:", justify="right").grid(column=0, row=1) self.labelBPMAVG = ttk.Label(self.mainframe, textvariable=self.strBPMAVG) self.labelBPMAVG.grid(column=1, row=1) # Buttons self.buttonTap = ttk.Button(self.mainframe, text="Tap") # usually a button is clicked after releasing the # mousebutton. For tapping the pressing of the button is more # appropriate self.buttonTap.bind("<ButtonPress-1>", lambda e: self.tap()) self.buttonTap.grid(column=0, row=2) self.buttonReset = ttk.Button(self.mainframe, text="Reset", command=self.reset) self.buttonReset.grid(column=1, row=2) # polish for child in self.mainframe.winfo_children(): child.grid_configure(padx=5, pady=5) def update(self): """Update all labels.""" self.strBPM.set("{:.2f}".format(self.tempo.bpm)) self.strBPMAVG.set("{:.2f}".format(self.tempo.bpmAvg)) def tap(self): """Perform a single tap and update the tempo labels.""" self.tempo.tap() self.update() def reset(self): """Reset everything to zero.""" self.tempo.reset() self.update() def run(self): """Run TK-Mainloop.""" self.root.mainloop()
python
12
0.597943
93
31.897059
68
Tk-App to tap-in a tempo.
class
class MetadataProcessorFactory: processorTypeMap = {} """ An abstract factory to create MetadataProcessor objects based on their name """ @classmethod def registerProcessorClass( self, processorName, ProcessorClass): self.processorTypeMap[processorName] = ProcessorClass; @classmethod def createProcessor( self, processorType, config ): if not processorType in self.processorTypeMap: raise KeyError( "Metadata processor type \"%s\" not known." % processorType ) processorClass = self.processorTypeMap[processorType] newObj = processorClass( config ) return newObj
python
14
0.712949
89
41.8
15
An abstract factory to create MetadataProcessor objects based on their name
class
class descriptive_stats: """A series of operations for descriptive stats.""" def __init__(self, df, colname): self.df = df self.colname = colname self.cat_dict = {} def count_issues(self): """Calculate number of unique issues.""" for tweet in self.df[self.colname]: single_issues = str(tweet).split(', ') for single_issue in single_issues: single_issue = single_issue.strip() try: self.cat_dict[single_issue] += 1 except KeyError: self.cat_dict[single_issue] = 1 print('There are {} unique issues.\n'.format(len(self.cat_dict))) def bar_plot(self): """Plot a bar graph orgnized by issue counts.""" sorted_cat_dict = sorted(self.cat_dict.items(), key=lambda x: x[1], reverse=True) sorted_cat_dict = OrderedDict(sorted_cat_dict) plt.figure(figsize=(12, 12)) sns.barplot(list(sorted_cat_dict.values()), list(sorted_cat_dict.keys()), alpha=0.8, orient='h') plt.ylabel('Number of Occurrences', fontsize=12) plt.xlabel('Issues', fontsize=12) plot_dir = create_dir('plots') plt.savefig(plot_dir +'/issue_counts.png') print('Descriptive plot saved in this directory:\n{}\n'.format(plot_dir))
python
16
0.551237
81
40.647059
34
A series of operations for descriptive stats.
class
class CompositionGenerator: """ kmer frequencies generator """ def __init__(self, pairs_file, fasta=None, batch_size=64, kmer=4, rc=False, threads=1): self.i = 0 self.kmer = kmer self.pairs = np.load(pairs_file) self.n_batches = max(1, len(self.pairs) // max(batch_size, 1)) self.batch_size = batch_size if batch_size > 0 else len(self.pairs) self.rc = rc if fasta is not None: self.set_genomes(fasta) self.pool = Pool(threads) def set_genomes(self, fasta): contigs = set(self.pairs['sp'].flatten()) self.genomes = dict() with open(fasta, 'r') as handle: for (name, seq) in SimpleFastaParser(handle): ctg_id = name.split()[0] if ctg_id in contigs: self.genomes[ctg_id] = seq def __iter__(self): return self def __len__(self): return self.n_batches def __next__(self): if self.i < self.n_batches: pairs_batch = self.pairs[self.i*self.batch_size:(self.i+1)*self.batch_size] get_kmer_frequency_with_args = partial( get_kmer_frequency, kmer=self.kmer, rc=self.rc ) fragments_a = [self.genomes[spA][startA:endA] for (spA, startA, endA), _ in pairs_batch] fragments_b = [self.genomes[spB][startB:endB] for _, (spB, startB, endB) in pairs_batch] x1 = self.pool.map(get_kmer_frequency_with_args, fragments_a) x2 = self.pool.map(get_kmer_frequency_with_args, fragments_b) self.i += 1 if self.i >= self.n_batches: self.pool.close() return (format_array(np.array(x1, dtype='float32')), format_array(np.array(x2, dtype='float32'))) raise StopIteration()
python
15
0.545067
100
32.5
56
kmer frequencies generator
class
class CoverageGenerator: """ Genearator for coverage feature It loads the coverage every [load_batch] batches. """ def __init__(self, pairs_file, coverage_h5=None, batch_size=64, load_batch=1000, wsize=16, wstep=8): self.i = 0 self.pairs = np.load(pairs_file) self.coverage_h5 = coverage_h5 self.n_batches = max(1, len(self.pairs) // max(batch_size, 1)) self.batch_size = batch_size if batch_size > 0 else len(self.pairs) self.load_batch = load_batch self.wsize = wsize self.wstep = wstep def __iter__(self): return self def __len__(self): return self.n_batches def load(self): """ Extract coverage for next pair batch """ pairs = self.pairs[self.i*self.batch_size : (self.i + self.load_batch)*self.batch_size] self.x1, self.x2 = get_coverage(pairs, self.coverage_h5, self.wsize, self.wstep) def __next__(self): if self.i < self.n_batches: if self.i % self.load_batch == 0: self.load() idx_inf = (self.i % self.load_batch) * self.batch_size idx_sup = idx_inf + self.batch_size self.i += 1 return ( format_array(self.x1[idx_inf:idx_sup, :, :]), format_array(self.x2[idx_inf:idx_sup, :, :]) ) raise StopIteration()
python
13
0.543676
95
29.468085
47
Genearator for coverage feature It loads the coverage every [load_batch] batches.
class
class QueryLucene: """Match documents from the corpus with queries using lucene""" def __init__(self, index_path=os.path.join(ROOT_DIR, 'corpus/indexRI')): """ Lucene components initialization :param index_path: path of the index """ self.analyzer = StandardAnalyzer() self.index = SimpleFSDirectory(File(index_path).toPath()) self.reader = DirectoryReader.open(self.index) self.searcher = IndexSearcher(self.reader) self.constrained_query = BooleanQuery.Builder() self.parser = Parser() def query_parser_filter(self, field_values, field_filter=['Vector']): """ Filtering queries according to field values :param field_values: values of the fields :param field_filter: fields to filter """ assert len(field_filter) == len(field_values), "Number of fields different from number of values" for i in range(len(field_filter)): query_parser = QueryParser(field_filter[i], self.analyzer) query = query_parser.parse(field_values[i]) self.constrained_query.add(query, BooleanClause.Occur.FILTER) def query_parser_must(self, field_values, field_must=['Text']): """ The values that the fields must match :param field_values: values of the fields :param field_must: fields that must match """ assert len(field_must) == len(field_values), "Number of fields different from number of values" for i in range(len(field_must)): query_parser = QueryParser(field_must[i], self.analyzer) query = query_parser.parse(field_values[i]) self.constrained_query.add(query, BooleanClause.Occur.MUST) def remove_duplicates(self, hits): """ remove duplicates (regarding the text field) from a scoreDocs object :param hits: the scoreDocs object resulting from a query :return: the scoreDocs object without duplicates """ seen = set() keep = [] for i in range(len(hits)): if hits[i]["Text"] not in seen: seen.add(hits[i]["Text"]) keep.append(hits[i]) return keep def get_results(self, nb_results=1000): """ Get results that match with the query :param nb_results: :return: """ docs = self.searcher.search(self.constrained_query.build(), nb_results).scoreDocs self.constrained_query = BooleanQuery.Builder() hits = [] for i in range(len(docs)): hits.append({}) for field in self.reader.document(docs[i].doc).getFields(): hits[i][field.name()] = field.stringValue() hits = self.remove_duplicates(hits) return hits def rerank_results(self, results, user_vector, user_gender, user_location, user_sentiment): """ reranks the results of a query by using the similarity between the user thematic vector and the vector from the tweets :param results: the documents resulting from a query :param user_vector: the thematic vector of a user :param user_gender: the gender of a user :param user_location: the location of a user :param user_sentiment: the sentiment of a user :return: the reranked list of documents """ reranked = [] user_vec = ProfileOneHotEncoder.add_info_to_vec(user_vector, user_gender, user_location, user_sentiment).reshape(1, -1) for i in range(len(results)): doc_infos = Tweet.load(int(results[i]['TweetID'])) if doc_infos is None: reranked.append({'doc': results[i], 'sim': 0.}) else: doc_vector = ProfileOneHotEncoder.add_info_to_vec(doc_infos.vector, doc_infos.gender, doc_infos.country, doc_infos.sentiment).reshape(1, -1) sim = cosine_similarity(user_vec, doc_vector) reranked.append({'doc': doc_infos, 'sim': sim[0][0]}) reranked = sorted(reranked, key=lambda k: k['sim'], reverse=True) return [x['doc'] for x in reranked] def close_reader(self): self.reader.close() def link_tweets(self, results): return [Tweet.load(r['TweetID']) for r in results]
python
17
0.689386
120
36.330097
103
Match documents from the corpus with queries using lucene
class
class Rsvp: """ Contains models for the rsvp""" def __init__(self): """ Initializes the rsvp class """ self.db = RSVP def set_rsvp(self, meetup_id, user_id, response): """ Sets the rsvp status for a meetup and adds it to the DB """ rsvp = { "id": len(self.db) + 1, "meetup": meetup_id, "user": user_id, "response": response } RSVP.append(rsvp)
python
13
0.460285
63
20.391304
23
Contains models for the rsvp
class
class Connection: "Class that encapsulates all the interface to the DB." def __init__(self): self.connection = None self.cursor = None def commit(self, *args, **kwargs) -> None: return self.connection.commit(*args, **kwargs) def connect(self, path: Optional[str] = "/usr/share/parentopticon/db.sqlite"): self.connection = sqlite3.connect( path, detect_types=sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES, ) self.cursor = self.connection.cursor() def execute(self, *args) -> Iterable[Tuple[Any]]: return self.cursor.execute(*args) def execute_commit_return(self, *args) -> int: "Execute a statement, commit it, return the rowid." self.cursor.execute(*args) self.connection.commit() return self.cursor.lastrowid
python
12
0.713333
79
30.291667
24
Class that encapsulates all the interface to the DB.
class
class RevCorrData: """Restructure input NDVars into arrays for reverse correlation Attributes ---------- y : NDVar Dependent variable. x : NDVar | sequence of NDVar Predictors. segments : np.ndarray ``(n_segments, 2)`` array of segment ``[start, stop]`` indices. cv_segments : Sequence Sequence of ``(all_segments, train, test)`` tuples, where each is a 2d-array of ``[start, stop]`` indices. cv_indexes : Sequence Only available for segmented data. For each partition, the index into :attr:`.segments` used as test set. """ def __init__(self, y, x, error, scale_data, ds=None): y = asndvar(y, ds=ds) if isinstance(x, (tuple, list, Iterator)): x = (asndvar(x_, ds=ds) for x_ in x) else: x = asndvar(x, ds=ds) # scale_data param if isinstance(scale_data, bool): scale_in_place = False elif isinstance(scale_data, str): if scale_data == 'inplace': scale_in_place = True else: raise ValueError("scale_data=%r" % (scale_data,)) else: raise TypeError("scale_data=%r, need bool or str" % (scale_data,)) # check y and x if isinstance(x, NDVar): x_name = x.name x = (x,) multiple_x = False else: x = tuple(x) assert all(isinstance(x_, NDVar) for x_ in x) x_name = tuple(x_.name for x_ in x) multiple_x = True time_dim = y.get_dim('time') if any(x_.get_dim('time') != time_dim for x_ in x): raise ValueError("Not all NDVars have the same time dimension") n_times = len(time_dim) # determine cases (used as segments) n_cases = segments = None for x_ in x: # determine cases if n_cases is None: if x_.has_case: n_cases = len(x_) # check y if not y.has_case: raise ValueError(f'y={y!r}: x has case dimension but y does not') elif len(y) != n_cases: raise ValueError(f'y={y!r}: different number of cases from x {n_cases}') # prepare segment index seg_i = np.arange(0, n_cases * n_times + 1, n_times, np.int64)[:, newaxis] segments = np.hstack((seg_i[:-1], seg_i[1:])) else: n_cases = 0 elif n_cases: if len(x_) != n_cases: raise ValueError(f'x={x}: not all components have same number of cases') else: assert not x_.has_case, 'some but not all x have case' case_to_segments = n_cases > 0 # vector dimension vector_dims = [dim.name for dim in y.dims if dim._connectivity_type == 'vector'] if not vector_dims: vector_dim = None elif len(vector_dims) == 1: vector_dim = vector_dims.pop() else: raise NotImplementedError(f"y={y!r}: more than one vector dimension ({', '.join(vector_dims)})") # y_data: flatten to ydim x time array last = ('time',) n_ydims = -1 if case_to_segments: last = ('case',) + last n_ydims -= 1 if vector_dim: last = (vector_dim,) + last y_dimnames = y.get_dimnames(last=last) ydims = y.get_dims(y_dimnames[:n_ydims]) n_times_flat = n_cases * n_times if case_to_segments else n_times n_flat = reduce(mul, map(len, ydims), 1) shape = (n_flat, n_times_flat) y_data = y.get_data(y_dimnames).reshape(shape) # shape for exposing vector dimension if vector_dim: if not scale_data: raise NotImplementedError("Vector data without scaling") n_flat_prevector = reduce(mul, map(len, ydims[:-1]), 1) n_vector = len(ydims[-1]) assert n_vector > 1 vector_shape = (n_flat_prevector, n_vector, n_times_flat) else: vector_shape = None # x_data: predictor x time array x_data = [] x_meta = [] x_names = [] n_x = 0 for x_ in x: ndim = x_.ndim - bool(n_cases) if ndim == 1: xdim = None dimnames = ('case' if n_cases else newaxis, 'time') data = x_.get_data(dimnames) index = n_x x_names.append(dataobj_repr(x_)) elif ndim == 2: dimnames = x_.get_dimnames(last='time') xdim = x_.get_dim(dimnames[-2]) if n_cases: dimnames = (xdim.name, 'case', 'time') data = x_.get_data(dimnames) index = slice(n_x, n_x + len(data)) x_repr = dataobj_repr(x_) for v in xdim: x_names.append("%s-%s" % (x_repr, v)) else: raise NotImplementedError("x with more than 2 dimensions") if n_cases: data = data.reshape((-1, n_cases * n_times)) x_data.append(data) x_meta.append((x_.name, xdim, index)) n_x += len(data) if len(x_data) == 1: x_data = x_data[0] x_is_copy = False else: x_data = np.concatenate(x_data) x_is_copy = True if scale_data: if not scale_in_place: y_data = y_data.copy() if not x_is_copy: x_data = x_data.copy() x_is_copy = True y_mean = y_data.mean(1) x_mean = x_data.mean(1) y_data -= y_mean[:, newaxis] x_data -= x_mean[:, newaxis] # for vector data, scale by vector norm if vector_shape: y_data_vector_shape = y_data.reshape(vector_shape) y_data_scale = norm(y_data_vector_shape, axis=1) else: y_data_vector_shape = None y_data_scale = y_data if error == 'l1': y_scale = np.abs(y_data_scale).mean(-1) x_scale = np.abs(x_data).mean(-1) elif error == 'l2': y_scale = (y_data_scale ** 2).mean(-1) ** 0.5 x_scale = (x_data ** 2).mean(-1) ** 0.5 else: raise RuntimeError(f"error={error!r}") if vector_shape: y_data_vector_shape /= y_scale[:, newaxis, newaxis] else: y_data /= y_scale[:, newaxis] x_data /= x_scale[:, newaxis] # for data-check y_check = y_scale x_check = x_scale # zero-padding for convolution x_pads = -x_mean / x_scale else: y_mean = x_mean = y_scale = x_scale = None y_check = y_data.var(1) x_check = x_data.var(1) x_pads = np.zeros(n_x) # check for flat data zero_var = [y.name or 'y'] if np.any(y_check == 0) else [] zero_var.extend(x_name[i] for i, v in enumerate(x_check) if v == 0) if zero_var: raise ValueError("Flat data: " + ', '.join(zero_var)) # check for NaN has_nan = [y.name] if np.isnan(y_check.sum()) else [] has_nan.extend(x_name[i] for i, v in enumerate(x_check) if np.isnan(v)) if has_nan: raise ValueError("Data with NaN: " + ', '.join(has_nan)) self.error = error self.time = time_dim self.segments = segments self.cv_segments = self.cv_indexes = self.partitions = self.model = None self._scale_data = bool(scale_data) self.shortest_segment_n_times = n_times # y self.y = y_data # (n_signals, n_times) self.y_mean = y_mean self.y_scale = y_scale self.y_name = y.name self.y_info = _info.copy(y.info) self.ydims = ydims # without case and time self.yshape = tuple(map(len, ydims)) self.full_y_dims = y.get_dims(y_dimnames) self.vector_dim = vector_dim # vector dimension name self.vector_shape = vector_shape # flat shape with vector dim separate # x self.x = x_data # (n_predictors, n_times) self.x_mean = x_mean self.x_scale = x_scale self.x_name = x_name self._x_meta = x_meta # [(x.name, xdim, index), ...]; index is int or slice self._multiple_x = multiple_x self._x_is_copy = x_is_copy self.x_pads = x_pads def apply_basis(self, basis, basis_window): "Apply basis to x" if not basis: return n = int(round(basis / self.time.tstep)) w = scipy.signal.get_window(basis_window, n, False) w /= w.sum() for xi in self.x: xi[:] = scipy.signal.convolve(xi, w, 'same') def prefit(self, res): if not res: return from ._boosting import convolve hs = (res.h_source,) if isinstance(res.h_source, NDVar) else res.h_source n_y = self.y.shape[0] n_x = self.x.shape[0] # check that names are unique x_names = [name for name, *_ in self._x_meta] if len(set(x_names)) != len(x_names): raise ValueError(f"prefit={res}: prefit requires that all predictors have unique names; x has names {x_names}") # check that prefit matches y dims h0 = hs[0] index = {} for ydim in self.ydims: hdim = h0.get_dim(ydim.name) if hdim == ydim: continue elif not hdim._is_superset_of(ydim): raise ValueError(f"prefit: y dimension {ydim.name} has elements that are not contained in the prefit") index[ydim.name] = hdim.index_into_dim(ydim) if index: hs = [h.sub(**index) for h in hs] # check predictor dims y_dimnames = [dim.name for dim in self.ydims] meta = {name: (dim, index) for name, dim, index in self._x_meta} for h in hs: if h.name not in meta: raise ValueError(f"prefit: {h.name!r} not in x") dim, index = meta[h.name] need_dimnames = (*y_dimnames, 'time') if dim is None else (*y_dimnames, dim.name, 'time') if h.dimnames != need_dimnames: raise ValueError(f"prefit: {h.name!r} dimension mismatch, has {h.dimnames}, needs {need_dimnames}") if dim is not None and h.dims[-2] != dim: raise ValueError(f"prefit: {h.name!r} {dim.name} dimension mismatch") # generate flat h h_n_times = len(h0.get_dim('time')) h_flat = [] h_index = [] for h in hs: dimnames = h.get_dimnames(first=y_dimnames, last='time') h_data = h.get_data(dimnames) index = meta[h.name][1] if isinstance(index, int): h_flat.append(h_data.reshape((n_y, 1, h_n_times))) h_index.append(index) else: n_hdim = index.stop - index.start h_flat.append(h_data.reshape((n_y, n_hdim, h_n_times))) h_index.extend(range(index.start, index.stop)) h_flat = np.concatenate(h_flat, 1) # assert scaling equivalent # assert np.all(res.x_mean == self.x_mean[h_index]) # assert np.all(res.x_scale == self.x_scale[h_index]) # subset to relevant data x = self.x[h_index] x_pads = self.x_pads[h_index] # subtract prefit predictions i_start = int(round(res.tstart / self.time.tstep)) for y, h in zip(self.y, h_flat): y -= convolve(h, x, x_pads, i_start, self.segments) # remove prefit predictors keep = np.setdiff1d(np.arange(n_x), h_index) self.x = self.x[keep] self.x_mean = self.x_mean[keep] self.x_scale = self.x_scale[keep] self.x_pads = self.x_pads[keep] self._x_is_copy = True # update x meta-information target_index = np.empty(n_x, int) target_index.fill(-1) target_index[keep] = np.arange(len(keep)) new_meta = [] self.x_name = [] for name, xdim, index in self._x_meta: if isinstance(index, int): new_index = target_index[index] if new_index < 0: continue else: new_start = target_index[index.start] if new_start < 0: continue new_stop = target_index[index.stop - 1] + 1 new_index = slice(new_start, new_stop) new_meta.append((name, xdim, new_index)) self.x_name.append(name) self._x_meta = new_meta self._multiple_x = len(self._x_meta) > 1 def initialize_cross_validation(self, partitions=None, model=None, ds=None): if partitions is not None and partitions <= 1: raise ValueError(f"partitions={partitions}") cv_segments = [] # list of (segments, train, test) n_times = len(self.time) if self.segments is None: if model is not None: raise TypeError(f'model={dataobj_repr(model)!r}: model cannot be specified in unsegmented data') if partitions is None: partitions = 10 seg_n_times = int(floor(n_times / partitions)) # first for i in range(partitions): test = ((seg_n_times * i, seg_n_times * (i + 1)),) if i == 0: # first train = ((seg_n_times, n_times),) elif i == partitions - 1: # last train = ((0, n_times - seg_n_times),) else: train = ((0, seg_n_times * i), (seg_n_times * (i + 1), n_times)) cv_segments.append((np.vstack((train, test)), train, test)) cv_segments = (tuple(np.array(s, np.int64) for s in cv) for cv in cv_segments) else: n_total = len(self.segments) if model is None: cell_indexes = [np.arange(n_total)] else: model = ascategorial(model, ds=ds, n=n_total) cell_indexes = [np.flatnonzero(model == cell) for cell in model.cells] cell_sizes = [len(i) for i in cell_indexes] cell_size = min(cell_sizes) cell_sizes_are_equal = len(set(cell_sizes)) == 1 if partitions is None: if cell_sizes_are_equal: if 3 <= cell_size <= 10: partitions = cell_size else: raise NotImplementedError(f"Automatic partition for {cell_size} cases") else: raise NotImplementedError(f'Automatic partition for variable cell size {tuple(cell_sizes)}') if partitions > cell_size: if not cell_sizes_are_equal: raise ValueError(f'partitions={partitions}: > smallest cell size ({cell_size}) with unequal cell sizes') elif partitions % cell_size: raise ValueError(f'partitions={partitions}: not a multiple of cell_size ({cell_size})') elif len(cell_sizes) > 1: raise NotImplementedError(f'partitions={partitions} with more than one cell') n_parts = partitions // cell_size segments = [] for start, stop in self.segments: d = (stop - start) / n_parts starts = [int(round(start + i * d)) for i in range(n_parts)] starts.append(stop) for i in range(n_parts): segments.append((starts[i], starts[i+1])) segments = np.array(segments, np.int64) index_range = np.arange(partitions) indexes = [index_range == i for i in range(partitions)] else: segments = self.segments indexes = [] for i in range(partitions): index = np.zeros(n_total, bool) for cell_index in cell_indexes: index[cell_index[i::partitions]] = True indexes.append(index) cv_segments = ((segments, segments[np.invert(i)], segments[i]) for i in indexes) self.cv_indexes = tuple(indexes) self.partitions = partitions self.cv_segments = tuple(cv_segments) self.model = dataobj_repr(model) def data_scale_ndvars(self): if self._scale_data: # y if self.yshape: y_mean = NDVar(self.y_mean.reshape(self.yshape), self.ydims, self.y_info, self.y_name) else: y_mean = self.y_mean[0] # scale does not include vector dim if self.vector_dim: dims = self.ydims[:-1] shape = self.yshape[:-1] else: dims = self.ydims shape = self.yshape if shape: y_scale = NDVar(self.y_scale.reshape(shape), dims, self.y_info, self.y_name) else: y_scale = self.y_scale[0] # x x_mean = [] x_scale = [] for name, dim, index in self._x_meta: if dim is None: x_mean.append(self.x_mean[index]) x_scale.append(self.x_scale[index]) else: dims = (dim,) x_mean.append(NDVar(self.x_mean[index], dims, {}, name)) x_scale.append(NDVar(self.x_scale[index], dims, {}, name)) if self._multiple_x: x_mean = tuple(x_mean) x_scale = tuple(x_scale) else: x_mean = x_mean[0] x_scale = x_scale[0] else: y_mean = y_scale = x_mean = x_scale = None return y_mean, y_scale, x_mean, x_scale def package_kernel(self, h, tstart): """Package kernel as NDVar Parameters ---------- h : array (n_y, n_x, n_times) Kernel data. """ h_time = UTS(tstart, self.time.tstep, h.shape[-1]) hs = [] if self._scale_data: info = _info.for_normalized_data(self.y_info, 'Response') else: info = self.y_info for name, dim, index in self._x_meta: x = h[:, index, :] if dim is None: dims = (h_time,) else: dims = (dim, h_time) if self.ydims: dims = self.ydims + dims if len(self.ydims) > 1: x = x.reshape(self.yshape + x.shape[1:]) else: x = x[0] hs.append(NDVar(x, dims, info, name)) if self._multiple_x: return tuple(hs) else: return hs[0] def package_value( self, value: np.ndarray, # data name: str, # NDVar name info: dict = None, # NDVar info meas: str = None, # for NDVar info ): if not self.yshape: return value[0] # shape has_vector = value.shape[0] > self.yshape[0] if self.vector_dim and not has_vector: dims = self.ydims[:-1] shape = self.yshape[:-1] else: dims = self.ydims shape = self.yshape if not dims: return value[0] elif len(shape) > 1: value = value.reshape(shape) # info if meas: info = _info.for_stat_map(meas, old=info) elif info is None: info = self.y_info return NDVar(value, dims, info, name) def package_y_like(self, data, name): shape = tuple(map(len, self.full_y_dims)) data = data.reshape(shape) # roll Case to first axis for axis, dim in enumerate(self.full_y_dims): if isinstance(dim, Case): data = np.rollaxis(data, axis) dims = list(self.full_y_dims) dims.insert(0, dims.pop(axis)) break else: dims = self.full_y_dims return NDVar(data, dims, {}, name) def vector_correlation(self, y, y_pred): "Correlation for vector data" # shape (..., space, time) assert self._scale_data assert self.error in ('l1', 'l2') assert y.ndim == y_pred.ndim == 3 y_pred_norm = norm(y_pred, axis=1) y_norm = norm(y, axis=1) # l2 correlation y_pred_scale = (y_pred_norm ** 2).mean(1) ** 0.5 y_pred_scale[y_pred_scale == 0] = 1 y_pred_l2 = y_pred / y_pred_scale[:, newaxis, newaxis] if self.error == 'l1': y_scale = (y_norm ** 2).mean(1) ** 0.5 y_l2 = y / y_scale[:, newaxis, newaxis] else: y_l2 = y r_l2 = np.multiply(y_l2, y_pred_l2, out=y_pred_l2).sum(1).mean(1) # l1 correlation if self.error == 'l1': y_pred_scale = y_pred_norm.mean(1) y_pred_scale[y_pred_scale == 0] = 1 y_pred_l1 = y_pred / y_pred_scale[:, newaxis, newaxis] # E|X| = 1 --> E√XX = 1 yy = np.multiply(y, y_pred_l1, out=y_pred_l1).sum(1) sign = np.sign(yy) np.abs(yy, out=yy) yy **= 0.5 yy *= sign r_l1 = yy.mean(1) else: r_l1 = None return r_l2, r_l1
python
21
0.491214
124
38.548736
554
Restructure input NDVars into arrays for reverse correlation Attributes ---------- y : NDVar Dependent variable. x : NDVar | sequence of NDVar Predictors. segments : np.ndarray ``(n_segments, 2)`` array of segment ``[start, stop]`` indices. cv_segments : Sequence Sequence of ``(all_segments, train, test)`` tuples, where each is a 2d-array of ``[start, stop]`` indices. cv_indexes : Sequence Only available for segmented data. For each partition, the index into :attr:`.segments` used as test set.
class
class RedBlackTree: """ A class used to represent a red-black binary search tree. Attributes: Methods: insert(key: key) Inserts an element into the search tree. left_rotation(key) Reorganizes a section of the search tree so the parent node, x, becomes the left child of it's original right child, y, and y becomes the parent of x. right_rotation(key) Reorganizes a section of the search tree so the parent node, x, becomes the right child of its original left child, y, and y becomes the parent of x. recolor(key) Recolors nodes starting at the key to ensure the red-black tree invariants are maintained when a change to the search tree occurs. delete(key) Deletes a node from the search tree if the key exists. traverse() -> list Prints the keys of the search tree in ascending order, for example, 1, 2, 3, 4, ..., n. successor(key: key) -> key Provides the given key's closest node in value that is greater than the key if it exists in the search tree. predecessor(key: key) -> key Provides the given key's closest node in value that is less than the key if it exists in the search tree. max() -> key Provides the maximum value that exists in the search tree. min() -> key Provides the minimum vlaue that exists in the search tree. contains(key) -> Tuple[key, bool] Checks if a value exists in the search tree. """ def __init__(self): """ Parameters: None """ self.root = None def insert(self, key: key): """ Inserts a node into the search tree. Parameters: key : key The key of the node you wish to insert """ # Search for a node with the value of key in the search tree # Red-black tree specific # If no successor the Node is the root and must be set to black pass def left_rotation(self, key: key): """ """ pass def right_rotation(self, key: key): """ """ pass def delete(self, key: key): """ """ pass def traverse(self): """ """ pass def successor(self, key: key) -> key: """ """ pass def predecessor(self, key: key) -> key: """ """ pass def max(self) -> key: """ """ pass def min(self) -> key: """ """ pass def contains(self, v, k: Node.key) -> Tuple[key, bool]: """ Checks if the given value is in the search tree. Parameters: v: The value you wish to check for. k: The key of a comparison node. Returns: key: The value of the key if the search tree contains it, otherwise 0. bool: True if the search tree contains key, otherwise False. """ # Start at the root # Traverse left/right child pointers as needed. That is: # if k < Node.key compared go left # else go right # Return node with k or null (k is not in the search tree) as appropriate # if k == None: # return None, False # if v < k: # contains(v, Node.left) # elif v > k: # contains(v, Node.right) # else: # return v, True
python
8
0.504604
82
25.550725
138
A class used to represent a red-black binary search tree. Attributes: Methods: insert(key: key) Inserts an element into the search tree. left_rotation(key) Reorganizes a section of the search tree so the parent node, x, becomes the left child of it's original right child, y, and y becomes the parent of x. right_rotation(key) Reorganizes a section of the search tree so the parent node, x, becomes the right child of its original left child, y, and y becomes the parent of x. recolor(key) Recolors nodes starting at the key to ensure the red-black tree invariants are maintained when a change to the search tree occurs. delete(key) Deletes a node from the search tree if the key exists. traverse() -> list Prints the keys of the search tree in ascending order, for example, 1, 2, 3, 4, ..., n. successor(key: key) -> key Provides the given key's closest node in value that is greater than the key if it exists in the search tree. predecessor(key: key) -> key Provides the given key's closest node in value that is less than the key if it exists in the search tree. max() -> key Provides the maximum value that exists in the search tree. min() -> key Provides the minimum vlaue that exists in the search tree. contains(key) -> Tuple[key, bool] Checks if a value exists in the search tree.
class
class Node: """ A class used to represent a Node in a red-black search tree. Attributes: key: The key is the value the node shall be sorted on. The key can be an integer, float, string, anything capable of being sorted. color (str): The color attribute records whether a node is red or black. """ def __init__(self, key): """ Parameters: key: The key is the value the node shall be sorted on. The key can be an integer, float, string, anything capable of being sorted. left: The pointer to the left child node. right: The pointer to the right child node. color (str): The color attribute keeps track of whether a node is red or black. """ self.key = key self.left = None self.right = None self.color = "red" def setColor(self): """ Sets the color of a Node. """ pass
python
8
0.554672
93
30.516129
31
A class used to represent a Node in a red-black search tree. Attributes: key: The key is the value the node shall be sorted on. The key can be an integer, float, string, anything capable of being sorted. color (str): The color attribute records whether a node is red or black.
class
class State: """State of Lsystem""" width: int color: tuple angle: int y: int x: int def __init__(self): """Initialisation of state >>> State().x 0 >>> State().y 0 >>> State().angle 0 >>> State().color (255, 255, 255) >>> State().width 0""" self.x = 0 self.y = 0 self.angle = 0 self.color = (255, 255, 255) self.width = 0 def __str__(self): return str(self.x) def __repr__(self): return self.__str__()
python
9
0.415385
36
17.3125
32
State of Lsystem
class
class Indentor: """This class manages indentation, for use with context manager It is used to correctly indent the definition node tree hierarchy """ _index = 0 def __init__(self): Indentor._index += 1 def __del__(self): Indentor._index -= 1 @classmethod def indent(cls,the_file): for i in range(Indentor._index): the_file.write(' ')
python
12
0.598504
69
29.923077
13
This class manages indentation, for use with context manager It is used to correctly indent the definition node tree hierarchy
class
class DefsTraverser: """Traverse the ecflow.Defs definition and write to file. This demonstrates that all nodes in the node tree and all attributes are accessible. Additionally the state data is also accessible. This class will write state data as comments. If the definition was returned from the server, it allows access to latest snapshot of the state data held in the server. """ def __init__(self,defs,file_name): assert (isinstance(defs,ecflow.Defs)),"Expected ecflow.Defs as first argument" assert (isinstance(file_name,str)),"Expected a string argument. Representing a file name" self.__defs = defs self.__file = open(file_name, 'w') def write_to_file(self): for extern in self.__defs.externs: self.__writeln("extern " + extern) for suite in self.__defs: self.__write("suite ") self.__print_node(suite) clock = suite.get_clock() if clock: indent = Indentor() self.__writeln(str(clock)) del indent self.__print_nc(suite) self.__writeln("endsuite") self.__file.close() def __print_nc(self,node_container): indent = Indentor() for node in node_container: if isinstance(node, ecflow.Task): self.__write("task ") self.__print_node(node) self.__print_alias(node) else: self.__write("family ") self.__print_node(node) self.__print_nc(node) self.__writeln("endfamily") del indent def __print_alias(self,task): indent = Indentor() for alias in task: self.__write("alias ") self.__print_node(alias) self.__writeln("endalias") del indent def __print_node(self,node): self.__file.write(node.name() + " # state:" + str(node.get_state()) + "\n") indent = Indentor() defStatus = node.get_defstatus() if defStatus != ecflow.DState.queued: self.__writeln("defstatus " + str(defStatus)) autocancel = node.get_autocancel() if autocancel: self.__writeln(str(autocancel)) autoarchive = node.get_autoarchive() if autoarchive: self.__writeln(str(autoarchive)) autorestore = node.get_autorestore() if autorestore: self.__writeln(str(autorestore)) repeat = node.get_repeat() if not repeat.empty(): self.__writeln(str(repeat) + " # value: " + str(repeat.value())) late = node.get_late() if late: self.__writeln(str(late) + " # is_late: " + str(late.is_late())) complete_expr = node.get_complete() if complete_expr: for part_expr in complete_expr.parts: trig = "complete " if part_expr.and_expr(): trig = trig + "-a " if part_expr.or_expr(): trig = trig + "-o " self.__write(trig) self.__file.write( part_expr.get_expression() + "\n") trigger_expr = node.get_trigger() if trigger_expr: for part_expr in trigger_expr.parts: trig = "trigger " if part_expr.and_expr(): trig = trig + "-a " if part_expr.or_expr(): trig = trig + "-o " self.__write(trig) self.__file.write( part_expr.get_expression() + "\n") for var in node.variables: self.__writeln("edit " + var.name() + " '" + var.value() + "'") for meter in node.meters: self.__writeln(str(meter) + " # value: " + str(meter.value())) for event in node.events: self.__writeln(str(event) + " # value: " + str(event.value())) for label in node.labels: self.__writeln(str(label) + " # value: " + label.new_value()) for limit in node.limits: self.__writeln(str(limit) + " # value: " + str(limit.value())) for inlimit in node.inlimits: self.__writeln(str(inlimit)) for the_time in node.times: self.__writeln(str(the_time)) for today in node.todays: self.__writeln(str(today)) for date in node.dates: self.__writeln(str(date)) for day in node.days: self.__writeln(str(day)) for cron in node.crons: self.__writeln(str(cron)) for verify in node.verifies: self.__writeln(str(verify)) for zombie in node.zombies: self.__writeln(str(zombie)) for queue in node.queues: self.__writeln(str(queue)) for generic in node.generics: self.__writeln(str(generic)) del indent def __write(self,the_string): Indentor.indent(self.__file) self.__file.write(the_string) def __writeln(self,the_string): Indentor.indent(self.__file) self.__file.write(the_string + "\n")
python
16
0.54759
101
41.939655
116
Traverse the ecflow.Defs definition and write to file. This demonstrates that all nodes in the node tree and all attributes are accessible. Additionally the state data is also accessible. This class will write state data as comments. If the definition was returned from the server, it allows access to latest snapshot of the state data held in the server.
class
class AverageMeter: """ Stores the current value, average and sum of a variable over `count` steps. Taken from: https://github.com/abhishekkrthakur/wtfml/blob/master/wtfml/utils/average_meter.py """ def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count
python
9
0.536379
86
21.769231
26
Stores the current value, average and sum of a variable over `count` steps. Taken from: https://github.com/abhishekkrthakur/wtfml/blob/master/wtfml/utils/average_meter.py
class
class NeuralNetwork: """ define the NeuralNetwork class """ def __init__(self, nx, nodes): """initialize variables and methods""" if not isinstance(nx, int): raise TypeError('nx must be an integer') if nx < 1: raise ValueError('nx must be a positive integer') if not isinstance(nodes, int): raise TypeError('nodes must be an integer') if nodes < 1: raise ValueError('nodes must be a positive integer') self.nx = nx self.nodes = nodes self.W1 = np.random.normal(loc=0.0, scale=1.0, size=(nodes, nx)) self.b1 = np.zeros(nodes).reshape(nodes, 1) self.A1 = 0 self.W2 = np.random.normal( loc=0.0, scale=1.0, size=nodes).reshape(1, nodes) self.b2 = 0 self.A2 = 0
python
12
0.555556
72
33.916667
24
define the NeuralNetwork class
class
class KnowledgeUnit: """Definition of a knowledge unit. Attributes: parameters (dict): parameters for the knowledge unit. """ def __init__(self, **parameters): """ Initialize the knowledge unit. Args: parameters (dict): parameters for the knowledge unit. """ self.parameters = parameters def to_dict(self): """ Knowledge unit to dictionary. Returns: dict: dictionary representing the knowledge unit. """ dict_representation = copy.deepcopy(self.parameters) dict_representation['_id'] = self.get_id() return dict_representation @staticmethod def from_dict(self, dict_representation): """ Create a knowledge unit from a dictionary. Args: dict: dictionary representing the knowledge unit. Returns: KnowledgeUnit: a knowledge unit. """ _ = dict_representation.pop('_id', None) return KnowledgeUnit(**dict_representation) def get_id(self, length=32): """ Get id by hashing the knowledge unit using the MD5 checksum of the parameters dumped in JSON. Args: length (int, optional): length of the id. Defaults to 32, since it's a MD5 checksum. Returns: dict: dictionary representing the knowledge unit. """ json_string = str(self) return hashlib.md5(json_string.encode()).hexdigest()[:length] def __str__(self): """ Knowledge unit to string. Returns: str: string representing the knowledge unit. """ return json.dumps(self.parameters) def __hash__(self): """Hash function for a KnowledgeUnit.""" return hash(self.get_id()) def __eq__(self, other): """ Test equality between KnowledgeUnits. Args: other (KnowledgeUnit): other knowledge unit. Returns: bool: true in case of equality, false otherwise. """ if not isinstance(other, type(self)): raise NotImplementedError return self.get_id() == other.get_id()
python
13
0.569762
69
26.195122
82
Definition of a knowledge unit. Attributes: parameters (dict): parameters for the knowledge unit.
class
class ContextClient: """Class to be subclassed by discord.py Client to register EventContext hooks.""" def __init__(self, *args, **kwargs): # noinspection PyTypeChecker EventContext.ctx.set_client(self) super().__init__(*args, **kwargs) def dispatch(self, event_name, *args, **kwargs): EventContext.ctx.event_hook(event_name, *args, **kwargs) super().dispatch(event_name, *args, **kwargs)
python
10
0.641723
85
43.2
10
Class to be subclassed by discord.py Client to register EventContext hooks.
class
class command_result: """Class for keeping track of an item in inventory.""" returncode: int stdout: str stderr: str
python
6
0.666667
58
25.6
5
Class for keeping track of an item in inventory.
class
class PicServ: """ Simple webserver script to handle GET requests """ def __init__(self, addr, port, root_path): self.root_path = root_path # './webres' self.port = port self.addr = addr self.server_socket = socket.socket(family=socket.AF_INET, type=socket.SOCK_STREAM) # TODO: implement TLS # SSLContext.wrap_socket() # ssl.wrap_socket(self.server_socket, keyfile, certfile) def start_async(self): _thread.start_new_thread(self.start, ()) def stop(self): self.active = False self.server_socket.close() def start(self): self.server_socket.bind((self.addr, self.port)) self.server_socket.listen(5) self.active = True print('PicServ instance started on {0!s}:{1!s}'.format(self.addr, self.port)) try: while self.active: (client_socket, address) = self.server_socket.accept() print('client connected on port {0!s}, starting new thread' .format(self.port)) _thread.start_new_thread(self._process_request, (client_socket, address)) finally: self.server_socket.close() def _process_request(self, socket, address): print('client connected on {0!s}:{1!s}'.format(address, self.port)) try: # TODO: get rid of the decode - just use the plain bytes # to prevent decoding errors msg = self._receive_msg(socket).decode('utf-8') print('message received:') print(msg) if msg[:3] == 'GET': # send requested resource to client # get requested resource path from msg print('GET request received') req_source_path = self._get_path(msg) if (self._exists_resource(req_source_path) or req_source_path == '/'): print('requested resource:') print(req_source_path) file_bytes = self._get_res_file_bytes(req_source_path) self._send(socket, file_bytes) # else: # not yet supported finally: # be sure to close the socket socket.close() def _get_path(self, msg): msg_parts = re.findall('[^ ]*', msg) filtered_msg_parts = [] for s in msg_parts: if len(s) > 0: filtered_msg_parts.append(s) if len(filtered_msg_parts) >= 3: return filtered_msg_parts[1] else: print('unable to read message') def _exists_resource(self, path): complete_path = self.root_path + path return os.path.isfile(complete_path) def _get_res_file_bytes(self, path): file_bytes = None if path == '/': path = '/index.html' with open(self.root_path + path, 'rb') as f: file_bytes = f.read() return file_bytes def _receive_msg(self, socket): # recvbytes = [] # recv = [0] # while len(recv) != 0 and recv != 0: # TODO: check if there is a message to be received by the host... # else the server will wait forever recv = socket.recv(4096) # TODO: find a way to be sure that all bytes # were received # print(recv) # recvbytes += recv # print('msg completely received') return recv def _send(self, socket, msg_bytes): msg_size = len(msg_bytes) totalsent = 0 while totalsent < msg_size: sent = socket.send(msg_bytes[totalsent:]) if sent == 0: print('Client closed connection') totalsent += sent print('removed client on port {0!s}'.format(self.port))
python
15
0.50875
79
37.647619
105
Simple webserver script to handle GET requests
class
class LoadFromFile: ''' Collection of static methods for getting stuff out of files. ''' @staticmethod def get_json_dict(filename): ''' Returns the entire JSON dict in a given file. ''' with open(filename, encoding="utf8") as infile: return json.load(infile) @staticmethod def tweets_at(feed_index, filename): """ Loads a tweet or chain of tweets at feed_index and returns them along with the total tweets available. """ next_tweets = [] feed_data = LoadFromFile.get_json_dict(filename) feed_length = len(feed_data) if feed_index >= feed_length: return (None, feed_length) next_tweets.append(feed_data[feed_index]) while feed_data[feed_index]['chain'] and feed_index < len(feed_data): feed_index += 1 next_tweets.append(feed_data[feed_index]) return (next_tweets, feed_length) @staticmethod def load_last_feed_index(filename): """ Loads the feed index saved from a previous session if feed stats exist """ stats = LoadFromFile.get_json_dict(filename) if stats: return stats['feed_index'] return 0
python
14
0.598558
77
32.756757
37
Collection of static methods for getting stuff out of files.
class
class Solver: """ Class to solve sudoku with backtracking """ def __init__(self, sudoku: Sudoku): """ :param sudoku: """ self.sudoku = sudoku def solve(self, state: Sudoku, i=0, j=0): """ :param state: object of type Sudoku :param i: row index :param j: column index :return: tuple representing a boolean value to indicate if it is solved and the solved state """ number_found = False for number in range(1, 10): if state.puzzle[i][j] == 0: if self.sudoku.check_if_number_ok(i, j, number): number_found = True state.puzzle[i][j] = number if i == 8 and j == 8: return True, state elif j == 8: solvable, ret_state = self.solve(state, i+1, 0) else: solvable, ret_state = self.solve(state, i, j+1) if not solvable: number_found = False state.puzzle[i][j] = 0 continue else: return True, ret_state else: number_found = True if i == 8 and j == 8: return True, state elif j == 8: return self.solve(state, i + 1, 0) else: return self.solve(state, i, j + 1) if not number_found: return False, state
python
19
0.422098
100
31.897959
49
Class to solve sudoku with backtracking
class
class GraphCompositeIdAssigner: """ Each edge and final node is associated with a compositeid. Each file node is associated with a group id. target ids associated with a group id are unique. A reset also increments the file id. Reset points are algorithmically determined by detected pixel changes for an on more than one path. In the future, the algorithm should get the reset points from the probe constuction where transforms themselves communicate pixel changes along a path. HOWEVER, that interjects responsibility in that transformation code. So, instead, post analysis is done here to maintain some abstraction over efficiency. """ def __init__(self, graph, probes): """ :param graph: :param probes: @type graph: ImageGraph @type probes : list of Probe """ self.graph = graph self.repository = dict() self.probe_target = dict() for probe in probes: self.repository[probe.edgeId] = dict() if (probe.edgeId[0], probe.edgeId[1]) not in self.probe_target: self.probe_target[(probe.edgeId[0], probe.edgeId[1])] = dict() self.probe_target[(probe.edgeId[0], probe.edgeId[1])][probe.finalNodeId] = np.asarray(probe.targetMaskImage) self.buildProbeEdgeIds(set([probe.targetBaseNodeId for probe in probes])) def updateProbes(self, probes,builder): for probe in probes: idsPerFinalNode = self.repository[probe.edgeId] idtuple = idsPerFinalNode[probe.finalNodeId] probe.composites[builder] = { 'groupid': idtuple[0], 'bit number': idtuple[1] } return probes def __recurseDFSLavelResetPoints(self, nodename, probe_resets): """ Determine reset points. A reset point the first node from a final where two final node masks diverge for the same edge. :param nodename: :param probe_masks: dictionary edgeId -> mask array of the last mask produced by the image :return: paths from final node up to the current provided node @type nodename: str @type probe_masks: dict """ successors = self.graph.successors(nodename) if successors is None or len(successors) == 0: return [[nodename]] finalPaths = list() for successor in self.graph.successors(nodename): edge = self.graph.get_edge(nodename, successor) if edge['op'] == 'Donor': continue edgeId = (nodename, successor) childFinalPaths = self.__recurseDFSLavelResetPoints(successor, probe_resets) last_array = None last_path = None for path in childFinalPaths: current_path = path + [nodename] finalPaths.append(current_path) if edgeId in self.probe_target: imarray = self.probe_target[edgeId][path[0]] if last_array is not None and (last_array.shape != imarray.shape or sum(sum(abs(last_array - imarray))) != 0): probe_resets.add([i for i in current_path if i in last_path][0]) last_array = imarray last_path= current_path return finalPaths def __incementGroup(self,group, group_counters, local_counters): """ Managed target id counters per each group. Increment the targetid if target it is not already associated with the given group, thus inforcing that a target id used one per each group. :param group: :param group_counters: group associated with IntObject counter :param local_counters: group associated last target id :return: @type group: int @type group_counters: dict int:IntObject @type local_counters: dict int:int """ if group in local_counters: return local_counters[group] if group not in group_counters: group_counters[group] = IntObject() local_counters[group] = group_counters[group].increment() return local_counters[group] def __recurseDFSProbeEdgeIds(self, nodename, group_counters,groupid, probe_resets): """ Each edge and final node is associated with a target id and a group id. target ids associated with a group id are unique. group ids ids reset if the current node participates in a reset :param nodename: :param group_counters: association of gruoup ids to target id counters :param groupid: holds the current id value for group id :param probe_resets: set of reset nodes :return: list of (final node name, group id) @type nodename: str @type group_counters: dict of int:IntObject @type groupid: IntObject @type probe_resets: set of str @retypr list of (str,int) """ successors = self.graph.successors(nodename) if successors is None or len(successors) == 0: return [(nodename, groupid.value)] finalNodes = set() qualifies = nodename in probe_resets for successor in self.graph.successors(nodename): local_counters = {} edge = self.graph.get_edge(nodename, successor) if edge['op'] == 'Donor': continue if qualifies: groupid.increment() childFinalNodes = self.__recurseDFSProbeEdgeIds(successor, group_counters,groupid, probe_resets) for finalNodeNameTuple in childFinalNodes: if (nodename, successor) in self.repository: self.repository[(nodename, successor)][finalNodeNameTuple[0]] = \ (finalNodeNameTuple[1], self.__incementGroup(finalNodeNameTuple[1],group_counters,local_counters)) finalNodes.add(finalNodeNameTuple) return finalNodes def buildProbeEdgeIds(self, baseNodes): fileid = IntObject() for node_name in self.graph.get_nodes(): node = self.graph.get_node(node_name) if node['nodetype'] == 'base' or node_name in baseNodes: reset_points = set() group_counters = {} self.__recurseDFSLavelResetPoints(node_name, reset_points) self.__recurseDFSProbeEdgeIds(node_name, group_counters,fileid,reset_points) fileid.increment()
python
23
0.610152
130
44.840278
144
Each edge and final node is associated with a compositeid. Each file node is associated with a group id. target ids associated with a group id are unique. A reset also increments the file id. Reset points are algorithmically determined by detected pixel changes for an on more than one path. In the future, the algorithm should get the reset points from the probe constuction where transforms themselves communicate pixel changes along a path. HOWEVER, that interjects responsibility in that transformation code. So, instead, post analysis is done here to maintain some abstraction over efficiency.
class
class LolGamePlayerSnapshotChampionStats: """ Champion stats at a given snapshot for a player """ abilityHaste: int = None abilityPower: int = None armor: int = None armorPen: int = None armorPenPercent: int = None attackDamage: int = None attackSpeed: int = None bonusArmorPenPercent: int = None bonusMagicPenPercent: int = None ccReduction: int = None cooldownReduction: int = None health: int = None healthMax: int = None healthRegen: int = None lifesteal: int = None magicPen: int = None magicPenPercent: int = None magicResist: int = None movementSpeed: int = None omnivamp: int = None physicalVamp: int = None power: int = None powerMax: int = None powerRegen: int = None spellVamp: int = None
python
6
0.652709
51
26.1
30
Champion stats at a given snapshot for a player
class
class LolGamePlayerSnapshotDamageStats: """ Damage stats at a given snapshot for a player """ magicDamageDone: int = None magicDamageDoneToChampions: int = None magicDamageTaken: int = None physicalDamageDone: int = None physicalDamageDoneToChampions: int = None physicalDamageTaken: int = None totalDamageDone: int = None totalDamageDoneToChampions: int = None totalDamageTaken: int = None trueDamageDone: int = None trueDamageDoneToChampions: int = None trueDamageTaken: int = None
python
6
0.720588
49
31.058824
17
Damage stats at a given snapshot for a player
class
class LolGamePlayerSnapshot: """ Information about a player at a specific point in the game Riot's API gives this information with a 1 minute granularity in its MatchTimeline object """ timestamp: float # Timestamp of the event expressed in seconds from the game start, with possible ms precision # Player position, None for the last "snapshot" in Riot's API position: Position = None currentGold: int = None # Current gold (at the time of the snapshot) totalGold: int = None # Total gold earned xp: int = None # Current experience level: int = None # Current champion level cs: int = None # Total number of minions and monsters killed monstersKilled: int = None # Total monsters (neutral minions) killed # Whether or not the player is alive at the time of the snapshot isAlive: bool = None # Whether or not a summoner spell is available or not spell1Available: bool = None spell2Available: bool = None # Ultimate availability ultimateAvailable: bool = None # Absolutely no clue what this is supposed to be, match-v5 field timeEnemySpentControlled: int = None # New snapshot fields from match-v5 championStats: LolGamePlayerSnapshotChampionStats = field( default_factory=LolGamePlayerSnapshotChampionStats ) damageStats: LolGamePlayerSnapshotDamageStats = field( default_factory=LolGamePlayerSnapshotDamageStats )
python
8
0.718407
115
33.690476
42
Information about a player at a specific point in the game Riot's API gives this information with a 1 minute granularity in its MatchTimeline object
class
class LolGamePlayerEndOfGameStats: """End of game stats for a player in a game""" # As first blood is player-specific, this does not appear in Team objects. firstBlood: bool = None # True if the player performed the first blood firstBloodAssist: bool = None # True if the player assisted the first blood kill # True if the player dealt the last hit to the first turret kill firstTurret: bool = None firstTurretAssist: bool = None # True if the player assisted the first turret kill # True if the player dealt the last hit to the first inhibitor kill firstInhibitor: bool = None # True if the player assisted in the first inhibitor kill firstInhibitorAssist: bool = None # TODO Add a proper description for every field # All statistics here refer to end of game stats, so we do not preface them by anything. kills: int = None deaths: int = None assists: int = None gold: int = None cs: int = None level: int = None # Warding-related statistics wardsPlaced: int = None wardsKilled: int = None visionWardsBought: int = None visionScore: int = None # Kills-related statistics killingSprees: int = None # Number of a time a player has initiated a killing spree (2 or more consecutive kills) # Largest consecutive kills, above 0 only if it reached at least 2 largestKillingSpree: int = None doubleKills: int = None tripleKills: int = None quadraKills: int = None pentaKills: int = None turretKills: int = None inhibitorKills: int = None # Using modern Riot nomenclature of monsters for "neutral minions" monsterKills: int = None monsterKillsInAlliedJungle: int = None monsterKillsInEnemyJungle: int = None # Damage-related statistics # Total true damage dealt can be calculated by subtracting physical and magic damage to the total totalDamageDealt: int = None # Includes damage to minions and monsters physicalDamageDealt: int = None magicDamageDealt: int = None # Total true damage dealt to champions can be calculated by subtracting physical and magic damage to the total totalDamageDealtToChampions: int = None physicalDamageDealtToChampions: int = None magicDamageDealtToChampions: int = None # Total true damage taken can be calculated by subtracting physical and magic damage to the total totalDamageTaken: int = None physicalDamageTaken: int = None magicDamageTaken: int = None # Other damage statistics damageDealtToObjectives: int = None damageDealtToBuildings: int = None damageDealtToTurrets: int = None # Spell uses statistics, accessible in match-v5 # I hate the format, but am not sure where to put it otherwise where it would make sense spell1Casts: int = None spell2Casts: int = None spell3Casts: int = None spell4Casts: int = None # Really random statistics longestTimeSpentLiving: int = None # Expressed in seconds largestCriticalStrike: int = None # Full raw damage of the largest critical strike goldSpent: int = None # Can be useful to try and identify AFK players? # The following fields need to have their behaviour properly explained as part of the specification totalHeal: int = None totalDamageShieldedOnTeammates: int = None totalUnitsHealed: int = None damageSelfMitigated: int = None totalTimeCCDealt: int = None timeCCingOthers: int = None # New match-v5 end of game stats xp: int = None bountyLevel: int = None baronKills: int = None championTransform: int = None consumablesPurchased: int = None detectorWardsPlaced: int = None dragonKills: int = None inhibitorTakedowns: int = None itemsPurchased: int = None nexusKills: int = None nexusTakedowns: int = None objectivesStolen: int = None objectivesStolenAssists: int = None sightWardsBoughtInGame: int = None totalHealsOnTeammates: int = None totalTimeSpentDead: int = None turretTakedowns: int = None # Items are simply a list with the 'slot' field defining which item slot they occupied. # The list cannot be simply indexed on this 'slot' as many players have empty slots at the end of games. # List of end of game items items: List[LolGamePlayerItem] = field(default_factory=list)
python
9
0.714515
118
37.324561
114
End of game stats for a player in a game
class
class Teacher_Knowledge: """Tracker Based Class """ def __init__(self): self.data = None def childanalyzer(self): """ TODO: Some kind of data Analyzer """ pass def get_features(self): """ Returns: Name of Features """ return self.data.columns def check_feature_length(self): """ Returns: Length of Features """ return len(self.data.columns)
python
10
0.490909
40
18.84
25
Tracker Based Class
class
class ParallelGroupBy: """Fast parallel group by""" def __init__(self, keys: torch.Tensor): n = keys.shape[0] # sort by key (keep key in GPU device) relative_key = keys + torch.linspace(0, 0.9, n, dtype=torch.double, device=keys.device) sorted_keys, sorted_indices = torch.sort(relative_key) sorted_keys, sorted_indices = sorted_keys.int(), sorted_indices.cpu() # get group boundary diff = sorted_keys[1:] - sorted_keys[:-1] boundary = (diff.nonzero(as_tuple=True)[0] + 1).tolist() boundary = np.array([0] + boundary + [n]) # get inverse indices width = np.diff(boundary).max() groups = len(boundary) - 1 inverse_indices = sorted_indices.new_full((groups, width), n + 1) for start, end, i in zip(boundary[:-1], boundary[1:], range(groups)): inverse_indices[i, 0:(end - start)] = sorted_indices[start:end] # keep inverse_indices in GPU for sort inverse_indices = inverse_indices.flatten().to(keys.device, non_blocking=True) inverse_indices = torch.sort(inverse_indices)[1][:n] # for fast split take_indices = sorted_indices.new_full((groups, width), -1) for start, end, i in zip(boundary[:-1], boundary[1:], range(groups)): take_indices[i, 0:(end - start)] = sorted_indices[start:end] take_indices = take_indices.to(keys.device, non_blocking=True) # class members self._boundary = boundary self._sorted_indices = take_indices self._padding_mask = take_indices == -1 self._inverse_indices = inverse_indices self._width = width self._groups = groups self._data_shape = (groups, width) def split(self, data: torch.Tensor) -> torch.Tensor: ret = torch.take(data, self._sorted_indices) assert ret.dtype not in {torch.int8, torch.int16, torch.int32, torch.int64}, \ 'tensor cannot be any type of int, recommended to use float32' ret.masked_fill_(self._padding_mask, np.nan) return ret def revert(self, split_data: torch.Tensor, dbg_str='None') -> torch.Tensor: if tuple(split_data.shape) != self._data_shape: if tuple(split_data.shape[:2]) == self._data_shape[:2]: raise ValueError('The downstream needs shape{2}, and the input factor "{1}" is ' 'shape{0}. Look like this factor has multiple return values, ' 'use slice to select a value before using it, for example: ' '`factor[0]`.' .format(tuple(split_data.shape), dbg_str, self._data_shape)) else: raise ValueError('The return data shape{} of Factor `{}` must same as input{}.' .format(tuple(split_data.shape), dbg_str, self._data_shape)) return torch.take(split_data, self._inverse_indices) def create(self, dtype, values, nan_fill=np.nan): ret = self._sorted_indices.new_full(self._sorted_indices.shape, values, dtype=dtype) ret.masked_fill_(self._padding_mask, nan_fill) return ret
python
18
0.589241
96
52.616667
60
Fast parallel group by
class
class SqlExecutor: """ This is the executor for the SQL query. """ def __init__(self): self.parser = None self.config = DbestConfig() # model-related configuration self.runtime_config = RUNTIME_CONF self.last_config = None self.model_catalog = DBEstModelCatalog() self.init_slaves() self.init_model_catalog() self.save_sample = False # self.table_header = None self.n_total_records = None self.use_kde = True def init_model_catalog(self): # search the warehouse, and add all available models. n_model = 0 t1 = datetime.now() for file_name in os.listdir(self.config.get_config()['warehousedir']): # load simple models if file_name.endswith(self.runtime_config["model_suffix"]): if n_model == 0: print("start loading pre-existing models.") with open(self.config.get_config()['warehousedir'] + "/" + file_name, 'rb') as f: model = dill.load(f) self.model_catalog.model_catalog[model.init_pickle_file_name( self.runtime_config)] = model n_model += 1 # # load group by models # if os.path.isdir(self.config.get_config()['warehousedir'] + "/" + file_name): # n_models_in_groupby = 0 # if n_model == 0: # print("start loading pre-existing models.") # for model_name in os.listdir(self.config.get_config()['warehousedir'] + "/" + file_name): # if model_name.endswith(self.runtime_config["model_suffix"]): # with open(self.config.get_config()['warehousedir'] + "/" + file_name + "/" + model_name, 'rb') as f: # model = dill.load(f) # n_models_in_groupby += 1 # if n_models_in_groupby == 1: # groupby_model_wrapper = GroupByModelWrapper(model.mdl, model.tbl, model.x, model.y, # model.groupby_attribute, # x_min_value=model.x_min_value, # x_max_value=model.x_max_value) # groupby_model_wrapper.add_simple_model(model) # self.model_catalog.model_catalog[file_name] = groupby_model_wrapper.models # n_model += 1 if n_model > 0: print("Loaded " + str(n_model) + " models.", end=" ") if self.runtime_config["b_show_latency"]: t2 = datetime.now() print("time cost ", (t2-t1).total_seconds(), "s") else: print() def init_slaves(self): file_name = os.path.join(self.config.config["warehousedir"], "slaves") if os.path.exists(file_name) and os.path.getsize(file_name) > 0: with open(file_name, "r") as f: for line in f: if "#" not in line: self.runtime_config["slaves"].add(Slave(line)) if self.runtime_config['v']: print("Cluster mode is on, slaves are " + self.runtime_config["slaves"].to_string()) else: if self.runtime_config['v']: print("Local mode is on, as no slaves are provided.") def execute(self, sql): # b_use_gg=False, n_per_gg=10, result2file=None,n_mdn_layer_node = 10, encoding = "onehot",n_jobs = 4, b_grid_search = True,device = "cpu", n_division = 20 # prepare the parser if type(sql) == str: self.parser = DBEstParser() self.parser.parse(sql) elif type(sql) == DBEstParser: self.parser = sql else: print("Unrecognized SQL! Please check it!") exit(-1) # execute the query if self.parser.if_nested_query(): warnings.warn("Nested query is currently not supported!") else: sql_type = self.parser.get_query_type() if sql_type == "create": # process create query # initialize the configure for each model creation. if self.last_config: self.config = self.last_config else: self.config = DbestConfig() # DDL, create the model as requested mdl = self.parser.get_ddl_model_name() tbl = self.parser.get_from_name() if self.parser.if_model_need_filter(): self.config.set_parameter("accept_filter", True) # remove unnecessary charactor ' tbl = tbl.replace("'", "") if os.path.isfile(tbl): # the absolute path is provided original_data_file = tbl else: # the file is in the warehouse direcotry original_data_file = self.config.get_config()[ 'warehousedir'] + "/" + tbl yheader = self.parser.get_y() xheader_continous, xheader_categorical = self.parser.get_x() ratio = self.parser.get_sampling_ratio() method = self.parser.get_sampling_method() table_header = self.config.get_config()['table_header'] # print("table_header", table_header) if table_header is not None: table_header = table_header.split( self.config.get_config()['csv_split_char']) # make samples if not self.parser.if_contain_groupby(): # if group by is not involved sampler = DBEstSampling( headers=table_header, usecols={"y": yheader, "x_continous": xheader_continous, "x_categorical": xheader_categorical, "gb": None}) else: groupby_attribute = self.parser.get_groupby_value() sampler = DBEstSampling(headers=table_header, usecols={ "y": yheader, "x_continous": xheader_continous, "x_categorical": xheader_categorical, "gb": groupby_attribute}) # print(self.config) if os.path.exists(os.path.join(self.config.get_config()['warehousedir'], mdl + self.runtime_config["model_suffix"])): print( "Model {0} exists in the warehouse, please use" " another model name to train it.".format(mdl)) return # if self.parser.if_contain_groupby(): # groupby_attribute = self.parser.get_groupby_value() # if os.path.exists(self.config['warehousedir'] + "/" + mdl + "_groupby_" + groupby_attribute): # print( # "Model {0} exists in the warehouse, please use" # " another model name to train it.".format(mdl)) # return print("Start creating model " + mdl) time1 = datetime.now() if self.save_sample: sampler.make_sample( original_data_file, ratio, method, split_char=self.config.get_config()[ 'csv_split_char'], file2save=self.config.get_config()['warehousedir'] + "/" + mdl + '.csv', num_total_records=self.n_total_records) else: sampler.make_sample( original_data_file, ratio, method, split_char=self.config.get_config()[ 'csv_split_char'], num_total_records=self.n_total_records) # set the n_total_point and scaling factor for each model. # self.config.set_parameter( # "n_total_point", sampler.n_total_point) # self.config.set_parameter( # "scaling_factor", sampler.scaling_factor) # print("scaling_factor is ", sampler.scaling_factor) if not self.parser.if_contain_groupby(): # if group by is not involved # n_total_point = sampler.n_total_point # xys = sampler.getyx(yheader, xheader_continous) # simple_model_wrapper = SimpleModelTrainer(mdl, tbl, xheader_continous, yheader, # n_total_point, ratio, config=self.config.copy()).fit_from_df( # xys, self.runtime_config) # reg = simple_model_wrapper.reg # density = simple_model_wrapper.density # n_sample_point = int(simple_model_wrapper.n_sample_point) # n_total_point = int(simple_model_wrapper.n_total_point) # x_min_value = float(simple_model_wrapper.x_min_value) # x_max_value = float(simple_model_wrapper.x_max_value) # query_engine = QueryEngine(mdl, reg, density, n_sample_point, # n_total_point, x_min_value, x_max_value, xheader_continous[ # 0], # self.config) sampler.sample.sampledf["dummy_gb"] = "dummy" sampler.sample.usecols = {"y": yheader, "x_continous": xheader_continous, "x_categorical": xheader_categorical, "gb": "dummy_gb"} n_total_point, xys = sampler.get_groupby_frequency_data() # if not n_total_point['if_contain_x_categorical']: n_total_point.pop("if_contain_x_categorical") kdeModelWrapper = KdeModelTrainer( mdl, tbl, xheader_continous[0], yheader, groupby_attribute=["dummy_gb"], groupby_values=list( n_total_point.keys()), n_total_point=n_total_point, x_min_value=-np.inf, x_max_value=np.inf, config=self.config.copy()).fit_from_df( xys["data"], self.runtime_config, network_size="large") qe_mdn = MdnQueryEngine( kdeModelWrapper, config=self.config.copy()) qe_mdn.serialize2warehouse( self.config.get_config()['warehousedir'], self.runtime_config) self.model_catalog.add_model_wrapper( qe_mdn, self.runtime_config) else: # if group by is involved in the query if self.config.get_config()['reg_type'] == "qreg": xys = sampler.getyx(yheader, xheader_continous) n_total_point = get_group_count_from_table( original_data_file, groupby_attribute, sep=self.config.get_config()[ 'csv_split_char'], headers=table_header) n_sample_point = get_group_count_from_df( xys, groupby_attribute) groupby_model_wrapper = GroupByModelTrainer(mdl, tbl, xheader_continous, yheader, groupby_attribute, n_total_point, n_sample_point, x_min_value=-np.inf, x_max_value=np.inf, config=self.config.copy()).fit_from_df( xys, self.runtime_config) groupby_model_wrapper.serialize2warehouse( self.config.get_config()['warehousedir'] + "/" + groupby_model_wrapper.dir) self.model_catalog.model_catalog[groupby_model_wrapper.dir] = groupby_model_wrapper.models else: # "mdn" xys = sampler.getyx( yheader, xheader_continous, groupby=groupby_attribute) # xys[groupby_attribute] = pd.to_numeric(xys[groupby_attribute], errors='coerce') # xys=xys.dropna(subset=[yheader, xheader,groupby_attribute]) # n_total_point = get_group_count_from_table( # original_data_file, groupby_attribute, sep=',',#self.config['csv_split_char'], # headers=self.table_header) if isinstance(ratio, str): frequency_file = self.config.get_config()[ 'warehousedir'] + "/" + ratio # "/num_of_points.csv" if os.path.exists(frequency_file): n_total_point = get_group_count_from_summary_file( frequency_file, sep=',') n_total_point_sample, xys = sampler.get_groupby_frequency_data() n_total_point["if_contain_x_categorical"] = n_total_point_sample["if_contain_x_categorical"] else: raise FileNotFoundError( "scaling factor should come from the " + ratio + " in the warehouse folder, as" " stated in the SQL. However, the file is not found.") else: n_total_point, xys = sampler.get_groupby_frequency_data() # print(n_total_point) # for cases when the data file is treated as a sample, we need to scale up the frequency for each group. if ratio > 1: file_size = sampler.n_total_point ratio = float(ratio)/file_size # if 0 < ratio < 1: scaled_n_total_point = {} if "if_contain_x_categorical" in n_total_point: scaled_n_total_point["if_contain_x_categorical"] = n_total_point.pop( "if_contain_x_categorical") if "categorical_distinct_values" in n_total_point: scaled_n_total_point["categorical_distinct_values"] = n_total_point.pop( "categorical_distinct_values") if "x_categorical_columns" in n_total_point: scaled_n_total_point["x_categorical_columns"] = n_total_point.pop( "x_categorical_columns") for key in n_total_point: # print("key", key, n_total_point[key]) if not isinstance(n_total_point[key], dict): scaled_n_total_point[key] = n_total_point[key]/ratio else: scaled_n_total_point[key] = {} for sub_key in n_total_point[key]: scaled_n_total_point[key][sub_key] = n_total_point[key][sub_key]/ratio n_total_point = scaled_n_total_point # print("scaled_n_total_point", scaled_n_total_point) # no categorical x attributes if not n_total_point['if_contain_x_categorical']: if not self.config.get_config()["b_use_gg"]: n_total_point.pop( "if_contain_x_categorical") # xys.pop("if_contain_x_categorical") kdeModelWrapper = KdeModelTrainer( mdl, tbl, xheader_continous[0], yheader, groupby_attribute=groupby_attribute, groupby_values=list( n_total_point.keys()), n_total_point=n_total_point, x_min_value=-np.inf, x_max_value=np.inf, config=self.config.copy()).fit_from_df( xys["data"], self.runtime_config, network_size=None) qe_mdn = MdnQueryEngine( kdeModelWrapper, config=self.config.copy()) qe_mdn.serialize2warehouse( self.config.get_config()['warehousedir'], self.runtime_config) # kdeModelWrapper.serialize2warehouse() self.model_catalog.add_model_wrapper( qe_mdn, self.runtime_config) else: # print("n_total_point ", n_total_point) queryEngineBundle = MdnQueryEngineGoGs( config=self.config.copy()).fit(xys["data"], groupby_attribute, n_total_point, mdl, tbl, xheader_continous[0], yheader, self.runtime_config) # n_per_group=n_per_gg,n_mdn_layer_node = n_mdn_layer_node,encoding = encoding,b_grid_search = b_grid_search self.model_catalog.add_model_wrapper( queryEngineBundle, self.runtime_config) queryEngineBundle.serialize2warehouse( self.config.get_config()['warehousedir'], self.runtime_config) else: # x has categorical attributes # if not self.config.get_config()["b_use_gg"]: # use a single model to support categorical conditions. if self.config.config["one_model"]: qe = MdnQueryEngineXCategoricalOneModel( self.config.copy()) usecols = { "y": yheader, "x_continous": xheader_continous, "x_categorical": xheader_categorical, "gb": groupby_attribute} useCols = UseCols(usecols) # get the training data from samples. gbs, xs, ys = useCols.get_gb_x_y_cols_for_one_model() gbs_data, xs_data, ys_data = sampler.sample.get_columns_from_original_sample( gbs, xs, ys) n_total_point = sampler.sample.get_frequency_of_categorical_columns_for_gbs( groupby_attribute, xheader_categorical) # print("n_total_point-----------before", # n_total_point) # print("ratio is ", ratio) scaled_n_total_point = {} for key in n_total_point: scaled_n_total_point[key] = {} for sub_key in n_total_point[key]: scaled_n_total_point[key][sub_key] = n_total_point[key][sub_key]/ratio n_total_point = scaled_n_total_point # print("n_total_point-----------after", # n_total_point) # raise qe.fit(mdl, tbl, gbs_data, xs_data, ys_data, n_total_point, usecols=usecols, runtime_config=self.runtime_config) else: qe = MdnQueryEngineXCategorical( self.config.copy()) qe.fit(mdl, tbl, xys, n_total_point, usecols={ "y": yheader, "x_continous": xheader_continous, "x_categorical": xheader_categorical, "gb": groupby_attribute}, runtime_config=self.runtime_config ) # device=device, encoding=encoding, b_grid_search=b_grid_search qe.serialize2warehouse( self.config.get_config()['warehousedir'], self.runtime_config) self.model_catalog.add_model_wrapper( qe, self.runtime_config) # else: # raise ValueError( # "GoG support for categorical attributes is not supported.") qe.serialize2warehouse( self.config.get_config()['warehousedir'], self.runtime_config) self.model_catalog.add_model_wrapper( qe, self.runtime_config) time2 = datetime.now() t = (time2 - time1).seconds if self.runtime_config['b_show_latency']: print("time cost: " + str(t) + "s.") print("------------------------") # rest config self.last_config = None return elif sql_type == "select": # process SELECT query start_time = datetime.now() predictions = None # DML, provide the prediction using models mdl = self.parser.get_from_name() gb_to_print, [ func, yheader, distinct_condition] = self.parser.get_dml_aggregate_function_and_variable() if self.parser.if_where_exists(): print("OK") where_conditions = self.parser.get_dml_where_categorical_equal_and_range() # xheader, x_lb, x_ub = self.parser.get_dml_where_categorical_equal_and_range() model = self.model_catalog.model_catalog[mdl + self.runtime_config["model_suffix"]] x_header_density = model.density_column # print("where_conditions", where_conditions) [x_lb, x_ub] = [where_conditions[2][x_header_density][i] for i in [0, 1]] filter_dbest = dict(where_conditions[2]) filter_dbest = [filter_dbest[next(iter(filter_dbest))][i] for i in [0, 1]] # print("where_conditions",where_conditions) # print("filter_dbest",filter_dbest) predictions = model.predicts(func, x_lb, x_ub, where_conditions, self.runtime_config, groups=None, filter_dbest=filter_dbest) # predictions = model.predict_one_pass( # func, x_lb, x_ub, n_jobs=n_jobs) elif func == "var": print("var!!") model = self.model_catalog.model_catalog[mdl + self.runtime_config["model_suffix"]] x_header_density = model.density_column # print(x_header_density) predictions = model.predicts("var",runtime_config=self.runtime_config) # return predictions else: print( "support for query without where clause is not implemented yet! abort!") return # if not self.parser.if_contain_groupby(): # if group by is not involved in the query # simple_model_wrapper = self.model_catalog.model_catalog[get_pickle_file_name( # mdl)] # reg = simple_model_wrapper.reg # density = simple_model_wrapper.density # n_sample_point = int(simple_model_wrapper.n_sample_point) # n_total_point = int(simple_model_wrapper.n_total_point) # x_min_value = float(simple_model_wrapper.x_min_value) # x_max_value = float(simple_model_wrapper.x_max_value) # query_engine = QueryEngine(reg, density, n_sample_point, # n_total_point, x_min_value, x_max_value, # self.config) # p, t = query_engine.predict(func, x_lb=x_lb, x_ub=x_ub) # print("OK") # print(p) # if self.config.get_config()['verbose']: # print("time cost: " + str(t)) # print("------------------------") # return p, t # else: # if group by is involved in the query # if self.config.get_config()['reg_type'] == "qreg": # start = datetime.now() # predictions = {} # groupby_attribute = self.parser.get_groupby_value() # groupby_key = mdl + "_groupby_" + groupby_attribute # for group_value, model_wrapper in self.model_catalog.model_catalog[groupby_key].items(): # reg = model_wrapper.reg # density = model_wrapper.density # n_sample_point = int(model_wrapper.n_sample_point) # n_total_point = int(model_wrapper.n_total_point) # x_min_value = float(model_wrapper.x_min_value) # x_max_value = float(model_wrapper.x_max_value) # query_engine = QueryEngine(reg, density, n_sample_point, n_total_point, x_min_value, # x_max_value, # self.config) # predictions[model_wrapper.groupby_value] = query_engine.predict( # func, x_lb=x_lb, x_ub=x_ub)[0] # print("OK") # for key, item in predictions.items(): # print(key, item) # else: # use mdn models to give the predictions. # start = datetime.now() # # predictions = {} # groupby_attribute = self.parser.get_groupby_value() # # no categorical x attributes # # x_categorical_attributes, x_categorical_values, x_categorical_conditions = self.parser.get_dml_where_categorical_equal_and_range() # x_categorical_conditions = self.parser.get_dml_where_categorical_equal_and_range() # # no x categrical attributes, use a single model to predict. # if not x_categorical_conditions[0]: # if not self.config.get_config()["b_use_gg"]: # # qe_mdn = MdnQueryEngine(self.model_catalog.model_catalog[mdl + ".pkl"], # # self.config) # where_conditions = self.parser.get_dml_where_categorical_equal_and_range() # # xheader, x_lb, x_ub = self.parser.get_dml_where_categorical_equal_and_range() # qe_mdn = self.model_catalog.model_catalog[mdl + ".pkl"] # x_header_density = qe_mdn.density_column # [x_lb, x_ub] = [where_conditions[2][x_header_density][i] # for i in [0, 1]] # print("OK") # predictions = qe_mdn.predict_one_pass(func, x_lb=x_lb, x_ub=x_ub, # n_jobs=n_jobs, ) # result2file=result2file,n_division=n_division # else: # qe_mdn = self.model_catalog.model_catalog[mdl + ".pkl"] # # qe_mdn = MdnQueryEngine(qe_mdn, self.config) # print("OK") # predictions = qe_mdn.predicts(func, x_lb=x_lb, x_ub=x_ub, # n_jobs=n_jobs, ) # else: # pass # # print("OK") # # if not self.config.get_config()["b_use_gg"]: # # # print("x_categorical_values", # # # x_categorical_values) # # # print(",".join(x_categorical_values)) # # filter_dbest = self.parser.get_filter() # # self.model_catalog.model_catalog[mdl + '.pkl'].predicts( # # func, x_lb, x_ub, x_categorical_conditions, n_jobs=1, filter_dbest=filter_dbest) # ",".join(x_categorical_values) # # else: # # pass if self.runtime_config['b_show_latency']: end_time = datetime.now() time_cost = (end_time - start_time).total_seconds() print("Time cost: %.4fs." % time_cost) print("------------------------") return predictions elif sql_type == "set": # process SET query if self.last_config: self.config = self.last_config else: self.config = DbestConfig() try: key, value = self.parser.get_set_variable_value() if key in self.config.get_config(): # check variable value before assignment if key.lower() == "encoder": value = value.lower() if value not in ["onehot", "binary", "embedding"]: value = "binary" print( "encoder is not set to a proper value, use default encoding type: binary.") self.config.get_config()[key] = value print("OK, " + key + " is updated.") else: # if variable is within runtime_config # check if "device" is set. we need to make usre when GPU is not availabe, cpu is used instead. if key.lower() == "device": value = value.lower() if value in ["cpu", "gpu"]: if torch.cuda.is_available(): if value == "gpu": value = "cuda:0" try: set_start_method_torch('spawn') except RuntimeError: print("Fail to set start method as spawn for pytorch multiprocessing, " + "use default in advance. (see queryenginemdn " "for more info.)") else: set_start_method_cpu("spawn") if self.runtime_config["v"]: print("device is set to " + value) else: if value == "gpu": print( "GPU is not available, use CPU instead") value = "cpu" if value == "cpu": if self.runtime_config["v"]: print("device is set to " + value) else: print("Only GPU or CPU is supported.") return self.runtime_config[key] = value if key in self.runtime_config: print("OK, " + key + " is updated.") else: print("OK, local variable "+key+" is defined.") except TypeError: # self.parser.get_set_variable_value() does not return correctly print("Parameter is not changed. Please check your SQL!") # save the config self.last_config = self.config return elif sql_type == "drop": # process DROP query model_name = self.parser.drop_get_model() model_path = os.path.join(self.config.get_config( )["warehousedir"], model_name+self.runtime_config["model_suffix"]) if os.path.isfile(model_path): os.remove(model_path) print("OK. model is dropped.") return True else: print("Model does not exist!") return False elif sql_type == "show": print("OK") t_start = datetime.now() if self.runtime_config['b_print_to_screen']: for key in self.model_catalog.model_catalog: print(key.replace( self.runtime_config["model_suffix"], '')) if self.runtime_config["v"]: t_end = datetime.now() time_cost = (t_end - t_start).total_seconds() print("Time cost: %.4fs." % time_cost) else: print("Unsupported query type, please check your SQL.") return def set_table_counts(self, dic): self.n_total_records = dic
python
33
0.436209
197
56.791531
614
This is the executor for the SQL query.
class
class FakeReport: """Fake report to return some dummy data.""" def __init__(self, data): """Does nothing.""" pass def run(self): """Run some dummy data.""" d = OrderedDict() d['keya'] = 'value1' d['keyb'] = 'value2' return [d] def columns(self): """Return dummy data columns.""" return ['keya', 'keyb']
python
9
0.491094
48
22.176471
17
Fake report to return some dummy data.
class
class AnsibleTestHost: """Represents the result of an Ansible task when it got run on a host.""" name: str """Name of the host.""" action: str """Description of the task that was performed on the host.""" result: AnsibleTestStatus = AnsibleTestStatus.UNKNOWN """Result of the task.""" msg: Optional[str] = None """Additional information on the task result."""
python
9
0.665823
77
38.6
10
Represents the result of an Ansible task when it got run on a host.
class
class AnsibleTest: """Represents an Ansible task that got run as part of a build.""" phase: str """Build phase when the task got executed. For example: 'Pre' or 'Run'.""" name: str """Name of the task.""" duration: float = 0 """Time, in seconds, the task took to complete.""" url: Optional[str] = None """Page where to find more info of the task's execution.""" hosts: List[AnsibleTestHost] = field(default_factory=lambda: []) """Contains the results of the execution of the task on many hosts."""
python
10
0.64695
78
44.166667
12
Represents an Ansible task that got run as part of a build.
class
class ChecksumMixin: """ CSV mixin that will create and verify a checksum column in the CSV file Specify a list checksum_columns in the subclass. """ secret = settings.SECRET_KEY checksum_columns = [] checksum_fieldname = 'csum' checksum_size = 4 def _get_checksum(self, row): to_check = ''.join(str(row[key] if row[key] is not None else '') for key in self.checksum_columns) to_check += self.secret checksum = hashlib.md5(to_check.encode('utf8')).hexdigest()[:self.checksum_size] return f'@{checksum!s}' def preprocess_export_row(self, row): """ Set the checksum column in the row. """ row[self.checksum_fieldname] = self._get_checksum(row) def validate_row(self, row): """ Verifies that the calculated checksum matches the stored checksum. """ if self._get_checksum(row) != row[self.checksum_fieldname]: raise ValidationError( _("Checksum mismatch. Required columns cannot be edited: {}").format( ','.join(self.checksum_columns) ) )
python
15
0.594102
106
35.0625
32
CSV mixin that will create and verify a checksum column in the CSV file Specify a list checksum_columns in the subclass.
class
class DeferrableMixin: """ Mixin that automatically commits data using celery. Subclasses should specify `size_to_defer` to tune when to run the commit synchronously or asynchronously. Subclasses must override get_unique_path to uniquely identify this task. """ # if the number of rows is greater than size_to_defer, # run the task asynchonously. Otherwise, commit immediately. # 0 means: always run in a celery task size_to_defer = 0 def get_unique_path(self): raise NotImplementedError() def save(self, operation_name=None, operating_user=None): """ Save the state of this object to django storage. Clients may pass an optional ``operating_user`` kwarg to indicate the ``auth.User`` who is saving this operation state. Otherwise, the current request's (if any) user will be recorded. """ state = self.__dict__.copy() for k in list(state): v = state[k] if k.startswith('_'): del state[k] elif isinstance(v, set): state[k] = list(v) state['__class__'] = (self.__class__.__module__, self.__class__.__name__) if not operation_name: operation_name = 'stage' if self.can_commit else 'commit' operation = CSVOperation.record_operation( self, self.get_unique_path(), operation_name, json.dumps(state), original_filename=state.get('filename', ''), user=operating_user or get_current_user(), ) return operation @classmethod def load(cls, operation_id, load_subclasses=False): """ Load the CSVProcessor from the saved state. """ operation = CSVOperation.objects.get(pk=operation_id) log.info('Loading CSV state %s', operation.data.name) state = json.load(operation.data) module_name, classname = state.pop('__class__') if classname != cls.__name__: if not load_subclasses: # this could indicate tampering raise ValueError(f'{classname!s} != {cls.__name__!s}') cls = getattr(importlib.import_module(module_name), classname) # pylint: disable=self-cls-assignment instance = cls(**state) return instance @classmethod def get_deferred_result(cls, result_id): """ Return the celery result for the given id. """ return AsyncResult(result_id) def status(self): """ Return a status dict. """ status = super().status() status['result_id'] = getattr(self, 'result_id', None) status['saved_error_id'] = getattr(self, 'saved_error_id', None) status['waiting'] = bool(status['result_id']) status.update(getattr(self, '_status', {})) return status def preprocess_file(self, reader): super().preprocess_file(reader) if self.error_messages: operation = self.save('error') self.saved_error_id = operation.id def commit(self, running_task=None): """ Automatically defer the commit to a celery task if the number of rows is greater than self.size_to_defer """ if running_task or len(self.stage) <= self.size_to_defer: # Either an async task is already in process, # or the size of the request is small enough to commit synchronously self.save() super().commit() else: # We'll enqueue an async celery task. try: with transaction.atomic(): # We have to make sure that a CSVOperation record # is created and committed before the task starts, # because the task will look for that CSVOperation # in the database outside of the context of the # current transaction. operation = self.save() except DatabaseError: log.exception("Error saving DeferrableMixin: %s", self) raise # Now enqueue the async task. result = do_deferred_commit.delay(operation.id) if not result.ready(): self.result_id = result.id log.info('Queued task %s %r', operation.id, result) else: self._status = result.get() def get_committed_history(self): """ Get the history of all committed CSV upload operations. Returns a list of dictionaries. """ all_history = CSVOperation.get_all_history(self, self.get_unique_path()) committed_history = all_history.filter(operation='commit') history_with_users = CSVOperationSerializer.get_related_queryset(committed_history).order_by('-created') return CSVOperationSerializer(history_with_users, many=True).data
python
16
0.581046
113
36.818182
132
Mixin that automatically commits data using celery. Subclasses should specify `size_to_defer` to tune when to run the commit synchronously or asynchronously. Subclasses must override get_unique_path to uniquely identify this task.
class
class CadastreApi: """ CadastreApi is a raw connection for the Spain Cadastre API. Use CadastreService for get models associated to cadastre info """ def get_info_by_rc(self, rc: str): """ Get cadastre information from RC """ try: response = requests.post( url=BASE_URI + "OVCCallejero.asmx/Consulta_DNPRC", data={"Provincia": "", "Municipio": "", "RC": rc.upper()}, timeout=TIMEOUT, ) response.raise_for_status() xml = response.text return CadastreXml(xml) except HTTPError as http_err: logger.exception(f"HTTPError occurred: {http_err}. RC={rc}") except Exception as err: logger.exception(f"Error occurred: {err}. RC={rc}") def get_info_by_address( self, province: str, municipality: str, type_road: str, road: str, number: str, block: str, stairs: str, floor: str, door: str, ): """ Get cadastre information from RC """ try: response = requests.post( url=BASE_URI + "OVCCallejero.asmx/Consulta_DNPLOC", data={ "Provincia": province, "Municipio": municipality, "Sigla": type_road, "Calle": road, "Numero": number, "Bloque": block, "Escalera": stairs, "Planta": floor, "Puerta": door, }, timeout=TIMEOUT, ) response.raise_for_status() xml = response.text return CadastreXml(xml) except HTTPError as http_err: logger.exception(f"HTTPError occurred: {http_err}. RC={rc}") except Exception as err: logger.exception(f"Error occurred: {err}. RC={rc}") def get_plot_location(self, plot_rc: str): """ Get location from plot RC """ try: response = requests.post( url=BASE_URI + "OVCCoordenadas.asmx/Consulta_CPMRC", data={ "Provincia": "", "Municipio": "", "RC": plot_rc.upper(), "SRS": SRS_CODE, }, timeout=TIMEOUT, ) response.raise_for_status() xml = response.text return LocationXml(xml) except HTTPError as http_err: logger.exception(f"HTTPError occurred: {http_err}. RC={plot_rc}") except Exception as err: logger.exception(f"Error occurred: {err}. RC={plot_rc}") def get_roads(self, province: str, muncipality: str): """ Get all roads from municipality """ try: response = requests.post( url=BASE_URI + "OVCCallejero.asmx/ConsultaVia", data={ "Provincia": province, "Municipio": muncipality, "TipoVia": "", "NombreVia": "", }, timeout=300, ) response.raise_for_status() xml = response.text return RoadsXml(xml) except HTTPError as http_err: logger.exception( f"HTTPError occurred: {http_err}. Province={province} Municipality={muncipality}" ) except Exception as err: logger.exception( f"Error occurred: {err}. Province={province} Municipality={muncipality}" )
python
16
0.475554
97
32.428571
112
CadastreApi is a raw connection for the Spain Cadastre API. Use CadastreService for get models associated to cadastre info
class
class UserAccount: """ Class that generates new instances of contacts. """ account_list = [] # Empty account list # Init method up here def save_account(self): ''' save_account method saves account objects into account_list ''' UserAccount.account_list.append(self) def delete_account(self): ''' delete_account method deletes a saved account from the account_list ''' UserAccount.account_list.remove(self) @classmethod def find_by_username(cls,userName): ''' Method that takes in a username and returns an acount that matches that username. Args: userName: User Name to search for Returns : Account of person that matches the user name. ''' for account in cls.account_list: if account.userName == userName: return account @classmethod def account_exist(cls,userName): ''' Method that checks if an account exists from the account list. Args: number: User Name to search if it exists Returns : Boolean: True or false depending if the account exists ''' for account in cls.account_list: if account.userName == userName: return True return False @classmethod def display_accounts(cls): ''' method that returns the account list ''' return cls.account_list @classmethod def copy_userName(cls,userName): account_found = UserAccount.find_by_username(userName) pyperclip.copy(account_found.userName) def __init__(self,userName,Pword): # docstring removed for simplicity self.userName = userName self.Pword = Pword
python
11
0.589799
89
25.342857
70
Class that generates new instances of contacts.
class
class PaginatedQuery: """ Represents the paginated results of a query. Attributes: animes: The [anime](./anime.md)s recieved. characters: The [character](./character.md)s recieved. staffs: The [staff](./staff.md)s recieved. studios: The [studio](./studio.md)s recieved. users: The [user](./user.md)s recieved. """ def __init__(self, client, payload): self.animes: t.List[Anime] = [] self.characters: t.List[Character] = [] self.staffs: t.List[Staff] = [] self.studios: t.List[Studio] = [] self.users: t.List[User] = [] self._payload = payload self._page = -1 self._client = client self._fill_lists() self.pag_type = ( self.animes or self.characters or self.staffs or self.users or self.studios ) def _fill_lists(self): list_types = { "media": (Anime, "animes"), "characters": (Character, "characters"), "staff": (Staff, "staffs"), "users": (User, "users"), "studios": (Studio, "studios"), } for item_type in self._payload["data"]["Page"]: if item_type in list_types: class_type = list_types[item_type][0] setattr( self, list_types[item_type][1], [ class_type(self._client, data) for data in self._payload["data"]["Page"][item_type] ], ) self._type = list_types[item_type] def find(self, iterable: Iterable, check: t.Callable) -> list: """ This method returns a list of results that pass the check function from an iterable Args: iterable (Iterable): The iterable to search through check (t.Callable): The check an item needs to pass Returns: A list of results that pass the check function ```python print(paginator.find(paginator.animes, lambda a: a.status == "FINISHED") ``` """ return [item for item in iterable if check(item)] def walk(self, attribute: str, iterable: t.Iterable = None) -> list: """ This method walks through the paginator and returns the attribute that was passed in. Args: attribute (str): The attribute to look for and ultimately return iterable (t.Iterable): The iterable to walk through. Default will auto search for you Returns: A list of the passed attribute to return from each the instances corresponding to the item in the iterable """ iterable = iterable or self.pag_type return [getattr(item, attribute) for item in iterable] def from_id( self, id: int ) -> t.Optional[t.Union[Anime, Character, Staff, User, Studio]]: """ This method looks through all the characters or animes that were recieved and outputs the Anime/Character instance that corresponds to the given id. Args: id (int): The id to search for. Returns: The instance that corresponds to the given id. """ search_from = ( self.animes or self.characters or self.staffs or self.users or self.studios ) res = self.find(search_from, lambda item: item.id == id) or None if res is not None: return res[0] async def next(self): return await self.__anext__() def __repr__(self) -> str: return f"<PaginatedQuery type={self._type[1]}>" def __aiter__(self) -> PaginatedQuery: return self async def __anext__(self) -> t.Union[Anime, Character, Staff, User, Studio]: self._page += 1 if self._page >= len(self.pag_type): raise StopIteration return self.pag_type[self._page]
python
18
0.55668
118
33.982301
113
Represents the paginated results of a query. Attributes: animes: The [anime](./anime.md)s recieved. characters: The [character](./character.md)s recieved. staffs: The [staff](./staff.md)s recieved. studios: The [studio](./studio.md)s recieved. users: The [user](./user.md)s recieved.
class
class Misspell: """Detect misspelled words.""" def __init__(self, config): """Setup whitelist.""" try: options = toml.load(config) except FileNotFoundError: options = {} self.sensitive = options.get('sensitive', []) self.insensitive = options.get('insensitive', []) def is_misspelled(self, token): """Detect if token is misspelled.""" if ( token.like_url or token.like_num or token.like_email or token.text in self.sensitive or token.lower_ in self.insensitive ): return False return token.is_oov
python
12
0.533923
57
28.521739
23
Detect misspelled words.
class
class Flux: """Contain a flux of a fluxogram.""" def __init__(self, name, grid_size, from_storage, to_storage, amount=0): """Initialize a flux. Arguments are: - name: name of the flux - grid_size: grid size of the diagram - from_storage: storage the flux is originating from - to_storage: storage the flux is going into - amount: how much stuff fluxes. """ self.name = name self.from_storage = from_storage self.to_storage = to_storage self.amount = amount self.grid_size = grid_size (self.x_start, self.y_start, self.x_end, self.y_end, self.d_x, self.d_y, self.dire) = (self.calc_start_end_dx_dy()) def update_flux(self, amount): """Update the amount of the flux.""" self.amount = amount def calc_start_end_dx_dy(self): """Scale the arrows. Calculate the starting and ending point of an arrow depending on the order and offset of the starting and ending storages. This helps determine the direction of the arrow returns the start and end xy coordinates of the arrow as tuples. """ # arrow pointing to left up if (self.from_storage.offset > self.to_storage.offset and self.from_storage.order > self.to_storage.order): x_start = self.from_storage.x_p + 0.85 * self.grid_size y_start = self.from_storage.y_p - self.grid_size * 0.5 x_end = self.to_storage.x_p + self.grid_size * 0.65 y_end = self.to_storage.y_p - 0.7 * self.grid_size d_x = abs(x_start - x_end) * (-1) d_y = abs(y_start - y_end) dire = 'lup' # arrow pointing up elif (self.from_storage.offset == self.to_storage.offset and self.from_storage.order > self.to_storage.order): x_start = self.from_storage.x_p + 0.85 * self.grid_size y_start = self.from_storage.y_p - 0.5 * self.grid_size x_end = self.to_storage.x_p + 0.85 * self.grid_size y_end = self.to_storage.y_p - 0.25 * self.grid_size d_x = abs(x_start - x_end) d_y = abs(y_start - y_end) dire = 'up' # arrow pointing right up elif (self.from_storage.offset < self.to_storage.offset and self.from_storage.order > self.to_storage.order): x_start = (self.from_storage.x_p + self.grid_size) y_start = self.from_storage.y_p - 0.5 * self.grid_size x_end = self.to_storage.x_p + 0.05 * self.grid_size y_end = self.to_storage.y_p - 0.75 * self.grid_size d_x = abs(x_start - x_end) d_y = abs(y_start - y_end) dire = 'rup' # arrow pointing right elif (self.from_storage.offset < self.to_storage.offset and self.from_storage.order == self.to_storage.order): x_start = (self.from_storage.x_p + self.grid_size) y_start = self.from_storage.y_p - 0.8 * self.grid_size x_end = self.to_storage.x_p + 1.25 * self.grid_size y_end = self.to_storage.y_p - 0.8 * self.grid_size d_x = abs(x_start - x_end) d_y = abs(y_start - y_end) dire = 'r' # arrow pointing right down elif (self.from_storage.offset < self.to_storage.offset and self.from_storage.order < self.to_storage.order): x_start = (self.from_storage.x_p + 0.85 * self.grid_size) y_start = self.from_storage.y_p - 1.12 * self.grid_size x_end = self.to_storage.x_p + 0.85 * self.grid_size y_end = self.to_storage.y_p - 0.9 * self.grid_size d_x = abs(x_start - x_end) d_y = abs(y_start - y_end) * (-1) dire = 'rdn' # arrow pointing down elif (self.from_storage.offset == self.to_storage.offset and self.from_storage.order < self.to_storage.order): x_start = self.from_storage.x_p + 0.8 * self.grid_size y_start = (self.from_storage.y_p - 1.12 * self.grid_size) x_end = self.to_storage.x_p + 0.8 * self.grid_size y_end = self.to_storage.y_p - 1.4 * self.grid_size d_x = abs(x_start - x_end) d_y = abs(y_start - y_end) * (-1) dire = 'dn' # arrow pointing left down elif (self.from_storage.offset > self.to_storage.offset and self.from_storage.order < self.to_storage.order): x_start = self.from_storage.x_p + 0.75 * self.grid_size y_start = (self.from_storage.y_p - 1.1 * self.grid_size) x_end = self.to_storage.x_p + 0.6 * self.grid_size y_end = self.to_storage.y_p - 0.9 * self.grid_size d_x = abs(x_start - x_end) * (-1) d_y = abs(y_start - y_end) * (-1) dire = 'ldn' # arrow pointing left elif (self.from_storage.offset > self.to_storage.offset and self.from_storage.order == self.to_storage.order): x_start = self.from_storage.x_p + 0.5 * self.grid_size y_start = self.from_storage.y_p - 0.75 * self.grid_size x_end = self.to_storage.x_p + 0.25 * self.grid_size y_end = self.to_storage.y_p - 0.75 * self.grid_size d_x = abs(x_start - x_end) * (-1) d_y = abs(y_start - y_end) dire = 'l' # multiply by 0.9 so there is a gap between storages and arrows d_x = d_x * 0.75 d_y = d_y * 0.75 return x_start, y_start, x_end, y_end, d_x, d_y, dire
python
14
0.54263
76
47.42735
117
Contain a flux of a fluxogram.
class
class Storage: """Contain a storage of a fluxogram.""" def __init__(self, name, grid_size, number, amount=0, order=0, offset=0): """Initialize a storage. Arguments are: - name: name of the storage - number: consecutive number - grid_size of the diagram - amount: how much stuff is in it - order: how much down it is in the hierachie (starts with 0) - offset = how much the storage is offset to the left/right in relationship to the center. """ self.name = name self.amount = amount self.number = number self.order = order self.offset = offset self.grid_size = grid_size self.x_p, self.y_p = self.calculate_xy() def update_storage(self, amount): """Update the amount of the storage.""" self.amount = amount def calculate_xy(self): """Provide coordinates of the blocks in the diagram. Calculate the xy coordinates of the starting point from where the rectangle is drawn. The additional multiplication by two is to produce the gaps in the diagram. """ x_p = self.offset * self.grid_size * 2 # multiply by -1 to draw the diagram from top to bottom y_p = self.order * self.grid_size * 2 * -1 return x_p, y_p
python
11
0.571429
77
36.052632
38
Contain a storage of a fluxogram.
class
class PrepareTexts: ''' class forms tree files: 1) .dict of text file - mapping of words 2) .mm file - vectorised text 3) .lsi - trained model Arguments: ------------- path - os path to file stoplist - list of words newName - name for files, produced be gensim. n - number of topics repo - folder in workng directory to save trained models. Specifying folder, don't forget type '/' to make folder, e.g. repo='newdata/' ------------- Object make his best to save RAM resources, don't store full files in memmory. Developed for Science Search (Monitoring) ends. ------------------------------- TODO: add lda, word2vec models. ------------------------------- ''' def __init__(self, path, stoplist=stoplist, newNames='processedFiles', n=5, repo=''): ''' path to initial text. It's assumed that separate docs separeted by new line (\n) ''' self.path = path self.stop = stoplist self.name = newNames self.dictionary = None self.n = n self.corpus = None self.lsi = None self.repo = repo if repo != '' and os.path.exists(repo) == False: # для того, чтобы сохрнять в директорию, которой может не быть os.mkdir(repo) #self.six = __import__('six') def diction(self): ''' Form dictonary from gensim.corpora. Corpora module should be imported''' dictionary = corpora.Dictionary(line.lower().split() for line in open(self.path)) # memory friendly way to make dictionary stop_ids = [dictionary.token2id[stopword] for stopword in self.stop if stopword in dictionary.token2id] # itartion over dictionary to remove stopwords once_ids = [tokenid for tokenid, docfreq in dict.items(dictionary.dfs) if docfreq == 1] # take ids of stop words dictionary.filter_tokens(stop_ids + once_ids) # remove stop words and words that appear only once self.dictionary = dictionary # make attribute dictionary.save(self.repo+self.name+'.dict') # save .dict file return dictionary # return to assign new variable def bow(self): ''' Method for BOW creation. Run after creation dictionary. ''' b = MyCorpus(self.path, self.dictionary) # memory friendly way to convert document to bow corpora.MmCorpus.serialize(self.repo+self.name+'.mm', b) # save to .mm file self.corpus = b # make attribute return b # return to assign new variable def lsi_modeling(self): ''' LSI model training. Run after corpus creation (bow method). ''' tfidf = models.TfidfModel(self.corpus) # class initialization corpus_tfidf = tfidf[self.corpus] # model training lsi = models.LsiModel(corpus_tfidf, id2word=self.dictionary, num_topics=self.n) # model object creation lsi.save(self.repo+self.name+'.lsi') # save model as separate file self.lsi = lsi # make attribute return lsi # return to assign new variable def run(self): self.diction() self.bow() self.lsi_modeling()
python
13
0.613329
158
43.816901
71
class forms tree files: 1) .dict of text file - mapping of words 2) .mm file - vectorised text 3) .lsi - trained model Arguments: ------------- path - os path to file stoplist - list of words newName - name for files, produced be gensim. n - number of topics repo - folder in workng directory to save trained models. Specifying folder, don't forget type '/' to make folder, e.g. repo='newdata/' ------------- Object make his best to save RAM resources, don't store full files in memmory. Developed for Science Search (Monitoring) ends. ------------------------------- TODO: add lda, word2vec models. -------------------------------
class
class PStokenizer: """cursor to read a string token by token""" def __init__(self, data, startstring=None, eattokensep=1, tokenseps=" \t\r\n", tokenstarts="()<>[]{}/%"): """creates a cursor for the string data startstring is a string at which the cursor should start at. The first ocurance of startstring is used. When startstring is not in data, an exception is raised, otherwise the cursor is set to the position right after the startstring. When eattokenseps is set, startstring must be followed by a tokensep and this first tokensep is also consumed. tokenseps is a string containing characters to be used as token separators. tokenstarts is a string containing characters which directly (even without intermediate token separator) start a new token. """ self.data = data if startstring is not None: self.pos = self.data.index(startstring) + len(startstring) else: self.pos = 0 self.tokenseps = tokenseps self.tokenstarts = tokenstarts if eattokensep: if self.data[self.pos] not in self.tokenstarts: if self.data[self.pos] not in self.tokenseps: raise ValueError("cursor initialization string is not followed by a token separator") self.pos += 1 def gettoken(self): """get the next token Leading token separators and comments are silently consumed. The first token separator after the token is also silently consumed.""" while self.data[self.pos] in self.tokenseps: self.pos += 1 # ignore comments including subsequent whitespace characters while self.data[self.pos] == "%": while self.data[self.pos] not in "\r\n": self.pos += 1 while self.data[self.pos] in self.tokenseps: self.pos += 1 startpos = self.pos while self.data[self.pos] not in self.tokenseps: # any character in self.tokenstarts ends the token if self.pos>startpos and self.data[self.pos] in self.tokenstarts: break self.pos += 1 result = self.data[startpos:self.pos] if self.data[self.pos] in self.tokenseps: self.pos += 1 # consume a single tokensep return result def getint(self): """get the next token as an integer""" return int(self.gettoken()) def getbytes(self, count): """get the next count bytes""" startpos = self.pos self.pos += count return self.data[startpos: self.pos]
python
15
0.616973
109
42.672131
61
cursor to read a string token by token
class
class FileStore: """ A file based implementation of a key value store. """ def __init__(self, dbDir, dbName, isLineNoKey: bool=False, storeContentHash: bool=True, ensureDurability: bool=True, delimiter="\t", lineSep="\r\n", defaultFile=None): """ :param dbDir: The directory where the file storing the data would be present :param dbName: The name of the file that is used to store the data :param isLineNoKey: If false then each line has the key followed by a delimiter followed by the value :param storeContentHash: Whether to store a hash of the value or not. Storing hash can make it really fast to compare the value for equality :param ensureDurability: Should the file be fysnced after every write. This can ensure durability in most of the cases, but make writes extremely slow. See testMeasureWriteTime. For frequent writes, it makes sense to disable flush and fsync on every write :param delimiter: delimiter between key and value :param lineSep: line separator - defaults to \r\n :param defaultFile: file or dir to use for initialization """ self.delimiter = delimiter self.lineSep = lineSep self.isLineNoKey = isLineNoKey self.storeContentHash = storeContentHash self.ensureDurability = ensureDurability self._defaultFile = defaultFile def _prepareFiles(self, dbDir, dbName, defaultFile): if not defaultFile: return if not os.path.exists(defaultFile): errMessage = "File that should be used for " \ "initialization does not exist: {}"\ .format(defaultFile) logging.warning(errMessage) raise ValueError(errMessage) dataLocation = os.path.join(self.dbDir, dbName) copy = shutil.copy if os.path.isfile(defaultFile) else shutil.copytree copy(defaultFile, dataLocation) def _prepareDBLocation(self, dbDir, dbName): self.dbDir = dbDir self.dbName = dbName if not os.path.exists(self.dbDir): os.makedirs(self.dbDir) if not os.path.exists(os.path.join(dbDir, dbName)): self._prepareFiles(dbDir, dbName, self._defaultFile) def _initDB(self, dbDir, dbName): self._prepareDBLocation(dbDir, dbName) # noinspection PyUnresolvedReferences def put(self, value, key=None): # If line no is not treated as key then write the key and then the # delimiter if not self.isLineNoKey: if key is None: raise ValueError("Key must be provided for storing the value") self.dbFile.write(key) self.dbFile.write(self.delimiter) self.dbFile.write(value) if self.storeContentHash: self.dbFile.write(self.delimiter) if isinstance(value, str): value = value.encode() hexedHash = sha256(value).hexdigest() self.dbFile.write(hexedHash) self.dbFile.write(self.lineSep) # A little bit smart strategy like flush every 2 seconds # or every 10 writes or every 1 KB may be a better idea # Make sure data get written to the disk # Even flush slows down writes significantly self.dbFile.flush() if self.ensureDurability: # fsync takes too much time on Windows. # This is the reason of test_merkle_proof tests slowness on Windows. # Even on Linux using fsync slows down the test by at least 2 # orders of magnitude. See testMeasureWriteTime os.fsync(self.dbFile.fileno()) def get(self, key): for k, v in self.iterator(): if k == key: return v def _keyIterator(self, lines, prefix=None): return self._baseIterator(lines, prefix, True, False) def _valueIterator(self, lines, prefix=None): return self._baseIterator(lines, prefix, False, True) def _keyValueIterator(self, lines, prefix=None): return self._baseIterator(lines, prefix, True, True) def _parse_line(self, line, prefix=None, returnKey: bool=True, returnValue: bool=True, key=None): if self.isLineNoKey: k = key v = line else: k, v = line.split(self.delimiter, 1) if returnValue: if self.storeContentHash: value, _ = v.rsplit(self.delimiter, 1) else: value = v if not prefix or k.startswith(prefix): if returnKey and returnValue: return k, value elif returnKey: return k elif returnValue: return value # noinspection PyUnresolvedReferences def _baseIterator(self, lines, prefix, returnKey: bool, returnValue: bool): i = 1 for line in lines: k = str(i) yield self._parse_line(line, prefix, returnKey, returnValue, k) if self.isLineNoKey: i += 1 def _lines(self): raise NotImplementedError() # noinspection PyUnresolvedReferences def iterator(self, includeKey=True, includeValue=True, prefix=None): if not (includeKey or includeValue): raise ValueError("At least one of includeKey or includeValue " "should be true") # Move to the beginning of file self.dbFile.seek(0) lines = self._lines() if includeKey and includeValue: return self._keyValueIterator(lines, prefix=prefix) elif includeValue: return self._valueIterator(lines, prefix=prefix) else: return self._keyIterator(lines, prefix=prefix) def is_valid_range(self, start=None, end=None): assert self.isLineNoKey if start and end: assert start <= end def get_range(self, start=None, end=None): self.is_valid_range(start, end) for k, value in self.iterator(): k = int(k) if (start is None or k >= start) and (end is None or k <= end): yield k, value if end is not None and k > end: break @property def lastKey(self): # TODO use the efficient way of seeking to the end and moving back till # 2nd newline(1 st newline would be encountered immediately until its a # blank file) is encountered and after newline read ahead till the # delimiter or split the read string till now on delimiter k = None for k, v in self.iterator(): pass return k def appendNewLineIfReq(self): try: logging.debug("new line check for file: {}".format(self.dbPath)) with open(self.dbPath, 'a+b') as f: size = f.tell() if size > 0: f.seek(-len(self.lineSep), 2) # last character in file if f.read().decode() != self.lineSep: linesep = self.lineSep if isinstance(self.lineSep, bytes) else self.lineSep.encode() f.write(linesep) logging.debug( "new line added for file: {}".format(self.dbPath)) except FileNotFoundError: pass @property def numKeys(self): return sum(1 for l in self.iterator()) # noinspection PyUnresolvedReferences def close(self): self.dbFile.close() # noinspection PyUnresolvedReferences @property def closed(self): return self.dbFile.closed # noinspection PyUnresolvedReferences def reset(self): self.dbFile.truncate(0) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close()
python
19
0.58686
108
36.077982
218
A file based implementation of a key value store.
class