code
stringlengths 0
672k
| language
stringclasses 2
values | AST_depth
int64 -1
40
| alphanumeric_fraction
float64 0
1
| max_line_length
int64 0
672k
| avg_line_length
float64 0
267k
| num_lines
int64 0
4.06k
| task
stringlengths 7
14k
| source
stringclasses 2
values |
---|---|---|---|---|---|---|---|---|
from collections import Counter
class Solution:
def findSubString(self, str1):
length = len(str1)
dict1 = Counter(str1)
k = len(dict1)
dict2 = dict()
count = 0
start = 0
minimum = 99999
for i in range(length):
if count < k:
j = start
while j < length:
if str1[j] not in dict2:
dict2[str1[j]] = 1
count += 1
else:
dict2[str1[j]] += 1
if count == k:
break
j += 1
if count == k:
minimum = min(minimum, j - i + 1)
start = j + 1
dict2[str1[i]] -= 1
if dict2[str1[i]] == 0:
dict2.pop(str1[i])
count -= 1
return minimum
| python | 18 | 0.543974 | 37 | 18.1875 | 32 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
from collections import Counter, defaultdict
class Solution:
def findSubString(self, str_):
set_of_string = set()
len_set_of_string = len(set(str_))
answer = float('inf')
left = 0
right = 0
freq = defaultdict(int)
while right < len(str_):
freq[str_[right]] += 1
while left <= right and len(freq) == len_set_of_string:
answer = min(answer, right - left + 1)
freq[str_[left]] -= 1
if freq[str_[left]] == 0:
del freq[str_[left]]
left += 1
right += 1
return answer
| python | 15 | 0.607843 | 58 | 23.285714 | 21 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, a):
dict = {}
n = len(set(a))
left = 0
right = 0
ans = len(a)
while right < len(a):
if a[right] not in dict:
dict[a[right]] = 1
else:
dict[a[right]] += 1
if len(dict) == n:
while dict[a[left]] > 1:
dict[a[left]] -= 1
left += 1
ans = min(ans, right - left + 1)
right += 1
return ans
| python | 15 | 0.518617 | 36 | 17.8 | 20 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
import math
class Solution:
def findSubString(self, s):
dicti = {}
mini = math.inf
k = len(set(s))
n = len(s)
(i, j) = (0, 0)
while j < n:
if s[j] not in dicti:
dicti[s[j]] = 1
else:
dicti[s[j]] += 1
if len(dicti) < k:
j += 1
elif len(dicti) == k:
while len(dicti) == k:
mini = min(mini, j - i + 1)
if s[i] in dicti:
dicti[s[i]] -= 1
if dicti[s[i]] == 0:
del dicti[s[i]]
i += 1
j += 1
return mini
| python | 19 | 0.46875 | 32 | 16.777778 | 27 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
from collections import defaultdict
class Solution:
def findSubString(self, arr):
dic = defaultdict(lambda : 0)
i = 0
j = 0
n = len(set(arr))
ans = len(arr)
while j < len(arr):
dic[arr[j]] += 1
if len(dic) < n:
j += 1
if len(dic) == n:
while dic[arr[i]] > 1:
dic[arr[i]] -= 1
i += 1
ans = min(ans, j - i + 1)
j += 1
return ans
| python | 15 | 0.522427 | 35 | 17.047619 | 21 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
d = {}
for i in str:
d[i] = 0
i = 0
j = 0
ans = len(str)
count = len(d)
temp = 0
while j < len(str):
while temp < count and j < len(str):
if d[str[j]] == 0:
temp += 1
d[str[j]] += 1
j += 1
while temp >= count:
d[str[i]] -= 1
if d[str[i]] == 0:
temp -= 1
i += 1
ans = min(ans, j - i + 1)
return ans
| python | 13 | 0.460976 | 39 | 16.083333 | 24 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
from collections import deque
class Solution:
def findSubString(self, stre):
s = set(stre)
set_len = len(s)
j = 0
minlen = 1000000000.0
mp = {}
n = len(stre)
for i in range(n):
if stre[i] not in mp:
mp[stre[i]] = 1
else:
mp[stre[i]] += 1
while j <= i and len(mp) == set_len:
if minlen > i - j + 1:
minlen = i - j + 1
mp[stre[j]] -= 1
if mp[stre[j]] == 0:
del mp[stre[j]]
j += 1
return minlen
| python | 15 | 0.526432 | 39 | 17.916667 | 24 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
m = {}
n = len(set(str))
length = float('inf')
j = 0
for i in range(len(str)):
m[str[i]] = m.get(str[i], 0) + 1
if len(m) == n:
while m[str[j]] > 1:
m[str[j]] -= 1
j += 1
length = min(length, i - j + 1)
return length
| python | 15 | 0.501661 | 35 | 19.066667 | 15 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
dict = {}
ans = 1000000000.0
for i in str:
if i not in dict:
dict[i] = 1
dict2 = {}
j = 0
for i in range(len(str)):
if str[i] not in dict2:
dict2[str[i]] = 1
else:
dict2[str[i]] += 1
while len(dict) == len(dict2):
ans = min(ans, i - j + 1)
if dict2[str[j]] > 1:
dict2[str[j]] -= 1
elif dict2[str[j]] == 1:
dict2.pop(str[j])
j += 1
return ans
| python | 16 | 0.519824 | 33 | 18.73913 | 23 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
from collections import defaultdict
class Solution:
def findSubString(self, s):
a = set(s)
i = 0
t = {}
min_len = float('inf')
for j in range(len(s)):
if s[j] not in t:
t[s[j]] = 0
t[s[j]] += 1
while len(t) == len(a):
min_len = min(min_len, j - i + 1)
t[s[i]] -= 1
if t[s[i]] == 0:
del t[s[i]]
i += 1
return min_len
| python | 15 | 0.49863 | 37 | 17.25 | 20 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
from collections import defaultdict
curr_count = defaultdict(lambda : 0)
dist_count = len(set([x for x in str]))
if len(str) <= 1:
return 1
counter = 0
start = 0
min_len = len(str)
for i in range(len(str)):
curr_count[str[i]] += 1
if curr_count[str[i]] == 1:
counter += 1
if counter == dist_count:
while curr_count[str[start]] > 1:
if curr_count[str[start]] > 1:
curr_count[str[start]] -= 1
start += 1
window_len = i - start + 1
if window_len < min_len:
min_len = window_len
start_index = start
a = min_len
return a
| python | 17 | 0.594044 | 41 | 23.538462 | 26 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
d = {}
for i in str:
if i not in d:
d[i] = 0
(i, j) = (0, float('inf'))
(count, out) = (0, float('inf'))
for j in range(len(str)):
if d[str[j]] == 0:
count += 1
d[str[j]] += 1
if count == len(d):
while i < j:
d[str[i]] -= 1
if d[str[i]] == 0:
out = min(out, j - i + 1)
count -= 1
i += 1
break
i += 1
return out if out != float('inf') else 1
| python | 19 | 0.450431 | 42 | 19.173913 | 23 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
k = len(set(str))
memo = {}
ans = len(str)
(i, j) = (0, 0)
while j < len(str):
memo[str[j]] = memo.get(str[j], 0) + 1
if len(memo) < k:
j += 1
elif len(memo) == k:
while len(memo) == k:
memo[str[i]] -= 1
if memo[str[i]] == 0:
del memo[str[i]]
i += 1
ans = min(ans, j - i + 2)
j += 1
elif len(memo) > k:
while len(memo) > k:
memo[str[i]] -= 1
if memo[str[i]] == 0:
del memo[str[i]]
i += 1
j += 1
return ans
| python | 17 | 0.457721 | 41 | 19.148148 | 27 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
res = 100000
d = {}
for i in range(len(str)):
if str[i] not in d:
d[str[i]] = 0
s1 = set()
count = len(d)
l = 0
for i in range(len(str)):
s1.add(str[i])
d[str[i]] = d[str[i]] + 1
while count == len(s1) and d[str[l]] != 0:
d[str[l]] = d[str[l]] - 1
if d[str[l]] == 0:
s1.remove(str[l])
res = min(res, i - l + 1)
l = l + 1
return res
| python | 17 | 0.490783 | 45 | 19.666667 | 21 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
ans = len(str)
N = len(str)
n = len(set(str))
(i, j) = (0, 0)
d = {}
while i < N:
if str[i] not in d:
d[str[i]] = 1
else:
d[str[i]] += 1
if len(d) == n:
while d[str[j]] > 1:
d[str[j]] -= 1
j += 1
ans = min(ans, i - j + 1)
i += 1
return ans
| python | 15 | 0.444118 | 30 | 16 | 20 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, s):
freq = {}
for c in s:
freq[c] = 0
unique_chars = len(freq)
left = 0
right = 0
count = 0
min_length = float('inf')
while right < len(s):
if s[right] in freq:
freq[s[right]] += 1
if freq[s[right]] == 1:
count += 1
right += 1
while count == unique_chars:
if right - left < min_length:
min_length = right - left
if s[left] in freq:
freq[s[left]] -= 1
if freq[s[left]] == 0:
count -= 1
left += 1
return min_length
| python | 15 | 0.54049 | 33 | 19.423077 | 26 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
d = {}
for i in str:
if i not in d:
d[i] = 0
x = len(d)
ans = 999999
i = 0
j = 0
c = 0
while i < len(str):
if d[str[i]] == 0:
c += 1
d[str[i]] += 1
if c == x:
f = True
while c == x:
ans = min(ans, i - j + 1)
d[str[j]] -= 1
if d[str[j]] == 0:
c -= 1
j += 1
i += 1
return ans
| python | 17 | 0.410579 | 30 | 14.269231 | 26 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
reslen = len(str)
s = set()
d = dict()
for i in range(len(str)):
s.add(str[i])
i = 0
count = 0
for j in range(len(str)):
d[str[j]] = d.get(str[j], 0) + 1
if d[str[j]] == 1:
count += 1
if count == len(s):
while d[str[i]] > 1:
if d[str[i]] > 1:
d[str[i]] -= 1
i += 1
if reslen > j - i + 1:
reslen = j - i + 1
return reslen
| python | 17 | 0.47907 | 35 | 18.545455 | 22 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
from collections import defaultdict
class Solution:
def findSubString(self, strr):
n = len(strr)
dist_count = len(set([x for x in strr]))
if n == dist_count:
return n
curr_count = dict()
count = 0
start = 0
min_len = n
for i in range(n):
curr_count[strr[i]] = curr_count.get(strr[i], 0) + 1
if curr_count[strr[i]] == 1:
count += 1
if count == dist_count:
while curr_count[strr[start]] > 1:
if curr_count[strr[start]] > 1:
curr_count[strr[start]] -= 1
start += 1
if min_len > i - start + 1:
min_len = i - start + 1
return min_len
| python | 17 | 0.584874 | 55 | 22.8 | 25 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, s):
n = len(s)
res = n
i = 0
uniq = set(list(s))
found = {}
for j in range(n):
if s[j] in found:
found[s[j]] += 1
else:
found[s[j]] = 1
while i < j:
if found[s[i]] > 1:
found[s[i]] -= 1
i += 1
else:
break
if len(found) == len(uniq):
res = min(res, j - i + 1)
return res
| python | 15 | 0.479893 | 30 | 15.954545 | 22 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
from collections import defaultdict
class Solution:
def findSubString(self, s):
n = len(s)
if n <= 1:
return len(s)
dis_char = len(set(list(s)))
curr = defaultdict(lambda : 0)
cnt = 0
minlen = n
start = 0
for j in range(n):
curr[s[j]] += 1
if curr[s[j]] == 1:
cnt += 1
if cnt == dis_char:
while curr[s[start]] > 1:
curr[s[start]] -= 1
start += 1
length = j - start + 1
if length < minlen:
minlen = length
startind = start
return minlen
| python | 15 | 0.560396 | 35 | 18.423077 | 26 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, S):
distinct_chars = set(S)
n = len(S)
left = 0
min_length = n
count = [0] * 256
distinct = 0
for right in range(n):
count[ord(S[right])] += 1
if count[ord(S[right])] == 1:
distinct += 1
if distinct == len(distinct_chars):
while count[ord(S[left])] > 1:
count[ord(S[left])] -= 1
left += 1
min_length = min(min_length, right - left + 1)
count[ord(S[left])] -= 1
left += 1
distinct -= 1
return min_length
| python | 17 | 0.563492 | 50 | 21.909091 | 22 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
maxi = len(str)
sets = set(str)
i = 0
j = 0
m = {}
while i < len(str):
m[str[i]] = 1 + m.get(str[i], 0)
if len(m) >= len(sets):
while m[str[j]] > 1:
m[str[j]] -= 1
j += 1
maxi = min(maxi, i - j + 1)
i += 1
return maxi
| python | 15 | 0.47557 | 35 | 17.058824 | 17 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, input_string):
start = 0
end = 1
alphabet_dict = {}
distinct_list = list(set(input_string))
for i in range(0, len(distinct_list)):
alphabet_dict[distinct_list[i]] = 0
n = len(distinct_list)
count = 1
alphabet_dict[input_string[0]] = 1
answer = len(input_string)
while start <= end < len(input_string):
if count < n:
element = input_string[end]
if alphabet_dict[element] == 0:
alphabet_dict[element] = 1
count = count + 1
else:
alphabet_dict[element] = alphabet_dict[element] + 1
end = end + 1
elif count == n:
answer = min(answer, end - start)
element = input_string[start]
if element in alphabet_dict and alphabet_dict[element] == 1:
count = count - 1
alphabet_dict[element] = alphabet_dict[element] - 1
start = start + 1
while count == n:
answer = min(answer, end - start)
element = input_string[start]
if element in alphabet_dict and alphabet_dict[element] == 1:
count = count - 1
alphabet_dict[element] = alphabet_dict[element] - 1
start = start + 1
return answer
| python | 16 | 0.63864 | 64 | 29.216216 | 37 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
from collections import Counter
class Solution:
def findSubString(self, str):
dic1 = Counter(str)
dic2 = dict()
(i, j) = (0, 0)
res = 10000000000
while j < len(str):
if str[j] in dic2:
dic2[str[j]] += 1
else:
dic2[str[j]] = 1
if len(dic1) == len(dic2):
while len(dic1) == len(dic2):
res = min(res, j - i + 1)
dic2[str[i]] -= 1
if dic2[str[i]] == 0:
del dic2[str[i]]
i += 1
j += 1
return res
| python | 17 | 0.528509 | 33 | 18.826087 | 23 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
import math
class Solution:
def findSubString(self, s):
freq = {}
for c in s:
freq[c] = 0
(b, d, ans) = (0, 0, math.inf)
for (i, c) in enumerate(s):
while d == len(freq.keys()):
freq[s[b]] -= 1
if freq[s[b]] == 0:
ans = min(ans, i - b)
d -= 1
b += 1
freq[c] += 1
if freq[c] == 1:
d += 1
while d == len(freq.keys()):
freq[s[b]] -= 1
if freq[s[b]] == 0:
ans = min(ans, i - b + 1)
d -= 1
b += 1
return ans
| python | 16 | 0.452431 | 32 | 17.192308 | 26 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
n = len(str)
ans = 0
length = n
s = list(set(str))
d = dict()
count = 0
start = 0
for i in range(n):
if str[i] not in d.keys():
d[str[i]] = 1
count += 1
else:
d[str[i]] += 1
if count == len(s):
while d[str[start]] > 1:
d[str[start]] -= 1
start += 1
ans = i - start + 1
if length > ans:
length = ans
return length
| python | 15 | 0.505855 | 30 | 16.791667 | 24 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
from collections import defaultdict
class Solution:
def findSubString(self, s):
control = set(s)
m = len(control)
n = len(s)
test = defaultdict(lambda : 0)
mini = float('inf')
i = 0
for j in range(n):
while len(test) < m and i < n:
test[s[i]] += 1
i += 1
if len(test) < m:
break
mini = min(mini, i - j)
test[s[j]] -= 1
if test[s[j]] == 0:
del test[s[j]]
return mini
| python | 13 | 0.555288 | 35 | 17.909091 | 22 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
i = 0
j = 0
s = len(set(str))
n = len(str)
ans = n
dic = {}
while i < n:
if str[i] not in dic:
dic[str[i]] = 1
else:
dic[str[i]] += 1
if len(dic) == s:
while dic[str[j]] > 1:
dic[str[j]] -= 1
j += 1
ans = min(ans, i - j + 1)
i += 1
return ans
| python | 15 | 0.463768 | 30 | 15.428571 | 21 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, s):
n = len(s)
distinct_chars = len(set(s))
freq = [0] * 256
left = 0
right = 0
count = 0
min_len = n
while right < n:
ch = ord(s[right])
if freq[ch] == 0:
count += 1
freq[ch] += 1
right += 1
while count == distinct_chars:
min_len = min(min_len, right - left)
ch = ord(s[left])
freq[ch] -= 1
if freq[ch] == 0:
count -= 1
left += 1
return min_len
| python | 14 | 0.526667 | 40 | 17.75 | 24 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
nd = len(set(str))
i = 0
j = 0
res = len(str)
dic = {}
while i < len(str):
if str[i] in dic:
dic[str[i]] = dic[str[i]] + 1
else:
dic[str[i]] = 1
if len(dic) == nd:
while dic[str[j]] > 1:
dic[str[j]] = dic[str[j]] - 1
j = j + 1
res = min(res, i - j + 1)
i = i + 1
return res
| python | 16 | 0.475936 | 34 | 17.7 | 20 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
from collections import Counter
class Solution:
def findSubString(self, str1):
dict1 = dict()
count = 0
distinct = len(Counter(str1))
n = len(str1)
j = 0
minimum = n
for i in range(n):
if count < distinct:
while j < n:
if str1[j] not in dict1:
dict1[str1[j]] = 1
count += 1
else:
dict1[str1[j]] += 1
if count == distinct:
j += 1
break
j += 1
if count == distinct:
minimum = min(minimum, j - i)
dict1[str1[i]] -= 1
if dict1[str1[i]] == 0:
dict1.pop(str1[i])
count -= 1
return minimum
| python | 18 | 0.546552 | 33 | 18.333333 | 30 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, a):
s = ''
a1 = {}
for i in a:
a1[i] = 1
c1 = len(a1)
i = 0
j = 0
a2 = {}
c = 0
res = len(a)
while j < len(a):
if a[j] not in a2:
a2[a[j]] = 0
c += 1
a2[a[j]] += 1
while i <= j and c == c1:
res = min(res, j - i + 1)
a2[a[i]] -= 1
if a2[a[i]] == 0:
del a2[a[i]]
c -= 1
i += 1
j += 1
return res
| python | 15 | 0.399015 | 29 | 14.037037 | 27 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
ans_len = len(set(str))
d = {}
ws = 0
ans = 10 ** 6
for we in range(0, len(str)):
d[str[we]] = d.get(str[we], 0) + 1
if len(d) == ans_len:
while d[str[ws]] > 1:
d[str[ws]] -= 1
ws += 1
ans = min(ans, we - ws + 1)
return ans
| python | 15 | 0.5 | 37 | 19.533333 | 15 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
unique = set(str)
res = len(str)
j = 0
map = dict()
for i in range(0, len(str)):
if str[i] in map.keys():
map[str[i]] += 1
else:
map[str[i]] = 1
if len(unique) == len(map):
while map[str[j]] > 1:
map[str[j]] -= 1
j += 1
res = min(res, i - j + 1)
return res
| python | 15 | 0.511364 | 30 | 18.555556 | 18 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
l = len(str)
s = set()
for i in range(len(str)):
s.add(str[i])
n = len(s)
head = 0
tail = 0
hmap = {}
ans = l
while head < l:
if str[head] in hmap:
hmap[str[head]] += 1
else:
hmap[str[head]] = 1
if len(hmap) == n:
while hmap[str[tail]] > 1:
hmap[str[tail]] -= 1
tail += 1
ans = min(ans, head - tail + 1)
head += 1
return ans
| python | 15 | 0.516129 | 35 | 17.083333 | 24 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
from collections import defaultdict, Counter
from sys import maxsize
class Solution:
def findSubString(self, str):
cnt = Counter(str)
cur = defaultdict(int)
k = 0
ans = maxsize
i = 0
for (j, ch) in enumerate(str):
cur[ch] += 1
if cur[ch] == 1:
k += 1
if k == len(cnt):
while i < j:
if cur[str[i]] == 1:
break
cur[str[i]] -= 1
i += 1
ans = min(ans, j - i + 1)
return ans
| python | 15 | 0.552448 | 44 | 17.652174 | 23 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
res = float('inf')
(i, j) = (0, 0)
maxLen = len(set(list(str)))
hashmap = {}
while j < len(str):
if str[j] not in hashmap:
hashmap[str[j]] = 1
else:
hashmap[str[j]] += 1
j += 1
if len(hashmap) == maxLen:
while i < j and hashmap[str[i]] > 1:
hashmap[str[i]] -= 1
i += 1
res = min(res, j - i)
return res
| python | 15 | 0.5275 | 40 | 20.052632 | 19 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
d = {}
for ch in str:
if ch not in d:
d[ch] = 1
n = len(d)
d.clear()
i = 0
j = 0
count = 0
mini = len(str)
while j < len(str):
if str[j] not in d:
d[str[j]] = 1
count = count + 1
else:
d[str[j]] = d[str[j]] + 1
if count == n:
while d[str[i]] != 1:
d[str[i]] = d[str[i]] - 1
i = i + 1
mini = min(mini, j - i + 1)
j = j + 1
return mini
| python | 16 | 0.461197 | 31 | 16.346154 | 26 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, s):
n = len(s)
d = {}
count = 0
for i in range(n):
d[s[i]] = 0
i = 0
j = 0
ans = n
while i < n:
if d[s[i]] == 0:
count += 1
d[s[i]] += 1
if count == len(d):
while j < n and d[s[j]] > 1:
d[s[j]] -= 1
j += 1
if ans > i - j + 1:
ans = i - j + 1
i += 1
return ans
| python | 15 | 0.411602 | 32 | 14.73913 | 23 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
p = len(set(str))
j = 0
i = 0
d = {}
mn = 100000
while j < len(str):
if str[j] in d:
d[str[j]] += 1
else:
d[str[j]] = 1
if len(d) == p:
while len(d) == p:
mn = min(mn, j - i + 1)
d[str[i]] -= 1
if d[str[i]] == 0:
del d[str[i]]
i += 1
j += 1
return mn
| python | 17 | 0.432507 | 30 | 15.5 | 22 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
d = {}
i = 0
j = 0
sw = 100000000
n = len(set(str))
while j < len(str):
if str[j] not in d:
d[str[j]] = 1
else:
d[str[j]] += 1
if len(d) == n:
while len(d) == n:
sw = min(sw, j - i + 1)
d[str[i]] -= 1
if d[str[i]] == 0:
del d[str[i]]
i += 1
j += 1
return sw
| python | 17 | 0.440541 | 30 | 15.818182 | 22 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
dict = {}
for i in str:
if i in dict:
dict[i] += 1
else:
dict[i] = 1
count = len(list(dict.keys()))
i = j = 0
ans = len(str)
c = 0
dict = {}
for i in range(len(str)):
if str[i] in dict:
dict[str[i]] += 1
else:
dict[str[i]] = 1
c += 1
if c == count:
ans = min(ans, i - j + 1)
while c == count and j <= i:
dict[str[j]] -= 1
if dict[str[j]] == 0:
del dict[str[j]]
c -= 1
ans = min(ans, i - j + 1)
j += 1
return ans
| python | 17 | 0.464738 | 32 | 17.433333 | 30 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
class Solution:
def findSubString(self, str):
s = set(str)
n = len(s)
ss = set()
ind = 0
d = {}
mini = 10 ** 9
for i in range(len(str)):
if str[i] not in ss:
ss.add(str[i])
d[str[i]] = d.get(str[i], 0) + 1
if len(ss) == n:
ind = i + 1
mini = min(mini, i + 1)
break
index = 0
while d[str[index]] > 1:
d[str[index]] -= 1
index += 1
mini = min(mini, i - index + 1)
for i in range(ind, len(str)):
d[str[i]] = d.get(str[i], 0) + 1
while d[str[index]] > 1:
d[str[index]] -= 1
index += 1
mini = min(mini, i - index + 1)
while d[str[index]] > 1:
d[str[index]] -= 1
index += 1
mini = min(mini, i - index + 1)
return mini
| python | 15 | 0.497854 | 35 | 20.181818 | 33 | Given a string 's'. The task is to find the smallest window length that contains all the characters of the given string at least one time.
For eg. A = aabcbcdbca, then the result would be 4 as of the smallest window will be dbca.
Example 1:
Input : "AABBBCBBAC"
Output : 3
Explanation : Sub-string -> "BAC"
Example 2:
Input : "aaab"
Output : 2
Explanation : Sub-string -> "ab"
Example 3:
Input : "GEEKSGEEKSFOR"
Output : 8
Explanation : Sub-string -> "GEEKSFOR"
Your Task:
You don't need to read input or print anything. Your task is to complete the function findSubString() which takes the string S as input and returns the length of the smallest such window of the string.
Expected Time Complexity: O(256.N)
Expected Auxiliary Space: O(256)
Constraints:
1 ≤ |S| ≤ 10^{5}
String may contain both type of English Alphabets. | taco |
from math import ceil, log, floor, sqrt, gcd
for _ in range(int(input())):
n = int(input())
l = list(map(int, input().split()))
f = {}
for i in l:
try:
f[i] += 1
except:
f[i] = 1
if max(f.values()) > n // 2 or len(set(l)) <= 2:
print('NO')
else:
print('YES')
l.sort()
print(*l)
print(*l[n // 2:] + l[:n // 2])
| python | 14 | 0.502976 | 49 | 18.764706 | 17 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
import math
import bisect
import heapq
from math import gcd, floor, sqrt, log
from collections import defaultdict as ddc
from collections import Counter
def intin():
return int(input())
def mapin():
return map(int, input().split())
def strin():
return input().split()
INF = 10 ** 20
mod = 1000000007
def exponentiation(bas, exp, mod=1000000007):
t = 1
while exp > 0:
if exp % 2 != 0:
t = t * bas % mod
bas = bas * bas % mod
exp //= 2
return t % mod
def MOD(p, q=1, mod=1000000007):
expo = 0
expo = mod - 2
while expo:
if expo & 1:
p = p * q % mod
q = q * q % mod
expo >>= 1
return p
def process(arr, n):
C = Counter(arr)
edge = 0
for val in C.values():
if val > n // 2:
print('NO')
return
elif val == n // 2:
edge += 1
if len(C.keys()) == edge == 2:
print('NO')
return
print('YES')
arr.sort()
(B, C) = (arr, arr[(n + 1) // 2:] + arr[:(n + 1) // 2])
r = n - 1
for i in range(n):
if i >= r:
break
if B[i] == C[i]:
(C[i], C[r]) = (C[r], C[i])
r -= 1
print(*B)
print(*C)
def main():
for _ in range(int(input())):
n = intin()
arr = list(mapin())
process(arr, n)
main()
| python | 12 | 0.553618 | 56 | 15.867647 | 68 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
tt = int(input())
for _ in range(tt):
n = int(input())
a = list(map(int, input().split()))
d = {}
for i in a:
try:
d[i] += 1
except KeyError:
d[i] = 1
m = max(list(d.values()))
k = len(list(d.keys()))
if m > n // 2 or k <= 2:
print('NO')
continue
else:
print('YES')
a.sort()
print(*a)
print(*a[m:] + a[:m])
| python | 13 | 0.495549 | 36 | 15.85 | 20 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
from bisect import bisect_left
from re import sub
import re
from typing import DefaultDict
import math
from collections import defaultdict
from math import sqrt
import collections
from sys import maxsize
from itertools import combinations_with_replacement
import sys
import copy
def sieve_erasthones(n):
cnt = 0
prime = [True for i in range(n + 1)]
p = 2
while p * p <= n:
if prime[p] == True:
for i in range(p ** 2, n + 1, p):
prime[i] = False
p += 1
prime[0] = False
prime[1] = False
for p in range(n + 1):
if prime[p]:
cnt += 1
return cnt
def calculate(p, q):
mod = 998244353
expo = 0
expo = mod - 2
while expo:
if expo & 1:
p = p * q % mod
q = q * q % mod
expo >>= 1
return p
def count_factors(n):
i = 1
c = 0
while i <= math.sqrt(n):
if n % i == 0:
if n // i == i:
c += 1
else:
c += 2
i += 1
return c
def ncr_modulo(n, r, p):
num = den = 1
for i in range(r):
num = num * (n - i) % p
den = den * (i + 1) % p
return num * pow(den, p - 2, p) % p
def isprime(n):
prime_flag = 0
if n > 1:
for i in range(2, int(sqrt(n)) + 1):
if n % i == 0:
prime_flag = 1
break
if prime_flag == 0:
return True
else:
return False
else:
return True
def smallestDivisor(n):
if n % 2 == 0:
return 2
i = 3
while i * i <= n:
if n % i == 0:
return i
i += 2
return n
def dict_ele_count(l):
d = DefaultDict(lambda : 0)
for ele in l:
d[ele] += 1
return d
def max_in_dict(d):
maxi = 0
for ele in d:
if d[ele] > maxi:
maxi = d[ele]
return maxi
def element_count(s):
l = []
k = s[0]
c = 0
for ele in s:
if ele == k:
c += 1
else:
l.append([k, c])
k = ele
c = 1
l.append([k, c])
return l
def modular_exponentiation(x, y, p):
res = 1
x = x % p
if x == 0:
return 0
while y > 0:
if y & 1 != 0:
res = res * x % p
y = y >> 1
x = x * x % p
return res
def number_of_primefactor(n):
l = []
while n % 2 == 0:
l.append(2)
n = n / 2
for i in range(3, int(math.sqrt(n)) + 1, 2):
while n % i == 0:
l.append(i)
n = n / i
if n > 2:
l.append(n)
return len(set(l))
def twosum(a, n, x):
rem = []
for i in range(x):
rem.append(0)
for i in range(n):
if a[i] < x:
rem[a[i] % x] += 1
for i in range(1, x // 2):
if rem[i] > 0 and rem[x - i] > 0:
return True
if i >= x // 2:
if x % 2 == 0:
if rem[x // 2] > 1:
return True
else:
return False
elif rem[x // 2] > 0 and rem[x - x // 2] > 0:
return True
else:
return False
def divSum(num):
result = 0
i = 2
while i <= math.sqrt(num):
if num % i == 0:
if i == num / i:
result = result + i
else:
result = result + (i + num / i)
i = i + 1
return result + 1 + num
def subsequence(str1, str2):
m = len(str1)
n = len(str2)
j = 0
i = 0
while j < m and i < n:
if str1[j] == str2[i]:
j = j + 1
i = i + 1
return j == m
def primeFactors(n):
d = defaultdict(lambda : 0)
while n % 2 == 0:
d[2] += 1
n = n / 2
for i in range(3, int(math.sqrt(n)) + 1, 2):
while n % i == 0:
d[int(i)] += 1
n = n / i
if n > 2:
d[int(n)] += 1
return d
def calc(s):
ans = 0
for ele in s:
ans += ord(ele) - 96
return ans
def modInverse(b, m):
g = math.gcd(b, m)
if g != 1:
return -1
else:
return pow(b, m - 2, m)
def modDivide(a, b, m):
a = a % m
inv = modInverse(b, m)
return inv * a % m
def solve():
n = int(input())
d = defaultdict(lambda : 0)
l = list(map(int, input().split()))
ans = []
for ele in l:
d[ele] += 1
if len(d) <= 2:
print('NO')
return
l = sorted(d.items(), key=lambda kv: (kv[1], kv[0]), reverse=True)
for ele in l:
if ele[1] > n // 2:
print('NO')
return
else:
break
ans1 = [l[0][0] for _ in range(l[0][1])]
ans2 = [l[0][0] for _ in range(l[0][1])]
temp1 = []
for i in range(1, len(l)):
temp1 += [l[i][0] for _ in range(l[i][1])]
ans1 += temp1
ans2 = temp1 + ans2
print('YES')
print(*ans1)
print(*ans2)
for _ in range(int(input())):
solve()
| python | 16 | 0.532189 | 67 | 15.573222 | 239 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
def go():
for i in range(int(input())):
n = int(input())
a = list(map(int, input().split()))
b = a
b.sort()
f = 0
for j in range((n + 1) // 2):
if b[j] == b[j + n // 2]:
print('NO')
f = 1
break
if f == 1:
continue
if n % 2 == 0 and b[0] == b[n // 2 - 1] and (b[n // 2] == b[n - 1]):
print('NO')
continue
c = []
c.extend(b[int(n / 2):])
c.extend(b[:int(n / 2)])
print('YES')
print(*b)
print(*c)
go()
| python | 15 | 0.438053 | 70 | 17.833333 | 24 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
from collections import defaultdict
def solve():
n = int(input())
a = [int(x) for x in input().split()]
a.sort()
cnt = defaultdict(int)
for i in a:
cnt[i] += 1
if cnt[i] > n // 2:
print('NO')
return
if n % 2 == 0 and (a[0] == a[n // 2 - 1] and a[n // 2] == a[n - 1]):
print('NO')
else:
print(f"YES\n{' '.join(map(str, a))}\n{' '.join(map(str, a[n // 2:]))} {' '.join(map(str, a[:n // 2]))}")
for _ in range(int(input())):
solve()
| python | 18 | 0.507726 | 107 | 24.166667 | 18 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
t = int(input())
for _ in range(t):
n = int(input())
arr = list(map(int, input().split()))
arr.sort()
x = list(set(arr))
flag = True
for i in x:
if arr.count(i) > n // 2:
flag = False
break
if flag == True:
if len(x) == 2 and arr.count(x[0]) == arr.count(x[1]):
print('NO')
else:
print('YES')
print(*arr)
x1 = n // 2
print(*arr[x1:] + arr[:x1])
else:
print('NO')
| python | 15 | 0.5225 | 56 | 18.047619 | 21 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
def solution():
N = int(input())
A = list(map(int, input().split()))
A.sort()
stat = 1
for i in range((N + 1) // 2):
if A[i] == A[i + N // 2]:
print('NO')
stat = 0
return
if stat and N % 2 == 0 and (A[0] == A[N // 2 - 1]) and (A[N // 2] == A[N - 1]):
print('NO')
else:
print('YES')
print(' '.join(map(str, A)))
print(' '.join(map(str, A[(N + 1) // 2:])), end=' ')
print(' '.join(map(str, A[:(N + 1) // 2])))
for _ in range(int(input())):
solution()
| python | 18 | 0.466527 | 80 | 24.157895 | 19 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
from collections import Counter
test = int(input())
for _ in range(test):
n = int(input())
A = list(map(int, input().split()))
c = Counter(A)
m = max(c.values())
if m > n // 2 or len(c) <= 2:
print('NO')
else:
print('YES')
A.sort()
print(*A)
p = n // 2
print(*A[p:] + A[:p])
| python | 13 | 0.539249 | 36 | 18.533333 | 15 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
t = int(input())
for _ in range(t):
n = int(input())
l = list(map(int, input().split()))
d = {}
for i in l:
d[i] = d.get(i, 0) + 1
mx = 0
for i in d.values():
if i >= mx:
mx = i
if len(d) == 2:
print('NO')
elif n % 2 == 0:
if mx <= n // 2:
print('YES')
l.sort()
for i in range(n):
print(l[i], end=' ')
print()
for i in range(n // 2, n):
print(l[i], end=' ')
print(end='')
for i in range(0, n // 2):
print(l[i], end=' ')
print()
else:
print('NO')
elif mx < n // 2 + 1:
print('YES')
l.sort()
for i in range(n):
print(l[i], end=' ')
print()
for i in range(n // 2 + 1, n):
print(l[i], end=' ')
print(end='')
for i in range(0, n // 2 + 1):
print(l[i], end=' ')
print()
else:
print('NO')
| python | 15 | 0.457847 | 36 | 17.357143 | 42 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
tc = int(input())
for t in range(0, tc):
length = int(input())
nums = list(map(int, input().split()))
Map = {}
for n in nums:
Map[n] = Map.setdefault(n, 0) + 1
if Map[n] > length // 2:
print('NO')
break
else:
if len(Map) == 2 and length % 2 == 0:
print('NO')
else:
freqs = sorted(set(Map.values()), reverse=True)
ans = []
for freq in freqs:
for (key, value) in Map.items():
if value == freq:
ans += [str(key)] * value
print('YES')
print(' '.join(ans))
print(' '.join(ans[Map[int(ans[0])]:] + ans[:Map[int(ans[0])]]))
| python | 21 | 0.536713 | 67 | 23.869565 | 23 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
t = int(input())
for test in range(t):
n = int(input())
lst = list(map(int, input().split()))
lst.sort()
lst2 = lst[n // 2:] + lst[:n // 2]
ans = 'YES'
for i in range(n):
if lst[i] == lst2[i]:
ans = 'NO'
break
p1 = 1
p2 = n - 2
while p1 < p2:
temp1 = sorted(lst[p1:p2 + 1])
temp2 = sorted(lst2[p1:p2 + 1])
if temp1 == temp2:
ans = 'NO'
break
p1 += 1
p2 -= 1
print(ans)
if ans == 'YES':
print(*lst)
print(*lst2)
| python | 13 | 0.515556 | 38 | 17 | 25 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
from math import inf
from collections import *
import math, os, sys, heapq, bisect, random, threading
from functools import lru_cache
from itertools import *
def inp():
return sys.stdin.readline().rstrip('\r\n')
def out(var):
sys.stdout.write(str(var))
def inpu():
return int(inp())
def lis():
return list(map(int, inp().split()))
def stringlis():
return list(map(str, inp().split()))
def sep():
return map(int, inp().split())
def strsep():
return map(str, inp().split())
def fsep():
return map(float, inp().split())
(M, M1) = (1000000007, 998244353)
def main():
how_much_noob_I_am = 1
how_much_noob_I_am = inpu()
for _ in range(1, how_much_noob_I_am + 1):
n = inpu()
arr = lis()
c = Counter(arr)
p = sum(c.values())
m = max(c.values())
if p - m < m or (m == n // 2 and len(set(arr)) == 2):
print('NO')
continue
arr.sort()
res = arr[(len(arr) + 1) // 2:] + arr[:(len(arr) + 1) // 2]
print('YES')
print(*arr)
print(*res)
main()
| python | 15 | 0.604103 | 61 | 18.897959 | 49 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
for _ in range(int(input())):
n = int(input())
l = input().split()
d = {}
for i in l:
i = int(i)
if i in d:
d[i] += 1
else:
d[i] = 1
l = []
for i in d:
l.append([i, d[i]])
if len(l) == 1:
print('NO')
elif len(l) == 2:
if l[0][0] == l[1][0] and (l[0][1] == 1 or l[0][1] == 2):
print('YES')
s = str(l[0][0]) * l[0][1] + str(l[1][0]) * l[0][1]
else:
print('NO')
else:
le = n // 2
ma = l[0][1]
s = []
for i in l:
s[len(s):] = [i[0]] * i[1]
if i[1] > ma:
ma = i[1]
if ma > le:
print('NO')
else:
print('YES')
for i in s:
print(i, end=' ')
print()
s = s[le:] + s[0:le]
for i in s:
print(i, end=' ')
print()
| python | 16 | 0.409289 | 59 | 16.225 | 40 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
import sys
import math
from collections import defaultdict, Counter, deque
from bisect import *
from string import ascii_lowercase
from heapq import *
def readInts():
x = list(map(int, sys.stdin.readline().rstrip().split()))
return x[0] if len(x) == 1 else x
def readList(type=int):
x = sys.stdin.readline()
x = list(map(type, x.rstrip('\n\r').split()))
return x
def readStr():
x = sys.stdin.readline().rstrip('\r\n')
return x
write = sys.stdout.write
read = sys.stdin.readline
def dist(x1, x2, y1, y2):
return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
def mergeSort(arr, check=lambda a, b: a < b, reverse=False):
if len(arr) > 1:
mid = len(arr) // 2
L = arr[:mid]
R = arr[mid:]
mergeSort(L, check, reverse)
mergeSort(R, check, reverse)
i = j = k = 0
while i < len(L) and j < len(R):
if check(L[i], R[j]):
if not reverse:
arr[k] = L[i]
i += 1
else:
arr[k] = R[j]
j += 1
elif not reverse:
arr[k] = R[j]
j += 1
else:
arr[k] = L[i]
i += 1
k += 1
while i < len(L):
arr[k] = L[i]
i += 1
k += 1
while j < len(R):
arr[k] = R[j]
j += 1
k += 1
def maxSum(arr):
max_sum = float('-inf')
max_cur = 0
for num in ar:
max_cur = max(max_cur + num, num)
if max_cur > max_sum:
max_sum = max_cur
return max_sum
def hcf(a, b):
if b == 0:
return a
else:
return hcf(b, b % a)
def get_power(n, m):
i = 1
p = -1
while i <= n:
i = i * m
p += 1
return p
def fact(n):
f = 1
for i in range(2, n + 1):
f *= i
return f
def find_closest(num, ar):
min_d = float('inf')
for num2 in ar:
d = abs(num2 - num)
if d < min_d:
min_d = d
return min_d
def check_pal(n):
s = str(n)
j = len(s) - 1
i = 0
while j > i:
if s[i] != s[j]:
return False
i += 1
j -= 1
return True
def solve(t):
n = readInts()
ar = readList()
cnt = 0
mx_ele = ar[0]
if len(set(ar)) < 3:
print('NO')
return None
for num in ar:
if num == mx_ele:
cnt += 1
else:
cnt -= 1
if cnt == 0:
mx_ele = num
cnt = 1
if cnt > 0:
cnt = 0
for num in ar:
if num == mx_ele:
cnt += 1
if cnt > n // 2:
print('NO')
return None
res = []
ar.sort()
res = ar[n // 2:] + ar[:n // 2]
print('YES')
print(*ar)
print(*res)
def main():
t = 1
sys.setrecursionlimit(12000)
t = readInts()
for i in range(t):
solve(i + 1)
main()
| python | 16 | 0.539737 | 60 | 15.454545 | 143 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
t = int(input())
for _ in range(t):
n = int(input())
a = list(map(int, input().split()))
count = {}
for i in range(n):
if a[i] in count:
count[a[i]] += 1
else:
count[a[i]] = 1
if len(count.keys()) <= 2:
print('NO')
elif max(count.values()) > n // 2:
print('NO')
else:
print('YES')
pairs = list(count.items())
pairs.sort(key=lambda x: x[1], reverse=True)
array1 = []
for pair in pairs:
for j in range(pair[1]):
array1.append(pair[0])
array2 = []
shift = pairs[0][1]
for i in range(n - shift, n):
array2.append(array1[i])
for i in range(n - shift):
array2.append(array1[i])
print(*array1)
print(*array2)
| python | 14 | 0.571429 | 46 | 20.933333 | 30 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
from collections import Counter
for tcase in range(int(input())):
n = int(input())
a = Counter(map(int, input().split())).most_common()
b = []
for (k, v) in a:
b.extend([k] * v)
ans = False
i = 1
while not ans and i * 2 < len(a):
c = []
for (k, v) in a[i:]:
c.extend([k] * v)
for (k, v) in a[:i]:
c.extend([k] * v)
ans = all((bi != ci for (bi, ci) in zip(b, c)))
i += 1
if ans:
print('YES')
print(' '.join(map(str, b)))
print(' '.join(map(str, c)))
else:
print('NO')
| python | 15 | 0.51992 | 53 | 20.826087 | 23 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
def Print(arr):
for ele in arr:
print(ele, end=' ')
print()
t = int(input())
for _ in range(t):
n = int(input())
arr = list(map(int, input().split()))
arr.sort()
ar = arr[n // 2:]
for i in range(n // 2):
ar.append(arr[i])
ans = True
for i in range(n):
if arr[i] == ar[i]:
ans = False
break
d = {}
for ele in arr:
d[ele] = d.get(ele, 0) + 1
if len(d) == 2:
tm = []
for ele in d:
tm.append(d[ele])
if tm[0] == tm[1]:
ans = False
if ans:
print('YES')
Print(arr)
Print(ar)
else:
print('NO')
| python | 13 | 0.523364 | 38 | 15.71875 | 32 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
for _ in range(int(input())):
size = int(input())
L = list(map(int, input().split()))
L.sort()
s = set(L)
c = 0
for i in s:
if L.count(i) > size // 2:
print('NO')
c = 1
break
if c == 1:
continue
if len(s) == 2:
print('NO')
continue
print('YES')
print(*L)
temp = L[(size + 1) // 2:] + L[:(size + 1) // 2]
print(*temp)
| python | 13 | 0.5 | 49 | 16.3 | 20 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
from math import *
a = int(input())
for x in range(a):
b = int(input())
c = list(map(int, input().split()))
h = {}
for y in range(b):
if h.get(c[y]) == None:
h[c[y]] = 1
else:
h[c[y]] += 1
o = b // 2
l = 0
for y in h:
if h[y] > o:
l = -1
break
if len(h) <= 2:
print('NO')
elif l == -1:
print('NO')
else:
print('YES')
c.sort()
print(*c)
j = c[o:] + c[:o]
print(*j)
| python | 13 | 0.460591 | 36 | 14.037037 | 27 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
from collections import Counter
for _ in range(int(input())):
n = int(input())
arr = list(map(int, input().split()))
arr.sort()
dit = Counter(arr)
f = max(dit.values())
if f > n // 2 or len(dit) == 2:
print('NO')
continue
new = arr[n // 2:] + arr[:n // 2]
print('YES')
print(*arr)
print(*new)
| python | 13 | 0.576547 | 38 | 20.928571 | 14 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
for _ in range(int(input())):
n = int(input())
a = list(map(int, input().split()))
d = {}
for i in a:
if i in d:
d[i] += 1
else:
d[i] = 1
if max(d.values()) > n // 2:
print('NO')
continue
if len(d) == 2:
print('NO')
continue
print('YES')
c = []
a.sort()
c = a[n // 2:] + a[:n // 2]
print(*a)
print(*c)
| python | 13 | 0.46988 | 36 | 14.809524 | 21 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
for _ in range(int(input())):
n = int(input())
arr = list(map(int, input().split()))
arr.sort()
flag = False
mp = {}
for i in arr:
if i not in mp:
mp[i] = 1
else:
mp[i] += 1
if mp[i] > n // 2:
flag = True
if flag:
print('NO')
continue
if len(mp) == 2:
print('NO')
continue
arr.sort()
maxxx = 0
for k in mp:
if mp[k] > maxxx:
maxxx = mp[k]
num = []
num = arr
k = maxxx
num = num[::-1]
xx = num[:k - 1:-1]
yy = num[k - 1::-1]
num = yy + xx
print('YES')
print(*arr)
print(*num)
| python | 13 | 0.507634 | 38 | 14.411765 | 34 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
import math
t = int(input())
while t > 0:
n = int(input())
a = list(map(int, input().split()))
m = 0
d = {}
for x in range(n):
if a[x] in d:
d[a[x]] = d[a[x]] + 1
else:
d[a[x]] = 1
m = max(d[a[x]], m)
if m > n / 2:
print('NO')
else:
d = list(d.items())
if len(d) <= 2:
print('NO')
t -= 1
continue
print('YES')
d = sorted(d, key=lambda x: x[1], reverse=True)
for x in d:
for y in range(x[1]):
print(x[0], end=' ')
print()
for x in range(1, len(d)):
for y in range(d[x][1]):
print(d[x][0], end=' ')
for y in range(d[0][1]):
print(d[0][0], end=' ')
print()
t -= 1
| python | 15 | 0.476874 | 49 | 17.441176 | 34 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
for i in range(int(input())):
n = int(input())
l = list(map(int, input().split()))
lc = []
l.sort()
for i in set(l):
lc.append(l.count(i))
lc.sort(reverse=True)
if lc[0] > n // 2:
print('NO')
continue
if lc[0] + lc[1] == n:
print('NO')
continue
e = lc[0]
lans = []
for j in range(n):
lans.append(l[(j + e) % n])
print('YES')
for j in l:
print(j, end=' ')
print()
for j in lans:
print(j, end=' ')
print()
| python | 13 | 0.529817 | 36 | 16.44 | 25 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
from collections import Counter
tc = int(input())
for case in range(tc):
n = int(input())
a = list(map(int, input().split()))
c = Counter(a)
nb2 = n // 2
mx = max(c.values())
if mx > nb2 or len(set(a)) == 2:
print('NO')
continue
else:
print('YES')
a.sort()
print(*a, sep=' ')
print(*a[mx:] + a[:mx], sep=' ')
| python | 13 | 0.554878 | 36 | 19.5 | 16 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
import math
T = int(input())
for _ in range(T):
N = int(input())
l = list(map(int, input().split()))
flag = 'Yes'
l.sort()
a = 1
m = 0
for i in range(1, N):
if l[i - 1] == l[i]:
a += 1
else:
if m < a:
m = a
a = 1
if m < a:
m = a
if m > N // 2:
print('NO')
continue
k = m
i = 0
B = l[k:] + l[:k]
if l[0] == B[-1] and l[-1] == B[0]:
print('NO')
continue
print('YES')
for i in l:
print(i, end=' ')
print()
for i in B:
print(i, end=' ')
print()
| python | 13 | 0.455102 | 36 | 13.411765 | 34 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
from collections import Counter
for _ in range(int(input())):
n = int(input())
arr = list(map(int, input().split()))
c = Counter(arr)
m = max(c.values())
if m >= (n + 1) / 2 or len(set(arr)) <= 2:
print('NO')
else:
for el in c:
if c[el] == m:
break
a = [el] * m
b = []
for el in c:
if el != a[0]:
b += [el] * c[el]
print('YES')
print(*a + b)
print(*b + a)
| python | 14 | 0.497449 | 43 | 18.6 | 20 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
for cas in range(int(input())):
n = int(input())
l = list(map(int, input().split()))
l.sort()
if len(set(l)) == 1:
print('NO')
continue
if len(set(l)) == 2 and n % 2 == 0:
i = 0
j = n - 1
flag = 0
while i < j:
if l[i] == l[j]:
flag = 1
break
i += 1
j -= 1
if not flag:
print('NO')
continue
d = {}
flag = 0
for i in l:
if i not in d:
d[i] = 1
else:
d[i] += 1
mx = 0
for i in d:
if d[i] > mx:
mx = d[i]
if mx > n // 2:
print('NO')
continue
else:
print('YES')
print(*l)
print(*l[mx:] + l[:mx])
| python | 13 | 0.460177 | 36 | 13.868421 | 38 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
for _ in range(int(input())):
n = int(input())
l = list(map(int, input().split()))
l.sort()
pre = 0
xx = 0
d = dict()
flag = False
c = 0
for x in set(l):
d[x] = l.count(x)
if d[x] > pre:
xx = x
pre = d[x]
if d[x] > n - d[x]:
flag = True
break
if d[x] == n // 2 and n % 2 == 0:
c += 1
if c == 2:
flag = True
break
if flag:
print('NO')
else:
print('YES')
index = l.index(xx)
while index + 1 < n:
if l[index + 1] == xx:
index += 1
else:
break
print(*l)
l = l[n // 2:] + l[:n // 2]
print(*l)
| python | 13 | 0.458781 | 36 | 14.942857 | 35 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
T = int(input())
for _ in range(T):
N = int(input())
A = list(map(int, input().split()))
A.sort()
L = A[N // 2:]
L.extend(A[:N // 2])
f = False
for i in range(N - 1):
if A[i] == L[i]:
f = True
break
if A[i] == L[i + 1] and A[i + 1] == L[i]:
f = True
break
if A[N - 1] == L[N - 1]:
f = True
if f:
print('NO')
else:
print('YES')
print(*A)
print(*L)
| python | 13 | 0.45953 | 43 | 15.652174 | 23 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
import sys
from math import sqrt, gcd, factorial, ceil, floor
from collections import deque, Counter, OrderedDict
from heapq import heapify, heappush, heappop
input = lambda : sys.stdin.readline()
I = lambda : int(input())
S = lambda : input().strip()
M = lambda : map(int, input().strip().split())
L = lambda : list(map(int, input().strip().split()))
mod = 1000000007
for _ in range(I()):
n = I()
a = L()
a.sort()
c = a[n // 2:] + a[:n // 2]
if any((a[i] == c[i] for i in range(n))) or any((a[i] == c[i + 1] and a[i + 1] == c[i] for i in range(n - 1))):
print('NO')
continue
print('YES')
print(*a)
print(*c)
| python | 14 | 0.603865 | 112 | 28.571429 | 21 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
T = int(input())
for ts in range(T):
N = int(input())
A = list(map(int, input().split(' ')))
A.sort()
C = A.copy()
C = C[(N + 1) // 2:N] + C[:(N + 1) // 2]
check = True
for i in range(N):
if A[i] == C[i]:
check = False
break
if N % 2 == 0 and A[N // 2 - 1] == C[N // 2] and (A[N // 2] == C[N // 2 - 1]):
check = False
if check:
print('YES')
print(' '.join(map(str, A)))
print(' '.join(map(str, C)))
else:
print('NO')
| python | 13 | 0.467416 | 79 | 21.25 | 20 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
t = int(input())
for _ in range(t):
n = int(input())
line = input()
a = list(map(int, line.split()))
a.sort()
counts = [[a[0], 1]]
curr_value = a[0]
for i in range(1, n):
if a[i] == curr_value:
counts[-1][1] += 1
else:
curr_value = a[i]
counts.append([a[i], 1])
counts.sort(key=lambda x: x[1], reverse=True)
highest_count = counts[0][1]
if highest_count > n / 2 or len(counts) == 2:
print('NO')
else:
print('YES')
for item in a:
print(item, end=' ')
print()
for i in range(n):
index = (i + highest_count) % n
print(a[index], end=' ')
print()
| python | 13 | 0.553663 | 46 | 20.740741 | 27 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
def fi():
return int(input())
def li():
return list(map(int, input().split()))
t = fi()
for i in range(t):
n = fi()
a = li()
m = {}
for e in a:
if e not in m:
m[e] = 1
else:
m[e] += 1
pos = True
firstrot = 0
m = dict(sorted(m.items(), key=lambda x: x[1], reverse=True))
for (key, value) in m.items():
if value > n / 2 or (value == n / 2 and len(m.keys()) == 2):
pos = False
firstrot = value
break
if not pos:
print('NO')
else:
print('YES')
templist = []
for (key, value) in m.items():
for j in range(value):
templist.append(key)
print(*templist)
templist = templist[firstrot:] + templist[:firstrot]
print(*templist)
| python | 14 | 0.571001 | 62 | 18.676471 | 34 | You are given an array A of N integers A_{1}, A_{2}, \ldots, A_{N}. Determine if there are two [permutations] B and C of this array, for which the following condition is satisfied:
* There doesn't exist a pair of integers (i, j) such that 1 ≤ i ≤ j ≤ N and (i, j) \neq (1, N), for which the subarray B[i:j] is a permutation of subarray C[i:j].
If there exist such permutations, find any of them.
As a reminder, B[i:j] refers to the subarray [B_{i}, B_{i+1}, \ldots, B_{j}]
------ Input Format ------
- The first line of the input contains a single integer T, the number of test cases. The description of the test cases follows.
- The first line of each test case contains a single integer N — the number of integers.
- The second line of each test case contains N space-separated integers A_{1}, A_{2}, \ldots, A_{N}.
------ Output Format ------
For each test case, if there are no such permutations B and C, output NO.
Otherwise, on the first line output YES. In the next line, output N integers B_{1}, B_{2}, \ldots, B_{N}. In the next line, output N integers C_{1}, C_{2}, \ldots, C_{N}.
You may print each character of YES/NO in either uppercase or lowercase (for example, the strings YES, yeS, YeS, and yEs will all be treated as identical).
------ Constraints ------
$1 ≤T ≤100$
$3 ≤N ≤1000$
$0 ≤A_{i} ≤10^{9}$
- The sum of $N$ over all test cases doesn't exceed $2000$.
----- Sample Input 1 ------
3
3
1 1 2
4
19 39 19 84
6
1 2 3 1 2 3
----- Sample Output 1 ------
NO
YES
19 19 39 84
39 84 19 19
YES
1 1 2 2 3 3
2 3 3 1 1 2
----- explanation 1 ------
Test case $1$: There are $3 \times 3 = 9$ pairs of permutations of the given array. Here's why they're all bad:
- If $B = [1, 1, 2]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 1, 2]$ and $C = [2, 1, 1]$, $B[2:2] = C[2:2]$
- If $B = [1, 2, 1]$ and $C = [1, 1, 2]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [1, 2, 1]$, $B[1:1] = C[1:1]$
- If $B = [1, 2, 1]$ and $C = [2, 1, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [1, 1, 2]$, $B[2:2] = C[2:2]$
- If $B = [2, 1, 1]$ and $C = [1, 2, 1]$, $B[3:3] = C[3:3]$
- If $B = [2, 1, 1]$ and $C = [2, 1, 1]$, $B[1:1] = C[1:1]$ | taco |
t = int(input())
for _ in range(t):
(a, b) = map(int, input().split())
if a == 0 and b == 0:
print(1)
elif a == 0:
print(0.5)
elif b == 0:
print(1)
elif a > 4 * b:
print('%.10f' % ((a - b) / a))
else:
print('%.10f' % (a / 16 / b + 0.5))
| python | 14 | 0.450593 | 37 | 18.461538 | 13 | For some reason in many American cartoons anvils fall from time to time onto heroes' heads. Of course, safes, wardrobes, cruisers, planes fall sometimes too... But anvils do so most of all.
Anvils come in different sizes and shapes. Quite often they get the hero stuck deep in the ground. But have you ever thought who throws anvils from the sky? From what height? We are sure that such questions have never troubled you!
It turns out that throwing an anvil properly is not an easy task at all. Let's describe one of the most popular anvil throwing models.
Let the height p of the potential victim vary in the range [0;a] and the direction of the wind q vary in the range [ - b;b]. p and q could be any real (floating) numbers. Then we can assume that the anvil will fit the toon's head perfectly only if the following equation has at least one real root:
<image>
Determine the probability with which an aim can be successfully hit by an anvil.
You can assume that the p and q coefficients are chosen equiprobably and independently in their ranges.
Input
The first line contains integer t (1 ≤ t ≤ 10000) — amount of testcases.
Each of the following t lines contain two space-separated integers a and b (0 ≤ a, b ≤ 106).
Pretests contain all the tests with 0 < a < 10, 0 ≤ b < 10.
Output
Print t lines — the probability of a successful anvil hit for each testcase. The absolute or relative error of the answer should not exceed 10 - 6.
Examples
Input
2
4 2
1 2
Output
0.6250000000
0.5312500000 | taco |
import os
import sys
import math
from io import BytesIO, IOBase
from fractions import Fraction
import collections
from itertools import permutations
from collections import defaultdict
from collections import deque
import threading
threading.stack_size(10 ** 8)
sys.setrecursionlimit(300000)
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = 'x' in file.mode or 'r' not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
(self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr))
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b'\n') + (not b)
ptr = self.buffer.tell()
(self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr))
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
(self.buffer.truncate(0), self.buffer.seek(0))
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode('ascii'))
self.read = lambda : self.buffer.read().decode('ascii')
self.readline = lambda : self.buffer.readline().decode('ascii')
(sys.stdin, sys.stdout) = (IOWrapper(sys.stdin), IOWrapper(sys.stdout))
input = lambda : sys.stdin.readline().rstrip('\r\n')
class Factorial:
def __init__(self, MOD):
self.MOD = MOD
self.factorials = [1, 1]
self.invModulos = [0, 1]
self.invFactorial_ = [1, 1]
def calc(self, n):
if n <= -1:
print('Invalid argument to calculate n!')
print('n must be non-negative value. But the argument was ' + str(n))
exit()
if n < len(self.factorials):
return self.factorials[n]
nextArr = [0] * (n + 1 - len(self.factorials))
initialI = len(self.factorials)
prev = self.factorials[-1]
m = self.MOD
for i in range(initialI, n + 1):
prev = nextArr[i - initialI] = prev * i % m
self.factorials += nextArr
return self.factorials[n]
def inv(self, n):
if n <= -1:
print('Invalid argument to calculate n^(-1)')
print('n must be non-negative value. But the argument was ' + str(n))
exit()
p = self.MOD
pi = n % p
if pi < len(self.invModulos):
return self.invModulos[pi]
nextArr = [0] * (n + 1 - len(self.invModulos))
initialI = len(self.invModulos)
for i in range(initialI, min(p, n + 1)):
next = -self.invModulos[p % i] * (p // i) % p
self.invModulos.append(next)
return self.invModulos[pi]
def invFactorial(self, n):
if n <= -1:
print('Invalid argument to calculate (n^(-1))!')
print('n must be non-negative value. But the argument was ' + str(n))
exit()
if n < len(self.invFactorial_):
return self.invFactorial_[n]
self.inv(n)
nextArr = [0] * (n + 1 - len(self.invFactorial_))
initialI = len(self.invFactorial_)
prev = self.invFactorial_[-1]
p = self.MOD
for i in range(initialI, n + 1):
prev = nextArr[i - initialI] = prev * self.invModulos[i % p] % p
self.invFactorial_ += nextArr
return self.invFactorial_[n]
class Combination:
def __init__(self, MOD):
self.MOD = MOD
self.factorial = Factorial(MOD)
def ncr(self, n, k):
if k < 0 or n < k:
return 0
k = min(k, n - k)
f = self.factorial
return f.calc(n) * f.invFactorial(max(n - k, k)) * f.invFactorial(min(k, n - k)) % self.MOD
t = int(input())
for i in range(t):
(a, b) = list(map(int, input().split()))
if a == 0 and b == 0:
print(1)
elif a == 0:
print(0.5)
elif b == 0:
print(1)
else:
if a < 4 * b:
ans = (b * a + a * a / 8) / (2 * a * b)
else:
ans = 1 - b / a
print(ans)
| python | 17 | 0.642193 | 93 | 26.811189 | 143 | For some reason in many American cartoons anvils fall from time to time onto heroes' heads. Of course, safes, wardrobes, cruisers, planes fall sometimes too... But anvils do so most of all.
Anvils come in different sizes and shapes. Quite often they get the hero stuck deep in the ground. But have you ever thought who throws anvils from the sky? From what height? We are sure that such questions have never troubled you!
It turns out that throwing an anvil properly is not an easy task at all. Let's describe one of the most popular anvil throwing models.
Let the height p of the potential victim vary in the range [0;a] and the direction of the wind q vary in the range [ - b;b]. p and q could be any real (floating) numbers. Then we can assume that the anvil will fit the toon's head perfectly only if the following equation has at least one real root:
<image>
Determine the probability with which an aim can be successfully hit by an anvil.
You can assume that the p and q coefficients are chosen equiprobably and independently in their ranges.
Input
The first line contains integer t (1 ≤ t ≤ 10000) — amount of testcases.
Each of the following t lines contain two space-separated integers a and b (0 ≤ a, b ≤ 106).
Pretests contain all the tests with 0 < a < 10, 0 ≤ b < 10.
Output
Print t lines — the probability of a successful anvil hit for each testcase. The absolute or relative error of the answer should not exceed 10 - 6.
Examples
Input
2
4 2
1 2
Output
0.6250000000
0.5312500000 | taco |
from fractions import Fraction
t = int(input())
for _ in range(t):
(a, b) = map(lambda x: Fraction(x), input().split(' '))
if b == 0:
print(1)
continue
elif a == 0:
print(0.5)
continue
up = a * (b + b + a / 4) / 2 - max(0, a - 4 * b) * (a / 4 - b) / 2
down = a * 2 * b
print(float(up / down))
| python | 12 | 0.517915 | 67 | 22.615385 | 13 | For some reason in many American cartoons anvils fall from time to time onto heroes' heads. Of course, safes, wardrobes, cruisers, planes fall sometimes too... But anvils do so most of all.
Anvils come in different sizes and shapes. Quite often they get the hero stuck deep in the ground. But have you ever thought who throws anvils from the sky? From what height? We are sure that such questions have never troubled you!
It turns out that throwing an anvil properly is not an easy task at all. Let's describe one of the most popular anvil throwing models.
Let the height p of the potential victim vary in the range [0;a] and the direction of the wind q vary in the range [ - b;b]. p and q could be any real (floating) numbers. Then we can assume that the anvil will fit the toon's head perfectly only if the following equation has at least one real root:
<image>
Determine the probability with which an aim can be successfully hit by an anvil.
You can assume that the p and q coefficients are chosen equiprobably and independently in their ranges.
Input
The first line contains integer t (1 ≤ t ≤ 10000) — amount of testcases.
Each of the following t lines contain two space-separated integers a and b (0 ≤ a, b ≤ 106).
Pretests contain all the tests with 0 < a < 10, 0 ≤ b < 10.
Output
Print t lines — the probability of a successful anvil hit for each testcase. The absolute or relative error of the answer should not exceed 10 - 6.
Examples
Input
2
4 2
1 2
Output
0.6250000000
0.5312500000 | taco |
t = int(input())
for i in range(t):
(a, b) = input().split()
a = int(a)
b = int(b)
print(0.5 + a / (b << 4) if 4 * b > a else 1 - b / a if a else 1)
| python | 11 | 0.477124 | 66 | 24.5 | 6 | For some reason in many American cartoons anvils fall from time to time onto heroes' heads. Of course, safes, wardrobes, cruisers, planes fall sometimes too... But anvils do so most of all.
Anvils come in different sizes and shapes. Quite often they get the hero stuck deep in the ground. But have you ever thought who throws anvils from the sky? From what height? We are sure that such questions have never troubled you!
It turns out that throwing an anvil properly is not an easy task at all. Let's describe one of the most popular anvil throwing models.
Let the height p of the potential victim vary in the range [0;a] and the direction of the wind q vary in the range [ - b;b]. p and q could be any real (floating) numbers. Then we can assume that the anvil will fit the toon's head perfectly only if the following equation has at least one real root:
<image>
Determine the probability with which an aim can be successfully hit by an anvil.
You can assume that the p and q coefficients are chosen equiprobably and independently in their ranges.
Input
The first line contains integer t (1 ≤ t ≤ 10000) — amount of testcases.
Each of the following t lines contain two space-separated integers a and b (0 ≤ a, b ≤ 106).
Pretests contain all the tests with 0 < a < 10, 0 ≤ b < 10.
Output
Print t lines — the probability of a successful anvil hit for each testcase. The absolute or relative error of the answer should not exceed 10 - 6.
Examples
Input
2
4 2
1 2
Output
0.6250000000
0.5312500000 | taco |
import math
import random
import heapq, bisect
import sys
from collections import deque, defaultdict
from fractions import Fraction
import sys
import threading
from collections import defaultdict
mod = 10 ** 9 + 7
mod1 = 998244353
import os
import sys
from io import BytesIO, IOBase
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = 'x' in file.mode or 'r' not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
(self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr))
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b'\n') + (not b)
ptr = self.buffer.tell()
(self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr))
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
(self.buffer.truncate(0), self.buffer.seek(0))
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode('ascii'))
self.read = lambda : self.buffer.read().decode('ascii')
self.readline = lambda : self.buffer.readline().decode('ascii')
(sys.stdin, sys.stdout) = (IOWrapper(sys.stdin), IOWrapper(sys.stdout))
input = lambda : sys.stdin.readline().rstrip('\r\n')
class TreeNode:
def __init__(self, k, v):
self.key = k
self.value = v
self.left = None
self.right = None
self.parent = None
self.height = 1
self.num_left = 1
self.num_total = 1
class AvlTree:
def __init__(self):
self._tree = None
def add(self, k, v):
if not self._tree:
self._tree = TreeNode(k, v)
return
node = self._add(k, v)
if node:
self._rebalance(node)
def _add(self, k, v):
node = self._tree
while node:
if k < node.key:
if node.left:
node = node.left
else:
node.left = TreeNode(k, v)
node.left.parent = node
return node.left
elif node.key < k:
if node.right:
node = node.right
else:
node.right = TreeNode(k, v)
node.right.parent = node
return node.right
else:
node.value = v
return
@staticmethod
def get_height(x):
return x.height if x else 0
@staticmethod
def get_num_total(x):
return x.num_total if x else 0
def _rebalance(self, node):
n = node
while n:
lh = self.get_height(n.left)
rh = self.get_height(n.right)
n.height = max(lh, rh) + 1
balance_factor = lh - rh
n.num_total = 1 + self.get_num_total(n.left) + self.get_num_total(n.right)
n.num_left = 1 + self.get_num_total(n.left)
if balance_factor > 1:
if self.get_height(n.left.left) < self.get_height(n.left.right):
self._rotate_left(n.left)
self._rotate_right(n)
elif balance_factor < -1:
if self.get_height(n.right.right) < self.get_height(n.right.left):
self._rotate_right(n.right)
self._rotate_left(n)
else:
n = n.parent
def _remove_one(self, node):
replacement = node.left or node.right
if node.parent:
if AvlTree._is_left(node):
node.parent.left = replacement
else:
node.parent.right = replacement
replacement.parent = node.parent
node.parent = None
else:
self._tree = replacement
replacement.parent = None
node.left = None
node.right = None
node.parent = None
self._rebalance(replacement)
def _remove_leaf(self, node):
if node.parent:
if AvlTree._is_left(node):
node.parent.left = None
else:
node.parent.right = None
self._rebalance(node.parent)
else:
self._tree = None
node.parent = None
node.left = None
node.right = None
def remove(self, k):
node = self._get_node(k)
if not node:
return
if AvlTree._is_leaf(node):
self._remove_leaf(node)
return
if node.left and node.right:
nxt = AvlTree._get_next(node)
node.key = nxt.key
node.value = nxt.value
if self._is_leaf(nxt):
self._remove_leaf(nxt)
else:
self._remove_one(nxt)
self._rebalance(node)
else:
self._remove_one(node)
def get(self, k):
node = self._get_node(k)
return node.value if node else -1
def _get_node(self, k):
if not self._tree:
return None
node = self._tree
while node:
if k < node.key:
node = node.left
elif node.key < k:
node = node.right
else:
return node
return None
def get_at(self, pos):
x = pos + 1
node = self._tree
while node:
if x < node.num_left:
node = node.left
elif node.num_left < x:
x -= node.num_left
node = node.right
else:
return (node.key, node.value)
raise IndexError('Out of ranges')
@staticmethod
def _is_left(node):
return node.parent.left and node.parent.left == node
@staticmethod
def _is_leaf(node):
return node.left is None and node.right is None
def _rotate_right(self, node):
if not node.parent:
self._tree = node.left
node.left.parent = None
elif AvlTree._is_left(node):
node.parent.left = node.left
node.left.parent = node.parent
else:
node.parent.right = node.left
node.left.parent = node.parent
bk = node.left.right
node.left.right = node
node.parent = node.left
node.left = bk
if bk:
bk.parent = node
node.height = max(self.get_height(node.left), self.get_height(node.right)) + 1
node.num_total = 1 + self.get_num_total(node.left) + self.get_num_total(node.right)
node.num_left = 1 + self.get_num_total(node.left)
def _rotate_left(self, node):
if not node.parent:
self._tree = node.right
node.right.parent = None
elif AvlTree._is_left(node):
node.parent.left = node.right
node.right.parent = node.parent
else:
node.parent.right = node.right
node.right.parent = node.parent
bk = node.right.left
node.right.left = node
node.parent = node.right
node.right = bk
if bk:
bk.parent = node
node.height = max(self.get_height(node.left), self.get_height(node.right)) + 1
node.num_total = 1 + self.get_num_total(node.left) + self.get_num_total(node.right)
node.num_left = 1 + self.get_num_total(node.left)
@staticmethod
def _get_next(node):
if not node.right:
return node.parent
n = node.right
while n.left:
n = n.left
return n
class SegmentTree1:
def __init__(self, data, default=0, func=lambda a, b: max(a, b)):
self._default = default
self._func = func
self._len = len(data)
self._size = _size = 1 << (self._len - 1).bit_length()
self.data = [default] * (2 * _size)
self.data[_size:_size + self._len] = data
for i in reversed(range(_size)):
self.data[i] = func(self.data[i + i], self.data[i + i + 1])
def __delitem__(self, idx):
self[idx] = self._default
def __getitem__(self, idx):
return self.data[idx + self._size]
def __setitem__(self, idx, value):
idx += self._size
self.data[idx] = value
idx >>= 1
while idx:
self.data[idx] = self._func(self.data[2 * idx], self.data[2 * idx + 1])
idx >>= 1
def __len__(self):
return self._len
def query(self, start, stop):
if start == stop:
return self.__getitem__(start)
stop += 1
start += self._size
stop += self._size
res = self._default
while start < stop:
if start & 1:
res = self._func(res, self.data[start])
start += 1
if stop & 1:
stop -= 1
res = self._func(res, self.data[stop])
start >>= 1
stop >>= 1
return res
def __repr__(self):
return 'SegmentTree({0})'.format(self.data)
class SegmentTree:
def __init__(self, data, default=0, func=lambda a, b: a + b):
self._default = default
self._func = func
self._len = len(data)
self._size = _size = 1 << (self._len - 1).bit_length()
self.data = [default] * (2 * _size)
self.data[_size:_size + self._len] = data
for i in reversed(range(_size)):
self.data[i] = func(self.data[i + i], self.data[i + i + 1])
def __delitem__(self, idx):
self[idx] = self._default
def __getitem__(self, idx):
return self.data[idx + self._size]
def __setitem__(self, idx, value):
idx += self._size
self.data[idx] = value
idx >>= 1
while idx:
self.data[idx] = self._func(self.data[2 * idx], self.data[2 * idx + 1])
idx >>= 1
def __len__(self):
return self._len
def query(self, start, stop):
if start == stop:
return self.__getitem__(start)
stop += 1
start += self._size
stop += self._size
res = self._default
while start < stop:
if start & 1:
res = self._func(res, self.data[start])
start += 1
if stop & 1:
stop -= 1
res = self._func(res, self.data[stop])
start >>= 1
stop >>= 1
return res
def __repr__(self):
return 'SegmentTree({0})'.format(self.data)
class Factorial:
def __init__(self, MOD):
self.MOD = MOD
self.factorials = [1, 1]
self.invModulos = [0, 1]
self.invFactorial_ = [1, 1]
def calc(self, n):
if n <= -1:
print('Invalid argument to calculate n!')
print('n must be non-negative value. But the argument was ' + str(n))
exit()
if n < len(self.factorials):
return self.factorials[n]
nextArr = [0] * (n + 1 - len(self.factorials))
initialI = len(self.factorials)
prev = self.factorials[-1]
m = self.MOD
for i in range(initialI, n + 1):
prev = nextArr[i - initialI] = prev * i % m
self.factorials += nextArr
return self.factorials[n]
def inv(self, n):
if n <= -1:
print('Invalid argument to calculate n^(-1)')
print('n must be non-negative value. But the argument was ' + str(n))
exit()
p = self.MOD
pi = n % p
if pi < len(self.invModulos):
return self.invModulos[pi]
nextArr = [0] * (n + 1 - len(self.invModulos))
initialI = len(self.invModulos)
for i in range(initialI, min(p, n + 1)):
next = -self.invModulos[p % i] * (p // i) % p
self.invModulos.append(next)
return self.invModulos[pi]
def invFactorial(self, n):
if n <= -1:
print('Invalid argument to calculate (n^(-1))!')
print('n must be non-negative value. But the argument was ' + str(n))
exit()
if n < len(self.invFactorial_):
return self.invFactorial_[n]
self.inv(n)
nextArr = [0] * (n + 1 - len(self.invFactorial_))
initialI = len(self.invFactorial_)
prev = self.invFactorial_[-1]
p = self.MOD
for i in range(initialI, n + 1):
prev = nextArr[i - initialI] = prev * self.invModulos[i % p] % p
self.invFactorial_ += nextArr
return self.invFactorial_[n]
class Combination:
def __init__(self, MOD):
self.MOD = MOD
self.factorial = Factorial(MOD)
def ncr(self, n, k):
if k < 0 or n < k:
return 0
k = min(k, n - k)
f = self.factorial
return f.calc(n) * f.invFactorial(max(n - k, k)) * f.invFactorial(min(k, n - k)) % self.MOD
def powm(a, n, m):
if a == 1 or n == 0:
return 1
if n % 2 == 0:
s = powm(a, n // 2, m)
return s * s % m
else:
return a * powm(a, n - 1, m) % m
def sort_list(list1, list2):
zipped_pairs = zip(list2, list1)
z = [x for (_, x) in sorted(zipped_pairs)]
return z
def product(l):
por = 1
for i in range(len(l)):
por *= l[i]
return por
def binarySearchCount(arr, n, key):
left = 0
right = n - 1
count = 0
while left <= right:
mid = int((right + left) / 2)
if arr[mid] < key:
count = mid + 1
left = mid + 1
else:
right = mid - 1
return count
def countdig(n):
c = 0
while n > 0:
n //= 10
c += 1
return c
def binary(x, length):
y = bin(x)[2:]
return y if len(y) >= length else '0' * (length - len(y)) + y
def countGreater(arr, n, k):
l = 0
r = n - 1
leftGreater = n
while l <= r:
m = int(l + (r - l) / 2)
if arr[m] >= k:
leftGreater = m
r = m - 1
else:
l = m + 1
return n - leftGreater
for ik in range(int(input())):
(a, b) = map(int, input().split())
if b == 0:
print(1)
continue
elif a == 0:
print(0.5)
continue
if 4 * b >= a:
print((a * b + a * a / 8) / (2 * a * b))
else:
print((2 * a * b - 2 * b * b) / (2 * a * b))
| python | 17 | 0.619926 | 93 | 22.762279 | 509 | For some reason in many American cartoons anvils fall from time to time onto heroes' heads. Of course, safes, wardrobes, cruisers, planes fall sometimes too... But anvils do so most of all.
Anvils come in different sizes and shapes. Quite often they get the hero stuck deep in the ground. But have you ever thought who throws anvils from the sky? From what height? We are sure that such questions have never troubled you!
It turns out that throwing an anvil properly is not an easy task at all. Let's describe one of the most popular anvil throwing models.
Let the height p of the potential victim vary in the range [0;a] and the direction of the wind q vary in the range [ - b;b]. p and q could be any real (floating) numbers. Then we can assume that the anvil will fit the toon's head perfectly only if the following equation has at least one real root:
<image>
Determine the probability with which an aim can be successfully hit by an anvil.
You can assume that the p and q coefficients are chosen equiprobably and independently in their ranges.
Input
The first line contains integer t (1 ≤ t ≤ 10000) — amount of testcases.
Each of the following t lines contain two space-separated integers a and b (0 ≤ a, b ≤ 106).
Pretests contain all the tests with 0 < a < 10, 0 ≤ b < 10.
Output
Print t lines — the probability of a successful anvil hit for each testcase. The absolute or relative error of the answer should not exceed 10 - 6.
Examples
Input
2
4 2
1 2
Output
0.6250000000
0.5312500000 | taco |
t = int(input())
for i in range(t):
(a, b) = [int(i) for i in input().split()]
b *= 4
if a == 0 and b == 0:
print(1)
elif a == 0:
print(0.5)
else:
ans = 0.5
if a > b:
ans += (a - b) / a / 2 + b / a / 4
else:
ans += a / b / 4
print(ans)
| python | 15 | 0.440154 | 43 | 16.266667 | 15 | For some reason in many American cartoons anvils fall from time to time onto heroes' heads. Of course, safes, wardrobes, cruisers, planes fall sometimes too... But anvils do so most of all.
Anvils come in different sizes and shapes. Quite often they get the hero stuck deep in the ground. But have you ever thought who throws anvils from the sky? From what height? We are sure that such questions have never troubled you!
It turns out that throwing an anvil properly is not an easy task at all. Let's describe one of the most popular anvil throwing models.
Let the height p of the potential victim vary in the range [0;a] and the direction of the wind q vary in the range [ - b;b]. p and q could be any real (floating) numbers. Then we can assume that the anvil will fit the toon's head perfectly only if the following equation has at least one real root:
<image>
Determine the probability with which an aim can be successfully hit by an anvil.
You can assume that the p and q coefficients are chosen equiprobably and independently in their ranges.
Input
The first line contains integer t (1 ≤ t ≤ 10000) — amount of testcases.
Each of the following t lines contain two space-separated integers a and b (0 ≤ a, b ≤ 106).
Pretests contain all the tests with 0 < a < 10, 0 ≤ b < 10.
Output
Print t lines — the probability of a successful anvil hit for each testcase. The absolute or relative error of the answer should not exceed 10 - 6.
Examples
Input
2
4 2
1 2
Output
0.6250000000
0.5312500000 | taco |
T = int(input())
for _ in range(T):
(a, b) = map(int, input().split())
if b == 0:
print(1)
elif a == 0:
print(0.5)
else:
m = 2 * a * b
t = 1 / 8 * a * a + a * b
if b < a / 4:
delta = a / 4 - b
base = a * (delta / (delta + b))
t -= 1 / 2 * (delta * base)
ans = t / m
print(round(ans, 8))
| python | 15 | 0.433121 | 35 | 18.625 | 16 | For some reason in many American cartoons anvils fall from time to time onto heroes' heads. Of course, safes, wardrobes, cruisers, planes fall sometimes too... But anvils do so most of all.
Anvils come in different sizes and shapes. Quite often they get the hero stuck deep in the ground. But have you ever thought who throws anvils from the sky? From what height? We are sure that such questions have never troubled you!
It turns out that throwing an anvil properly is not an easy task at all. Let's describe one of the most popular anvil throwing models.
Let the height p of the potential victim vary in the range [0;a] and the direction of the wind q vary in the range [ - b;b]. p and q could be any real (floating) numbers. Then we can assume that the anvil will fit the toon's head perfectly only if the following equation has at least one real root:
<image>
Determine the probability with which an aim can be successfully hit by an anvil.
You can assume that the p and q coefficients are chosen equiprobably and independently in their ranges.
Input
The first line contains integer t (1 ≤ t ≤ 10000) — amount of testcases.
Each of the following t lines contain two space-separated integers a and b (0 ≤ a, b ≤ 106).
Pretests contain all the tests with 0 < a < 10, 0 ≤ b < 10.
Output
Print t lines — the probability of a successful anvil hit for each testcase. The absolute or relative error of the answer should not exceed 10 - 6.
Examples
Input
2
4 2
1 2
Output
0.6250000000
0.5312500000 | taco |
t = int(input())
while t > 0:
(a, b) = map(int, input().split())
if a == 0 and b == 0:
print(1)
elif a == 0:
print(0.5)
elif b == 0:
print(1)
else:
ans = a * b + a * a / 8.0
if 4 * b <= a:
ans = 2.0 * b * b + (a - 4.0 * b) * b + a * b
ans /= 2.0 * a * b
print('%.10f' % ans)
t -= 1
| python | 16 | 0.413115 | 48 | 18.0625 | 16 | For some reason in many American cartoons anvils fall from time to time onto heroes' heads. Of course, safes, wardrobes, cruisers, planes fall sometimes too... But anvils do so most of all.
Anvils come in different sizes and shapes. Quite often they get the hero stuck deep in the ground. But have you ever thought who throws anvils from the sky? From what height? We are sure that such questions have never troubled you!
It turns out that throwing an anvil properly is not an easy task at all. Let's describe one of the most popular anvil throwing models.
Let the height p of the potential victim vary in the range [0;a] and the direction of the wind q vary in the range [ - b;b]. p and q could be any real (floating) numbers. Then we can assume that the anvil will fit the toon's head perfectly only if the following equation has at least one real root:
<image>
Determine the probability with which an aim can be successfully hit by an anvil.
You can assume that the p and q coefficients are chosen equiprobably and independently in their ranges.
Input
The first line contains integer t (1 ≤ t ≤ 10000) — amount of testcases.
Each of the following t lines contain two space-separated integers a and b (0 ≤ a, b ≤ 106).
Pretests contain all the tests with 0 < a < 10, 0 ≤ b < 10.
Output
Print t lines — the probability of a successful anvil hit for each testcase. The absolute or relative error of the answer should not exceed 10 - 6.
Examples
Input
2
4 2
1 2
Output
0.6250000000
0.5312500000 | taco |
def li():
return list(map(int, input().split(' ')))
for _ in range(int(input())):
(a, b) = li()
if b != 0 and a != 0:
s = (max(0, a - 4 * b) + a) / 2
s *= min(a / 4, b)
ans = 1 / 2 + s / (2 * a * b)
print('{:.8f}'.format(ans))
elif b == 0:
print(1)
else:
print(0.5)
| python | 14 | 0.448763 | 42 | 20.769231 | 13 | For some reason in many American cartoons anvils fall from time to time onto heroes' heads. Of course, safes, wardrobes, cruisers, planes fall sometimes too... But anvils do so most of all.
Anvils come in different sizes and shapes. Quite often they get the hero stuck deep in the ground. But have you ever thought who throws anvils from the sky? From what height? We are sure that such questions have never troubled you!
It turns out that throwing an anvil properly is not an easy task at all. Let's describe one of the most popular anvil throwing models.
Let the height p of the potential victim vary in the range [0;a] and the direction of the wind q vary in the range [ - b;b]. p and q could be any real (floating) numbers. Then we can assume that the anvil will fit the toon's head perfectly only if the following equation has at least one real root:
<image>
Determine the probability with which an aim can be successfully hit by an anvil.
You can assume that the p and q coefficients are chosen equiprobably and independently in their ranges.
Input
The first line contains integer t (1 ≤ t ≤ 10000) — amount of testcases.
Each of the following t lines contain two space-separated integers a and b (0 ≤ a, b ≤ 106).
Pretests contain all the tests with 0 < a < 10, 0 ≤ b < 10.
Output
Print t lines — the probability of a successful anvil hit for each testcase. The absolute or relative error of the answer should not exceed 10 - 6.
Examples
Input
2
4 2
1 2
Output
0.6250000000
0.5312500000 | taco |
t = int(input())
for _ in range(t):
(a, b) = map(float, input().split())
if b == 0.0:
print(1.0)
elif a == 0.0:
print(0.5)
elif a / 4.0 <= b:
print((a + 8.0 * b) / 16.0 / b)
else:
print(1.0 - b / a)
| python | 14 | 0.471698 | 37 | 18.272727 | 11 | For some reason in many American cartoons anvils fall from time to time onto heroes' heads. Of course, safes, wardrobes, cruisers, planes fall sometimes too... But anvils do so most of all.
Anvils come in different sizes and shapes. Quite often they get the hero stuck deep in the ground. But have you ever thought who throws anvils from the sky? From what height? We are sure that such questions have never troubled you!
It turns out that throwing an anvil properly is not an easy task at all. Let's describe one of the most popular anvil throwing models.
Let the height p of the potential victim vary in the range [0;a] and the direction of the wind q vary in the range [ - b;b]. p and q could be any real (floating) numbers. Then we can assume that the anvil will fit the toon's head perfectly only if the following equation has at least one real root:
<image>
Determine the probability with which an aim can be successfully hit by an anvil.
You can assume that the p and q coefficients are chosen equiprobably and independently in their ranges.
Input
The first line contains integer t (1 ≤ t ≤ 10000) — amount of testcases.
Each of the following t lines contain two space-separated integers a and b (0 ≤ a, b ≤ 106).
Pretests contain all the tests with 0 < a < 10, 0 ≤ b < 10.
Output
Print t lines — the probability of a successful anvil hit for each testcase. The absolute or relative error of the answer should not exceed 10 - 6.
Examples
Input
2
4 2
1 2
Output
0.6250000000
0.5312500000 | taco |
for i in range(int(input())):
print('%.8f' % (lambda a, b: 1 if a == 0 == b else a / b / 16 + 1 / 2 if b > a / 4 else 1 - b / a)(*list(map(int, input().split()))[0:2]))
| python | 19 | 0.494118 | 139 | 84 | 2 | For some reason in many American cartoons anvils fall from time to time onto heroes' heads. Of course, safes, wardrobes, cruisers, planes fall sometimes too... But anvils do so most of all.
Anvils come in different sizes and shapes. Quite often they get the hero stuck deep in the ground. But have you ever thought who throws anvils from the sky? From what height? We are sure that such questions have never troubled you!
It turns out that throwing an anvil properly is not an easy task at all. Let's describe one of the most popular anvil throwing models.
Let the height p of the potential victim vary in the range [0;a] and the direction of the wind q vary in the range [ - b;b]. p and q could be any real (floating) numbers. Then we can assume that the anvil will fit the toon's head perfectly only if the following equation has at least one real root:
<image>
Determine the probability with which an aim can be successfully hit by an anvil.
You can assume that the p and q coefficients are chosen equiprobably and independently in their ranges.
Input
The first line contains integer t (1 ≤ t ≤ 10000) — amount of testcases.
Each of the following t lines contain two space-separated integers a and b (0 ≤ a, b ≤ 106).
Pretests contain all the tests with 0 < a < 10, 0 ≤ b < 10.
Output
Print t lines — the probability of a successful anvil hit for each testcase. The absolute or relative error of the answer should not exceed 10 - 6.
Examples
Input
2
4 2
1 2
Output
0.6250000000
0.5312500000 | taco |
import sys
lines = int(sys.stdin.readline())
for _ in range(lines):
(a, b) = map(float, sys.stdin.readline().split(' '))
if b == 0.0:
print(1)
elif a <= 4 * b:
print((0.125 * a + b) / (2.0 * b))
else:
print((a - b) / a)
| python | 13 | 0.534783 | 53 | 22 | 10 | For some reason in many American cartoons anvils fall from time to time onto heroes' heads. Of course, safes, wardrobes, cruisers, planes fall sometimes too... But anvils do so most of all.
Anvils come in different sizes and shapes. Quite often they get the hero stuck deep in the ground. But have you ever thought who throws anvils from the sky? From what height? We are sure that such questions have never troubled you!
It turns out that throwing an anvil properly is not an easy task at all. Let's describe one of the most popular anvil throwing models.
Let the height p of the potential victim vary in the range [0;a] and the direction of the wind q vary in the range [ - b;b]. p and q could be any real (floating) numbers. Then we can assume that the anvil will fit the toon's head perfectly only if the following equation has at least one real root:
<image>
Determine the probability with which an aim can be successfully hit by an anvil.
You can assume that the p and q coefficients are chosen equiprobably and independently in their ranges.
Input
The first line contains integer t (1 ≤ t ≤ 10000) — amount of testcases.
Each of the following t lines contain two space-separated integers a and b (0 ≤ a, b ≤ 106).
Pretests contain all the tests with 0 < a < 10, 0 ≤ b < 10.
Output
Print t lines — the probability of a successful anvil hit for each testcase. The absolute or relative error of the answer should not exceed 10 - 6.
Examples
Input
2
4 2
1 2
Output
0.6250000000
0.5312500000 | taco |
T = int(input())
while T > 0:
T -= 1
(a, b) = map(int, input().split())
if a == 0 and b == 0:
print(1)
elif a == 0:
print(0.5)
elif b == 0:
print(1)
else:
check1 = a / 4
if check1 <= b:
ans = a * b + a * check1 / 2
else:
ans = 2 * a * b - 2 * b * b
ans = ans / (2 * a * b)
print(ans)
| python | 14 | 0.448718 | 35 | 16.333333 | 18 | For some reason in many American cartoons anvils fall from time to time onto heroes' heads. Of course, safes, wardrobes, cruisers, planes fall sometimes too... But anvils do so most of all.
Anvils come in different sizes and shapes. Quite often they get the hero stuck deep in the ground. But have you ever thought who throws anvils from the sky? From what height? We are sure that such questions have never troubled you!
It turns out that throwing an anvil properly is not an easy task at all. Let's describe one of the most popular anvil throwing models.
Let the height p of the potential victim vary in the range [0;a] and the direction of the wind q vary in the range [ - b;b]. p and q could be any real (floating) numbers. Then we can assume that the anvil will fit the toon's head perfectly only if the following equation has at least one real root:
<image>
Determine the probability with which an aim can be successfully hit by an anvil.
You can assume that the p and q coefficients are chosen equiprobably and independently in their ranges.
Input
The first line contains integer t (1 ≤ t ≤ 10000) — amount of testcases.
Each of the following t lines contain two space-separated integers a and b (0 ≤ a, b ≤ 106).
Pretests contain all the tests with 0 < a < 10, 0 ≤ b < 10.
Output
Print t lines — the probability of a successful anvil hit for each testcase. The absolute or relative error of the answer should not exceed 10 - 6.
Examples
Input
2
4 2
1 2
Output
0.6250000000
0.5312500000 | taco |
def f(p, q):
if p == 0 and q == 0:
return 1
if p == 0:
return 0.5
if q == 0:
return 1
if q * 4 <= p:
return 1 - q * 2 * q / (2 * p * q)
else:
return 1 - (q - p / 4 + q) * p / (4 * p * q)
for i in range(int(input())):
(p, q) = map(int, input().split(' '))
print(f(p, q))
| python | 14 | 0.442509 | 46 | 19.5 | 14 | For some reason in many American cartoons anvils fall from time to time onto heroes' heads. Of course, safes, wardrobes, cruisers, planes fall sometimes too... But anvils do so most of all.
Anvils come in different sizes and shapes. Quite often they get the hero stuck deep in the ground. But have you ever thought who throws anvils from the sky? From what height? We are sure that such questions have never troubled you!
It turns out that throwing an anvil properly is not an easy task at all. Let's describe one of the most popular anvil throwing models.
Let the height p of the potential victim vary in the range [0;a] and the direction of the wind q vary in the range [ - b;b]. p and q could be any real (floating) numbers. Then we can assume that the anvil will fit the toon's head perfectly only if the following equation has at least one real root:
<image>
Determine the probability with which an aim can be successfully hit by an anvil.
You can assume that the p and q coefficients are chosen equiprobably and independently in their ranges.
Input
The first line contains integer t (1 ≤ t ≤ 10000) — amount of testcases.
Each of the following t lines contain two space-separated integers a and b (0 ≤ a, b ≤ 106).
Pretests contain all the tests with 0 < a < 10, 0 ≤ b < 10.
Output
Print t lines — the probability of a successful anvil hit for each testcase. The absolute or relative error of the answer should not exceed 10 - 6.
Examples
Input
2
4 2
1 2
Output
0.6250000000
0.5312500000 | taco |
def interpreter(code, iterations, width, height):
code = ''.join((c for c in code if c in '[news]*'))
canvas = [[0] * width for _ in range(height)]
row = col = step = count = loop = 0
while step < len(code) and count < iterations:
command = code[step]
if loop:
if command == '[':
loop += 1
elif command == ']':
loop -= 1
elif command == 'n':
row = (row - 1) % height
elif command == 's':
row = (row + 1) % height
elif command == 'w':
col = (col - 1) % width
elif command == 'e':
col = (col + 1) % width
elif command == '*':
canvas[row][col] ^= 1
elif command == '[' and canvas[row][col] == 0:
loop += 1
elif command == ']' and canvas[row][col] != 0:
loop -= 1
step += 1 if not loop else loop // abs(loop)
count += 1 if not loop else 0
return '\r\n'.join((''.join(map(str, row)) for row in canvas))
| python | 13 | 0.551163 | 63 | 29.714286 | 28 | # Esolang Interpreters #3 - Custom Paintfuck Interpreter
## About this Kata Series
"Esolang Interpreters" is a Kata Series that originally began as three separate, independent esolang interpreter Kata authored by [@donaldsebleung](http://codewars.com/users/donaldsebleung) which all shared a similar format and were all somewhat inter-related. Under the influence of [a fellow Codewarrior](https://www.codewars.com/users/nickkwest), these three high-level inter-related Kata gradually evolved into what is known today as the "Esolang Interpreters" series.
This series is a high-level Kata Series designed to challenge the minds of bright and daring programmers by implementing interpreters for various [esoteric programming languages/Esolangs](http://esolangs.org), mainly [Brainfuck](http://esolangs.org/wiki/Brainfuck) derivatives but not limited to them, given a certain specification for a certain Esolang. Perhaps the only exception to this rule is the very first Kata in this Series which is intended as an introduction/taster to the world of esoteric programming languages and writing interpreters for them.
## The Language
Paintfuck is a [borderline-esoteric programming language/Esolang](http://esolangs.org) which is a derivative of [Smallfuck](http://esolangs.org/wiki/Smallfuck) (itself a derivative of the famous [Brainfuck](http://esolangs.org/wiki/Brainfuck)) that uses a two-dimensional data grid instead of a one-dimensional tape.
Valid commands in Paintfuck include:
- `n` - Move data pointer north (up)
- `e` - Move data pointer east (right)
- `s` - Move data pointer south (down)
- `w` - Move data pointer west (left)
- `*` - Flip the bit at the current cell (same as in Smallfuck)
- `[` - Jump past matching `]` if bit under current pointer is `0` (same as in Smallfuck)
- `]` - Jump back to the matching `[` (if bit under current pointer is nonzero) (same as in Smallfuck)
The specification states that any non-command character (i.e. any character other than those mentioned above) should simply be ignored. The output of the interpreter is the two-dimensional data grid itself, best as animation as the interpreter is running, but at least a representation of the data grid itself after a certain number of iterations (explained later in task).
In current implementations, the 2D datagrid is finite in size with toroidal (wrapping) behaviour. This is one of the few major differences of Paintfuck from Smallfuck as Smallfuck terminates (normally) whenever the pointer exceeds the bounds of the tape.
Similar to Smallfuck, Paintfuck is Turing-complete **if and only if** the 2D data grid/canvas were unlimited in size. However, since the size of the data grid is defined to be finite, it acts like a finite state machine.
More info on this Esolang can be found [here](http://esolangs.org/wiki/Paintfuck).
## The Task
Your task is to implement a custom Paintfuck interpreter `interpreter()`/`Interpret` which accepts the following arguments in the specified order:
1. `code` - **Required**. The Paintfuck code to be executed, passed in as a string. May contain comments (non-command characters), in which case your interpreter should simply ignore them. If empty, simply return the initial state of the data grid.
2. `iterations` - **Required**. A non-negative integer specifying the number of iterations to be performed before the final state of the data grid is returned. See notes for definition of 1 iteration. If equal to zero, simply return the initial state of the data grid.
3. `width` - **Required**. The width of the data grid in terms of the number of data cells in each row, passed in as a positive integer.
4. `height` - **Required**. The height of the data grid in cells (i.e. number of rows) passed in as a positive integer.
A few things to note:
- Your interpreter should treat all command characters as **case-sensitive** so `N`, `E`, `S` and `W` are **not** valid command characters
- Your interpreter should initialize all cells within the data grid to a value of `0` regardless of the width and height of the grid
- In this implementation, your pointer must always start at the **top-left hand corner** of the data grid (i.e. first row, first column). This is important as some implementations have the data pointer starting at the middle of the grid.
- One iteration is defined as one step in the program, i.e. the number of command characters evaluated. For example, given a program `nessewnnnewwwsswse` and an iteration count of `5`, your interpreter should evaluate `nesse` before returning the final state of the data grid. **Non-command characters should not count towards the number of iterations.**
- Regarding iterations, the act of skipping to the matching `]` when a `[` is encountered (or vice versa) is considered to be **one** iteration regardless of the number of command characters in between. The next iteration then commences at the command **right after** the matching `]` (or `[`).
- Your interpreter should terminate normally and return the final state of the 2D data grid whenever **any** of the mentioned conditions become true: (1) All commands have been considered left to right, or (2) Your interpreter has already performed the number of iterations specified in the second argument.
- The return value of your interpreter should be a representation of the final state of the 2D data grid where each row is separated from the next by a CRLF (`\r\n`). For example, if the final state of your datagrid is
```
[
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
]
```
... then your return string should be `"100\r\n010\r\n001"`.
Good luck :D
## Kata in this Series
1. [Esolang Interpreters #1 - Introduction to Esolangs and My First Interpreter (MiniStringFuck)](https://www.codewars.com/kata/esolang-interpreters-number-1-introduction-to-esolangs-and-my-first-interpreter-ministringfuck)
2. [Esolang Interpreters #2 - Custom Smallfuck Interpreter](http://codewars.com/kata/esolang-interpreters-number-2-custom-smallfuck-interpreter)
3. **Esolang Interpreters #3 - Custom Paintfuck Interpreter**
4. [Esolang Interpreters #4 - Boolfuck Interpreter](http://codewars.com/kata/esolang-interpreters-number-4-boolfuck-interpreter) | taco |
def interpreter(code, iterations, width, height):
grid = [[0] * width for _ in range(height)]
code = [c for c in code if c in '[]nesw*']
(jumps, stack) = ({}, [])
for (i, c) in enumerate(code):
if c == '[':
stack.append(i)
if c == ']':
jumps[i] = stack.pop()
jumps[jumps[i]] = i
(ptr, x, y) = (-1, 0, 0)
while iterations > 0 and ptr < len(code) - 1:
ptr += 1
iterations -= 1
c = code[ptr]
if c == 'n':
y = (y - 1) % height
if c == 's':
y = (y + 1) % height
if c == 'w':
x = (x - 1) % width
if c == 'e':
x = (x + 1) % width
if c == '*':
grid[y][x] = 1 - grid[y][x]
if c == '[' and (not grid[y][x]):
ptr = jumps[ptr]
if c == ']' and grid[y][x]:
ptr = jumps[ptr]
return '\r\n'.join((''.join(map(str, row)) for row in grid))
| python | 12 | 0.480818 | 61 | 25.066667 | 30 | # Esolang Interpreters #3 - Custom Paintfuck Interpreter
## About this Kata Series
"Esolang Interpreters" is a Kata Series that originally began as three separate, independent esolang interpreter Kata authored by [@donaldsebleung](http://codewars.com/users/donaldsebleung) which all shared a similar format and were all somewhat inter-related. Under the influence of [a fellow Codewarrior](https://www.codewars.com/users/nickkwest), these three high-level inter-related Kata gradually evolved into what is known today as the "Esolang Interpreters" series.
This series is a high-level Kata Series designed to challenge the minds of bright and daring programmers by implementing interpreters for various [esoteric programming languages/Esolangs](http://esolangs.org), mainly [Brainfuck](http://esolangs.org/wiki/Brainfuck) derivatives but not limited to them, given a certain specification for a certain Esolang. Perhaps the only exception to this rule is the very first Kata in this Series which is intended as an introduction/taster to the world of esoteric programming languages and writing interpreters for them.
## The Language
Paintfuck is a [borderline-esoteric programming language/Esolang](http://esolangs.org) which is a derivative of [Smallfuck](http://esolangs.org/wiki/Smallfuck) (itself a derivative of the famous [Brainfuck](http://esolangs.org/wiki/Brainfuck)) that uses a two-dimensional data grid instead of a one-dimensional tape.
Valid commands in Paintfuck include:
- `n` - Move data pointer north (up)
- `e` - Move data pointer east (right)
- `s` - Move data pointer south (down)
- `w` - Move data pointer west (left)
- `*` - Flip the bit at the current cell (same as in Smallfuck)
- `[` - Jump past matching `]` if bit under current pointer is `0` (same as in Smallfuck)
- `]` - Jump back to the matching `[` (if bit under current pointer is nonzero) (same as in Smallfuck)
The specification states that any non-command character (i.e. any character other than those mentioned above) should simply be ignored. The output of the interpreter is the two-dimensional data grid itself, best as animation as the interpreter is running, but at least a representation of the data grid itself after a certain number of iterations (explained later in task).
In current implementations, the 2D datagrid is finite in size with toroidal (wrapping) behaviour. This is one of the few major differences of Paintfuck from Smallfuck as Smallfuck terminates (normally) whenever the pointer exceeds the bounds of the tape.
Similar to Smallfuck, Paintfuck is Turing-complete **if and only if** the 2D data grid/canvas were unlimited in size. However, since the size of the data grid is defined to be finite, it acts like a finite state machine.
More info on this Esolang can be found [here](http://esolangs.org/wiki/Paintfuck).
## The Task
Your task is to implement a custom Paintfuck interpreter `interpreter()`/`Interpret` which accepts the following arguments in the specified order:
1. `code` - **Required**. The Paintfuck code to be executed, passed in as a string. May contain comments (non-command characters), in which case your interpreter should simply ignore them. If empty, simply return the initial state of the data grid.
2. `iterations` - **Required**. A non-negative integer specifying the number of iterations to be performed before the final state of the data grid is returned. See notes for definition of 1 iteration. If equal to zero, simply return the initial state of the data grid.
3. `width` - **Required**. The width of the data grid in terms of the number of data cells in each row, passed in as a positive integer.
4. `height` - **Required**. The height of the data grid in cells (i.e. number of rows) passed in as a positive integer.
A few things to note:
- Your interpreter should treat all command characters as **case-sensitive** so `N`, `E`, `S` and `W` are **not** valid command characters
- Your interpreter should initialize all cells within the data grid to a value of `0` regardless of the width and height of the grid
- In this implementation, your pointer must always start at the **top-left hand corner** of the data grid (i.e. first row, first column). This is important as some implementations have the data pointer starting at the middle of the grid.
- One iteration is defined as one step in the program, i.e. the number of command characters evaluated. For example, given a program `nessewnnnewwwsswse` and an iteration count of `5`, your interpreter should evaluate `nesse` before returning the final state of the data grid. **Non-command characters should not count towards the number of iterations.**
- Regarding iterations, the act of skipping to the matching `]` when a `[` is encountered (or vice versa) is considered to be **one** iteration regardless of the number of command characters in between. The next iteration then commences at the command **right after** the matching `]` (or `[`).
- Your interpreter should terminate normally and return the final state of the 2D data grid whenever **any** of the mentioned conditions become true: (1) All commands have been considered left to right, or (2) Your interpreter has already performed the number of iterations specified in the second argument.
- The return value of your interpreter should be a representation of the final state of the 2D data grid where each row is separated from the next by a CRLF (`\r\n`). For example, if the final state of your datagrid is
```
[
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
]
```
... then your return string should be `"100\r\n010\r\n001"`.
Good luck :D
## Kata in this Series
1. [Esolang Interpreters #1 - Introduction to Esolangs and My First Interpreter (MiniStringFuck)](https://www.codewars.com/kata/esolang-interpreters-number-1-introduction-to-esolangs-and-my-first-interpreter-ministringfuck)
2. [Esolang Interpreters #2 - Custom Smallfuck Interpreter](http://codewars.com/kata/esolang-interpreters-number-2-custom-smallfuck-interpreter)
3. **Esolang Interpreters #3 - Custom Paintfuck Interpreter**
4. [Esolang Interpreters #4 - Boolfuck Interpreter](http://codewars.com/kata/esolang-interpreters-number-4-boolfuck-interpreter) | taco |
from collections import defaultdict
def interpreter(code, iterations, w, h):
(cp, r, c, p, stk, brackets, grid) = (0, 0, 0, 0, [], {}, [[0] * w for _ in range(h)])
for (i, cc) in enumerate(code):
if cc == '[':
stk.append(i)
elif cc is ']':
brackets[i] = stk.pop()
brackets[brackets[i]] = i
while p < iterations and cp < len(code):
if code[cp] == '*':
grid[r][c] = 0 if grid[r][c] else 1
elif code[cp] == '[' and grid[r][c] == 0:
cp = brackets[cp]
elif code[cp] == ']' and grid[r][c] == 1:
cp = brackets[cp]
elif code[cp] == 'n':
r = r - 1 if r else h - 1
elif code[cp] == 'w':
c = c - 1 if c else w - 1
elif code[cp] == 's':
r = r + 1 if r < h - 1 else 0
elif code[cp] == 'e':
c = c + 1 if c < w - 1 else 0
(cp, p) = (cp + 1, p + 1 if code[cp] in '[]nsew*' else p)
return '\r\n'.join([''.join((str(e) for e in r)) for r in grid])
| python | 13 | 0.511864 | 87 | 31.777778 | 27 | # Esolang Interpreters #3 - Custom Paintfuck Interpreter
## About this Kata Series
"Esolang Interpreters" is a Kata Series that originally began as three separate, independent esolang interpreter Kata authored by [@donaldsebleung](http://codewars.com/users/donaldsebleung) which all shared a similar format and were all somewhat inter-related. Under the influence of [a fellow Codewarrior](https://www.codewars.com/users/nickkwest), these three high-level inter-related Kata gradually evolved into what is known today as the "Esolang Interpreters" series.
This series is a high-level Kata Series designed to challenge the minds of bright and daring programmers by implementing interpreters for various [esoteric programming languages/Esolangs](http://esolangs.org), mainly [Brainfuck](http://esolangs.org/wiki/Brainfuck) derivatives but not limited to them, given a certain specification for a certain Esolang. Perhaps the only exception to this rule is the very first Kata in this Series which is intended as an introduction/taster to the world of esoteric programming languages and writing interpreters for them.
## The Language
Paintfuck is a [borderline-esoteric programming language/Esolang](http://esolangs.org) which is a derivative of [Smallfuck](http://esolangs.org/wiki/Smallfuck) (itself a derivative of the famous [Brainfuck](http://esolangs.org/wiki/Brainfuck)) that uses a two-dimensional data grid instead of a one-dimensional tape.
Valid commands in Paintfuck include:
- `n` - Move data pointer north (up)
- `e` - Move data pointer east (right)
- `s` - Move data pointer south (down)
- `w` - Move data pointer west (left)
- `*` - Flip the bit at the current cell (same as in Smallfuck)
- `[` - Jump past matching `]` if bit under current pointer is `0` (same as in Smallfuck)
- `]` - Jump back to the matching `[` (if bit under current pointer is nonzero) (same as in Smallfuck)
The specification states that any non-command character (i.e. any character other than those mentioned above) should simply be ignored. The output of the interpreter is the two-dimensional data grid itself, best as animation as the interpreter is running, but at least a representation of the data grid itself after a certain number of iterations (explained later in task).
In current implementations, the 2D datagrid is finite in size with toroidal (wrapping) behaviour. This is one of the few major differences of Paintfuck from Smallfuck as Smallfuck terminates (normally) whenever the pointer exceeds the bounds of the tape.
Similar to Smallfuck, Paintfuck is Turing-complete **if and only if** the 2D data grid/canvas were unlimited in size. However, since the size of the data grid is defined to be finite, it acts like a finite state machine.
More info on this Esolang can be found [here](http://esolangs.org/wiki/Paintfuck).
## The Task
Your task is to implement a custom Paintfuck interpreter `interpreter()`/`Interpret` which accepts the following arguments in the specified order:
1. `code` - **Required**. The Paintfuck code to be executed, passed in as a string. May contain comments (non-command characters), in which case your interpreter should simply ignore them. If empty, simply return the initial state of the data grid.
2. `iterations` - **Required**. A non-negative integer specifying the number of iterations to be performed before the final state of the data grid is returned. See notes for definition of 1 iteration. If equal to zero, simply return the initial state of the data grid.
3. `width` - **Required**. The width of the data grid in terms of the number of data cells in each row, passed in as a positive integer.
4. `height` - **Required**. The height of the data grid in cells (i.e. number of rows) passed in as a positive integer.
A few things to note:
- Your interpreter should treat all command characters as **case-sensitive** so `N`, `E`, `S` and `W` are **not** valid command characters
- Your interpreter should initialize all cells within the data grid to a value of `0` regardless of the width and height of the grid
- In this implementation, your pointer must always start at the **top-left hand corner** of the data grid (i.e. first row, first column). This is important as some implementations have the data pointer starting at the middle of the grid.
- One iteration is defined as one step in the program, i.e. the number of command characters evaluated. For example, given a program `nessewnnnewwwsswse` and an iteration count of `5`, your interpreter should evaluate `nesse` before returning the final state of the data grid. **Non-command characters should not count towards the number of iterations.**
- Regarding iterations, the act of skipping to the matching `]` when a `[` is encountered (or vice versa) is considered to be **one** iteration regardless of the number of command characters in between. The next iteration then commences at the command **right after** the matching `]` (or `[`).
- Your interpreter should terminate normally and return the final state of the 2D data grid whenever **any** of the mentioned conditions become true: (1) All commands have been considered left to right, or (2) Your interpreter has already performed the number of iterations specified in the second argument.
- The return value of your interpreter should be a representation of the final state of the 2D data grid where each row is separated from the next by a CRLF (`\r\n`). For example, if the final state of your datagrid is
```
[
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
]
```
... then your return string should be `"100\r\n010\r\n001"`.
Good luck :D
## Kata in this Series
1. [Esolang Interpreters #1 - Introduction to Esolangs and My First Interpreter (MiniStringFuck)](https://www.codewars.com/kata/esolang-interpreters-number-1-introduction-to-esolangs-and-my-first-interpreter-ministringfuck)
2. [Esolang Interpreters #2 - Custom Smallfuck Interpreter](http://codewars.com/kata/esolang-interpreters-number-2-custom-smallfuck-interpreter)
3. **Esolang Interpreters #3 - Custom Paintfuck Interpreter**
4. [Esolang Interpreters #4 - Boolfuck Interpreter](http://codewars.com/kata/esolang-interpreters-number-4-boolfuck-interpreter) | taco |
def interpreter(code, iterations, width, height):
inter = Inter(code, width, height)
inter.run(iterations)
return '\r\n'.join((''.join(map(str, e)) for e in inter.grid))
class Inter:
_instruct = {'w': 'moveW', 'e': 'moveE', 'n': 'moveN', 's': 'moveS', '*': 'flip', '[': 'jumpP', ']': 'jumpB'}
_nonC = lambda x: None
def __init__(self, code, w, h):
self.grid = [[0] * w for e in range(h)]
self.com = code
(self.w, self.h) = (w, h)
(self.x, self.y) = (0, 0)
(self.i, self.it) = (0, 0)
def countIteration(f):
def wrap(cls):
cls.it += 1
return f(cls)
return wrap
def run(self, iterat):
while self.it < iterat and self.i < len(self.com):
getattr(self, self._instruct.get(self.com[self.i], '_nonC'))()
self.i += 1
@countIteration
def moveE(self):
self.x = (self.x + 1) % self.w
@countIteration
def moveW(self):
self.x = (self.x - 1) % self.w
@countIteration
def moveN(self):
self.y = (self.y - 1) % self.h
@countIteration
def moveS(self):
self.y = (self.y + 1) % self.h
@countIteration
def flip(self):
self.grid[self.y][self.x] = int(not self.grid[self.y][self.x])
@countIteration
def jumpP(self):
if self.grid[self.y][self.x] == 0:
self._jump(1, ']', '[')
@countIteration
def jumpB(self):
if self.grid[self.y][self.x] == 1:
self._jump(-1, '[', ']')
def _jump(self, way, need, past, nest=0):
while way:
self.i += way
if self.com[self.i] == need and (not nest):
break
if self.com[self.i] == need and nest:
nest -= 1
if self.com[self.i] == past:
nest += 1
| python | 15 | 0.582157 | 110 | 22.253731 | 67 | # Esolang Interpreters #3 - Custom Paintfuck Interpreter
## About this Kata Series
"Esolang Interpreters" is a Kata Series that originally began as three separate, independent esolang interpreter Kata authored by [@donaldsebleung](http://codewars.com/users/donaldsebleung) which all shared a similar format and were all somewhat inter-related. Under the influence of [a fellow Codewarrior](https://www.codewars.com/users/nickkwest), these three high-level inter-related Kata gradually evolved into what is known today as the "Esolang Interpreters" series.
This series is a high-level Kata Series designed to challenge the minds of bright and daring programmers by implementing interpreters for various [esoteric programming languages/Esolangs](http://esolangs.org), mainly [Brainfuck](http://esolangs.org/wiki/Brainfuck) derivatives but not limited to them, given a certain specification for a certain Esolang. Perhaps the only exception to this rule is the very first Kata in this Series which is intended as an introduction/taster to the world of esoteric programming languages and writing interpreters for them.
## The Language
Paintfuck is a [borderline-esoteric programming language/Esolang](http://esolangs.org) which is a derivative of [Smallfuck](http://esolangs.org/wiki/Smallfuck) (itself a derivative of the famous [Brainfuck](http://esolangs.org/wiki/Brainfuck)) that uses a two-dimensional data grid instead of a one-dimensional tape.
Valid commands in Paintfuck include:
- `n` - Move data pointer north (up)
- `e` - Move data pointer east (right)
- `s` - Move data pointer south (down)
- `w` - Move data pointer west (left)
- `*` - Flip the bit at the current cell (same as in Smallfuck)
- `[` - Jump past matching `]` if bit under current pointer is `0` (same as in Smallfuck)
- `]` - Jump back to the matching `[` (if bit under current pointer is nonzero) (same as in Smallfuck)
The specification states that any non-command character (i.e. any character other than those mentioned above) should simply be ignored. The output of the interpreter is the two-dimensional data grid itself, best as animation as the interpreter is running, but at least a representation of the data grid itself after a certain number of iterations (explained later in task).
In current implementations, the 2D datagrid is finite in size with toroidal (wrapping) behaviour. This is one of the few major differences of Paintfuck from Smallfuck as Smallfuck terminates (normally) whenever the pointer exceeds the bounds of the tape.
Similar to Smallfuck, Paintfuck is Turing-complete **if and only if** the 2D data grid/canvas were unlimited in size. However, since the size of the data grid is defined to be finite, it acts like a finite state machine.
More info on this Esolang can be found [here](http://esolangs.org/wiki/Paintfuck).
## The Task
Your task is to implement a custom Paintfuck interpreter `interpreter()`/`Interpret` which accepts the following arguments in the specified order:
1. `code` - **Required**. The Paintfuck code to be executed, passed in as a string. May contain comments (non-command characters), in which case your interpreter should simply ignore them. If empty, simply return the initial state of the data grid.
2. `iterations` - **Required**. A non-negative integer specifying the number of iterations to be performed before the final state of the data grid is returned. See notes for definition of 1 iteration. If equal to zero, simply return the initial state of the data grid.
3. `width` - **Required**. The width of the data grid in terms of the number of data cells in each row, passed in as a positive integer.
4. `height` - **Required**. The height of the data grid in cells (i.e. number of rows) passed in as a positive integer.
A few things to note:
- Your interpreter should treat all command characters as **case-sensitive** so `N`, `E`, `S` and `W` are **not** valid command characters
- Your interpreter should initialize all cells within the data grid to a value of `0` regardless of the width and height of the grid
- In this implementation, your pointer must always start at the **top-left hand corner** of the data grid (i.e. first row, first column). This is important as some implementations have the data pointer starting at the middle of the grid.
- One iteration is defined as one step in the program, i.e. the number of command characters evaluated. For example, given a program `nessewnnnewwwsswse` and an iteration count of `5`, your interpreter should evaluate `nesse` before returning the final state of the data grid. **Non-command characters should not count towards the number of iterations.**
- Regarding iterations, the act of skipping to the matching `]` when a `[` is encountered (or vice versa) is considered to be **one** iteration regardless of the number of command characters in between. The next iteration then commences at the command **right after** the matching `]` (or `[`).
- Your interpreter should terminate normally and return the final state of the 2D data grid whenever **any** of the mentioned conditions become true: (1) All commands have been considered left to right, or (2) Your interpreter has already performed the number of iterations specified in the second argument.
- The return value of your interpreter should be a representation of the final state of the 2D data grid where each row is separated from the next by a CRLF (`\r\n`). For example, if the final state of your datagrid is
```
[
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
]
```
... then your return string should be `"100\r\n010\r\n001"`.
Good luck :D
## Kata in this Series
1. [Esolang Interpreters #1 - Introduction to Esolangs and My First Interpreter (MiniStringFuck)](https://www.codewars.com/kata/esolang-interpreters-number-1-introduction-to-esolangs-and-my-first-interpreter-ministringfuck)
2. [Esolang Interpreters #2 - Custom Smallfuck Interpreter](http://codewars.com/kata/esolang-interpreters-number-2-custom-smallfuck-interpreter)
3. **Esolang Interpreters #3 - Custom Paintfuck Interpreter**
4. [Esolang Interpreters #4 - Boolfuck Interpreter](http://codewars.com/kata/esolang-interpreters-number-4-boolfuck-interpreter) | taco |
def pairs(code):
opening = []
matching = {}
for (i, c) in enumerate(code):
if c == '[':
opening.append(i)
elif c == ']':
j = opening.pop()
matching[i] = j
matching[j] = i
assert not opening
return matching
def interpreter(code, iterations, width, height):
matching = pairs(code)
x = 0
y = 0
canvas = [[0 for _ in range(width)] for _ in range(height)]
index = 0
iterations_done = 0
while iterations_done < iterations:
try:
c = code[index]
except IndexError:
break
iterations_done += 1
if c == 'n':
y -= 1
y %= height
index += 1
elif c == 's':
y += 1
y %= height
index += 1
elif c == 'w':
x -= 1
x %= width
index += 1
elif c == 'e':
x += 1
x %= width
index += 1
elif c == '*':
canvas[y][x] ^= 1
index += 1
elif c == '[':
if canvas[y][x] == 0:
index = matching[index]
index += 1
elif c == ']':
if canvas[y][x] != 0:
index = matching[index]
index += 1
else:
iterations_done -= 1
index += 1
return '\r\n'.join((''.join(map(str, row)) for row in canvas))
| python | 13 | 0.531163 | 63 | 17.859649 | 57 | # Esolang Interpreters #3 - Custom Paintfuck Interpreter
## About this Kata Series
"Esolang Interpreters" is a Kata Series that originally began as three separate, independent esolang interpreter Kata authored by [@donaldsebleung](http://codewars.com/users/donaldsebleung) which all shared a similar format and were all somewhat inter-related. Under the influence of [a fellow Codewarrior](https://www.codewars.com/users/nickkwest), these three high-level inter-related Kata gradually evolved into what is known today as the "Esolang Interpreters" series.
This series is a high-level Kata Series designed to challenge the minds of bright and daring programmers by implementing interpreters for various [esoteric programming languages/Esolangs](http://esolangs.org), mainly [Brainfuck](http://esolangs.org/wiki/Brainfuck) derivatives but not limited to them, given a certain specification for a certain Esolang. Perhaps the only exception to this rule is the very first Kata in this Series which is intended as an introduction/taster to the world of esoteric programming languages and writing interpreters for them.
## The Language
Paintfuck is a [borderline-esoteric programming language/Esolang](http://esolangs.org) which is a derivative of [Smallfuck](http://esolangs.org/wiki/Smallfuck) (itself a derivative of the famous [Brainfuck](http://esolangs.org/wiki/Brainfuck)) that uses a two-dimensional data grid instead of a one-dimensional tape.
Valid commands in Paintfuck include:
- `n` - Move data pointer north (up)
- `e` - Move data pointer east (right)
- `s` - Move data pointer south (down)
- `w` - Move data pointer west (left)
- `*` - Flip the bit at the current cell (same as in Smallfuck)
- `[` - Jump past matching `]` if bit under current pointer is `0` (same as in Smallfuck)
- `]` - Jump back to the matching `[` (if bit under current pointer is nonzero) (same as in Smallfuck)
The specification states that any non-command character (i.e. any character other than those mentioned above) should simply be ignored. The output of the interpreter is the two-dimensional data grid itself, best as animation as the interpreter is running, but at least a representation of the data grid itself after a certain number of iterations (explained later in task).
In current implementations, the 2D datagrid is finite in size with toroidal (wrapping) behaviour. This is one of the few major differences of Paintfuck from Smallfuck as Smallfuck terminates (normally) whenever the pointer exceeds the bounds of the tape.
Similar to Smallfuck, Paintfuck is Turing-complete **if and only if** the 2D data grid/canvas were unlimited in size. However, since the size of the data grid is defined to be finite, it acts like a finite state machine.
More info on this Esolang can be found [here](http://esolangs.org/wiki/Paintfuck).
## The Task
Your task is to implement a custom Paintfuck interpreter `interpreter()`/`Interpret` which accepts the following arguments in the specified order:
1. `code` - **Required**. The Paintfuck code to be executed, passed in as a string. May contain comments (non-command characters), in which case your interpreter should simply ignore them. If empty, simply return the initial state of the data grid.
2. `iterations` - **Required**. A non-negative integer specifying the number of iterations to be performed before the final state of the data grid is returned. See notes for definition of 1 iteration. If equal to zero, simply return the initial state of the data grid.
3. `width` - **Required**. The width of the data grid in terms of the number of data cells in each row, passed in as a positive integer.
4. `height` - **Required**. The height of the data grid in cells (i.e. number of rows) passed in as a positive integer.
A few things to note:
- Your interpreter should treat all command characters as **case-sensitive** so `N`, `E`, `S` and `W` are **not** valid command characters
- Your interpreter should initialize all cells within the data grid to a value of `0` regardless of the width and height of the grid
- In this implementation, your pointer must always start at the **top-left hand corner** of the data grid (i.e. first row, first column). This is important as some implementations have the data pointer starting at the middle of the grid.
- One iteration is defined as one step in the program, i.e. the number of command characters evaluated. For example, given a program `nessewnnnewwwsswse` and an iteration count of `5`, your interpreter should evaluate `nesse` before returning the final state of the data grid. **Non-command characters should not count towards the number of iterations.**
- Regarding iterations, the act of skipping to the matching `]` when a `[` is encountered (or vice versa) is considered to be **one** iteration regardless of the number of command characters in between. The next iteration then commences at the command **right after** the matching `]` (or `[`).
- Your interpreter should terminate normally and return the final state of the 2D data grid whenever **any** of the mentioned conditions become true: (1) All commands have been considered left to right, or (2) Your interpreter has already performed the number of iterations specified in the second argument.
- The return value of your interpreter should be a representation of the final state of the 2D data grid where each row is separated from the next by a CRLF (`\r\n`). For example, if the final state of your datagrid is
```
[
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
]
```
... then your return string should be `"100\r\n010\r\n001"`.
Good luck :D
## Kata in this Series
1. [Esolang Interpreters #1 - Introduction to Esolangs and My First Interpreter (MiniStringFuck)](https://www.codewars.com/kata/esolang-interpreters-number-1-introduction-to-esolangs-and-my-first-interpreter-ministringfuck)
2. [Esolang Interpreters #2 - Custom Smallfuck Interpreter](http://codewars.com/kata/esolang-interpreters-number-2-custom-smallfuck-interpreter)
3. **Esolang Interpreters #3 - Custom Paintfuck Interpreter**
4. [Esolang Interpreters #4 - Boolfuck Interpreter](http://codewars.com/kata/esolang-interpreters-number-4-boolfuck-interpreter) | taco |
def build_jump_table(code):
jumps = {}
stack = []
for (i, c) in enumerate(code):
if c == '[':
stack.append(i)
elif c == ']':
j = stack.pop()
jumps[i] = j
jumps[j] = i
return jumps
class Interpreter:
def __init__(self, code, width, height):
self.code = code
self.jumps = build_jump_table(code)
self.cells = [[0] * width for _ in range(height)]
self.width = width
self.height = height
self.r = 0
self.c = 0
@property
def value(self):
return self.cells[self.r][self.c]
@value.setter
def value(self, val):
self.cells[self.r][self.c] = val
def run(self, iterations):
pc = 0
while pc < len(self.code) and iterations > 0:
op = self.code[pc]
if op == '*':
self.value = 1 - self.value
elif op == 'n':
self.r = (self.r - 1) % self.height
elif op == 's':
self.r = (self.r + 1) % self.height
elif op == 'w':
self.c = (self.c - 1) % self.width
elif op == 'e':
self.c = (self.c + 1) % self.width
elif op == '[' and self.value == 0:
pc = self.jumps[pc]
elif op == ']' and self.value == 1:
pc = self.jumps[pc]
pc += 1
iterations -= op in '*nswe[]'
return '\r\n'.join((''.join(map(str, row)) for row in self.cells))
def interpreter(code, iterations, width, height):
ip = Interpreter(code, width, height)
return ip.run(iterations)
| python | 16 | 0.577126 | 68 | 22.732143 | 56 | # Esolang Interpreters #3 - Custom Paintfuck Interpreter
## About this Kata Series
"Esolang Interpreters" is a Kata Series that originally began as three separate, independent esolang interpreter Kata authored by [@donaldsebleung](http://codewars.com/users/donaldsebleung) which all shared a similar format and were all somewhat inter-related. Under the influence of [a fellow Codewarrior](https://www.codewars.com/users/nickkwest), these three high-level inter-related Kata gradually evolved into what is known today as the "Esolang Interpreters" series.
This series is a high-level Kata Series designed to challenge the minds of bright and daring programmers by implementing interpreters for various [esoteric programming languages/Esolangs](http://esolangs.org), mainly [Brainfuck](http://esolangs.org/wiki/Brainfuck) derivatives but not limited to them, given a certain specification for a certain Esolang. Perhaps the only exception to this rule is the very first Kata in this Series which is intended as an introduction/taster to the world of esoteric programming languages and writing interpreters for them.
## The Language
Paintfuck is a [borderline-esoteric programming language/Esolang](http://esolangs.org) which is a derivative of [Smallfuck](http://esolangs.org/wiki/Smallfuck) (itself a derivative of the famous [Brainfuck](http://esolangs.org/wiki/Brainfuck)) that uses a two-dimensional data grid instead of a one-dimensional tape.
Valid commands in Paintfuck include:
- `n` - Move data pointer north (up)
- `e` - Move data pointer east (right)
- `s` - Move data pointer south (down)
- `w` - Move data pointer west (left)
- `*` - Flip the bit at the current cell (same as in Smallfuck)
- `[` - Jump past matching `]` if bit under current pointer is `0` (same as in Smallfuck)
- `]` - Jump back to the matching `[` (if bit under current pointer is nonzero) (same as in Smallfuck)
The specification states that any non-command character (i.e. any character other than those mentioned above) should simply be ignored. The output of the interpreter is the two-dimensional data grid itself, best as animation as the interpreter is running, but at least a representation of the data grid itself after a certain number of iterations (explained later in task).
In current implementations, the 2D datagrid is finite in size with toroidal (wrapping) behaviour. This is one of the few major differences of Paintfuck from Smallfuck as Smallfuck terminates (normally) whenever the pointer exceeds the bounds of the tape.
Similar to Smallfuck, Paintfuck is Turing-complete **if and only if** the 2D data grid/canvas were unlimited in size. However, since the size of the data grid is defined to be finite, it acts like a finite state machine.
More info on this Esolang can be found [here](http://esolangs.org/wiki/Paintfuck).
## The Task
Your task is to implement a custom Paintfuck interpreter `interpreter()`/`Interpret` which accepts the following arguments in the specified order:
1. `code` - **Required**. The Paintfuck code to be executed, passed in as a string. May contain comments (non-command characters), in which case your interpreter should simply ignore them. If empty, simply return the initial state of the data grid.
2. `iterations` - **Required**. A non-negative integer specifying the number of iterations to be performed before the final state of the data grid is returned. See notes for definition of 1 iteration. If equal to zero, simply return the initial state of the data grid.
3. `width` - **Required**. The width of the data grid in terms of the number of data cells in each row, passed in as a positive integer.
4. `height` - **Required**. The height of the data grid in cells (i.e. number of rows) passed in as a positive integer.
A few things to note:
- Your interpreter should treat all command characters as **case-sensitive** so `N`, `E`, `S` and `W` are **not** valid command characters
- Your interpreter should initialize all cells within the data grid to a value of `0` regardless of the width and height of the grid
- In this implementation, your pointer must always start at the **top-left hand corner** of the data grid (i.e. first row, first column). This is important as some implementations have the data pointer starting at the middle of the grid.
- One iteration is defined as one step in the program, i.e. the number of command characters evaluated. For example, given a program `nessewnnnewwwsswse` and an iteration count of `5`, your interpreter should evaluate `nesse` before returning the final state of the data grid. **Non-command characters should not count towards the number of iterations.**
- Regarding iterations, the act of skipping to the matching `]` when a `[` is encountered (or vice versa) is considered to be **one** iteration regardless of the number of command characters in between. The next iteration then commences at the command **right after** the matching `]` (or `[`).
- Your interpreter should terminate normally and return the final state of the 2D data grid whenever **any** of the mentioned conditions become true: (1) All commands have been considered left to right, or (2) Your interpreter has already performed the number of iterations specified in the second argument.
- The return value of your interpreter should be a representation of the final state of the 2D data grid where each row is separated from the next by a CRLF (`\r\n`). For example, if the final state of your datagrid is
```
[
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
]
```
... then your return string should be `"100\r\n010\r\n001"`.
Good luck :D
## Kata in this Series
1. [Esolang Interpreters #1 - Introduction to Esolangs and My First Interpreter (MiniStringFuck)](https://www.codewars.com/kata/esolang-interpreters-number-1-introduction-to-esolangs-and-my-first-interpreter-ministringfuck)
2. [Esolang Interpreters #2 - Custom Smallfuck Interpreter](http://codewars.com/kata/esolang-interpreters-number-2-custom-smallfuck-interpreter)
3. **Esolang Interpreters #3 - Custom Paintfuck Interpreter**
4. [Esolang Interpreters #4 - Boolfuck Interpreter](http://codewars.com/kata/esolang-interpreters-number-4-boolfuck-interpreter) | taco |
class Memory:
def __init__(self, width, height):
self.__x = 0
self.__y = 0
self.width = width
self.height = height
self.mem = [[0] * width for _ in range(height)]
def flip(self):
self.mem[self.y][self.x] = (self.get() + 1) % 2
def get(self):
return self.mem[self.y][self.x]
def to_string(self):
return '\r\n'.join((''.join(map(str, row)) for row in self.mem))
@property
def x(self):
return self.__x
@x.setter
def x(self, val):
self.__x = val % self.width
@property
def y(self):
return self.__y
@y.setter
def y(self, val):
self.__y = val % self.height
def interpreter(code, iterations, width, height):
op_ptr = 0
mem = Memory(width, height)
jumps = {}
bracket = []
for (i, op) in enumerate(code):
if op == '[':
bracket.append(i)
elif op == ']':
jumps[bracket[-1]] = i
jumps[i] = bracket.pop()
while iterations and op_ptr < len(code):
op = code[op_ptr]
if op in 'nesw*[]':
iterations -= 1
if op == 'n':
mem.y -= 1
elif op == 'e':
mem.x += 1
elif op == 's':
mem.y += 1
elif op == 'w':
mem.x -= 1
elif op == '*':
mem.flip()
elif op == '[' and mem.get() == 0:
op_ptr = jumps[op_ptr]
elif op == ']' and mem.get() != 0:
op_ptr = jumps[op_ptr]
op_ptr += 1
return mem.to_string()
| python | 13 | 0.55625 | 66 | 18.692308 | 65 | # Esolang Interpreters #3 - Custom Paintfuck Interpreter
## About this Kata Series
"Esolang Interpreters" is a Kata Series that originally began as three separate, independent esolang interpreter Kata authored by [@donaldsebleung](http://codewars.com/users/donaldsebleung) which all shared a similar format and were all somewhat inter-related. Under the influence of [a fellow Codewarrior](https://www.codewars.com/users/nickkwest), these three high-level inter-related Kata gradually evolved into what is known today as the "Esolang Interpreters" series.
This series is a high-level Kata Series designed to challenge the minds of bright and daring programmers by implementing interpreters for various [esoteric programming languages/Esolangs](http://esolangs.org), mainly [Brainfuck](http://esolangs.org/wiki/Brainfuck) derivatives but not limited to them, given a certain specification for a certain Esolang. Perhaps the only exception to this rule is the very first Kata in this Series which is intended as an introduction/taster to the world of esoteric programming languages and writing interpreters for them.
## The Language
Paintfuck is a [borderline-esoteric programming language/Esolang](http://esolangs.org) which is a derivative of [Smallfuck](http://esolangs.org/wiki/Smallfuck) (itself a derivative of the famous [Brainfuck](http://esolangs.org/wiki/Brainfuck)) that uses a two-dimensional data grid instead of a one-dimensional tape.
Valid commands in Paintfuck include:
- `n` - Move data pointer north (up)
- `e` - Move data pointer east (right)
- `s` - Move data pointer south (down)
- `w` - Move data pointer west (left)
- `*` - Flip the bit at the current cell (same as in Smallfuck)
- `[` - Jump past matching `]` if bit under current pointer is `0` (same as in Smallfuck)
- `]` - Jump back to the matching `[` (if bit under current pointer is nonzero) (same as in Smallfuck)
The specification states that any non-command character (i.e. any character other than those mentioned above) should simply be ignored. The output of the interpreter is the two-dimensional data grid itself, best as animation as the interpreter is running, but at least a representation of the data grid itself after a certain number of iterations (explained later in task).
In current implementations, the 2D datagrid is finite in size with toroidal (wrapping) behaviour. This is one of the few major differences of Paintfuck from Smallfuck as Smallfuck terminates (normally) whenever the pointer exceeds the bounds of the tape.
Similar to Smallfuck, Paintfuck is Turing-complete **if and only if** the 2D data grid/canvas were unlimited in size. However, since the size of the data grid is defined to be finite, it acts like a finite state machine.
More info on this Esolang can be found [here](http://esolangs.org/wiki/Paintfuck).
## The Task
Your task is to implement a custom Paintfuck interpreter `interpreter()`/`Interpret` which accepts the following arguments in the specified order:
1. `code` - **Required**. The Paintfuck code to be executed, passed in as a string. May contain comments (non-command characters), in which case your interpreter should simply ignore them. If empty, simply return the initial state of the data grid.
2. `iterations` - **Required**. A non-negative integer specifying the number of iterations to be performed before the final state of the data grid is returned. See notes for definition of 1 iteration. If equal to zero, simply return the initial state of the data grid.
3. `width` - **Required**. The width of the data grid in terms of the number of data cells in each row, passed in as a positive integer.
4. `height` - **Required**. The height of the data grid in cells (i.e. number of rows) passed in as a positive integer.
A few things to note:
- Your interpreter should treat all command characters as **case-sensitive** so `N`, `E`, `S` and `W` are **not** valid command characters
- Your interpreter should initialize all cells within the data grid to a value of `0` regardless of the width and height of the grid
- In this implementation, your pointer must always start at the **top-left hand corner** of the data grid (i.e. first row, first column). This is important as some implementations have the data pointer starting at the middle of the grid.
- One iteration is defined as one step in the program, i.e. the number of command characters evaluated. For example, given a program `nessewnnnewwwsswse` and an iteration count of `5`, your interpreter should evaluate `nesse` before returning the final state of the data grid. **Non-command characters should not count towards the number of iterations.**
- Regarding iterations, the act of skipping to the matching `]` when a `[` is encountered (or vice versa) is considered to be **one** iteration regardless of the number of command characters in between. The next iteration then commences at the command **right after** the matching `]` (or `[`).
- Your interpreter should terminate normally and return the final state of the 2D data grid whenever **any** of the mentioned conditions become true: (1) All commands have been considered left to right, or (2) Your interpreter has already performed the number of iterations specified in the second argument.
- The return value of your interpreter should be a representation of the final state of the 2D data grid where each row is separated from the next by a CRLF (`\r\n`). For example, if the final state of your datagrid is
```
[
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]
]
```
... then your return string should be `"100\r\n010\r\n001"`.
Good luck :D
## Kata in this Series
1. [Esolang Interpreters #1 - Introduction to Esolangs and My First Interpreter (MiniStringFuck)](https://www.codewars.com/kata/esolang-interpreters-number-1-introduction-to-esolangs-and-my-first-interpreter-ministringfuck)
2. [Esolang Interpreters #2 - Custom Smallfuck Interpreter](http://codewars.com/kata/esolang-interpreters-number-2-custom-smallfuck-interpreter)
3. **Esolang Interpreters #3 - Custom Paintfuck Interpreter**
4. [Esolang Interpreters #4 - Boolfuck Interpreter](http://codewars.com/kata/esolang-interpreters-number-4-boolfuck-interpreter) | taco |