Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Catalan
DOI:
Libraries:
Datasets
pandas
License:
id_parent
stringlengths
19
19
id_reply
stringlengths
19
19
parent_text
stringclasses
1 value
reply_text
stringclasses
1 value
topic
int64
0
4
dynamic_stance
int64
0
6
parent_stance
int64
0
3
reply_stance
int64
0
3
parent_emotion
sequencelengths
1
6
reply_emotion
sequencelengths
1
5
1413960970066710533
1413968453690658816
1
1
0
1
[ "distrust", "joy", "disgust" ]
[ "distrust" ]
1416525654850482179
1416526570823557122
1
1
2
1
[ "disgust", "fear", "anger" ]
[ "anger" ]
1472200269593260035
1472304816173035527
1
1
2
0
[ "disgust", "anger" ]
[ "disgust" ]
1441765644245012484
1441898494298447873
1
1
1
2
[ "distrust", "disgust" ]
[ "distrust", "no emotion", "anger" ]
1436751705702535170
1436761591417032715
1
1
3
1
[ "joy", "anticipation", "anger" ]
[ "fear" ]
1380502425249972225
1381013131305058306
1
3
2
3
[ "joy", "no emotion" ]
[ "no emotion", "disgust" ]
1449340926053294081
1449418161728724992
1
2
0
0
[ "joy", "sadness" ]
[ "joy" ]
1347665384539889666
1348028583596482560
1
4
2
0
[ "no emotion" ]
[ "surprise", "distrust" ]
1385859696498814977
1386096633633456129
1
2
3
2
[ "distrust", "disgust", "anger" ]
[ "disgust", "sadness" ]
1350582017210142720
1350583015097966593
1
1
0
2
[ "anticipation", "no emotion" ]
[ "fear" ]
1396058959090487300
1396249813302325249
1
2
1
2
[ "distrust", "disgust", "anger" ]
[ "distrust", "disgust", "anger" ]
1477260178361917443
1477383668096196626
1
1
2
1
[ "no emotion", "fear" ]
[ "disgust", "fear" ]
1472293539031797763
1472342211232735233
1
3
1
3
[ "surprise", "joy", "disgust", "anger" ]
[ "disgust", "fear", "anger" ]
1479937793405165574
1479946913277435917
1
1
2
1
[ "no emotion" ]
[ "sadness", "surprise", "anger" ]
1482457391748853761
1482474390398902277
1
4
3
2
[ "joy", "no emotion" ]
[ "sadness", "joy", "anger" ]
1441518794845810688
1444347159747440640
1
3
0
2
[ "distrust" ]
[ "distrust" ]
1365777328509444105
1365778514541244417
1
1
0
0
[ "distrust", "disgust", "anger" ]
[ "distrust", "sadness" ]
1431698260813623297
1431721895200763906
1
4
2
1
[ "distrust", "disgust", "fear" ]
[ "disgust" ]
1368294042774159365
1368321063021592580
1
1
0
2
[ "distrust", "anticipation", "no emotion" ]
[ "distrust", "disgust", "anger" ]
1479593962742726658
1479947482083774471
1
0
2
2
[ "surprise", "no emotion" ]
[ "surprise", "distrust", "anticipation", "anger" ]
1398700389420175361
1398730242789945347
1
4
0
2
[ "joy" ]
[ "no emotion" ]
1406325467968331785
1406326212994207757
1
1
0
1
[ "joy", "anticipation" ]
[ "disgust", "fear" ]
1479724526489460740
1479953452394598404
1
1
2
2
[ "surprise", "disgust", "fear" ]
[ "anger" ]
1360623932324347906
1360700414967037959
1
4
0
3
[ "no emotion" ]
[ "distrust", "no emotion" ]
1469809077882605568
1469813770688077829
1
2
3
1
[ "anticipation", "disgust", "anger" ]
[ "distrust", "disgust" ]
1472350031646711812
1472351084861612036
1
1
0
0
[ "disgust", "anger" ]
[ "anger" ]
1431741405295153156
1431748149731811329
1
4
3
0
[ "distrust", "anticipation", "fear", "sadness" ]
[ "anger" ]
1485035588881375233
1485036891175108609
1
1
2
1
[ "distrust", "disgust" ]
[ "distrust", "disgust", "fear", "anger" ]
1416512295065296899
1416514216224333829
1
1
0
1
[ "fear", "sadness" ]
[ "distrust", "anger", "sadness" ]
1439314028501864453
1439321676446117895
1
2
3
2
[ "surprise", "disgust", "anger" ]
[ "distrust", "anger" ]
1462129755944374301
1462207486279262213
1
1
0
1
[ "joy", "anticipation" ]
[ "distrust" ]
1375912609858326529
1375930266737373187
1
2
0
0
[ "distrust", "anger" ]
[ "disgust", "fear" ]
1421447976757702660
1421610622400319489
1
1
0
1
[ "disgust", "anger" ]
[ "distrust", "anger" ]
1431719234615324675
1431743717916938242
1
1
3
2
[ "surprise", "no emotion" ]
[ "distrust", "disgust", "anger" ]
1380965259691888645
1381008338402566145
1
1
3
0
[ "distrust", "sadness" ]
[ "anticipation" ]
1406336252992016384
1406352348771983365
1
2
3
1
[ "disgust", "anger" ]
[ "distrust", "disgust", "fear", "anger" ]
1479724526489460740
1479937711452704770
1
2
2
2
[ "surprise", "disgust", "fear" ]
[ "disgust", "fear", "anger" ]
1444435251363725315
1444436579695697923
1
4
3
3
[ "no emotion" ]
[ "no emotion" ]
1411357625208524805
1411441028213751810
1
1
3
1
[ "disgust", "fear" ]
[ "distrust" ]
1436748095119839232
1436752543737159688
1
1
1
0
[ "distrust", "anger" ]
[ "anger" ]
1479918196979286020
1479939773351575558
1
4
3
1
[ "joy", "anticipation" ]
[ "distrust", "anger" ]
1459640941921329154
1459643698560606210
1
1
0
1
[ "joy", "anticipation", "anger" ]
[ "distrust", "anger" ]
1420758125720707072
1421583374410469379
1
2
0
0
[ "anticipation" ]
[ "anger" ]
1373406490061574144
1373407633290461184
1
4
1
2
[ "anticipation", "anger" ]
[ "distrust", "disgust", "anger" ]
1421594080476291072
1421596367106060290
1
4
2
2
[ "distrust" ]
[ "distrust" ]
1485025742593437697
1485029254857428995
1
2
3
2
[ "distrust", "disgust" ]
[ "no emotion" ]
1459155728837623809
1459656438742192128
1
1
2
2
[ "sadness", "distrust", "anger" ]
[ "joy", "disgust", "anger" ]
1400802861408215046
1401264895069409291
1
4
0
0
[ "fear" ]
[ "no emotion", "fear", "anger" ]
1352901887385862144
1353112566688604160
1
1
3
2
[ "anticipation", "sadness" ]
[ "anticipation", "disgust", "fear" ]
1345471373028831232
1345516982062489602
1
2
2
2
[ "surprise", "disgust" ]
[ "distrust", "anger" ]
1477377528100794368
1477379877900853255
1
1
0
2
[ "distrust", "disgust", "anger" ]
[ "distrust", "disgust", "anger" ]
1373220450197733376
1373231030660915200
1
1
1
2
[ "distrust" ]
[ "anticipation", "no emotion" ]
1482379581369815042
1482498394841128961
1
4
2
2
[ "distrust", "disgust" ]
[ "no emotion" ]
1472317566714585096
1472342436307427331
1
3
2
2
[ "fear", "sadness" ]
[ "no emotion" ]
1353090050611884044
1353103163440705537
1
4
2
2
[ "no emotion", "fear", "sadness" ]
[ "no emotion" ]
1401240924366245893
1401272326843469829
1
2
2
2
[ "distrust", "surprise", "disgust" ]
[ "no emotion" ]
1469788015425900547
1469801978666565641
1
4
2
2
[ "disgust", "fear", "anger" ]
[ "disgust", "fear", "sadness" ]
1477317888658792451
1477376872250023945
1
1
0
1
[ "anticipation", "no emotion" ]
[ "anger" ]
1348028583596482560
1348044587038896129
1
1
0
1
[ "surprise", "distrust" ]
[ "distrust", "disgust" ]
1482415432816635905
1482476777868087302
1
4
3
2
[ "distrust", "sadness" ]
[ "no emotion" ]
1441856783404961794
1441883301002809344
1
1
2
2
[ "no emotion" ]
[ "disgust", "fear", "sadness" ]
1459604097766670342
1459644465178714113
1
1
3
2
[ "distrust", "anger" ]
[ "distrust", "disgust", "anger" ]
1446864424346734592
1446887555048382469
1
1
0
1
[ "anticipation", "no emotion" ]
[ "distrust", "surprise" ]
1439191477964451843
1439192452565540865
1
2
0
3
[ "joy", "disgust" ]
[ "joy", "fear" ]
1469268913158602755
1469816724899909633
1
4
3
2
[ "distrust" ]
[ "fear", "sadness" ]
1365723275297390593
1365806402107830276
1
1
2
2
[ "no emotion" ]
[ "sadness" ]
1386072158611386370
1386083769304637441
1
4
2
3
[ "distrust", "no emotion" ]
[ "disgust", "sadness" ]
1479937793405165574
1479938669364625410
1
2
2
2
[ "no emotion" ]
[ "no emotion" ]
1482449606617223171
1482492544609103881
1
4
3
2
[ "no emotion" ]
[ "disgust", "anger" ]
1477038605449277440
1477394656971345923
1
2
0
0
[ "joy", "anticipation", "anger" ]
[ "joy", "anticipation" ]
1350579762239066112
1350580577972461569
1
3
2
2
[ "fear", "anger" ]
[ "no emotion" ]
1431710678511915020
1431760998063542274
1
2
0
2
[ "joy", "anticipation", "fear" ]
[ "disgust", "anger" ]
1401228746208813061
1401269674701213707
1
4
2
2
[ "surprise" ]
[ "surprise" ]
1472341426897838082
1472348674827202562
1
1
3
2
[ "no emotion", "fear" ]
[ "disgust" ]
1446796076288196623
1446884301509890057
1
1
0
1
[ "distrust", "anger" ]
[ "disgust", "anger" ]
1403791823265488899
1403793503268704264
1
4
3
0
[ "no emotion", "sadness" ]
[ "anger" ]
1365721075997417474
1365785273842487307
1
3
0
2
[ "distrust", "disgust" ]
[ "distrust", "disgust" ]
1378264849248059392
1378476909479219200
1
3
0
1
[ "joy", "anger" ]
[ "distrust", "disgust" ]
1464719457486581760
1464725494566469634
1
1
2
1
[ "no emotion", "fear" ]
[ "distrust" ]
1424103007126528007
1424133370712371200
1
1
2
2
[ "disgust" ]
[ "disgust" ]
1467243865547628546
1467274982778617859
1
3
0
2
[ "disgust", "fear" ]
[ "fear" ]
1345477249450070017
1345518118412705795
1
2
2
2
[ "disgust", "anger" ]
[ "distrust", "anticipation" ]
1439233431699927042
1439355006575120388
1
2
2
0
[ "no emotion" ]
[ "distrust", "disgust", "anger" ]
1353078470990057476
1353116661713424385
1
2
2
2
[ "distrust", "disgust", "anger" ]
[ "anger" ]
1469797278810574849
1469811653529198596
1
1
2
1
[ "disgust", "anger" ]
[ "distrust", "anger" ]
1365316122975830017
1365779262096240642
1
1
3
2
[ "joy", "no emotion", "sadness" ]
[ "distrust", "anticipation", "fear", "anger" ]
1451921011012681735
1451977235662086150
1
1
1
2
[ "distrust", "no emotion" ]
[ "distrust", "disgust", "anger" ]
1380936829227139074
1380987470792294404
1
4
3
2
[ "anticipation", "fear", "anger" ]
[ "no emotion", "anger" ]
1461755383698149378
1462190124788244489
1
2
2
2
[ "no emotion", "disgust" ]
[ "disgust" ]
1436754668470902784
1436755612227063809
1
1
3
0
[ "joy", "fear" ]
[ "distrust", "disgust" ]
1378384272776704005
1378467677140889600
1
0
2
0
[ "joy", "no emotion" ]
[ "joy", "anticipation" ]
1408867351051841538
1408917917299773441
1
2
2
2
[ "anticipation", "no emotion", "fear" ]
[ "fear" ]
1453960988294672386
1454514668681191427
1
2
0
2
[ "anticipation" ]
[ "anticipation", "no emotion" ]
1421156308493946882
1421578631193694208
1
2
1
1
[ "distrust", "fear" ]
[ "disgust", "sadness" ]
1367406617432641536
1368326722832236550
1
0
2
2
[ "no emotion" ]
[ "no emotion", "disgust" ]
1451987390629822465
1452041722926669836
1
2
3
2
[ "distrust", "joy" ]
[ "distrust", "joy" ]
1421575549596708865
1421585113167630342
1
1
2
3
[ "distrust", "disgust", "anger" ]
[ "disgust", "anger" ]
1467265174805622792
1467270677082390535
1
1
1
2
[ "surprise", "disgust" ]
[ "sadness", "anger" ]
1469801132260270086
1469809312830828546
1
1
2
0
[ "anger" ]
[ "fear", "anger" ]
1444337752980525061
1444341774957305859
1
1
3
2
[ "disgust", "anger" ]
[ "disgust" ]

Dataset Card for CaSET, the Catalan Stance and Emotions Dataset from Twitter

Dataset Summary

The CaSET dataset is a Catalan corpus of Tweets annotated with Emotions, Static Stance, and Dynamic Stance. The dataset contains 11k unique sentences on five controversial topics, grouped in 6k pairs of sentences, paired as parent messages and replies to these messages.

Supported Tasks and Leaderboards

This dataset can be used to train models for emotion detection, static stance detection, and dynamic stance detection.

Languages

The dataset is in Catalan (ca-ES).

Dataset Structure

Each instance in the dataset is a pair of parent-reply messages, annotated with the relation between the two messages (the dynamic stance) and the topic of the messages. For each message there is the id to retrieve it with the Twitter API, the emotions identified in the message, and the relation between the message and the topic (static stance). The text fields have to be retrieved using the Twitter API.

Data Instances

{
"id_parent": "1413960970066710533", 
"id_reply": "1413968453690658816", 
  "parent_text": "", 
  "reply_text": "", 
    "topic": "vaccines", 
    "dynamic_stance": "Disagree", 
  "parent_stance": "FAVOUR", 
  "reply_stance": "AGAINST", 
  "parent_emotion": ["distrust", "joy", "disgust"], 
  "reply_emotion": ["distrust"]
}

Data Splits

The dataset does not contain splits.

Dataset Creation

Curation Rationale

We created this corpus to contribute to the development of language models in Catalan, a low-resource language.

Source Data

The data was collected using the Twitter API by the Barcelona Supercomputing Center.

Initial Data Collection and Normalization

The data was collected based on a list of keywords related to the five topics included in the dataset: vaccines, rent regulation, surrogate pregnancy, airport expansion, and a TV show rigging. Specific periods in which the topic was under discussion were also selected.

Who are the source language producers?

The source language producers are users of Twitter.

Annotations

  • Emotions are annotated in a multi-label fashion. The labels can be: Anger, Anticipation, Disgust, Fear, Joy, Sadness, Surprise, Distrust, and No emotion. CA

  • Static stance is annotated per message. The labels can be: FAVOUR, AGAINST, NEUTRAL, NA.

  • Dynamic stance is annotated per pair. The labels can be: Agree, Disagree, Elaborate, Query, Neutral, Unrelated, NA.

Annotation process

  • For emotions there were 3 annotators. The gold labels are an aggregation of all the labels annotated by the 3. The IAA calculated with Fleiss' Kappa per label was, on average, 45.38.

  • For static stance there were 2 annotators, in the cases of disagreement a third annotated chose the gold label. The overall Fleiss' Kappa between the 2 annotators is 82.71.

  • For dynamic stance there were 4 annotators. If at least 3 of the annotators disagreed, a fifth annotator chose the gold label. The overall Fleiss' Kappa between the 4 annotators was 56.51, and the average Fleiss' Kappa of the annotators with the gold labels is 85.17.

Who are the annotators?

All the annotators are native speakers of Catalan.

Personal and Sensitive Information

Considerations for Using the Data

Social Impact of Dataset

We hope this corpus contributes to the development of language models in Catalan, a low-resource language.

Discussion of Biases

We are aware that, since the data comes from social media, this will contain biases, hate speech and toxic content. We have not applied any steps to reduce their impact.

Other Known Limitations

The dataset has to be downloaded using the Twitter API, therefore some instances might be lost.

Additional Information

Dataset Curators

Language Technologies Unit (LangTech) at the Barcelona Supercomputing Center.

This work has been promoted and financed by the Generalitat de Catalunya through the Aina project.

Licensing Information

Creative Commons Attribution 4.0.

Citation Information

@inproceedings{figueras-etal-2023-dynamic,
    title = "Dynamic Stance: Modeling Discussions by Labeling the Interactions",
    author = "Figueras, Blanca  and
      Baucells, Irene  and
      Caselli, Tommaso",
    editor = "Bouamor, Houda  and
      Pino, Juan  and
      Bali, Kalika",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
    month = dec,
    year = "2023",
    address = "Singapore",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.findings-emnlp.432",
    doi = "10.18653/v1/2023.findings-emnlp.432",
    pages = "6503--6515",
}
@inproceedings{gonzalez-agirre-etal-2024-building-data,
    title = "Building a Data Infrastructure for a Mid-Resource Language: The Case of {C}atalan",
    author = "Gonzalez-Agirre, Aitor  and
      Marimon, Montserrat  and
      Rodriguez-Penagos, Carlos  and
      Aula-Blasco, Javier  and
      Baucells, Irene  and
      Armentano-Oller, Carme  and
      Palomar-Giner, Jorge  and
      Kulebi, Baybars  and
      Villegas, Marta",
    editor = "Calzolari, Nicoletta  and
      Kan, Min-Yen  and
      Hoste, Veronique  and
      Lenci, Alessandro  and
      Sakti, Sakriani  and
      Xue, Nianwen",
    booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
    month = may,
    year = "2024",
    address = "Torino, Italia",
    publisher = "ELRA and ICCL",
    url = "https://aclanthology.org/2024.lrec-main.231",
    pages = "2556--2566",
}

Contact information

For further information, please send an email to langtech@bsc.es.

Downloads last month
44

Collection including projecte-aina/CaSET-catalan-stance-emotions-twitter