Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
multi-class-classification
Languages:
Catalan
Size:
10K - 100K
License:
# Loading script for the TeCla dataset. | |
import json | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """ | |
""" | |
_DESCRIPTION = """ | |
WikiCAT: Text Classification Catalan dataset from the Viquipedia | |
""" | |
_HOMEPAGE = """ """ | |
# TODO: upload datasets to github | |
_URL = "https://huggingface.co/datasets/crodri/wikicat_ca/resolve/main/" | |
_TRAINING_FILE = "hftrain_ca.json" | |
_DEV_FILE = "hfeval_ca.json" | |
#_TEST_FILE = "test.json" | |
class wikicat_caConfig(datasets.BuilderConfig): | |
""" Builder config for the Topicat dataset """ | |
def __init__(self, **kwargs): | |
"""BuilderConfig for WikiCAT_ca. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(teclaConfig, self).__init__(**kwargs) | |
class wikicat_ca(datasets.GeneratorBasedBuilder): | |
""" WikiCAT_ca Dataset """ | |
BUILDER_CONFIGS = [ | |
wikicat_caConfig( | |
name="WikiCAT_ca", | |
version=datasets.Version("1.1.0"), | |
description="WikiCAT_ca", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"label": datasets.features.ClassLabel | |
(names= ['Història', 'Tecnologia', 'Humanitats', 'Economia', 'Dret', 'Esport', 'Política', 'Govern', 'Entreteniment', 'Natura', 'Exèrcit', 'Salut_i_benestar_social', 'Matemàtiques', 'Filosofia', 'Ciència', 'Música', 'Enginyeria', 'Empresa', 'Religió'] | |
), | |
} | |
), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": f"{_URL}{_TRAINING_FILE}", | |
"dev": f"{_URL}{_DEV_FILE}", | |
# "test": f"{_URL}{_TEST_FILE}", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
# datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
wikicat_ca = json.load(f) | |
for id_, article in enumerate(wikicat_ca["data"]): | |
text = article["sentence"] | |
label = article["label"] | |
yield id_, { | |
"text": text, | |
"label": label, | |
} | |