metadata
tags:
- pyterrier
- pyterrier-artifact
- pyterrier-artifact.sparse_index
- pyterrier-artifact.sparse_index.terrier
task_categories:
- text-retrieval
viewer: false
quora.terrier
Description
Terrier index for Quora
Usage
# Load the artifact
import pyterrier as pt
index = pt.Artifact.from_hf('pyterrier/quora.terrier')
index.bm25()
Benchmarks
quora/dev
name | nDCG@10 | R@1000 |
---|---|---|
bm25 | 0.7712 | 0.9908 |
dph | 0.4529 | 0.9005 |
quora/test
name | nDCG@10 | R@1000 |
---|---|---|
bm25 | 0.7676 | 0.9926 |
dph | 0.4429 | 0.9026 |
Reproduction
import pyterrier as pt
from tqdm import tqdm
import ir_datasets
dataset = ir_datasets.load('beir/quora')
meta_docno_len = dataset.metadata()['docs']['fields']['doc_id']['max_len']
indexer = pt.IterDictIndexer("./quora.terrier", meta={'docno': meta_docno_len, 'text': 4096})
docs = ({'docno': d.doc_id, 'text': d.default_text()} for d in tqdm(dataset.docs))
indexer.index(docs)
Metadata
{
"type": "sparse_index",
"format": "terrier",
"package_hint": "python-terrier"
}