Files changed (1) hide show
  1. README.md +78 -0
README.md CHANGED
@@ -17,4 +17,82 @@ configs:
17
  ---
18
  # Dataset Card for "vietnamese-mlmcorpus"
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
17
  ---
18
  # Dataset Card for "vietnamese-mlmcorpus"
19
 
20
+ ## How can we setup build dataset
21
+ Prepare several functions: split puntual, tokenizer, and use HF dataset for optimize processing
22
+ ```
23
+ def get_tokens(examples):
24
+ '''
25
+ Tokenizer samples into token_ids
26
+ '''
27
+ return tokenizer(examples)['input_ids']
28
+
29
+ def truncation(passage, pattern= '[.\n]'):
30
+ '''
31
+ Pattern split passage
32
+ '''
33
+ output = re.split(pattern, passage)
34
+ output = [item for item in output if len(item.split()) > 0]
35
+
36
+ return output
37
+
38
+ def split_puntual(example, threshold=512):
39
+ '''
40
+ Split a long documents into spans with ~512 tokens
41
+ '''
42
+ texts = truncation(example)
43
+ tokenized = get_tokens(texts)
44
+
45
+ tmp, group = [], []
46
+ count = 0
47
+ for tokens, text in zip(tokenized, texts):
48
+ count += len(tokens)
49
+ if count <= threshold:
50
+ tmp.append(text.strip())
51
+ else:
52
+ if len(tmp) > 0:
53
+ group.append('. '.join(tmp)) # update List[str]
54
+ count = len(tokens) # set count at current idx
55
+ tmp = [] # reset list
56
+ tmp.append(text.strip())
57
+ else:
58
+ count = 0
59
+ group.append('summary')
60
+ return group
61
+
62
+ def process(examples):
63
+ '''
64
+ Build a stack processing
65
+ '''
66
+ chunks = []
67
+ for x in examples:
68
+ chunks += split_puntual(x)
69
+ return {'text':chunks}
70
+ ```
71
+
72
+ Now, we run with this code
73
+ ```
74
+ import re
75
+ from datasets import load_dataset
76
+ from transformers import AutoTokenizer
77
+
78
+ tokenizer = AutoTokenizer.from_pretrained('google/mt5-small')
79
+
80
+ if __name__ == '__main__':
81
+ dataset = load_dataset("ademax/binhvq-news-corpus")
82
+ print("Total original: ", dataset)
83
+
84
+ dataset = dataset.map(
85
+ lambda example : process(example['content']),
86
+ num_proc=2, batched=True,
87
+ remove_columns=['content', 'title', 'summary', 'category']
88
+ )
89
+
90
+ # filter samples less than 30 words
91
+ dataset = dataset.filter(lambda example: len(example['text'].split(' ')) > 30)
92
+ print("Processing: ", dataset)
93
+
94
+ dataset = dataset.train_test_split(test_size=0.0002)
95
+ dataset.save_to_disk('release')
96
+ ```
97
+
98
  [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)